

Multi Instant Messaging Client
Bachelor’s Thesis

Alexander Ågren
Christoffer Medin
Anton Myrholm
Kim Egenvall
Carl Fredriksson
Niklas Johansson Miglavs
Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden 2015
Bachelor’s Thesis DATX02-15-14

Abstract

There is an abundance of chat services and it is not uncommon to run several applica-
tions per device that all provide similar functionality. The group started the project to
find a solution to this problem and decided to evaluate the possibility of creating a multi
instant messaging (multi-IM) client that can connect to all chat services.

The group studied how a multi-IM client could be developed and what services and
platforms were reasonable to support in a prototype. The group developed a prototype
which supported two platforms and two services and evaluated the results.

The technologies and methods that were used suited the purpose of the project, but the
potential of the application is considered greatly hindered by the lack of open Appli-
cation Programming Interfaces (API) by some of the larger services. These limitations
are so large that the future of a multi-IM client is directly dependent on services having
open APIs or the developers gaining access to the closed ones.

Sammandrag

Det finns ett överflöd av chattjänster och m̊anga har applikationer som alla erbjuder
liknande funktionalitet. Gruppen startade projektet för att hitta en lösning p̊a detta
problem och bestämde sig för att utvärdera möjligheten i att utveckla en multi-IM klient
som kan ansluta sig till alla chattjänster.

Gruppen började med att studera och undersöka hur en s̊adan applikation kunde utveck-
las samt vilka plattformar och tjänster som var rimliga att stödja i prototypen som
utvecklades. Gruppen utvecklade sedan en prototyp som stödde tv̊a tjänster och tv̊a
plattformar, och bedömde resultatet.

Tekniken och metoderna som användes visade sig vara lämpliga för projektets ändam̊al,
men potentialen av applikationen begränsades kraftigt av bristen p̊a öppna API:er hos
n̊agra av de större chattjänsterna. Dessa begränsningar är s̊a stora att applikationens
framtid är helt beroende p̊a att chattjänsterna tillhandah̊aller öppna API:er eller att
utvecklarna f̊ar tillg̊ang till de stängda.

Vocabulary

Android Android operating system. Android is a trademark of Google Inc.

API Application Programming Interface

CLI Cross-Language Interoperability

Client Software (or hardware) that connects to a server or service

CPU Central Processor Unit

DLL Dynamic Linked Library

FFI Foreign Function Interface

GPL GNU General Public License

GUI Graphical User Interface

IETF Internet Engineering Task Force

IM Instant Message. Chat services use IMs for communication.

IOS Apple mobile devices operating system

IRC Internet Relay Chat, application layer protocol for text messages

JNI Java Native Interface

OOP Object Oriented Programming

OS Operating System

OSX Apple computer operating system

P/Invoke Platform Invoke

Platform When referring to different platforms one refers to different operating systems

Service A chat service (i.e. Google Hangouts, SkypeTM, etc.)

SO Shared Object

The prototype Refers to the prototype that was developed during the project

WPF Windows Presentation Foundation. Windows C# GUI framework.

XAML Extensible Application Markup Language

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Problem statement . 2
1.4 Design overview . 2
1.5 Project scope and limitations . 3

1.5.1 Implemented services . 4
1.5.2 Closed services . 4
1.5.3 Non-implemented functions . 4
1.5.4 Implementing on different platforms 4

1.6 Outline of the report . 5

2 Project Method 6
2.1 Method of evaluation . 6
2.2 Scrum . 6
2.3 Version control . 7
2.4 Project structure . 7
2.5 Work division . 7

3 Technical Background 8
3.1 Network code . 8

3.1.1 C++ and platform support . 8
3.1.2 The Boost library . 8
3.1.3 XMPP . 9
3.1.4 IRC . 9

3.2 Clients . 9
3.2.1 Android . 9
3.2.2 Windows . 9

3.3 Cross-language interoperability . 10
3.3.1 Object oriented programming languages and virtual machines . . . 11

i

CONTENTS

3.3.2 Sockets . 11
3.3.3 Serialization . 11
3.3.4 Shared memory . 12
3.3.5 Foreign function interface . 12
3.3.6 Other options . 13
3.3.7 Cross-Language Interoperability in the prototype 13

3.4 Related work . 13

4 Design and implementation 14
4.1 Network code . 14

4.1.1 XMPP . 15
4.1.2 IRC . 15

4.2 Clients and Graphical User Interfaces . 15
4.2.1 Contacts instead of accounts . 16
4.2.2 Android . 16
4.2.3 Design and implementation on Windows 17

4.3 Cross-language interoperability . 18

5 Result and discussion 21
5.1 Implemented Services . 21

5.1.1 XMPP . 21
5.1.2 IRC . 22

5.2 Non-implemented services . 22
5.3 Implemented platforms and their GUIs . 22

5.3.1 Windows . 23
5.3.2 Android . 23

5.4 Function interfaces and wrappers . 23
5.5 Project method and its effect on the result 24
5.6 Future development . 25

5.6.1 Potential . 25
5.6.2 Risks with trusting other services 25
5.6.3 Improvements . 26

5.7 Alternative solutions . 26
5.8 Experiences gained . 27

6 Conclusion 28

Bibliography 32

ii

1
Introduction

T
his chapter serves as an introduction to what the group consider a problem.
It provides a background to the problem, the purpose of the project, what
challenges the group have to address and what limitations affect the project.

1.1 Background

Chat services attract enormous user bases. There is a large selection of chat services
available and many users use them daily. There is however a problem that comes with
the extensive usage and amount of services: Many people feel the need to use several
chat services to connect with everyone they want [1]. Statistics show that there are
nearly 1.48 billion instant messaging accounts in China which is higher than the total
population of almost 1.4 billion [2], [3]. This means that even if every single person had
one account there would still be some people that have more than one.

The members of the group have personal experience of this abundance of services and
have looked at previous attempts at solving this problem. However, these solutions did
not satisfy the group’s needs in a multi-IM client. The flaws that the group found are
discussed in Section 3.4.

1.2 Purpose

The purpose of the project is to find a solution to the problem of having to maintain an
application for every single chat service one would like to use. This will be realized by
creating a prototype of a chat application that is able to communicate through many
chat services. The goal with the application is to remove the need for running several
applications and/or browser tabs at the same time.

1

CHAPTER 1. INTRODUCTION

The goal of the project is to create a prototype (hereafter the prototype) of an application
that provides the user with a single graphical interface. The application shall keep the
flexibility and reach that using several services gives, while removing the hassle of using
many different applications at the same time. The user will choose between people to
chat with, rather than between specific accounts at different services.

1.3 Problem statement

The project aims to test the solution of a multi-IM client. This study will evaluate
the possibility of creating an application that can solve the problem with multiple chat
applications. The application has to work on all popular platforms and if possible with
all popular services.

The application needs to replace the default applications of the services if it is going to
remove the demand for them. In order to serve as a replacement for these applications
it has to provide most of the functionality they offer. To do this the application has to
connect to the chat services by implementing the protocols of the services. Also, the
application has to work with all of the popular services in order to provide a good solu-
tion to the problem. The problem cannot be considered solved if the application merely
reduces the amount of applications the user is running.

