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Abstract

The idea behind this thesis came from, at that time, a fellow colleague at SEB. They

had evaluated the resampling model when doing portfolio optimizations and knew that

it was more stable than the original model by Markowitz. What they hadn’t studied,

was to what extent and also the instability of the resampling model itself. Therefore the

research questions for this thesis were

• Research question 1: How sensitive are the two models’ optimal portfolio weights

to changes in expected return, risk and correlation.

• Research question 2: How does the inherit portfolio characteristic affect the results

of research question 1.

To study these questions reference portfolios were derived based on historical asset

returns of several multi asset portfolios at different risk levels. To investigate the

instability of the models the input parameters were stressed in different combinations to

see how the portfolios weights changed.

In short, the Markowitz model was more unstable then the resampling model, the

dispersion increases with portfolio risk level and the expected return parameter is the

parameter that has the largest impact on stability for both models. A few exceptions

was seen on the upper end of the risk scale. The results in this study confirms the result

of previous studies but also challenges other.
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1 INTRODUCTION

1 Introduction

In this introductory section, a background and a problem discussion of the thesis are

presented in order to let the reader get acquainted with the problem. Thereafter, the

problem formulation with limitations and purpose are presented. Finally, a subsection

regarding the outline of the rest of the thesis is presented.

1.1 Background and problem discussion

According to Harry Max Markowitz, Nobel laureate in economics, the process of selecting

portfolios is divided into two stages. The first stage focuses on observations, experiences

and future performance of available securities. While the second stage focuses on relevant

beliefs about future performance and portfolio selection. In 1952, Markowitz’s paper

Portfolio Selection, was published in the Journal of Finance. The paper deals with the

second stage in the process of selecting a portfolio. It is based on the rule that an

investor considers expected return as something desirable and variance of the returns

undesirable, and that the investor does not seek only to maximize anticipated returns.

This is called the “expected returns-variance of returns” rule according to Markowitz [18].

Developing the ideas in the paper further, Markowitz wrote a book, Portfolio Selection:

Efficient Diversification of Investments, published in 1959, giving more thoughts, insights

and examples [19].

From Markowitz’s pioneering research, a new concept in portfolio management was intro-

duced. The investors should focus on selecting optimal portfolios as opposed to optimal

assets. He was the first to consider risk alongside return in portfolio management. For

a given level of expected return, µ, the risk is minimized when the covariance of asset

returns, Σ, within the portfolio is minimized. This is known as the mean-variance the-

ory which is a single-period theory for the decision of portfolio weights which provides

an optimal trade-off between return and risk of the portfolio [19]. Markowitz’s work pi-

oneered the modern portfolio theory and according to many people, this was the first

major breakthrough in the field of modern financial theory and can be regarded as one of

the foundational theories in financial economics. Merton continued on Markowitz’s work
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1 INTRODUCTION

and showed that the set of all optimal portfolios with respect to risk and return is lying

on a parabola in the mean-variance space. The upper part of this parabola is well known

under the name, the efficient frontier [20].

Markowitz’s seminal work provides an insight into the early thinking and development

of portfolio management and theory. Even today, it is a strong reference for individu-

als and financial institutions selecting optimal portfolios. The work also provided the

foundation for financial and computational economics, and the basis for other important

financial concepts such as the capital asset pricing model, efficient markets hypothesis,

and behavioural finance [21]. The importance of Markowitz’s work can be summarized in

the Swedish Riksbank’s prize in economic Science in memory of Albert Nobel which he

received in 1990 and shared equally with Merton H. Miller and William F. Sharpe with

the motivation: “for their pioneering work in the theory of financial economics”

[29].

However, even if Markowitz’s work has been met with a lot of appreciation there is a lot

of criticism as well. Potentially the toughest comes from Nassim Nicholas Taleb, author

of the famous book Fooled by Randomness and The Black Swan - The impact of the

Highly Improbable among other books. In these books, Taleb blames portfolio theory

for a lot of problems in the financial history, and he wants, if possible, to ban portfolio

theory [28]. The more composed critique however consists of problems in estimating the

parameters in the model, expected return (µ) and covariance (Σ). In Markowitz’s model

these parameters are assumed to be known. Since this is usually not the case in real life,

the parameters are estimated from historical data assuming that the returns are i.i.d. and

normality. The maximum likelihood estimates (MLE) of µ and Σ, are the sample mean,

µ̂, and the sample covariance matrix, Σ̂. These are also method-of-moments estimates

without the normality and the i.i.d. assumption is replaced by weak stationarity [7].

The problem is that is difficult to estimate the parameters with sufficient accuracy from

historical data, due to noise in the data among other problems [16]. Several researchers

have studied the effect of errors in means and covariances as well as the sensitivity with

respect to changes in optimal portfolio weights. The conclusion is that the model may

perform poorly when µ and Σ are replaced with their sample counterparts, µ̂ and the

sample covariance matrix Σ̂ [3] [7] [8].
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1 INTRODUCTION

A major direction within research in portfolio theory has therefore been to find other,

better performing estimators. Different approaches have been proposed to solve the prob-

lems e.g. Bayes and shrinkage estimators, multifactor models, the Black-Litterman model

and Michaud’s resampling model to name a few [5] [7] [21]. Both Bayes and shrinkage

estimators can be derived for µ and Σ, accounting for uncertainties respectively shrinking

the MLE of the covariance matrix. The multifactor model reduces the dimension in esti-

mating Σ and using e.g. arbitrage pricing theory expected returns can be calculated. The

Black-Litterman model introduces a possibility for subjective opinions, the investor can

incorporate his/her own views on assets. The resampling model is attempting to handle

the “Markowitz optimization enigma” by incorporating sampling variability of µ̂ and Σ̂

via bootstrap.

Another explanation to why the MLE of µ and Σ may perform poorly is the assumption

of normality of the return distribution. The efficiency of MLE, based on the normality

assumptions, are highly sensitive to deviations from the assumed distribution, even if the

deviations are small. In portfolio theory this is important since numerous studies have

shown that asset returns are not normally distributed. These problems may be tackled by

introducing robust estimators which gives meaningful information even when the returns

deviates from the assumed normality distribution [10].

There are a lot of things which can be studied within portfolio theory but in this thesis the

focus is to study the sensitivity of the weights in Markowitz’s original model and Michaud’s

resampling model in the same manner. Finally the two models will be compared and their

differences analysed.

1.2 Problem statement

In this report, the focus is to analyse the sensitivity of the two models primarily dis-

cussed in the previous section, Markowitz and Michaud’s resampling model, with respect

to changes in the three parameters; expected return, risk and correlation. By isolating

changes in one parameter at a time it is possible to see what parameter has the largest

impact on the optimization process. The analysis is done for several portfolios at dif-

ferent risk levels and also consisting of different asset classes to find out how the inherit

3



1 INTRODUCTION

characteristic affects the analysis. To summarize, the main research questions are

• Research question 1: How sensitive are the two models’ optimal portfolio weights

to changes in expected return, risk and correlation.

• Research question 2: How does the inherit portfolio characteristic affect the results

of research question 1.

1.3 Purpose

Today the resampling model is one of the portfolio optimization models which has been

continuously evaluated at Skandinaviska Enskilda Banken (SEB). However SEB has not

done any in-depth analysis of the model itself. Previous studies such as Best and Grauer

which have studied the sensitivity of portfolio model have not been focusing on the impact

of each parameter while other studies such as Yarema and Schmid which have focused

more on parameter impact have only used portfolios with few asset classes [3] [25]. Using

more assets is an attempt to closer replicate a trading portfolio compared to a more

simple academical portfolio1 used in Campbell R. H. [6]. Therefore this analysis provides

additional information to the once already published. Other studies such as Chopra

and Ziemba studied the effect of each parameter but based their analysis on how each

parameter was stressed instead of the looking at different risk levels [8].

According to Michaud’s reasoning behind the resampling model it should be less sensitive

to changes compared to the Markowitz model and with better performance [21]. Kohli

agrees with the stability while he cannot confirm the performance [15]. Becker et al. on

the other hand argue that the Markowitz model is superior to the resampling model [2].

In addition, these results can be used to act as guidelines for further sensitivity analysis

for future portfolios. In portfolio theory it is common to use parameter estimates based on

assumptions on the future. This results of this thesis can therefore be used how weights

depends on erroneous estimations at different risk levels and input parameters.

1Here the meaning of academical portfolio is a simple portfolio with few assets

4
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1.4 Limitations

In this analysis the portfolios are limited to nine assets each to represent a true aggregated

portfolio. However in reality, a real trading portfolio may consist of many more assets

depending on structure and strategy. This study is also limited to the different cases

described within the thesis. Depending on the results of research question 2 it might be

hard to draw general conclusions but the results are at least indicative. Simulations were

done for both the unconstrained and constrained models but the focus will be on the

constrained model. There are two reasons for this, first, SEB advises mainly clients with

long-only strategic allocation. Second, the resampling model is primarily to be used in a

constrained fashion [22].

