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ABSTRACT

In recent years, extragalactic astronomy has taken huge strides forward. In the local universe,
state-of-the-art surveys provide high resolution maps of neighbouring galaxies. These allow
us to investigate how stars form out of the turbulent interstellar gas in unprecedented detail
(e.g. McKee & Ostriker, 2007; Leroy et al., 2008). Farther out, at redshifts z ∼ 1 − 3, deep
field observations have revealed a population of turbulent, clumpy, star-forming galaxies (e.g.
Förster Schreiber et al., 2009). These suspected progenitors of present-day spiral galaxies have
attracted great interest resulting in a large number of exploratory studies (e.g. Elmegreen et al.,
2009; Burkert et al., 2010).

Based on the work of Toomre (1964), models of gravitational instability are frequently used
to describe the conditions in the interstellar gas leading up to star-formation. As the cycle of
formation and destruction of stars is inherently linked to the evolution of galaxies as a whole,
so are models of gravitational instability. In light of evidence for turbulent motions in various
epochs of galactic evolution, it is only natural to extend such models with descriptions of
turbulence.

Using a phenomenological model of turbulence where densities and velocity dispersions
follow power-laws, we extend existing models of gravitational instability. We use the result
to investigate the gravitational instability of two different types of discs. Firstly, we consider
the stability of a disc of neutral atomic hydrogen (Hi) and molecular hydrogen (H2) on scales
below ∼ 100 pc. Secondly, we analyse the stability of a disc of turbulent Hi and stars on
galactic scales above ∼ 1 kpc. Finally, we apply the latter analysis to extend a previous
investigation of nearby star-forming spiral galaxies by Leroy et al. (2008).

In the case of Hi and H2, we find that the stability of H2 alone (i) determines the type of
stability of the disc containing both Hi and H2, and (ii) dominates the stability properties
of the disc. For a disc of Hi and stars, we find that turbulence in Hi rescales the stability
characteristics as compared to a disc containing non-turbulent Hi and stars. Applying the
model of a disc of Hi and stars to the aforementioned sample of galaxies, we discover that
turbulence tends to (i) stabilize the disc, (ii) decrease the wavelength associated with the onset
of instabilities, and (iii) decouple the dynamical response of stars and Hi. We observe similar
trends when lowering the gaseous velocity dispersion to investigate the stability in regions
where the H2 density exceeds that of Hi.

The analysis carried out in this thesis will provide a useful framework for interpreting data
from upcoming next-generation observations and simulations of high-redshift galaxies.
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CHAPTER

ONE

INTRODUCTION

Throughout the last two decades, deep field observations have revealed a population of high-
redshift galaxies very different from those in the local universe. Found at redshifts z ∼ 1− 3,
some show elliptical or disc structures, but the majority exhibits irregular morphologies (Cowie
et al., 1995; Elmegreen et al., 2004, 2005; Wadadekar et al., 2006). Regardless of morphological
details, most feature numerous highly turbulent star-forming clumps with masses Mcl ∼ 107−
109M� and sizes of `cl ∼ 2 kpc (Elmegreen & Elmegreen, 2005). The abundance of such
clumps, existence of underlying stellar discs, and the decreasing age of the associated stellar
population with redshift suggests that they represent early stages in the formation of present-
day galaxies (Genzel et al., 2008; Elmegreen et al., 2009).

Being gas-rich with large amounts of molecular hydrogen (Tacconi et al., 2010), high-redshift
galaxies form stars at rates of roughly 10−300M� yr−1 (Daddi et al., 2004; Cresci et al., 2009)
and have total stellar masses of M? ∼ 109 − 1011M� (Förster Schreiber et al., 2009). It is
presently unclear how these clumps form and how star formation is triggered, but numerical
simulations (e.g. Dekel et al., 2009b; Ceverino & Klypin, 2009; Agertz et al., 2009b) and
observations (e.g. Bournaud et al., 2008; Shapiro et al., 2008) suggest that they result from
either major merging events (Robertson & Bullock, 2008; Puech, 2010) or a combination of
gravitational instabilities and external accretion (Genzel et al., 2006; Bournaud & Elmegreen,
2009).

In our neighbourhood, combinations of high-resolution surveys of neutral atomic hydrogen
(THINGS; Walter et al., 2008), CO lines tracing molecular hydrogen (BIMA SONG, HERA-
CLES; Helfer et al., 2003; Leroy et al., 2009), IR observations of old stellar populations and
warm dust surrounding sites of star formation (SINGS; Kennicutt et al., 2003), as well as
Far-UV maps tracing massive O and B stars (GALEX; Gil de Paz et al., 2007) have recently
enabled us to characterize nearby galaxies in unprecedented detail. Using such data, we now
have an ideal testbed to validate numerical simulations or evaluate different models of the
conditions and processes governing star formation in high detail (e.g. Leroy et al., 2008).

By combining observations of distant and nearby galaxies, we gain insight into different
epochs of galactic evolution. To successfully describe the processes in and between these
epochs, we need to understand (i) the processes governing the distribution of gas and stars, (ii)
how the gas contracts to form stars, (iii) how the stars feed back energy into the gas throughout
their lives, and (iv) how their eventual death replenishes the reservoir of interstellar gas.
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Chapter 1

In this thesis, we are concerned with gravitational instabilities in the interstellar gas. These
trigger gravitational collapse and are thought to culminate in the formation of protostellar
cores (e.g. Elmegreen, 1999; McKee & Ostriker, 2007). Dating back to early work on spiral
density waves, Safronov (1960) and Toomre (1964) independently presented an instability
criterion for infinitely thin differentially rotating stellar discs, which can be extended to gaseous
discs (Binney & Tremaine, 2008, §6.2). Soon after, Lin & Shu (1966) soon realized the
importance of considering the contributions of both stars and gas in galactic discs, which led
to the development of two-component models of gravitational instability (Jog & Solomon,
1984; Bertin & Romeo, 1988; Rafikov, 2001). Over time, further extensions were made to
account for finite thickness discs (Shu, 1968; Romeo, 1990, 1992, 1994; Wiegert, 2010) and
provide simple approximate two-component stability criteria (Wang & Silk, 1994; Wiegert,
2010; Romeo & Wiegert, 2011).

However, this framework of gravitational instability assumes that the gaseous interstellar
medium is in approximate equilibrium with well defined surface densities and velocity disper-
sions (Romeo et al., 2010). Unfortunately, this only holds true for classical descriptions of the
interstellar gas as a two- or three-phase medium in thermal pressure equilibrium (e.g. Field
et al., 1969). More recent findings have established the interstellar medium of both nearby and
high-redshift galaxies as being interspersed by clumpy filamentary structures with turbulent
velocity and density fields (Elmegreen & Scalo, 2004; Burkert, 2006; McKee & Ostriker, 2007;
Elmegreen et al., 2009; Burkert et al., 2010). In nearby galaxies, turbulence is manifested
through scale dependent velocity dispersions of clouds of molecular hydrogen (Larson, 1981;
Solomon et al., 1987; Bolatto et al., 2008; Hughes et al., 2010), which significantly affect the
onset and scales of gravitational instabilities (Bonazzola et al., 1987; Vazquez-Semadeni &
Gazol, 1995). Based on advances in numerical techniques, numerous simulations are presently
exploring the effects of turbulence on gravitational instabilities in various parts of the inter-
stellar gas (e.g. Wada et al., 2002; Kim & Ostriker, 2007; Agertz et al., 2009a).

Prevalent turbulent motions in various epochs of galactic evolution and the importance of
two-component models of gravitational instability therefore motivate us to extend these mod-
els with descriptions of turbulence. After presenting a brief review of the turbulent interstellar
medium in nearby galaxies in §2, we introduce the theoretical framework of gravitational in-
stability and present the phenomenological model of turbulence first introduced by Romeo
et al. (2010) in §3. We then extend these two-component models to allow for turbulence and
study two different turbulent systems. In §4, one of the models is then applied to observations
of nearby star forming galaxies previously analysed by Leroy et al. (2008). We further sum-
marize computations of quantities with upper and lower bounds in appendix A and tabulate
the radial profiles of these for the analysed spiral galaxies in appendix B.

This framework can used to interpret coming high-resolution observations and simulations
of high-redshift galaxies. In particular, (i) the search for scaling laws in high-redshift galaxies
equivalent those first noted by Larson (1981) in the local universes, and (ii) models describing
the dynamical evolution from an instability point of view (e.g. Dekel et al., 2009a; Krumholz
& Burkert, 2010) stand to profit.
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CHAPTER

TWO

GALAXIES, TURBULENCE, THE INTERSTELLAR MEDIUM

In the present chapter, the role of turbulence in the interstellar medium (ism) of disc galaxies
is introduced.

Current knowledge of galaxies and their components is briefly reviewed in §2.1. The role
of galactic discs is established, and, after a review of the classic equilibrium ism model, the
turbulent ism is described. In §2.2, the basic theory regarding incompressible turbulence is
outlined. It is then extended upon in §2.3 for the compressible and fractal ism.

2.1. Galaxies and The Interstellar Medium

This section is based on Karttunen et al. (2007) and Binney & Merrifield (1998). The de-
scriptions of the classic and turbulent ism are based on Burkert (2006). Other references are
indicated where appropriate.

Galaxies consist of three distinct components: (i) various stellar populations, (ii) gaseous
components forming the interstellar medium (ism), and (iii) dark matter. Stellar populations
are usually categorized into Population I, and Population II stars. Population I objects are
young, hot stars with low metallicity,1 whereas Population II stars are older, cooler, and have
higher metallicity. The gaseous components are normally classified according to chemical
species, pressure, temperature, and density. The dark matter component thus far eludes
direct detection because it interacts solely through gravity.

The morphological classification of galaxis in use today is shown in figure 2.1. In this scheme,
first introduced in Hubble (1936), galaxies are divided into two classes: (i) elliptical galaxies,
and (ii) spiral galaxies, with spirals further subdivided into normal and barred spirals. Within
these classes, morphological details mark further subtypes.

Elliptical galaxies lack discernible substructure apart from a spherical, elliptical, or triaxial
brightness distribution, which generally falls off exponentially from the centre. These galaxies
tend to have very little interstellar gas and are mostly populated by Population II stars. Since
this work is concerned with the dynamics of spiral galaxies, ellipticals shall not be considered
hereafter.

1All elements heavier than helium are considered metals.
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Chapter 2

Figure 2.1.: The morphological classification of galaxies, commonly known as the “Hubble
Tuning Fork“. Ignoring lenticulars (S0), the morphologic change from spheroids
to ellipticals through spirals (top) and barred spiral (bottom) is shown from left to
right. The image is in the public domain released by NASA, ESA, and ESO and
can be obtained from http://www.spacetelescope.org/images/heic9902o/.

In spiral galaxies, most of the interstellar gas and stars are concentrated in a thin, rotating
disc showing distinct spiral structure. The latter can vary in shape across different spiral
galaxies, both with and without a central bar. The disc stars are typically Population I objects
moving on approximately circular orbits with velocity dispersion of the order σ ∼ 20−40 km/s
(Dehnen & Binney, 1998). The disc is surrounded by a spherical bulge containing both
Population I and II stars on highly eccentric orbits with velocity dispersions of the order
σ ∼ 50 − 300 km/s (Barroso, 2003). The bulge, in turn, is surrounded by a halo of lower
stellar number density. For the most part, halo stars are Population II objects coalesced in
global clusters with highly eccentric orbits.

The brightness profile (and thus the stellar number density) of the disc falls off exponentially
from the centre of the disc. Since the bulge extends to about half the optical radius R25, the
distinction between disc and bulge is not particularly clear in the central regions. Moreover,
as the bulge can have stellar number densities comparable to the disc, this means that the
stellar disc is gravitationally coupled to the bulge in the inner regions.

Hereafter, only the stars and interstellar gas in the disc shall be considered. Additionally,
the different stellar populations are treated as one, although the disc only contains very small
amounts of stars which are not Population I.

The interstellar medium (ism) in the disc consists mostly of atomic and molecular hydrogen,
i.e. Hi and H2. The former is very diffuse and distributed through the entire disc while the
latter is concentrated in giant molecular clouds (gmcs) drifting through the Hi. The surface
density (which is the observational counterpart of the number density) of Hi is approximately
constant throughout the disc (except for a dip at small radii), whereas the H2 is concentrated
in the inner regions, cf. figure 2.2. Note that the Hi component tends to extend well beyond
the optical radius R25, which is not reflected in figure 2.2 (Binney & Merrifield, 1998, §8.2.2).

4



Galaxies, Turbulence, The Interstellar Medium
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Figure 2.2.: Ring averaged Hi, H2, and stellar surface density Σ vs. fraction of the optical ra-
dius R/R25 in the disc of the representive galaxy NGC 7331. The data is adapted
from Leroy et al. (2008). In the inner regions, H2 dominates the gas surface den-
sity, whereas the Hi density is approximately constant with radius, except for a
dip towards the centre. The stellar surface density decreases exponentially with
radius. Note that (i) towards the centre, the stellar surface density could also
sample stars from the bulge population, and (ii) the Hi distribution typically ex-
tends far beyond R25, but this is not reflected in the data due to observational
limitations.

Classically, this was modelled as a medium of two phases in thermal pressure equilibrium
(Field et al., 1969). A dense cold phase of giant molecular clouds (gmcs) is embedded in a
warm phase of diffuse atomic hydrogen (Hi). At a temperature of T ∼ 10000 K and number
density n ∼ 100 cm-3, the warm phase covers a large fraction of the total ism volume. The
cold phase at T < 300 K and n ∼ 0.1 cm-3 dominates the total mass.

As the gmcs travel through the diffuse Hi component, they gradually heat up as new
stars form within them. This eventually causes them to disperse and become part of the
diffuse component. On the other hand, as the Hi cools, gravitational instabilities cause local
fragmentation and collapse to gmcs. Smaller scale gravitational instabilities then lead to star
formation. Through collisions, individual small gmcs grow over time.

A growing body of evidence, however, suggests significant deviations from this model on
a wide range of scales (Elmegreen & Scalo, 2004; Burkert, 2006; McKee & Ostriker, 2007).
Considering gmcs in the Milky Way on scales of ` ∼ 10−100 pc, Larson (1981) points out three
important findings: (i) a power law relationship S ∝ σα between size S and velocity dispersion

σ, (ii) a power law relation S ∝ Mβ
L between the size and the luminosity inferred mass ML,

and (iii) a correlation MV ∼ ML between the virial mass MV and the luminosity inferred
mass to order of magnitude. Extension of this work by Solomon et al. (1987) quantified the
relation S ∝ σα to α ' 0.5 and further noted that gmcs have constant mean surface density,
i.e. Σ ' const. Studies of extragalactic gmcs draw similar conclusions (Bolatto et al., 2008;
Hughes et al., 2010).
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Chapter 2

Figure 2.3.: Radio intensity for the 21 cm line tracing Hi in the Large Magellanic Cloud. The
filamentary structure on multiple scales is clearly visible. Taken from Burkert
(2006), which had adapted it from Kim et al. (1999).

Combined with the fact that the observed velocity dispersions well exceed the values ex-
pected from thermal motions,2 the first two relations are suggestive of the turbulent nature of
gmcs, while the third suggests that gmcs are approximately in virial equilibrium. Moreover,
since the velocity dispersion increases with size of the cloud, gmcs tend to be stable against
gravitational collapse on large scales, but unstable on small scales where the velocity disper-
sion is too small to counteract self-gravity. As such, star formation, which is further aided
by significant local overdensities resulting from a turbulent density field, is possible on small
scales (Bonazzola et al., 1987; Vazquez-Semadeni & Gazol, 1995; McKee & Ostriker, 2007).

Hi exhibits similar structure and scaling relations over a wide range of scales. Figure 2.3
shows a radio intensity map of the 21 cm line tracing atomic hydrogen in the Large Magellanic
Cloud. The filamentary structure with Hi shells on large scales along with substructure that
can be identified as Hi clouds is clearly visible. Using spectral methods, it is found that on
scales of cloud structures at ` ∼ 10 − 500 pc, both Hi density and velocity dispersion follow
power law scaling similar to those observed in H2 gmcs (Kim et al., 2007). On galactic
scales ` & 0.5 kpc, the spectral signature of the radio intensity also indicates turbulent scaling
(Begum et al., 2006; Dutta et al., 2008, 2009a,b), but disentangling the individual contributions
of the velocity dispersion and density fluctuations is problematic (Lazarian & Pogosyan, 2000).

On large scales, both observations and simulations note a radial decline of the velocity
dispersion ranging from σHi ' 15 − 20 km/s at small radii, to σHi ' 10 km/s at R25, and
further to values of σHi ' 5 km/s in the outer regions (Petric & Rupen, 2007; Agertz et al.,
2009a; Tamburro et al., 2009).

2For cloud temperatures of T ∼ 15− 25 K, one expects σH2,thermal < 0.1 km/s, (Bolatto et al., 2008), whereas
σH2 ' 0.5− 6 km/s is observed (Larson, 1981).
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Galaxies, Turbulence, The Interstellar Medium

Figure 2.4.: Flow visualisation of a turbulent water jet. The image nicely demonstrates the
concept of “eddies within eddies” in a turbulent flow. The picture is originally
taken from van Dyke (1982), and was adapted from Frisch (1995) for this work.

2.2. Turbulence in Incompressible Fluids

The following is based on Elmegreen & Scalo (2004, §2, §4.6) and Frisch (1995, §3, §6.2).

Microscopically, turbulence refers to a state of deterministic chaos in a fluid. While the
governing equations are deterministic, minimal changes in initial or boundary conditions of
fluid elements result in a wildly different time evolution of the state parameters.

This suggests application of statistical methods to study the macroscopic implications. Fun-
damentally, such methods are based on the (averaged) relation of a quantity A(r) measured
at points a distance δr apart. For example. the structure function of order p is given by

Sp(δr) = 〈|A(r)−A(r + δr)|p〉, (2.1)

where 〈·〉 indicates the average. Generally, the velocity field is studied, i.e. A(r) = v(r).

Kolmogorov (1941) first presented a framework3 for the study of turbulence using such
statistical methods. It is valid for incompressible flow and assumes, for the most part, homo-
geneity and stationarity, which means that the statistical properties of the turbulent flow are
invariant under space and time translations.

Turbulent flows are characterized by prevalent vortex structures, called eddies. These are
found on different scales with self-similar structure, cf. figure 2.4. The core idea of K41 theory
is that energy is (through some unspecified process) injected into the flow at the scales of the
largest eddies. The energy then cascades down to smaller and smaller scales (across “eddies
within eddies”) until viscous forces become important and the energy is dissipated into heat
at the dissipation scale. The range of scales where the energy cascades down is the inertial
range.

In terms of the structure function this means that the measured velocity difference between
two points depends on the separation of these points. The separation is interpreted as a
characteristic scale.

3Hereafter referred to as K41 theory.
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Chapter 2

The most general result of the K41 theory is the 4/5-law. Following the assumption of
statistical homogeneity and stationarity of the flow properties, it is found that second order
structure function obeys

S2(`) = −4

5
ε`, (2.2)

where ε is the flux of kinetic energy across the scale `, which is equal to the rate of energy
dissipation occurring at the dissipation scale. The most striking result of the 4/5-law is the
fact that the energy flux is independent of scale.

With this knowledge and some intuitive arguments, the spectral signature of turbulent flows
can be obtained. In particular, let ε be the energy flux across the scale `, u2

` be proportional
to the kinetic energy at scale `, and `/u` be a characteristic timescale. The energy flux then
is

ε ∝
u2
`

`/u`
. (2.3)

For ε = const, this yields

u` ∝ `1/3,
u`
l

∝ `−2/3, (2.4)

implying that (i) the largest eddies carry most of the flow velocity, and (ii) the smallest
eddies carry most of the vorticity u`/`. Since the kinetic energy is proportional to u2

` , the
above implies u2

` ∝ `2/3. Written in terms of the wavenumber k = 1/`, this means u2
k ∝ k−2/3.

The kinetic energy per unit wavenumber then gives the energy spectrum

E(k) ∝
u2
k

k
∝ k−5/3. (2.5)

This is called the 5/3-law and is another important result of the K41 theory. It shows that
the spectral signature of a turbulent flow field across the inertial range is given by a power law
with spectral index ζ = −5/3. In literature related to the study of ism turbulence, the energy
spectrum is usually taken to be the average over the spatial dimensions of the power spectrum,
i.e. P (k) = E(k) for 1D, P (k) ∝ k−8/3 for 2D, and P (k) ∝ k−11/3 for 3D turbulence.

If, for example, in-situ visualisation of a flow field (with optical tracing or similar methods)
is not possible, but the velocity field can somehow be obtained, computation of the energy
spectrum could then indicate the turbulent nature of the flow. Within the context of this
work, the obvious application is detection of turbulence in the ism.

2.3. Turbulence in The Interstellar Medium

This section is based on Elmegreen & Scalo (2004, §3, §4.6) and Frisch (1995, §7.3, §8.5).

The ism can be highly compressible depending on the local Mach number. Sub- and tran-
sonic regimes are incompressible whereas supersonic motion indicates compressibility. Addi-
tionally, the ism shows filamental and cloud structures on a wide range of scales along with
velocity dispersion and density scaling laws, cf. §2.1.
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These considerations lead to two major properties of ism turbulence that are at odds with
the original K41 theory: (i) the energy flux across scales is not necessarily constant and energy
does not necessarily cascade to smaller scales only, and (ii) a fractal nature is imposed on the
ism. These are now described in some detail.

Energy cascade. In a compressible medium, energy can be dissipated in the form of shocks
at all scales. Moreover, energy is injected into the ism through a number of different
mechanisms, e.g. stellar winds, galactic rotation, fluid instabilities, or supernova explo-
sions. It is appreciable that these processes inject energy into the medium at different
scales. The ism itself can further extend to scales even larger than the largest scales of
energy injection.

Together, these facts indicate that energy is injected at a wide range of scales through
different processes, and then cascades to both larger and smaller scales, where it can
dissipate through shocks, viscous processes or other means.

As such, one would expect that turbulence in the ism is unlikely to have the spatial or
spectral signature indicated by the K41 relations (2.2) and (2.5). However, the observed
signature of ism turbulence is surprisingly close to the K41 case with an energy spectral
index of ζ ' −5/3 (Elmegreen et al., 2001).

Within the framework of K41 theory, the energy spectrum is linked to the velocity
field. In ism observations, however, the energy spectrum is linked to the radio intensity
of the observations, which contains contribution of the turbulent velocity field as well
as density fluctuations. While it is generally possible to disentangle the contributions,
the procedure can be error-prone, especially for Hi observations (Lazarian & Pogosyan,
2000).

Fractality. For incompressible fluids, the turbulent flow field is said to be space-filling, i.e. the
total volume of space filled by N eddies with characteristic size L is constant. That is
to say, if N0 = 2 eddies of size L0 = 4 fill a total space of N0L0 = 8 at scale 0, the
next smaller scale 1 must be occupied by, e.g. N1 = 4 eddies of size L1 = 2 such that
L0N0 = L1N1 = 8.

For a compressible medium, energy injection and dissipation at different scales render
this restriction invalid such that space-filling and self-similarity across different scales is
not guaranteed. The medium is said to exhibit intermittency.

This can be dealt with by introducing a scale factor 0 < β < 1 indicating which fraction
of the space originally occupied by a eddy at a larger scale is also occupied by eddies on
the next smaller scale. Assuming the fraction of occupied space p` at scale ` is a power
law with index n, this means

p` = βn =

(
`

`0

)d−D
, (2.6)

where d−D is the codimension, and D the fractal dimension. For a three-dimensional
space (as is the ism), d = 3. The limiting case D = 3 corresponds to full space-filling.

This scaling has two distinct implications. Firstly, the fact that not the entire available
space is filled imprints a fractal structure in the medium. This can be interpreted as
tendency for filamentary structures to form,4 especially when the network of filaments is

4Compressibility is not a prerequisite for filamentary structures to form. It can, however, be an indication.
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interpreted as a series of interconnected shocks. Secondly, the power law scaling of the
space-filling fraction causes a dependence of the velocity distribution with scale. Both
effects are indeed observed in the ism, see §2.1.

2.4. Chapter Summary

In this chapter, observational knowledge of galaxies, the ism, and the K41 turbulence theory
were introduced. The most important points are:

• Galaxies are classified according to their morphology into elliptical, barred spirals and
normal spirals. Ellipticals tend to be gas depleted and populated by old, metal rich
Population II stars. Spiral galaxies have most of the gas and young Population I stars
concentrated in a thin, differentially rotating disc. The disc is surrounded by a bulge
and a halo of older Population II stars. Stellar velocity dispersions are higher for the
bulge and halo populations and gravitational coupling between the disc, the bulge, and
the halo populations can occur in the inner regions. The disc stellar surface density
decreases exponentially with radius.

• The ism exhibits filamentary structure on a wide range of scales. On kpc scales, diffuse
Hi with radially decreasing velocity dispersions σHi ' 10 km/s embeds pc-scale gmcs
with velocity dispersions σH2 ' 0.5− 6 km/s. Hi further shows scale dependent velocity
dispersion and density distribution. The velocity scaling saturates at scales of about
500 pc, whereas the density is scale dependent up to kpc scales. H2 gmcs have scale
dependent velocity distribution, but approximately constant surface density.

At galactic scales, the Hi surface density is roughly constant with radius, while H2 is
concentrated in the inner regions. With turbulent velocity fields, gmcs tend to be stable
against large scale collapse, but small scales are vulnerable to gravitational collapse
leading to star formation. As H2 is concentrated at small radii, so is star formation, and
consequently the stellar surface density.

• Using statistical tools, the K41 theory of turbulence for incompressible fluids predicts
energy injection at large scales, a subsequent energy cascade down to smaller scales,
and eventually dissipation through viscous processes. In the ism, energy is both injected
(e.g. stellar outflows, differential rotation, fluid instabilities) and dissipated (e.g. shocks,
viscous friction) at a wide range of scales. As such, energy likely cascades both to larger
and smaller scales from the injection scale.
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CHAPTER

THREE

THEORY OF GALACTIC DISC STABILITY

As previously discussed, galaxies consist of different stellar populations and gaseous phases
(fluids). While fundamentally different, the same tools can be used to investigate their gravi-
tational stability in differentially rotating, thin galactic discs.

After outlining these differences in §3.1, basic assumptions are introduced in §3.2. The
simplest case of a one-component medium is discused in §3.3, which is then extended to two-
components in §3.4. Finally, the one-component model is extended to account for turbulence
in §3.5.

Note that, while this text is primarily based on Binney & Tremaine (2008), the foundations
of spiral density wave theory and gravitational stability of stellar and gaseous discs date back
to the works of Toomre (1964), Lin & Shu (1966), and Lin et al. (1969).

3.1. Kinetic and Fluid Approach

This section is based on Binney & Tremaine (2008, §1.2, §4.2, §5.2, App. F). Additionally,
some of the more fundamental concepts are discussed at length in Shu (1992).

As discussed in §2, galaxies contain different stellar populations and gaseous components
(fluids in different phases). Considered individually, the behaviour of the fluids is driven
by short-range particle-particle interactions (collisions), while the stars interact exclusively
through the gravity field generated by the entire population. The coupling between compo-
nents occurs through the common gravitational field, which is a superposition of the individual
fields.

The fluid components are described by the equations of fluid dynamics. In particular, in the
presence of a gravitational potential, the fluid density, pressure, temperature, and velocity are
coupled through (i) the continuity equation, (ii) Euler’s equation, (iii) the energy equation,
(iv) an equation of state, and (v) the Poisson equation. If the density of a such a system is
perturbed, the gravitational potential is changed. This, in turn, affects the state parameters
through the coupled fluid dynamic equations. Hereafter, this is the referred to as the fluid
approach.

11
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Being non-collisional, stellar systems are instead described by a distribution function
f(x,v, t), which gives the probability of a star being located at coordinates x with veloc-
ity v at time t. The time evolution of the distribution function is described by the collisionless
Boltzmann equation,1 which is coupled to the gravitational potential (and thus to the stellar
density through the Poisson equation). In analogy with the fluid case, a perturbation of the
stellar density leads to a potential perturbation through the Poisson equation. This, in turn,
affects the distribution function and thus (in a statistical sense) the kinematic variables x and
v of the stars. This is the kinetic approach.

The kinetic approach is mathematically more tedious because non-collisional systems exhibit
more complicated behaviour. Fortunately, if one is not interested in the complete physics of
the non-collisional system, it can be treated as a fluid. The results from a kinetic and a fluid
analysis agree to within a correction factor of a few percent in the parameters relevant in this
work.

While the issue is briefly quantified in §3.3.2 and §3.4.3, for the remainder of this work,
non-collisional system are treated as fluids. This saves mathematical complexity and allows
focus on the stability analysis with acceptable accuracy.

3.2. Procedure and Assumptions

This section is based on Binney & Tremaine (2008, §6.2). Other references are indicated where
needed.

As previously hinted, the key idea to analysing the stability properties of gravitating fluid
systems is to perturb the density distribution of the system and study the resulting effect
on the state variables. By comparing the original (unperturbed) density distribution to the
resulting density distribution, a density wave is described. Thus, the principal task of stability
analysis is the calculation of different possible density waves (modes). These modes should
obey the wave equation, and the resulting density perturbation should be of the form

ρperturbed ∝ exp(−iωt), (3.1)

where ω is the angular frequency of the density wave.

While this procedure is relatively straightforward for an isotropic, homogeneous, infinite
fluid, real systems (galaxies) cause complications:

Galaxies are rotating. As such, they are not spherical, but flattened out to disc shape. This,
in turn, means that the fluid is not isotropic or homogeneous in three dimensions. In
this work, razor-thin discs are considered, so only two coordinates of interest remain. As
such, the volume density ρ is replaced by the integrated surface density Σ =

∫
ρ(z) dz.

To consider thickness effects, hydrostatic equilibrium can be imposed for the fluid in the
z direction perpendicular to the disc, which leads to the definition of a disc scale height
h. For the thin-disc approximation to be valid for a particular (thick) disc, the condition
kh � 1 must be fulfilled (Romeo et al., 2010, §2.1), where k is the wavenumber of the
density wave.

1Also know as the Vlasov equation.
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For more details, see, e.g. Fridman et al. (1984, §V), Romeo (1990), Romeo (1992), and
Wiegert (2010).

Differential rotation. The angular velocity depends on the radius, i.e. Ω = Ω(R). This is
accounted for by considering that the fluid elements are on near-circular orbits around
the galactic centre.

Deviations from these circular orbits are described in terms of the epicyclic frequency
κ, which is the frequency of a small orbit around the point orbiting the galactic centre
(Binney & Tremaine, 2008, §3.2.3). By considering the epicyclic motion of fluid elements
instead of their orbital motions around the galactic centre, differential rotation can be
considered.

Spiral structure. The presence of spiral structure implies non-homogeneity even in the plane
of the disc. Fortunately, if one imposes that resulting density waves are tightly wound
(in the sense that the radial wavelength is much smaller than the radius), one obtains a
locally valid analysis. Since a disc is locally homogeneous to within a few wavelengths
of where the perturbation occurs, the analysis is valid.

This approximation is usually referred to as the tight-winding2 approximation. More
quantitatively, it requires that kR� 1, where k is the wavenumber of the density wave,
and R the radius. It is very important to realize that the analysis is valid only locally,
and that the condition kR� 1 needs to be checked carefully.

3.3. One-Fluid Case

This section is based on Binney & Tremaine (2008, §6.2.).

3.3.1. Dispersion Relation, Marginal Stability Curve

Keeping in mind the basic idea and difficulties of the stability analysis discussed in the previous
section, the result for a single fluid component gives the dispersion relation (dr) for possible
density wave modes

(ω −mΩ)2 = κ2 − 2πGΣk + v2
sk

2, (3.2)

where ω is the angular frequency, k the wavenumber, m the number of arms, and Ω the
circular frequency of the density wave. The fluid is further described by the equilibrium surface
density Σ, the epicyclic frequency κ, and the sound speed vs. These typically vary throughout
the disc. The gravitational constant is G.

For axisymmetric waves, m = 0, and thus

ω2 = κ2︸︷︷︸
rotation

− 2πGΣk︸ ︷︷ ︸
self-gravity

+ v2
sk

2︸︷︷︸
pressure

, (3.3)

where the terms on the right hand side correspond to the contribution of rotation, self-
gravity, and thermal motions (i.e. pressure) of the fluid.

2Also: WKB (in reference to the quantum mechanical analogy), or short-wavelength approximation.
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For convenience, (3.3) can also be cast in the non-dimensional form

ω2

κ2
= 1− k

kT
+
Q2

4

(
k

kT

)2

, (3.4)

where the wavenumber k is now rescaled in terms of the Toomre wavenumber kT and the
Toomre parameter Q. Their meaning will be made clear momentarily.

Consider now the resulting density perturbation (3.1) and the dr (3.3). If ω2 > 0, the
perturbation is oscillating with frequency ω — the system is stable. For ω2 < 0, the resulting
perturbation increases in amplitude over time — the system is unstable. With this in mind,
note that rotation and pressure have a stabilising effect on the system, whereas self-gravity
destabilizes the system.

For a given location in the disc, Σ, vs, and κ are fixed, and ω2 depends only on k. Since
(3.3) is quadratic in k, there is potentially a range of unstable wavenumbers where ω2 < 0.
Stability on all scales can be demanded by imposing min{ω2} ≥ 0. This is fulfilled if the
wavenumber k of the perturbation fulfils

k > kT ≡
κ2

2πGΣ
, (3.5)

where kT is the Toomre wavenumber. Alternatively, the criterion can be written as

Q ≡ κvs
πGΣ

> 1, (3.6)

where Q is the Toomre stability parameter for differentially rotating thin fluid discs. If
Q ≥ 1, the disc is stable on all scales. Instability on some scales occurs for Q < 1.

Consider figure 3.1, showing the non-dimensional dr for Q = 0.65 < 1. Since the minimum
of the dr lies below ω2/κ2 = 0 (thin horizontal line), the system is unstable on a range of scales
(shaded grey). If Q increases, the curve moves upwards until, at Q = 1, the minimum coincides
with line ω2/κ2 = 0. Increase of Q shifts the curve up further, increasing the stability.

In fact, the location (along the k/kT axis) of the minimum of the dr yields the wavenumber
at which instabilities first occur. This is the most unstable wavenumber k.

Instead of studying the dr, one can follow the line of marginal stability ω = 0. This leads
to an expression for the minimum Q required for stability at wavenumber k. This describes
the (non-dimensional) marginal stability curve (msc)

Q2 = 4

(
k

kT

)−1
[

1−
(
k

kT

)−1
]
. (3.7)

When working with the msc, it is more convenient to work with the scale ` = 1/k instead
of the wavenumber k. Defining the Toomre scale `T = 1/kT and the dimensionless scale
Λ = `/`T , the msc is

Q2 = 4Λ(1− Λ). (3.8)
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This relation is shown in figure 3.2. Computing Q at some location in the disc, a value above
the curve implies stability at this scale, whereas a value below the curve implies instability at
this scale. The maximum max {Q} = Q is the stability threshold. If Q ≥ Q, stability on all
scales is guaranteed. The location of Q along the Λ axis is the most unstable scale Λ. It is at
this scale that instabilities first set in if the system becomes unstable. Note that Λ must fulfil
the tight-winding condition kR� 1 for the analysis to be valid.

In fact, for a one-fluid system, Q = 1 (as shown before) and Λ = 0.5. These will differ for
two-component and turbulent one-fluid systems.

3.3.2. The Velocity Dispersion, Accuracy of the Fluid Approach

The sound speed vs of gases is difficult to infer from observations. Fortunately, the observa-
tional equivalent of the sound speed is the line of sight (los) velocity dispersion σlos of the
gas, which can be determined (Romeo et al., 2010, §2.1). Moreover, recall that non-collisional
systems can be treated as fluids up to a correction factor. In doing so, the los velocity
dispersion of the non-collisional component σlos,k takes the place of the sound speed vs.

Starting with the next section, only σ shall be used in the relevant formulae. One should
keep in mind that it refers to the los velocity dispersion of the component, and is equivalent
to the sound-speed for a fluid component.

To characterize the error arising from treating a non-collisional component as a fluid, the
relevant expressions for the mscs are now compared. Following Toomre (1964, §V), Binney &
Tremaine (2008) present the mscs of a fluid Qf and kinetic analysis Qk as

Qf =
κvs
πGΣ

, Qk =
κσ

3.36GΣ
, (3.9)

where the different coefficients π ' 3.14 and 3.36 give a difference of 7%. This leads to a
Λf = 0.5 from a fluid analysis and Λk = 0.55 from a kinetic analysis; a difference of 10%.

These differences are acceptable in light of the reduced mathematical complexity.
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Figure 3.1.: Non-dimensional dr for Q = 0.65 < 1. The dimensionless value of the dr is
plotted against the non-dimensional wavenumber k/kT . The dr is quadratic with
a minimum defined by Q. If Q < 1, the minimum is ω2/κ2 < 0 and the system
is unstable on a range of scales. If Q ≥ 1, the system is stable on all scales
(shaded grey). As Q changes, the curve shifts up or down, intersecting ω2/κ2 = 0
(horizontal line) first at the most unstable wavenumber k.
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Figure 3.2.: Marginal stability curve Q vs. Λ = `/`T . At a scale Λ, a value of Q above the
curve means that the system is stable at this scale. whereas a value below the
curve means instability at this (and other) scales. The maximum is the stability
threshold Q and a value of Q ≥ Q means stability on all scales. The location of
Q along Λ is the most unstable scale Λ. Instabilities first occur at this scale.
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3.4. Two-Fluid Case

This section is based on Jog & Solomon (1984) and Bertin & Romeo (1988).