The application’s ability to solve the problem is also largely dependent on it functioning
on all popular platforms available. Fully solving the problem can only be done by making
the application available on all popular platforms. Otherwise simply switching devices
would cause all the benefits of using the application to disappear.

It is of this application the group aims to create a prototype which will be used to test
the viability of the application.

1.4 Design overview

In Figure 1.1 there is an overview of how the application is planned to be designed. The
network code is the core functionality of the application, which is to interconnect the
different chat services. The network code is to be platform independent. See Section
3.1 for a technical background of this part of the application. From the network part of
the application there are several branches into platform specific development. A branch
is a client targeting a specific platform and adapting the network code via a platform
dependent interface. There is a branch for every platform the application is intended to
run on. The reason for developing the clients for a specific platform is to get a good look-
and-feel on the platform and it is optimal to do this with a platform specific language.
See Section 3.2 for a technical background of this part of the application. Also, this
design of the application makes the development modular and it is easy to adapt and
add platforms. The platform independent network model reduces the amount of work

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Design overview of the application

to port the application to different dependent platforms. Lastly, in Section 3.3, there
is a technical background on the intended interfaces between the network code and the
clients.

1.5 Project scope and limitations

The group does not aim to develop a full version of the application during this study.
Instead, the focus will be to create a prototype of the application that can serve as a
proof-of-concept. The goal with this prototype is to test the viability of a multi-IM client
and evaluate the technologies and methods used. The prototype will lack in functionality
compared to the ideal application. It will however be designed to fit the requirements of
the ideal application.

Another limitation would be the avoidance of the GNU General Public License (GPL),

3

CHAPTER 1. INTRODUCTION

since it enforces dynamically linked libraries in one’s project. This poses a problem since
not all operating systems allow for dynamically linked libraries. IOS is one of these
operating systems, which the group would not want to exclude.

1.5.1 Implemented services

The project aims to implement two services in the prototype to test the viability of sev-
eral services in the same application. It will also evaluate the viability of implementing
the other major services that are not implemented.

The prototype will not implement the entirety of the XMPP protocol due to time con-
straints. It will implement the basic and mostly used chat features, but not the voice
chat, file sharing, roster editing and more, that XMPP supports. More information
about XMPP is found Section 3.1.3.

1.5.2 Closed services

Some services have decided to not have open APIs or decided to close their APIs during
the timespan of the project. This limited the group in terms of what services could be
supported as the group did not consider it worth the time and effort to find a work around
to implement these services. These workarounds would most likely include fooling these
services that our application was the official one. This is not a viable solution anyway
because it would most likely be a breach to their user agreements and that would put us
at risk of legal action. It would also put the application at risk of becoming outdated if
these services change at all as information about these changes would not be available
before they are implemented.

1.5.3 Non-implemented functions

The goal of the application is to interact with several different services and be able to
send messages to several services at once. The prototype was limited to sending only
plain text messages. Other types of messages, for instance messages containing images,
was considered out of scope for this study. The group wanted the focus of the application
to be an experience where the user does not have to think about what kind of services
they are using by hiding all service related accounts. To do this, the most compatible
form of communication is text.

1.5.4 Implementing on different platforms

For an application to be able to properly replace the default applications of chat services
it has to be able to run on all popular platforms. Otherwise the original problem would
still remain on other platforms.

Implementing on all platforms is however outside of the scope since it would require
more time than is available for the project. The goal of the project will be to implement

4

CHAPTER 1. INTRODUCTION

the prototype on two different platforms in order to test if the application can work both
on desktop as well as on mobile devices. If the project was to be extended, it would be
easy to introduce the prototype on other platforms since the underlying functionality
does not need to be rewritten for a certain platform.

The operating systems chosen were Windows for the desktop version and Android for
the mobile platform as they have the largest market shares of their respective markets
[4], [5]. Implementing a complete GUI on both platforms is also considered outside the
scope for the study. Focus will instead be on creating a functional GUI supporting the
basic features of the application. The aim is to create a proof-of-concept that can help
evaluate the potential and possibility of creating a full version of the application.

1.6 Outline of the report

This report aims to first introduce the problem, the project’s purpose and what approach
the group had when trying to solve it. It describes the methods used during the project
in Chapter 2. It gives a background on the more technical aspects of the project such
as the libraries, languages and previous solutions in Chapter 3. The report discusses the
decisions made during design and implementation in Chapter 4, before presenting and
discussing the results in Chapter 5. Lastly in Chapter 6 it gives a conclusion.

5

2
Project Method

T
his chapter describes the methods that were used during the project. This
mainly focuses on development method and techniques used during the devel-
opment of the prototype. Method of evaluation is also considered.

2.1 Method of evaluation

The group wanted to evaluate the possibility of creating a multi-IM client. In order to
get the experience and knowledge needed the group developed a prototype of a multi-IM
client. With the experience and knowledge the group gained, it could determine if there
was potential for a multi-IM client or not.

2.2 Scrum

The project work was structured using Scrum. Using Scrum the work was divided into
sprints, which are small projects in themselves that have a clear goal and timeframe [6].
Before each sprint a planning meeting is held, during which the goals of the sprint are
defined. The goals are selected from a product backlog in which all the parts needed for
the product are stored and are added to the sprints backlog.

During the sprint each of the goals should meet the Definition of Done which means
that the goal is fully met and shippable. The group holds short daily meetings during
which each team member presents what they did yesterday, what they are doing today
and what issues they have that might affect the sprints goals.

After each sprint the team evaluates the goals of the sprint and determines the status
of these. The product backlog is updated with the goals that are done and goals are

6

CHAPTER 2. PROJECT METHOD

changed as needed. Time plan is reevaluated and changed if needed [7].

2.3 Version control

To manage the code during development the distributed revision control system Git was
used. Git is distributed so that each user has a copy of the main repository in order to
remove any single point of failure that could occur if there was a main server that kept
the repository and the users only checked out the code. Git is free software under the
GNU General Public License v2 and is one of the largest code management tools on the
market [8], [9].

2.4 Project structure

The project started with a research phase. The group researched what services were
popular and the possibility of including these in the prototype. Different technologies
were researched before the group designed the application and decided upon platforms
and services to implement. The group then researched the platforms and what approach
to take when creating the prototype for these. Afterwards the group implemented the
prototype of the application before evaluating the results at the end of the project.

2.5 Work division

The group was divided to have different responsibilities in the design and implementation
phase of the project. There were mainly three areas to be responsible for, they are the
network code, platform client development and the interfaces between different clients
and the network model. A clear view of the different work areas can be seen in the
planning overview of the system design in Figure 1.1. This division of work areas made
it possible for the group to work independently on different parts of the application at
the same time.

7

3
Technical Background

T
he network code is developed in C++ and the GUI in C# and Java for Win-
dows and Android respectively. This chapter gives a bit of background to the
libraries Boost and WPF as well as the protocols XMPP and IRC that were
used in the project. It also introduces the available options for communication

between C++ and Java/C#.

3.1 Network code

3.1.1 C++ and platform support

The network part of the application is to be platform independent. This requires the
network code of the prototype to be written in a language that is supported on all
platforms. The programming language C++ is supported on all platforms. A study shows
that using C++ compiled code can give adequate results when it comes to performance
on smaller devices such as Android [10].