1.5 Thesis outline

The rest of the thesis is outlined as follows, in chapter two the theoretical framework for

the thesis is presented, focusing on portfolio theory. Positive and negative aspects will be

highlighted and explained. In chapter three the methodology is presented, such as data

description and the empirical procedure and other relevant information for understanding

how the analysis were done. In chapter four the results from the simulations will be

presented and discussed. In the last chapter, chapter five, the findings of the thesis will

be summarized and the conclusions outlined and suggestions for further analysis.
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2 Theory

In this chapter the theoretical aspects of the mean-variance theory and the Michaud’s

resampled efficient frontier are covered. Within each subject various subtopics will be

introduced and explained.

2.1 Mean-variance theory

In this section the mean-variance framework is presented in three parts. First, an intro-

duction to the framework, then some of the criticism towards the model is presented and

finally an analytical sensitivity analysis.

2.1.1 Introduction to Markowitz mean-variance framework

Markowitz presented his ideas in his paper, Portfolio Selection, and the book, Portfolio

Selection: Efficient Diversification of Investments, which is based on the article but more

extensive, as mentioned earlier. Markowitz suggestion is that investors should not seek to

find optimal assets, they should seek the optimal portfolios instead. He considered both

risk and return in his approach, earlier only return was considered [18]. In Markowitz’s

model the goal is to optimize the investors’ utility function2 at a given level of risk aversion

[19]. The resulting portfolio is the investor’s mean-varianceportfolio, i.e. optimal portfolio

in relation to return and risk. Before the model is introduced some important concepts

and formulas are explained.

First, assume that a portfolio with N assets is available and a fraction, wi, of the total

wealth, is invested in each asset with an expected return, E[Ri]. The expected return on

2The utility unit is a economic measurement of the total satisfaction received where more is better
introduced by Daniel Bernoulli, for more information see e.g. the St. Petersburg Paradox. The utility
function is nowadays used in microeconomics and the Theory of the Consumer
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2 THEORY

the portfolio, E[Rp], is a linear combination of the individual expected asset returns [18]

E[Rp] =
N∑

i=1

wiE[Ri] =
N∑

i=1

wiµi = wT
µ,

where µ is the expected return vector for all assets. The portfolio risk is measured via

the variance (or standard deviation) of the return on the portfolio [18]

V ar[Rp] =
N∑

i=1

N∑

j=1

wiσijwj = wTΣw = σ2

p ,

where Σ is the N × N covariance vector with elements

σij = E
[
(Ri − µi)(Rj − µj)

]
.

With expected returns and covariances of the assets, Markowitz’s mean-variance model,

optimizes the weights for an optimal portfolio with respect to risk and retur. Mathemat-

ically the model can be formulated as

max
w

U(w) = wT
µ −

λ

2
wTΣw s.t wT1 = 1, (1)

where U(w) denotes the utility function, λ, the investors risk aversion, 1, a vector with all

elements equal to one and µ and Σ as before. The constraint ensures that the total wealth

is invested, neither more or less. Note that global minimum variance (GMV) portfolio is

the solution to the following optimization problem [25]

min
w

wTΣw s.t. wT1 = 1. (2)

The risk aversion parameter, λ, is a measure of how much more risk the investor is willing

to be exposed to in order to increase the expected return. A larger λ in Equation 1 implies

a more risk averse investor. Within the resulting portfolio the GMV can be identified and

a more risk-averse investor will invest a larger portion in his/her wealth in the GMV

portfolio. An analytical solution to the GMV problems is also available and is presented

8



2 THEORY

in Equation 3 [25]

wGMV =
Σ−11

1TΣ−11
. (3)

In both Equations 1 and 2, short-selling is allowed. To prevent this, an additional con-

straint is included in the model, not allowing any portfolio weight to be less than zero.

Equation 4 represents Equation 1 with the additional no short-selling constraint

max
w

U(w) = wT
µ −

λ

2
wTΣw s.t




wT1 = 1

wi ≥ 0 ∀ i,
(4)

the same can be done for Equation 2.

Other constraints which might be useful in a practice are constraints controlling the weight

of any investments not to be larger (or smaller) than a predetermined level, e.g. wi ≤ fi

∀ i.

The risk aversion parameter, λ, can be somewhat hard to quantify and understand. A

more useful approach to Markowitz’s model and Equation 1 can be formulated excluding

λ, and seek to minimize the risk for a given level of portfolio return, Rp, or maximize the

return at a given level of portfolio risk (expressed as variance), σ2

p, expressed in Equations

5 and 6

min
w

wTΣw s.t




wT

µ = Rp

wT1 = 1,
(5)

max
w

wT
µ s.t




wTΣw = σ2

p

wT1 = 1.
(6)

From a mathematical optimization perspective there is a difference between Equations

5 and 6. That is in Equation 5 the objective function is nonlinear and the constraints

9
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are linear while in Equation 6 the objective function is linear but there are nonlinear

constraints.

Another important and popular measurement of portfolio and asset performance is the

Sharpe ratio (SR) which has its origin in Markowitz framework. The SR is a risk-adjusted

performance measurement, measuring the best return to risk ratio. It is found by solving

the following optimization problem3 [25]

max
w

wT
µ

wTΣw
s.t. wT1 = 1,

with the analytical solution

wSR =
Σ−1

µ

1′Σ−1µ
.

A portfolio derived from Markowitz optimization is called optimal or efficient since the

portfolio has the best expected return at the each risk level. Thinking in terms of Equation

5, changing Rp (or λ in Equation 1) a new efficient portfolio can be found. Merton showed

that the set of all efficient and feasible portfolios are lying on a parabola, the efficient

frontier [20]. In Figure 1, an example of the efficient frontier is shown together with

random portfolios with arbitrary weights. Also, the GMV and SR-portfolios are shown.

The GMV-portfolio is obviously all the way to the left of the risk-scale. The SR-portfolio

is placed where the reward to risk ratio is highest.

Mean-variance optimization works well in theory, however it is assumed that both the

expected return, µ, and the covariance matrix, Σ, are known and correct. In practice this

is not the case, therefore these two parameters have to be estimated. The usual and easiest

way is to use historical data and approximate the parameters with their MLE, the sample

mean, µ̂, and sample covariance matrix, Σ̂. Other more sophisticated approaches were

3Assuming the risk-free interest rate is 0.
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Figure 1: Illustration of Markowitz mean-variance efficient frontier and GMV and the
maximum SR portfolios.
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2 THEORY

mentioned earlier in the background. At last, it is worth mentioning that previous studies

e.g. Fusai and Roncoroni [12], stresses the fact that mean-variance optimization will over-

weight assets with large expected return, low variance and low correlation. Unfortunately,

these assets are probably those which will be mostly affected by estimation errors.

2.1.2 Criticism of Markowitz mean-variance framework

There have been numerous studies showing flaws and problems with the framework. In

this section the criticism has been divided into four different areas: non variance risk

measure, utility function optimization, multiple investment horizons and instability.

Non variance risk measure: There are many different ways to measure risk, in finance

the usual way is to use the variance or standard deviation of asset returns. For stocks, this

approach is well used in the industry, however for portfolios it is not a uniformly accepted

risk measurement. Since the Markowitz model is based on variance as a risk measurement,

the critique is indirectly towards the model. One suggested risk measurement is the

semivariance, a measurement of downside risk. It is similar to variance but only considers

observations below the mean or a specified target level.

Semivariance =
1

N

N∑

rt<M

(M − rt)
2,

where N is the number of observations, rt, which are below the “target level”, M [22].

Other important measurements are mean-absolute deviation and range measures. Pros

and cons of a risk measure is dependent on the nature of the return distribution. The

more asymmetric the return distribution is, the more different the efficient frontiers will

be. Instruments like options and asset classes like fixed income are not as symmetric as

equity returns [22].

Utility function optimization: Markowitz’s model is not generally optimizing ex-

pected utility, only under either of two conditions, normally distributed asset returns or

12



2 THEORY

quadratic utility functions. There are numerous studies proving that asset returns are

not normally distributed. In some cases the returns are symmetrical but not normally

distributed. The limitation of a quadratic utility function is that it is not a monotone

increasing function of wealth. This is a problem when representing investor behavior since

the quadratic function has a maximum and thereafter decreases as a function of increasing

wealth which is not the case of a rational investor [22].

Multiple investment horizons: The basic Markowitz model is only a one-period

model while the majority of investors have a longer time horizons for their investments.

Markowitz showed that the mean-variance efficient portfolios does not need to be efficient

in the long-run. They work better in the short-run or single period [19]. However, one

solution might be to reallocate the portfolio.