3.4.1. Dispersion Relation, Marginal Stability Curve

In analogy to the one-component case, a dispersion relation for the case of two fluids coupled
through the Poisson equation can be derived. First presented by Jog & Solomon (1984), it
reads

(ω2 − ω2
1)(ω2 − ω2

2) = (2πGkΣ1)(2πGkΣ2), (3.10)

where ω2
i (i = 1, 2) are the one-component dispersion relations for the constituents, i.e.

ω2
i = κ2 − 2πGkΣi + σ2

i k
2. (3.11)

Clearly, (3.10) is quadratic in ω2 with two solutions (branches)

ω2
± =

1

2

[
ω2

1 + ω2
2 ±

√
(ω2

1 − ω2
2)2 + 4(2πGkΣ1)(2πGkΣ2)

]
, (3.12)

where ω2
+ ≥ ω2

− by construction. Since the square root term is always positive, the positive
branch ω2

+ is always positive and real. This corresponds to stable oscillations, which are of no
interest in the study of instabilities. As such, it is disregarded and only ω2

− considered.

As with the one-component case, the system can also be considered through the line of
marginal stability. For a two-component system, Bertin & Romeo (1988) derived the non-
dimensional form of the msc corresponding to the branch ω2

− as

Q2
1 =

(
2Λ

β

)[
(α+ β)− Λ(1 + β) +

√
Λ2(1− β)2 − 2Λ(1− β)(α− β) + (α+ β)2

]
, (3.13)

where

α =
Σ2

Σ1
, β =

σ2
2

σ2
1

(3.14)

are the ratios of surface densities α, and sound speed (respectively, velocity dispersion) β of
the two components. Further, Λ = `/`T1 is the dimensionless scale, with `T1 = 1/kT1 being
the Toomre scale of the first component. As before, Q = max{Q1} is the stability threshold
and Λ the associated most unstable scale.

Note that the msc is formulated in terms of first component. To study the stability of the
coupled system at a given location in the disc, the value of Q1 = κσ1/πGΣ1 must be computed
and compared to the stability threshold Q.
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Figure 3.3.: Left : Marginal stability curves for different combinations of α and β. The two
peaks at different Λ are associated with the two components. For the smallest
α, the msc has only one peak around Λ ∼ 0.5. As α increases, a second peak
appears at smaller Λ. Further increase first causes the peaks to be of the same
height, then the peak at small Λ dominates until eventually the Λ ∼ 0.5 peak
disappears. Right : The β − α plane with the location of the mscs in the left
frame indicated (dot size correlates with curve thickness). The two-phase region
is bounded by the outer thick black curves, marking the region where the msc
exhibits two peaks. The central black curve marks the transition where the two
peaks have the same height. The thin grey curves are contours of the stability
threshold Q = {1.1, 1.2, 1.4, 2, 3, 5} (starting from the bottom right corner going
counterclockwise). Note the discontinuity of the contours across the transition
line.

3.4.2. The Two-Phase Region

To study how (3.13) depends on α and β, the msc is shown for different combinations thereof
in figure 3.3. The left panel shows the msc while the right panel indicates the location of the
point in the β − α plane. Noting a fixed β = 0.01, the smallest value of α = 0.01 yields a
msc that is remarkably similar to the one-component case. In fact, it is straightforward to
show mathematically that the two-component marginal stability curve (3.13) approaches (and
eventually collapses to) the one-component curve (3.8) as α → 0. In particular, as α → 0,
Q→ 1. This behaviour is consistent with the definition of α as the density ratio.

As α increases, the msc diverges from the one-component behaviour, i.e. Q 6= 1 and the
msc changes shape. At α = 0.073, a second peak appears in the msc at smaller Λ. However,
the peak at Λ ∼ 0.5 dominates. With increasing α, the height of the peak grows further until,
at α = 0.1, the peaks are of equal height. Further increasing α causes the small Λ peak to
dominate until, at α = 0.137, the Λ ∼ 0.5 peak disappears.

This allows the definition of the two-phase region in the β − α plane. It is bounded by the
outer thick black lines in the right panel of figure 3.3. Outside the two-phase region, the msc
only has one maximum; the response of the components are coupled and there is one well
defined most unstable scale Λ at which instabilities first occur.
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Inside the region, the response of the two-components is decoupled. The msc exhibits two
distinct peaks. The component associated with the higher peak is dominating the stability
properties of the system. Physically, the presence of two peaks corresponds to two scales at
which instabilities can manifest themselves, each with a different stability threshold. The thick
black line in the middle corresponds to

√
β = α. Along this transition line, the two peaks in

the msc are of equal height.

As α increases, Q increases as well. This can be studied in the β − α plane by drawing
contour levels for Q. The contours Q = {1.1, 1.2, 1.4, 2, 3, 5} (starting from bottom right and
going countclockwise) are shown as thin grey lines in the right panel of figure 3.3.

3.4.3. Accuracy of the Fluid Approach

The original context for which Bertin & Romeo (1988) derived the two-component msc was
the study of a coupled system consisting of (i) a hot stellar component, and (ii) a cold gaseous
component. In this work, both components are treated as a fluid, which — as described in
§3.1 is only an approximation.

Using Bertin & Romeo (1988, Fig. 2), the error between a fluid-fluid and a fluid-kinetic
(as would be appropriate for a cold gas disc coupled to a stellar component) treatment can
be estimated. For fixed β, the error in Q increases as α increases up to a maximum error of
around 7% for α = 0.3. The error on Λ, on the other hand, is approximately constant at 5%.

Note that the values of α investigated put the corresponding mscs in regime that is dom-
inated by the peak at Λ ∼ 0.5. Since this is the peak associated with the stellar component
(which would have benefited from a kinetic treatment) in Bertin & Romeo (1988), it is not
necessary to investigate the effects on the other peak.

As in the one-component case, the errors between a fluid and a kinetic treatment are below
10% and thus deemed acceptable. However, one should be aware, that — for a non-collisional
component treated as a fluid — (i) Q is larger, and (ii) Λ is smaller than the result obtained
from a kinetic analysis.

3.5. The Turbulent One-Fluid Case

This section is based on Romeo et al. (2010) unless otherwise noted.

3.5.1. Scaling Relations in the Cold ISM

As discussed in §2, turbulence in the interstellar medium (ism) results in power law behaviour
of the energy spectra associated velocity dispersion and surface density. Consequently, both
surface density Σ and velocity dispersion σ follow power laws of the form

Σ(k) = Σ0

(
k

k0

)−a
, σ(k) = σ0

(
k

k0

)−b
, (3.15)

where the Σ0 and σ0 are the surface density and velocity dispersion measured at a scale
`0 = 1/k0. Hereafter, (3.15) shall be referred to as scaling relations and a and b as turbulent
exponents.
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Before proceeding, note that in the turbulent ism, the total surface density is the sum of the
mean surface density and density perturbations. The latter are driven by local compression
and expansion, which are the signature of turbulent motions. In like fashion, the velocity
dispersion is the sum of thermal velocity dispersion (a gauge of the temperature of the ism)
and the turbulent velocity dispersion. Thus:

Σ = Σmean + δΣ, σ2 = σ2
thermal + σ2

turbulent. (3.16)

In a warm ism, the sound speed (and thus the thermal component of the velocity dispersion)
is high. As such, motions in the gas are sub- or transonic and the medium is only minimally
compressible. This means that the total surface density is dominated by the static mean
density Σ ∼ Σmean and the velocity dispersion is dominated by the thermal component σ2 ∼
σ2

thermal.

Conversely, in the cold ism, the sound speed is low. The motions in the gas are supersonic
and the gas is compressible. Therefore, the total surface density is dominated by the density
fluctuations Σ ∼ δΣ and the velocity dispersion by the turbulent velocity dispersion σ2 ∼
σ2

turbulent.

Since only the density perturbations and turbulent velocity dispersion scale as described by
the relations (3.15), hereafter only the cold component of the ism shall be treated. This limits
the analysis to cold Hi and H2; c.f. §2.

3.5.2. Dispersion Relation, Stability Map of Turbulence

Substituting the scaling relations (3.15) into the one-component dispersion relation (3.3), one
obtains the turbulent dispersion relation

ω2 = κ2︸︷︷︸
rotation

− 2πGΣ0k
a
0k

1−a︸ ︷︷ ︸
self-gravity

+σ2
0k

2b
0 k

2(1−b)︸ ︷︷ ︸
pressure

, (3.17)

where the contributions of rotation, self-gravity and pressure are again indicated for conve-
nience. Expressed in non-dimensional form, the dr reads

ω2

κ2
= 1− D`

(`/`T )
+
Q2

0

4

V2
`

(`/`T )2
, (3.18)

where Q0 = κσ0/πGΣ0, kT0 = κ2/2πGΣ0, D` = (`/`0)a, and V` = (`/`0)b. The subscript 0
indicates that all variables describe conditions (and stability) at the scale `0 = 1/k0.

Depending on the choice of a and b, either the self-gravity or pressure term will dominate the
dispersion relation and determine the stability properties of the system. Romeo et al. (2010)
investigated the different cases and summarized them in the stability map of turbulence, which
is reproduced in figure 3.4.

Various different regimes are identified in figure 3.4. The shaded lines indicate choices for
a and b where stability on all scales is possible; provided certain conditions are met. In fact,
these conditions appear remarkably similar to the original Toomre criterion (3.5) and the 2D
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Theory of Galactic Disc Stability

Figure 3.4.: Stability map of turbulence from Romeo et al. (2010). The scaling exponents
(a, b) span the parameter plane. Note that a is limited to −2 ≤ a ≤ 1 due
to the mass-size scaling relation M ∝ `a+2. The map is segmented by gray
lines, and each segment corresponds to different dominant terms of the dr (3.17),
and thus different stability regimes. The green diagonal line marks the location
of virialized structures. The scaling relations obtained from observations and
simulations of Hi, and H2 (see §2) mark the points (a, b) = (0, 1/2) as locations for
gmcs and (a, b) = (1/3, 1/3) for diffuse Hi. However, especially for Hi, significant
uncertainties are present. For a thorough discussion of this map, refer to Romeo
et al. (2010).

Jeans criterion, except that they restrict k0 instead of k. The latter shall be discussed in more
detail in §5.

In all other regions, instabilities can occur on either (i) small scales, (ii) large scales, or (iii)
a range of scales given by a Toomre-like stability criterion. In the latter case, the dr has a
well-defined minimum, and the condition min{ω2} > 0 can be imposed to require stability on
all scales.

In addition to providing a theoretical map, scaling exponents derived from observations and
simulation for diffuse Hi and cold H2 bound in giant molecular clouds (gmcs) are marked in
figure 3.4. For example, the point (a, b) = (0, 1/2) corresponds to observations of virialized
gmcs where the density and velocity dispersion scale as Σ = const and σ ∝ `1/2. In fact, the
line b = 1

2(a+ 1) corresponds to scaling implied for virialized structures.

Hi is indicated to be populating the vicinity of (a, b) = (1/3, 1/3). However, simulations
and observations indicate a significant scatter around this point.
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3.5.3. Stability Threshold, Saturation Scale

For combinations of a and b in the Toomre-like regime of the stability map of turbulence, i.e.
a < 1 and b < 1

2(1 + a), stability on all scales again requires Q ≥ Q. In this regime, Romeo
et al. (2010) obtain analytical expressions for both the stability threshold Q and the most
unstable scale Λ.

It is found that turbulence affects Q only if a 6= b. In particular, (i) for a < b, Q ∝ `0, (ii)
for a > b, Q ∝ `−1

0 , and (iii) for a = b, Q = 1 (equal to the non-turbulent case). The line a = b
thus represents a degeneracy condition for Q. On the other hand, Λ is affected by turbulence
even if a = b and scales as Λ ∝ `p0 with p ≤ 0.

Recalling the discussion in §2, observations indicate that turbulence saturates at some scale,
i.e. neither Σ nor σ can scale indefinitely. But how does this affect Q and Λ?

If `0 is associated with the saturation scale, a cut-off can be imposed on D` and V` appearing
in (3.18), i.e.

D` =

{
(`/`0)a ` ≤ `0,
1 otherwise.

V` =

{
(`/`0)b ` ≤ `0,
1 otherwise.

(3.19)

Owing to the random nature of turbulence, the spectral signature of the saturation scale is
unlikely to be in the form of a sharp cut-off at a well defined scale `0, but appear as a smooth
transition across a range of scales. However, (3.19) provides the most convenient description
from a mathematical point of view. Moreover, at this stage, a more realistic description would
serve no added purpose.

Based on using (3.19) in (3.18), it is found that neither Q nor Λ scale indefinitely with `0.
There is always some value of `0 above (or below) which the turbulent system collapses to the
behaviour of a non-turbulent system. The details are dependent on the choice of a and b.

3.6. Chapter Summary

In preceding sections, various concepts have been introduced, the most important being:

• The dispersion relation and the marginal stability curve describe the stability properties
of the system. Both are always available in some form, regardless of the number of
components and whether the fluid is turbulent or not.

The minimum of the dispersion relation determines whether the system can be stable
on all scales or is unstable on same scales. The Toomre wavenumber kT and Toomre
parameter Q are linked to this condition. The maximum of the marginal stability curve
is the stability threshold Q. If the computed Q value at a given point in the disc exceeds
Q, the disc is stable on all wavelengths at this location. If a system becomes unstable,
density perturbations first occur at the most unstable wavelength Λ.

• The WKB and thin-disc approximations are used to simplify the analysis. The thin disc
approximation imposes the restriction kh� 1, where h is the equivalent scale height if
the disc were thick. The WKB approximation restricts the analysis to be a local one,
and imposes the tight-winding condition kR� 1.
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When applying the analysis to a set of data, the fulfilment of the conditions should be
checked a posteori. If they are not fulfilled, the analysis should be reassessed in terms
of validity.

• The response of a two-component system can become decoupled depending on the rel-
ative surface densities and velocity dispersions of the components. If the system is
decoupled, there are two scales at which instabilities can manifest themselves, each with
a different stability threshold. The range of parameters that allow for the system to be
decoupled gives rise to the two-phase region.

• Turbulence is introduced through scaling relations in the surface density Σ and velocity
dispersion σ. This is limited to a cold ism. In the warm ism, the fluid is not sufficiently
compressible and the mean density and thermal velocity dispersion dominate. Therefore,
the turbulent scaling cannot be applied.

For a one-component system, if the surface density and velocity dispersion scale equally,
the stability threshold of a one-component turbulent system is the same as for the
equivalent non-turbulent system. The most unstable wavelength always differs.
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CHAPTER

FOUR

STABILITY OF TURBULENT TWO-COMPONENT DISCS

In this chapter, the effects of turbulence on different two-component systems are investigated
using the dispersion relation (dr) and marginal stability curve (msc).

In §4.1, the general case of a two-component system is revisited and it is demonstrated that
a two-component system is always less stable than the constituent components. Afterwards,
§4.2 introduces the modifications required for turbulent scaling in the dr and msc, as well as
the parameter space.

Based on these, the stability of a coupled system of turbulent Hi and H2 is discussed in §4.3.
It is further demonstrated that the behaviour of this system can be extended to any system
consisting of a Toomre-like and a virialized component. Finally, the stability of a stellar disc
coupled to a potentially turbulent gaseous disc is discussed in §4.4.

4.1. Comparison of One- and Two-Component Dispersion Relations

In §3, the dispersion relation for a coupled two-component system was given. Repeated here
for convenience, it is

(ω2 − ω2
1)(ω2 − ω2

2) = (2πGkΣ1)(2πGkΣ2) (4.1)

with real valued solutions

ω2
± =

1

2

[
ω2

1 + ω2
2 ±

√(
ω2

1 − ω2
2

)2
+ 4 (2πGkΣ1) (2πGkΣ2)

]
, (4.2)

where ω2
i (i = 1, 2) are the individual dispersion relations for the two components. Inspec-

tion of (4.1) and (4.2) shows that the response of the coupled system is related to (i) the
response of the individual components, and (ii) some additional cross-terms. The latter arise
from the coupling of the two components through the shared gravitational potential.

To study more quantitatively how the response of the coupled system relates to the response
of the individual systems, (4.1) is rewritten as
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(
ω2 −M2

1

) (
ω2 −M2

2

)
=
(
P2

1 −M2
1

) (
P2

2 −M2
2

)
, (4.3)

where

P2
i (k) = κ2 + σ2

i k
2, (4.4)

M2
i (k) ≡ ω2

i (k)s = κ2 + σ2
i k

2 − 2πGkΣi, (4.5)

i.e. M2
i (k) = ω2

i (k) are the drs of the individual components, and P2
i (k) are dispersion

relations of acoustic (sound) waves1 associated with the components (Binney & Tremaine,
2008, App. F.3). The latter are strictly positive (P - plus), whereas the former can have
negative values (M - minus).

Expanding and rearranging (4.3), one obtains

ω4 − ω2
(
M2

1 +M2
2

)︸ ︷︷ ︸
−p

+
[
M2

1M2
2 −

(
P2

1 −M2
1

) (
P2

2 −M2
2

)]︸ ︷︷ ︸
q

= 0. (4.6)

Since, for any quadratic equation x2 + px+ q = 0, x1 + x2 = −p, this yields

ω2
− + ω2

+ =M2
1 +M2

2, (4.7)

because ω2
− and ω2

+ are both real valued. Since ω2
+ ≥ ω2

− by construction, the inequalities

2 min
{
M2

1,M2
2

}
≤M2

1 +M2
2 = ω2

+ + ω2
− ≤ 2 ω2

+, (4.8)

2 max
{
M2

1,M2
2

}
≥M2

1 +M2
2 = ω2

+ + ω2
− ≥ 2 ω2

− (4.9)

hold, such that

ω2
+ ≥ min

{
M2

1,M2
2

}
, (4.10)

ω2
− ≤ max

{
M2

1,M2
2

}
, (4.11)

where max{x, y} selects the larger of the arguments x and y. Equivalently, min{x, y} selects
the smaller. Thus, ω2

+ is always larger than (or equal to) the smaller of M2
1 and M2

2. On
the other hand, ω2

− is always smaller than (or equal to) the larger of M2
1 and M2

2. While
these conditions are not particularly useful by themselves, their role shall be become apparent
momentarily.

From (4.4), note that P2
i (k) ≥M2

i (k). This imposes restrictions on (4.3), i.e.

(
ω2 −M2

1

) (
ω2 −M2

2

)
=
(
P2

1 −M2
1

)︸ ︷︷ ︸
≥0

(
P2

2 −M2
2

)︸ ︷︷ ︸
≥0︸ ︷︷ ︸

≥0

, (4.12)

1The dr of acoustic waves presented in Binney & Tremaine (2008, App. F.3) does not contain the additional
term κ2. This term arises from the differential rotation of the medium through which the waves propagate.
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which implies

(
ω2 −M2

1

) (
ω2 −M2

2

)
≥ 0. (4.13)

To fulfil this condition, both terms on the left hand side (lhs) need to have the same sign,
which leads to

(
ω2 −M2

1

)
≤ 0(

ω2 −M2
2

)
≤ 0

}
ω2 ≤M2

1

ω2 ≤M2
2

}
Case I,

(
ω2 −M2

1

)
≥ 0(

ω2 −M2
2

)
≥ 0

}
ω2 ≥M2

1

ω2 ≥M2
2

}
Case II.

(4.14)

Case I. From the inequality (4.10), the positive solution ω2
+ is always larger than at least one

of either M2
1 or M2

2. This means that either ω2
+ ≤ M2

1 or ω2
+ ≤ M2

2 is not fulfilled.2

Therefore, only the negative solution ω2
− guarantees that the condition is fulfilled. Since

it must be smaller than both M2
1 and M2

2, one obtains the further condition

ω2
− ≤ min

{
M2

1,M2
2

}
. (4.15)

This is an extremely important result. Since only the negative branch ω2
− for a two-

component system is potentially unstable, this means that the dr of the two-component
system is always below the individual drs of the constituent systems. Physically, the
two-component system is always less stable than the individual systems it is comprised
of.

Case II. Equivalently, from (4.11), one finds that the negative solution ω2
− is always smaller

than at least one of either M2
1 or M2

2. As such, either ω2
− ≥ M2

1 or ω2
− ≥ M2

2 is not
fulfilled.3 Thus, only the positive solution ω2

+ guarantees fulfilment of the case, provided
that

ω2
+ ≥ max

{
M2

1,M2
2

}
. (4.16)

Since both ω2
+ and P2

i are larger than M2
i , it is possible that P2

i and ω2
+ are related.

To quantify this relation, consider again (4.3). If ω2
+ is larger than P2

1 and P2
2 (ω2

+ >
max

{
P2

1 ,P2
2

}
), one of the terms on the lhs would be larger than the equivalent right

hand side (rhs) term and equality would be lost. Correspondingly, if ω2
+ is smaller than

both P2
1 and P2

2 (ω2
+ < min

{
P2

1 ,P2
2

}
), one of the lhs terms would be smaller than the

corresponding rhs term and equality would be lost again. Recalling that P2
i ≥ κ2 > 0,

these considerations imply

0 < κ2 ≤ min
{
P2

1 ,P2
2

}
≤ ω2

+ ≤ max
{
P2

1 ,P2
2

}
. (4.17)

Figure 4.1 illustrates conditions (4.4), (4.5), (4.10), (4.11), (4.15), (4.16), and (4.17). In this
order, it shows that

2Note that it is possible that both ω2
+ ≤ M2

1 and ω2
+ ≤ M2

2 are not fulfilled. This implies ω2
+ ≥ M2

1 and
ω2

+ ≥M2
2, which actually fulfils case II in (4.14). This situation is, however, not guaranteed.

3Again, it is possible that both ω2
− ≥ M2

1 and ω2
− ≥ M2

2 are not fulfilled. Then, ω2
− ≤ M2

1 or ω2
− ≤ M2

2

would fulfil case I in (4.14). Again, this cannot be guaranteed.
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Figure 4.1.: Graphs of two-component ω2
±(k) (blue), one-componentM2

1,2(k) (red), and acous-

tic wave P2
1,2(k) (green) dispersion relations. For simplicity, the model parameters

are G = π = κ = 1, Σ1 = σ1 = 1, Σ2 = σ2 = 2 and units are not indicated. The
thick blue line is the potentially unstable branch ω2

− of the two-component disper-
sion relation. Note that for k = 0, all drs have the value κ2. For a more detailed
description, refer to the numerated list at the end of §4.1.

1. Acoustic waves are always more stable than density waves, i.e. P2
i ≥M2

i , (4.4), (4.5).

2. The positive branch of the two-component dr is more stable than the more unstable
one-component dr, i.e. ω2

+ ≥ min
{
M2

1,M2
2

}
, (4.10).

3. The negative branch of the two-component dr is more unstable than the most stable
one-component dr, i.e. ω2

− ≤ max
{
M2

1,M2
2

}
, (4.11).

4. The two-component system is always less stable than both constituent one-component
systems, i.e. ω2

− ≤ min
{
M2

1,M2
2

}
, (4.15).

5. The positive branch of the two-component dr is always more stable than both individual
drs, i.e. ω2

+ ≥ max
{
M2

1,M2
2

}
, (4.16).

6. The same positive branch is bounded by the drs of the acoustic waves associated with
the individual components, i.e. (4.17).

4.2. General Equations for Two Turbulent Components

In this section, the equations governing the stability of two-component systems are extended
with turbulent scaling laws. Hereafter, a “classical system” refers to a system without any
turbulent components. Reversely, a “turbulent system” refers to a system with at least one
turbulent component.
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4.2.1. Dispersion Relation

To describe a coupled system of two turbulent components (indexed by i = 1, 2), the turbulent
scaling relations (3.15) for each component

Σi = Σ0i

(
k

k0

)−ai
, σi = σ0i

(
k

k0

)−bi
(4.18)

are substituted into the two-component dr (4.1) and its solution (4.2). The potentially
unstable branch is thus given by

ω2
− =

1

2

ω2
1 + ω2

2 −
√(

ω2
1 − ω2

2

)2
+ 4 (2πGkΣ01) (2πGkΣ02)

(
k

k0

)−(a1+a2)
 , (4.19)

where the constituent drs are

ω2
i = κ2 − 2πGkΣ0i

(
k

k0

)−ai
+ σ2

0ik
2

(
k

k0

)−2bi

. (4.20)

Using the Toomre and Jeans4 wavenumbers,5

kT i ≡ k0,T i =
κ2

2πGΣ0i
, kJi ≡ k0,Ji =

2πGΣ0i

σ2
0i

, (4.21)

(4.19) and (4.20) can be written in the non-dimensional forms

ω2
−
κ2

=
1

2

ω2
1

κ2
+
ω2

2

κ2
−
√(

ω2
1

κ2
− ω2

2

κ2

)2

+ 4
k

kT1

k

kT2

(
k

k0

)−(a1+a2)
 , (4.22)

and

ω2
i

κ2
= 1− k

kT i

(
k

k0

)−ai
+

k

kT i

k

kJi

(
k

k0

)−2bi

. (4.23)

Using kT i/kJi = Q2
0i/4, (4.23) can be rewritten to

ω2
i

κ2
= 1− k

kT i

(
k

k0

)−a1

+

(
k

kT i

)2 Q2
0i

4

(
k

k0

)−2b1

, (4.24)

4The Jeans wavenumber determines the stability of a self-gravitating fluid with non-zero pressure. See Binney
& Tremaine (2008, §5.2) for more information, but note that it describes the three-dimensional case.

5These wavenumbers are not the classical Toomre and Jeans wavenumbers discussed in §3.3 and Binney &
Tremaine (2008, §5.2). They are the turbulent equivalents restricting k0 instead of k. Since the classical
Toomre and Jeans wavenumbers are not used hereafter, kTi ≡ k0,T i and kJi ≡ k0,Ji are used for brevity.
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and k/k0 expressed as

k

k0
=

k

kT i

kT i
kJi

kJi
k0

=
k

kT i

Q2
0i

4

kJi
k0
, (4.25)

where Q0i = κσ0i/(πGΣ0i) is the familiar Toomre parameter of the i-th component valid at
wavenumber k0. The advantage of expressions (4.24) and (4.25) is that they explicitly contain
the stability parameters for virialized and Toomre-like components in the stability map of
turbulence.6 In particular, Q0i determines the stability of components in the Toomre-like7

region. The ratio kJi/k0 determines the stability of components along the virial line given by
−2 < ai < 1, bi = 1

2(ai + 1).

It should be noted that the presence of two different stability criteria in (4.24) and (4.25)
does not pose a problem. The impact of the factors Q0i and kJi/k0 changes depending on the
choice of ai and bi. While both parameters influence the shape of the function, the stability
(i.e., whether it is possible that ω2

i /κ
2 < 0) is only governed by one factor at a time.

4.2.2. Marginal Stability Curve

When attempting to understand the impact of different parameters on the stability of a
system, it is generally more convenient to study the marginal stability curve (msc) instead of
the dispersion relation, cf. §3. However, the msc is less universal in the sense that it is only
valid if the system is Toomre-like, i.e. the dr has a distinct minimum.

Originally given by (3.13) for a classical system, the msc can easily be adapted by scaling
the surface density Σi and velocity dispersion σi of the relevant components in the same way
as done in the dr. The msc

Q2
1 =

(
2Λ

β

)[
(α+ β)− Λ(1 + β) +

√
Λ2(1− β)2 − 2Λ(1− β)(α− β) + (α+ β)2

]
(4.26)

then includes the scale dependent surface density and velocity dispersion by combining
(3.14) with (3.15), such that

α = α0

(
Λ

Λ0

)a2−a1

, β = β0

(
Λ

Λ0

)2(b2−b1)

, (4.27)

where α0 = Σ02/Σ01, and β0 = σ2
02/σ

2
01 are surface density and velocity dispersion ratios

measured at scale `0 = 1/k0. Further, Λ = `/`T1 = kT1/k, and Λ0 = `0/`T1 = kT1/k0. Note
that since

Q1 =
κσ01

πGΣ01

(
Λ

Λ0

)b1−a1

= Q01

(
Λ

Λ0

)b1−a1

, (4.28)

6Cf. figure 3.4.
7Strictly speaking, the stability map of turbulence has two regions of Toomre-like stability. However, one of

the regions is unphysical because the fractal dimension D > 3. As such, any reference to a “Toomre-like”
region in the stability map of turbulence shall herafter refer to the region −2 < ai < 1, bi <

1
2
(ai + 1).
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Q1 = Q01 if a1 = b1. Since this is the case for both the coupled Hi and H2 system as well
as the system of Hi coupled to a stellar disc, the scaling of Q1 does not need to be accounted
for when these specific cases are studied.

The marginal stability curve of the form (4.26) is positive Q2
1 > 0 for 0 ≤ Λ ≤ 1 + α,

provided that α and β are not functions of Λ (Bertin & Romeo, 1988). If, on the other hand,
α and β have a scale dependence as shown in (4.27), this range is modified. Retaining the
lower limit 0 ≤ Λ, and writing Λ ≤ ΛZero = 1 + α for the upper limit, one obtains

ΛZero = 1 + α = 1 + α0

(
ΛZero

Λ0

)a2−a1

, (4.29)

such that

0 = 1 + α0 Λa2−a1
Zero Λa1−a2

0 − ΛZero, (4.30)

with the upper zero given by a real valued solution ΛZero of (4.30). Due to the unpredictable
order of the polynomial, a simple analytical solution for ΛZero cannot be stated. In this work,
numerical solutions around the point Λ = 1 + α0 are searched instead.

4.2.3. The Parameter Space

In §3.4.2, the β − α plane was first introduced as a parameter space with a msc Q1 = Q1(Λ)
associated with each point (β, α) in the plane. Considering figure 3.3, one can notice that the
range of values spanned in both β and α is very small and that both the Q contours as well as
the transition line in the two-phase region approach the point (β, α) = (0, 0) very close to the
vertical axis. In order to study the graph better at such small scales, a logarithmic scaling in
both axes is more appropriate.

Moreover, the choice of β and α for the parmeter plane is not particularly convenient if a
link between observations and theoretical considerations is to be made. The former generally
describe the physics of the system in terms of the velocity dispersion σ and the Toomre
parameter Q, whereas the latter require σ2 and Σ as parameters. To avoid unnecessary
conversion, a more suitable set of parameters for the β − α plane can be chosen, i.e.

s =
σ2

σ1
=
√
β, q =

Q2

Q1
=

√
β

α
. (4.31)

Accounting for scale dependence in turbulent media, this can be written as

s =
σ2

σ1
=
σ02

σ01︸︷︷︸
s0

(
Λ

Λ0

)b2−b1
, q =

Q2

Q1
=
Q02

Q01︸︷︷︸
q0

(
Λ

Λ0

)(b2−a2)−(b1−a1)

, (4.32)

such that
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Figure 4.2.: Marginal stability curves (left) and two-phase regions (right) for four two-
component systems with different scaling exponents, cf. figure legend. All tur-
bulent components use Λ0 = 1. While the classical system has the transition
between dominating components at q0 = Q02/Q01 = 1, this transition line and
the two-phase regions for the systems with only one turbulent component are dis-
placed asymmetrically about q0 = 1. Also note that the system of two turbulent
components (with all scaling exponents equal) collapses to the classical case.

s0 =
σ02

σ01
=
√
β0, q0 =

Q02

Q01
=

√
β0

α0
, (4.33)

where quantities with subscript 0 are values at scale Λ0 = `0/`T1. Note that for a classical
system, quantities are scale-independent, i.e. s0 = s, and q0 = q.

Figure 4.2 shows the msc (left panel) and the two-phase regions for four cases of coupled
systems in the logarithmic s0 − q0 parameter space (right panel): (i) the classical case of two
non-turbulent components, (ii), (iii) the cases where either the first or the second component is
turbulent and Toomre-like (with a = b = 1/3), and (iv) two Toomre-like turbulent components
(a1,2 = b1,2 = 1/3).

In the classical case, the choice of q0 = q = Q02/Q01 = 1 corresponds to the case where both
components have the same stability level, i.e. both msc peaks are of equal height. On either
side of the horizontal transition line, one of the peaks is higher than the other, meaning that
one of the component dominates the stability behaviour of the coupled system. In particular,
for q0 > 1, Q02 > Q01, and the peak associated with the first (less stable) component will
dominate the stability of the coupled system. Conversely, for q0 < 1, Q02 < Q01, the peak
associated with the second component will dominate and therefore determine the stability
properties of the coupled system.

In the case of a system with one turbulent Toomre-like component, the symmetry about the
q0 = 1 line is broken and the transition line moves upwards, respectively downwards. This is
caused by the different scalings laws of (σ1,2,Σ1,2), which appear in the msc through (β, α),
and thus (s, q). One might further expect a symmetry about the q0 = 1 line when comparing
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the cases of (i) (a1, b1, a2, b2) = (0, 0, 1/3, 1/3), and (ii) (a1, b1, a2, b2) = (1/3, 1/3, 0, 0), but
such a consideration does not take into account that s0 =

√
β0 and q0 =

√
β0/α0 have not been

inverted. In fact, when switching turbulent components and inverting q0 and s0, a symmetric
two-phase region is found around (s0, q0) ∼ (10, 1). However, for a disc of stars coupled to
a turbulent gaseous component, the symmetric two-phase region is located in a part of the
s0 − q0 plane that is nonphysical, cf. §4.4.1.

Finally, the case of two-turbulent Toomre-like components with the same scaling exponents
collapses to the classical case of two non-turbulent components. This is in analogy to the
behaviour described in §3.5.3, where a one-component turbulent system behaves equivalent to
a non-turbulent system if the scaling exponents on both σ, and Σ are equal.

4.3. Stability of Coupled Turbulent Hi and Turbulent H2

As discussed in §2, atomic and molecular hydrogen are the most abundant elements in galactic
discs. Additionally, both components exhibit scaling of the velocity dispersion and density
distribution. The study of the stability properties of the combined system is therefore of
interest.

4.3.1. Stability Regime of the Coupled System

In line with §3.5.1, the scaling exponents adopted are (a1, b1) = (1/3, 1/3) for the Hi compo-
nent and (a2, b2) = (0, 1/2) for the H2 component, i.e.

ΣHi = Σ1 = Σ01

(
k

k0

)−1/3

, σHi = σ1 = σ01

(
k

k0

)−1/3

, (4.34)

and

ΣH2 = Σ2 = Σ02

(
k

k0

)−0

, σH2 = σ2 = σ02

(
k

k0

)−1/2

, (4.35)

such that the two-component dr becomes

ω2
− =

1

2

ω2
1 + ω2

2︸ ︷︷ ︸
Term I

−

√√√√√√(
ω2

1 − ω2
2

)2
︸ ︷︷ ︸

Term II

+ 4 (2πGkΣ01) (2πGkΣ02)

(
k

k0

)−1/3

︸ ︷︷ ︸
Term III

 , (4.36)

where the use of the terms I, II, and III shall become clear soon and the constituent drs
are

ω2
1 = κ2 − 2πGkΣ01

(
k

k0

)−1/3

+ σ2
01k

2

(
k

k0

)−2/3

, (4.37)
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and

ω2
2 = κ2 − 2πGkΣ02

(
k

k0

)0

+ σ2
02k

2

(
k

k0

)−1

. (4.38)

To determine the stability of the coupled system, the behaviour of (4.36), (4.37), and
(4.38) needs to be considered. Since the Hi component is Toomre-like, ω2

1 decreases from
ω2

1(k = 0) = κ2 to some minimum, after which it can increase again. Due to the constraint
ω2
− ≤ min

{
ω2

1, ω
2
2

}
(cf. §4.1), this means that ω2

− must decrease from ω2
−(k = 0) = κ2.

At larger k, ω2
− can either decrease further or increase again. To determine which is the

case, the asymptotic behaviour of ω2
−(k → ∞) is studied. In this limit, ω2

− is dominated by
terms proportional to kγ for the largest γ ≥ 1.

