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Probabilistic Modelling of Sensors in Autonomous Vehicles
Autoregressive Input/Output Hidden Markov Models for Time Series Analysis
Edvin Listo Zec
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Testing the quality of sensors in autonomous vehicles is crucial for safety verification.
This is usually done by collecting a lot of data in many different settings. However,
this can be very time consuming and expensive. Therefore, one is interested in vir-
tual verification methods that simulate these situations, so many scenarios can be
tested in parallel without actual hazards. In this thesis a generative model is cre-
ated for the longitudinal errors in the sensors and an extension to the hidden Markov
model, called autoregressive input/output hidden Markov model (AIOHMM) is im-
plemented. In this extension the transition probabilities are conditioned on an input
vector and the emissions are conditioned with the emissions at previous time steps,
making it better suited for modelling long-term dependencies. We show that condi-
tioning on the previous error is not enough to capture the behaviour of the errors,
and that conditioning the transitions on an input is an important aspect of the
model.

Keywords: Generative Model, Autonomous vehicle, Autoregressive, Input Output,
Hidden Markov Model, Sensor Modelling, Time Series.
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1
Introduction

During the last decades the development of machine learning algorithms has in-
creased tremendously in a variety of different research areas. These algorithms are
also becoming increasingly more important in the automotive industry in the de-
velopment of advanced driver assistance systems (ADAS) and autonomous driving
(AD) [1]. In order to monitor the current status of an environment, sensors are
often used. For example, a sensor system is needed for detecting and identifying
objects of interest around the vehicle, and thus the system plays a crucial role by
monitoring the environment in order to make quick and safe decisions.

Volvo Cars’ active safety department works with autonomous driving (AD) and
highly automated driving (HAD) for cars. The cars have sensors that gather a lot
of raw data that is processed and transformed into a list of objects with relevant in-
formation such as speed and position, but also weather conditions like temperature
and current wind velocity etc. Functions are then designed using these parameters
in order to perform adaptive cruise control or implement collision avoidance systems.

Volvo is interested in testing the quality of the sensors since they have to be evalu-
ated before being deployed. This is usually done by collecting a lot of data in many
different settings. However, this can be very time consuming and expensive. There-
fore one is interested in virtual verification methods that simulate these situations,
so many scenarios can be tested in parallel without actual hazards. In particular, it
is of interest to look at the errors in the sensor data. Simulating the errors is of great
interest since it could be used to better model the sensors in a virtual environment.

1.1 Problem overview

The aim of this thesis is to build a generative model of sensor data given by Volvo
Car Group in order to model the error in the sensors. In particular, it is of interest
to model the error of the longitudinal position of tracked objects from a host car
as seen in figure 1.1. By generating artificial data from a probability distribution
resembling the empirical data as good as possible, one is able to save both time and
resources since driving and collecting data is an expensive task to perform. The
artificial data can be used together with the real collected data to perform further
analysis, for example establishing with statistical certainty that autonomous driv-
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1. Introduction

ing is at least as safe as human driving. In this project we will use empirical data
and build a generative model from it, with the goal being to have the generative
distribution as close to the empirical one as possible.

We consider an off-the-shelf sensor from Volvo Cars and propose a method to model
it. The sensor is referred to as the production sensor in this thesis. The vehicle
is also equipped with a light detection and ranging (Lidar) sensor which is used as
the ground truth. Thus the goal of the thesis is to model the difference between
the production sensor and the ground truth readings, with respect to longitudinal
position. We define the longitudinal error as

lgtErr = lgtPosprod.sensor − lgtPosgroundtruth.

In this project, Hidden Markov models (HMMs) and extensions thereof will be
learned in an unsupervised fashion. HMMs in themselves can be viewed as an ex-
tension of simple Markov models, where the states are hidden (unobserved) while
the output is visible (observed). Each state has a probability distribution over the
output, so the generated output sequence from an HMM reveals information about
the state sequences. The extended HMM implemented in this thesis is called Autore-
gressive Input/Output HMM (AIOHMM). In this model the observation probabili-
ties are conditioned both on previous observations and some input feature. Further
a time inhomogeneous transition matrix in incorporated. After having trained the
AIOHMM on data given by Volvo, we can generate artificial data of the errors which
can be used in a virtual environment for further analysis.

Figure 1.1: Illustration describing the setup and the variables.