3.1.2 The Boost library

Boost is an open source library for C++ [11]. Its goal is to work well with and ex-
tend the C++ standard library. Many of the Boost libraries have been standardized
[12]. The Boost library that the project uses most frequently is the Boost.Asio library.
Boost.Asio is a network programming library that uses the current operating system’s
socket library in the background, making it cross-platform compatible. The prototype
utilizes Boost.Asio for connecting to and communicating with chat servers, for example
connecting to Google Hangout servers and communicating through the XMPP protocol.

8

CHAPTER 3. TECHNICAL BACKGROUND

3.1.3 XMPP

XMPP is an Internet Engineering Task Force (IETF) standard for real time communi-
cation [13]. XMPP utilizes XML streams to send XML stanzas. An XML stanza can
contain an instant message, presence information, contact list maintenance commands
or other types of option commands. Since XMPP is defined as an open standard, it is
one of the non-proprietary instant messaging protocols. The prototype uses the XMPP
protocol to support the Google Hangout service. XMPP also allows for future support of
a plethora of less commonly used services that are built on the communication standard.

3.1.4 IRC

The Internet Relay Chat (IRC) protocol is used for transmitting text messages between
a client and a server. IRC is not commonly used as a conversation between two individ-
uals, but instead as a one-to-many conversation where multiple users participate. This
kind of conversation takes place in a channel. However it is easy to establish a private
conversation between two users in a channel through a certain prefix in the IRC protocol.
All messages that are sent to the server is preceded by a prefix that the server inter-
prets in order to perform the corresponding action. The preceding prefix for a message
specifies whether it is a server, channel or user message.

3.2 Clients

3.2.1 Android

Android is the most popular smartphone operating system on the market and has 76.6%
(2015) of the market [5]. Android is based on the Linux kernel and is open source.
Development for Android is mainly done in a Java like language, but does not run a
Java Virtual Machine. Instead Android runs its own virtual machine called Android
Runtime. Developing for Android has a lot of advantages for the developer that is
already used to Java as the differences in the languages are minuscule.

3.2.2 Windows

Windows is the most popular PC operating system on the market [5]. To allow for
simple creation of Windows applications, Microsoft has provided Windows Presentation
Foundation (WPF). WPF is a framework developed by Microsoft that is used to develop
GUIs for Windows applications [14]. WPF uses Direct3D, which is a part of the DirectX
family for rendering and allows for both 2D and 3D graphics.

WPF supports graphical interfaces, on screen documents, fixed form documents, images,
video and audio. In addition to the support, WPF also provides many base graphical
components such as buttons and windows. It also handles all the rendering of these
graphical components. Developing applications in WPF is mainly done by defining the

9

CHAPTER 3. TECHNICAL BACKGROUND

look of the application in XAML (Extensible Application Markup Language) and its
behaviour in code behind using either C#, C++, JScript or Visual Basic [15].

3.3 Cross-language interoperability

This subsection reports a small study on cross-language interoperability (CLI). The
study focuses on problems with the subject and methods for implementation.

Due to having different parts of the application built in different programming languages,
there must be a way to communicate between them. Some object oriented programming
languages can interact and use objects created in other languages thanks to the Vir-
tual Machine they run on [16]. For the prototype the CLI problem is about exposing
functionality of unmanaged code to managed code. The explanation of unmanaged and
managed code follows in the next paragraph.

The network part of the prototype is written in the programming language C++ and is
compiled to low level machine code in the form of binary libraries. This type of code
is called unmanaged code. The binary libraries can be used by other code when linked
to it. The libraries can be linked either in a dynamic or static way. The network code
is compiled to a dynamic linked library, called DLL on Windows. The client part is
written in the native languages for the different platforms and this type of code is called
managed code. The managed code is compiled to intermediate code, instead of machine
code, targeting a Virtual Machine. The Virtual Machine interprets the intermediate
code to the underlying functions of the platform it is run on. The managed code is
checked to be safe and will be contained to the virtual machine. Another advantage
with running in a managed environment is that there is garbage collection that manage
the memory. The unmanaged code is closer to the machine and therefore often faster
than the managed code, but the disadvantage of running the unmanaged code is that it
can crash the system or run out of memory. [17]

As listed above, there can be several problems with handling unmanaged code when
running it. In addition, there can be several problems interacting with the unmanaged
code from the managed code. To begin with, operating between different programming
languages is in general a difficult task. When interoperating between managed and
unmanaged code there has to be an interface between them to expose the functional-
ity to each other and enable interaction. Furthermore the data types and objects are
represented differently between managed code and unmanaged code which has to be in-
terpreted correctly between them. Calling conventions are also an important issue when
calling functions or object methods between the different languages. Managing threads
and handling exceptions are two other possible problems in this matter. [18]

The following content of this subsection describes general ways how to interoperate
between different programming languages and the focus is on the ability to interoperate

10

CHAPTER 3. TECHNICAL BACKGROUND

between managed code and unmanaged code.

3.3.1 Object oriented programming languages and virtual machines

As mentioned previously, some object oriented programming (OOP) languages can inter-
operate with each other. For this to be possible the OOP languages have to be adapted
or designed to run on a specific Virtual Machine. The hosting Virtual Machine manage
the interoperation between the supported languages that is run. For example there are
a list of .NET common language interface compliant languages that run on the common
language runtime, CLR, virtual machine and there are Java Virtual Machine (JVM)
compliant languages that run on the JVM. There is also a version of C++ that adapts
the common language interface and can be run on the CLR machine. This technique is
not suitable for interoperating between managed and unmanaged code, because the un-
managed code is not run in the different virtual machines but used by the code running
in the machines [19], [20].

3.3.2 Sockets

There is a way to communicate between different programming languages using network
sockets. To be more specific, the interaction is performed on the internal network of the
platform an application is run on. In more detail this means having the different parts
of an application that is interacting with each other, acting as either client or server.
The network socket is setup to be the address of the own system and for a specific port.
The client sends data to the socket and the server is listening and receiving data on the
same socket, both parts running on the same platform. The concept of CLI with sockets
is simple and controlled. A problem with this method is that the data sent between
the languages has to be serialized to be interpreted correctly, see Section 3.3.3. Another
problem is that there is an overhead work needed when calling the API for the sockets
of the underlying system [21].

3.3.3 Serialization

Serialization of a data type or an object converts it into a stream of bytes represent-
ing the data. The process makes it available to store the state of a data type or an
object in a file or database or to transmit it in memory or via sockets. Deserialization
is the reversed process, that is converting a stream of bytes into a data type or an object.

A method for interoperating is to serialize objects in managed code and deserialize the
objects in unmanaged code or vice versa. In most OOP languages there is a built-in
mechanism for serialization of data types and objects. The problem is that it is difficult
to perform this method between different programming languages and requires much
time and work to implement. Also, the process of serializing an object of complex form
requires much CPU time, that is a communication overhead [22].

11

CHAPTER 3. TECHNICAL BACKGROUND

3.3.4 Shared memory

Two different programming languages can interoperate between each other by using
shared memory. This method means to transmit data in memory space that is shared
between the interoperating languages. The shared memory can either be in form of allo-
cated space in the primary memory or files stored on the hard drive disks. In most cases,
some sort of serialization and deserialization of the data is needed when interoperating
between different programming languages via shared memory. Shared memory can be
used to communicate between managed and unmanaged code. In C# there is a way to
allocate global memory that can be accessed by unmanaged code by a pointer to this
memory. In Java there are buffers of different data types that can be used to share
memory with unmanaged code [23], [24].