Working out all terms in ω2
− and selecting the largest powers of k from the three terms of

(4.36), one obtains

ω2
−(k →∞) ∝ k4/3

(
σ2

01k
2/3
0

)
−
√
k8/3

(
σ2

01k
2/3
0

)2
+ k5/3

(
16π2G2Σ01Σ02k

4/3
0

)
. (4.39)

Since the
√· is dominated by the first term, this becomes

ω2
−(k →∞) ∝ k4/3

(
σ2

01k
2/3
0

)
−
√
k8/3

(
σ2

01k
2/3
0

)2
, (4.40)

∝ k4/3
(
σ2

01k
2/3
0

)
− k4/3

(
σ2

01k
2/3
0

)
, (4.41)

which means that the two terms proportional to k4/3 balance one other as k → ∞ and
cannot be used to obtain the asymptotic behaviour of ω2

−(k → ∞). To do this, the next
largest power of k in the three terms of (4.36) must be considered. One then obtains

ω2
−(k →∞) ∝ k

(
σ2

02k0 − 2πGΣ02

)
−
√
k2
(
−σ2

02k0 + 2πGΣ02

)2
+ k5/3

(
16π2G2Σ01Σ02k

4/3
0

)
. (4.42)

Again, the first term dominates the
√·, such that

ω2
−(k →∞) ∝ k

(
σ2

02k0 − 2πGΣ02

)
−
√
k2
(
−σ2

02k0 + 2πGΣ02

)2
, (4.43)

∝ k
(
σ2

02k0 − 2πGΣ02

)
− k

(
−σ2

02k0 + 2πGΣ02

)
, (4.44)

∝ k
(
σ2

02k0 − 2πGΣ02

)
+ k

(
σ2

02k0 − 2πGΣ02

)
, (4.45)

∝ 2k
(
σ2

02k0 − 2πGΣ02

)
. (4.46)

The behaviour of ω2
−(k → ∞) is thus determined by the sign of σ2

02k0 − 2πGΣ02. In
particular, if σ2

02k0−2πGΣ02 ≤ 0, ω2
− remains negative as k increases, which implies instability
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Figure 4.3.: Dimensionless turbulent dispersion relations for Hi, H2 (thin dashed lines), and
the coupled Hi + H2 system (bold black line) for s0 = q0 = 1. In all panels, Hi
is Toomre-like and stable (Q01 = 1, ω2/κ2 ≥ 0). The leftmost panel shows H2

unstable on small scales (k0 < kJ2), such that the combined system behaves sim-
ilarly. In the central panel, H2 is marginally stable (k0 = kJ2) and the combined
system is still unstable at small scales. In the rightmost panel, H2 is stable on
all scales (k0 > kJ2), but the combined system is now Toomre-like with a clearly
defined minimum at k. Moreover, at large k, the dr converges to a line parallel
to the dr of the H2 component.

at small scales. Conversely, if σ2
02k0 − 2πGΣ02 > 0, ω2

− becomes positive at large k. In this
case, ω2

− is Toomre-like.8

Rewriting the condition as

k0 >
2πGΣ02

σ2
02

= kJ2, (4.47)

one finds that this strongly resembles the stability criterion of virialized turbulent systems
(such as H2) described in Romeo et al. (2010, §2.3). This means that stability of the H2

component is a necessary9 condition for a two-component system of turbulent Hi and H2 to
be Toomre-like.

To illustrate condition (4.47), (4.24) and (4.25) are now written more explicitly for the
Hi and H2 components in terms of Q01 (determines Hi stability) and k0/kJ2 (determines H2

stability). Using Q01/Q02 = 1/q0, kT1/kT2 = s0/q0, and kJ1/kJ2 = s0 q0, one obtains for Hi

ω2
1

κ2
= 1− k

kT1

(
k

k0

)−1/3

+

(
k

kT1

)2 Q2
01

4

(
k

k0

)−2/3

, (4.48)

and for H2

8Recall that at small k, ω2
− decreases with k. If it increases at large k, it must have a well defined minimum.

A dr exhibiting this shape means the system is Toomre-like.
9A necessary, but not sufficient condition because a virialized component is stable if k0 ≥ kJ (Romeo et al.,

2010, §2.3). The criterion derived here further requires k0 > kJ , i.e. marginal stability (equality) is not
sufficient.
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ω2
2

κ2
= 1− k

kT1

s0

q0

(
k

k0

)0

+

(
k

kT1

s0

q0

)2 Q2
01

4

q2
0

1

(
k

k0

)−1

, (4.49)

where

k

k0
=

k

kT1

kT1

kJ1

kJ1

k0
=

k

kT1

Q2
01

4

kJ2

k0

s0 q0

1
. (4.50)

Using (4.48), (4.49), and (4.50), the non-dimensional two-component dispersion relation for
turbulent Hi and H2 then is

ω2
−
κ2

=
1

2

ω2
1

κ2
+
ω2

2

κ2
−
√(

ω2
1

κ2
− ω2

2

κ2

)2

+ 4
k

kT1

k

kT1

s0

q0

(
k

k0

)−1/3
 . (4.51)

Figure 4.3 shows the dispersion relations (4.48), (4.49), (4.51) for the three (from left to
right) cases k0 < kJ2, k0 = kJ2, and k0 > kJ2. In all panels, one can clearly see that the
coupled system is less stable than the two individual systems on all scales. Furthermore, on
small scales (large k), the dr of the coupled system converges to a line parallel to the dr of
the H2 component.

In the leftmost panel, k0 < kJ2, and the H2 component is unstable on small scales. Regard-
less of the stability of the Hi component, the coupled system is also unstable on small scales.
In the middle panel, the H2 component is marginally stable with k0 = kJ2. This is not enough
for the coupled system to be stable, and it is still unstable on small scales. In the rightmost
panel, the H2 component is stable with k0 > kJ2. This allows the coupled system to be stable
on small scales. As such, the coupled dr has a distinct minimum at some value k. It is thus
Toomre-like.

4.3.2. Extension: Turbulent Virialized and Toomre-like Components

The considerations regarding a coupled system of turbulent Hi and turbulent H2 can be
extended to the general case turbulent virialized and a Toomre-like components.

As per Romeo et al. (2010, §2.3), any virialized turbulent system is stable on all scales
if k0 ≥ kJ = 2πGΣ0/σ

2
0 and unstable on small scales otherwise. If the virialized system is

unstable on small scales, the dispersion relation is monotonically decreasing starting from κ2

at k = 0. If the virialized component is stable, the dr is monotonically increasing starting
from κ2 at k = 0. The Toomre-like component also starts at κ2 at k = 0, then decreases to
some minimum, after which it increases again.

The system of both components is always less stable than the two constituents. As such, the
dr is forced to decrease at small k to remain below the both the Toomre-like and virialized
component. Since the Toomre-like component increases at k larger than the k associated
with its minimum, the behaviour of the combined system only depends on the stability of
the virialized system. In particular, if the virialized system is unstable on small scales, so is
the combined system because it is always less stable. On the other hand, if the Toomre-like
component is stable on all scales, the dr of the combined system can increase to larger values
after passing the minimum imposed by the Toomre-like component.
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However, whether the combined dr indeed increases is subject to further constraints. In
particular, recall the two-component turbulent dr given by (4.19) with constituent drs (4.20).
Ignoring all coefficients to show only the k-dependence for all terms then gives

ω2
− ∝ k1−a1 + k2−2b1 − k1−a2 + k2−2b2︸ ︷︷ ︸

Term I: ω2
1+ω2

2

−
√√√√√√
(
k1−a1 + k2−2b1 + k1−a2 − k2−2b2

)2

︸ ︷︷ ︸
Term II: (ω2

1−ω2
2)

2

+ k2−(a1+a2)︸ ︷︷ ︸
Term III: 4(2πGkΣ1)(2πGkΣ2)

. (4.52)

Provided that Term II > Term III in the limit k → ∞ and noting that the first terms
k1−a1 + k2−2ba of Term I and Term II will cancel, the behaviour at large k is

ω2
−(k →∞) ∝ 2

(
k1−a2 − k2−2b2

)
, (4.53)

which is indeed the generalization of (4.46) and (4.47) obtained in §4.3.1. It shows that the
stability of the combined system is determined by the stability of the virialized component if
the constraint

(
ω2

1 − ω2
2

)2
> 2 (2πGkΣ1) (2πGkΣ2) (4.54)

for k → ∞ is fulfilled. If (4.54) is not fulfilled, Term III will dominate ω2
−(k → ∞) with a

negative contribution. In this case, the coupled system would not be Toomre-like, but unstable
on small scales, even for a stable virialized component.

4.3.3. The Effects of Varying s0, q0, and Λ0

To understand how the coupled system responds to changes, the effects of changes in the
relative stability q0, velocity dispersion s0, and the scale Λ0 are now considered. As long as
the H2 component is stable, the combined system is Toomre-like and can be described in terms
of the msc, which is advantageous because the stability threshold Q and most unstable scale
Λ can be obtained much easier than through the dr.

To ensure that the combined system is indeed Toomre-like, rewriting the condition (4.47)
as

k0

kT2

Q2
02

4
=

k0

kT2

kT2

kJ2
=

k0

kJ2
> 1, (4.55)

Q2
01

4

β0

α0
=
Q2

02

4
>
kT2

k0
=
kT1

k0

1

α0
=

`0
`T1

1

α0
=

Λ0

α0
, (4.56)

gives the constraint10

10Recall that Q1 = Q01

(
Λ
Λ0

)b1−a1
= Q01

(
Λ
Λ0

)1/3−1/3

= Q01.
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Figure 4.4.: Marginal stability curves for a disc of Hi and H2. In each panel, two of three
parameters are held fixed while the third varies. Left : q0 varies, s0 = Λ0 = 1,
Middle: s0 varies, q0 = Λ0 = 1, Right : Λ0 varies, s0 = q0 = 1. At any given Λ, the
combined system is only Toomre-like if (4.57) is fulfilled (black lines). If (4.57) is
not fulfilled, the msc is not a valid representation of the system (grey lines).

Q2
01 = Q2

1 > 4 Λ0
α0

β0
= 4 Λ0

1

q0

1

s0
, (4.57)

which needs to be fulfilled for the msc to describe a Toomre-like system. For any scale Λ
along the msc, (4.57) needs to be fulfilled. If not, the value of Q2

1 is not a valid representation
of the stability of the system at this scale.

Figure 4.4 shows the response of the system to changes in s0, q0, and Λ0. Additionally, the
values for the stability threshold and most unstable scale are tabulated in table 4.1. Scales
where the constraint (4.57) is fulfilled show the msc as black line, other scales as a grey line. If
the stability threshold is located at a scale at which (4.57) is not fulfilled, this is also indicated
in table 4.1. The three panels and their implications are now discussed individually.

Relative Stability Recall that q0 = Q02/Q02 = QH2/QHi is a measure of the relative stability
of two systems — even if one of the constituents is not Toomre-like. For q0 > 1, H2 is
more stable than Hi, and vice versa for q0 < 1. Therefore, decreasing q0 means that H2

is destabilized relative to Hi. Since H2 dominates the response of the coupled system, it
is reasonable to observe an increase of the stability threshold (i.e., the coupled system
destabilizes) as the relative stability of H2 is decreased by imposing lower values of q0.

Further note that, as q0 decreases, the range in Λ for which the msc is valid shrinks
significantly. Again, this is in line with expectations because the stability on all scales
for H2 is a prerequisite for Toomre-like stability of the coupled system.

Velocity Dispersion Ratio. For the velocity dispersion ratio s0 = σ02/σ01 = σH2/σHi, a sim-
ilar argument can be made. Given the same relative stability q0, note that increasing
s0 further boosts the stability of H2 with respect to Hi. Since σH2 tends to increase the
stability of the dominant H2 component, the stability of the coupled system is increased
as well — the stability threshold decreases.

It is further interesting to note, that for the case q0 = 1, no value s0 < 1 meets the
criterion for the validity of the msc. This suggests that the coupled system is always
unstable on small scales for s0 < 1 if q0 = 1. On the other hand, for values q0 6= 1, it is
expected that the coupled system is Toomre-like on wider range of s0.
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q0 s0 Λ0 Q Λ Note

0.5 1.0 1.0 2.83 0.94
1.0 2.06 0.74
2.0 1.59 0.63

1.0 0.6 1.0 2.16 0.48 Not Toomre-like
0.8 2.11 0.64 Not Toomre-like
1.0 2.06 0.74

1.0 1.0 0.5 1.78 0.71
1.0 2.06 0.74
2.0 2.44 0.77 Not Toomre-like

Table 4.1.: Dependence of stability threshold Q, and most unstable scale Λ on q0 = Q02/Q01,
s0 = σ02/σ01, and Λ0 for a disc of Hi and H2. If condition (4.57) is not fulfilled,
the system is not Toomre-like.

Scale Λ0. The effect of the coupled system destabilizing with increasing Λ0 can be explained
in a somewhat similar fashion. In particular, writing

Λ0 =
`0
`T1

=
kT1

k0
=
Q2

1

4

kJ1

k0
=
Q2

1

4

kJ2

k0

β0

α0
=
Q2

1

4

kJ2

k0

s0

1

q0

1
, (4.58)

and noting that for fixed values of s0, q0, and Q1,11 the value k0/kJ2 is directly linked to
the choice of Λ0. Since kJ2/k0 = (k0/kJ2)−1 determines the stability of the dominating
H2 component, increasing Λ0 affects the stability of H2 adversely. Since H2 dominates
the coupled system, this destabilizes the coupled system.

4.4. Stability of Coupled Gaseous and Stellar Disks

The analysis of turbulent Hi and H2 does not fully represent actual galatic systems because
the coupling of the gaseous components to the stellar disc is not considered. Unfortunately, a
complete analysis would require a three-component treatment, which is beyond the scope of
this work. Instead, the cases of a stellar disc coupled to a turbulent, respectively non-turbulent
gas component are considered. They are then compared by considering the effects on the (i)
marginal stability curves, (ii) two-phase region, (iii) stability threshold Q = max{Q?}, and
(iv) most unstable scale Q(Λ = Λ). For the turbulent gas, the effect of Λ0 is also studied.

Since non-turbulent differentially rotating discs always have Toomre-like12 stability, a stellar
disc coupled to a gaseous disc is a system of two Toomre-like components. Therefore, the
coupled system is also Toomre-like. This permits analysis of the coupled system in terms
of the msc. In like fashion, if the turbulent gaseous component is identified with a gas in
the Toomre-like regime of the stability map of turbulence (e.g. Hi), the turbulent gaseous
component and the stellar component are again both Toomre-like, and so is the coupled
system.

11The choice of stability parameter of the Hi component Q1 is irrelevant because the stability regime of the
coupled system is independent of the Hi component.

12Recall that a Toomre-like system has a dr with a distinct minimum. While all non-turbulent system are
Toomre-like, turbulent systems might not be.
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Note that, hereafter, any mention of “classical system” refers to the case of a stellar disc
coupled to a non-turbulent gaseous disc as first studied by Bertin & Romeo (1988), also cf.
§3.4.2. Mentions of “turbulent system”, on the other hand, refer to the system of a stellar
disc coupled to a turbulent gaseous disc.

In the following, the turbulent gaseous component is considered to be Hi with scaling
exponents ag = bg = 1/3. The choice is justified because only Hi is turbulent on galactic
scales ` & 1 kpc, whereas the scaling relations in H2 are restricted to scales ` . 100 pc. To
reduce complexity, the effect of possible errors on the scaling exponents is not considered.

Using the logarithmic parameter space introduced in §4.2.3, and identifying the stellar disc
as the first (1 = ?) and the gaseous disc as the second (2 = g) component, one can write

s0 =
σ0g

σ0?
, q0 =

Q0g

Q0?
. (4.59)

Since the stellar component is non-turbulent, Q0? = Q?, and σ0? = σ?, i.e neither the stellar
Toomre parameter nor the velocity dispersion scale. Furthermore, since ag = bg = 1/3 for
Hi, Qg = Q0g(Λ/Λ0)bg−ag = Q0g, i.e. gaseous the Toomre-parameter is not scale-dependent13

either.

Thus, (4.59) becomes

s0 =
σ0g

σ?
, q0 = q =

Qg
Q?

. (4.60)

To investigate the physical implications of Λ0 = `0/`T1, recall that until now the scale `0 =
1/k0 has been associated with the scale at which velocity dispersions and surface densities are
measured. This is a very useful choice if observations are involved, but somewhat restricting
from the point of view of a theoretical investigation.

Instead, it is convenient to interpret `0 as some scale of interest, not necessarily the mea-
surement scale. If the measurement scale and this scale of interest are different, the equations
become more involved, and this case shall not be considered in this work to avoid unnecessary
complexity.

A particularly interesting choice for `0 is the scale at which the turbulent scaling of the
velocity dispersion and surface density saturates such that they are independent of scale for
` > `0. Practically, this means imposing a cut-off in L ≡ (Λ/Λ0)p of the same form as discussed
in §3.5.3, i.e.

L =

{
(Λ/Λ0)p Λ ≤ Λ0,

1 otherwise.
(4.61)

13The fact that Q is independent of scale if the turbulent exponents are equal (a = b) is a manifestation of
the degeneracy condition discussed in §3.5.3, where it was shown that stability threshold of the system is
independent of scale if a = b.
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Figure 4.5.: Marginal stability curves for a classical system of a stellar disc coupled to a non-
turbulent gaseous disc. Each panel shows the msc along a different line of s. The
bottom right panel shows the location of the mscs in the s − q plane along with
the two-phase region.

4.4.1. Marginal Stability Curves

The Classical System

Figure 4.5 shows the mscs and the two-phase region for a classical system. As discussed
in §3.4.2 and §4.2.3, the two-phase region marks the range in the parameter space where
the stability response of the system becomes decoupled in the sense that the msc shows two
distinct peaks at different scales. Depending on the exact location within the two-phase region,
one of the peaks is higher and dominates the stability response.

Within the two-phase region, for q = q0 = Qg/Q? > 1, the marginal stability curve is
dominated by the peak at larger scales Λ ∼ 0.5. Since q > 1, Qg > Q?, and the gaseous
component is more stable than the stellar component.
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Since the degree of instability14 is driven by the less stable stellar component, the higher
peak at Λ ∼ 0.5 is the stellar peak and the corresponding part of the two-phase region is
referred to as stellar-dominated. For q < 1, on the other hand, Qg < Q? such that the stellar
component is more stable and the degree of instability is driven by the gas component. The
dominant peak at Λ ∼ 0.1 is the gaseous peak15 and the part of the two-phase region is said
to be gas-dominated.

Regardless of which peak is higher, the scales of the gaseous and the stellar peaks are
hereafter indicated as Λg and Λ?. Recall that the largest peak gives the stability threshold Q
and is located at the most unstable scale Λ. Depending on whether q > 1 or q < 1, Λ = Λ?,
or Λ = Λg.

From the shape of the marginal stability curve for different locations in the two-phase region,
the primary effects of variations in s and q can be seen. For constant values of q, decreasing
s causes the gaseous peak to move to smaller scales, while the location of the stellar peak
remains unaffected, thereby increasing the separation of the peaks. Additionally, decreasing
s also decreases the height of the marginal stability curves, and thus the stability threshold.
This stabilizes the system.

For constant values of s, decreasing the value of q increases the height of the gaseous peak
whereas the stellar peak seems to remain unaffected. Additionally, the location of the stellar
peak seems to only be minimally affected by changes in q. For q = 1, the peaks are of equal
height. This is the transition line. Increasing s for q = 1 will keep the two peaks at the same
relative height and decrease their separation until the msc exhibits only one single, very flat
peak at the point in the s − q plane where the boundaries of the two-phase region meet the
transition line. This is called the triple point.

The Turbulent System

To study how turbulent scaling affects the system, it is useful to compare the turbulent mscs
to those of a classical system. Selecting an arbitrary point (s0, q0) in the parameter space for
the system of a stellar disc coupled to a turbulent Hi disc, the variables

s = s0

(
Λ

Λ0

)1/3

, q = q0, (4.62)

enter the marginal stability curve Q? = Q?(Λ, s, q). For the non-turbulent case, s and q are
constant in the domain Λ of the msc. However, for the turbulent system, s = s(Λ) such that
the value of s at each Λ varies.16 This means that, at Λ = Λ0, the values of the mscs for the
classical and turbulent cases coincide, whereas for Λ > Λ0, s is increased, and for Λ < Λ0, s
is decreased.

This is illustrated in figure 4.6. The left panel shows the scaling law for a choice of s0

and the right panel the corresponding msc for (i) the classical system, and (ii) the turbulent
system. At Λ = Λ0, the two curves coincide because the effective value of s for the turbulent
system equals s0, which is constant with Λ for the classical system.

14I.e. the height of the largest peak in the marginal stability curve.
15In fact, the gaseous peak for classical systems is always located at Λ ∼ 1

2
α = 1

2
s
q

(Bertin & Romeo, 1988).
16Note that, in the more general case of two Toomre-like turbulent components, it is possible that q = q(Λ).
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Figure 4.6.: Left : Scaled velocity dispersion ratio s as a function of scale Λ, and velocity
dispersion ratio s0 = 0.1 at scale Λ0 = 0.3. Right : Marginal stability curve for a
classical and a turbulent two-component system, cf. legend. At scale Λ = Λ0 =
0.3, the two curves coincide.

Recalling the discussion in §4.4.1, lower values of s0 shift the small scale peak to even smaller
Λ and decrease the height of both peaks. As such, there are three possible choices for Λ0 to
significantly affect the shape of the marginal stability curve:

1. If Λg < Λ0 < Λ?, the gaseous peak is shifted to smaller Λ and the height decreased,
whereas the stellar peak is increased in height but remains at approximately the same
Λ.

2. If Λ0 <
{

Λg,Λ?
}

, both peaks increase in height, with the stellar peak affected more
strongly. The gaseous peak is shifted to larger values of Λ, but the location of the stellar
peak remains largely unaffected.

3. If
{

Λg,Λ?
}
< Λ0, both peaks are decreased in height with the gaseous peak affected

more strongly. Additionally, the gaseous peak is shifted to smaller scales.

While these considerations give an indication of what happens to the msc for various choices
of Λ0, a thorough study of the effects in the s0 − q0 plane in terms of the shape of the msc
is complex and beyond the scope of this work. Instead of mapping the behaviour of the msc
throughout the s0 − q0 pane, the (i) change in the shape of the two-phase region, (ii) effect
on the stability threshold Q, and (iii) effect on the most unstable scale Λ are discussed in
subsequent sections.

Now consider the case in which turbulence saturates at the scale Λ0. As per (4.61), a cut-off
is applied in the scaling of s(Λ) such that s = s0 for Λ ≥ Λ0. The effect of this on the msc is
show in figure 4.7, where the left panel shows s = s(Λ) and the right panel shows the msc for
the classical system, the turbulent system with the cut-off, and the turbulent system without
the cut-off. As before, two curves are seen for Λ < Λ0, which coincide at Λ = Λ0. However,
instead of separating again for Λ > Λ0, the cut-off causes the turbulent system to collapse
to the classical case. This is emphasized by the dotted line indicating the shape of the msc
without a cut-off.
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Figure 4.7.: Left : Scaled velocity dispersion ratio s as a function of scale Λ, and velocity
dispersion ratio s0 = 0.1 at scale Λ0 = 0.3. Note how the scaling saturates at
Λ = Λ0. Right : Marginal stability curve for a classical and a turbulent two-
component system. At scale Λ = Λ0 = 0.3, the two curves are equal because
s = s0. Note the discontinuity at Λ = Λ0, where the turbulent msc collapses to
the classical case. The non-saturated turbulent case is indicated for comparison.

The previous considerations for the effect of Λ0 depending on its value relative to the scales
associated with the two peaks needs some revision to account for the cut-off. In particular,

1. If Λg < Λ0 < Λ?, the gaseous peak is shifted to smaller Λ and the height decreased. The
stellar peak remains unaffected.

2. If Λ0 <
{

Λg,Λ?
}

, both peaks remain unaffected.

3. If
{

Λg,Λ?
}
< Λ0, nothing changes compared to the case without saturation. Both peaks

are decreased in height with the gaseous peak affected more strongly. Additionally, the
gaseous peak is shifted to smaller scales.

Again, a full analysis of the behaviour of the msc in the s0 − q0 plane will not be carried
out hereafter. Instead, the stability threshold Q and the most unstable scale Λ are studied
in the s0 − q0 plane and compared to the case without saturation. Note that a study of the
two-phase region is also not carried out because the cut-off causes discontinuities in the msc
that are misinterpreted as peaks by the algorithms employed. However, this does not affect
the determination of Q and Λ since the artificial peak can never be the global maximum of
the msc. Suitable modifications to distinguish real peaks from discontinuities are planned for
the future.

Turbulent vs. Classical System

Figure 4.8 shows marginal stability curves (left panel) for four choices of s0 and q0 (right
panel). Two points are located on the boundaries of the two-phase region of the classical
system, one on the transition line of the same two-phase region, and the fourth point in the
gas dominated regime of turbulent two-phase region, yet outside the two-phase region of the
classical system.
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Figure 4.8.: Left : Marginal stability curves for the classical and turbulent (Λ0 = 1) case of
a stellar disc coupled to a gas disc. Observe that (i) the peak of the turbulent
system is always below the peak of the classical systems (i.e. the turbulent system
is more stable), (ii) the gaseous peak (at small scales) for the turbulent system is
at smaller scales than for the classical system, and (iii) no large differences can
be detected for the stellar (large scale) peak. Right : The two-phase region in
s0− q0 plane for the classical and the turbulent system. The markers indicate the
location of the mscs shown on the left. Note that the two-phase region for the
turbulent system is larger than for the classical system.

The ranges of s0 = σ0g/σ? and q0 = Qg/Q? in figure 4.8 are limited to astrophysically
relevant regimes. In particular, self-regulation17 implies that 1 . q = Qg/Q? . 10, whereas
the reason for 0.05 . s0 = σ0g/σ? ≤ 1 is two-fold. Firstly, stars forming out of the gaseous
component have no mechanism to decrease their thermal velocity dispersion through collisions
because they are non-collisional. This provides the upper limit s ≤ 1. Secondly, measurements
of Hi velocity dispersion σg ∼ 10 km/s imply stellar velocity dispersions of σ? ∼ 200 km/s for
s0 = 0.05. Such velocity dispersions greatly exceed measurements of the disc population where
σ? ∼ 20 km/s, and can only be achieved by bulge stars, cf. §2.1. As such, even the chosen
limit on s0 approaches nonphysical regimes.

Regarding the msc and the two-phase region, three distinct properties can be noticed:

1. The two peaks of the turbulent system are always below the corresponding peaks of the
classical system. Additionally, this seems to affect the gaseous peak much more strongly
than the stellar peak, which is sensible because the gaseous component is the turbulent

17Self-regulation refers to the fact that Q is expected to not deviate significantly from unity. For Q < 1, the
gas is gravitationally unstable, thereby forming protostellar cores and eventually stars. As stars are formed,
the gas heats up, increasing the stability and thus Q. Over time, the gas cools and Q drops, again enabling
star formation. This illustrates that extreme values of Q are not realistic and a gaseous component never
departs too far from marginal stability at Q = 1.
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Figure 4.9.: Marginal stability curves (left) and two-phase regions (right) for a coupled system
of stars and turbulent Hi. The values (s0, q0) = (0.2, 1) used for the msc are
marked in the right panel and values for Λ0 are indicated in the legend.

one. Since both peaks are lowered, so is the stability threshold of system, indicating
that the turbulent system is always more stable than corresponding classical system.

2. The gaseous peak for the turbulent system moves to shorter scales compared to the non-
turbulent system, i.e. small scale instabilities move to even smaller scales. The stellar
peak, on the other hand, does not seem to be affected.

3. The range of values in s0 and q0 for which the stability response is decoupled, is much
larger for the turbulent system. As the axes are scaled logarithmically, the effect on
the stellar dominated region is much larger than the effect on the gas-dominated region.
Since the boundaries of the stellar-dominated part indicate the values for (s0, q0) for
which the gaseous peak disappears, the increased size suggests that the gaseous peak —
in addition to being shifted to smaller scales — also disappears later.

Note that these findings are restricted to Λ0 = 1. In fact, subsequent sections demonstrate
that the findings regarding the height of the peaks and the most unstable scale associated
with the highest peak hold only for Λ0 & 1. On the other hand, the range in s0− q0 for which
the response is decoupled increases with respect to the classical case for Λ0 & 0.1.

Effect of Varying Λ0

Figure 4.9 shows the mscs (left) and two-phase regions (right) for turbulent systems with
different values of Λ0 = {0.1, 1, 10}. The choice of (s0, q0) = (0.2, 1) is marked in the s0 − q0

plane. The obvious effect of increasing Λ0 is the increased size of the two-phase region. In
particular, the boundaries of the two-phase region are shifted along the s0 axis. This is
expected because only s changes depending on the scale when evaluating the msc, cf. (4.62).
Note that comparison with the classical two-phase region of figure 4.8 reveals that the turbulent
two-phase region is always larger than the classical two-phase region for Λ0 & 1.
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Figure 4.10.: Contours of Q (black) superimposed on the two-phase region (grey) for the clas-
sical (left) and turbulent (right) two-component systems .

The behaviour of the two-phase region can be explained by recalling the discussion in §4.4.1
regarding the effect of Λ0 on s = s(Λ) and thus the msc and two-phase region. In particular,
for small values of Λ0, s is shifted to larger values on a wide range of scales Λ > Λ0. Since
figure 4.5 indicates that the two-phase region exists only at small values of s . 0.2, shifting
all scales Λ > Λ0 along the msc to larger values of s effectively moves them outside the range
of the two-phase region. As such, the two-phase region for the turbulent case with Λ0 = 0.1 is
smaller than the classical two-phase region. Conversely, large values of Λ0 decrease the value
of s = s(Λ) for a wide range of scales Λ < Λ0. Since the two-phase region exists at small
values of s . 0.2, the size is increased.

Additionally, the changed size of the two-phase region checks with the behaviour of the msc,
which shows either a single peak, (Λ0 = 0.1, point outside the two-phase region) two peaks of
equal height (Λ0 = 1, point on the boundary), or two peaks with one dominating (Λ0 = 10,
point in the stellar-dominated regime).

If Λ0 is associated with the scale at which turbulence saturates, increasing Λ0 means that
a wider range of scales Λ ≤ Λ0 is subjected to turbulent motions. This means that the size of
the two-phase region, and thus the range of values in s0 and q0 for which the stability response
is decoupled, increases if turbulence affects a larger range of scales.

4.4.2. Stability Threshold

Stability Threshold and Two-Phase Region

Figure 4.10 shows the contours of the stability threshold superimposed on the two-phase
region for classical (left) and turbulent (right) system. In both cases, the stability contours
are discontinuous across the transition line, thereby highlighting the important distinction
between the two regimes.

47



Chapter 4

σ0g/σ⋆

Qg

Q⋆

Λ0 = 0.1

0.1   1
0.1

  1

 10

σ0g/σ⋆

Qg

Q⋆

Λ0 = 1

0.1   1
0.1

  1

 10

σ0g/σ⋆

Qg

Q⋆

Λ0 = 10

0.1   1
0.1

  1

 10

Figure 4.11.: Contours for (from top to bottom) Q = {1.1, 1.2, 1.4, 2, 3, 5} for the turbulent
(black) and classical (grey) system. In general, the contours are shifted along
positive s0 as Λ0 increases.

Below the transition line q0 ' 1, the stability threshold is most sensitive to changes in the
relative stability q0 = Qg/Q? of the two components. In particular, lowering the stability of
the gaseous component with respect to the stellar component18 raises the stability threshold,
thereby destabilizing the coupled system. As such, the stability properties of the coupled
system are dominated by those of the gaseous component.

Since q0 = s0/α0, lowering the relative stability means that the ratio between s0 = σ0g/σ?
and α0 = Σ0g/Σ? changes, i.e. a change in one is not sufficiently balanced by a change in the
other. Above the transition line and outside the two-phase region, Q can change significantly
even if the relative stability and thus the ratio q0 = s0/α0 is preserved, i.e. a change in s0

causes α0 to change such that q0 remains constant. This means that the individual stability of
both components remains the same, but rescaling s0 and α0 nonetheless changes the stability
of the coupled system. However, changing the relative stability q0 has a much larger impact
on Q than simply rescaling s0/α0.

Note that the effect of s0 and q0 on the stability threshold is studied much more thoroughly
in Wiegert (2010) and Romeo & Wiegert (2011), where a simple and convenient approximation
for Q is provided for the case of non-turbulent two-component discs.

Turbulent vs. Classical System

Figure 4.11 shows the superimposed Q contours for the classical (grey) and turbulent (black)
systems for different values of Λ0. The contour levels are the same as in figure 4.10. Considering
the case for Λ0 = {1, 10}, the contours are offset along the positive s0 axis, which shows that
the turbulent system is always more stable than the equivalent classical system for any choice
of (s0, q0).19 The effect is more pronounced for small values of Q above the transition line
q0 ' 1 than below for larger values of Q. This was previously discussed in §4.4.1 for a limited
selection of points, but figure 4.11 shows that it holds for all points in the s0 − q0 plane,
provided that Λ0 & 1.

18I.e. decreasing q0 by decreasing Qg while keeping Q? constant.
19The contours for the turbulent system are shifted to higher values of s0 and lower values of q0. As such, the

value of Q for a given (s0, q0) will be lower for the turbulent than for the classical system.
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Figure 4.12.: Contours for (from top to bottom) Q = {1.1, 1.2, 1.4, 2, 3, 5} for the turbulent
(black) and classical (grey) system. The turbulent scaling saturates at Λ0, which
seems only affect the contours for Λ0 = 0.1.

Additionally, the contours for Λ0 = 1 appear to merge as s0 → 1 with a trend towards
earlier merging for smaller values of q0. In fact, the Q contours do not merge, but merely
coincide at particular values of s0, depending on the choice of Λ0. This happens if the scale
Λ = Λ0 at which the mscs coincide is approximately equal to the scale associated with the
stability threshold, i.e. Λ0 = Λ ' Λ. For Λ0 = 1, this occurs at s0 = 1.

Effect of Varying Λ0 and Saturation

As mentioned in the previous section, the turbulent contours are offset along the s0 axis for
increasing values of Λ0. For Λ0 & 1, the turbulent system is more stable (contours shift to
the right) than the equivalent classical system. Otherwise, the turbulent system is less stable
(contours shift to the left).

The shift along the s0 axis can be explained by considering that s = s(Λ), where s < s0

for Λ < Λ0 and s > s0 for Λ > Λ0. For small values of Λ0, a large part of the corresponding
msc is boosted to larger values of s, increasing the height of the msc and thus the stability
threshold. Conversely, for larger values of Λ0, a wider range of scales decrease s to smaller
values, which in turn decreases the height of the msc and the stability threshold. The net
effect in the s0 − q0 plane is a shift of the contours along s0.

Consider now the case where the scaling laws saturate at scale Λ0, i.e. the scaling relations
for {σg,Σg} ∝ (Λ/Λ0)p are modified according to (4.61). Figure 4.12 shows the corresponding
Q contours, where it can seen that only the contours for Λ0 = 0.1 are modified in the considered
range of s0 and q0.

Following the discussion in §4.4.1, recall that the turbulent and classical msc merge at
Λ = Λ0, such that s = s0 holds for scales Λ ≥ Λ0, and s = s(Λ) for Λ0 < Λ. For the turbulent
system to collapse to the classical case in the range of scales at which the gaseous and stellar
peaks occur, Λ0 should be small. In particular, Λ0 < Λ must hold. If Λ0 is too large, the
stability threshold is at a scale Λ < Λ0, where the non-saturated component of s = s(Λ)
determines its height and location. Note that figure 4.12 indicates that only Λ0 = 0.1 is a
small enough value for constraint Λ0 < Λ to affect the considered parameter range.
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Figure 4.13.: Contours of Λ (black) superimposed on the two-phase region (grey) for the clas-
sical (left) and turbulent (right) two-component systems.

If one interprets Λ0 as the cut-off scale, a system following turbulent scaling up to large
scales (Λ0 = 10) is dominated by turbulent effects on the stability threshold Q in most of the
s0 − q0 plane. In particular, the larger the saturation scale, the more stable the system. The
stability threshold of system saturating at intermediate scales (Λ0 = 1) behaves very similar
to a classical system, except for a small increase in stability. In both cases, saturation does
not influence the stability threshold in the considered ranges of s0 and q0. On the other hand,
a system where turbulent scaling saturates on small scales (Λ0 = 0.1) behaves much like a
classical system.

4.4.3. Most Unstable Scale

Most Unstable Scale and Two-Phase Region

Figure 4.13 shows contours for the most unstable scale Λ for the classical (left) and turbulent
(right) systems superimposed on the corresponding two-phase regions. Note that contours
Λ ≤ 0.4 (classical), respectively Λ ≤ 0.5 (turbulent), curve back to join the transition line
and follow it. This is a numerical artifact caused by a discontinuous change of Λ across the
transition line. In fact, if the contours of Λ? and Λg were traced instead of Λ, the discontinuity
would not be present.

As expected, the most unstable scale is restricted to small values Λ . 0.1 in the gas-
dominated part of the two-phase region (below the transition line). In the stellar-dominated
part (above the transition line), the most unstable scale is restricted to values of 0.4 . Λ . 0.5
for the classical system, and 0.5 . Λ . 0.6 for the turbulent system.20 Outside the two-phase

20These findings are in line with approximations derived in Bertin & Romeo (1988, §2.3), which show that
Λ ∼ 1/2 α = 1/2 s/q in the gas-dominated regime, and Λ ∼ 1/2 + O(α2) = 1/2 + O(s2/q2) in the
stellar-dominated regime. For s = s0 (Λ/Λ0)p, Λ rescales.
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Figure 4.14.: Contours of Λ around the separatrix Λ = 0.5. The left panel shows the classical
case, where the separatrix is the limit between contours curving back to rejoin
the transition line and contours tracing to large values of (s0, q0). The right panel
shows the turbulent case, where the Λ = 0.5 contour is the smallest contour that
curves back to the transition line but does not detach again.

region, the possible values for the most unstable scale are much less restricted with a general
tendency towards larger values with increasing s0 and decreasing q0.

In the classical case, note the presence of the separatrix Λ = 0.5, which separates the s0−q0

plane into two regions with regards to the permitted values of the most unstable scale. In the
turbulent case, the contour Λ = 0.5 does not seem to act as a separatrix. To investigate this
further, figure 4.14 shows the Λ contours (i) in a very narrow range about the Λ = 0.5 contour
for the classical case, and (ii) for a few different values where the behaviour of the contour Λ
changes significantly in the turbulent case.

In the classical case, the fact that contours with values just above and just below Λ = 0.5
diverge from this line confirm Λ = 0.5 to be a separatrix. In the turbulent case, the situation
is more complicated because of the discontinuity of Λ across the transition line. Nevertheless,
it seems that Λ = 0.5 is the largest contour which curves back onto the transition line and
does not disconnect from it. Contour levels 0.5 . Λ . 0.53 first curve back onto the transition
line, but detach again at smaller values of s0. Contours Λ & 0.53 do not curve back onto the
transition line at all. As such, the contour Λ = 0.5 can also be considered a separatrix in the
turbulent case as it marks the transition between contours curving back towards small s0 as
q0 grows and those that do not.