2



1. Introduction

1.2 Thesis outline
This thesis is composed into four main chapters. It begins with Theory, describing
all necessary theory and algorithms required to understand the implemented model.
Next is Methods, where the implemented methods and the general work process is
described. The Results and Discussion chapter visualises the different generative
models created and we discuss the obtained results. Lastly, the Conclusions and
future work chapter summarises the main conclusions of the thesis, and we reflect
over possible future works.
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2
Theory

“All models are wrong; some models are
useful".

— George Box, Statistics for Experimenters
This chapter contains all the theory required to understand the implemented model
of the thesis. We start by presenting the expectation-maximisation (EM) algorithm
in general, and continue to describe hidden Markov models and how to train them
with EM. Lastly, an extended version of an HMM is presented.

2.1 The expectation-maximisation algorithm
The expectation-maximisation algorithm uses an iterative method in order to max-
imise the likelihood for parameters in a general statistical model, and is often used
in order to train an HMM. The algorithm is usually summarised in two steps: the
expectation (E) step (1-3) and the maximisation (M) step (4-5). Below follows a
general overview of how the algorithm looks as described by [2], and we will later
see how to apply it to HMMs.

Let y be some observed data, x the complete data and p(y|θ) and p(x|θ) two
parametric densities. It is assumed that the whole data x can be modelled as a
continuous random vector X with density p(x|θ). Given that one only has the
observed data y, the goal is to find the maximum likelihood estimate (MLE) of θ,
which is often maximised using log-likelihood of y.

θ̂MLE = arg max
θ

log p(y|θ).

This can however often times be difficult to solve for, and that is where the EM
algorithm enters. With the EM we first make a guess about X and solve for the
θ that maximises the expected log-likelihood of X. Then we iteratively update θ
until a stopping criteria is reached.
Step 1: Set k = 0 and initialise θ(k).

Step 2: Given the observed data y, calculate the conditional probability distribu-
tion p(x|y,θ(k)).

Step 3: Calculate the conditional expected log-likelihood Q:

Q(θ|θ(k)) =
∫
X (y)

log p(x|θ)p(x|y, θ(k)) dx = EX|y,θ(k) [log p(X|θ)].

5



2. Theory

Here X (y) denotes the closure of the set {x : p(x|y,θ) > 0}, which we assume does
not depend on θ.

Step 4: Calculate θ(k+1) = arg max
θ

Q(θ|θ(k)).

Step 5: Update k := k + 1 and return to Step 2. Stop criteria can be defined as
needed, usually one chooses to stop when ‖θk+1 − θk‖ < ε for some ε > 0.

The EM algorithm guarantees convergence and that the next iteration is at least as
good as the previous one. This means that one stops in a local maximum, and thus
one usually initialises the EM algorithm by randomisation several times, and then
chooses the θ with the largest likelihood in order to get a model that yields the best
local maximum.

The complete data X can in many cases be made up from the observed data Y
added by some latent (hidden) data Z such that (X,Y ) = Z. In this case the con-
ditional expected log-likelihood can be expressed as an integral over the Z-domain
Z since the randomness of the complete data will only come from the latent data
Z. Thus for x = (y, z) we get

Q(θ|θ(k)) =
∫
X

log p(x|θ)p(x|y, θ(k)) dx

=
∫
X

log p(y, z|θ)p(y, z|y,θ(k)) dx

=
∫
Z

log p(y, z|θ)p(z|y,θ(k)) dz

= EZ|y,θ(k) [log p(y,Z|θ)].

2.2 Hidden Markov models

2.2.1 Introduction
Hidden Markov models (HMMs) have historically been one of the most popular
models used when dealing with random sequences [3]. Let (yt)Tt=1 be sequential
observations from some random sequence Y . An HMM assumes that there exists
some underlying hidden sequence of states (zt)Tt=1 and that the elements of Y are
conditionally independent given the state sequence (zt)Tt=1. The hidden states can
take on one of N fixed values such that Zt ∈ {1, 2, . . . , N}.

An HMM works under two main assumptions.
1. The Markov property: that the conditional probability distribution of each

hidden state Zt+1 given all its previous states is equal to its conditional prob-
ability distribution given only its previous state zt.

p(Zt+1 = n|z1, z2, . . . , zt) = p(Zt = n|zt).