Instability: From empirical studies, mean-variance portfolios have shown to be quite

sensitive to changes in input parameters. One study which had a large impact was On

the sensitivity of Mean-Variance-Efficient Portfolios to changes in Asset Means: Some

Analytical and Computational results by Best and Grauer [3]. They investigated the

sensitivity of mean-variance efficient portfolios to changes in the asset means of individual

assets and found that with only a budget constraint implemented, the portfolio’s mean,

variance and weights all were sensitive to changes in asset means. When a no short-selling

constrained were implemented as well, weights were sensitive but not portfolio mean and

variance. Chopra and Ziemba [8], argue that “errors in means are 10 and 20 times as

damaging as error in variance and covariance respectively.” Palczewski and Palczewski

[26] on the other hand shows that errors due to error in the covariance estimation account

for 20 % - 30 % of the variability of the portfolio weights and up to 50 % in practically

important cases.

2.1.3 Sensitivity analysis of Markowitz mean-variance framework

Starting with Equation 5, the goal is to derive an analytical solutions for how the weights

changes when the input data, the expected return, µ, and the covariance matrix Σ,

13



2 THEORY

are stressed. First, changes in µ is studied, define µ̃ = µ + q where q is a vector

corresponding to the change in the expected return with the same dimensions as µ, this

implies µ̃, q,µ ∈ ℜn×1 and Σ ∈ ℜn×n, which is positive-definite symmetric. Assume that

the objective function in Equation 5 is divided with two, without loss of generality. Using

Lagrange multipliers4 a number of equations can be derived

L =
1

2
wTΣw − λ(Rp − wT

µ̃) − γ(1 − wT1),

with the following first partial derivatives





∂L

∂w
=Σw − λµ̃ − γ1 = 0,

∂L

∂λ
=Rp − wT

µ̃ = 0,

∂L

∂γ
=1 − wT1 = 0.

(7)

Use the first partial derivative of Equation 7 and solving for w

w = Σ−1(λµ̃ + γ1)

= Σ−1(λµ + λq + γ1). (8)

4Consult a textbook in Optimization if needed, e.g. An Introduction to Continuous Optimization by
Andréasson et al. [1].
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Using the following substitutions





A = 1TΣ−1
µ,

Ã = 1TΣ−1
q,

B = µ
TΣ−1

µ,

B̃ = µ
TΣ−1

q,

C = 1TΣ−11,

Q = q
TΣ−1

q,

(9)

multiplying Equation 8 with µ̃ and 1 respectively and comparing to the two other partial

derivatives from Equation 7 gives




wT

µ̃ = Rp = λ(B + 2B̂) + γ(A + Â) + λQ,

1Tw = 1 = λ(A + Â) + γC.

which can be formulated in the following system


 Rp

1


 =


B + 2B̂ + Q A + Â

A + Â C


 ×


 λ

γ


 ,

which is solved for γ and λ. The result can then be substitute into Equation 8


 λ

γ


 =

1

Ψ


 C −A − Â

−A − Â B + 2B̂ + Q


 ×


 Rp

1


 ,

where Ψ = C(B + 2B̂ + Q) − (A + Â)2 and assuming Ψ 6= 0 the following equation is

derived

w =
Σ−1

Ψ

(
Rp

(
C(µ + q) − (A + Â)1)

)
− (A + Â)(µ + q) + (B + 2B̂ + Q)1

)
. (10)

15



2 THEORY

To find the the sensitivity, take the partial derivative of Equation 10 with respect to q.

Before that some important statements are introduced which simplifies the calculations.

Show that Σ−1 = (Σ−1)T is true, because of symmetry we know

Σ = ΣT

(Σ−1)TΣΣ−1 = (Σ−1)TΣTΣ−1

Σ−1 = (Σ−1)T

Σ−1 = (Σ−1)T .

Taking the partial derivative, ∂/∂q, of the equations in Equation 9, Â,B̂ and Q all depends

on w and results in





∂Â

∂q
= Σ−11,

∂B̂

∂q
= Σ−1

µ,

∂Q

∂q
= 2Σ−1

q.

Note that for a given function, F , dependent on q

∂

∂q
(F (q)v(q)) = v(q)∇F (q)T + ∇v(q)F (q), (11)

and hence the special case

∂

∂q
(F (q)q) = q∇F (q)T + In×nF (q),

where ∇ ≡ ∂/∂q and In×n is the identity matrix. Further, denoting v = (v1, . . . , vn) and

q = (q1, . . . , qn) and using the fact that (∇v)ij = ∂vi/∂qj . With the gradients of Â, B̂ and

Q given earlier, the chain rule implies that the sensitivity of Equation 10 with respect to

q is equal to
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∂w

∂q
= Ψ−1Σ−1

[
Rp(CIn×n − 11T Σ−1) − (q + µ)1T Σ−1

−(A + Â)In×n + 21(µ + q)T Σ−1
]

−2wΨ−1
[
C(q + µ)T − (A + Â)1T

]
Σ−1,

where the expressions of w and Φ can be inserted.

Earlier, it was assumed that Ψ 6= 0. To ensure that this assumption is fulfilled it can be

expanded as

Ψ = 1T Σ−1
[
1(q + µ)T − (q + µ)1T

]
Σ−1(q + µ).

Denoting S = 1(q + µ)T the following equation is given

Ψ = 1T Σ−1
[
S − ST

]
Σ−1(q + µ),

and S −ST is a skew matrix and it is known that if, n is odd, then det(S −ST ) = 0 hence

the null space is not the trivial set. However, it is not clear whether Σ−1(q + µ) is in the

null space since S is a function of the vector. It is however clear that if S−ST = 0n×n then

Ψ = 0 and the problem is not uniquely solvable. So, S − ST 6= 0n×n gives qi + µi 6= k, ∀i

where k ∈ R is the same constant for all i. This implies q+µ 6= k1, or that all assets have

the same expected return. If all assets have the same initial return and being stressed in

the same way the weights would not change and Ψ = 0. To clarify, if all assets would

have the same return then S − ST = 0 and the problem would not be solvable.

2.2 The Michaud resampled frontier

In this section, Michaud’s resampled frontier is presented in three sections. First, an

introduction to the framework followed by some of the advantages and disadvantages.

Finally, the underlying statistical properties the model is based on.
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2.2.1 Introduction to the resampled frontier

Michaud invented the so called resampled efficiency method as an answer to some of the

problems with Markowitz’ model, primarily the problem of instability and uncertainty

in forecasting inputs [22]. The method is based on resampling the optimization in a

Monte Carlo simulation procedure. The procedure of a portfolio with N assets can be

summarized in the following steps [6], [12]:

Step 1: Estimate the expected return, µ̂, and the covariance matrix Σ̂, for the N assets e.g.

from historical data.

Step 2: Solve the optimization problem for the minimum-variance portfolio and denote the

expected return for this portfolio Rmin−variance

Step 3: Solve the optimization problem for the maximum return portfolio and denote the

expected return for this portfolio Rmax return

Step 4: Choose a number of discrete increments, in returns, for the frontier, k.

Step 5: Set Rmin−variance = a, Rmax return = b and δ = (b − a)/k. The front is evaluated at

all δ number of returns.

Step 6: One frontier is represented by Fk, consisting of k row vectors with weights for all

portfolios on the frontier. Since there is N asset, Fk is of size k × N .

Step 7: Assuming that the return distribution is a multivariate normal distribution with

mean return vector, µ̂, and covariance matrix, Σ̂. Draw a sufficient large enough

sample and estimate a new mean return vector, µ
∗, and a new covariance matrix,

Σ∗.

Step 8: Use the new estimates to derive a new frontier, F ∗

k , and the corresponding weights.

Step 9: According to Michaud Σ̂ and Σ∗ are now “statistically equivalent”5.

Step 10: Using Monte Carlo simulations, repeat Step 7-8 S times to get S number of new

frontiers.

5Explained below after the procedure
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Step 11: To calculate the resampled weights, average over all available frontiers, Fk. Derive

the resampled frontier using the resampled weights and the original estimates for

mean, µ̂, and the covariance matrix, Σ̂.

One concept that is very important for the resampled frontier is statistically equivalent.

Michaud defines two statistically equivalent portfolios as having the same risk-reward

trade-off. The portfolios are not necessarily equivalent in risk, expected return nor in the

weight space [22]. As seen in Figure 2, the resampled frontier is to the right in relation

to the Markowitz frontier. Since the resampled frontier uses the average weights but

the original mean, µ̂, and covariance, Σ̂, the weights used are not the optimal weights.

Therefore, for any given expected return the risk has to be higher, the resampled frontier

is therefore to the right. At the low-risk end, resampled efficient frontier portfolios are

similar to their associated mean-variance efficient portfolios. As portfolio risk increases,

the similarities diminish. As a consequence, the “length” of the two frontiers differs, the

resampled frontier is shorter than the mean-variance frontier. Fusai and Roncoroni and

many others shows or argue that resampling rules out both extreme and bad diversified

portfolios. This implies that the method is implicitly providing investors with a sensible

and “safer” set of portfolios, the implicit protection is increasing in the horizontal axis

[12].