Turbulent vs. Classical System

Figure 4.15 shows the Λ contours of the classical system (grey) and the turbulent system
(black) for different values of Λ0. The contour levels are the same as those shown in figure
4.13. For Λ0 = {1, 10}, the contours of the turbulent system are offset positively along the s0

axis with respect to the classical system.
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Figure 4.15.: Contours of the most unstable scale Λ for the turbulent system. The contours
of the classical system are indicated in light grey for comparison. Contour levels
are identical to figure 4.13.

For Λ < 0.5, the contours curve back onto the transition line with the turbulent system
having small values of Λ for any given (s0, q0). For Λ > 0.5, this is the same in the case of
Λ0 = 10. However, for Λ0 = 1, some of the contours Λ > 0.5 of the classical and turbulent
case cross multiple times. As such, no universal statement about the relation of the values of
Λ between the two cases can be made.

In the case of Λ0 = 1, the contours of the classical and turbulent system seem to be
coinciding for Λ > 0.5. In particular, for (s0, q0) = (1, 1), the contours coincide exactly. For
values (s0, q0) ' (1, 1), the contours coincide close to the s0 = 1 line. This illustrates the
previous observation in §4.4.2 where the classical and turbulent contours of Q coincided for
s0 ' 1 for Λ ' Λ0 ' 1.

Effect of Varying Λ0 and Saturation

Comparing the three panels of figure 4.15 with the changes in Q and the two-phase region
shown in figures 4.11 and 4.9, it is not surprising to note that the Λ contours shift to the
right with increasing Λ0. Note that only for Λ0 & 1, the most unstable scale within the
gas-dominated part of the two-phase region shifts to smaller values.

As before, the behaviour can be explained in terms of the shape of the marginal stability
curve as treated in §4.4.1 when the scaling s = s(Λ) with s < s0 for Λ < Λ0, and s > s0 for
Λ > Λ0 is considered. For small values of Λ0, a large number of scales Λ > Λ0 has s > s0,
which means that the gaseous peak shifts to larger Λ. In the gas-dominated regime, the value
of Λ at a point s0 is then larger than that of an equivalent non-turbulent system. Since the Λ
contours increase in value from left to right, this means a shift of the contours to the left.

Conversely, for large values of Λ0, a wide range of scales Λ < Λ0 will have s < s0. Since
decreasing s shifts the gaseous peak to smaller scales, this means that a point s0 in the s0− q0

plane has a value of Λ smaller than the equivalent non-turbulent system. The Λ contours thus
shift rightward.

Observe that not only the contours in the gas-dominated region, but all contours in the
s0 − q0 plane are shifted along the s0 axis. This indicates that the effect of Λ0 on the stellar
peak is also significant. This contrasts the discussion in §4.4.1, where it was suggested that
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Figure 4.16.: Contours of the most unstable scale Λ for the turbulent system with saturation
at scale Λ0. The contours of the classical system are indicated in light grey for
comparison. Contour levels are identical to figure 4.13.

Λ? is only weakly affected by changes in s. However, since the Λ ∼ 0.5 contour associated
with the stellar component also shifts, this means that Λ? is in fact more sensitive to changes
in s than previously suggested.

Consider now figure 4.16, which shows Λ contours of the turbulent system where a cut-off
of the form (4.61) is applied. As for the Q case, no changes compared to the non-saturated
system are visible for Λ0 = 1 and Λ0 = 10. The behaviour of Λ0 = 0.1, however, differs
significantly. Except for Λ = 0.5, all Λ contours of the turbulent case coincide with the
contours of the classical case in the entire parameter space. Recall that this was not the case
for the Q contours, where the merging only appeared at s0 ' 0.1. This suggests that the
cut-off affects the most unstable scales in a different fashion than the stability threshold.

In particular, one would expect the contour Λ = 0.5 of the turbulent system to coincide
with the corresponding contour of the classical system at least down to s0 ' 0.1. However,
the contours diverge around s ' 0.3. Barring further investigations, it is not clear whether
this is a issue is a numerical error, a problem in the implementation of the cut-off, or a feature
of the system.

As before, if Λ0 is interpreted as the saturation scale of the system, this means that the range
of scales over which the velocity dispersion and density fields are scale-dependent impacts that
most unstable scale of the system significantly. In particular, the larger the saturation scale,
the more are instabilities delegated to smaller scales, i.e. for a given (s0, q0), the stability of
the most unstable scale decreases as Λ0 increases. Conversely, if the scaling saturates at very
small scales Λ0 . 1, instabilities are actually relegated to larger scales.

4.4.4. Extension: Different Turbulent Scaling Exponents

Figure 4.17 shows the two-phase regions and contours of the stability threshold for different
scaling exponents of the gaseous components.

Comparing the original case of ag = bg = 1/3 to either of the two intermediate cases where
ag 6= bg, one sees that the two-phase region and the shape of the Q contours change differently
depending on whether ag or bg is changed. If the exponent ag of the gas surface density is
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Figure 4.17.: Two-phase regions (black) and (from top to bottom) Q = {1.1, 1.2, 1.4, 2, 3, 5}
contours (grey) for turbulent systems with different scaling exponents (Λ0 = 1)
of the gas component.

changed, the two-phase region is displaced downwards and becomes smaller. The basic shape
of the Q contours is retained along with the discontinuity across the transition line.

Changing the scaling exponent of the velocity dispersion bg seems to shave a much stronger
impact on two-phase region and stability threshold. Visually, one gets the impression that
the two-phase region and the contours are tilted clockwise and then shifted towards the right
top. The transition line is no longer approximately parallel to the q0 ' 1 line, and the stellar-
dominated part of the two-phase region is much larger. Additionally, the boundary of the
stellar-dominated part of the two-phase region is almost vertical, i.e. s0 = const.

If both scaling exponents are changed equally, the aforementioned effects seem to balance
each other. While the two-phase region is much larger for ag = bg = 1/2, the gas-dominated
region is now of a size more comparable to the ag = bg = 1/3 case and the apparent rotation
of the two-phase region and the Q contours have disappeared. The almost vertical boundary
of the star-dominated region, however, remains.
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While a thorough investigation of the effects of changing the scaling exponents is beyond
the scope of this work, the most important trends are:

1. The size of the two-phase region is proportional to bg, and inversely proportional to ag
with different proportionality factors. In particular, increasing the velocity dispersion
scaling exponent significantly increases the region in which the stability response can
become decoupled. The effect is stronger than the decrease in size of the two-phase
region for an increased surface density scaling exponent, such that if both exponents are
changed, the size of the two-phase region still increases. This disparity suggests that
the turbulent velocity field drives the range of s0 − q0 where the stability response is
decoupled.

2. The differences in the Q contours are most noticeable when considering the cases with
different scaling exponents. For bg = 1/2, the apparent rotation and displacement of the
contours implicates that a particular point (s0, q0) is associated with a higher stability
threshold than in the ag = bg = 1/3 case, such that stability is decreased. This is
unexpected because a more aggressive scaling of the velocity dispersion would suggest a
stabilizing influence. The converse is true if the scaling exponent of the surface density
term is larger and points (s0, q0) are promoted to a lower stability threshold such that
the system becomes more stable. Again, this is unintuitive because a higher surface
density generally destabilizes a system.

The overall effect on Q of increasing the scaling exponents together and by the same
amount seems to non-existent or at least very small. As such, it seems that the effect
on stability for scaling exponents changed by the same amount is small.

3. Interestingly, the location of the transition line is shifted along the q0 direction depending
on which scaling exponent is larger. The cause for this is hard to determine without
considerting the marginal stability curves but is likely related to the fact that the relative
stability of the gaseous and stellar components are affected (in addition to the stability
of the coupled system). This suppresses (or amplifies) one of the two peaks stronger
than if ag = bg, which causes different q0 values needed for the peaks to be of equal
height.

Beware that these trends are by no means certain to hold for all ranges of ag and bg within
the Toomre-like regime. Further note that neither the behaviour of the most unstable scale Λ
nor the shape of the marginal stability curves has been considered for the time being.

4.5. Chapter Summary

In this chapter, the dispersion relation and marginal stability curve for classical and turbulent
systems were studied. These were then used to study the stability of (i) turbulent Hi coupled
to turbulent H2, (ii) a stellar disc coupled to a non-turbulent gaseous disc, and (iii) a stellar
disc coupled to a turbulent Hi disc. Most importantly, it was found that:

• A two-component system is always less stable than the two individual constituent sys-
tems. For turbulent systems consisting of a virialized and a Toomre-like component,
the stability of the virialized component determines the stability regime of the coupled
system. In particular, if the turbulent virialized system is slightly more than marginally
stable, the two-component system is Toomre-like, irrespective of the stability of the
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Toomre-like component. If the virialized component is unstable or only marginally sta-
ble, the coupled system is unstable on small scales. The prototype of such a system is
turbulent Hi coupled to turbulent virialized H2.

• For a disc of turbulent Hi coupled to turbulent H2, the H2 component dominates the
stability response of the coupled system. The more stable the H2 component is relative
to Hi, the more stable the coupled system is. In like fashion, increasing the velocity
dispersion of H2 relative to Hi also stabilizes the H2 component and thus the coupled
system. Larger values of Λ0 tend to destabilize the coupled system.

• Coupled systems with Toomre-like stability are studied in the s0 − q0 plane. From
evaluation of the msc at each point (s0, q0), the stability threshold Q, the most unstable
scale Λ, and the number of peaks in the msc is determined. These quantities are then
plotted in the s0 − q0 plane to describe the stability of the system.

• For non-turbulent systems, the msc is computed for constant values of (s, q) with the
function domain Λ. For turbulent systems, s = s(Λ) such that some parts of the msc
are boosted to larger and others to smaller effective values of s. This affects the stability
threshold, the most unstable scale, and the size of the two-phase region depending on
the choice of Λ0. Resulting from this, the size of the two-phase region changes, and the
contours of Q and Λ are shifted along the s0 axis in the s0 − q0 plane.

• For Λ0 & 1, a turbulent system is always more stable with a smaller most unstable
scale than the equivalent classical system. For Λ0 . 1, the turbulent system is generally
less stable and the most unstable scale shifts to larger values. On the other hand, the
two-phase region of a turbulent system is always larger than the two-phase region of
the equivalent classical system for Λ0 & 0.1. Moreover, the size of the stellar-dominated
part increases much more than the size of the gas-dominated part.

• The scaling exponents of the turbulent component affect the stability threshold, most
unstable scale and size of the two-phase region differently. For unequal exponents, in-
creasing the exponent of the surface density seems to (i) stabilize the coupled system
and (ii) increase the two-phase region, whereas increasing the velocity dispersion expo-
nent seems to (i) destabilize the system, and (ii) decrease the two-phase region. The
effect of the velocity dispersion scaling dominates such that increased, but equal, scaling
exponents increase the size of the two-phase region. On the other hand, the stability
threshold is not affected significantly.

• Different types of systems appear to respond differently to changes in Λ0. In particular,
systems consisting of a turbulent and a virialized component (for example, turbulent Hi
and H2) are destabilized more for larger values of Λ0. Conversely, systems consisting of
two Toomre-like components (for example, Hi and stars) tend to become more stable
for larger values of Λ0.
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CHAPTER

FIVE

APPLICATION TO NEARBY STAR FORMING GALAXIES

In this chapter, the theory developed in §4 is applied to study star formation in 12 nearby
spiral galaxies. The treatment is an extension of a previous study conducted by Leroy et al.
(2008)1 in the sense that two-component stability, the effect of turbulence and modifications
to some of the underlying assumptions are introduced.

After defining the star formation problem on galactic scales in §5.1, the sample, core as-
sumptions, and conclusions of the original analysis of L08 are summarized in §5.2. Afterwards,
the previous study is extended to include the aforementioned effects in §5.3.

5.1. The Star Formation Problem

As previously discussed, the primary constituents of galaxies are neutral atomic hydrogen Hi,
molecular hydrogen H2, as well as different populations of stars. Over time, as Hi dissipates
energy through collisions, the medium becomes denser and gmcs form. Owing to turbu-
lent density fields, local overdensities in these clouds undergo gravitational collapse and form
protostellar cores (e.g. McKee & Ostriker, 2007).

The conditions required for such protostellar cores to form define the star formation problem
on galactic scales. To study it in an appreciably complete manner requires extensive knowledge
of the conditions in galaxies, the three most important of which are as follows.

1. The sites of star formation in galaxies. Tracing these is based on emissions characteristic
to (i) short-lived stars or (ii) emissions from dust heated up by young stars. The multi-
tude of available methods is reviewed in Kennicutt (1998). Results of such observations
are then used to derive star formation rates.

2. The distribution of atomic and molecular hydrogen in the interstellar medium. Account-
ing for galactic rotation (where present), the Hi and H2 distributions are characterized
through their respective surface densities and velocity dispersions. The Hi distribution
is generally mapped through the 21 cm line, and the H2 distribution by means of using
CO 1→ 0 or 2→ 1 transition lines as tracers (Wilson et al., 2009).

1Hereafter, L08.
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3. The distribution of the present stellar population in galaxies. Again, it is characterized
by the surface density and velocity dispersion. It is now common to trace the stellar
population through infrared (IR) observations (Pahre et al., 2004).

In recent years, surveys sharing a common subset of nearby galaxies have produced high
resolution observations providing all of the aforementioned quantities at sufficiently high reso-
lution. Taking advantage of this data, L08 aggregated the available information and analysed
the star formation in 23 nearby galaxies. This analysis is now discussed.

5.2. The L08 Study of Star Formation in Nearby Galaxies

The primary aim of L08 is the investigation of possible correlations between the measured
star formation efficiency2 and (i) star formation laws describing star formation efficiency, (ii)
models describing star formation thresholds, and (iii) models describing the formation of gmcs
whose presence strongly correlates with sites of star formation. After discussing the basic ideas
behind these models, the calculations of physical quantities and the surveys they are obtained
from are outlined. This is followed by a summary of the core findings of L08.

5.2.1. Star Formation Efficiency, Thresholds, and Phase Transitions

Over the years, various star formation laws and efficiencies have been proposed. At their core,
all are based on the notion that star formation is associated with a characteristic timescale τ
over which stars form; SFE ∝ τ−1. Different star formation laws then follow from a combina-
tion of physical assumptions and proposed timescales. Common choices for timescales are, for
example, the orbital timescale τorb and the free-fall time of the gas τff.3 Further assumptions
include fixed or variable scale heights of the gaseous disc, or the significance of galactic shear
arising from differential rotation.

However, observations suggest that star formation laws are not universal. This means
that certain conditions must be fulfilled for star formation to take place such that it can be
described by star formation laws. These conditions are referred to as star formation thresholds
and frequently take the form of criteria regarding the gravitational or thermal stability of the
interstellar gas.

Observations of both Milky Way and extragalactic gmcs have repeatedly identified gmcs
as regions of concentrated star formation (Blitz, 1993; Fukui et al., 1999; Engargiola et al.,
2003). The question of how both the phase transition from molecular hydrogen to neutral
atomic hydrogen and star formation itself occurs within these clouds is thus part of the star
formation problem. The efficiency of star formation within gmcs and whether it is linked to
the environment outside the clouds is of particular interest.

As before, various approaches are used to describe how gmcs can form in the interstellar
medium. Since the issue is generally considered a problem of phase transition, it is approached

2The star formation efficiency, SFE, is the star formation rate per unit of gas. As such, it is decoupled from
the basic scaling between star formation rate and gas density and concentrates on describing how efficient
gas is at forming stars.

3The orbital timescale τorb describes how long a parcel of gas takes to complete one orbit around the host
galaxy, τorb ∝ Ω(R)/2π = 1/2π v(R)/R, where Ω(R) is the angular velocity, and v(R) the rotational velocity
at galactocentric distance R. The free-fall timescale τff describes the time a gas cloud of density ρ needs to
undergo gravitational collapse; τff ∝ ρ−0.5 (Madore, 1977).
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in terms of gas pressures and densities. Both continuous models describing the fraction of H2

to Hi as well as threshold models that give criteria for the formation of a cold Hi phase (in
which gmc formation is thought to be efficient) are available.

Note that in the context of both L08 and this work, a region is considered to be a gmc if
it is H2 dominated, i.e. if ΣH2 > ΣHi.

5.2.2. Surveys, Observations to Physical Quantities, Assumptions

To obtain the required measurements outlined in §5.1, L08 aggregates observations from a
number of surveys. In particular, Hi intensity maps, and by extension, rotation curves are
available from The Hi Nearby Galaxy Survey (THINGS, Walter et al., 2008) of the 21 cm
line. CO 1→ 0 and 2→ 1 transition maps are available from the Berkeley-Illinois-Maryland
Association Survey of Nearby Galaxies (BIMA SONG; Helfer et al., 2003) and the HERA
CO-Line Extragalactic Survey (HERACLES; Leroy et al., 2009). Stellar surface densities
are obtained from 3.6µm IR observations of the Spitzer Infrared Nearby Galaxies Survey
(SINGS; Kennicutt et al., 2003). Lastly, the star formation rate surface densities are derived
by combining SINGS IR maps with FUV maps provided by the Galaxy Evolution Explorer
Nearby Galaxies Survey (Gil de Paz et al., 2007).

The surveys share a common sample of 23 nearby galaxies, which is divided into 12 spiral,
and 11 dwarf galaxies classified according to their total mass, rotational velocity, and B-band
magnitude. Where required, spatial resolution is degraded to a common resolution of 800 pc
for the spiral galaxies, and 400 pc for the dwarf galaxies. For the dwarf galaxies, H2 surface
densities are not available because of too large uncertainties in CO-to-H2 conversion factor.

Referring to appendices A–D of L08 for a thorough discussion, the basic steps of how physical
quantities are obtained from observations are now outlined. Major sources of uncertainties
are, where present, also outlined. Note that, for all quantities, radial profiles are generated
from the observed maps by means of suitable binning and averaging over rings.

Gas Surface Densities. Hi surface densities are obtained from the integrated 21 cm line in-
tensity. Averaging over rings, and accounting for inclination as well as helium fraction,
ΣHi is directly proportional to the line intensity.

H2 surface densities are more complicated. Since H2 lines cannot be observed directly,
CO 1→ 0 and 2→ 1 transitions are used as tracers instead. As before, averaging over a
suitable ring size and accounting for inclination, the radial CO distribution in the galaxy
can be obtained. Assuming a constant conversion factor XCO between CO and H2, the
CO distribution is then converted to an H2 distribution.

The assumption of a constant value of XCO is contested in literature. In fact, XCO

actually appears to vary depending on the location within the galaxy. To first order, it
is expected to be lower than galactic average in H2 dominated regions, and higher in dust-
devoid regions with strong radiation fields. Since the former describes conditions in the
central regions of spirals, it is likely that H2 density in these regions is overestimated. The
latter, on the other hand, describes conditions in low-mass dwarf galaxies, where different
approaches to measure H2 density yield estimates varying by orders of magnitude. As
such, L08 treats the conversion factor in the dwarf galaxies as unknown, and therefore
does not derive H2 densities.
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The lack of ΣH2 introduces significant difficulties in the analysis of L08, which leads to
the conclusion that the undetected H2 content of the dwarf galaxies significantly affects
the dynamics of these galaxies.

Rotation Curves. Rotation curves are obtained from the Doppler shift of the 21 cm line.
In particular, the rotational velocity of each map-pixel in is calculated by subtracting
the systemic velocity from the measured radial velocity, with subsequent accounting for
inclination. Once done, the data is fit to the function of the rotation curve

vrot(R) = vflat

[
1− exp

(−R
lflat

)]
, (5.1)

where vrot(R) is the rotational velocity at galactocentric radius R. The parameters vflat

and lflat are the parameters obtained for each galaxy through the fit.

Stellar Surface Density. Stellar surface densities are computed based on 3.6µm IR observa-
tions. In particular, the IR maps are inclination corrected and then converted to median
profiles, which provides several distinct advantages over averaged profiles, cf. appendix
C in L08. The profiles are then converted from 3.6µm to K-band intensity, which is
used to derive Σ? by adopting a mass-to-light ratio ΥK

? identical for the entire sample.

The major uncertainty in the derivation of the stellar surface density is the mass-to-
light ratio ΥK

? . It depends on the metallicity, initial mass function, and previous star
formation history of the galaxies. Changing some of these assumption, similar studies
of the same dataset obtain values of ΥK

? about 30− 40% higher (de Blok et al., 2008).

Gas Velocity Dispersion. Throughout the entire sample, a constant gaseous velocity disper-
sion of σg = 11 km/s is assumed. This value is typical of the outer regions of the 12
spiral galaxies, where the total surface density is dominated by the Hi contribution, cf.
§5.2.3.

Stellar Velocity Dispersion. Lacking direct measurements of the (radial) stellar velocity dis-
persion σ?,r = σ?, L08 obtains σ? from the stellar surface density under the assumptions
of (i) hydrostatic equilibrium, (ii) constant scale height of the stellar disc, (iii) a constant
relation between the stellar scale length and the scale height, and (iv) a constant relation
between the radial and vertical velocity dispersions.

Star Formation Rate Surface Density. To obtain the star formation rate, L08 combines Far-
UV and 24µm observations. This combination is advantageous because both exposed
and embedded star formation is traced. Exposed star formation is traced through Far-
UV observations because emission at these wavelengths is dominated by light from O
and B stars, which have relatively short lifetime. Obscured star formation is traced
through 24µm emissions, which are dominated by flux from dust grains that have been
heated by UV photons from young stars. The star formation surface density ΣSFR is
thus proportional to a linear combination of the Far-UV and the 24µm flux.

5.2.3. Main Findings of the L08 Study

In this section, variations of a number of quantities with respect to galactocentric radius are
considered. Only the relations most relevant in the context of the present work are described
here. For a more detailed account, please refer to L08.
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Figure 5.1.: Left: Surface densities of Hi, H2, and the stellar disc vs. radius. Both H2 and
stellar surface density decrease exponentially outwards, while Hi surface density
is approximately constant. For R . Rd, ΣH2 > ΣHi, whereas for R & 2Rd,
ΣH2 < ΣHi. Right: Star formation rate (SFR) and star formation efficiency
(SFE) vs. radius. The SFR decreases exponentially at all radii, whereas the SFE
remains approximately constant up to R . 2Rd, but shows exponential decrease
above. This coincides with the transition from a H2 to an Hi dominated gas.

Surface Densities, Star Formation Rate, Star Formation Efficiency

Figure 5.1 shows the profiles for the Hi, H2, and stellar density (left panel) as well as the star
formation rate (SFR) and star formation efficiency (SFE) (right panel). The horizontal axes
are normalized to the stellar scale length Rd.

It is seen that both stellar and H2 surface density decrease exponentially with radius and
peak at values of Σ? ∼ 103 M�/pc2, respectively ΣH2 ∼ 102 M�/pc2. The Hi surface
density, on the other hand, remains approximately constant with a peak of ΣHi ∼ 10 M�/pc2

at R ' 2Rd. At smaller and larger radii, Hi surface density decreases, with smallest values
found towwards large radii. For R . Rd, H2 dominates the total surface density of the
gaseous component, and for R & 2Rd, the situation is reversed. In the transition regime
Rd . R . 2Rd, both components contribute equally. The stellar surface density is roughly an
order of magnitude above the total gas density.

As with the H2 and stellar surface densities, the star formation rate decreases exponentially
with increasing radius. This suggests a power law relation ΣSFR ∝ Σn

g between the star
formation rate (surface density) ΣSFR and the total gas surface density Σg, with possibly
different exponents n depending on the dominant gas component.

In light of this, it is interesting to note that the star formation efficiency remains roughly
constant in the range 0 ≤ R . 2Rd, but decreases exponentially beyond R & 2Rd. This
suggests that while H2 dominated regions are more efficient in converting gas to stars, the H2

surface density itself does not affect the star formation efficiency. Hi, on the other hand, is less
efficient at forming stars than H2, but its surface density has a larger effect on the efficiency.
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Figure 5.2.: The Toomre parameter Q vs. fractional radius R/Rd. As before, stability on all
scales requires Q ≥ 1, and the unstable range is shaded. Left: Toomre parameter
Qg for only the gaseous system. Right: Toomre parameter Q?,g for a system of a
non-turbulent gaseous component coupled to a stellar component.

Beyond studying correlations between various measured or inferred quantities, L08 also
considered how well various star formation laws reproduce the observed SFE. It is found
that some of the considered star formation laws indeed reproduce observed SFEs in the inner
regions of the spiral galaxies. However, the correlation is lost in both the outer regions of the
spirals, and does not hold at all in the dwarf subsample.

On the other hand, a correlation between the hydrostatic pressure and the dominant phase
of the ism is found. This suggests that formation of gmcs out of neutral atomic hydrogen is,
at least in part, a problem that can be approached from a thermal and pressure equilibrium
point of view. Moreover, once gmcs have formed, these H2 dominated regions are found to
be associated with a constant SFE, irrespective of other environmental conditions.

Star Formation Thresholds

Figure 5.2 shows the Toomre parameter as a function of radius. The left panel shows the
Toomre-parameter Qg for the gaseous component alone, and the right panel the Toomre-
parameter Q?,g for the system of stellar disc coupled to a gaseous disc.4 In both cases,
stability on all scales is guaranteed if {Qg, Q?,g} ≥ 1.

Comparing both panels of figure 5.2, one immediately notices that either case contains only
few data points in the unstable regime. Furthermore, note that Qg shows a much larger
spread than Q?,g. Since the coupled case is a more realistic description of the actual system,
the narrow spread in the two-component case in fact supports the notion of self-regulation in
the presence of a stellar component, cf. §4.4.1.

The fact that only few points can be found in the unstable range of Q suggests that either
(i) one- and two-component gravitational stability does not provide a good indication for the

4To compute two-component stability, L08 uses a form of the stability criterion alternative (but equivalent)
to that derived from the msc in §3. For more details see Leroy et al. (2008, Eq. 16) and relevant references
therein.
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ability of the ism to form stars, or that (ii) one or more of the assumptions discussed in §5.2.2
are not representative of the true conditions, which causes an overestimation of the stability
level.

Before challenging the assumptions, however, note that the one- and two-component models
used both in L08 and this work consider only the influences of gas pressure, self-gravity, and
differential rotation. Effects from magnetic fields, finite disc thickness, supernova feedback,
and turbulence are not considered. Since a complete model is not currently available, a
later discussion in §5.3.3 focuses on the effects of (i) turbulence and (ii) different gas velocity
dispersions.

L08 also investigated other thresholds not discussed here. In particular, considering the
stabilizing effect of galactic shear, the inner regions of the dwarfs and spirals are found to be
only marginally stable — a significant improvement over Qg alone. Furthermore, L08 finds
various threshold values for the gaseous surface densities, i.e. (i) a threshold of Σg above
which the H2 phase generally dominates, (ii) a maximum value of ΣHi, where a higher total
gas density is usually found to be attributed to H2, and (iii) a cut-off value of Σg marking the
edge of the star forming parts of the disc.

5.2.4. Effects of Uncertainties

L08 identified the K-band mass-to-light ratio ΥK
? and the CO-to-H2 conversion factor XCO as

the major sources of uncertainty. The potential impact of these uncertainties is now discussed
qualitatively.

Mass-To-Light Ratio. Changes to ΥK
? cause the stellar surface density Σ? to be over- or

underestimated. As such, any scaling relations involving Σ? are changed uniformly
throughout the disc. This should not affect observed trends, and only affect details such
as the exponents of power law fits.

While the stability parameter Qg of the gas alone is not affected, the stability parameter
Q?,g of the coupled system is affected (cf. figure 5.2). In particular, increasing ΥK

? causes
an increase in Σ?, which destabilizes the stellar component. Since the coupled system is
less stable than the individual systems, it is also destabilized. Reversely, decreasing ΥK

?

stabilizes the combined system.

Conversion Factor. Changes to the conversion factor affect the H2 surface density ΣH2 . Note
that (i) XCO is a function of galactic position, and that (ii) the adopted constant value
for XCO is likely larger than the true value in H2 dominated regions. This means that
the true value of ΣH2 in the inner regions is smaller than what is actually used.

Depending on the severity of the underestimate, the finding of a constant SFE =
ΣSFR/Σg in H2 dominated regions (cf. figure 5.1) could be challenged because a de-
crease in total gas surface density corresponds to an increase in SFE. Note that, without
a proper estimate of the expected error on XCO, this possibility can neither be confirmed
not ruled out.

The stability of (i) the gaseous disc alone, (ii) the disc of gas and stars, can be expected
to increase in the inner H2 dominated regions because a decrease of the total gaseous
surface density reduces the destabilising effect of self-gravity.
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5.3. Two-Component Gravitational Stability in 12 Spirals

The analysis performed in L08 covered laws and thresholds concerning both star formation
and Hi-to-H2 phase transitions. In the following, the work is extended by applying the two-
component treatment of gravitational stability introduced in §3 and extended in §4. In par-
ticular, the effects of the (i) two-phase region, (ii) the stability threshold in the presence of
turbulent scaling, and (iii) the most unstable scale in the presence of turbulent scaling are
studied.

Further recall that L08 adopted a constant gaseous velocity dispersion of σg = 11 km/s
throughout the entire disc. As discussed in §2.1, velocity dispersion in gmcs are, however,
in the order of σH2 ' 5 km/s on the largest scales. As such, it can be expected that the
choice of a gaseous velocity dispersion of σg = 11 km/s is not particularly suited for regions
where the total gas surface density is dominated by the H2 component. This likely leads to an
overestimate of the stability level in the inner H2 dominated regions — an effect that is now
studied by introducing a lower velocity dispersion in regions where Hi does not dominate.

The characterize the data points from the sample in a meaningful fashion, the median is
frequently computed. Since the median of a distribution is the value where the probabilities of
values being larger or smaller than the median are equal, it performs better in the presence of
outliers than, for example, the average while also avoiding the search for a suitable weighting
function.

5.3.1. The Improved Model

Before investigating the data points of the spiral galaxies in the s0 − q0 plane,5 they are first
subdivided into three regions. Depending on the region, modifications to the model are then
made to investigate the effects of different velocity dispersions and a turbulent Hi component.

The Inner, Outer, and Transition Regions

Recall from §5.2.3 that Hi and H2 surface densities as well as the star formation efficiency
behave distinctly different depending on the galactocentric radius. In particular, in the inner
galactic regions R . Rd, H2 dominates the total gas surface density, whereas in the outer
regions R & 2Rd, Σg is dominated by Hi. In the transition regime Rd . R . 2Rd, the surface
densities of Hi and H2 are comparable. The SFE, on the other hand, remains approximately
constant throughout the inner and transition regions, but decreases exponentially beyond
R & 2Rd.

This suggests that an analysis of the sampled galaxies in the s0 − q0 plane could greatly
benefit from considering the three regions separately. This is now done. Note that the con-
vention of referring to the region R ≤ Rd as the inner region, Rd < R ≤ 2Rd as the transition
region, and R > 2Rd as the outer region is retained.

5Recall that s0 = σ0g/σ? is the velocity dispersion ratio, and q0 = Qg/Q? the relative stability of the two
components at scale `0.
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Velocity Dispersion and Turbulence

Another advantage of separating the sample into regions is that it allows separate modifications
to be applied to the model in each region. In particular, the effect of a velocity dispersion
more representative of H2 dominated regions as well as the introduction of turbulent scaling
in Hi dominated regions are easily implemented because (i) the choices are well justified, and
(ii) the affected regions are clearly separated. The study of effects, such as radial variations of
the CO-to-H2 conversion factor, on the other hand, are more complicated to both implement
and justify and are thus not considered.

As such, only the effects of a modified velocity dispersion and a turbulent Hi component
are investigated. The required changes to the model are now explained and motivated.

1. For R ≤ Rd, where H2 dominates, a model of a stellar disc coupled to a non-turbulent
H2 disc is selected to represent the observations. The gas component is considered to
be predominantly H2 and is associated with a velocity dispersion of σg = 5 km/s. This
value is motivated by the gmc velocity dispersions observed at the largest scales, cf.
§2.1. The gas component is considered non-turbulent because H2 velocity and density
fields only exhibit turbulent scaling below the resolution scale `0 = 800 pc. See §2.1 for
details.

2. In the transition regime Rd < R ≤ 2Rd, the most suitable way to characterize the system
is by means of a three-component model of a stellar disc coupled to a non-turbulent H2

disc (at the resolution scale `0 = 800 pc) and a turbulent Hi disc. However, at present,
a properly developed three-component model allowing for turbulence is not available.

As such, it is chosen to represent the system as a non-turbulent gas disc coupled to a
stellar disc. For the gas component, a velocity dispersion of σg = 8 km/s is chosen as a
middle ground between the velocity dispersions in the H2 and Hi dominated regions. It
must be stressed that this is not an appropriate model for the regime where the H2 and
Hi contributions are similar, but it is the best possible model given the constraints. It
is hereafter avoided to draw any conclusions in this regime.

3. For R > 2Rd, where Hi dominates, the system is considered to consist of a stellar disc
coupled to a turbulent Hi disc. The characteristic velocity dispersion σ0g = 11 km/s
at the resolution scale `0 = 800 pc of L08 is retained, and turbulent scaling in the Hi
surface density and velocity dispersion with ag = bg = 1/3 is introduced.

5.3.2. The Parameter Plane

Before discussing the different regions separately in the s0 − q0 plane, all data points of both
the spiral and the dwarf galaxies are considered; without binning into different regions. This
serves to illustrate the problem caused by the lack of H2 measurements in the dwarf galaxies
and further motivates the omission of the dwarf subsample in this work.

Spirals and Dwarfs in the Astrophysically Relevant Part

The panels in figure 5.3 show the data points of the 12 spiral and 11 dwarf galaxies in the
astrophysically relevant part of the s0 − q0 plane.6 In the left panel, the total surface density

6Since L08 provides Σ?, σ?, Σg, and σg measured at a scale `0 for each datapoint, computation of s0 = σ0g/σ?
and q0 = Qg/Q? = (σg/σ?)(Σ?/Σg) is straightforward. Upper and lower bounds are calculated based on
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Figure 5.3.: Data points for the spirals and dwarf galaxies in the astrophysically relevant part
of the s0 − q0 plane. Note that a significant part of the points in each subsample
is located outside the physical region, cf. text. All points have constant velocity
dispersion σg = 11 km/s. Left: Gas surface density for spiral galaxies is the sum
of Hi and H2 surface densities. Right: Gas surface density for the spiral galaxies
considering only the Hi component.

of the spiral galaxies is the sum of the Hi and H2 surface densities, whereas in the right panel,
only the contribution of the Hi component is considered. For the dwarf galaxies, the total
surface density is based only on Hi since H2 measurements are unavailable.

Note that 37% of data points associated with the dwarf galaxies are not located in the
astrophysically relevant part of the s0 − q0 plane (and are thus not seen in the figure). For
the spiral galaxies considering both the Hi and H2 contribution to the total surface density,
this is only the case for 12% of the points — also cf. table 5.1.

Combining this with a visual inspection of figure 5.3, various distinct trends can be recog-
nized. In particular, (i) not all data points fall in the region that is physical, (ii) the data
points associated with the dwarf galaxies tend to be found at larger values of s0, and (iii) the
dwarf galaxies contain fewer data points in the astrophysically relevant regime than the spiral
galaxies. These trends are now discussed.

Data Points Outside the Physical Region. From the discussion of the astrophysically rele-
vant region in §4.4.1, recall that, while small excursions outside the region along q0 do
not pose strong interpretational problems, data points outside the permitted range in s0

do so because (i) s0 ≤ 1 is a limit imposed by the physics of the stellar component be-
ing non-collisional, and (ii) s0 & 0.05 is imposed from observational evidence regarding
stellar velocity dispersion.

Considering only the spiral galaxies, the limits are, in fact, violated at either end of
the valid range of s0. Since s0 = s = σg/σ?,

7 this suggests that either (i) there are
points where the stellar velocity dispersion is overestimated, and points where it is

the standard deviations given in L08. For more details, cf. appendix A.
7For now, the system is treated as non-turbulent, such that s0 = s, and q0 = q.
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underestimated, (ii) there are points where the constant gaseous velocity dispersion is
an overestimate, and points where it is an underestimate, or (iii) a combination thereof.

In fact, the third option is most likely because (i) the constant value of the gaseous
velocity dispersion σg = 11 km/s is not representative of all galactic regions, and (ii) the
assumptions of radially constant scale height, and exclusion of the gravitational coupling
between the stellar and gaseous component when deriving the stellar velocity dispersion,
likely cause local over- and underestimations of the true stellar velocity dispersion. On
the other hand, it is possible that the effects of under- and overestimation balance one
another.

While a thorough investigation of the different effects of gaseous and stellar velocity
dispersions is deferred to future work, recall that the gaseous velocity dispersion is in
fact modified to better represent the dominant gas component in this work.

Dwarf Galaxies, Larger s0 Values, The Physical Region. The difference in locations of data
points between the spirals and dwarfs suggests that some of the assumptions made
during the derivation of the physical quantities are problematic. In particular, since
only 6 out of the 11 dwarf galaxies are morphologically different from the spirals, it is
hard to fathom such a striking difference between the two groups.