6



2. Theory

2. The observation yt+1 is independent of other observations and states, given
the hidden state zt

p(yt+1|y1, y2, . . . , yt−1, z1, z2, . . . , zt−1) = p(yt|zt).

The parameter set of an HMM consists of
1. The initial probability π = [π1, . . . , πN ], where πn = p(Z1 = n). For the

case with continuous state space, the state spaces have a corresponding initial
probability density π.

2. The state transition probability matrix A ∈ RN×N that gives the probability
of transitioning from state i to state j, aij = p(Zt = j|Zt−1 = i).

3. The probability distribution for the observations Y given the hidden state n.

bn(yt) = p(Yt = yt|Zt = n).

We can thus summarise the parameter set for an HMM as θ = {A, b,π}

Z1

Y1

Z2

Y2

Z3

Y3

...

...

ZT

YT

Figure 2.1: A graphical representation of an HMM.

2.2.2 The three problems
In order for the hidden Markov model to be applicable, three main problems have
to be addressed as described by Rabiner [3].

1. Given the observation sequence (yt)Tt=1 and a model with parameter set θ =
{A,b,π}, how does one efficiently compute p(y|θ)? In other words, how does
one compute the probability of the observation sequence given the model?

2. Given (yt)Tt=1 and θ, how does one choose a state sequence (zt)Tt=1 that in some
best sense explains the observations?

3. How does one adjust the model parameters θ to maximise p(y|θ)?

2.2.3 Solution 1: The forward-backward algorithm
The naive way of calculating p(y|θ) would be by listing all possible state sequences
of length equal to the number of observations, T . If we consider just one such
state sequence z = z1, z2, . . . , zT we could calculate p(y|θ) by summing the joint
probability of y and z, over all z, i.e.∑

z

p(y, z|θ) =
∑
z

p(y|z,θ)p(z,θ).

However, by computing all this one would end up with a time complexity ofO(TNT ).
This can be realised by noting that at every time step we have N different state
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2. Theory

sequences, resulting in a total of NT different state sequences for which we have to
do an order of O(T ) calculations. In other words, this does not scale well even with
small models. Enter the forward-backward algorithm (in actuality, only the forward
algorithm will be used to solve the first problem).

Define the forward variable

αt(i) = P (y1, y2, . . . , yt, Zt = i|θ), (2.1)

i.e. the probability of observing the sequence y1, y2, ..., yt at time t and state i given
the model θ. We call this the forward probability and can recursively calculate it
by

1. Initialise α1(i) = πibi(y1), i = 1, . . . , N
2. Calculate αt+1(j) = bj(yt+1)∑N

i=1 αt(i)aij, t = 1, . . . , T − 1, j = 1, . . . , N.
3. Let p(y|θ) = ∑N

i=1 αT (i).
By performing time complexity analysis on this algorithm, we see that we have a
complexity of O(N2T ) when calculating αt(j), which is considerably smaller than
O(TNT ).

We now introduce the backward part of the algorithm, which will be used in solution
two and three. In the same fashion as above, we define the backward probability as

βt(i) = p(yt+1, yt+2, . . . , yT |Zt = i,θ). (2.2)
In other words, βt(i) describes the probability of a partial sequence given the state
and the model at time t. Just as before, we solve for βt(i) recursively.

1. Initialise (arbitrarily) βT (i) = 1, i = 1, . . . , N .
2. Calculate βt(i) = ∑N

j=1 aijbj(yt+1)βt+1(j), t = T−1, T−2, . . . , 1, i = 1, . . . , N.
Just as with the forward probability, the time complexity of calculating the back-
wards probability is of order O(N2T ).

2.2.4 Solution 2: The Viterbi algorithm
Problem two is about finding the in some way ”best” sequence of states (zt)Tt=1, and
there are different ways of defining this problem. One way to define it is to find
the individually most likely sequence by choosing the most likely state for each t.
However, a problem arises if we have state transition probabilities aij = 0, since
then an infeasible sequence could be chosen as the ”optimal”.