3.3.5 Foreign function interface

A foreign function interface (FFI) is a mechanism to make a programming language
able to call functions written in another programming language. Some foreign function
interfaces also allow to call object methods. In most cases, a FFI is designed to be used
by higher level language to invoke functions in lower level language, like C or C++. This
design allow managed code to call functions, outside the virtual machine, in unmanaged
code. Many FFIs also allow to invoke functions in both directions, that is a called pro-
gramming language can invoke a function in the calling language. The FFI handles the
calling conventions between the different programming languages interacting with each
other. Also, the concept of using the foreign function interface mechanism is simple and
easy to implement [25]. The problem with this interoperating method is that data types
or objects sent between the languages, return values or parameters, has to be marshalled
- another word for serialization. In most cases marshalling of simple data types is not a
problem, but marshalling more complex data types like objects can be ambiguous [26].
Also, there has to be some overhead work, due to calling conventions and marshalling
data, in the runtime machine when calling functions in another language which requires
CPU time [27].

The programming language C# has a mechanism named P/Invoke, short for Platform
Invocation Services, to call or invoke unmanaged functions in a C or C++ written DLL.
The managed C# code imports the unmanaged C++ DLL and is then allowed to invoke
the exported unmanaged functions [28].

Considering the Android client written in Java like language, there is a corresponding
FFI mechanism called JNI, which is short for Java Native Interface. JNI works in the
same way that P/Invoke does, it allows the managed Java client code to invoke functions
in the unmanaged C++ code. The managed Java code imports an unmanaged .so file,
which is short for shared object file and is the corresponding DLL on a Linux platform
[29], [30].

12

CHAPTER 3. TECHNICAL BACKGROUND

3.3.6 Other options

There are other ways of interoperating between managed and unmanaged code than the
ones listed above, but they are not as commonly used or are less supported between
different programming languages. For instance the Component Object Model, COM,
which is a binary-interface standard for exposing objects to other programming languages
and environments than where they were created. The COM interface was introduced
by Microsoft and has support for all .NET languages [31]. C++ is well supported by
the COM interface, however support on the Linux platform is lacking. Another way to
interoperate between managed and unmanaged code, is to build a service in unmanaged
code and expose an API that the managed code can use to call into the service. This
technique is difficult and time consuming to implement [32].

3.3.7 Cross-Language Interoperability in the prototype

In the prototype the cross-language interoperability method chosen was foreign function
interfaces. Design and implementation of this as well as the motivation behind the choice
is covered in section 4.3.

3.4 Related work

There have been several attempts at a solution similar to the one in this study. However
the ones found by the group did not come up with a good solution to the problem. The
three attempts that the group found were Pidgin, Adium and Trillian. Neither of these
works on all popular desktop platforms as well as all mobile platforms. Pidgin does not
work on any portable devices, Adium only works on OSX and Trillian does not support
Linux. All three of them had lack of service coverage which the group considered an
important aspect of providing a good solution. This lack of coverage included Skype for
Pidgin and Adium as well as Skype on other platforms than Windows for Trillian. Pidgin
and Adium are pretty much only GUIs that use the open source library libpurple which
does all of the network and logic. Libpurple provides most if not all the functionality the
application needs. However libpurple was not suitable since it has a GPL license [33].
This does not work for us, since we don’t want to exclude IOS in the future. On IOS all
libraries have to be statically linked to, but the GPL license says that you can only link
dynamically to the libraries in question.

13

4
Design and implementation

T
his chapter presents what features were included in the prototype as well
as discussing the decisions made during design and implementation of it.

The ideal application should be able to fulfill our main goals, but it should also have a
realistic user experience and therefore design is important. The prototype was designed
accordingly to this.

4.1 Network code

The group decided early on that the C++ network code should be stateful which means
that it keeps data in memory on the computer and not only provide an interface to the
implementing clients. The network code maintains the connections to different servers
and store it in its memory. It also stores data regarding connected services as well as the
persons with their accounts that the user can communicate with. The GUI also needs
to keep data regarding persons and accounts to show the user.

All this makes it easier to develop the application for many platforms because the more
functionality the C++ code provides, the less code needs to be rewritten for each client
application. The same C++ code will then be used on all platforms. It also makes sense
from a software architectural point of view. To do any networking, the network code
needs to use low level communication objects (such as sockets and Secure Sockets Layer
streams). This make it logical to store these objects and related data in the network
code library.

Another early decision the group made was that new services should be easy to add.
This decision drives the code architecture towards using many interfaces. In C++ the
closest thing to a C# or Java interface is a class with only pure virtual methods. Having

14

CHAPTER 4. DESIGN AND IMPLEMENTATION

collections of interfaces enables heavy use of polymorphism, making it easy to add new
implementations of said interface without having to rewrite code.

4.1.1 XMPP

The group decided early on to do its own implementation of XMPP. The major reason
behind this choice is that all well documented XMPP libraries we found (with libpurple
being the most common) all have a license that was not suitable for the needs of the
project. This is described in Section 3.4.

While implementing parts of the XMPP protocol in the networking part of the applica-
tion the group made the choice to implement the authentication process as a synchronous
sequence of messages to and from the XMPP server in question. This decision was made
because the messages that need to be sent and received during authentication has a strict
order.

4.1.2 IRC

It was decided to scope the Internet Relay Chat (IRC) protocol to only private conversa-
tions on a server. For future expansion, the functionality for one to many conversations
is already implemented due to the easy use of the protocol.

The implementation is based on a connection to an IRC server where threads handle
the reading and sending of messages. A message that is received is parsed to only
contain the actual text of the message which should be displayed to the user. The
IRC implementation also handles server messages such as keeping the connection alive
automatically.

4.2 Clients and Graphical User Interfaces

When developing the Graphical User Interface (GUI) the group took into consideration
what information was important to display to the user and how it can be displayed
efficiently. The group also decided to develop a GUI unique to each platform as the
targeted platforms provide vastly different possibilities and difficulties.

Smaller devices such as smartphones usually have a touch screen which can make for
a GUI that is intuitive and easy to use. They are however limited by their screen size
which makes presenting much information at once difficult. A finger is also less accurate
than a mouse pointer therefore it is important not to have elements too close to each
other, to avoid frustrating the user.

Devices with larger screens such as desktops can present several areas of information at
once to the user. Each of these areas can also include more information than what the
entirety of a smaller screen could. This allows for showing large amounts of information

15

CHAPTER 4. DESIGN AND IMPLEMENTATION

to the user. However there is still a limit to how many areas of information that can be
presented at once as the screen can quickly become cluttered otherwise.

The GUI was designed so that the user should be able to switch from a platform to
another and be familiar with options presented to them. This was not the main focus
for the GUI during the project, however it was taken into consideration when designing
the GUI.

4.2.1 Contacts instead of accounts

An important aspect of the GUI that applies to all platforms is the abstraction of the
different accounts that belong to each contact. That is to say that the user should not
have to worry about what service they need to send their message with and should in-
stead be able to fully focus on their conversation. The group still wanted to give the
user some idea of what service the messages were sent through. Each message is thus
displayed with a list of icons depicting what services was used. This can be seen in
Figure 4.2 to the left of the message.