To investigate this, recall from §5.2.2 that due to large uncertainties in the CO-to-H2

conversion factor, H2 densities in the dwarf subsample are omitted. If the shift in location
of the dwarf subsample in the s0 − q0 plane is related to this, removing the H2 density
component from the spiral subsample should reproduce a shift of the data to a similar
region. The result of this is shown in the right panel of figure 5.3, where it can indeed be
seen that the spiral sample is shifted to coincide much more with the dwarf subsample,
such that 19% instead of 12% of the spiral galaxies are outside the physical region.

To explain the shift, recall that

q0 = q =
s

α
=
σg
σ?

Σ?

ΣHi + ΣH2

(5.2)

increases if the H2 component is suppressed, i.e. ΣH2 = 0. This suggests that omitting
the H2 component in the dwarf subsample introduces problems also from the point of
view of the two-phase region. In fact, L08 draws a similar conclusion based on the fact
that the Hi derived SFE in central parts of dwarf galaxies amounts to or even exceeds
the SFE in the central and H2 dominated parts of the spirals.

As mentioned before, to avoid issues arising from unavailable H2 density measurements,
the dwarf subsample is not considered in this work.

Comparison of Models for Each Region

Figure 5.4 shows the data points for the unmodified (L08) and modified (New) model with
colour coding applied to indicate the region a point is associated with. The two-phase regions
for the non-turbulent and turbulent models are also indicated.
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Figure 5.4.: Astrophysically relevant part of the s0 − q0 plane with data points colour-coded
by region. Left: Original model with constant σg = 11 km/s across all regions
and no turbulent scaling. The non-turbulent two-phase region is marked. Right:
Modified model with variable σg and turbulent scaling in the outer regions. The
non-turbulent and turbulent (Λ0 = 1) two-phase regions are marked.

In both cases, it can be seem that points in the inner H2 dominated regions have a tendency
to populate the two-phase region, whereas points associated with the outer Hi dominated
regions do not. Furthermore, points associated with the transition between H2 and Hi domi-
nance are frequently found just outside the two-phase region close to the triple point — also
cf. table 5.1 and figure 5.5.

Along with figure 5.1, this indicates that a higher SFE and stellar surface density not
only correlates with H2 content, but also with the decoupling of the stability response. It
is, however, unclear whether the decoupling tendency is related to (i) the formation of gmcs
out of Hi, (ii) the formation of protostellar cores within the gmcs, or (iii) both. It is further
possible that the correlation between a decoupled stability response and large H2 surface
densities is entirely coincidental. Unfortunately, it is presently unclear how this link can be
investigated.

To better study the differences between the original and the modified models as applied
to the data, figure 5.5 shows (i) the total number of points, (ii) the number of points in the
astrophysically relevant region, and (iii) the number of points in the two-phase region for
each of the three regions for the original and the modified model. Noting both this and the
tabulated values in table 5.1, the two models are now compared separately for each region.

1. For R ≤ Rd, fewer points are located in the physical part of the s0 − q0 plane for the
modified model. Out of total number of points in the physical region, however, a larger
fraction populates the two-phase region. Considering that s0 = σ0g/σ?, decreasing σ0g

essentially shifts all points to smaller values of s0.8 In turn, this means that points with
small values of s0 tend to shift below the valid range of s0, and that points outside the
two-phase region tend to shift towards it, and possibly inside.

8And to smaller values of q0, since q0 = Qg/Q? ∝ σ0g/σ?.
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Figure 5.5.: Total number of data points, number of points in astrophysically relevant region,
and number of points in two-phase region for the original L08 model and the
new modified model. The counts are grouped by region, i.e. H2 dominance, Hi
dominance, and the transition regime. Note that points are only counted to be in
the two-phase region if they are in the astrophysically valid region.

The shift of points outside of the physical region presents a problem because the adopted
value of σg = 5 km/s is more representative of the gaseous velocity dispersion in the
region. This behaviour thus suggests that either (i) adopting σg = 5 km/s does in fact
not represent the gaseous component well enough in the H2 dominated region, or (ii)
the original overestimate of the gaseous velocity dispersion through σg = 11 km/s is
balanced by an overestimate of the stellar velocity dispersion.

2. For Rd < R ≤ 2Rd, the same general trend as for the H2 dominated case is seen. In
particular, the decreased gaseous velocity dispersion causes a shift towards smaller values
of s0 and q0. The net effect of this is not as dramatic as in the R ≤ Rd regime since
the increase in the number of points for which the stability response is decoupled only
increases minimally.

3. For R > 2Rd, the introduction of turbulence does not affect the location of points in
the s0 − q0 plane because turbulent scaling only affects s and q, whereas s0 and q0 are
quantities valid at the scale `0. The shape and size of the two-phase region, which differs
significantly from the unmodified case, can however affect the number of points located
within.

It is important to realize that each point in the turbulent outer region is associated with
a unique two-phase region because Λ0 = `0/`T? depends on the Toomre scale for each
point. As such, the turbulent two-phase region in the right panel of figure 5.4 should not
be used to determine whether a given point is located in the two-phase region. Being
based on the median med{Λ0} ' 1 across all points in this region, it should rather be
used as visual aid. In practice, the location of a point inside the two-phase region is
determined directly from the number of peaks in the msc.
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Sample Gas Region agas bgas σgas In Two-Phase In Astro Total

S Hi + H2 All R 0 0 11 km/s 51 (16%) 313 (88%) 354
S Hi All R 0 0 11 km/s 0 286 (81%) 352
D Hi All R 0 0 11 km/s 0 190 (63%) 303

S Hi + H2 R ≤ Rd 0 0 11 km/s 27 (49%) 55 (81%) 68
S Hi + H2 Rd < R ≤ 2Rd 0 0 11 km/s 24 (35%) 69 (100%) 69
S Hi + H2 R > 2Rd 0 0 11 km/s 0 189 (87%) 217

S Hi + H2 R ≤ Rd 0 0 5 km/s 17 (85%) 20 (29%) 68
S Hi + H2 Rd < R ≤ 2Rd 0 0 8 km/s 27 (39%) 69 (100%) 69
S Hi + H2 R > 2Rd 1/3 1/3 11 km/s 1 (1%) 189 (87%) 217

Table 5.1.: Number of measurement points falling in the astrophysically relevant (In Astro)
and the two-phase (In Two-Phase) regions for different models. The dwarf and
spiral subsamples are marked D and S. Percentages of points in the two-phase
region are relative to points in the physical region. Percentage of the latter, in
turn, are relative to the total number of points.

While the increased size of the two-phase region suggests that turbulence tends to push
points towards a decoupled stability response by increasing the size of the two-phase
region, only one point actually reaches this regime. Recalling the large variations in the
size of the two-phase region for other turbulent scaling exponents discussed in §4.4.4, no
rigorous conclusions can be drawn without further study.

With this in mind, it can however be concluded that (i) turbulence increases the tendency
of a decoupled stability response, that (ii) the values of the turbulent scaling exponents
determine further details, and that (iii) overall, Hi turbulence does not have a strong
effect on the decoupling of the stability response.9

The Scale Λ0

In the preceding section, it was pointed out that each point in the turbulent outer region is
associated with a unique value of Λ0 = `0/`T?, where `0 = 800 pc is the measurement scale
and `T? = 2πGΣ?/κ

2 is the stellar Toomre scale unique to each point. Therefore, the value of
Λ0 is (inversely) proportional only to the `T?, which varies from point to point.

To determine how variations of `T? affect Λ0 across the sample, figure 5.6 shows the values
of Λ0 within the three regions (left panel) as well as the histogram of the distribution of Λ0

(right panel). Additionally, the medians med{Λ0} along with the median absolute deviations
mad{Λ0} are indicated figure 5.6 and tabulated in table 5.2 for each region. It can be seen that
the data points span almost two orders of magnitude in Λ0 with a wide peaked concentration
of values around Λ0 ' 1. Also note that, in the inner regions, there is a tendency towards
slightly higher values of Λ0 than in the outer regions.

The fact that the distribution only shows one central (and wide) peak indicates that the
median is a suitable representation of the sample. In particular, if the distribution exhibited
bimodality with possible skew towards a peak and/or long tails, use of the median is more

9This point is motivated by the fact that, while turbulence implies a tendency of points to reach the two-phase
region, most points in fact do not.
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Figure 5.6.: Left: Plot of Λ0 = `0/`T? for all data points. For each region, R ≤ Rd,
Rd < R ≤ 2Rd, and R > 2Rd, the median med{Λ0} as well as the median abso-
lute deviation is indicated. Right: Histogram of Λ0 across all data points. The
unimodal distribution justifies the use of the median to characterize the sample.

problematic because the median could be at a value that does not occur very often in the
distribution and is thus not representative. While this is not the case for Λ0, the distributions
of Qeff and λ are somewhat more complicated and the issue shall be discussed again later.

Moreover, note that Λ0 at small radii tends to be larger than at larger radii. If one focuses
the investigation on R > 2Rd — which is the only region where Λ0 is actually important for
computation of the turbulent msc — the distribution would be even more symmetric since
the tail at large Λ0 would be diminished. As such, use of the median med{Λ0} to illustrate the
two-phase region in this range is justified. However, note that the large spread about Λ0 = 1
can have a significant effect on the size of the two-phase region, cf. figure 4.9.

Region med{Λ0} ±mad{Λ0}
R ≤ Rd 1.38± 0.42

Rd < R ≤ 2Rd 0.90± 0.29
R > 2Rd 0.99± 0.38

Table 5.2.: Median med{Λ0} = med{Λ0} and median absolute deviation mad{Λ0} for the
sample in each of the three regions. Note that Λ0 is not a meaningful quantity in
the absence of turbulent scaling.
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Figure 5.7.: Effective stability parameter Qeff vs. scale-length normalized radius R/Rd with
median values and median absolute deviation indicated for each region. Error
bars on Qeff mark upper and lower limits. Left: Qeff for the original model with
constant velocity dispersion σg = 11 km/s in all regions. Right: Qeff for the
updated model with σg = {5, 8, 11} km/s and turbulent scaling in the outermost
region.

5.3.3. Stability Threshold

Recall that the maximum of the marginal stability curve gives the value of Q above which
a given system is stable against gravitational collapse on all scales. This is the stability
threshold max{Q} = Q. If the two-component marginal stability curve is computed in terms
of the stellar component, let Q be the stability threshold, and Q? = κσ?/(πGΣ?) be the
Toomre parameter for the stellar component, such that the condition Q? ≥ Q guarantees
stability on all scales. This can be rewritten to yield

Qeff ≡
Q?

Q
≥ 1, (5.3)

where Qeff is an effective stability parameter similar to the one-component condition Q ≥ 1.

The left and centre panels of figure 5.7 show Qeff with upper and lower bounds10 for, re-
spectively, (i) the unmodified (L08) model without turbulence and a constant gas velocity
dispersion, and (ii) the modified (New) model gas velocity dispersion adjusted for the domi-
nant component and turbulent scaling in the Hi dominant regions. Additionally, the median
med{Qeff} and the median absolute deviation mad{Qeff} are indicated for each of the three
regions, also cf. table 5.3 for a tabulation.

10It is hereafter implicit that the notion of error refers to the range spanned by the upper and lower bounds
derived through a simplified propagation of 1-σ uncertainties provided in L08. For more details, refer to
appendix A.
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Model Region med{Qeff} ±mad{Qeff} Change

L08 R ≤ Rd 2.06± 0.41
L08 Rd < R ≤ 2Rd 1.58± 0.31
L08 R > 2Rd 1.56± 0.28

New R ≤ Rd 1.28± 0.68 −38%
New Rd < R ≤ 2Rd 1.51± 0.41 −4%
New R > 2Rd 1.61± 0.32 +3%

Table 5.3.: Median med{Qeff} and median absolute deviation mad{Qeff} within the sample for
both the original (L08) and modified (New) model. Note that for R ≤ 2Rd, the
sample interpreted with the new model tends to be less stable, while for R > 2Rd,
the new model describes the sample as more stable.

For both models, one notices that the errors derived on Qeff are larger for R . 2Rd than
for R & 2Rd. In fact, it seems that the error on Qeff is directly correlated with the location
and errors of the points in the s0 − q0 plane, which means it depends strongly on Q. In
particular, for R ≤ Rd, a significant fraction of the points is located at small values of q0

in the gas-dominated part of the two-phase region, where the contours of Q are very closely
spaced. Similarly, in the transition region Rd < R ≤ 2Rd, data points are clustered around
the triple point, with points at q0 < 1 being associated with errors that cross more tightly
spaced Q contours than points located at q0 > 1. For more details, cf. figures 5.4 and 4.10.

Further note from figure 5.1 that ΣH2 is generally found to be subjected to larger errors
than ΣHi. In addition to the previously discussed, this further enhances the error associated
with H2 dominated regions.

Similarly to the L08 case discussed in §5.2.3, one sees that only a small number of points is
gravitationally unstable Qeff < 1 in both the original and the modified model. Additionally,
the median values do not deviate far from med{Qeff} = 1, which supports the notion of
self-regulation. Also observe that even the modified model accounting for lower gas velocity
dispersion in the inner regions and turbulence in Hi dominated regions is limited by the lack
of a proper description of, for example, magnetic fields, and supernova feedback.

From §4.2.3 and §4.4.1, recall that the response of an infinitely thin two-component system
is dominated by the less stable component, i.e. the gaseous component for Qg < Q? and
the stellar component for Qg > Q?. Colour-coding the dominating component, one notices
that the stellar component dominates the response for most of the data points; particularly
for the unmodified model. In fact, this explains the large spread in Qg previously seen in
the left panel of figure 5.2, which suggests that Qg alone is not a sufficient description of the
system if the stability response is dominated by the stellar component. For a more detailed
discussion taking into account both infinitely thin and finite-thickness discs, see Romeo &
Wiegert (2011).

The behaviour of Qeff with radius differs for both models. In particular, in the original
model Qeff has a tendency to decrease towards the transition region and then increase at both
larger and smaller radii. For the modified model, on the other hand, Qeff steadily increases
with radius. To quantify the difference between the two models better, they are now described
for each region.
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1. For R ≤ Rd, the values of Qeff of the modified model are generally smaller than the values
of the original model with the median differing by 38%. Recalling that Qeff = Q?/Q,
with Q? = κσ?/(πGΣ?) being constant across different models, the change in Qeff must
be caused by changes in Q.

Since a change of s0 also causes a change in q0 = s0/α0, the data points shift along
diagonal lines running from the top right towards the bottom left corner of the s0 − q0

plane, i.e. s0 ∝ q0, for decreasing s0. In general, this means that the points are shifted
to higher values of Q, and thus to lower values of Qeff, cf. figure 4.10. Note, however,
that the direction of the Q contours differs depending on the location in the s0 − q0

plane. Consequently, not all shifted data points are subjected to the same changes in
Q, respectively Qeff.

This means that, while there is a clear tendency towards decreased values of Qeff, not
all points are affected in the same fashion. As such, the median med{Qeff} is expected
to decrease while the median absolute deviation — a measure of the scatter about the
median — increases.

2. For Rd < R ≤ 2Rd, the same trend as for R ≤ Rd is seen, but much less strongly. This is
reasonable as the change in the gas velocity dispersion is smaller than in the innermost
region. As such, the data points do not shift as far as for R ≤ Rd. Again, points are
located in regions with different Q contours which causes different changes in Qeff, and
thus increases the median absolute deviation.

3. For R > 2Rd, the overall effect of a turbulent Hi component on Qeff is a small increase
in the stability level and an increased median absolute deviation. As discussed in the
context of the two-phase region, neither s0 nor q0 change with the introduction of turbu-
lence such that any change in Qeff must be related to changes in Q caused by turbulent
scaling.

Since each data point is associated with a value Λ0 which determines the contours of Q,
the distribution of Λ0 is directly related to the distribution of Qeff. From figure 4.11,
recall that the Q contours are shifted along the positive s0 axis for Λ0 & 1. In this
case, the turbulent system has a lower stability threshold (and is thus more stable with
Qeff increased) than the equivalent non-turbulent system. The reverse holds for Λ0 . 1.
Further note that the threshold between the two regimes is actually somewhat lower —
approximately about Λ0 ' 0.8.

Figure 5.6 indicates that Λ0 is distributed evenly about the median med{Λ0} ' 1 with a
spread of roughly an order of magnitude in either direction. Since the majority of points
is associated with Λ0 & 0.8, there are also more points for which Qeff of the turbulent
model is increased than there are points for which it is decreased.

The net effect of describing the Hi component as turbulent is thus an increased median
med{Qeff} together with an increased median absolute deviation. As such, it is concluded
that, in general, turbulence tends to stabilize the system, but does not do so at all
measurement points.

Figure 5.8 shows the histograms of Qeff for the two models (separate rows) in the three
regions (separate columns). The horizontal axis shows the logarithm of Qeff and is centered
on Qeff = 100 = 1.

Comparing the different regions, it can be seen that the values of Qeff are spread out more
for R ≤ Rd than for the other two regions, where the distribution is contained in a smaller
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Figure 5.8.: Histogram of Qeff for each of the three regions in the original (L08) and modified
(New) models. The horizontal axis shows the logarithm on a linear scale and the
data is divided into 10 bins.

range of Qeff with a large central peak. Furthermore, note the apparent fragmentation of some
of the histograms, where a secondary high peak is visible next to a low point. This is likely
an artifact stemming from the choice of the number of bins.11 To account for this, peaks in
the histogram are only considered true peaks if the count in neighbouring bins does not differ
too much from the peak count. Due to the small number counts, the choice of whether a peak
deviates too much is based on visual perception because the validity of a threshold ratio can
not be rigorously proven. Moreover, the potential impact on the quality of the median as a
characteristic of the entire sample is evaluated on a case-by-case basis.

In the innermost region, the change of velocity dispersion causes the histogram to spread
out towards lower values of Qeff while approximately retaining to maximum value. This checks
with the observation of a decreased median and an increased median absolute deviation. In
either case, no clear bimodality, skewness or excessively long tail is visible, such that the
median is deemed appropriate to describe the distribution.

For Rd < R ≤ 2Rd, the histogram of the modified model is again wider than for the
unmodified model. As before, the lower end of the distribution shifts to lower values, while the
upper end remains approximately constant. The original model suggests a slight bimodality
with a thin peak at smaller Qeff values than the main peak. In light of the discussion above,
the peak could result from unfortunate binning or be real. Either way, visual inspection of the
entire histogram suggests that this peak will not affect the median adversely as it is balanced
by a wider wing to the right (at higher Qeff values) of the main peak.

11The choice of the number of bins is a delicate point, especially for as small a number of samples as considered
here. If too few bins are used, the distribution appears smeared out and features can be lost. On the other
hand, if the data is placed in too many bins, the uneven distribution of points might lead to artifacts.
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Figure 5.9.: Left: Dispersion relation for (i) a stable (Q = 1.1), (ii) a marginally stable (Q =
1), and (iii) an unstable system (Q = 0.9). Note that the minimum kmin is
different in each case and only coincides with the most unstable scale k for Q = 1.
Right: Marginal stability curve of the system, with the (dimensionless) most
unstable scale Λ = `/`T = kT /k = 0.5 being the scale associated with the stability
threshold Q = max{Q} = 1.

At large radii, both the distribution of the original as well as of the modified turbulent model
cover approximately the same range in Qeff with high number counts concentrated towards
the central peak. Apart from the central bin, the peak plateau becomes slightly wider with a
bias towards larger values of Qeff. Note, however, that the maximum and minimum registered
values of Qeff do not change. This indicates that the inclusion of a turbulent Hi component
tends to spread out Qeff with a slight trend towards larger values. This checks with the
observation of an increase in the median and the median absolute deviation, which appear
valid descriptors of the distribution in the absence of pronounced skewness, bimodality, or
long tails.

5.3.4. Most Unstable Scale

Most Unstable Scale at Marginal Stability

The most unstable scale ` is the scale at which the first instabilities manifest themselves as a
system becomes gravitationally unstable. While it was associated with the minimum of the
dispersion relation (dr) in §3.3, this is in fact only true for marginally stable systems.

This illustrated in the left panel of figure 5.9, where the drs for (i) a stable, (ii) a marginally
stable, and (iii) an unstable one-component12 system are shown — Q = {1.1, 1.0, 0.9}. As the
stability level decreases, the wavenumber kmin = 1/`min associated with the minimum of the
dr shifts to larger values.

12The same considerations hold for two-component systems, but the problem is illustrated much more easily
for a one-component system.
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Figure 5.10.: λ vs. radius R/Rd with median values med{λ} and median absolute devia-
tion mad{λ} indicated for each region. Colour-coding indicates the dominant
component with respect to stability. Left: λ for the original model with con-
stant velocity dispersion σg = 11 km/s. Right: λ for the updated model with
σg = {5, 8, 11} km/s and turbulent scaling in the outermost region.

Using the marginal stability curve, the most unstable scale can be obtained for any system,
regardless of its stability level. This is illustrated in the right panel of figure 5.9 where the
msc for the considered one-component system is shown. Recalling that the maximum of the
msc is associated with the (dimensionless) most unstable scale Λ, it holds that

Λ =
`

`T
=

(
k

kT

)−1

=

(
kmin

kT

)−1

, (If Marginally Stable, Q = 1). (5.4)

Recalling from figure 5.7 that most points in the sample are not marginally stable, the most
unstable scale is therefore obtained through considering the marginal stability curves. The
results are now presented.

Most Unstable Scale in the Sample

Figure 5.10 shows the most unstable wavelengths λ = 2π` for the considered subsample of 12
spirals. The left panel indicates the wavelengths for the original model used in L08, and the
right panel indicates the model modified to account for lower velocity dispersion in the inner
regions and turbulent Hi in the outer regions. Additionally, the median values med{λ} and
the median absolute deviation are indicated for each region, cf. table 5.4.

Regardless of which model is used to interpret the data, the most unstable wavelength
increases with radius. Towards the galactic centres, the most unstable wavelengths are in the
order of λ ∼ 0.1−1 kpc, whereas in the intermediate regions, they are about λ ' 1 kpc, until
again spanning an order of magnitude λ ∼ 1 − 10 kpc beyond R > 2Rd. This behaviour is
also reflected in the median.
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To explain this, recall from figure 5.4 that a significant number of points in the inner and
transition region is located (i) at small s0 and (ii) below the line q0 < 1, where the gaseous
component dominates the stability response.13 Since this is the part of the s0−q0 plane where
Λ is smallest, the corresponding values of λ are therefore expected to be smallest in this region.
The stability of points in the outer regions, however, is for the most part dominated by the
stellar component and thus associated with larger values of Λ — and therefore λ.

Further note that, as for Qeff, points associated with a dominant H2 component in the inner
regions tend to have larger errors than Hi dominated points in the outer regions. This is
caused by the majority of the points for R ≤ 2Rd being located in, or close to, the two-phase
region. In particular, if the error in q0 crosses the transition line, the discontinuous jump from
the gaseous peak to the stellar peak (or vice versa) causes a large change in Λ, and therefore
λ. Furthermore, ΣH2 is generally associated with larger uncertainties than ΣHi. This, in turn,
causes larger uncertainties in points where H2 dominates.

As before, the effects of modifications to the model are now discussed for each region.

1. For R ≤ Rd, the most unstable scale λ for the modified model (where a decreased σ0g

causes a decrease of s0 = σ0g/σ?) is generally smaller than for the unmodified model with
the median of λ differing by 59%. On the other hand, the decreased median absolute
deviation indicates a smaller scatter of the points around the median value.

From figure 4.13, recall that the behaviour of Λ and thus λ strongly depends on the
location in the s0 − q0 plane. In general, the largest change in Λ occurs along lines
running diagonally from the top left to bottom right, i.e. s0 ∝ −q0. The only exception
to this behaviour is the top left region q0 > 1, 0.05 ≤ s0 . 0.3, where the separatrix
Λ = 0.5 (i) curves towards q0 = 10 in the non-turbulent model, and (ii) curves back onto
the transition line for the turbulent mode.

As before, decreasing the gaseous velocity dispersion decreases s0 and causes the data
points to shift along lines s0 ∝ q0 towards the bottom left of the s0−q0 plane. Since most
points in the inner regions are clustered in the two-phase region on either side of q0 = 1,
the shift causes points to either (i) move along lines almost parallel to Λ contours with a
correspondingly small effect on the values of Λ associated with these points, or (ii) move
across the transition line q0 = 1 from the stellar-dominated region to the gas-dominated
regime. In the latter case, the points cross the discontinuity in Λ that coincides with
the transition line. This implies a significant decrease of λ for these points.

This means that not all points in the inner region change in λ. However, for the points
that do, the change is significant. This causes a stark decrease in the median. Since the
general trend is a shift towards the bottom left part of the s0− q0 this means that fewer
points are associated with large values Λ0 > 0.5 and more of them with small values
Λ ' 0.1. As such, the median absolute deviation decreases significantly.

2. For Rd < R ≤ 2Rd, a similar effect is observed, with a smaller decrease in the median
and median absolute deviation than in the innermost regions. As before, the points
experience a shift towards the lower left of the s0 − q0 region, thereby either (i) moving
along lines of approximately constant Λ, or (ii) crossing the transition line and the
discontinuity to much smaller values of Λ.

13For a visual impression of the fraction of points dominated in their stability by either the stellar or the
gaseous component, refer to the colour-coding in figure 5.10.

78



Application to Nearby Star Forming Galaxies

−2 −1 0 1 2
0

5

10

15

20

log10 λ

N

L08, R ≤ Rd

−2 −1 0 1 2
0

5

10

15

log10 λ

N

L08, Rd < R ≤ 2Rd

−2 −1 0 1 2
0

20

40

60

80

log10 λ

N

L08, R > 2Rd

−2 −1 0 1 2
0

5

10

15

20

log10 λ

N

New, R ≤ Rd

−2 −1 0 1 2
0

5

10

15

log10 λ

N

New, Rd < R ≤ 2Rd

−2 −1 0 1 2
0

20

40

60

80

log10 λ

N

New, R > 2Rd

Figure 5.11.: Histograms of λ for each of the three regions in the original (L08) and modified
(New) models. The horizontal axis shows the logarithm on a linear scale and the
data is divided into 10 bins.

3. For R > 2Rd, both the median and the median absolute deviation of λ increase in the
model incorporating a turbulent Hi component as compared to the original model. Since
most of the points in this region are located in the part of the s0 − q0 plane where the
separatrix Λ = 0.5 of the non-turbulent model shifts back onto the transition line around
q0 ' 1 in the turbulent model, Λ for most of the points increases.

On the other hand, for Λ0 & 0.8, points located at values of s0 & 0.5 are in a region
where the Λ contours of the turbulent and non-turbulent systems tend to shift along the
positive s0 axis, thereby decreasing the value of Λ associated with a point. For Λ0 . 0.8,
the reverse holds. Considering the distribution of Λ0 shown in figure 5.6, note that, for
the points not affected by the collapse of the separatrix Λ = 0.5 to the transition line,
an approximately equal number of points can be expected to shift to larger and smaller
values of Λ when comparing the turbulent to the non-turbulent system.

The net effect is that tendentially more points are associated with increased values of
Λ, but that not all points are affected the same way. As such, the median as well as the
median absolute deviation of λ increases.

Figure 5.11 shows histograms of λ for the original and modified models (rows) in the three
regions (columns). The horizontal axis shows the logarithm and is centered on λ = 100 = 1.

Compared to the transition and outer regions, λ is distributed over a much larger range in
the inner regions. This checks with the fact that in this region, data points are located on
either side of the transition line, whereby a wide range of Λ is covered. On the other hand, in
the transition and outer regions, data points are further away from the two-phase region and
thus the transition line, such that the distribution is limited to a narrower range of λ.
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Model Region med{λ} ±mad{λ} [kpc] Change

L08 R ≤ Rd 0.68± 0.52
L08 Rd < R ≤ 2Rd 1.73± 0.70
L08 R > 2Rd 2.89± 1.10

New R ≤ Rd 0.26± 0.15 −59%
New Rd < R ≤ 2Rd 1.10± 0.43 −36%
New R > 2Rd 3.03± 1.24 +5%

Table 5.4.: Median med{λ} and median absolute deviation mad{λ} of the most unstable wave-
length λ for the original (L08) and modified (New) model. For the new model, the
median is decreased for R ≤ 2Rd, and increased otherwise.

In the inner region, the decreased gas velocity dispersion causes the histogram to widen
towards smaller values of λ while at the same time retaining the upper limit. The compara-
tively flat two-peaked distribution centered around λ ' 1 kpc of the original model gives way
to a distribution centered around a single peak at λ ' 10−0.8 kpc ' 0.2 kpc. Note that since
neither distribution shows a pronounced skew or long tail, the median characterizes them well.

In the transition region, the widening of the histogram of the modified model as compared
the original model is present, but much less pronounced than in the inner regions. The
tendency of λ shifting to lower values is nevertheless clearly visible when considering the
rightmost single bin peak in the original case, which disappears for the modified system, where
instead the counts for lower values of λ are increased. Note that, visually, the distribution
seems erratic with single bin peaks directly next to bins with much lower counts. This could
either (i) indicate that too many bins are chosen, or that (ii) the distribution displays little
regularity. In the latter case, the choice of the median as a representative value for the
distribution might overemphasize parts of the sample.

In the outer region, there is no difference in the width of histogram when comparing the
original and the modified model. This means that the width of values spanned by λ does
not change. Instead, only the distribution within the spanned range changes. In particular,
note that the heights of all bins to (and including) the left (i.e. at smaller values of λ) of the
highest bin decrease whereas the height of the bin immediately to the right of the highest bin
increases.

Naively, one might conclude that this suggests that a wide range of values is mapped to
approximately the same larger value. However, note that bins to the left cover a smaller range
in λ than bins to the right because of the logarithmic scale. As such, the conclusion is of
questionable validity. Proper consideration of this effect would require a histogram linear in
λ with the size of the bins given by the smallest size of the bins. This, however, would yield
a bin size too small to adequately categorize a sample as small as the present, cf. also the
previous discussion in §5.3.3.

5.3.5. Tight-Winding Condition

The tight-winding condition kR � 1 discussed in §3.2 is the principal assumption that vali-
dates the stability analysis performed in this work. As such, the wavelengths associated with
the most important scales of interest must fulfil this criterion. In the context of star formation,
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Figure 5.12.: Plot of kR vs. normalized radius to check whether the tight-winding condition
kR � 1 is fulfilled. The shading indicates the region where kR ≤ 1, such that
the tight-winding condition is definitely not fulfilled.

the most unstable wavelength λ is the principal quantity of interest. The condition that must
be fulfilled is thus

kR� 1, (5.5)

where k = 2π/λ is the most unstable wavenumber, and R the galactocentric radius of a
given data point.

Figure 5.12 shows the quantity kR as a function of radius across the subsample of 12 spiral
galaxies. It can clearly be seen that the condition is fulfilled for the largest part of the sample
in both the transition and outer regions. On the other hand, in the inner region, data points
tend to fall to within an order of magnitude of kR = 1 with a few even falling below this line.

While the analysis is technically invalid for these points, it still retains validity in a statistical
sense across the entire sample. Therefore, these points are not removed from the sample.

5.4. Chapter Summary

After defining the star formation problem and briefly recapping a previous analysis of 12
nearby spiral and 11 nearby dwarf galaxies (Leroy et al., 2008), the theory introduced in §3
and further developed in §4 was applied to observations of the 12 nearby spiral galaxies also
considered in Leroy et al. (2008). The most important points are now summarized.

• The conditions required for protostellar cores to form define the star formation problem
on galactic scales. Any investigation therefore requires knowledge of (i) present sites of
star formation as traced by the brightest stars with the shortest lifetimes and emissions
from dust heated by young stars, (ii) the distribution of atomic and molecular hydrogen
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on both galactic and sub-kpc scales, and (iii) the present distribution of stars. A number
of recent surveys share a common subset of nearby star forming galaxies for which such
data is available.

Leroy et al. (2008) aggregates this data, derives radial profiles for various quantities,
and then carries out a comprehensive analysis focusing the star formation laws and
thresholds. The sampled galaxies are divided a spiral and dwarf subsample, depending
on total mass, luminosity and peak rotation velocity.

• To perform this analysis, several assumptions are made. Among others, (i) a fixed
gaseous velocity dispersion of σg = 11 km/s is chosen independent of radius for all
galaxies, (ii) a constant CO-to-H2 conversion factor is adopted, (iii) the stellar velocity
dispersion is derived from the stellar surface density under the assumptions of constant
scale height and hydrostatic equilibrium.

While these are well-motivated and simple choices suitable as a first approximation, they
can nevertheless be improved on. In particular, assumption (i) is likely an overestimate
of σg in H2 dominated regions where it overestimates the stability level, assumption
(ii) likely overestimates H2 mass in H2 dominated regions, thereby underestimating the
stability level, and assumption (iii) is likely a problematic estimate of the stellar velocity
dispersions because the coupling between the stellar and gaseous discs is neglected.

In particular, problems associated with the CO-to-H2 conversion factor in dwarf galaxies
force a disregarding of the H2 component in this subsample. To avoid problems, the
dwarf subsample is thus not considered in this work.

• It is found that the H2 and stellar surface densities decline exponentially with radius,
while Hi surface density remains approximately constant. This suggests separation of
the sample into three radial regions: (i) the inner H2 dominated region, (ii) the transition
region, and (iii) the outer Hi dominated region. In the H2 and transition regions, the star
formation rate per unit gas mass remains approximately constant, whereas it declines
exponentially in the outer Hi dominated regions.

• After separating the model into three distinct regions, the gas velocity dispersion is
modified depending on the dominant gas component. In particular, in the inner H2

dominated region, a velocity dispersion of σg = 5 km/s is adopted, whereas a value of
of σg = 8 km/s is chosen in the transition regime. In the outer Hi dominated regions,
σg = 11 km/s is retained, but turbulent scaling with ag = bg = 1/3 is introduced.

Turbulent scaling is not introduced in the inner and the transition region because (i) H2

is not turbulent on the resolution scale `0 = 800 pc, and (ii) a suitable three-component
model to describe the transition region properly is unavailable.

• When placing both the dwarf and the spiral subsample in the s0 − q0 plane, it is found
that the dwarf sample is significantly removed from the spiral sample. However, upon
removing the H2 contribution from the spiral galaxies, the data points are shifted into
the same region. Again, this indicates that there is a significant amount of undetected
H2 in the dwarf galaxies and further justifies the choice of not considering them in this
analysis.

• Considering the spiral galaxies separated into three regions, both with and without
the aforementioned modifications to the model, it is found that points in the inner H2

dominated regions tend to be found in the two-phase region, whereas points associated
with larger radii are usually not found in the two-phase region. This suggests a link
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between the decoupling of the stability response and the H2 surface density, and thus
the star formation rate per unit gas.

Comparing the two models, lowering the velocity dispersion causes the points in both
the inner and the transition region to move further towards the two-phase region. How-
ever, especially in the innermost region, a significant portion of the data points violates
the lower limit s0 ≤ 0.05, which suggests a problem with associating such a velocity dis-
persion with the gaseous component. In particular, it is possible that the overestimated
stellar velocity dispersion balances the overestimate of the gaseous velocity dispersion.
A proper analysis of this problem is deferred to future work.

In the outer regions, the introduction of a turbulent Hi component reveals a general trend
of a points in a turbulent medium to migrate towards the two-phase region. However,
only one data point actually enters the two-phase region. As such, the influence of
turbulence does not appear to significantly alter the stability properties with regards to
decoupling.

• The effective Toomre parameter Qeff is used as a stability diagnostic of two-component
discs. Compared to the stability parameter based on the gaseous component alone, Qeff

shows a much smaller spread in values and is generally closer to marginal stability. This
supports the notion of self-regulation in coupled stellar and gaseous discs.

When reducing the velocity dispersion in the inner and transition regions, Qeff expectedly
drops, thereby causing a number of points to enter the unstable regime. In the outer
regions, introduction of a turbulence Hi component increases Qeff, thereby stabilising the
systems. However, note that this general trend does not affect all measurement points.

Further note that Qeff is affected by significant errors, especially in the inner regions of
the galaxies. This is caused predominantly by (i) larger errors in the H2 surface density
as compared to the Hi surface density and (ii) the behaviour of the Q contours in the
s0 − q0 plane.

• The concept of the most unstable wavelength as the wavelength at which instabilities
are first manifested is clarified to apply only to marginally stable systems. As such, for
systems not at marginal stability, it is obtained by considering the marginal stability
curve instead of the dispersion relation.

For both the unmodified and the modified model, the most unstable wavelength is found
to increase with galactocentric radius from sub-kpc ranges in the inner regions to λ '
3 kpc in the outer regions. Decreasing the gaseous velocity dispersion below R ≤ 2Rd,
it is found to further decrease λ. On the other hand, introducing turbulence in the outer
regions shifts λ to larger values. As with Qeff, this is a general trend not followed by all
points.

• The tight-winding condition is checked with respect to the most unstable wavelength
and found to be fulfilled for most, but not all, data points. However, the number of data
points for which the condition is violated is small enough such that the condition is still
fulfilled across the entire sample in a statistical sense. As such, the violating data points
are not removed from the sample.
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CHAPTER

SIX

CONCLUSIONS

In this thesis, we have used two-component models of gravitational instability to investigate
the dynamical properties of two types of discs under the influence of turbulence. In particular,
we have considered (i) a disc of neutral atomic hydrogen (Hi) and molecular hydrogen (H2)
on scales ` . 100 pc, and (ii) a disc of neutral atomic hydrogen and stars on scales ` & 1 kpc.
We then applied the latter model to extend a previous analysis by Leroy et al. (2008). In
§6.1, we first discuss the major conclusions drawn from this work and then point out topics
for further investigation in §6.2.