The most used criterion finds the single best sequence of states by maximising
p(z|y,θ) with the Viterbi algorithm [3]. We have that p(z|y,θ) is proportional (as
a function of z) to p(z,y|θ) and it is therefore equivalent to maximise the latter.
In order to fulfil this task, we define the quantity

δt(i) = max
z1,z2,...,zt−1

p(z1, z2, . . . , zt = i, y1, y2, . . . , yt|θ),

which is the probability at time t of the most likely state sequence which ends in
state i, that generates the observation sequence y. We can calculate it with recursion

8



2. Theory

as
δt+1(i) =

[
max
i

δt(i)aij
]
bj(yt+1). (2.3)

We create an array ψt(i) that saves the argument that is maximised in (2.3) for
each t and j in order to be able to retrieve the state sequence. In conclusion, the
Viterbi algorithm returns the most probable state sequence z∗ given an observations
sequence y. The Viterbi algorithm is summarised in Algorithm 1 and has a time
complexity of O(N2T ).

Algorithm 1: Viterbi
input : Sequence of observations y, state space S = {1, . . . , N}, initial

probabilities π, transition matrix A, emission probabilities b
output: Optimal (most likely) state sequence z∗t
for each state i ∈ S do

δ1(i) = πibi(y1)
ψ1(i) = 0

end
for each time step t ∈ {2, . . . , T} do

for each state j ∈ S do
δt(j) =

[
max
i

δt−1(i)aij
]
bj(yt)

ψt(j) = arg max
i

δt−1(i)aij
end

end
P ∗ = max

i
δT (i)

z∗T = arg max
i

δT (i)

for each time step t ∈ {T − 1, T − 2, . . . , 1} do
z∗t = ψt+1z

∗
t+1

end
return z∗t

2.2.5 Solution 3: The Baum-Welch method
The third problem is to find a way to adjust the model parameters θ = {π,A, b}
in order to maximise p(y|θ). There is no known way of doing this analytically [3],
however the Baum-Welch method has been developed and guarantees to find a local
maximum. Further it is equivalent to the EM algorithm for learning the parameters
of an HMM. We start with showing the update rules for the case with discrete
emissions yt, and then compose constraints so they are valid for the continuous case
as well.

2.2.6 HMM with discrete emissions
In order to write down the full method, we start by defining

γt(i) = p(zt = i|y,θ)

9



2. Theory

as the probability of being in state i at time t given the observation sequence y and
the model θ. This can be rewritten using the forward and backward probabilities
(2.1) and (2.2) and applying Bayes’ theorem. We then get

γt(i) = αt(i)βt(i)∑N
j=1 αt(j)βt(j)

.

We further define
ξt(i, j) = p(zt = i, zt+1 = j|y,θ)

as the probability of being in state i at time t and state j and time t + 1, given
the observation sequence and the model. This can in the same fashion as before be
written as

ξt(i, j) = αt(i)aijβt+1(j)bj(yt+1)
p(y|θ)

= αt(i)aijβt+1(j)bj(yt+1)∑N
i=1

∑N
j=1 αt(i)aijβt+1(j)bj(yt+1)

.

We can relate γt(i) with ξt(i, j) by summing over j.

γt(i) =
N∑
j=1

ξt(i, j).

Further, if we sum γt(i) over the time steps t (leaving out the last step T ) we get the
over time expected number of times that state i is visited (equivalent to the number
of times we transition from state i). To summarise, we have

T−1∑
t=1

γt(i) = expected number of transitions from state i.

T−1∑
t=1

ξt(i, j) = expected number of transitions from state i to state j.

We now have the tools to update the model parameters for the HMM. We thus get
the expected frequency in state i at time t = 1,

π∗i = γ1(i).

The expected number of transitions from state i to state j divided by the expected
number of transitions from state i,

a∗ij =
∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

. (2.4)

And finally, the expected number of times in state j and observing yt = vk divided
by the expected number of times in state j,

b∗j(k) =
∑T−1
t=1 1yt=vk

γt(j)∑T
t=1 γt(j)

. (2.5)

10



2. Theory

2.2.7 HMM with continous emissions
In equation (2.5) we assumed that the emission yt from the HMM was discrete.
Oftentimes however it is of interest to model continuous outputs. This extension
of the HMM lets us use a probability density function (pdf) to model the emission
probabilities and we can formulate update rules for the parameters of the pdf, given
certain restrictions. Let the general representation of the pdf be a finite mixture of
the form

bj(Y ) =
M∑
m=1

cjmP(yt, µjm,Σjm), j = 1, . . . , N,

where Y is the vector being modelled. Here cjm is the mixture coefficient for the
mth mixture in state j and P is any log-concave or elliptically symmetric density
(like the Gaussian) with mean µjm and covariance matrix Σjm. We must restrict
the mixture coefficients cjm to satisfy

M∑
m=1

cjm = 1, j = 1, . . . , N

cjm ≥ 0, j = 1, . . . , N, m = 1, . . . ,M.