2.2.2 Advantages and disadvantages with the resampled frontier

Earlier studies of the resampling model have showed both on advantages and disadvan-

tages. Below some of these are introduced and explained.

Advantages: The main advantage of Michaud’s resampling model is obviously the fact

that it is less sensitive to perturbations in input variables. This is the main idea behind

the model and the purpose for which it was created [22]. Resampled portfolios are the

result of an averaging process which makes the result more stable to small changes in input

parameters. Michaud argues that a resampled portfolio is more diversified and intuitively

less risky than the corresponding Markowitz portfolio. Greater diversification is proved in

earlier studies e.g. by Scherer in Portfolio Resampling: Review and Critique [24]. Scherer
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Figure 2: Comparison between Markowitz efficient frontier and the resampled frontier
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also points out that diversification and less-sudden shifts in allocation changes as the given

level of return changes are two aspects which appeals to practitioners.

Disadvantages: Compared to the Markowitz model, there exists no “theoretical foun-

dation” for the resampling model. Further, there is no economic rationale derived from the

optimizing behavior of rational arguments that supports this method [24]. Also, there are

no theoretical arguments on why the resampled portfolio should outperform the mean-

variance efficient portfolio. Hence, it is a heuristic solution to the problem. Michaud

argues that the two portfolios are “statistically equivalent”, however these portfolios are

neither identical in risk nor return. One problem with the resampling model is that a

few extreme frontiers can result in strange portfolio weights. Another example is when

combining assets with different return and volatility. Varying the worst performing asset’s

(with respect to expected return) volatility and considering the allocation in the maxi-

mum return portfolio. Even though the asset has the lowest return, the allocation peaks

in the maximum return portfolio. When the volatility increases, the corresponding result

in the resampling model is that the allocation in the maximum return portfolio increases.

As a result, deterioration in the risk-return trade-off, Sharpe ratio. The result however, is

not derived from higher volatility leading to a higher estimation error but instead directly

from averaging over long-only portfolios. This phenomenon does not arise in long-short

portfolios [24].

2.2.3 Statistical properties underlying the resampled frontier

The central problem in statistical analysis is the problem of uncertainty and as a direct

consequence, how to account for uncertainty. The resampling model is a way to handle the

uncertainty of the estimated parameters in the Makowitz model. There are, in general,

several ways to formalize uncertainty and adjust such as prior information, probability

models, likelihood, standard error and confidence intervals. In simple situations, these

methods can be sufficient for calculating and measuring the uncertainty of estimations.

However, in more complex problems, these measures can be a lot harder to obtain and

sometimes be misleading due to inappropriate assumption or simplifications [9]. Due to

lack of analytical properties for the resampling model it falls under the latter category.
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The resulting sub-problem is now, how to obtain reliable measures of errors in complex

situations. The solution is various resampling methods and in Efron’s article, Bootstrap

Methods: Another Look at the Jackknife, a new revolutionizing approach was introduced

[11]. What Efron did was to combine earlier ideas of resampling methods and thus es-

tablishing a new framework for simulation-based statistics. The methodology behind

resampling models is to create resampled data sets from the original data, directly or via

fitted models and the all statistical analysis is performed on the “new” data. A frequently

used set of these methodologies are called computer-intensive methods due to repetitive

process of replicating data or bootstrap method since it uses the original data to gen-

erate more data6 [9]. There are in general two types of bootstrap methods, parametric

estimation of the underlying distribution or resample from the data with replacements,

non-parametric [30].

Recalling step seven in resampling model, resampling new data using the parameters

estimated from historical data. This is an example of parametric bootstrap with an

underlying normal distribution. Each dataset generated, is a bootstrap sample and the

efficient weights are an average of all bootstrap weight vectors [7]. The entire procedure of

the Michaud model is a special case of“bootstrap aggregating”[30]. Bootstrap aggregating

is a statistical technique invented by Breiman and is probably more know under the

acronym, Bagging [4]. This technique is useful when small changes in data can lead

to significant changes in estimations. First, resample data via bootstrap, calculate the

desired estimates and repeating this. Then aggregating the results and averaging hopefully

yields in estimates with more stable performance then the original estimates [30]. Breiman

however, showed that there is no guarantee that the resampled estimates works better [4].

These estimates can be better, worse or equal and if the technique is useful has to be

determined from case-to-case [30]. The theoretical foundations for the resampling model

is thin, it is based on a special case of model which is also a special case7. Further, there

exists no analytical ways to evaluate the model, it can only be done in empirical studies

[24].

6Recall the stories of Baron Munchahusen who used his bootstraps to pull himself out of a swamp. The
technique of generating more data from a limited set is analogues to the trick used by Baron Munchahusen.

7Bootstrap aggregating is a special case of the model moving average approach [4]
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3 Methodology

In this section the methodology is presented in four parts. First, a description of the data,

then conversion of data, thereafter the empirical procedure and finally the programming

code is explained.

3.1 Data description

In a normal asset allocation study, the number of assets are normally between 3-20, rarely

exceeding 50. Usually a broad range of asset classes are included, such as bonds, equities

(international and domestic) and commodities [22]. In this thesis, the analysis has been

based on a multi asset portfolio with nine assets from different asset classes such as

bonds, equities (international and domestic) and properties among others. The portfolio

is well diversified, as in a normal asset allocation study. In Table 1, a presentation of

the assets in the portfolio is provided. Tables 2 and 3 show additional statistics for the

portfolio, descriptive statistics and correlations. The portfolio statistics are based on

weekly observations between 2001-12-18 and 2010-04-14, 434 observations of asset prices.

The reasons why weekly observations were used instead of daily, monthly or annual are

several. First, the portfolio should be based and evaluated on a reasonable time range,

second, less frequent data the better since it minimizes the noise and third, there has to

be sufficient data for estimation of the parameters. Remembering that for the covariance

matrix there are n(n − 1)/2 + n different parameters to estimate and with nine asset

there are 45 parameters to estimate. The portfolio has 433 observations, there are almost

10 data points for each parameter which can be regarded as sufficient from a statistical

point-of-view. It would not be possible to use less frequent data since there would not be

enough data for each parameter.

From the asset prices, the simple returns were calculated and used for all other calcula-

tions. The reason for using simple returns rather than logarithmic returns is because the

data contains several large daily movements, up but mostly down and that simple returns

are usually used for discrete portfolio optimization. All data for both portfolios are gath-
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ered from the Bloomberg API. The prices are adjusted for capital changes defaults such

as stock splits/consolidations, stock dividend/bonus and rights offerings/entitlements and

all forms of cash dividends, cash dividend intraday, normal cash dividends and abnormal

cash dividends.

Comparing returns and risks in Table 2 the risk may seem to be relatively higher than

the return. However, if the values are annualized, see Section 3.2, the relations between

the values are more intuitive and logical. This misconception depends on that the data is

based on weekly observations instead of annual which is a more common way to present

data.
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Table 1: Presentation of assets in the portfolio

Asset Description

LD12TRUU Index
(LD12)

Barclays Capital 1-3 Month U.S. Treasury Bill Index.

LBUSTRUU Index
(LBUS)

Barclays Capital Index represents the securities of the U.S.
dollar denominated investment grade bond market

LHVLTRUU Index
(LHVL)

Barclays Capital High Yield Bond Index in U.S. dollar.

GDDUWI Index
(GDDU)

The MSCI World Index is a free float-adjusted market capital-
ization weighted index that is designed to measure the equity
market performance of developed markets/countries, gross of
tax total return index.

SBX Index (SBX) The OMX Stockholm Benchmark Index is a capitalization-
weighted total return index designed as an indicator of the
Stockholm Exchange. This index includes only the share cap-
ital, which is freely available for trading in the market, the so
called free float. Dividends are reinvested back into the index.

RUGL Index (RUGL) The RUGL Index or FTSE EPRA/NAREIT Global Real Es-
tate Index Series is designed to represent general trends in
eligible real estate equities worldwide. Relevant real estate
activities are defined as the ownership, disposure and devel-
opment of income-producing real estate. The index series now
covers Global, Developed and Emerging indices, as well the
UK’s AIM market, total return index.

SPGSLETR Index
(SPGS)

S&P GSCI Light Energy Total Return, tracks the perfor-
mance of a rolling basket of front-month commodity futures.
Uses 1/4 of the S&P GSCI contract production weights for
the energy components.

USDSEK Currency
(SEK)

Foreign Exchange Rate between the US dollar and the
Swedish Krona.