It was also decided that the user should have the option to select what services they
want to use for each message and only have the application to provide good default
services for each conversation. This is presented differently on the two platforms as the
amount of screen space on smaller devices did not allow for a list of check-boxes near
the writing area. It was made available as a pop-up checklist that is accessed in the top
menu. It was more important to create a functional GUI on each individual platform
than to make every aspect of the GUI function the same on all platforms.

4.2.2 Android

When creating a GUI for a mobile device the group was very careful with how the screen
space was used as it is very limited. This resulted in the list of contacts not being visible
at all times but instead being hid in a so called drawer on the left side of the screen.
The contact list drawer also does not take up the entire screen when pulled out as shown
in Figure 4.1. Instead it allows the user to still look at the conversation while also
looking at the friends list. The list is also slightly transparent which effectively allows
for the same screen space to be used twice which is important when the screen is so small.

The start screen is designed to give the user a quick overview of what have changed
since they last used the application. This is done by showing the conversations that
most recently received a message and the content of it. The start screen also provides
the user with some menu options such as creating a new contact.

When selecting services for a message it was decided to hide this a bit more compared
to the desktop application as adding more options at other places than the menu bar
would clutter the screen too much.

16

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.1: The prototype on Android with the contact drawer pulled out from the left.

4.2.3 Design and implementation on Windows

It was decided to use the framework WPF to develop the applications GUI for Windows.
WPF was chosen due to it being supported by the Visual Studio IDE (Integrated De-
velopment Environment) [32] which the group was already using to develop the network
code. WPF is also developed by Microsoft and is well supported on Windows.

The creation of a GUI for desktop provided different problems and possibilities compared
to the creation of a GUI for a mobile device. The group had to consider how to use the
larger screen space effectively while not making the application cluttered. The result is
shown in Figure 4.2.

The larger screen on desktops allows for several windows to be presented to the user at
once which allowed for separation of the friends list from the chat window. This would
reduce the amount of information presented to the user unless they choose to view it
and also allow the user to resize the application window more freely.

Since part of the goal was to reduce the amount of windows and browser tabs running it
seemed only natural that the application should not cause unnecessary clutter by having

17

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.2: The prototype on Windows. Showing a contact list on the left and a conver-
sation with a message on the right. At the bottom the chat box, with the send button and
the service selection to it’s right.

multiple windows as default. It was considered to include multiple windows as a prefer-
ence however it was not included in the prototype due to lack of time.

In order to create as much familiarity across platforms as possible the friends list was
placed in the same window as the chat. This allowed for the same usage pattern as the
smartphone version. Having the friends list and chat in the same window also seemed
to fit the project’s goal of reducing the number of applications and browser tabs by not
cluttering the desktop of the user more than necessary.

Since the desktop application had more space available it was decided to provide the user
with a quick and easy way of selecting services. This can be seen in Figure 4.2 where
service selection is available on the main conversation screen in the bottom right. This
was a good way of using the additional screen space that the desktop platform provided
as additional information could be presented in an intuitive way without cluttering the
screen.

4.3 Cross-language interoperability

For the prototype the cross-language interoperability method chosen was FFI, see Sec-
tion 3.3 for a technical background of different CLI methods. The reason for this is
that the technique is more straightforward and requires less work to implement than the

18

CHAPTER 4. DESIGN AND IMPLEMENTATION

other methods. Due to the time limit in the project the amount of work to implement
the CLI method was an important aspect.

The technique chosen for interoperating between C# and C++ is P/Invoke and JNI be-
tween Java and C++. With the FFI mechanism, the way to interoperate between the
different programming languages is by implementing a function interface. In the pro-
totype, the interface defines the functions in the C++ network code that can be called
from another language. Even though the two techniques P/Invoke and JNI are similar to
each other, there has to be an implementation of the function interface for each technique.

The function interfaces are written in C++ and are adapted to the different programming
languages used for the different clients by a wrapping class for each. There are wrapping
classes written in C# and Java for the Windows desktop client and for the Android client
respectively.

A decision was made that the defined functions in the interfaces handle simple data
types as parameters and return values, instead of using more complex data as objects
and structures. This makes the implementation of the function interface simple and easy
to understand. Simple C types are easily converted to another language. For instance
an integer in C# translates to an integer in C++ and the same translation works with
the JNI mechanism. Another reason for this choice was to make it easy to know what
memory is owned by which part of the application to keep memory related issues to a
minimum. Also, this reduces the amount of CPU work spent on overhead when calling
the functions, as there is less complex data components marshalled between managed
and unmanaged code. When dealing with transmitting messages of various length be-
tween managed and unmanaged code, buffer objects were used. A C# string buffer is
converted to a null terminated constant character pointer in C++, which basically is a
string. For Java buffer objects this is not as easy converted into C++, but one has to con-
sult the JNI mechanism for the proper conversion into pointers. The buffer objects are
complex data types but are defined in the FFI mechanisms to be used for transmitting
fields of various size of a specific data type. Another way to do this is to call a function
returning character by character. The latter alternative is worse in CPU overhead work
and therefore not considered for implementation.

Both P/Invoke and JNI have the ability to invoke functions in the calling programming
language. This means that C++ can call back into C# or Java. In P/Invoke this is done
by delegating a function in C# and pass it as a parameter to C++ where it is marshalled
as a function pointer which can be called. In JNI it is easy to invoke an object method of
an object reference that is sent by parameter to C++. When implementing the reading
of incoming messages in the network code from the client code, there were two design
approaches considered. These approaches were either to call back into the C# code when
a message had arrived or to poll a function that returns true or false whether a message
had been placed in a message buffer or not. Polling is worse with respect to CPU work

19

CHAPTER 4. DESIGN AND IMPLEMENTATION

but is not as difficult to implement as the other option mentioned. Due to lack of time
the polling method was implemented.

20

5
Result and discussion

T
his chapter presents and discusses the result of the project. It evaluates
the technologies, methods and approach that were used and their effect on the
result. It also discusses the potential for further development of the prototype
and potential improvements.

5.1 Implemented Services

The services supported in the prototype are IRC and Google Hangouts. They shared the
important aspects of having an open API and availability of the API on all our supported
platforms. In addition they were both based on open protocols which made them less
tied to a single company. This ensured that there was plenty of documentation available
during implementation. It was particularly important to the prototype as well as there
were only a limited amount of services that could be included in the given timeframe.
The prototype would not be able to test the viability of a multi-IM client properly if it
could not support two services.

5.1.1 XMPP

Since the prototype has implemented the XMPP protocol it supports all services using
the XMPP protocol. The prototype however does not support manual connecting of
servers so in practice it only supports Google Hangouts.

The implementation of XMPP was also meant to give support for other large services,
mainly Facebook. However Facebook decided to discontinue their XMPP support and
with it all their support for access to their chat API. This made supporting Facebook
not an option, however there are several other large chat services that make use of the
XMPP protocol and a large amount of smaller services.

21

CHAPTER 5. RESULT AND DISCUSSION

The group found the inclusion of XMPP support a good idea in an application of this
kind, since even though the prototype only supported Google Hangouts, increasing the
functionality to include all XMPP services is trivial. The XMPP protocol does not give
the group access to the most popular services, but it gives access to a lot of smaller ones.