Further, the pdf must be normalised such that∫ ∞
−∞

bj(x) dx = 1, j = 1, . . . , N.

By modelling the outputs with a pdf of this kind, we can in practice approximate
any finite, continuous density function arbitrarily closely. This makes this model
applicable to a wide range of problems.

The following closed form update rules can be derived for the parameters cjm, µjm
and Σjm. [3]

c∗jm =
∑T
t=1 γt(j,m)∑T

t=1
∑M
m=1 γt(j,m)

,

µ∗jm =
∑T
t=1 γt(j,m)Yt∑T
t=1 γt(j,m)

,

Σ∗jm =
∑T
t=1 γt(j,m)(Yt − µjm)(Yt − µjm)ᵀ∑T

t=1 γt(j,m)
.

Here γt(j,m) is the probability of being in state j at time t with the mth mixture
component accounting for Yt

γt(j,m) =
[

αt(j)βt(j)∑N
j=1 αt(j)βt(j)

] [
cjmP(Yt, µjm,Σjm)∑M
k=1 cjkP(Yt, µjk,Σjk)

]

The transition probabilities are updated the same as before, according to equation
(2.4).

Baum et al. [4] have shown that one of two things will happen by updating the
parameter set θ with the Baum-Welch method.

11



2. Theory

1. The current model θ is in a critical point of the likelihood function.
2. The updated model θ∗ is more likely than θ, i.e.

p(y|θ∗) > p(y|θ).

The Baum-Welch method is used iteratively, until a stopping criterion is met and
the end result is the maximum likelihood estimate of the HMM. Often one chooses
to stop when the difference between the current and previous model is small. Just
as with the EM algorithm, only a local maximum is guaranteed. Thus it is common
to initialise at random several times, then performing the Baum-Welch method for
all initialisations and lastly choose the best model.

2.2.8 HMMs with multiple sequences
All the previous equations assume that the parameter updates are performed with a
single observation sequence. However, one would oftentimes want to train an HMM
based on multiple sequences, Y = {Y (1),Y (2), . . . ,Y (k)}, in order to get good
parameter updates. In practice, no additional complexity is added to the algorithm
by introducing multiple sequences [5], [3]. The forward and backward probabilities
as well as the observation probability are calculated in the same fashion as before,
for each training sequence Y (k).

2.3 Autoregressive Input/Output HMM
In this section we will look at an extension of the simple HMM, called autoregressive
input/output HMM (AIOHMM). In an AIOHMM the emissions and the transitions
are in addition to a regular HMM also conditioned on some input data and previous
outputs. The sensor data we work with (longitudinal and latitudinal error of the
sensors) could perhaps be better modelled by taking into account external inputs of
the vehicle, like the speed or acceleration. Also, the data indicates that the error is
autoregressive, so conditioning it on previous errors in time should result in a better
model. A Gaussian is used to model the emissions, with a time dependent mean in
order to better model the longterm dependencies.

Bengio and Frasconi were likely first with describing an input-output HMM (IOHMM)
[6]. Their architecture conditions the probabilities on some input vector in order
to give a time dependence for both the state transitions and the emissions. How-
ever, the architecture can be further extended to capture the autoregressiveness of
the data by also conditioning the emission and transition probabilities on previous
emissions. This results in the Autoregressive Input-Output HMM, which we imple-
ment as proposed by Jain et al. [7].

Let Xt be the input at time step t. We use a different notation than that in their
paper for the states and outputs: let Zt be the hidden state and Yt be the output.
Analogous independence assumptions as for an HMM are made, and we have the
following equations.

12



2. Theory

• The transition probability is parameterized with a log-linear function.

ψijt = p(Zt = j|Zt−1 = i,Xt;wij) = exp (wijXt)∑
`∈S exp (wi`Xt)

• The emission probabilities are parameterized with the normal distribution.

b(Yt) = p(Yt|Zt = i,Xt, Zt−1;µit,Σi) ∼ N (Yt|µit,Σi).