USDEUR Currency
(EUR)

Foreign Exchange Rate between the US dollar and the Euro.
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Table 2: Descriptive statistics for the portfolio based on weekly observations

Company # Obs Mean [10−1%] Std. dev. [%] Min [%] Max [%]

LD12 433 0.42 0.04 -0.09 0.21

LBUS 433 1.04 0.53 -1.97 1.69

LHVL 433 1.67 1.62 -11.97 7.64

GDDU 433 1.29 2.63 -20.01 12.41

SBX 433 1.80 3.20 -20.98 12.68

RUGL 433 2.54 3.19 -16.80 19.17

SPGS 433 1.33 2.74 -15.70 8.38

SEK 433 -0.75 1.74 -6.26 6.97

EUR 433 -0.87 1.35 -5.21 6.05

Table 3: Correlations within the portfolio based on returns

LD12 LBUS LHVL GDDU SBX RUGL SPGS SEK EUR

LD12 1.00

LBUS 0.03 1.00

LHVL - 0.12 0.17 1.00

GDDU - 0.10 - 0.11 0.58 1.00

SBX - 0.11 - 0.17 0.47 0.83 1.00

RUGL - 0.08 0.01 0.57 0.84 0.67 1.00

SPGS - 0.02 - 0.05 0.27 0.42 0.28 0.38 1.00

SEK 0.00 - 0.12 - 0.28 - 0.45 - 0.21 - 0.49 - 0.47 1.00

EUR - 0.03 - 0.23 - 0.17 - 0.31 -0.10 - 0.36 - 0.41 0.82 1.00
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3.2 Data conversion

It is more convenient to express returns as “annualized returns”, even when observations

are of another frequency. Multiplying return with a frequency factor, f , which depends on

the frequency of the data8, it is possible to annualize the data. For risk, standard deviation,

there is a similar relationship, the risk is multiplied with square root of the frequency

multiplier. Regarding correlation, there is no need to include any frequency multiplier

since it is cancelled out anyway. In Equations 12-14 a mathematical presentation is given.

For the return the relationship is quite easy and intuitive, if the return one day is π %

assuming that the return is measured on one year the return should be π % times the

number of trading days, f , in one year9. Expressed mathematically with the subscripts

A for annual and D for daily

rA = rD × f ⇒ E[rA] = E[rD] × f. (12)

For the variance, the relationship is derived using Equation 12, with the subscripts X and

Y for different assets

σ2(X)A = E[r2

XA
] − E[rXA

]2

= f × (E[r2

XD
] − E[rXD

]2)

= f × σ2(X)D,

where the rule for variance calculations, σ2(aX) = a2σ2(X), is used. The same relation-

ship can be used for the standard deviation

8Daily, weekly, monthly or annual
9Assuming simple returns
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σ(X)A =
√

σ2(X)A

=
√

f × σ2(X)D

=
√

f × σ(X)D. (13)

Using the above relationships, the relationship for the correlation can be derived as

Corr(X,Y )A =
Cov(X,Y )A

σ(X)Aσ(Y )A

=
Cov(X,Y )D

σ(X)Dσ(Y )D

f√
(f)

√
(f)

= Corr(X,Y )D, (14)

where Cov(aX,bY ) = abCov(X,Y ) and Cov(X,X) = σ2(X) are used.

For more information about conversions, see almost any textbook in finance covering

conversions e.g. Options, Futures and Other Derivatives by Hull [13].

3.3 Empirical procedure

In the first part of the empirical testing phase, the true returns and covariances are

calculated for all assets based on weekly observations. On the resulting mean-variance

frontier, ten portfolios at different return and risk levels where chosen. All portfolios

where chosen with respect to the constrained portfolio since it is the most common one

for the Michaud model. The return of the portfolios are in the range between 3 % and

13 % and the risk of the portfolios are in the range between 1 % and 23 %, all numbers are

annualized. Ten unique equidistant risk levels over the range were selected as a reference

portfolios. The weights in the efficient portfolios at these levels are denoted as the “true

weights”, wtrue and are the benchmark weights. The set of true weights is thus the set

of weights from optimizations based on the return, volatility and correlation from the

historical returns.

The ambition was to study the stability of the two portfolio models, Markowitz and

Michaud’s resampling model in five different cases with respect to input parameters.
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1. Change in all input parameters: expected return, risk, correlation

2. Change in expected return only

3. Change in risk only

4. Change in correlations only

5. Change in covariance, combination of risk and correlation

Initially simulations were done for both the different risk and return levels. However, to

limit the analysis the focus from here on is on the risk levels only. Further, the constrained

case is considered the most important while the unconstrained will only be considered as

a comparison when necessary.

To measure the sensitivity in a such a way that all scenarios would be comparable, all

parameters were changed in the same way. For every asset, each input parameter was

varied according to IP + IP · 10% · N(1,1) where IP is the input parameter based on

historical values and N(1,1) is a normal distributed variable with mean and standard

deviation equal to one. The mean and standard deviation were chosen so there would

be changes in the parameters on average. It can be argued that a standard normal

distribution could also be used which is true but since the purpose was to study the

stability when the input parameters were varied a mean of one would imply an average

change of 10%. For return and risk a M100×9 matrix while for correlation and covariance

100 M9×9 matrices where used to represent the changes. Then for each case, 1 − 5, the

corresponding series and/or original values where used so the random numbers where the

same so the results would not be affected by the randomness between each case.

In total, 100 efficient frontiers were calculated for each scenario and model. On each of

the 100 frontier the portfolio weights at each risk level were saved for further analysis.

Another question was how the instability should be measured. What was sought after

was to see how much the simulated weights deviated from the true known weights. Also

to be able to compare between different models with an easy measure. No interests if the

weights were larger or smaller, only the variation. Therefore after careful consideration

and evaluation the most efficient way is to calculate the standard deviation of the difference
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for each asset weight relative to the true weight and then the summarizing the deviations

to get the result

Asset Instabilityk,l =
m∑

s=1

σ(ws,k,l − wt,k,l), (15)

P ortfolio Instabilityl =
n∑

k=1

Asset Stabilityk,l, (16)

where l = denotes the risk level, k = denotes the asset, ws,k,l = is the simulated weight

from simulation s at risk level l for asset k and wt,k,l = is the true weight at risk level l

for asset k.

Ideas that were discarded where to scale with the true weight since a deviation in any

weight is equally important. Also if positive and negative deviations would be treated in

different ways. The standard deviation measure is well recognized, easy to compare and

replicable and therefore the best measure.

In the cases where the covariance matrix is altered, it is important to be careful. The

covariance matrix must be at least positive semi definite, all eigenvalues ≥ 0. When the

covariance matrix is estimated from historical values it is per definition always positive

definite, however now when the matrix is disturbed it has to be made sure that it still is

at least positive semi definite. This can be done with the following perturbation [27]

A → A + ǫ(I − A) = B, (17)

where ǫ is a scalar and I is the identity matrix. The question is how to choose ǫ. A large

ǫ implies a large change of the matrix A, ǫ should therefore be as little as possible but

large enough to ensure that the eigenvalues of A is non-negative. Denoting the smallest

eigenvalue of A with λA and using the Rayleigh-Ritz theorem it is known that
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λA = min
xT x=1

xT Ax. (18)

Combining Equations 17 and 18

λB = min
xT x=1

xT Bx = min
xT x=1

[(1 − ǫ)xT Ax + ǫxT x]. (19)

If λA ≤ 0 Equation 19 implies that λB ≥ 0 if ǫ ≥ −λA/(1 − λA). Using the derived λ

it is ensured that the matrix is positive semi definite. It is also possible to measure the

difference between A and B with the following formula

η =
||B − A||2

||A||2
,

where || · ||2 denotes the L2-norm.

All these steps in the analysis have been done for both the Markowitz portfolio optimiza-

tion framework and the Michaud resampling model. In addition, the analysis is made on

both a constrained and an unconstrained portfolio. Michaud argues that weights should

be constrained, however to compare and measure the true sensitivity in the model the

analysis should be done for both types of portfolios [2]. Furthermore, a constrained port-

folio can falsely be interpreted as more stable, invoking constraints reduces the number

of feasible solutions.

3.4 Programming

All coding used to make the analysis have been written in the numerical computational

program MATLAB
TM

. Previous studies e.g. the two Master Thesis of Jiao and Kohil

which both of whom used MATLAB
TM

for similar analyses have given helpful program-

ming tips and ideas [14], [15]. Further, the book Implementing Models in Quantitative

Finance: Methods and Cases by Fusai and Roncoroni was helpful in validating the func-

tionality of all programs [12].
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For the Markowitz model the portfolio optimization equations have been solved with two

different methods. First, with the fmincon routine, it finds the minimum of constrained

nonlinear multivariable function with the option of using nonlinear constraints. To solve

the desired equations, several function files, different input arguments and constraints were

combined with fmincon. The constraints can be for a specific risk or return level but also

to solve for a constrained or unconstrained portfolio. However, in some cases there exists

an analytical solution, these were compared to the result of fmincon which could validate

that the routine with all additional function files worked properly. The second approach

was to use the frontcon routine in the financial toolbox. First, it finds the minimum risk

portfolio and the maximum return portfolio. Second, it calculates a specified number of

efficient portfolios in between the return of the minimum risk portfolio and the maximum

return, equidistant with respect to return. The routine also has optionally of boundedness

on the weights. An empirical testing study showed that it was sufficient with weights in

the range of wi ≤ |2|, for both portfolios in the case of unconstrained portfolios. Frontcon

does not give portfolios weights for specific risk or return which is desired in many cases.