5.1.2 IRC

IRC was deemed a safe option since it does not have all its users centralized to a single
service, thus eliminating the risk of the service becoming unavailable and reducing the
risk of the project’s effort resulting in a prototype only supporting a single service. This
would mean that the prototype became a total failure since it could not give any infor-
mation about the viability regarding multiple services in a single application.

Similar to XMPP, implementation of one IRC service implies support of all services
based on the technology with minor or no adjustments needed.

5.2 Non-implemented services

While trying to create the prototype the group encountered a lot of problems with a lot
of the popular chat services on the market. The group had chosen to implement usage
of the XMPP protocol in the prototype as that would cover both Facebook and Google
Hangouts. As more research was conducted it came to light that Facebook had decided
to discontinue their XMPP API and thus Facebook support for the application was ruled
out. Another big service that was initially planned to be supported was Skype. Skype
however does not provide any other APIs than the desktop API that is only available on
Windows. Including Skype was then ruled out as the benefits of supporting the service if
only on one platform was outweighed by the confusion and inconvenience it would cause
to not have the service available on all platforms.

Several large services were not considered for support when developing the prototype
due to a lack of open API. Services such as Facebook and Skype we would want to
support, had they provided the needed APIs. The possibility of fooling these services
into thinking that our client was the official one was considered. However this would
break the terms of use of the services which would put the user’s account at risk, making
the application a liability for the user.

5.3 Implemented platforms and their GUIs

Listed are the different features implemented in the different GUIs:

- Send message

- Add contact

- Add account to a contact

22

CHAPTER 5. RESULT AND DISCUSSION

- Choose service to send a message on

- Change contact information

- Remove contact

In addition to this the Android client is able to display notifications when a message is
received.

5.3.1 Windows

The GUI for the Windows platform was developed in WPF. WPF proved to be easy
to work with and allowed the group to quickly create a functional GUI without much
hassle. A big feature of WPF was that it allowed for data binding between data in the
back end code and the GUI. This kind of binding allowed a lot of separation of model
and view while still having the GUI be responsive to changes in the model.

Choosing a natively supported framework proved to be a good idea as WPF provided the
group with many good default graphical components that made creating an application
that looked and behaved like a normal Windows application easy. There were many
online resources available when developing which helped the group. However the group
found that the official documentation about WPF was lacking.

5.3.2 Android

Android proved to be a suitable platform for the application. The development encoun-
tered few issues and creating a graphical interface with the native components using the
graphical designer in Android Studio made the development go smoothly [34]. There was
also a large amount of information available which helped the group during development.

Developing the prototype for smaller screens turned out to be a challenge, but was over-
come with smart design. Design such as the use of a drawer for the contacts list instead
of showing it at all times allowed the screen space to be used effectively and create in-
tuitive controls for a touch screen.

The group had some previous experience in working with Android and a lot of experience
working with Java which increased productivity as the group did not have to do a lot of
research to get work started.

5.4 Function interfaces and wrappers

The result of the study in cross-language interoperability is that the method used in the
application prototype was foreign function interfaces, see Subsection 3.3.5 for a technical
background. For each platform client developed, there was a function interface with a
corresponding language wrapping class implemented.

23

CHAPTER 5. RESULT AND DISCUSSION

The function interface mechanism was simple and made it easy to implement commu-
nication between different programming languages. The chosen technique adapts well
with the application prototype. There were other techniques able to work in the appli-
cation prototype as well. For instance, using sockets to communicate between the clients
and the network code. But due to the time constraints in the project this method was
considered not reasonable to implement. Many of the methods in the study in cross-
language interoperability are well suited to combine with each other. An example of
this is that the foreign function interface could have been combined with usage of shared
memory to send complex data objects with help of serialization between the different
languages. This combination could be useful if there is a need to send more complex data.

If there would be a further expansion of the prototype, there would most likely be a need
for sending more complex data between the clients and the network code. Therefore the
aforementioned combination of different CLI methods would be in interest. With a
further expansion, the implementation of reading incoming message has to be improved.
As it is in the prototype, this is done by polling a function returning true or false whether
a message has arrived or not. Polling is not considered a good implementation style in
performance aspects. In a further expansion this would be done with callbacks instead.

5.5 Project method and its effect on the result

The group did not use much of the Scrum method as a lot of the work was done sepa-
rately and it did not seem like a formal development method was needed. This resulted
in the project not using almost any of the Scrum method. The parts of Scrum that
were still used ended up being the sprints although almost none of the formalities such
as sprint retrospective and sprint backlog were used formally. Instead of having daily
Scrum meetings the group tried to have meetings twice a week to discuss progress and
issues.

Since the group did not use the Scrum method a meaningful discussion about its qualities
as a development method cannot be held. However the group felt that as the project
proceeded, a more formal way of keeping track of progress and backlog would have helped
the group stay on track and make more progress. A more formal development method
would also have helped the group keep better track of who’s doing what and how much
progress has been made in each area.

The group decided to not have the daily Scrum meetings as the work in the project was
limited to four hours a day rather than the normal eight hour workday and in addition
not all of the time spent working was available for development. The group also had
varying schedules which made daily meetings not an option. The group tried simulating
these daily meetings by having meetings twice a week. However the group felt that it was
not sufficient at times and the time between meetings when one was cancelled or a large
part of the group could not attend became too great. When meetings were close to daily

24

CHAPTER 5. RESULT AND DISCUSSION

the group had not really made any progress between the meetings. Sometimes some
members of the group had done no work at all thus making the meeting non-productive.

The group felt that following a formal development method more closely would have
provided the project better structure, improved the overview and increased productivity.
However the group felt that the Scrum method of daily meetings and sprints did not fit
due to the circumstances of the project.

5.6 Future development

5.6.1 Potential

The group is of the opinion that the application has some potential, however this po-
tential is greatly limited by the larger services lack of open APIs. Creating a multi-IM
client that works on all platforms and supports all services is not limited by the tech-
nologies available. It is however limited by the large companies not providing open APIs
for the general public to use. The fact that both Facebook and Skype were not possible
to implement is a huge detriment to the potential of the application as it cannot be
considered a good solution if not all the large services are covered. However if these
large services would start offering open APIs the potential of the application would be
greatly increased.

The application provides some improvements compared to the existing solutions which
the group considered valuable. The increased focus on contacts instead of accounts
could provide improved user experience for previous solutions. The ability to work
on all platforms is something that is needed in the previous solutions, however these
solutions would have to switch license entirely which might prove a great hindrance.

5.6.2 Risks with trusting other services

There are some risks involved when developing this kind of application. Most of the
features of the application are dependent on the services provided by other companies.
This puts the entire functionality of the application at risk should these companies stop
providing open APIs. Even if there are deals made with these companies to use their
private APIs, there is no guarantee that new companies entering the market would be
interested in making these deals.

It is understandable for chat service providers to not provide open APIs. Many of them
earn money from advertisement, and this revenue will be diminished if users were using
other applications to access their chat service as they would not be exposed to their
advertisement.

25

CHAPTER 5. RESULT AND DISCUSSION

5.6.3 Improvements

There is much room for improvement in the prototype that was created. However there
are some improvements that the group feels are more important for a final version to
implement:

• The coverage of services. The application that was developed could not support
all the popular services due to time constraints. However large services such as
Skype and Facebook were not included as the group did not have the ability to
support these. In order to create a final version of the application a solution to
this issue needs to be found.