In order to capture the autoregressiveness of the data, the mean of the Gaussian is
further modelled as

µit = µi(1 + aiXt + biYt−1),
where ai and bi are learnt parameters for all states. Thus we can summarise the
learning parameters of the AIOHMM as

θi = {µi, ai, bi,Σi, wij|j ∈ S}.
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Figure 2.2: Graphical representation of an AIOHMM

2.3.1 Learning the parameters
The EM algorithm is used in order to learn the parameters, as described by Jain et
al [7]. In the E-step the lower bound of the data log-likelihood is calculated. Let
`c(θ;Dc) be the log-likelihood of the complete data

Dc = {XKn
1,n , Y

Kn
1,n , Z

Kn
1,n |n = 1, . . . , N},

consisting of N different sequences each of lengths Kn. We have that

`c(θ;Dc) =
N∑
n=1

logP (Y Kn
1,n , Z

Kn
1,n |XKn

1,n ; θ) =

=
N∑
n=1

Kn∑
t=1

∑
j∈S

1(Zt = j) logP (Yt|Zt = j, Yt−1, Xt)

+
N∑
n=1

Kn∑
t=1

∑
i,j∈S

1(Zt = j, Zt−1 = i) logP (Zt = j|Zt−1 = i,Xt).
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2. Theory

Thus the E-step consists of calculating

Q(θ, θ̂) = E[`c(θ,Dc|θ̂,D]. (2.6)

To do this we compute

E[1(Zt = j)|θ̂,D] = P (Zt = j|Y K
1 , XK

1 ; θ̂) = γjt,

E[1(Zt = j, Zt−1 = i)|θ̂,D] = P (Zt = j, Zt−1 = i|Y K
1 , XK

1 ; θ̂) = ξijt.

Both γjt and ξijt are calculated using the forward-backward algorithm as described
in Section 2.2.6. We thus can expand equation (2.6) as

Q(θ, θ̂) =
N∑
n=1

Kn∑
t=1

∑
j∈S

γjt logN (Yt|µjt,Σj)

+
N∑
n=1

Kn∑
t=1

∑
i,j∈S

ξijt logψijt.

In the M-step we maximise equation (2.6), and update the parameter set as

θ = arg max
θ

Q(θ, θ̂).

All parameters except for wij are optimised by deriving their closed form updates.
The transition parameter wij is updated numerically with gradient descent. We
define the objective function as

L = −
N∑
n=1

Kn∑
t=1

∑
i,j∈S

ξijt logψijt. (2.7)

This can be recognised as the cross-entropy error function for multi-class output [8].
The gradient of L with respect to wij is known as

∂L

∂wij
= Xt

−ξijt + ψijt
N∑
n=1

Kn∑
t=1

∑
i,j∈S

ξijt

 = Xt

−ξijt + ψijt
N∑
n=1

Kn∑
t=1

∑
j∈S

γjt

 . (2.8)

The parameter wij is thus updated with gradient descent using equations (2.7)
and (2.8). The update rules for the other parameters are described below. Let
cit = 1 + aiXt + biYt−1 such that µit = citµi. We then get the following.

ai =
[
N∑
n=1

Kn∑
t=1

γitXtX
ᵀ
t

]−1 N∑
n=1

Kn∑
t=1

γit

[
XtY

ᵀ
t Σ−1

i µi
µᵀ
iΣ−1

i µi
−Xt −XtY

ᵀ
t−1bi

]

bi =
[
N∑
n=1

Kn∑
t=1

γitYt−1Y
ᵀ
t−1

]−1 N∑
n=1

Kn∑
t=1

γit

[
Yt−1Y

ᵀ
t Σ−1

i µi
µᵀ
iΣ−1

i µi
− Yt−1 − Yt−1X

ᵀ
t ai

]

µi =
∑N
n=1

∑Kn
t=1 citγitYt∑N

n=1
∑Kn
t=1 c

2
itγit

Σi =
∑N
n=1

∑Kn
t=1 γit(YtY

ᵀ
t + c2

itµiµ
ᵀ
i − citYtµ

ᵀ
i − citµiY

ᵀ
t )∑N

n=1
∑Kn
t=1 γit
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3
Methods

3.1 Implementation

The main model implementation was done in Python 3.6 and the Autoregressive
Input/Output HMM was based on Matlab code by Jain et al [7]. Three main model
types were implemented.