To improve the accuracy a larger number of portfolios can be used in the calculations.

For this analysis the number of portfolios, Nport1 and Nport2, for the constrained and

unconstrained case respectively was set to Nport1 = 1000 and Nport2 = 4000. The value

of Nport1 can be compared to the values of Jiao and Kohil, both of whom only used

constrained portfolios in their analyses and used 25 and 30 portfolios respectively.

For the resampling model, the portfolio optimization equations have been solved only

with the frontcon routine. Since this routine is similar to the first steps in the Michaud

framework it is perfect to use for calculating the resampled frontier. To estimate the

new parameters, return and covariance 1000 random values were used. This can be

compared to Kohil and Jiao who used 30 and 50 random values respectively. To ensure

the proper covariance between the random variables, a Cholesky decomposition of the

“true covariance matrix” is used. With Monte Carlo simulations this process is then

repeated 500 times, this was decreased from 1000. From a time perspective, there is a

trade-off between the number of portfolios and the number of Monte Carlo and to be able

to do the simulations in a reasonable time frame, there has to be compromise between the

parameter values. Once again this value can be compared with those of Jiao and Kohil

who did 200 and 100 Monte Carlos simulations respectively while Fusai and Roncoroni
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did 500 simulations as well.

The reason why two approaches are used for the Markowitz model and only one for the

Michaud model is that only the frontcon routine is suitable for the resampling model.

To be able to compare the models, they should be calculated using the same routines to

minimize errors from the routines.
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4 Result and discussion

In this section the results and findings of this thesis are presented and discussed. The

first part is an introduction and gives the reader all starting values. In the second part

the results from all simulations are presented and deviations are discussed.

4.1 Introduction

To better be able to understand the results from the simulations there are a some base

line information worth considering. First, see Table 4 for the different risk levels for all

portfolios. Also the true weights from the constrained optimization for the two models are

shown in the Tables 5 and 6 below. These optimizations used the original historical time

series as inputs. Initially ten risk levels were defined but only eight used in the analysis.

This is due to the inherent characteristics of the resampling model, see Figure 2. Since

the model is an average of the result and the high risk portfolios are more unlikely, it

becomes harder to achieve these portfolios.

Table 4: Risk level for the sample portfolios, annualized standard deviation

Portf
1

Portf
2

Portf
3

Portf
4

Portf
5

Portf
6

Portf
7

Portf
8

Risk
level σ

0.3 2.8 5.3 7.8 10.3 12.7 15.2 17.7
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Table 5: True weights in the Markowitz constrained case

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.96 0.03 - - - - - - -
Portf 2 0.28 0.62 0.04 - 0.03 0.02 0.01 - -
Portf 3 - 0.72 0.15 - - 0.13 - - -
Portf 4 - 0.52 0.25 - - 0.23 - - -
Portf 5 - 0.34 0.34 - - 0.32 - - -
Portf 6 - 0.18 0.42 - - 0.4 - - -
Portf 7 - 0.01 0.51 - - 0.48 - - -
Portf 8 - - 0.34 - - 0.66 - - -

Table 6: True weights in the resampled constrained case

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.96 0.03 - - - - - - -
Portf 2 0.29 0.58 0.05 - 0.03 0.03 0.02 0.01 -
Portf 3 0.04 0.64 0.12 - 0.04 0.12 0.04 - -
Portf 4 0.02 0.48 0.20 - 0.05 0.20 0.06 - -
Portf 5 0.01 0.30 0.28 - 0.06 0.27 0.07 - -
Portf 6 - 0.17 0.30 - 0.08 0.36 0.08 - -
Portf 7 - 0.09 0.23 - 0.10 0.48 0.10 - -
Portf 8 - 0.04 0.14 - 0.12 0.61 0.09 - -

36



4 RESULT AND DISCUSSION

Comparing the two tables, Table 5 and 6, the first difference between the models is that

the resampling model includes more assets than the Markowitz with exception for the first

portfolio. This was expected due to the diversifying effect that the resampling model has.

The intra-portfolio relationships are similar i.e. the large asset weights in one model are

the large in the other model as well while assets not included in both modes have small

weights which also is quite reasonable from a fundamental perspective. Also asset 4 and

9 are neither included in any portfolio in either model while asset 5 and 7 are included

in all but one Michaud portfolios but only in one of the Markowitz portfolios. Further

looking at the table over the correlations within in the portfolio, Table 3, and Table 7

which shows the risk-adjusted return, more things can be explained.

Table 7: Historical risk-adjusted returns

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Risk-
adjusted
returns

1.05 0.20 0.10 0.05 0.06 0.08 0.05 -0.04 -0.06

Volatility 0.04 0.53 1.62 2.63 3.20 3.19 2.74 1.74 1.35

The reason that asset 4 is not included in any portfolio is because of its relatively bad

risk-adjusted return and high correlation with high return assets. Asset 8 and 9 are not

included due to negative expected return, both assets have negative correlations with

most of the assets but the diversifying effects are not sufficient to motivate inclusion. One

of the major difference between the models is the allocation to assets 5 and 7. The risk-

adjusted returns are not the most attractive but the correlations with other assets with a

large allocation are attractive from a portfolio construction perspective in the resampling

model together with the volatility component. High volatility is considered favourable

in the resampling model since there is a probability for positive high returns in with

bootstrapping. In a constrained model this is more obvious, high volatility implies high

positive and negative returns. With positive returns it will be included in the portfolio but

with a high negative return it will not be included but not negative (0 ≤ wi). Therefore

the relationship is asymmetric and the reason why high volatility assets gets positively

skewed by the constrained version of the resampling model.

37



4 RESULT AND DISCUSSION

4.2 Portfolio and asset instability

The five cases described earlier are listed below.

1. Case 1: Change in all input parameters: expected return, risk, correlation

2. Case 2: Change in expected return only

3. Case 3: Change in risk only

4. Case 4: Change in correlations only

5. Case 5: Change in covariance, combination of risk and correlation

These five cases will be referred to back during this section. The main measures used in

this thesis are the portfolio and asset instability derived in Equations 15 and 16. The

asset instability is as defined earlier, the standard deviation of the variation from the true

weight and the portfolio instability the sum of the asset instability for each asset in the

portfolio. In Tables 8 and 9 the asset instabilities are shown for both models in case 110

scaled with the true weight.

Table 8: Asset instability of Markowitz model

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.7 0.7 0.2 0 0.1 0.1 0 0.1 0
Portf 2 5 6.6 3.4 0 1.5 2 0.8 0.1 0
Portf 3 0 6.2 10.3 0 2.7 5.2 1.5 0 0
Portf 4 0 10.4 18 0 3.1 8.8 1.8 0 0
Portf 5 0 14.2 24.9 0 3.6 12 2.2 0 0
Portf 6 0 16.5 28.1 0 5.1 13.5 2.5 0 0
Portf 7 0 13.6 21.8 0 7.1 11 2 0 0
Portf 8 0 8.8 14.1 0 8.6 10.3 1.7 0 0

Values in the table multiplied with 100 and rounded to two decimals.

10Other cases in appendix A
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Table 9: Asset instability of resampling model

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.7 0.6 0.2 0 0.1 0.1 0 0 0
Portf 2 4.7 6.1 2.4 0.2 1 1.4 0.6 0.4 0.1
Portf 3 1.1 3.1 5.4 0.3 2.1 3.1 1.3 0.3 0
Portf 4 0.6 5.1 9.2 0.3 3.1 5.2 2 0.2 0
Portf 5 0.4 6.7 11.8 0.4 4.1 6.7 2.6 0.2 0
Portf 6 0.2 6 10 0.5 5.4 7 3.2 0.1 0
Portf 7 0.1 4.4 7.2 0.6 7 7.4 3.5 0.1 0
Portf 8 0 2.6 5.7 0.5 8.1 8.8 3.3 0.1 0

Values in the table multiplied with 100 and rounded to two decimals.

Comparing the two tables, there are two important differences. First, the asset instabilities

for the Markowitz model are significantly larger on a overall basis. Second, there are more

non-zero asset instability values for the resampling model. This also illustrates the nature

of the models, Markowitz is the concentrated model and resampling is the diversified

model. The effect of diversifying in the resampling model in terms of asset sensitivity is

the smoothing effect on distributing changes on more assets. For the remaining cases11

the difference between the models are similar.

The instability becomes easier to analyse when looking at the figures instead of tables.

Figures 3 and 4 shows the portfolios’ instability on the y-axis, denoted in percent, against

the different risk levels on the x-axis, denoted as σ or standard deviation, for the Markowitz

model and the resampling model respectively. The five cases, different parameters stressed,

are represented with different lines. While in Figure 5 both models are compared on a

relative basis, where case “i” represents instability in Markowitz case “i” - instability in

resampling case “i”.