• Sharing data between different platforms. The application has to synchronize data
between platforms such as contacts and conversations. A user would quickly be-
come frustrated if the application did not share this data.

• Smart messaging. Storing all contacts and their accounts in a single application
is a way of reducing the amount of applications that the user needs. However the
user experience can be greatly increased should the application be able to prioritize
how to send the messages. This can be realized by having the application check
the online status of the different accounts of the recipient and according to this
information choose the best option.

5.7 Alternative solutions

The group identified an alternative way of solving the issue with too many chat appli-
cations: creating an entirely new chat service to replace all the currently popular ones.
This would eliminate the need of other services and thus other applications. However
the group found several flaws with creating an entirely new chat service.

The biggest flaw was the fact that the success of a chat service is largely dependent on
its popularity. This means that this solution would have to become so popular that no
other services would be used. However this is not a realistic goal and by creating another
chat service we would further increase the problem. Introducing another service to the
market would only split the user base even further and contribute to the problem.

Introducing another service also takes away from the fact that some of the popular chat
services such as Facebook have functionality beyond chatting. If a user would still want
to access this functionality they would have to still use that service. If the user then
wants to chat with their friend on Facebook they will have their conversations with that
person split over multiple applications or have to launch another application.

These flaws were large enough to disregard creating a new service as a solution. It would
allow people using the application to chat with those who did not. The application would
still be useful even if it did not get a large user base as it would only provide improvements

26

CHAPTER 5. RESULT AND DISCUSSION

to the user regardless of its popularity. The user could always use whatever application
is most convenient at the moment.

5.8 Experiences gained

Developing the network code gave experiences in programming C++, network program-
ming on the socket layer and implementing a protocol from its official specification. In
this part of the application, asynchronous multi-threaded programming has been used
and learned. In addition, the group has studied interoperability between different pro-
gramming languages and learned how to implement this.

The implementation of the clients on Android and Windows gave the group experience
in designing user interfaces. The development of the Android version gave the group
experience in developing for mobile devices. Developing for Windows also gave the
group experience working with C# and WPF.

27

6
Conclusion

T
he initial plan was to develop a prototype which could support all popular
chat services and work on all platforms. The prototype was to support two
services and work on two platforms to test this functionality.

After doing some research and starting the creation of the prototype, the group en-
countered difficulties when selecting services. This was due to several large services
withdrawing or never providing open APIs. The services Google Hangouts and IRC pro-
vided open APIs and were thus selected for implementation. It was decided to support
the platforms Android and Windows as they were the largest on the market.

The group succeeded with the initial goal of testing the viability of a multi-IM client.
This was done by creating the prototype which satisfied the requirements of two services
and two platforms. The prototype and the process of developing it could then be used
to evaluate the viability of a multi-IM client.

The group considered the application itself a success since it could provide the function-
ality and user experience the group was looking for. The technologies that the group
used were considered appropriate and well suited for the task. However the group en-
countered a lot of troubles with the chat service providers due to the lack of public APIs.

Due to developing in C++ there are no problems supporting all platforms and using
the same network code on all platforms can be done by using some form of CLI. The
techniques used for CLI in this project would however have to be extended or changed
in order to send more complex data between the network code and a client.

The application can function on both desktops as well as mobile devices and the in-
creased focus on contacts instead of accounts was considered a success by the group.

28

CHAPTER 6. CONCLUSION

The future looks bleak for an application of this kind as its functionality is dependent
on service providers providing open APIs. This causes great risks for anyone creating
this kind of application, as their work can be wasted by the service providers. The po-
tential for an application to handle all services at once is definitely there, but without
cooperation from the service providers that potential will not be realized.

The group can conclude that an application of this kind cannot provide the solution
they were looking for. The multi-IM clients available on the market can be improved by
supporting additional services and increasing their focus on contacts instead of accounts.
However they are very limited in their coverage of services and supporting of platforms.

29

Bibliography

[1] J. Perlow and J. Perlow. (2013) Instant messaging clients: Stop the insanity | zdnet.
Accessed: 2015-05-12. [Online]. Available: http://www.zdnet.com/article/instant-
messaging-clients-stop-the-insanity/

[2] C. Clifford, “Top 10 apps for instant messaging (infographic),” 2013, accessed:
2015-05-12. [Online]. Available: http://www.entrepreneur.com/article/230335/

[3] Worldometers.info, “Population of china (2015) - worldometers,” 2015, accessed:
2015-05-12. [Online]. Available: http://www.worldometers.info/world-population/
china-population/

[4] Netmarketshare.com, “Operating system market share,” 2015, accessed: 2015-
05-12. [Online]. Available: http://www.netmarketshare.com/operating-system-
market-share.aspx?qprid=10&qpcustomd=0

[5] www.idc.com, “Idc: Smartphone os market share,” 2015, accessed: 2015-
05-12. [Online]. Available: http://www.idc.com/prodserv/smartphone-os-market-
share.jsp

[6] Scrum.org, “Scrum.org | the home of scrum > resources > scrum glossary
> definition of done,” 2015, accessed: 2015-05-12. [Online]. Available:
https://www.scrum.org/Resources/Scrum-Glossary/Definition-of-Done

[7] Scrumguides.org, “Scrum guide | scrum guides,” 2015, accessed: 2015-05-12.
[Online]. Available: http://www.scrumguides.org/scrum-guide.html

[8] Openhub.net, “Compare repositories - open hub,” 2015, accessed: 2015-05-12.
[Online]. Available: https://www.openhub.net/repositories/compare

[9] Git-scm.com, “About - git,” 2015, accessed: 2015-05-12. [Online]. Available:
http://git-scm.com/about/distributed

[10] Y.-J. Kim, S.-J. Cho, K.-J. Kim, E.-H. Hwang, S.-H. Yoon, and J.-W. Jeon, “Bench-
marking java application using jni and native c application on android,” in Control,

30

http://www.zdnet.com/article/instant-messaging-clients-stop-the-insanity/
http://www.zdnet.com/article/instant-messaging-clients-stop-the-insanity/
http://www.entrepreneur.com/article/230335/
http://www.worldometers.info/world-population/china-population/
http://www.worldometers.info/world-population/china-population/
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.scrum.org/Resources/Scrum-Glossary/Definition-of-Done
http://www.scrumguides.org/scrum-guide.html
https://www.openhub.net/repositories/compare
http://git-scm.com/about/distributed

BIBLIOGRAPHY

Automation and Systems (ICCAS), 2012 12th International Conference on. IEEE,
2012, pp. 284–288.