Note that we have neglected effects of disc thickness in this work. For an investigation of
thickness effects on the sample analysed by Leroy et al. (2008), we refer to Wiegert (2010)
and Romeo & Wiegert (2011).

6.1. Conclusions

We use a phenomenological model of turbulence introduced by Romeo et al. (2010), where
surface density Σ and velocity dispersion σ follow power laws Σ ∝ `a and σ ∝ `b. These
are motivated by the size-linewidth relation of giant molecular clouds (Larson, 1981; Solomon
et al., 1987; Bolatto et al., 2008; Hughes et al., 2010) and power spectra of 21 cm line intensity
(Begum et al., 2006; Dutta et al., 2008, 2009a,b). For the power law exponents, we adopt
(aH2 , bH2) = (0, 1/2) for molecular hydrogen and (aHi, bHi) = (1/3, 1/3) for neutral atomic
hydrogen, which are choices consistent with results obtained from observations and simulations
(Romeo et al., 2010). Further noting that the collisionless stellar component is not turbulent,
our findings based on this model are now discussed.

• Clearly, the gravitational stability of a two-component disc depends on the stability of
both components. However, the contribution of each component may differ.

Assuming that H2 is bound in virialized structures, we find that the type of gravitational
stability of a disc of Hi and H2 is determined by the stability of H2 alone. Regardless
of the type of stability, we further find that H2 dominates the stability properties of the
disc.
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For a disc of Hi and stars, we find no such disparity. Regardless of the stability of either
component, the type of stability of the entire disc does not change. However, do note
that (i) the stability of the disc can be dominated by either component, and that (ii)
the dynamic response of the two components can become decoupled (Bertin & Romeo,
1988).

• The three most important characteristics of two-component gravitational instability are
(i) the region in the parameter space where the dynamic response of the individual
components decouples, (ii) the wavelength λ associated with the onset of instabilities,
and (iii) a diagnostic Qeff ≥ 1 to determine if the disc is gravitationally stable. The
latter is based upon an generalization of the Toomre criterion Q ≥ 1 for the stability of
a thin one-component disc (Toomre, 1964).

• Within the sample of galaxies first analysed by Leroy et al. (2008), turbulence in Hi tends
to (i) increase the region in the parameter space where stars are dynamically decoupled
from Hi, (ii) increase the median wavelength λ by 5% from 2.89 kpc to 3.03 kpc, and
(iii) stabilize the disc by increasing the median of Qeff by 3% from 1.56 to 1.61.

• To understand the influence of the gas velocity dispersion σg in regions where the density
of H2 exceeds (or is similar to) that of Hi, we decrease the initial value of σg = 11 km/s
to values of σg = 5 km/s (respectively σg = 8 km/s). We find that this tends to (i)
decouple the dynamical response of the stellar and gaseous components in a larger part
of the sample, (ii) decrease the median wavelength λ by 62% from 0.68 kpc to 0.26 kpc
(36% from 1.73 kpc to 1.10 kpc), and (iii) destabilize the disc by decreasing the median
of Qeff by 38% from 2.06 to 1.28 (4% from 1.58 to 1.51).

Finally, we note that for the original model, 19% of all measurements have a gas domi-
nated dynamic response. In the modified model, this percentage increases to 30%.

6.2. Topics for Further Investigation

• The analysis of nearby spiral galaxies carried out by Leroy et al. (2008) is based on
state-of-the-art observations and is the among the most detailed investigations of star
formation in nearby galaxies to date. However, as pointed out by the author, lacking
observations of stellar velocity dispersions force it to rely on a simple model to derive
them. We therefore suggest that follow-up observations of the stellar velocity disper-
sion could greatly benefit the accuracy of both the original analysis and our turbulent
extensions.

• An in-depth investigation of gravitational instability in (turbulent) galactic discs requires
a three-component model accounting for the contributions of the (i) stellar population,
(ii) neutral atomic hydrogen (Hi), and (iii) molecular hydrogen (H2). Due to the com-
plexity of such a model, a prior understanding of the subsystems is of great benefit.

While this work has focused on the stability of a disc of gas and stars, investigating a
disc of Hi and H2 is more demanding. In particular, the different types of gravitational
stability governing such a disc are the chief difficulty. We therefore suggest a more
detailed investigation of the stability properties of a disc of Hi and H2.
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APPENDIX

A

COMPUTATION OF MODEL PARAMETERS AND STABILITY
DIAGNOSTICS

The model of turbulence used in this thesis is described in terms of (i) the stability threshold
Q, (ii) the most unstable scale Λ, (iii) an effective Toomre parameter Qeff, and (iv) the most
unstable wavelength λ. These are computed based on the parameters s0, q0, and Λ0. To apply
the model to the galaxies previously analysed in Leroy et al. (2008), the stability diagnostics
are calculated from the physical quantities provided therein.

In this appendix, §A.1 outlines the physical quantities provided, whereafter §A.2 describes
how the model parameters are computed from them. Finally, §A.3 shows how the stability
diagnostics are calculated from these parameters.

Calculated values of the model properties and stability diagnostics are tabulated as radial
profiles in appendix B for the sample of spiral galaxies considered in this thesis.

A.1. Physical Quantities

Leroy et al. (2008) provides a wide range of physical quantities for the sampled galaxies. For a
detailed account how these are derived from observations, refer to appendices A – D in Leroy
et al. (2008). All quantities are given with 1− σ errors and the most relevant are

• Hi Surface Density — ΣHi,

• H2 Surface Density — ΣH2 ,

• Stellar Surface Density — Σ?,

• Stellar Velocity Dispersion — σ?,

• Gaseous Velocity Dispersion (Assumed Constant) — σg = 11 km/s.

A.2. Model Parameters

Using the physical quantities described in §A.1, the model parameters s0, q0, and Λ0 along
with a simple error estimates are computed as follows. With the given 1−σ error written as ε,
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and denoting upper and lower bounds for a quantity X as X+ = X + εX and X− = X − εX ,1

one obtains

s0 =
σg
σ?
, s0+ =

σg
σ?−

, s0− =
σg
σ?+

, (A.1)

q0 =
σg
σ?

Σ?

Σ0g
, q0+ =

σg
σ?−

Σ?+

Σ0g−
, q0− =

σg
σ?+

Σ?−
Σ0g+

, (A.2)

and

Λ0 =
`0
`T?

, Λ0+ =
`0
`T?−

, Λ0− =
`0
`T?+

, (A.3)

where the subscript on X0 indicates quantities measured at scale `0, where `0 = 800 pc for
the spiral galaxies and `0 = 400 pc for the dwarf galaxies. The stellar Toomre-scale is

`T? =
2πGΣ?

κ2
, `T?+ =

2πGΣ?+

κ2
, `T?− =

2πGΣ?−
κ2

, (A.4)

where G is the gravitational constant and κ is epicyclic frequency at radius R given as
(Binney & Tremaine, 2008, Eq. 3.80)

κ2(R) = R
dΩ2

dR
+ 4Ω2, (A.5)

with the angular velocity Ω = vrot(R)/R obtained from the rotation curve

vrot(R) = vflat

[
1− exp

(−R
lflat

)]
, (A.6)

where lflat and vflat are given for the galaxies in Leroy et al. (2008).

A.3. Stability Diagnostics

A.3.1. Effective Stability Parameter, Most Unstable Wavelength

The effective stability parameter Qeff, most unstable wavelength λ, and their upper and lower
bounds are calculated as

Qeff =
Q?

Q
, Qeff+ =

Q?+

Q−
, Qeff− =

Q?−

Q+

, (A.7)

1In fact, X− = max { 0, X−εX} to ensure positive quantities. Where required, further checks are implemented
in the code to avoid division by 0.
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and

λ = Λ 2π`T?, λ+ = Λ+ 2π`T?+, λ− = Λ− 2π`T?−. (A.8)

,

where the stellar Toomre scale is as given in (A.4) and the stellar Toomre parameter is

Q? =
κσ?
πGΣ?

, Q?+ =
κσ?+
πGΣ?−

, Q?− =
κσ?−
πGΣ?+

, (A.9)

with epicyclic frequency κ previously given in (A.5).

A.3.2. Stability Threshold, Most Unstable Scale

The stability threshold Q and most unstable scale Λ are computed numerically from the
marginal stability curve. In particular, consider the curve

Q = Q(Λ, s0, q0,Λ0, ag, bg), (A.10)

where 0 ≤ Λ ≤ ΛZero is the domain where Q2 ≥ 0 (such that Q ∈ R). The stability
parameters are s0, q0, and Λ0, and ag and bg are the power law exponents of the turbulent
gas component (e.g. ag = bg = 1/3 for neutral atomic hydrogen). Note that the upper limit
in Λ where Q2 ≥ 0 is a real solution ΛZero ∈ R of

0 = 1 +
s0

q0
Λ
ag
ZeroΛ

−ag
0 − ΛZero. (A.11)

Setting ag = bg = 1/3, evaluation of Q2 = Q2(Λ,Λ0, s0, q0) in the range 0 ≤ Λ ≤ ΛZero

allows numerical location of all (at most two) maxima. The (square root of the) largest
maximum gives the stability threshold Q and is found at the most unstable scale Λ.

Determination of Q+, Q−, Λ+, and Λ− requires further evaluations of the marginal stability
curve. In particular, calculating Q2 = Q2(Λ,Λ0, s0, q0) with all 33 = 27 possible combinations
of {s0, s0+, s0−}, {q0, q0+, q0−}, and {Λ0,Λ0+,Λ0−} and subsequent location of the maxima
gives the bounds for Q and Λ.

Note that the choice of discretization in Λ is a delicate matter. Generally, sampling Λ at
N ∼ 103 logarithmically spaced points is sufficient. However, if the contour Λ = 0.5 is to be
computed, mitigation of numerical instabilities requires a denser sampling of at least N ∼ 105

linearly spaced points.
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APPENDIX

B

RADIAL PROFILES OF MODEL PARAMETERS AND STABILITY
DIAGNOSTICS

In this appendix, radial profiles of the model parameters s0, q0, Λ0 and the stability diagnostics
Qeff and λ are tabulated for the sample of 12 spiral galaxies. Refer to appendix A for details
on how these values are computed. For tabulations of physical quantities Σ?, ΣHi, ΣH2 , and
σ?, refer to Leroy et al. (2008).

Odd numbered tables contain model parameters and even numbered tables stability diag-
nostics. For a given galaxy, these are placed side-by-side across two pages beginning on the
next page.

Note that quantities are unitless unless indicated.
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Table B.1.: Model Parameters of NGC0628.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.2 0.1 5.30+0.08
−0.08 0.03+0.00

−0.00 1.47+0.13
−0.12 0.07+0.00

−0.00 3.24+0.29
−0.26

0.5 0.2 7.43+0.06
−0.06 0.04+0.00

−0.00 1.09+0.10
−0.09 0.10+0.00

−0.00 2.40+0.22
−0.19

0.9 0.4 7.71+0.02
−0.02 0.06+0.00

−0.00 0.97+0.10
−0.08 0.13+0.00

−0.00 2.14+0.21
−0.18

1.2 0.5 7.21+0.02
−0.02 0.07+0.00

−0.00 0.99+0.08
−0.07 0.15+0.00

−0.00 2.18+0.19
−0.16

1.6 0.7 5.50+0.01
−0.01 0.07+0.00

−0.00 0.95+0.10
−0.08 0.16+0.00

−0.00 2.09+0.22
−0.18

1.9 0.8 4.83+0.02
−0.02 0.08+0.00

−0.00 0.84+0.09
−0.08 0.18+0.00

−0.00 1.84+0.21
−0.17

2.3 1.0 3.82+0.02
−0.02 0.09+0.00

−0.00 0.75+0.12
−0.09 0.19+0.00

−0.00 1.65+0.26
−0.20

2.7 1.2 3.23+0.01
−0.01 0.15+0.00

−0.00 1.11+0.20
−0.15 0.20+0.00

−0.00 1.53+0.27
−0.20

3.0 1.3 3.00+0.01
−0.01 0.16+0.00

−0.00 1.14+0.18
−0.14 0.22+0.00

−0.00 1.56+0.25
−0.19

3.4 1.5 1.65+0.12
−0.11 0.13+0.00

−0.00 1.48+0.39
−0.29 0.18+0.01

−0.01 2.03+0.54
−0.40

3.7 1.6 2.56+0.01
−0.01 0.18+0.00

−0.00 1.10+0.22
−0.16 0.25+0.00

−0.00 1.51+0.31
−0.22

4.1 1.8 2.48+0.01
−0.01 0.20+0.00

−0.00 0.98+0.23
−0.16 0.27+0.00

−0.00 1.35+0.31
−0.22

4.4 1.9 2.37+0.02
−0.02 0.21+0.00

−0.00 0.96+0.21
−0.15 0.29+0.00

−0.00 1.31+0.29
−0.20

4.8 2.1 2.53+0.01
−0.01 0.33+0.00

−0.00 1.29+0.26
−0.19

5.1 2.2 2.58+0.01
−0.01 0.35+0.00

−0.00 1.29+0.26
−0.19

5.5 2.4 2.50+0.01
−0.01 0.37+0.00

−0.00 1.30+0.26
−0.19

5.8 2.5 2.51+0.03
−0.03 0.39+0.00

−0.00 1.33+0.23
−0.18

6.2 2.7 1.96+0.13
−0.11 0.37+0.01

−0.01 1.60+0.31
−0.25

6.5 2.8 1.25+0.16
−0.13 0.31+0.02

−0.02 1.87+0.51
−0.40

6.9 3.0 3.01+0.02
−0.02 0.51+0.00

−0.00 1.13+0.08
−0.07

7.3 3.2 2.77+0.01
−0.01 0.52+0.00

−0.00 1.14+0.08
−0.07

7.6 3.3 2.58+0.10
−0.09 0.52+0.01

−0.01 1.19+0.17
−0.14

8.0 3.5 3.38+0.03
−0.03 0.63+0.00

−0.00 1.07+0.11
−0.09

8.3 3.6 2.30+0.18
−0.16 0.54+0.02

−0.02 1.34+0.29
−0.24

8.7 3.8 2.17+0.23
−0.19 0.55+0.03

−0.02 1.39+0.34
−0.27

9.0 3.9 3.19+0.12
−0.11 0.69+0.01

−0.01 1.14+0.14
−0.12

9.4 4.1 3.94+0.05
−0.05 0.80+0.01

−0.00 1.07+0.12
−0.10

9.7 4.2 3.95+0.11
−0.10 0.83+0.01

−0.01 1.19+0.15
−0.13

10.1 4.4 5.47+0.11
−0.11 1.01+0.01

−0.01 1.12+0.15
−0.12

10.4 4.5 6.29+0.00
−0.00 1.12+0.00

−0.00 1.12+0.09
−0.08

10.8 4.7 6.64+0.00
−0.00 1.19+0.00

−0.00 1.10+0.09
−0.08

11.1 4.8 5.80+0.15
−0.15 1.15+0.01

−0.01 1.15+0.18
−0.15

11.5 5.0 4.79+0.23
−0.21 1.08+0.03

−0.02 1.19+0.22
−0.18

11.9 5.2 2.07+0.22
−0.18 0.73+0.04

−0.03 1.62+0.49
−0.36

12.2 5.3 3.23+0.12
−0.11 0.94+0.02

−0.02 1.18+0.21
−0.17
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Table B.2.: Stability Diagnostics of NGC0628.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.2 0.1 4.63+0.05
−0.05 0.48+0.01

−0.01 4.63+0.05
−0.05 0.48+0.01

−0.01

0.5 0.2 5.26+0.06
−0.06 0.33+0.00

−0.00 5.27+0.06
−0.06 0.34+0.00

−0.00

0.9 0.4 5.05+0.17
−0.38 0.02+0.30

−0.00 5.17+0.06
−0.06 0.32+0.00

−0.00

1.2 0.5 4.87+0.09
−0.32 0.03+0.31

−0.00 4.92+0.06
−0.06 0.35+0.00

−0.01

1.6 0.7 4.05+0.22
−0.32 0.05+0.40

−0.00 4.22+0.07
−0.07 0.45+0.01

−0.00

1.9 0.8 3.37+0.33
−0.28 0.07+0.01

−0.00 3.82+0.08
−0.08 0.51+0.00

−0.01

2.3 1.0 2.70+0.37
−0.30 0.10+0.01

−0.01 3.28+0.11
−0.11 0.63+0.02

−0.01

2.7 1.2 2.89+0.13
−0.16 0.69+0.03

−0.45 2.92+0.12
−0.12 0.73+0.02

−0.03

3.0 1.3 2.74+0.12
−0.12 0.74+0.05

−0.41 2.78+0.11
−0.11 0.80+0.01

−0.03

3.4 1.5 2.24+0.16
−0.16 1.46+0.12

−0.14 2.25+0.16
−0.16 1.49+0.13

−0.14

3.7 1.6 2.41+0.15
−0.18 0.80+0.10

−0.32 2.46+0.14
−0.13 0.94+0.03

−0.05

4.1 1.8 2.19+0.20
−0.22 0.64+0.24

−0.11 2.28+0.17
−0.16 0.95+0.04

−0.05

4.4 1.9 2.08+0.20
−0.20 0.68+0.21

−0.09 2.18+0.16
−0.15 1.01+0.03

−0.05

4.8 2.1 2.17+0.16
−0.15 0.98+0.02

−0.00 2.50+0.13
−0.13 1.06+0.00

−0.00

5.1 2.2 2.16+0.16
−0.14 1.00+0.00

−0.00 2.49+0.13
−0.13 1.05+0.01

−0.02

5.5 2.4 2.10+0.16
−0.14 1.06+0.02

−0.01 2.40+0.14
−0.13 1.08+0.01

−0.01

5.8 2.5 2.09+0.14
−0.13 1.09+0.03

−0.03 2.39+0.13
−0.13 1.10+0.01

−0.03

6.2 2.7 2.01+0.18
−0.17 1.36+0.10

−0.10 2.22+0.17
−0.17 1.38+0.11

−0.09

6.5 2.8 1.75+0.21
−0.20 2.02+0.26

−0.28 1.85+0.21
−0.20 2.17+0.29

−0.28

6.9 3.0 2.04+0.07
−0.06 1.10+0.02

−0.03 2.32+0.07
−0.07 0.96+0.00

−0.02

7.3 3.2 1.96+0.07
−0.06 1.19+0.04

−0.02 2.20+0.07
−0.07 1.04+0.02

−0.01

7.6 3.3 1.92+0.15
−0.14 1.28+0.08

−0.10 2.15+0.16
−0.15 1.13+0.06

−0.06

8.0 3.5 2.04+0.10
−0.09 1.12+0.05

−0.04 2.27+0.11
−0.10 0.90+0.02

−0.02

8.3 3.6 1.90+0.22
−0.21 1.42+0.19

−0.17 2.08+0.24
−0.23 1.29+0.14

−0.13

8.7 3.8 1.87+0.25
−0.23 1.50+0.23

−0.21 2.04+0.27
−0.25 1.37+0.20

−0.16

9.0 3.9 2.03+0.15
−0.14 1.22+0.10

−0.09 2.21+0.16
−0.16 1.00+0.07

−0.06

9.4 4.1 2.16+0.12
−0.12 1.09+0.07

−0.06 2.33+0.14
−0.13 0.86+0.04

−0.04

9.7 4.2 2.27+0.15
−0.15 1.06+0.09

−0.07 2.44+0.17
−0.16 0.84+0.05

−0.05

10.1 4.4 2.59+0.18
−0.16 0.87+0.07

−0.05 2.74+0.19
−0.18 0.65+0.04

−0.03

10.4 4.5 2.77+0.10
−0.09 0.80+0.03

−0.03 2.90+0.11
−0.10 0.58+0.02

−0.01

10.8 4.7 2.83+0.11
−0.10 0.78+0.03

−0.03 2.94+0.12
−0.11 0.57+0.02

−0.02

11.1 4.8 2.70+0.22
−0.20 0.86+0.08

−0.08 2.80+0.23
−0.22 0.65+0.06

−0.05

11.5 5.0 2.49+0.26
−0.24 1.00+0.12

−0.11 2.58+0.27
−0.25 0.77+0.10

−0.08

11.9 5.2 1.88+0.28
−0.26 1.73+0.32

−0.27 1.97+0.29
−0.27 1.54+0.30

−0.23

12.2 5.3 2.04+0.19
−0.18 1.39+0.15

−0.14 2.12+0.20
−0.19 1.14+0.11

−0.10
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Table B.3.: Model Parameters of NGC3198.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.3 0.1 0.59+0.05
−0.04 0.04+0.00

−0.00 0.80+0.68
−0.29 0.09+0.00

−0.00 1.76+1.49
−0.63

1.0 0.3 1.34+0.02
−0.02 0.07+0.00

−0.00 1.08+0.57
−0.29 0.15+0.00

−0.00 2.39+1.25
−0.63

1.7 0.5 1.57+0.02
−0.01 0.09+0.00

−0.00 1.46+0.38
−0.26 0.19+0.00

−0.00 3.22+0.85
−0.57

2.3 0.7 1.54+0.01
−0.01 0.09+0.00

−0.00 1.38+0.24
−0.18 0.21+0.00

−0.00 3.04+0.53
−0.40

3.0 0.9 1.29+0.01
−0.01 0.10+0.00

−0.00 1.02+0.20
−0.15 0.22+0.00

−0.00 2.25+0.45
−0.32

3.7 1.2 1.08+0.01
−0.01 0.16+0.00

−0.00 1.23+0.20
−0.16 0.23+0.00

−0.00 1.69+0.28
−0.21

4.3 1.3 1.01+0.01
−0.01 0.18+0.00

−0.00 1.09+0.17
−0.13 0.24+0.00

−0.00 1.50+0.24
−0.18

5.0 1.6 0.93+0.01
−0.01 0.19+0.00

−0.00 1.09+0.13
−0.10 0.26+0.00

−0.00 1.50+0.17
−0.14

5.7 1.8 0.90+0.00
−0.00 0.21+0.00

−0.00 1.09+0.10
−0.09 0.29+0.00

−0.00 1.50+0.14
−0.12

6.4 2.0 0.95+0.01
−0.01 0.24+0.00

−0.00 1.05+0.11
−0.10 0.33+0.00

−0.00 1.45+0.16
−0.13

7.0 2.2 0.99+0.01
−0.01 0.36+0.00

−0.00 1.55+0.12
−0.10

7.7 2.4 1.09+0.01
−0.01 0.41+0.00

−0.00 1.32+0.12
−0.10

8.4 2.6 1.11+0.01
−0.01 0.46+0.00

−0.00 1.19+0.11
−0.09

9.0 2.8 1.16+0.01
−0.01 0.50+0.00

−0.00 1.05+0.09
−0.08

9.7 3.0 1.21+0.01
−0.01 0.55+0.00

−0.00 0.97+0.09
−0.08

10.4 3.2 1.24+0.01
−0.01 0.60+0.00

−0.00 0.96+0.08
−0.07

11.0 3.4 1.39+0.00
−0.00 0.67+0.00

−0.00 0.92+0.05
−0.04

11.7 3.7 1.38+0.02
−0.02 0.71+0.00

−0.00 0.82+0.07
−0.06

12.4 3.9 1.51+0.00
−0.00 0.79+0.00

−0.00 0.73+0.05
−0.04

13.0 4.1 1.80+0.00
−0.00 0.90+0.00

−0.00 0.69+0.04
−0.03

13.7 4.3 2.20+0.00
−0.00 1.06+0.00

−0.00 0.68+0.04
−0.04

14.4 4.5 1.87+0.05
−0.05 1.02+0.01

−0.01 0.78+0.11
−0.09

15.1 4.7 2.37+0.10
−0.09 1.21+0.03

−0.02 0.72+0.13
−0.10
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Table B.4.: Stability Diagnostics of NGC3198.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.3 0.1 1.43+0.44
−0.52 0.23+4.33

−0.02 1.72+0.14
−0.14 4.21+0.30

−0.35

1.0 0.3 2.52+0.13
−0.49 1.83+0.05

−1.63 2.53+0.13
−0.12 1.86+0.03

−0.05

1.7 0.5 2.75+0.08
−0.08 1.58+0.02

−0.04 2.76+0.08
−0.08 1.59+0.04

−0.02

2.3 0.7 2.67+0.07
−0.06 1.59+0.04

−0.01 2.68+0.06
−0.06 1.62+0.04

−0.01

3.0 0.9 2.31+0.08
−0.25 1.84+0.06

−1.52 2.33+0.08
−0.08 1.93+0.01

−0.04

3.7 1.2 1.97+0.08
−0.08 2.11+0.11

−0.16 1.99+0.08
−0.08 2.25+0.04

−0.07

4.3 1.3 1.80+0.09
−0.11 2.07+0.21

−0.91 1.83+0.08
−0.08 2.35+0.08

−0.08

5.0 1.6 1.69+0.07
−0.08 2.18+0.21

−0.54 1.73+0.06
−0.06 2.58+0.05

−0.08

5.7 1.8 1.61+0.06
−0.06 2.22+0.18

−0.31 1.66+0.05
−0.05 2.70+0.05

−0.05

6.4 2.0 1.57+0.07
−0.07 2.10+0.17

−0.16 1.64+0.06
−0.06 2.66+0.02

−0.05

7.0 2.2 1.67+0.05
−0.05 2.65+0.02

−0.02 1.76+0.05
−0.05 2.86+0.02

−0.06

7.7 2.4 1.61+0.06
−0.06 2.57+0.05

−0.01 1.70+0.06
−0.06 2.67+0.05

−0.01

8.4 2.6 1.52+0.06
−0.06 2.73+0.05

−0.09 1.60+0.06
−0.06 2.74+0.06

−0.06

9.0 2.8 1.45+0.06
−0.06 2.84+0.10

−0.09 1.51+0.07
−0.06 2.83+0.06

−0.10

9.7 3.0 1.40+0.07
−0.06 2.96+0.11

−0.10 1.45+0.07
−0.07 2.88+0.11

−0.11

10.4 3.2 1.39+0.06
−0.06 3.08+0.11

−0.11 1.43+0.07
−0.06 2.97+0.12

−0.11

11.0 3.4 1.42+0.04
−0.04 3.02+0.04

−0.08 1.46+0.04
−0.04 2.85+0.04

−0.08

11.7 3.7 1.33+0.07
−0.07 3.31+0.18

−0.17 1.35+0.08
−0.07 3.15+0.19

−0.18

12.4 3.9 1.29+0.05
−0.04 3.40+0.14

−0.09 1.30+0.05
−0.05 3.23+0.10

−0.14

13.0 4.1 1.35+0.04
−0.04 3.23+0.09

−0.09 1.36+0.04
−0.04 2.97+0.09

−0.09

13.7 4.3 1.48+0.05
−0.05 2.90+0.12

−0.08 1.49+0.05
−0.05 2.57+0.12

−0.07

14.4 4.5 1.48+0.14
−0.12 3.10+0.31

−0.28 1.48+0.14
−0.12 2.85+0.30

−0.32

15.1 4.7 1.60+0.19
−0.17 2.80+0.40

−0.32 1.59+0.19
−0.17 2.49+0.38

−0.33
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Table B.5.: Model Parameters of NGC3184.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.3 0.1 0.83+0.03
−0.03 0.04+0.00

−0.00 0.56+0.18
−0.12 0.08+0.00

−0.00 1.22+0.40
−0.26

0.8 0.3 1.74+0.01
−0.01 0.06+0.00

−0.00 0.69+0.13
−0.09 0.13+0.00

−0.00 1.52+0.28
−0.21

1.3 0.5 1.90+0.01
−0.01 0.07+0.00

−0.00 0.80+0.12
−0.09 0.16+0.00

−0.00 1.76+0.27
−0.21

1.9 0.8 2.04+0.01
−0.01 0.08+0.00

−0.00 0.78+0.12
−0.09 0.18+0.00

−0.00 1.71+0.25
−0.20

2.4 1.0 2.02+0.01
−0.01 0.09+0.00

−0.00 0.64+0.11
−0.08 0.20+0.00

−0.00 1.41+0.25
−0.19

3.0 1.2 1.73+0.01
−0.01 0.15+0.00

−0.00 0.95+0.16
−0.12 0.21+0.00

−0.00 1.30+0.22
−0.16

3.5 1.5 1.63+0.01
−0.01 0.16+0.00

−0.00 0.97+0.18
−0.13 0.22+0.00

−0.00 1.33+0.24
−0.18

4.0 1.7 1.45+0.01
−0.01 0.17+0.00

−0.00 1.01+0.19
−0.14 0.23+0.00

−0.00 1.39+0.27
−0.20

4.6 1.9 1.34+0.00
−0.00 0.18+0.00

−0.00 1.06+0.12
−0.10 0.24+0.00

−0.00 1.46+0.17
−0.14

5.1 2.1 1.28+0.01
−0.01 0.26+0.00

−0.00 1.42+0.11
−0.10

5.7 2.4 0.82+0.06
−0.05 0.23+0.01

−0.01 1.67+0.39
−0.30

6.2 2.6 1.12+0.01
−0.01 0.28+0.00

−0.00 1.43+0.20
−0.16

6.7 2.8 1.29+0.01
−0.01 0.33+0.00

−0.00 1.40+0.17
−0.14

7.3 3.0 1.47+0.00
−0.00 0.38+0.00

−0.00 1.40+0.14
−0.12

7.8 3.2 1.63+0.01
−0.01 0.42+0.00

−0.00 1.59+0.08
−0.07

8.3 3.5 1.77+0.01
−0.01 0.47+0.00

−0.00 1.50+0.08
−0.07

8.9 3.7 1.79+0.02
−0.02 0.50+0.00

−0.00 1.39+0.08
−0.08

9.4 3.9 2.07+0.01
−0.01 0.57+0.00

−0.00 1.28+0.07
−0.07

10.0 4.2 2.11+0.05
−0.05 0.62+0.01

−0.01 1.30+0.09
−0.08

10.5 4.4 2.59+0.03
−0.03 0.72+0.00

−0.00 1.26+0.07
−0.06

11.0 4.6 2.83+0.04
−0.04 0.79+0.01

−0.00 1.24+0.10
−0.09

11.6 4.8 3.04+0.05
−0.05 0.86+0.01

−0.01 1.24+0.12
−0.10

12.1 5.0 3.60+0.07
−0.07 0.98+0.01

−0.01 1.25+0.10
−0.09

12.6 5.2 3.59+0.08
−0.07 1.02+0.01

−0.01 1.45+0.14
−0.13

13.2 5.5 4.15+0.12
−0.11 1.15+0.02

−0.02 1.47+0.17
−0.15

13.7 5.7 4.74+0.00
−0.00 1.28+0.00

−0.00 1.37+0.11
−0.09

14.3 6.0 3.42+0.09
−0.09 1.14+0.02

−0.01 1.60+0.20
−0.17
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Table B.6.: Stability Diagnostics of NGC3184.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.3 0.1 1.04+0.35
−0.23 0.23+0.06

−0.06 1.70+0.09
−0.12 2.96+0.14

−2.61

0.8 0.3 1.79+0.30
−0.23 0.15+0.02

−0.02 2.36+0.07
−0.07 1.40+0.02

−0.02

1.3 0.5 2.10+0.28
−0.23 0.15+0.02

−0.01 2.48+0.06
−0.06 1.29+0.00

−0.02

1.9 0.8 2.08+0.27
−0.22 0.18+0.02

−0.02 2.48+0.08
−0.08 1.19+0.02

−0.04

2.4 1.0 1.73+0.27
−0.21 0.23+0.03

−0.03 2.31+0.10
−0.10 1.15+0.04

−0.06

3.0 1.2 2.00+0.14
−0.19 0.48+0.80

−0.01 2.06+0.10
−0.10 1.31+0.06

−0.12

3.5 1.5 1.93+0.14
−0.19 0.60+0.77

−0.04 1.98+0.11
−0.11 1.39+0.08

−0.11

4.0 1.7 1.85+0.12
−0.17 1.27+0.28

−0.61 1.89+0.10
−0.10 1.58+0.07

−0.11

4.6 1.9 1.77+0.07
−0.09 1.49+0.17

−0.61 1.81+0.06
−0.06 1.76+0.03

−0.08

5.1 2.1 1.73+0.05
−0.04 1.85+0.03

−0.06 1.87+0.04
−0.04 2.09+0.01

−0.01

5.7 2.4 1.50+0.12
−0.12 2.90+0.27

−0.29 1.56+0.12
−0.12 3.24+0.26

−0.25

6.2 2.6 1.59+0.07
−0.07 2.17+0.04

−0.07 1.69+0.06
−0.06 2.42+0.01

−0.01

6.7 2.8 1.63+0.07
−0.07 1.96+0.01

−0.03 1.76+0.07
−0.06 2.14+0.01

−0.04

7.3 3.0 1.69+0.06
−0.06 1.82+0.03

−0.01 1.83+0.06
−0.06 1.90+0.01

−0.03

7.8 3.2 1.82+0.03
−0.03 1.73+0.01

−0.03 1.97+0.03
−0.03 1.72+0.03

−0.01

8.3 3.5 1.82+0.04
−0.04 1.68+0.01

−0.03 1.98+0.04
−0.04 1.63+0.01

−0.03

8.9 3.7 1.76+0.05
−0.05 1.73+0.04

−0.02 1.90+0.05
−0.05 1.66+0.02

−0.04

9.4 3.9 1.79+0.05
−0.05 1.64+0.03

−0.03 1.93+0.05
−0.05 1.47+0.03

−0.01

10.0 4.2 1.81+0.07
−0.07 1.67+0.06

−0.08 1.94+0.08
−0.08 1.49+0.06

−0.06

10.5 4.4 1.95+0.06
−0.05 1.48+0.06

−0.04 2.08+0.06
−0.06 1.27+0.03

−0.03

11.0 4.6 2.01+0.08
−0.08 1.43+0.06

−0.06 2.13+0.09
−0.09 1.19+0.05

−0.03

11.6 4.8 2.06+0.10
−0.09 1.40+0.06

−0.08 2.17+0.10
−0.10 1.16+0.05

−0.05

12.1 5.0 2.25+0.10
−0.10 1.25+0.06

−0.06 2.34+0.11
−0.10 1.01+0.05

−0.05

12.6 5.2 2.40+0.12
−0.11 1.19+0.07

−0.06 2.48+0.12
−0.12 0.98+0.05

−0.05

13.2 5.5 2.60+0.15
−0.15 1.07+0.09

−0.07 2.65+0.16
−0.15 0.86+0.06

−0.05

13.7 5.7 2.71+0.08
−0.08 1.02+0.03

−0.04 2.73+0.09
−0.08 0.80+0.02

−0.02

14.3 6.0 2.44+0.14
−0.14 1.24+0.10

−0.08 2.48+0.14
−0.14 1.05+0.08

−0.07
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Table B.7.: Model Parameters of NGC4736.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.1 0.1 1.85+0.04
−0.04 0.01+0.00

−0.00 2.14+0.30
−0.24 0.02+0.00

−0.00 4.71+0.65
−0.54

0.3 0.3 2.17+0.03
−0.03 0.02+0.00

−0.00 1.33+0.23
−0.18 0.04+0.00

−0.00 2.94+0.51
−0.39

0.6 0.5 1.72+0.01
−0.01 0.03+0.00

−0.00 1.00+0.15
−0.12 0.07+0.00

−0.00 2.20+0.33
−0.26

0.8 0.7 1.57+0.00
−0.00 0.04+0.00

−0.00 0.95+0.12
−0.10 0.08+0.00

−0.00 2.10+0.26
−0.21

1.0 0.9 1.29+0.00
−0.00 0.04+0.00

−0.00 1.03+0.19
−0.14 0.10+0.00

−0.00 2.28+0.42
−0.31

1.3 1.2 1.35+0.00
−0.00 0.09+0.00

−0.00 1.70+0.58
−0.35 0.13+0.00

−0.00 2.34+0.79
−0.48

1.5 1.4 1.71+0.00
−0.00 0.12+0.00

−0.00 2.29+1.99
−0.73 0.17+0.00

−0.00 3.15+2.74
−1.00

1.7 1.5 1.87+0.00
−0.00 0.15+0.00

−0.00 4.04+2.34
−1.51 0.20+0.00

−0.00 5.56+3.21
−2.08

1.9 1.7 1.92+0.00
−0.00 0.16+0.00

−0.00 6.12+0.62
−0.52 0.23+0.00

−0.00 8.42+0.85
−0.71

2.2 2.0 1.74+0.00
−0.00 0.18+0.00

−0.00 6.49+0.77
−0.63 0.25+0.00

−0.00 8.92+1.06
−0.86

2.4 2.2 1.67+0.01
−0.01 0.27+0.00

−0.00 9.30+1.28
−1.01

2.6 2.4 1.62+0.00
−0.00 0.28+0.00

−0.00 9.39+1.38
−1.07

2.8 2.5 1.58+0.00
−0.00 0.30+0.00

−0.00 9.29+1.78
−1.30

3.1 2.8 1.48+0.00
−0.00 0.33+0.00

−0.00 9.67+2.56
−1.69

3.3 3.0 1.60+0.00
−0.00 0.36+0.00

−0.00 9.59+2.84
−1.80

3.5 3.2 1.76+0.01
−0.01 0.40+0.00

−0.00 10.27+3.14
−1.96

3.8 3.5 1.93+0.01
−0.01 0.45+0.00

−0.00 10.22+2.92
−1.87

4.0 3.6 2.24+0.01
−0.01 0.52+0.00

−0.00 10.91+2.96
−1.93

4.2 3.8 2.63+0.02
−0.02 0.59+0.00

−0.00 11.40+2.77
−1.89

4.4 4.0 3.21+0.03
−0.03 0.68+0.00

−0.00 12.12+2.39
−1.75

4.7 4.3 3.86+0.02
−0.02 0.80+0.00

−0.00 11.20+2.36
−1.69

4.9 4.5 4.65+0.04
−0.04 0.91+0.00

−0.00 10.68+2.53
−1.75

5.1 4.6 6.22+0.07
−0.07 1.10+0.01

−0.01 8.87+2.16
−1.49

5.4 4.9 7.06+0.10
−0.10 1.24+0.01

−0.01 7.87+3.18
−1.82

5.6 5.1 7.79+0.13
−0.13 1.35+0.01

−0.01 6.62+2.43
−1.46

5.8 5.3 7.26+0.13
−0.12 1.35+0.01

−0.01 6.11+2.04
−1.27

6.0 5.5 8.00+0.16
−0.16 1.46+0.01

−0.01 4.88+1.97
−1.14

6.3 5.7 7.26+0.15
−0.14 1.46+0.01

−0.01 4.30+1.49
−0.92
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Table B.8.: Stability Diagnostics of NGC4736.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.1 0.1 1.95+0.02
−0.02 1.36+0.03