First, looking at Figure 3 and consider case 1, when all variables are stressed. For the

Markowitz model the portfolio instability increases with increasing risk level up until the

6th risk level and is then decreasing. It can largely be explained by the number of of assets

included in the true portfolio, see Table 5. Comparing the 6th, 7th and 8th portfolio, the

11These tables are shown in Appendix A
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Figure 3: Portfolio instability for the five cases in the Markowitz model. The x-axis shows
the risk level, standard deviation. The y-axis show the instability measure as defined
earlier. Each dot in the graph represents one of the portfolios.

40



4 RESULT AND DISCUSSION

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

Portfolio risk σ

[%
]

Portfolio instability resampling model

 

 

1
2
3
4
5

Figure 4: Portfolio instability for the five cases in the resampled model. The x-axis shows
the risk level, standard deviation. The y-axis show the instability measure as defined
earlier. Each dot in the graph represents one of the portfolios.
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Figure 5: Difference in portfolio instability, Markowitz model - resampling model. The
x-axis shows the risk level, standard deviation. The y-axis show the instability measure
as defined earlier. Each dot in the graph represents the difference between the models for
portfolios with the same risk level.
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first two includes three assets while the last one only includes two assets. One of the assets

in the 7th portfolio has a weight of 1% and therefore has a limited impact. These results

are quite intuitive since low risk portfolios only includes low risky assets and high risky

portfolios will only include high risky assets. This limits the available asset combinations

and also the instability.

Second, comparing the other cases for the Markowitz model. The instability is largest

when all parameters are stressed. The return component is the most crucial parameter,

followed by covariance, risk and lastly correlation. For case 2, the return component has

the same characteristics as the case 1 described above. For case 5 the risk is the main

driver of covariance. Interesting for case 3 to 5 is also that the 2nd portfolio has higher

instability than the 3rd. The explanation of this is that the instability impact of risk,

covariance and correlation is less then the effect of additional assets in the portfolio. The

two factors that impacts the instability is risk level and number of assets in the true

portfolio.

Shifting focus to the resampling model, Figure 4. When all variables are stressed the

instability is increasing up until the 5th risk level and is then decreasing, while the 2nd

and 3rd portfolio are almost equal. The rational is the same as for the Markowitz model

with the number of assets as seem in Table 6. To give an explanation for the 2nd and

3rd risk level, see the other cases, 2-5. The effect is more obvious for case 3 and 5 which

results that there are some effect of instability diversification between the input factors.

The ranking between the cases is the same as in the Markowitz model, interestingly the

impact of correlation is strictly increasing.

Comparing the models, one interesting result is the impact of each parameter relative to

stress in all parameters. The impact hierarchy for both models was the same but there

are some underlying differences. For the return parameter the impact on the Makrowitz

model is relatively more important while the other input parameters have a larger impact

for the resampling model as seen in Figures 3 and 4.

To conclude, in Figure 5 the difference between the two models is shown. This is to be

able to compare the models on a relative basis. In the figure, case ”i” represents instability

in Markowitz case ”i” - instability in resampling case ”i”.
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For the low risk portfolios there is no real difference between the models. The difference

then increases with risk except for the last two portfolios. For both models the instability

is decreasing but the marginal decrease for the Markowitz model is bigger and hence

this result. The figure over the instability difference for case 1 and 2 resembles Figure

3 and it is the Markowitz model which is driving the difference. The resampling model

outperforms the Markowtiz model in most instances, the exception is the last risk level

for the risk and covariance, case 3 and 5 but also correlation on most risk levels, case 4.

Since the difference in instability is positive, the conclusion is that the Markowitz model is

more sensitive to uncertainty in the input variables. Also that the difference is a increasing

function of risk level conditioned on the number of assets.
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5 Summary and conclusions

In this section the thesis is summarized and the major three findings are highlighted and

discussed in separate sections. The findings are compared to results from previous studies.

The sections ends with a section on suggestions for further studies.

5.1 Introduction

The three findings to highlight from this thesis are summarized in the bullets below and

then discussed in separate sections.

• The Markowitz model is more sensitive than the resampling model to uncertainty

in input parameters.

• The dispersion between the two models increase with risk subject to the number of

assets in the portfolio.

• The expected return is the main driver of instability for parameter optimizations.

5.2 The Markowitz model is more sensitive than the resampling

model to uncertainty in input parameters

The first finding is quite obvious after analysing Figure 5. Reviewing previous studies this

was the most expected result since the purpose with the tesampling model was to handle

uncertainty in the input parameters as described in Michaud’s studies [21] and [22]. The

results in this study then confirms the results in Michaud’s study and also to some extent

the findings of Kohli who argues that the resampling model is more stable [15].

In general, the resampling model includes more assets than the Markowitz model at the

same risk level. Despite this, due to its characteristics, the volatility of each weight is

less than the corresponding volatility for Markowitz model. Therefore the model is more

stable than the Markowitz model. Even though there is no solid analytical proof for the
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model, only empirical proof, and this study is contributing to those. Michaud followers

usually refer to the out-of-sample performance as the most compelling evidence to why the

resampling model is superior compared to the Markowitz model [21] and [22]. However

other studies such as Kohli shows that there is no conclusive advantage or disadvantage

of using the resampling model [15]. Becker, F. et. al. go even further and argue that

the Markovitz model is superior which illustrate that there is not one answer to the

question [2]. The two aspects, performance and stability, are not necessary synonyms

for what model is the most stable. A model can be less stable but have a better out-of

sample performance e.g. if the out-of-sample parameters are exactly as the in-sample the

Markowitz model will have better performance.

5.3 The dispersion between the two models increase with risk

subject to the number of assets in the portfolio

Recalling Figure 3, the instability increases with increasing risk level, σ, in the Markowitz

model. This statement is almost accurate for all input parameters12. Comparing with

the results with studies of Okhrin and Schmid, de Roon and MacLean et. al., this study

validates that the sensitivity appears to diminish for higher risk aversion [25] [23] [17].

Recalling Figure 4, the same conclusion is not as obvious be said. The trend is however

that the instability is increasing with risk level but the diminishing effect is seen earlier

but not as big as in the Markowitz model. There are no other studies on this topic which

can confirm or deny the results but the results are similar for both models.

To summarize, for the two models, there is not sufficient results to state that the instability

increases with risk without also considering the number of assets. What is true is that the

increase in instability for the Markowtiz model is relatively more than for the resampling

model and it drives the dispersion between the models, recall Figure 5. However when

the number of assets differ substantially, in this case > 3, one has to pay extra attention

since fewer assets reduce instability. This is the case at the end of the frontier, at the

end of the risk spectra when fewer assets are usually included in the Markowitz optimal

12Exceptions highlighted in Section 4.2
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portfolio as seen in Figure 5.

5.4 The expected return is the main driver of instability for

parameter optimizations

For both models, see Figure 3 and Figure 4, the order in terms of impact on instability is

the same. By far, returns are the main source of instability, then covariance, followed by

risk and then finally correlation. The covariance is mainly driven by the risk parameter.

The parameter uncertainty was simulated from a distribution with equal relative standard

deviation for each parameter. This was done to be able to compare the parameters on a

relative basis. However, a few limitations on some parameters were needed to ensure that

values were not mathematically incorrect. The risk parameter cannot be negative and thus

limited at 0. The correlation between two variables must satisfy −1 ≤ correlation ≤ 1

and was bounded to this interval.

The return is a standalone input parameter while the risk and correlation parameters are

combined into a covariance matrix. Therefore the return for one asset can be changed

without affecting any other assets directly. If the risk for one asset is changed it will affect

the covariance matrix and its relationship with all other assets. The correlation matrix

must be positive semi-definite matrix. Therefore if the correlation between two variables

is changed it might result in a non positive semi-definite matrix and then the relationship

between many assets will be changed in order to adjust the matrix. All these aspects do

also contribute to the result that the return is the main driver.

Comparing to previous studies, Best and Grauer also states that changes in mean is the

main source of instability [3]. Chopra and Ziemba also argue that mean is the main source

of instability [8]. However they argue that variance contributes more than covariance to

the instability which is not the case in this study. Okhrin and Schmid argue that the

sensitivity related to the covariance matrix is substantial and robust [25]. Palczewski

and Palczewski have a similar argumentation that the effect of covariance is neglected

[26]. Also that it depends on the type of portfolio e.g. in a multi asset portfolio the

effect of covariance can account for up to 50% of the instability. They also argue that
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the statement mean is the main source of instability is exaggerated. In this study the

result is rather that the relative importance of the covariance matrix is diminishing with

increasing risk level and is not anywhere near the impact on a multi asset portfolio.