[11] C. Kohlhoff, “Boost.asio - 1.57.0,” 2015, accessed: 2015-05-12. [Online]. Available:
http://www.boost.org/doc/libs/1 57 0/doc/html/boost asio.html

[12] Boost.org, “Boost c++ libraries,” 2015, accessed: 2015-05-12. [Online]. Available:
http://www.boost.org/

[13] Xmpp.org, “About - the xmpp standards foundation,” 2015, accessed: 2015-05-12.
[Online]. Available: http://xmpp.org/about-xmpp/

[14] Msdn.microsoft.com, “Introducing windows presentation foundation,” 2015,
accessed: 2015-05-12. [Online]. Available: https://msdn.microsoft.com/en-
us/library/aa663364.aspx#introducingwpf topic8

[15] Msdn.microsoft.com, “Introduction to wpf,” 2015, accessed: 2015-05-12. [Online].
Available: https://msdn.microsoft.com/en-us/library/aa970268(v=vs.110).aspx

[16] Msdn.microsoft.com, “Cross-language interoperability,” 2015, accessed: 2015-
05-12. [Online]. Available: https://msdn.microsoft.com/en-us/library/vstudio/
a2c7tshk(v=vs.100).aspx

[17] D. Bolton, “Why managed code is safer - dice insights,” 2014, accessed:
2015-05-12. [Online]. Available: http://insights.dice.com/2014/01/29/managed-vs-
unmanaged-code/

[18] Msdn.microsoft.com, “An introduction to p/invoke and marshaling on the
microsoft .net compact framework,” 2015, accessed: 2015-05-12. [Online]. Available:
https://msdn.microsoft.com/en-us/library/aa446536.aspx

[19] Msdn.microsoft.com, “Common language runtime (clr),” 2015, accessed: 2015-05-
12. [Online]. Available: https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.
110).aspx

[20] E. Bruno, “A long look at jvm languages,” 2015, accessed: 2015-05-12.
[Online]. Available: http://www.drdobbs.com/jvm/a-long-look-at-jvm-languages/
240007765

[21] Docs.oracle.com, “What is a socket? (the java tutorials > custom networking
> all about sockets),” 2015, accessed: 2015-05-12. [Online]. Available:
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html

[22] Msdn.microsoft.com, “Serialization (c# and visual basic),” 2015, accessed: 2015-05-
12. [Online]. Available: https://msdn.microsoft.com/en-us/library/ms233843.aspx

[23] Msdn.microsoft.com, “Windows presentation foundation in visual studio,” 2015,
accessed: 2015-05-12. [Online]. Available: https://msdn.microsoft.com/en-
us/library/vstudio/system.runtime.interopservices.marshal(v=vs.100).aspx

31

http://www.boost.org/doc/libs/1_57_0/doc/html/boost_asio.html
http://www.boost.org/
http://xmpp.org/about-xmpp/
https://msdn.microsoft.com/en-us/library/aa663364.aspx#introducingwpf_topic8
https://msdn.microsoft.com/en-us/library/aa663364.aspx#introducingwpf_topic8
https://msdn.microsoft.com/en-us/library/aa970268(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/vstudio/a2c7tshk(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/vstudio/a2c7tshk(v=vs.100).aspx
http://insights.dice.com/2014/01/29/managed-vs-unmanaged-code/
http://insights.dice.com/2014/01/29/managed-vs-unmanaged-code/
https://msdn.microsoft.com/en-us/library/aa446536.aspx
https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx
http://www.drdobbs.com/jvm/a-long-look-at-jvm-languages/240007765
http://www.drdobbs.com/jvm/a-long-look-at-jvm-languages/240007765
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
https://msdn.microsoft.com/en-us/library/ms233843.aspx
https://msdn.microsoft.com/en-us/library/vstudio/system.runtime.interopservices.marshal(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/vstudio/system.runtime.interopservices.marshal(v=vs.100).aspx

BIBLIOGRAPHY

[24] Oracle, “Package java.nio (java platform se 7),” 2014, accessed: 2015-05-12.
[Online]. Available: https://docs.oracle.com/javase/7/docs/api/java/nio/package-
summary.html

[25] C2.com, “Foreign function interface,” 2015, accessed: 2015-05-12. [Online].
Available: http://www.c2.com/cgi/wiki?ForeignFunctionInterface

[26] Msdn.microsoft.com, “Interop marshaling,” 2015, accessed: 2015-05-12. [Online].
Available: https://msdn.microsoft.com/en-us/library/eaw10et3(v=vs.110).aspx

[27] Msdn.microsoft.com, “Calling native functions from managed code,” 2015. [Online].
Available: https://msdn.microsoft.com/en-us/library/ms235282.aspx

[28] Msdn.microsoft.com, “An introduction to p/invoke and marshaling on the
microsoft .net compact framework,” 2015, accessed: 2015-05-12. [Online]. Available:
https://msdn.microsoft.com/en-us/library/aa446536.aspx

[29] Ibm.com, “Java programming with jni,” 2015, accessed: 2015-05-12. [Online].
Available: http://www.ibm.com/developerworks/java/tutorials/j-jni/j-jni.html

[30] Docs.oracle.com, “Java se 7 java native interface-related apis and developer guides,”
2015, accessed: 2015-05-12. [Online]. Available: http://docs.oracle.com/javase/7/
docs/technotes/guides/jni/

[31] Msdn.microsoft.com, “Introduction to com interop,” 2015, accessed: 2015-05-12.
[Online]. Available: https://msdn.microsoft.com/en-us/library/kew41ycz(v=vs.71)
.aspx

[32] D. Orenstein, “Application programming interface,” 2015, accessed: 2015-
05-12. [Online]. Available: http://www.computerworld.com/article/2593623/app-
development/application-programming-interface.html

[33] Free Software Foundation, Inc, “Gnu general public license,” 2007, accessed:
2015-05-26. [Online]. Available: http://www.gnu.org/copyleft/gpl.html

[34] Google, “Android studio overview,” accessed: 2015-05-26. [Online]. Available:
http://developer.android.com/tools/studio/index.html

32

https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
http://www.c2.com/cgi/wiki?ForeignFunctionInterface
https://msdn.microsoft.com/en-us/library/eaw10et3(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms235282.aspx
https://msdn.microsoft.com/en-us/library/aa446536.aspx
http://www.ibm.com/developerworks/java/tutorials/j-jni/j-jni.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
https://msdn.microsoft.com/en-us/library/kew41ycz(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/kew41ycz(v=vs.71).aspx
http://www.computerworld.com/article/2593623/app-development/application-programming-interface.html
http://www.computerworld.com/article/2593623/app-development/application-programming-interface.html
http://www.gnu.org/copyleft/gpl.html
http://developer.android.com/tools/studio/index.html

	Introduction
	Background
	Purpose
	Problem statement
	Design overview
	Project scope and limitations
	Implemented services
	Closed services
	Non-implemented functions
	Implementing on different platforms

	Outline of the report

	Project Method
	Method of evaluation
	Scrum
	Version control
	Project structure
	Work division

	Technical Background
	Network code
	C.30ex++1000 and platform support
	The Boost library
	XMPP
	IRC

	Clients
	Android
	Windows

	Cross-language interoperability
	Object oriented programming languages and virtual machines
	Sockets
	Serialization
	Shared memory
	Foreign function interface
	Other options
	Cross-Language Interoperability in the prototype

	Related work

	Design and implementation
	Network code
	XMPP
	IRC

	Clients and Graphical User Interfaces
	Contacts instead of accounts
	Android
	Design and implementation on Windows

	Cross-language interoperability

	Result and discussion
	Implemented Services
	XMPP
	IRC

	Non-implemented services
	Implemented platforms and their GUIs
	Windows
	Android

	Function interfaces and wrappers
	Project method and its effect on the result
	Future development
	Potential
	Risks with trusting other services
	Improvements

	Alternative solutions
	Experiences gained

	Conclusion
	 Bibliography