−0.03 1.95+0.02
−0.02 1.37+0.03

−0.03

0.3 0.3 2.07+0.02
−0.02 1.16+0.01

−0.01 2.07+0.02
−0.02 1.16+0.01

−0.01

0.6 0.5 1.79+0.02
−0.20 1.46+0.01

−1.41 1.79+0.02
−0.02 1.45+0.01

−0.01

0.8 0.7 1.60+0.08
−0.15 0.08+1.51

−0.00 1.67+0.02
−0.02 1.59+0.00

−0.00

1.0 0.9 1.51+0.02
−0.15 1.93+0.01

−1.81 1.51+0.02
−0.02 1.93+0.01

−0.01

1.3 1.2 1.50+0.05
−0.04 1.84+0.01

−0.03 1.51+0.04
−0.04 1.85+0.01

−0.03

1.5 1.4 1.70+0.09
−0.08 1.45+0.02

−0.02 1.71+0.09
−0.08 1.46+0.02

−0.02

1.7 1.5 1.85+0.05
−0.08 1.34+0.00

−0.02 1.85+0.05
−0.08 1.35+0.00

−0.02

1.9 1.7 1.90+0.01
−0.01 1.31+0.00

−0.00 1.91+0.01
−0.01 1.31+0.00

−0.00

2.2 2.0 1.81+0.01
−0.01 1.45+0.00

−0.00 1.81+0.01
−0.01 1.45+0.00

−0.00

2.4 2.2 1.77+0.01
−0.01 1.51+0.01

−0.01 1.80+0.01
−0.01 1.53+0.01

−0.01

2.6 2.4 1.74+0.01
−0.01 1.56+0.00

−0.00 1.77+0.01
−0.01 1.58+0.00

−0.00

2.8 2.5 1.71+0.02
−0.02 1.60+0.00

−0.00 1.74+0.01
−0.01 1.62+0.00

−0.00

3.1 2.8 1.66+0.02
−0.02 1.70+0.03

−0.01 1.69+0.02
−0.02 1.72+0.01

−0.01

3.3 3.0 1.71+0.03
−0.03 1.60+0.00

−0.03 1.74+0.02
−0.02 1.60+0.00

−0.00

3.5 3.2 1.80+0.03
−0.03 1.45+0.00

−0.00 1.83+0.02
−0.02 1.45+0.00

−0.00

3.8 3.5 1.87+0.03
−0.03 1.33+0.02

−0.01 1.91+0.03
−0.03 1.33+0.02

−0.01

4.0 3.6 2.01+0.03
−0.03 1.16+0.00

−0.02 2.06+0.03
−0.03 1.14+0.02

−0.00

4.2 3.8 2.18+0.04
−0.04 1.00+0.01

−0.02 2.22+0.03
−0.03 0.97+0.02

−0.01

4.4 4.0 2.41+0.04
−0.04 0.82+0.02

−0.01 2.46+0.03
−0.03 0.81+0.01

−0.02

4.7 4.3 2.61+0.04
−0.04 0.70+0.00

−0.01 2.67+0.04
−0.04 0.67+0.00

−0.00

4.9 4.5 2.85+0.06
−0.06 0.59+0.01

−0.01 2.92+0.05
−0.05 0.56+0.01

−0.00

5.1 4.6 3.24+0.08
−0.08 0.45+0.02

−0.01 3.31+0.07
−0.07 0.42+0.01

−0.00

5.4 4.9 3.42+0.14
−0.13 0.41+0.02

−0.02 3.48+0.13
−0.12 0.38+0.01

−0.01

5.6 5.1 3.52+0.16
−0.15 0.39+0.02

−0.03 3.57+0.15
−0.14 0.35+0.02

−0.01

5.8 5.3 3.37+0.15
−0.15 0.42+0.02

−0.03 3.41+0.14
−0.14 0.38+0.01

−0.02

6.0 5.5 3.43+0.21
−0.20 0.40+0.04

−0.03 3.46+0.20
−0.19 0.35+0.02

−0.02

6.3 5.7 3.20+0.19
−0.18 0.45+0.04

−0.03 3.21+0.19
−0.18 0.40+0.03

−0.02
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Table B.9.: Model Parameters of NGC3351.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.2 0.1 7.94+0.18
−0.17 0.02+0.00

−0.00 0.43+0.12
−0.08 0.03+0.00

−0.00 0.95+0.26
−0.18

0.7 0.3 4.98+0.05
−0.05 0.03+0.00

−0.00 0.45+0.21
−0.11 0.07+0.00

−0.00 0.99+0.47
−0.25

1.2 0.5 3.81+0.02
−0.02 0.05+0.00

−0.00 1.37+0.94
−0.44 0.11+0.00

−0.00 3.01+2.07
−0.98

1.7 0.8 3.21+0.02
−0.02 0.07+0.00

−0.00 5.49+5.60
−2.53 0.15+0.00

−0.00 12.07+12.33
−5.56

2.2 1.0 2.48+0.02
−0.02 0.08+0.00

−0.00 4.39+1.23
−0.80 0.17+0.00

−0.00 9.65+2.72
−1.76

2.7 1.2 1.80+0.01
−0.01 0.13+0.00

−0.00 3.95+0.79
−0.57 0.18+0.00

−0.00 5.44+1.09
−0.79

3.2 1.5 1.37+0.00
−0.00 0.13+0.00

−0.00 2.90+0.47
−0.36 0.18+0.00

−0.00 3.98+0.64
−0.49

3.7 1.7 1.34+0.00
−0.00 0.15+0.00

−0.00 2.68+0.51
−0.37 0.21+0.00

−0.00 3.68+0.71
−0.51

4.2 1.9 1.38+0.00
−0.00 0.17+0.00

−0.00 2.71+0.49
−0.36 0.24+0.00

−0.00 3.72+0.68
−0.50

4.7 2.1 1.48+0.00
−0.00 0.28+0.00

−0.00 3.57+0.46
−0.37

5.1 2.3 1.58+0.01
−0.01 0.31+0.00

−0.00 3.75+0.59
−0.45

5.6 2.5 1.48+0.00
−0.00 0.33+0.00

−0.00 3.86+0.66
−0.49

6.1 2.8 1.37+0.00
−0.00 0.35+0.00

−0.00 3.96+0.74
−0.54

6.6 3.0 1.35+0.00
−0.00 0.37+0.00

−0.00 3.89+0.63
−0.48

7.1 3.2 1.37+0.00
−0.00 0.40+0.00

−0.00 4.91+0.42
−0.36

7.6 3.5 1.50+0.01
−0.01 0.45+0.00

−0.00 4.24+0.35
−0.30

8.1 3.7 1.70+0.01
−0.01 0.51+0.00

−0.00 3.48+0.28
−0.24

8.6 3.9 1.91+0.01
−0.01 0.58+0.00

−0.00 2.81+0.21
−0.19

9.1 4.1 2.18+0.02
−0.02 0.65+0.00

−0.00 2.35+0.17
−0.15

9.5 4.3 2.36+0.02
−0.02 0.71+0.00

−0.00 2.10+0.15
−0.14

10.0 4.5 2.47+0.05
−0.05 0.76+0.01

−0.01 2.00+0.19
−0.17

10.5 4.8 3.08+0.00
−0.00 0.89+0.00

−0.00 1.93+0.13
−0.12

11.0 5.0 3.19+0.05
−0.05 0.95+0.01

−0.01 2.25+0.26
−0.22

11.5 5.2 3.24+0.13
−0.12 1.00+0.02

−0.02 2.54+0.28
−0.25

12.0 5.5 4.27+0.12
−0.11 1.20+0.02

−0.02 2.47+0.25
−0.22

12.5 5.7 4.28+0.27
−0.24 1.25+0.04

−0.04 3.05+0.53
−0.45
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Radial Profiles of Model Parameters and Stability Diagnostics

Table B.10.: Stability Diagnostics of NGC3351.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.2 0.1 2.47+0.68
−0.47 0.01+0.00

−0.00 5.16+0.35
−0.94 0.01+0.31

−0.00

0.7 0.3 1.99+0.92
−0.49 0.04+0.01

−0.01 3.89+0.25
−0.88 0.05+0.45

−0.00

1.2 0.5 3.70+0.13
−0.35 0.65+0.01

−0.61 3.71+0.13
−0.14 0.65+0.01

−0.00

1.7 0.8 3.58+0.06
−0.09 0.78+0.01

−0.01 3.58+0.06
−0.08 0.79+0.01

−0.01

2.2 1.0 3.11+0.03
−0.03 1.02+0.01

−0.01 3.11+0.03
−0.03 1.02+0.01

−0.01

2.7 1.2 2.58+0.03
−0.03 1.40+0.01

−0.01 2.58+0.03
−0.03 1.40+0.01

−0.01

3.2 1.5 2.19+0.03
−0.03 1.81+0.03

−0.01 2.19+0.03
−0.03 1.85+0.01

−0.03

3.7 1.7 2.12+0.04
−0.04 1.85+0.03

−0.01 2.13+0.04
−0.04 1.88+0.01

−0.03

4.2 1.9 2.12+0.04
−0.04 1.80+0.03

−0.01 2.13+0.04
−0.04 1.83+0.01

−0.01

4.7 2.1 2.16+0.04
−0.04 1.71+0.00

−0.00 2.24+0.03
−0.03 1.75+0.01

−0.01

5.1 2.3 2.21+0.05
−0.05 1.62+0.01

−0.01 2.30+0.04
−0.04 1.65+0.03

−0.01

5.6 2.5 2.14+0.05
−0.05 1.73+0.00

−0.00 2.22+0.04
−0.04 1.78+0.00

−0.03

6.1 2.8 2.06+0.05
−0.05 1.86+0.03

−0.00 2.13+0.04
−0.04 1.92+0.00

−0.03

6.6 3.0 2.02+0.05
−0.05 1.93+0.00

−0.00 2.09+0.04
−0.04 1.96+0.03

−0.01

7.1 3.2 2.09+0.02
−0.02 1.89+0.01

−0.01 2.15+0.02
−0.02 1.92+0.01

−0.01

7.6 3.5 2.12+0.03
−0.03 1.78+0.01

−0.03 2.19+0.03
−0.03 1.79+0.01

−0.03

8.1 3.7 2.15+0.04
−0.04 1.61+0.03

−0.01 2.25+0.03
−0.03 1.60+0.01

−0.01

8.6 3.9 2.15+0.04
−0.04 1.51+0.03

−0.01 2.26+0.04
−0.04 1.46+0.01

−0.03

9.1 4.1 2.16+0.05
−0.05 1.44+0.03

−0.03 2.28+0.05
−0.05 1.32+0.03

−0.01

9.5 4.3 2.16+0.06
−0.06 1.40+0.03

−0.05 2.28+0.06
−0.06 1.26+0.03

−0.03

10.0 4.5 2.16+0.09
−0.09 1.39+0.05

−0.07 2.28+0.09
−0.09 1.23+0.05

−0.04

10.5 4.8 2.37+0.05
−0.05 1.19+0.02

−0.03 2.48+0.05
−0.05 1.02+0.02

−0.01

11.0 5.0 2.53+0.11
−0.10 1.12+0.05

−0.05 2.62+0.11
−0.10 0.97+0.05

−0.03

11.5 5.2 2.64+0.13
−0.13 1.09+0.06

−0.07 2.73+0.13
−0.13 0.94+0.06

−0.05

12.0 5.5 3.02+0.13
−0.12 0.87+0.05

−0.05 3.07+0.13
−0.12 0.74+0.04

−0.03

12.5 5.7 3.20+0.23
−0.22 0.82+0.08

−0.08 3.24+0.22
−0.22 0.71+0.06

−0.06

101



Appendix B

Table B.11.: Model Parameters of NGC6946.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.1 0.0 0.32+0.02
−0.02 0.01+0.00

−0.00 0.14+0.03
−0.03 0.03+0.00

−0.00 0.30+0.07
−0.06

0.4 0.2 1.31+0.01
−0.01 0.03+0.00

−0.00 0.08+0.02
−0.02 0.06+0.00

−0.00 0.18+0.05
−0.03

0.7 0.3 1.62+0.01
−0.01 0.04+0.00

−0.00 0.12+0.04
−0.02 0.08+0.00

−0.00 0.26+0.09
−0.05

1.0 0.4 1.81+0.01
−0.01 0.04+0.00

−0.00 0.19+0.07
−0.04 0.10+0.00

−0.00 0.42+0.16
−0.09

1.3 0.5 1.76+0.01
−0.01 0.05+0.00

−0.00 0.28+0.10
−0.06 0.11+0.00

−0.00 0.63+0.22
−0.13

1.6 0.6 1.46+0.02
−0.02 0.05+0.00

−0.00 0.38+0.11
−0.07 0.11+0.00

−0.00 0.83+0.24
−0.16

1.9 0.8 1.29+0.01
−0.01 0.05+0.00

−0.00 0.41+0.08
−0.06 0.11+0.00

−0.00 0.90+0.18
−0.13

2.1 0.8 1.28+0.00
−0.00 0.06+0.00

−0.00 0.39+0.06
−0.05 0.12+0.00

−0.00 0.87+0.13
−0.10

2.4 1.0 1.15+0.00
−0.00 0.06+0.00

−0.00 0.38+0.05
−0.04 0.13+0.00

−0.00 0.84+0.12
−0.09

2.7 1.1 1.05+0.00
−0.00 0.10+0.00

−0.00 0.60+0.08
−0.06 0.13+0.00

−0.00 0.82+0.11
−0.09

3.0 1.2 0.96+0.01
−0.01 0.10+0.00

−0.00 0.60+0.07
−0.06 0.14+0.00

−0.00 0.83+0.10
−0.08

3.3 1.3 0.91+0.00
−0.00 0.11+0.00

−0.00 0.61+0.07
−0.06 0.15+0.00

−0.00 0.83+0.10
−0.08

3.6 1.4 0.81+0.01
−0.01 0.11+0.00

−0.00 0.61+0.09
−0.07 0.15+0.00

−0.00 0.84+0.13
−0.10

3.9 1.6 0.51+0.02
−0.02 0.09+0.00

−0.00 0.71+0.19
−0.14 0.13+0.00

−0.00 0.98+0.26
−0.19

4.1 1.6 0.68+0.01
−0.01 0.12+0.00

−0.00 0.61+0.15
−0.10 0.16+0.00

−0.00 0.84+0.21
−0.14

4.4 1.8 0.69+0.01
−0.01 0.12+0.00

−0.00 0.62+0.17
−0.11 0.17+0.00

−0.00 0.85+0.24
−0.15

4.7 1.9 0.66+0.00
−0.00 0.13+0.00

−0.00 0.66+0.19
−0.12 0.18+0.00

−0.00 0.91+0.26
−0.17

5.0 2.0 0.67+0.00
−0.00 0.14+0.00

−0.00 0.71+0.20
−0.13 0.19+0.00

−0.00 0.97+0.28
−0.18

5.3 2.1 0.69+0.00
−0.00 0.21+0.00

−0.00 1.05+0.31
−0.20

5.6 2.2 0.69+0.00
−0.00 0.22+0.00

−0.00 1.14+0.28
−0.19

5.9 2.4 0.33+0.02
−0.02 0.16+0.00

−0.00 1.75+0.52
−0.37

6.1 2.4 0.54+0.01
−0.01 0.21+0.00

−0.00 1.43+0.30
−0.22

6.4 2.6 0.51+0.02
−0.02 0.22+0.00

−0.00 1.53+0.40
−0.29

6.7 2.7 0.54+0.03
−0.02 0.23+0.01

−0.01 1.56+0.45
−0.31

7.0 2.8 0.60+0.01
−0.01 0.26+0.00

−0.00 1.58+0.41
−0.28

7.3 2.9 0.66+0.01
−0.01 0.28+0.00

−0.00 1.60+0.51
−0.32

7.6 3.0 0.73+0.01
−0.01 0.31+0.00

−0.00 1.58+0.52
−0.32

7.9 3.2 0.82+0.01
−0.01 0.34+0.00

−0.00 1.73+0.30
−0.23

8.2 3.3 0.72+0.02
−0.02 0.33+0.00

−0.00 1.80+0.33
−0.26

8.4 3.4 0.83+0.02
−0.02 0.37+0.00

−0.00 1.74+0.32
−0.25

8.7 3.5 0.84+0.02
−0.02 0.38+0.01

−0.01 1.79+0.32
−0.25

9.0 3.6 0.84+0.03
−0.03 0.39+0.01

−0.01 1.90+0.36
−0.28

9.3 3.7 1.05+0.02
−0.02 0.46+0.01

−0.00 1.78+0.27
−0.22

9.6 3.8 0.83+0.03
−0.02 0.42+0.01

−0.01 2.12+0.38
−0.30

9.9 4.0 0.57+0.03
−0.03 0.36+0.01

−0.01 2.73+0.56
−0.45

10.2 4.1 0.23+0.02
−0.02 0.23+0.01

−0.01 4.49+1.14
−0.87

10.4 4.2 0.93+0.02
−0.02 0.48+0.01

−0.01 2.39+0.43
−0.34

10.7 4.3 1.04+0.02
−0.02 0.52+0.01

−0.01 2.31+0.43
−0.33

11.0 4.4 0.99+0.03
−0.03 0.52+0.01

−0.01 2.43+0.42
−0.33

11.3 4.5 0.90+0.04
−0.03 0.51+0.01

−0.01 2.54+0.49
−0.39

11.6 4.6 1.18+0.03
−0.03 0.60+0.01

−0.01 2.16+0.36
−0.28
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Radial Profiles of Model Parameters and Stability Diagnostics

Table B.12.: Stability Diagnostics of NGC6946.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.1 0.0 0.17+0.05
−0.04 0.74+0.19

−0.16 0.37+0.10
−0.08 0.75+0.20

−0.16

0.4 0.2 0.21+0.06
−0.04 0.69+0.15

−0.16 0.45+0.12
−0.08 0.71+0.15

−0.14

0.7 0.3 0.33+0.12
−0.07 0.50+0.13

−0.13 0.70+0.23
−0.14 0.53+0.13

−0.13

1.0 0.4 0.55+0.21
−0.12 0.33+0.10

−0.09 1.13+0.39
−0.24 0.38+0.09

−0.09

1.3 0.5 0.80+0.28
−0.17 0.26+0.07

−0.07 1.58+0.47
−0.30 0.33+0.06

−0.06

1.6 0.6 0.95+0.27
−0.18 0.25+0.06

−0.05 1.82+0.34
−0.30 0.34+1.30

−0.00

1.9 0.8 0.97+0.19
−0.14 0.27+0.04

−0.04 1.81+0.20
−0.22 0.40+1.44

−0.00

2.1 0.8 0.93+0.14
−0.11 0.31+0.03

−0.04 1.73+0.20
−0.17 0.45+1.33

−0.01

2.4 1.0 0.85+0.12
−0.09 0.37+0.04

−0.04 1.58+0.17
−0.14 0.55+0.03

−0.02

2.7 1.1 1.19+0.14
−0.11 0.50+0.04

−0.04 1.47+0.14
−0.12 0.65+0.03

−0.02

3.0 1.2 1.14+0.12
−0.10 0.58+0.05

−0.04 1.41+0.12
−0.11 0.76+0.04

−0.01

3.3 1.3 1.10+0.11
−0.10 0.65+0.05

−0.05 1.35+0.12
−0.10 0.89+0.03

−0.02

3.6 1.4 1.05+0.14
−0.11 0.76+0.08

−0.07 1.28+0.14
−0.12 1.03+0.04

−0.02

3.9 1.6 0.97+0.24
−0.18 0.88+0.19

−0.16 1.18+0.11
−0.19 1.23+3.64

−0.10

4.1 1.6 0.95+0.20
−0.15 0.95+0.14

−0.14 1.16+0.17
−0.16 1.31+1.81

−0.01

4.4 1.8 0.96+0.22
−0.16 1.01+0.15

−0.13 1.16+0.17
−0.16 1.48+1.52

−0.03

4.7 1.9 0.99+0.22
−0.16 1.09+0.14

−0.13 1.17+0.15
−0.16 1.73+1.59

−0.08

5.0 2.0 1.04+0.23
−0.16 1.14+0.15

−0.09 1.20+0.13
−0.15 2.20+1.15

−0.39

5.3 2.1 1.23+0.12
−0.13 2.74+0.63

−0.68 1.28+0.11
−0.10 3.89+0.02

−0.13

5.6 2.2 1.26+0.10
−0.10 3.01+0.36

−0.56 1.30+0.09
−0.09 3.91+0.02

−0.07

5.9 2.4 1.05+0.07
−0.07 7.37+0.63

−0.60 1.02+0.08
−0.08 8.12+0.46

−0.57

6.1 2.4 1.21+0.07
−0.07 4.33+0.26

−0.36 1.21+0.07
−0.07 5.04+0.10

−0.17

6.4 2.6 1.19+0.09
−0.09 4.60+0.40

−0.49 1.19+0.10
−0.09 5.28+0.23

−0.31

6.7 2.7 1.21+0.10
−0.10 4.40+0.32

−0.52 1.22+0.11
−0.10 4.99+0.30

−0.29

7.0 2.8 1.25+0.09
−0.09 3.99+0.23

−0.22 1.27+0.09
−0.08 4.59+0.07

−0.14

7.3 2.9 1.29+0.11
−0.10 3.72+0.08

−0.18 1.32+0.10
−0.10 4.16+0.10

−0.10

7.6 3.0 1.33+0.12
−0.11 3.39+0.07

−0.12 1.36+0.12
−0.11 3.80+0.09

−0.09

7.9 3.2 1.41+0.07
−0.07 3.13+0.07

−0.02 1.46+0.07
−0.07 3.42+0.08

−0.07

8.2 3.3 1.35+0.08
−0.08 3.57+0.08

−0.13 1.38+0.08
−0.08 3.90+0.15

−0.15

8.4 3.4 1.41+0.09
−0.09 3.16+0.12

−0.08 1.45+0.09
−0.09 3.40+0.14

−0.14

8.7 3.5 1.42+0.09
−0.09 3.16+0.13

−0.13 1.46+0.09
−0.09 3.37+0.14

−0.14

9.0 3.6 1.43+0.10
−0.09 3.22+0.16

−0.16 1.47+0.10
−0.10 3.38+0.23

−0.17

9.3 3.7 1.53+0.09
−0.08 2.70+0.10

−0.10 1.59+0.09
−0.09 2.77+0.10

−0.10

9.6 3.8 1.46+0.09
−0.08 3.28+0.14

−0.14 1.50+0.09
−0.08 3.40+0.21

−0.15

9.9 4.0 1.32+0.08
−0.08 4.52+0.30

−0.23 1.33+0.08
−0.08 4.80+0.40

−0.32

10.2 4.1 0.94+0.05
−0.05 11.11+0.81

−0.81 0.92+0.06
−0.06 11.58+1.02

−0.84

10.4 4.2 1.56+0.08
−0.08 3.02+0.12

−0.11 1.60+0.09
−0.08 3.09+0.12

−0.16

10.7 4.3 1.62+0.09
−0.09 2.79+0.14

−0.14 1.67+0.09
−0.09 2.82+0.11

−0.14

11.0 4.4 1.60+0.09
−0.09 2.93+0.13

−0.16 1.64+0.09
−0.09 2.96+0.13

−0.17

11.3 4.5 1.55+0.10
−0.09 3.16+0.21

−0.20 1.58+0.10
−0.10 3.19+0.22

−0.17

11.6 4.6 1.67+0.09
−0.09 2.61+0.13

−0.13 1.72+0.10
−0.09 2.54+0.14

−0.10
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Table B.13.: Model Parameters of NGC3627.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.2 0.1 0.45+0.02
−0.02 0.01+0.00

−0.00 0.39+0.12
−0.08 0.03+0.00

−0.00 0.86+0.26
−0.18

0.7 0.2 0.97+0.01
−0.01 0.02+0.00

−0.00 0.32+0.09
−0.06 0.05+0.00

−0.00 0.71+0.20
−0.13

1.1 0.4 1.24+0.01
−0.01 0.03+0.00

−0.00 0.43+0.11
−0.07 0.07+0.00

−0.00 0.94+0.24
−0.16

1.6 0.6 1.15+0.01
−0.01 0.04+0.00

−0.00 0.54+0.16
−0.10 0.08+0.00

−0.00 1.18+0.36
−0.23

2.0 0.7 1.04+0.01
−0.01 0.04+0.00

−0.00 0.46+0.29
−0.13 0.09+0.00

−0.00 1.01+0.64
−0.29

2.5 0.9 0.89+0.01
−0.01 0.05+0.00

−0.00 0.34+0.30
−0.11 0.10+0.00

−0.00 0.74+0.66
−0.24

2.9 1.0 0.75+0.01
−0.01 0.08+0.00

−0.00 0.49+0.43
−0.16 0.11+0.00

−0.00 0.68+0.59
−0.22

3.4 1.2 0.72+0.01
−0.01 0.09+0.00

−0.00 0.53+0.43
−0.17 0.12+0.00

−0.00 0.72+0.60
−0.23

3.8 1.4 0.73+0.01
−0.01 0.10+0.00

−0.00 0.75+0.64
−0.24 0.14+0.00

−0.00 1.03+0.88
−0.33

4.3 1.5 0.71+0.00
−0.00 0.11+0.00

−0.00 0.99+0.69
−0.29 0.16+0.00

−0.00 1.35+0.95
−0.40

4.7 1.7 0.65+0.00
−0.00 0.12+0.00

−0.00 1.14+0.62
−0.30 0.16+0.00

−0.00 1.56+0.85
−0.41

5.2 1.9 0.63+0.00
−0.00 0.13+0.00

−0.00 1.25+0.74
−0.34 0.18+0.00

−0.00 1.72+1.02
−0.47

5.6 2.0 0.63+0.00
−0.00 0.14+0.00

−0.00 1.36+0.94
−0.40 0.19+0.00

−0.00 1.87+1.29
−0.55

6.1 2.2 0.63+0.00
−0.00 0.21+0.00

−0.00 2.04+1.77
−0.65

6.5 2.3 0.67+0.00
−0.00 0.23+0.00

−0.00 2.11+2.06
−0.71

7.0 2.5 0.65+0.01
−0.01 0.25+0.00

−0.00 2.47+2.93
−0.88

7.4 2.6 0.75+0.01
−0.01 0.28+0.00

−0.00 3.48+3.73
−1.20

7.9 2.8 0.85+0.00
−0.00 0.32+0.00

−0.00 7.75+2.46
−1.52

8.3 3.0 0.91+0.01
−0.01 0.35+0.00

−0.00 9.33+2.96
−1.85

8.8 3.1 0.99+0.00
−0.00 0.38+0.00

−0.00 9.98+2.28
−1.58
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Table B.14.: Stability Diagnostics of NGC3627.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.2 0.1 0.60+0.20
−0.14 0.18+0.05

−0.05 1.27+0.24
−0.28 0.20+5.61

−0.01

0.7 0.2 0.73+0.21
−0.14 0.19+0.05

−0.04 1.51+0.39
−0.27 0.22+0.04

−0.04

1.1 0.4 1.07+0.26
−0.18 0.16+0.03

−0.03 2.12+0.16
−0.32 0.20+1.80

−0.00

1.6 0.6 1.28+0.37
−0.24 0.17+0.04

−0.04 2.15+0.08
−0.14 2.13+0.04

−1.86

2.0 0.7 1.04+0.63
−0.29 0.24+0.09

−0.09 1.95+0.16
−0.47 2.30+0.11

−1.88

2.5 0.9 0.71+0.60
−0.23 0.42+0.19

−0.19 1.39+0.50
−0.41 0.55+2.24

−0.01

2.9 1.0 0.91+0.69
−0.29 0.63+0.26

−0.24 1.17+0.52
−0.35 0.74+2.54

−0.02

3.4 1.2 0.94+0.65
−0.28 0.73+0.27

−0.25 1.19+0.44
−0.33 0.89+2.49

−0.01

3.8 1.4 1.27+0.44
−0.37 0.65+2.73

−0.00 1.50+0.21
−0.37 2.99+0.41

−1.95

4.3 1.5 1.53+0.17
−0.38 0.69+2.82

−0.01 1.55+0.16
−0.18 3.32+0.20

−2.08

4.7 1.7 1.51+0.12
−0.24 3.67+0.19

−2.82 1.51+0.12
−0.12 3.70+0.18

−0.31

5.2 1.9 1.49+0.12
−0.18 3.80+0.20

−2.82 1.50+0.12
−0.12 3.87+0.13

−0.28

5.6 2.0 1.49+0.14
−0.15 3.79+0.20

−2.66 1.50+0.13
−0.13 3.92+0.08

−0.28

6.1 2.2 1.51+0.15
−0.14 3.90+0.13

−0.28 1.52+0.14
−0.13 4.24+0.03

−0.15

6.5 2.3 1.54+0.17
−0.16 3.68+0.12

−0.21 1.56+0.16
−0.15 4.00+0.09

−0.14

7.0 2.5 1.55+0.17
−0.16 3.83+0.09

−0.18 1.57+0.16
−0.15 4.11+0.10

−0.15

7.4 2.6 1.73+0.14
−0.13 3.35+0.03

−0.03 1.75+0.13
−0.12 3.50+0.08

−0.13

7.9 2.8 1.98+0.04
−0.04 2.96+0.05

−0.01 2.00+0.04
−0.04 3.05+0.01

−0.06

8.3 3.0 2.06+0.04
−0.04 2.81+0.02

−0.06 2.08+0.04
−0.04 2.81+0.07

−0.02

8.8 3.1 2.15+0.03
−0.03 2.60+0.01

−0.01 2.17+0.03
−0.03 2.60+0.05

−0.01
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Table B.15.: Model Parameters of NGC5194.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.2 0.1 1.33+0.03
−0.03 0.01+0.00

−0.00 0.32+0.08
−0.06 0.03+0.00

−0.00 0.71+0.18
−0.13

0.6 0.2 1.56+0.01
−0.01 0.02+0.00

−0.00 0.21+0.04
−0.03 0.04+0.00

−0.00 0.47+0.09
−0.07

1.0 0.4 1.74+0.01
−0.01 0.03+0.00

−0.00 0.18+0.04
−0.03 0.06+0.00

−0.00 0.39+0.08
−0.06

1.4 0.5 1.92+0.01
−0.01 0.04+0.00

−0.00 0.18+0.08
−0.04 0.08+0.00

−0.00 0.39+0.17
−0.09

1.7 0.6 2.08+0.01
−0.01 0.04+0.00

−0.00 0.18+0.08
−0.04 0.09+0.00

−0.00 0.39+0.17
−0.09

2.1 0.8 1.60+0.01
−0.01 0.05+0.00

−0.00 0.19+0.05
−0.03 0.10+0.00

−0.00 0.41+0.10
−0.07

2.5 0.9 1.20+0.01
−0.01 0.05+0.00

−0.00 0.23+0.06
−0.04 0.10+0.00

−0.00 0.50+0.13
−0.09

2.9 1.0 1.05+0.00
−0.00 0.08+0.00

−0.00 0.56+0.21
−0.12 0.11+0.00

−0.00 0.77+0.29
−0.17

3.3 1.2 0.94+0.00
−0.00 0.09+0.00

−0.00 1.00+0.34
−0.20 0.12+0.00

−0.00 1.37+0.47
−0.28

3.7 1.3 0.84+0.01
−0.01 0.09+0.00

−0.00 1.15+0.27
−0.19 0.13+0.00

−0.00 1.58+0.38
−0.26

4.1 1.5 0.73+0.01
−0.01 0.10+0.00

−0.00 0.77+0.30
−0.17 0.13+0.00

−0.00 1.06+0.42
−0.24

4.5 1.6 0.63+0.00
−0.00 0.10+0.00

−0.00 0.52+0.19
−0.11 0.14+0.00

−0.00 0.72+0.26
−0.15

4.8 1.7 0.55+0.00
−0.00 0.10+0.00

−0.00 0.48+0.14
−0.09 0.14+0.00

−0.00 0.66+0.20
−0.12

5.2 1.9 0.51+0.00
−0.00 0.10+0.00

−0.00 0.52+0.13
−0.09 0.14+0.00

−0.00 0.72+0.18
−0.12

5.6 2.0 0.52+0.00
−0.00 0.11+0.00

−0.00 0.72+0.19
−0.12 0.15+0.00

−0.00 0.99+0.26
−0.17

6.0 2.1 0.53+0.00
−0.00 0.17+0.00

−0.00 1.62+0.51
−0.32

6.4 2.3 0.65+0.00
−0.00 0.20+0.00

−0.00 2.03+0.47
−0.34

6.8 2.4 0.79+0.00
−0.00 0.23+0.00

−0.00 2.15+0.27
−0.22

7.2 2.6 0.85+0.01
−0.01 0.26+0.00

−0.00 2.11+0.31
−0.24

7.6 2.7 0.98+0.01
−0.01 0.29+0.00

−0.00 1.86+0.29
−0.23

8.0 2.9 0.99+0.01
−0.01 0.31+0.00

−0.00 1.76+0.31
−0.23

8.3 3.0 0.89+0.01
−0.01 0.30+0.00

−0.00 1.79+0.35
−0.25

8.7 3.1 0.71+0.01
−0.01 0.28+0.00

−0.00 1.92+0.39
−0.28

9.1 3.2 0.50+0.01
−0.01 0.25+0.00

−0.00 2.34+0.52
−0.38

9.5 3.4 0.44+0.01
−0.01 0.24+0.00

−0.00 2.70+0.59
−0.43

9.9 3.5 0.33+0.01
−0.01 0.22+0.00

−0.00 3.29+0.80
−0.57

10.3 3.7 0.13+0.01
−0.01 0.14+0.00

−0.00 5.83+1.84
−1.26

10.7 3.8 0.24+0.01
−0.01 0.20+0.00

−0.00 4.62+1.42
−0.94
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Table B.16.: Stability Diagnostics of NGC5194.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.2 0.1 0.85+0.23
−0.16 0.08+0.02

−0.02 1.82+0.46
−0.33 0.08+0.02

−0.02

0.6 0.2 0.61+0.12
−0.09 0.15+0.03

−0.02 1.29+0.25
−0.19 0.16+0.02

−0.03

1.0 0.4 0.53+0.11
−0.08 0.22+0.04

−0.04 1.12+0.22
−0.16 0.24+0.04

−0.04

1.4 0.5 0.56+0.24
−0.13 0.27+0.08

−0.08 1.17+0.47
−0.26 0.30+0.08

−0.08

1.7 0.6 0.58+0.25
−0.14 0.30+0.09

−0.09 1.21+0.48
−0.27 0.34+0.09

−0.09

2.1 0.8 0.53+0.13
−0.09 0.40+0.08

−0.08 1.10+0.25
−0.17 0.46+0.08

−0.08

2.5 0.9 0.57+0.15
−0.10 0.45+0.09

−0.09 1.15+0.27
−0.19 0.53+0.09

−0.09

2.9 1.0 1.22+0.41
−0.25 0.42+0.10

−0.09 1.54+0.38
−0.29 0.51+1.75

−0.00

3.3 1.2 1.87+0.09
−0.33 0.35+2.27

−0.00 1.88+0.09
−0.09 2.58+0.05

−0.11

3.7 1.3 1.80+0.06
−0.11 2.87+0.07

−2.44 1.80+0.06
−0.06 2.93+0.02

−0.10

4.1 1.5 1.31+0.34
−0.26 0.60+2.74

−0.00 1.53+0.12
−0.23 3.12+0.24

−2.21

4.5 1.6 0.87+0.28
−0.17 0.94+0.20

−0.20 1.09+0.29
−0.20 1.16+0.17

−0.08

4.8 1.7 0.74+0.20
−0.13 1.16+0.21

−0.22 0.94+0.22
−0.15 1.40+0.19

−0.15

5.2 1.9 0.78+0.17
−0.12 1.22+0.20

−0.19 0.97+0.18
−0.14 1.53+0.16

−0.11

5.6 2.0 1.01+0.21
−0.15 1.08+0.16

−0.12 1.20+0.10
−0.15 1.74+2.74

−0.10

6.0 2.1 1.38+0.07
−0.07 4.57+0.09

−0.20 1.38+0.07
−0.07 4.96+0.10

−0.03

6.4 2.3 1.55+0.06
−0.06 3.76+0.07

−0.06 1.57+0.05
−0.06 4.03+0.08

−0.02

6.8 2.4 1.68+0.04
−0.04 3.10+0.05

−0.01 1.72+0.04
−0.04 3.37+0.01

−0.06

7.2 2.6 1.70+0.06
−0.06 2.92+0.03

−0.07 1.76+0.05
−0.05 3.13+0.03

−0.03

7.6 2.7 1.73+0.07
−0.07 2.54+0.05

−0.05 1.81+0.06
−0.06 2.77+0.02

−0.06

8.0 2.9 1.69+0.08
−0.08 2.56+0.02

−0.05 1.77+0.08
−0.07 2.75+0.06

−0.02

8.3 3.0 1.62+0.08
−0.08 2.80+0.06

−0.06 1.68+0.08
−0.07 3.05+0.07

−0.02

8.7 3.1 1.49+0.07
−0.07 3.53+0.09

−0.09 1.52+0.07
−0.07 3.85+0.10

−0.04

9.1 3.2 1.34+0.06
−0.06 5.03+0.20

−0.20 1.33+0.07
−0.07 5.39+0.22

−0.14

9.5 3.4 1.30+0.05
−0.05 5.64+0.18

−0.10 1.29+0.05
−0.05 6.05+0.20

−0.20

9.9 3.5 1.18+0.04
−0.04 7.54+0.15

−0.25 1.16+0.04
−0.04 7.86+0.27

−0.15

10.3 3.7 0.79+0.03
−0.03 19.84+1.07

−1.07 0.77+0.03
−0.03 20.39+1.10

−1.38

10.7 3.8 1.04+0.04
−0.04 10.46+0.32

−0.32 1.02+0.04
−0.04 10.91+0.33

−0.48
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Table B.17.: Model Parameters of NGC3521.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.3 0.1 0.53+0.04
−0.03 0.01+0.00