5.5 Summarizing the conclusions

Two of the three conclusions above have been discussed mainly from the perspective of

the overall result, uncertainty simulated in all parameters, while the third conclusion

is focusing on one parameter only. Equal for all three is that the result considers the

uncertainty in all assets and does not reflect on the individual assets’ contribution to

uncertainty. If cases 2 to 5 are considered for the statements listed above.

For the first conclusion, the exceptions are in the last risk level for the covariance and risk,

case 5 and 3 as well as most of the correlation portfolios, case 4, when consider the five

different cases one by one. However, the correlation has a small impact on the instability

for both models compared to the other cases and in absolute value of the difference for

all this cases are negligible compared to the main and return case, 1 and 2.

For the second conclusion, there are additional exceptions as seen in Figure 5. In case 2,3

and 5 the last two portfolios are are the reason why the number of asset comment has to

be added to the statement since the instability is decreasing for the 7th and 8th portfolio.

This has been discussed in Section 4.2. For case 4 is not possible to confirm the statement

case sine it is close to zero and does not increase with the risk level.

For the third conclusion there are really anything in the result of this thesis that contradict

in any way. The conclusion is indifferent of the models and only focusing on case 1.

To summarize, recall the two research questions defined in the beginning of the thesis.

• Research question 1: How sensitive are the two models’ optimal portfolio weights

to changes in expected return, risk and correlation.

• Research question 2: How does the inherit portfolio characteristic affect the results

of research question 1.
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The first and third findings are the answers to the first research question while the sec-

ond findings gives a partial answer to the second question. The instability for a portfolio

increases with risk with the exception at the end of the frontier where the possible combi-

nations are reduced. Palczewski and Palczewski argument that the covariance has a larger

impact than in a multi asset portfolio compared to an equity portfolio is not possible to

give any color on that in this thesis [26].

5.6 Further studies

There are a number of different ways to expand this study. One interesting topic would

be the measure to study the uncertainty as it could be defined in many different ways.

In this study, the measure only considered relative deviations from the optimal portfolio

weights. One alternative way would be to penalize high volatility assets higher since

wrong decisions in these assets tend to have a larger impact on performance.

A second topic could be to work with the stress levels. In times of big market shocks,

substantial risk-off environments, ordinary correlations tend to break down and the impact

of this could also be an interesting topic to study.

A third topic would be to consider the individual assets’ contribution to uncertainty.

What constitutes an asset with large respective low contribution in terms of expected

return, risk and correlation.

A final topic, which only focuses on the resampling model would be to remove eventual

outliers from the sample, scale with variance or to use the median instead of the sample

average to improve the model and the performance.
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Appendix

Asset instability

Table 10: Asset instability of Markowitz model - case 2

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.2 0.3 0.2 0 0.1 0.1 0 0 0
Portf 2 3.7 5.4 3.4 0 1.3 1.9 0.7 0 0
Portf 3 0 6 10.3 0 2.2 4.9 1.2 0 0
Portf 4 0 10.4 18.4 0 2.2 8.5 1.3 0 0
Portf 5 0 14.4 25.6 0 2.3 11.8 1.4 0 0
Portf 6 0 17 28.8 0 3.7 12.7 1.6 0 0
Portf 7 0 14 22 0 5.8 9.7 1.2 0 0
Portf 8 0 9.4 14.2 0 7.5 8.5 1.1 0 0

Values in the table multiplied with 100 and rounded to two decimals.

Table 11: Asset instability of Markowitz model - case 3

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.7 0.6 0.1 0 0 0 0 0 0
Portf 2 3.9 4.5 1.4 0 0.6 0.8 0.3 0 0
Portf 3 0 2.4 3.5 0 0.6 1.9 0.2 0 0
Portf 4 0 3.5 5.6 0 0 2.8 0 0 0
Portf 5 0 4.6 7.5 0 0 3.8 0 0 0
Portf 6 0 5.4 8.8 0 0 4.6 0 0 0
Portf 7 0 3.4 6.9 0 0 4.9 0 0 0
Portf 8 0 0 5.2 0 0 5.2 0 0 0

Values in the table multiplied with 100 and rounded to two decimals.



Table 12: Asset instability of Markowitz model - case 4

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.1 0.1 0.1 0 0 0 0 0 0
Portf 2 0.8 1 0.8 0 0.5 0.5 0.2 0 0
Portf 3 0 1.1 1.3 0 0.6 0.3 0.2 0 0
Portf 4 0 1.8 2.2 0 0.2 0.4 0 0 0
Portf 5 0 2.5 3 0 0.1 0.6 0 0 0
Portf 6 0 3.2 3.9 0 0 0.8 0 0 0
Portf 7 0 2.4 2.9 0 0 1.1 0 0 0
Portf 8 0 0 1.3 0 0 1.3 0 0 0

Values in the table multiplied with 100 and rounded to two decimals.

Table 13: Asset instability of Markowitz model - case 5

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.7 0.7 0.1 0 0.1 0.1 0 0 0
Portf 2 3.8 4.4 1.5 0 0.8 0.9 0.4 0 0
Portf 3 0 2.7 3.7 0 0.9 1.9 0.4 0 0
Portf 4 0 4 6 0 0.3 2.8 0 0 0
Portf 5 0 5.3 8.1 0 0 3.8 0 0 0
Portf 6 0 6.2 9.6 0 0 4.6 0 0 0
Portf 7 0 4.1 7 0 0 4.7 0 0 0
Portf 8 0 0.3 5.3 0 0 5.3 0 0 0

Values in the table multiplied with 100 and rounded to two decimals.



Table 14: Asset instability of resampling model - case 2

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.2 0.3 0.1 0 0 0.1 0 0 0
Portf 2 3.4 4.9 2.3 0.2 0.8 1.2 0.4 0.3 0.1
Portf 3 0.8 2.9 5.3 0.2 1.9 2.8 1.1 0.3 0
Portf 4 0.6 5 9.1 0.3 2.8 4.7 1.7 0.2 0
Portf 5 0.4 6.9 11.8 0.4 3.7 6 2.3 0.2 0
Portf 6 0.3 6.6 9.8 0.5 4.9 6 2.9 0.1 0
Portf 7 0.1 4.2 6.8 0.5 6.4 6.8 3.3 0.1 0
Portf 8 0 2.4 4.8 0.3 7.7 7.6 3 0.1 0

Values in the table multiplied with 100 and rounded to two decimals.

Table 15: Asset instability of resampling model - case 3

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.7 0.6 0.1 0 0 0 0 0 0
Portf 2 3.6 4.1 0.9 0.1 0.4 0.5 0.3 0.2 0
Portf 3 0.7 1.6 1.9 0.1 0.7 1.2 0.4 0.1 0
Portf 4 0.3 2 2.7 0.1 1 1.9 0.6 0.1 0
Portf 5 0.2 2.4 3 0.1 1.2 2.5 0.8 0.1 0
Portf 6 0.2 2.8 1.9 0.1 1.3 3.3 0.9 0.1 0
Portf 7 0.1 1.5 2.8 0.1 1.5 4.8 1.1 0.1 0
Portf 8 0 1.2 2.6 0.1 1.4 4.4 1.4 0.1 0

Values in the table multiplied with 100 and rounded to two decimals.



Table 16: Asset instability of resampling model - case 4

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.1 0.1 0.1 0 0 0 0 0 0
Portf 2 0.7 0.8 0.5 0.1 0.4 0.4 0.2 0.2 0
Portf 3 0.5 0.6 0.8 0.2 0.8 0.6 0.4 0.1 0
Portf 4 0.3 0.9 1.3 0.2 1.2 0.9 0.6 0.1 0
Portf 5 0.2 1.2 1.8 0.2 1.5 1.2 0.8 0.1 0
Portf 6 0.1 1.3 1.7 0.3 1.9 1.3 1 0.1 0
Portf 7 0.1 1 1.6 0.4 2.4 1.4 1.2 0.1 0
Portf 8 0 0.8 1.7 0.4 2.8 1.5 1.3 0.1 0

Values in the table multiplied with 100 and rounded to two decimals.

Table 17: Asset instability of resampling model - case 5

Asset
1

Asset
2

Asset
3

Asset
4

Asset
5

Asset
6

Asset
7

Asset
8

Asset
9

Portf 1 0.7 0.6 0.1 0 0.1 0 0 0 0
Portf 2 3.6 4 1 0.2 0.5 0.6 0.3 0.2 0.1
Portf 3 0.7 1.6 2 0.2 0.9 1.3 0.6 0.1 0
Portf 4 0.4 2.2 2.9 0.3 1.3 2 0.9 0.1 0
Portf 5 0.2 2.5 3.3 0.3 1.6 2.6 1.1 0.1 0
Portf 6 0.1 1.9 2.1 0.4 2 3 1.3 0.1 0
Portf 7 0.1 1.5 2.1 0.4 2.4 3.7 1.3 0.1 0
Portf 8 0 1.2 2.6 0.4 2.8 4.3 1.4 0.1 0

Values in the table multiplied with 100 and rounded to two decimals.