−0.00 2.04+0.64
−0.45 0.03+0.00

−0.00 4.50+1.40
−0.98

0.8 0.3 1.09+0.02
−0.02 0.02+0.00

−0.00 0.86+0.17
−0.13 0.05+0.00

−0.00 1.90+0.37
−0.28

1.3 0.4 1.14+0.01
−0.01 0.03+0.00

−0.00 0.57+0.05
−0.05 0.07+0.00

−0.00 1.25+0.12
−0.10

1.8 0.6 1.25+0.01
−0.01 0.04+0.00

−0.00 0.43+0.03
−0.02 0.08+0.00

−0.00 0.95+0.06
−0.05

2.3 0.8 1.13+0.01
−0.01 0.04+0.00

−0.00 0.40+0.03
−0.03 0.09+0.00

−0.00 0.87+0.06
−0.06

2.9 1.0 0.94+0.00
−0.00 0.05+0.00

−0.00 0.39+0.04
−0.03 0.10+0.00

−0.00 0.86+0.08
−0.07

3.4 1.2 0.84+0.00
−0.00 0.08+0.00

−0.00 0.67+0.07
−0.06 0.11+0.00

−0.00 0.92+0.09
−0.08

3.9 1.3 0.83+0.01
−0.01 0.09+0.00

−0.00 0.69+0.08
−0.07 0.13+0.00

−0.00 0.95+0.11
−0.09

4.4 1.5 0.78+0.01
−0.01 0.10+0.00

−0.00 0.66+0.07
−0.06 0.14+0.00

−0.00 0.91+0.10
−0.08

4.9 1.7 0.69+0.00
−0.00 0.11+0.00

−0.00 0.64+0.07
−0.06 0.15+0.00

−0.00 0.88+0.09
−0.08

5.4 1.9 0.64+0.00
−0.00 0.11+0.00

−0.00 0.68+0.09
−0.07 0.15+0.00

−0.00 0.94+0.12
−0.10

6.0 2.1 0.65+0.00
−0.00 0.17+0.00

−0.00 1.03+0.16
−0.13

6.5 2.2 0.69+0.01
−0.01 0.20+0.00

−0.00 1.12+0.19
−0.14

7.0 2.4 0.77+0.01
−0.01 0.22+0.00

−0.00 1.25+0.18
−0.14

7.5 2.6 0.83+0.01
−0.01 0.25+0.00

−0.00 1.39+0.19
−0.15

8.0 2.8 0.87+0.01
−0.01 0.27+0.00

−0.00 1.43+0.19
−0.15

8.6 3.0 0.87+0.01
−0.01 0.29+0.00

−0.00 1.36+0.17
−0.14

9.1 3.1 0.89+0.01
−0.01 0.31+0.00

−0.00 1.28+0.15
−0.13

9.6 3.3 0.93+0.01
−0.01 0.34+0.00

−0.00 1.24+0.16
−0.13

10.1 3.5 0.98+0.01
−0.01 0.36+0.00

−0.00 1.36+0.12
−0.10

10.6 3.7 1.00+0.01
−0.01 0.39+0.00

−0.00 1.29+0.14
−0.12

11.2 3.9 0.96+0.01
−0.01 0.40+0.00

−0.00 1.25+0.15
−0.13

11.7 4.0 0.97+0.01
−0.01 0.42+0.00

−0.00 1.18+0.16
−0.13

12.2 4.2 1.03+0.01
−0.01 0.45+0.00

−0.00 1.09+0.15
−0.12

12.7 4.4 1.09+0.01
−0.01 0.48+0.00

−0.00 1.02+0.14
−0.11

13.2 4.6 1.12+0.01
−0.01 0.51+0.00

−0.00 1.00+0.14
−0.11

13.7 4.7 1.13+0.01
−0.01 0.53+0.00

−0.00 0.97+0.15
−0.12

14.3 4.9 1.12+0.01
−0.01 0.55+0.00

−0.00 0.95+0.14
−0.11

14.8 5.1 1.16+0.01
−0.01 0.58+0.00

−0.00 0.98+0.14
−0.11

15.3 5.3 1.20+0.01
−0.01 0.61+0.00

−0.00 1.02+0.12
−0.10
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Table B.18.: Stability Diagnostics of NGC3521.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.3 0.1 1.68+0.06
−0.06 4.79+0.30

−0.30 1.68+0.06
−0.06 4.80+0.30

−0.30

0.8 0.3 2.03+0.32
−0.30 0.07+2.28

−0.00 2.32+0.04
−0.04 2.29+0.04

−0.04

1.3 0.4 1.38+0.13
−0.11 0.12+0.01

−0.01 2.26+0.03
−0.03 2.18+0.02

−0.05

1.8 0.6 1.09+0.07
−0.06 0.19+0.01

−0.01 2.12+0.11
−0.10 0.25+1.71

−0.01

2.3 0.8 0.95+0.07
−0.06 0.26+0.02

−0.02 1.85+0.11
−0.10 0.34+0.02

−0.02

2.9 1.0 0.86+0.08
−0.07 0.34+0.03

−0.03 1.65+0.13
−0.11 0.47+0.02

−0.02

3.4 1.2 1.29+0.12
−0.10 0.46+0.04

−0.03 1.61+0.11
−0.11 0.59+2.21

−0.00

3.9 1.3 1.31+0.13
−0.11 0.53+0.04

−0.04 1.60+0.09
−0.12 0.72+2.06

−0.01

4.4 1.5 1.20+0.12
−0.10 0.66+0.04

−0.05 1.47+0.11
−0.11 0.90+1.93

−0.01

4.9 1.7 1.10+0.10
−0.09 0.81+0.05

−0.06 1.33+0.10
−0.09 1.11+0.04

−0.02

5.4 1.9 1.10+0.12
−0.10 0.91+0.06

−0.07 1.32+0.09
−0.10 1.35+1.99

−0.03

6.0 2.1 1.35+0.08
−0.10 2.90+0.53

−1.26 1.39+0.07
−0.06 4.12+0.03

−0.09

6.5 2.2 1.39+0.08
−0.09 2.98+0.32

−0.81 1.44+0.07
−0.07 3.85+0.03

−0.03

7.0 2.4 1.47+0.07
−0.07 2.87+0.18

−0.24 1.53+0.07
−0.06 3.47+0.03

−0.03

7.5 2.6 1.54+0.07
−0.07 2.80+0.10

−0.13 1.61+0.06
−0.06 3.25+0.03

−0.03

8.0 2.8 1.55+0.07
−0.07 2.75+0.06

−0.10 1.63+0.06
−0.06 3.11+0.03

−0.03

8.6 3.0 1.50+0.07
−0.07 2.78+0.06

−0.10 1.57+0.06
−0.06 3.15+0.03

−0.03

9.1 3.1 1.45+0.07
−0.07 2.76+0.06

−0.06 1.53+0.07
−0.07 3.14+0.02

−0.07

9.6 3.3 1.44+0.08
−0.07 2.72+0.06

−0.02 1.52+0.08
−0.07 3.05+0.03

−0.07

10.1 3.5 1.51+0.05
−0.05 2.67+0.05

−0.02 1.59+0.05
−0.05 2.88+0.06

−0.02

10.6 3.7 1.48+0.07
−0.06 2.72+0.06

−0.06 1.55+0.07
−0.06 2.91+0.02

−0.06

11.2 3.9 1.41+0.07
−0.07 2.89+0.06

−0.06 1.48+0.08
−0.07 3.09+0.07

−0.07

11.7 4.0 1.37+0.08
−0.08 2.96+0.11

−0.07 1.43+0.09
−0.08 3.13+0.07

−0.12

12.2 4.2 1.34+0.09
−0.08 2.97+0.15

−0.11 1.39+0.09
−0.09 3.06+0.12

−0.12

12.7 4.4 1.32+0.08
−0.08 3.00+0.10

−0.10 1.37+0.09
−0.08 3.02+0.11

−0.10

13.2 4.6 1.31+0.09
−0.08 3.04+0.14

−0.14 1.36+0.09
−0.09 3.03+0.11

−0.15

13.7 4.7 1.29+0.10
−0.09 3.13+0.15

−0.14 1.33+0.11
−0.10 3.08+0.16

−0.15

14.3 4.9 1.27+0.09
−0.08 3.23+0.16

−0.15 1.30+0.10
−0.09 3.20+0.17

−0.16

14.8 5.1 1.30+0.09
−0.08 3.21+0.16

−0.15 1.34+0.10
−0.09 3.13+0.17

−0.16

15.3 5.3 1.34+0.08
−0.07 3.16+0.16

−0.15 1.37+0.08
−0.08 3.09+0.12

−0.16
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Table B.19.: Model Parameters of NGC2841.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

3.8 0.9 1.84+0.01
−0.01 0.05+0.00

−0.00 2.72+5.35
−1.10 0.12+0.00

−0.00 5.99+11.77
−2.42

4.4 1.1 1.64+0.01
−0.01 0.10+0.00

−0.00 2.43+1.48
−0.68 0.13+0.00

−0.00 3.35+2.04
−0.93

5.1 1.3 1.40+0.01
−0.01 0.10+0.00

−0.00 2.27+1.21
−0.59 0.14+0.00

−0.00 3.12+1.66
−0.81

5.8 1.4 1.23+0.01
−0.01 0.11+0.00

−0.00 2.46+1.89
−0.75 0.15+0.00

−0.00 3.38+2.60
−1.04

6.5 1.6 1.13+0.00
−0.00 0.12+0.00

−0.00 2.51+2.44
−0.83 0.16+0.00

−0.00 3.45+3.36
−1.15

7.2 1.8 1.06+0.00
−0.00 0.13+0.00

−0.00 2.37+2.59
−0.82 0.17+0.00

−0.00 3.26+3.56
−1.13

7.9 2.0 0.96+0.01
−0.01 0.13+0.00

−0.00 2.36+2.07
−0.77 0.18+0.00

−0.00 3.25+2.85
−1.05

8.5 2.1 0.98+0.00
−0.00 0.20+0.00

−0.00 3.41+2.39
−1.00

9.2 2.3 0.95+0.01
−0.01 0.21+0.00

−0.00 3.61+1.46
−0.82

9.9 2.5 0.93+0.00
−0.00 0.22+0.00

−0.00 4.55+0.20
−0.19

10.6 2.6 0.94+0.01
−0.01 0.24+0.00

−0.00 4.09+0.18
−0.17

11.3 2.8 0.99+0.00
−0.00 0.26+0.00

−0.00 3.74+0.16
−0.15

12.0 3.0 1.01+0.01
−0.01 0.28+0.00

−0.00 3.74+0.17
−0.16

12.6 3.1 1.05+0.01
−0.01 0.30+0.00

−0.00 3.91+0.22
−0.20

13.3 3.3 1.09+0.02
−0.02 0.32+0.00

−0.00 4.13+0.51
−0.42

14.0 3.5 1.19+0.01
−0.01 0.36+0.00

−0.00 3.93+0.47
−0.39

14.7 3.7 1.18+0.02
−0.02 0.37+0.00

−0.00 3.58+0.28
−0.25

15.4 3.9 0.57+0.08
−0.06 0.27+0.02

−0.02 4.91+1.26
−1.03

16.1 4.0 1.25+0.06
−0.06 0.42+0.01

−0.01 3.33+0.43
−0.37

16.7 4.2 1.60+0.01
−0.01 0.49+0.00

−0.00 2.98+0.20
−0.18
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Table B.20.: Stability Diagnostics of NGC2841.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

3.8 0.9 3.59+0.11
−0.11 1.37+0.01

−0.03 3.59+0.11
−0.11 1.38+0.01

−0.03

4.4 1.1 3.27+0.11
−0.11 1.52+0.03

−0.01 3.27+0.11
−0.10 1.52+0.03

−0.01

5.1 1.3 2.99+0.10
−0.10 1.77+0.03

−0.01 2.99+0.10
−0.10 1.78+0.03

−0.01

5.8 1.4 2.80+0.12
−0.11 2.02+0.04

−0.01 2.80+0.11
−0.11 2.03+0.04

−0.01

6.5 1.6 2.67+0.13
−0.12 2.21+0.04

−0.04 2.67+0.13
−0.12 2.21+0.04

−0.01

7.2 1.8 2.56+0.15
−0.14 2.33+0.04

−0.04 2.57+0.15
−0.14 2.34+0.04

−0.04

7.9 2.0 2.43+0.14
−0.13 2.57+0.06

−0.06 2.43+0.14
−0.13 2.58+0.06

−0.06

8.5 2.1 2.44+0.12
−0.11 2.55+0.04

−0.01 2.49+0.10
−0.10 2.66+0.01

−0.05

9.2 2.3 2.41+0.08
−0.08 2.66+0.02

−0.05 2.45+0.07
−0.07 2.74+0.02

−0.06

9.9 2.5 2.42+0.02
−0.02 2.72+0.01

−0.01 2.46+0.01
−0.01 2.79+0.01

−0.01

10.6 2.6 2.39+0.02
−0.02 2.70+0.02

−0.02 2.44+0.02
−0.02 2.77+0.02

−0.02

11.3 2.8 2.41+0.02
−0.02 2.55+0.01

−0.01 2.47+0.02
−0.02 2.62+0.01

−0.01

12.0 3.0 2.41+0.02
−0.02 2.51+0.01

−0.01 2.47+0.02
−0.02 2.62+0.01

−0.05

12.6 3.1 2.46+0.03
−0.03 2.45+0.02

−0.02 2.52+0.03
−0.03 2.52+0.02

−0.06

13.3 3.3 2.51+0.05
−0.05 2.35+0.03

−0.03 2.57+0.05
−0.05 2.42+0.03

−0.07

14.0 3.5 2.57+0.05
−0.05 2.18+0.02

−0.05 2.65+0.05
−0.05 2.22+0.02

−0.02

14.7 3.7 2.52+0.05
−0.05 2.19+0.04

−0.04 2.60+0.05
−0.05 2.26+0.04

−0.08

15.4 3.9 1.89+0.16
−0.14 4.39+0.54

−0.54 1.89+0.17
−0.15 4.51+0.63

−0.56

16.1 4.0 2.52+0.11
−0.11 2.12+0.10

−0.13 2.61+0.11
−0.11 2.16+0.10

−0.13

16.7 4.2 2.73+0.05
−0.05 1.73+0.01

−0.04 2.86+0.05
−0.05 1.72+0.01

−0.04
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Table B.21.: Model Parameters of NGC5055.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.2 0.1 1.32+0.07
−0.07 0.01+0.00

−0.00 0.40+0.10
−0.08 0.03+0.00

−0.00 0.89+0.22
−0.17

0.7 0.2 1.73+0.01
−0.01 0.02+0.00

−0.00 0.34+0.07
−0.05 0.05+0.00

−0.00 0.74+0.15
−0.11

1.2 0.4 1.42+0.01
−0.01 0.03+0.00

−0.00 0.40+0.06
−0.05 0.06+0.00

−0.00 0.88+0.14
−0.11

1.7 0.5 1.02+0.00
−0.00 0.03+0.00

−0.00 0.48+0.05
−0.04 0.07+0.00

−0.00 1.06+0.10
−0.09

2.2 0.7 0.83+0.00
−0.00 0.04+0.00

−0.00 0.49+0.03
−0.03 0.08+0.00

−0.00 1.07+0.07
−0.07

2.7 0.8 0.74+0.00
−0.00 0.04+0.00

−0.00 0.46+0.04
−0.03 0.09+0.00

−0.00 1.01+0.09
−0.07

3.2 1.0 0.67+0.00
−0.00 0.05+0.00

−0.00 0.50+0.06
−0.05 0.11+0.00

−0.00 1.09+0.12
−0.10

3.7 1.2 0.61+0.00
−0.00 0.09+0.00

−0.00 0.86+0.11
−0.09 0.12+0.00

−0.00 1.18+0.14
−0.12

4.2 1.3 0.54+0.00
−0.00 0.09+0.00

−0.00 0.83+0.10
−0.08 0.13+0.00

−0.00 1.14+0.13
−0.11

4.7 1.5 0.51+0.00
−0.00 0.10+0.00

−0.00 0.75+0.09
−0.07 0.14+0.00

−0.00 1.04+0.13
−0.10

5.1 1.6 0.50+0.00
−0.00 0.11+0.00

−0.00 0.67+0.08
−0.07 0.15+0.00

−0.00 0.92+0.11
−0.09

5.6 1.7 0.46+0.00
−0.00 0.11+0.00

−0.00 0.66+0.07
−0.06 0.16+0.00

−0.00 0.91+0.09
−0.08

6.1 1.9 0.44+0.00
−0.00 0.12+0.00

−0.00 0.73+0.06
−0.05 0.17+0.00

−0.00 1.00+0.08
−0.07

6.6 2.1 0.46+0.00
−0.00 0.18+0.00

−0.00 1.03+0.10
−0.08

7.1 2.2 0.46+0.00
−0.00 0.20+0.00

−0.00 0.99+0.09
−0.08

7.6 2.4 0.45+0.00
−0.00 0.21+0.00

−0.00 0.95+0.10
−0.08

8.1 2.5 0.44+0.00
−0.00 0.22+0.00

−0.00 0.97+0.12
−0.10

8.6 2.7 0.47+0.00
−0.00 0.24+0.00

−0.00 1.08+0.12
−0.10

9.1 2.8 0.51+0.00
−0.00 0.27+0.00

−0.00 1.17+0.14
−0.11

9.5 3.0 0.54+0.00
−0.00 0.29+0.00

−0.00 1.22+0.15
−0.12

10.0 3.1 0.53+0.00
−0.00 0.30+0.00

−0.00 1.32+0.20
−0.15

10.5 3.3 0.54+0.00
−0.00 0.32+0.00

−0.00 1.32+0.21
−0.16

11.0 3.4 0.54+0.00
−0.00 0.33+0.00

−0.00 1.29+0.24
−0.17

11.5 3.6 0.27+0.03
−0.02 0.25+0.01

−0.01 2.04+0.54
−0.42

12.0 3.8 0.26+0.03
−0.02 0.25+0.01

−0.01 2.20+0.54
−0.43

12.5 3.9 0.56+0.00
−0.00 0.39+0.00

−0.00 1.49+0.14
−0.12

13.0 4.1 0.61+0.00
−0.00 0.42+0.00

−0.00 1.42+0.14
−0.12

13.5 4.2 0.64+0.00
−0.00 0.44+0.00

−0.00 1.45+0.15
−0.13

14.0 4.4 0.64+0.00
−0.00 0.46+0.00

−0.00 1.56+0.15
−0.13

14.4 4.5 0.58+0.02
−0.02 0.45+0.01

−0.01 1.81+0.26
−0.22

14.9 4.7 0.71+0.00
−0.00 0.52+0.00

−0.00 1.70+0.23
−0.18

15.4 4.8 0.70+0.01
−0.01 0.53+0.00

−0.00 1.79+0.35
−0.26

15.9 5.0 0.73+0.00
−0.00 0.56+0.00

−0.00 1.78+0.28
−0.21

16.4 5.1 0.76+0.00
−0.00 0.59+0.00

−0.00 1.96+0.28
−0.22

16.9 5.3 0.78+0.00
−0.00 0.61+0.00

−0.00 2.14+0.36
−0.27

17.4 5.4 0.78+0.00
−0.00 0.63+0.00

−0.00 2.24+0.41
−0.30

17.9 5.6 0.81+0.00
−0.00 0.66+0.00

−0.00 2.22+0.30
−0.24

18.4 5.7 0.77+0.01
−0.01 0.66+0.00

−0.00 2.32+0.38
−0.29

18.9 5.9 0.79+0.01
−0.01 0.69+0.00

−0.00 2.53+0.32
−0.27

19.3 6.0 0.79+0.02
−0.02 0.70+0.01

−0.01 3.07+0.55
−0.43

19.8 6.2 0.78+0.02
−0.02 0.72+0.01

−0.01 3.65+0.79
−0.59

20.3 6.3 0.40+0.03
−0.03 0.53+0.02

−0.02 5.36+1.73
−1.22

20.8 6.5 0.41+0.05
−0.04 0.54+0.03

−0.03 5.63+2.35
−1.57
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Table B.22.: Stability Diagnostics of NGC5055.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.2 0.1 1.14+0.32
−0.23 0.06+0.02

−0.01 2.41+0.37
−0.48 0.07+1.92

−0.00

0.7 0.2 1.08+0.22
−0.16 0.10+0.02

−0.02 2.24+0.42
−0.31 0.11+0.02

−0.02

1.2 0.4 1.16+0.18
−0.14 0.13+0.02

−0.02 2.34+0.28
−0.26 0.15+1.59

−0.00

1.7 0.5 1.17+0.11
−0.09 0.17+0.02

−0.01 2.19+0.03
−0.06 2.40+0.01

−2.17

2.2 0.7 1.05+0.07
−0.06 0.24+0.02

−0.01 1.93+0.02
−0.02 2.93+0.05

−0.01

2.7 0.8 0.94+0.08
−0.07 0.34+0.03

−0.02 1.77+0.03
−0.09 3.22+0.05

−2.72

3.2 1.0 0.96+0.10
−0.09 0.40+0.04

−0.04 1.66+0.04
−0.05 3.56+0.06

−2.91

3.7 1.2 1.43+0.15
−0.12 0.57+0.04

−0.04 1.58+0.04
−0.04 3.90+0.06

−0.11

4.2 1.3 1.29+0.13
−0.11 0.72+0.05

−0.05 1.46+0.04
−0.04 4.30+0.13

−0.13

4.7 1.5 1.14+0.12
−0.10 0.90+0.07

−0.05 1.35+0.04
−0.08 4.33+0.25

−2.99

5.1 1.6 1.01+0.10
−0.09 1.10+0.07

−0.08 1.23+0.08
−0.09 1.58+2.76

−0.00

5.6 1.7 0.95+0.08
−0.07 1.29+0.08

−0.08 1.15+0.08
−0.07 1.89+0.16

−0.03

6.1 1.9 1.00+0.07
−0.06 1.40+0.07

−0.06 1.17+0.04
−0.05 4.10+0.73

−1.84

6.6 2.1 1.17+0.04
−0.05 3.98+0.65

−1.22 1.17+0.04
−0.04 5.82+0.02

−0.02

7.1 2.2 1.12+0.05
−0.05 3.47+0.78

−0.48 1.13+0.04
−0.04 5.80+0.10

−0.10

7.6 2.4 1.06+0.06
−0.06 3.53+0.69

−0.28 1.07+0.05
−0.05 5.98+0.11

−0.11

8.1 2.5 1.05+0.06
−0.06 3.98+0.59

−0.37 1.05+0.06
−0.05 6.14+0.12

−0.11

8.6 2.7 1.11+0.05
−0.05 4.38+0.31

−0.29 1.10+0.05
−0.05 5.84+0.01

−0.01

9.1 2.8 1.16+0.05
−0.05 4.42+0.19

−0.18 1.16+0.05
−0.05 5.51+0.01

−0.01

9.5 3.0 1.19+0.06
−0.05 4.35+0.07

−0.12 1.20+0.05
−0.05 5.22+0.01

−0.01

10.0 3.1 1.21+0.07
−0.06 4.53+0.07

−0.13 1.21+0.07
−0.06 5.38+0.01

−0.09

10.5 3.3 1.20+0.07
−0.07 4.63+0.08

−0.07 1.20+0.07
−0.07 5.43+0.01

−0.09

11.0 3.4 1.18+0.08
−0.07 4.68+0.08

−0.08 1.17+0.08
−0.07 5.49+0.10

−0.17

11.5 3.6 1.03+0.09
−0.09 9.00+1.07

−1.02 0.99+0.10
−0.10 10.22+1.08

−1.18

12.0 3.8 1.01+0.09
−0.08 9.73+1.08

−1.17 0.97+0.10
−0.09 10.91+1.23

−1.34

12.5 3.9 1.23+0.04
−0.04 4.79+0.02

−0.02 1.23+0.04
−0.04 5.34+0.10

−0.10

13.0 4.1 1.24+0.05
−0.04 4.62+0.08

−0.08 1.24+0.05
−0.05 5.08+0.10

−0.10

13.5 4.2 1.26+0.05
−0.05 4.51+0.09

−0.08 1.27+0.05
−0.05 4.91+0.17

−0.10

14.0 4.4 1.29+0.05
−0.04 4.55+0.09

−0.09 1.30+0.05
−0.05 4.88+0.10

−0.10

14.4 4.5 1.30+0.07
−0.07 4.87+0.20

−0.26 1.30+0.08
−0.07 5.22+0.30

−0.22

14.9 4.7 1.38+0.06
−0.06 4.22+0.11

−0.06 1.39+0.06
−0.06 4.48+0.13

−0.13

15.4 4.8 1.38+0.09
−0.08 4.31+0.21

−0.15 1.39+0.09
−0.08 4.57+0.17

−0.23

15.9 5.0 1.40+0.07
−0.06 4.22+0.11

−0.11 1.41+0.07
−0.07 4.42+0.13

−0.13

16.4 5.1 1.47+0.06
−0.06 4.07+0.11

−0.11 1.48+0.06
−0.06 4.20+0.13

−0.12

16.9 5.3 1.52+0.07
−0.06 3.96+0.11

−0.10 1.54+0.07
−0.07 4.03+0.18

−0.12

17.4 5.4 1.54+0.07
−0.07 3.94+0.16

−0.10 1.56+0.08
−0.07 4.01+0.18

−0.12

17.9 5.6 1.56+0.06
−0.05 3.91+0.11

−0.10 1.57+0.06
−0.06 3.93+0.12

−0.11

18.4 5.7 1.54+0.07
−0.07 4.08+0.16

−0.16 1.55+0.08
−0.07 4.15+0.17

−0.17

18.9 5.9 1.60+0.06
−0.06 3.94+0.16

−0.15 1.61+0.06
−0.06 3.96+0.17

−0.11

19.3 6.0 1.67+0.09
−0.08 3.85+0.21

−0.20 1.69+0.09
−0.09 3.85+0.22

−0.21

19.8 6.2 1.73+0.09
−0.09 3.78+0.21

−0.20 1.74+0.09
−0.09 3.78+0.22

−0.21

20.3 6.3 1.35+0.10
−0.10 6.64+0.70

−0.58 1.34+0.10
−0.10 6.96+0.75

−0.71

20.8 6.5 1.37+0.14
−0.13 6.64+0.85

−0.91 1.36+0.14
−0.14 6.87+1.00

−0.95
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Appendix B

Table B.23.: Model Parameters of NGC7331.

σg = 5 km/s σg = 8 km/s σg = 11 km/s

R [kpc] R/Rd Λ0 s0 q0 s0 q0 s0 q0

0.4 0.1 0.72+0.04
−0.04 0.01+0.00

−0.00 2.82+1.36
−0.77 0.03+0.00

−0.00 6.21+2.99
−1.69

1.1 0.3 1.00+0.03
−0.02 0.02+0.00

−0.00 1.63+0.75
−0.41 0.05+0.00

−0.00 3.58+1.64
−0.90

1.8 0.5 1.04+0.01
−0.01 0.03+0.00

−0.00 0.90+0.27
−0.17 0.06+0.00

−0.00 1.98+0.59
−0.38

2.5 0.8 0.83+0.01
−0.01 0.03+0.00

−0.00 0.58+0.09
−0.07 0.07+0.00

−0.00 1.28+0.20
−0.15

3.2 1.0 0.66+0.00
−0.00 0.04+0.00

−0.00 0.51+0.08
−0.06 0.08+0.00

−0.00 1.11+0.18
−0.14

3.9 1.2 0.61+0.01
−0.01 0.07+0.00

−0.00 0.79+0.14
−0.11 0.09+0.00

−0.00 1.09+0.20
−0.15

4.6 1.4 0.56+0.01
−0.01 0.08+0.00

−0.00 0.76+0.13
−0.10 0.11+0.00

−0.00 1.04+0.18
−0.14

5.3 1.6 0.56+0.01
−0.01 0.09+0.00

−0.00 0.83+0.17
−0.12 0.12+0.00

−0.00 1.15+0.23
−0.17

6.1 1.8 0.60+0.01
−0.01 0.11+0.00

−0.00 0.97+0.23
−0.16 0.15+0.00

−0.00 1.33+0.31
−0.22

6.8 2.1 0.64+0.01
−0.01 0.17+0.00

−0.00 1.47+0.25
−0.19

7.5 2.3 0.64+0.01
−0.01 0.19+0.00

−0.00 1.35+0.21
−0.16

8.2 2.5 0.63+0.01
−0.01 0.21+0.00

−0.00 1.30+0.17
−0.14

8.9 2.7 0.67+0.01
−0.01 0.23+0.00

−0.00 1.32+0.15
−0.13

9.6 2.9 0.70+0.01
−0.01 0.26+0.00

−0.00 1.31+0.18
−0.14

10.3 3.1 0.70+0.01
−0.01 0.27+0.00

−0.00 1.25+0.18
−0.14

11.0 3.3 0.72+0.01
−0.01 0.30+0.00

−0.00 1.24+0.16
−0.13

11.8 3.6 0.74+0.01
−0.01 0.32+0.00

−0.00 1.37+0.13
−0.11

12.5 3.8 0.77+0.01
−0.01 0.35+0.00

−0.00 1.38+0.15
−0.13

13.2 4.0 0.81+0.01
−0.01 0.38+0.00

−0.00 1.37+0.12
−0.11

13.9 4.2 0.81+0.01
−0.01 0.40+0.00

−0.00 1.25+0.11
−0.10

14.6 4.4 0.75+0.01
−0.01 0.40+0.00

−0.00 1.25+0.09
−0.08

15.3 4.6 0.75+0.01
−0.01 0.42+0.00

−0.00 1.19+0.09
−0.08

16.0 4.8 0.74+0.01
−0.01 0.44+0.00

−0.00 1.13+0.10
−0.09

16.7 5.1 0.76+0.00
−0.00 0.46+0.00

−0.00 1.06+0.11
−0.09

17.5 5.3 0.75+0.00
−0.00 0.48+0.00

−0.00 1.07+0.11
−0.10

18.2 5.5 0.69+0.02
−0.02 0.48+0.01

−0.01 1.14+0.17
−0.14

18.9 5.7 0.51+0.04
−0.03 0.43+0.02

−0.01 1.30+0.32
−0.25

19.6 5.9 0.70+0.02
−0.02 0.52+0.01

−0.01 1.12+0.20
−0.16

20.3 6.2 0.91+0.01
−0.01 0.62+0.00

−0.00 1.05+0.17
−0.13

21.0 6.4 0.89+0.03
−0.03 0.63+0.01

−0.01 1.26+0.27
−0.20

21.7 6.6 1.04+0.01
−0.01 0.70+0.00

−0.00 1.41+0.26
−0.20

22.4 6.8 1.10+0.02
−0.02 0.75+0.01

−0.01 1.54+0.27
−0.21

23.2 7.0 1.06+0.02
−0.02 0.76+0.01

−0.01 1.74+0.27
−0.21
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Radial Profiles of Model Parameters and Stability Diagnostics

Table B.24.: Stability Diagnostics of NGC7331.

σg = 5 km/s σg = 8 km/s σg = 11 km/s σg = 11 km/s, Turbulent

R [kpc] R/Rd Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc] Qeff λ [kpc]

0.4 0.1 2.10+0.06
−0.06 3.51+0.18

−0.18 2.10+0.06
−0.06 3.52+0.18

−0.18

1.1 0.3 2.44+0.05
−0.05 2.53+0.06

−0.06 2.44+0.05
−0.05 2.53+0.06

−0.06

1.8 0.5 2.18+0.26
−0.41 0.09+2.37

−0.00 2.39+0.05
−0.05 2.40+0.03

−0.03

2.5 0.8 1.28+0.20
−0.15 0.19+0.03

−0.02 2.04+0.04
−0.04 2.95+0.06

−0.02

3.2 1.0 0.99+0.15
−0.12 0.30+0.04

−0.04 1.76+0.04
−0.07 3.74+0.03

−3.29

3.9 1.2 1.39+0.23
−0.18 0.46+0.05

−0.06 1.65+0.05
−0.11 3.97+0.09

−3.36

4.6 1.4 1.27+0.19
−0.15 0.60+0.06

−0.07 1.53+0.05
−0.13 4.18+0.16

−3.38

5.3 1.6 1.34+0.23
−0.18 0.68+3.67

−0.07 1.51+0.06
−0.08 4.22+0.16

−3.21

6.1 1.8 1.53+0.10
−0.21 0.75+3.31

−0.01 1.56+0.07
−0.07 3.94+0.14

−0.24

6.8 2.1 1.60+0.06
−0.06 3.74+0.08

−0.18 1.62+0.06
−0.06 4.18+0.03

−0.09

7.5 2.3 1.53+0.06
−0.06 3.57+0.18

−0.21 1.56+0.06
−0.06 4.15+0.03

−0.03

8.2 2.5 1.47+0.06
−0.06 3.60+0.18

−0.27 1.50+0.06
−0.06 4.24+0.04

−0.04

8.9 2.7 1.47+0.06
−0.06 3.38+0.17

−0.16 1.51+0.05
−0.05 4.04+0.03

−0.03

9.6 2.9 1.46+0.07
−0.07 3.28+0.16

−0.15 1.51+0.07
−0.07 3.93+0.03

−0.09

10.3 3.1 1.41+0.08
−0.08 3.32+0.12

−0.16 1.46+0.07
−0.07 3.92+0.03

−0.03

11.0 3.3 1.40+0.07
−0.07 3.31+0.07

−0.11 1.44+0.07
−0.07 3.87+0.03

−0.03

11.8 3.6 1.44+0.05
−0.05 3.37+0.08

−0.03 1.48+0.05
−0.05 3.84+0.03

−0.09

12.5 3.8 1.45+0.07
−0.06 3.37+0.05

−0.05 1.49+0.07
−0.07 3.73+0.11

−0.10

13.2 4.0 1.46+0.05
−0.05 3.32+0.03

−0.07 1.50+0.06
−0.05 3.59+0.08

−0.08

13.9 4.2 1.38+0.05
−0.05 3.44+0.08

−0.08 1.42+0.06
−0.06 3.72+0.09

−0.09

14.6 4.4 1.33+0.05
−0.04 3.74+0.03

−0.08 1.36+0.05
−0.05 4.06+0.10

−0.10

15.3 4.6 1.29+0.05
−0.05 3.85+0.09

−0.09 1.31+0.05
−0.05 4.19+0.10

−0.10

16.0 4.8 1.24+0.06
−0.05 4.04+0.10

−0.15 1.26+0.06
−0.06 4.35+0.18

−0.11

16.7 5.1 1.20+0.06
−0.05 4.14+0.14

−0.08 1.22+0.06
−0.06 4.47+0.16

−0.16

17.5 5.3 1.20+0.06
−0.06 4.27+0.14

−0.14 1.21+0.06
−0.06 4.63+0.17

−0.23

18.2 5.5 1.18+0.09
−0.08 4.59+0.25

−0.30 1.19+0.09
−0.09 4.96+0.36

−0.34

18.9 5.7 1.10+0.14
−0.13 5.68+0.66

−0.62 1.09+0.14
−0.13 6.45+0.99

−0.81

19.6 5.9 1.17+0.11
−0.10 4.78+0.35

−0.33 1.17+0.11
−0.10 5.12+0.56

−0.44

20.3 6.2 1.26+0.10
−0.09 4.15+0.22

−0.26 1.27+0.10
−0.09 4.24+0.30

−0.28

21.0 6.4 1.35+0.13
−0.12 4.03+0.36

−0.34 1.36+0.14
−0.13 4.10+0.46

−0.36

21.7 6.6 1.52+0.12
−0.10 3.54+0.25

−0.23 1.54+0.12
−0.11 3.50+0.21

−0.25

22.4 6.8 1.61+0.11
−0.10 3.35+0.19

−0.22 1.63+0.12
−0.11 3.27+0.20

−0.23

23.2 7.0 1.65+0.10
−0.09 3.34+0.19

−0.18 1.67+0.10
−0.09 3.30+0.20

−0.19
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