1. A simple HMM with Gaussian emissions.

2. An AIOHMM with a homogeneous transition matrix (h-AIOHMM), where
only the emissions were conditioned on an input.

3. A full AIOHMM where both the emissions and the state transitions were
conditioned on an input.

All models were trained using a training data set containing 11845 sequences of
tracked objects, with a maximum sequence length of approximately 900. Several
models were trained for each model type, where the initial parameters and num-
ber of states as well as training sequences differed between models. Popular model
selection methods are the Akaike information criterion (AIC) and the Bayesian in-
formation criterion (BIC). However, it can be misleading to use these criteria for
HMMs since the k parameter that penalises the model size is increasing quadrati-
cally with the number of states in an HMM. This can lead to a stronger bias towards
smaller models than is necessary. Thus the choosing of the number of states becomes
more of an art than a science. In our case, the hidden states have no physical inter-
pretation and different number of states were tested arbitrarily.

The input variable Xt was chosen by first calculating the pairwise correlations be-
tween all variables and then removing all column variables that correlated more than
60%. The input Xt was then selected as the variable that correlated highest with
the output variable Yt. Two inputs were chosen from this correlation analysis. The
first one being the absolute angle between the ego vehicle and the tracked object.
The second one being the lifetime of the object (the duration of which it was being
tracked). All sequences of length less than 20 were filtered out before training since
it is of more interest to model longer time series.
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3. Methods

3.2 Model evaluation
After training, all models are evaluated and compared. The goal is to sample from
the models, and yield a distribution as close to the empirical data as possible. A
validation set that has never been seen by the model is used as the empirical dis-
tribution. Comparing two probability distributions can be done in a lot of different
ways and extensive work has been done in this field [9]. In this thesis we discuss
two measures, namely the Kullback-Leibler divergence and the Jensen-Shannon di-
vergence. The goal of the model evaluation is to measure how close the generative
model is to empirical data, in order to find the best model as possible.

3.2.1 Kullback-Leibler divergence
The Kullback-Leibler (KL) divergence can be used in order to evaluate the different
models. The Kullback-Leibler divergence between to probability distributions P
and Q is defined as

K(P‖Q) =
∑
x

log
(
p(x)
q(x)

)
p(x),

and can intuitively be thought of as a distance between the two distributions [10].
However, it is important to note that it in actuality is not a true metric as it is not
symmetric, K(P‖Q) 6= K(Q‖P ), and as the triangle inequality does not hold.

The KL divergence has its deficiencies. The distribution P could generate sam-
ples that have zero probability for the Q distribution, which results in an infinite
KL divergence.

3.2.2 Jensen–Shannon divergence
It is possible to smooth and symmetrize the KL divergence to yield the Jensen–Shannon
divergence [11]. LetM = 1

2(P +Q). The Jensen-Shannon divergence is then defined
as

JSD(P‖Q) = 1
2K(P‖M) + 1

2K(Q‖M).

It is symmetric, JSD(P‖Q) = JSD(Q‖P ), and is guaranteed to be finite. Further,
its square root is a true metric called the Jensen-Shannon distance (JSd).

The Jensen-Shannon distance together with the log-likelihood will be used in or-
der to evaluate models. A low JSd together with a high log-likelihood will indicate
that a model is good. However, we won’t be able to only rely on these two metrics
for model evaluation since a bad model could theoretically have a small JSd and
a high log-likelihood. Thus we will also have to perform visual inspection of the
generated data in order to guarantee that the model is appropriate.
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4
Results and discussion

In this chapter we present the results from different implemented models. We will
compare HMMs with AIOHMMs with and without a homogeneous transition matrix
and discuss the results. Histograms of the generated data is presented and compared
to a validation data set never seen by the model. Further, we visualise samples from
some chosen models.

Note that all numbers in the histograms and time series plots have been scaled
due to confidentiality.

4.1 Comparison of models

In figure 4.1 we see 100 samples of real data. Each colour represent a tracked object.
Note that the error is large in the beginning, when the sensors just have identified
an object, an goes towards zero with time. We can also observe that the error seems
to increase at the end of a sequence, i.e. when a tracked object is escaping from the
sensor range.
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Figure 4.1: 100 samples of the data. Each colour represents a tracked object.
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4. Results and discussion

4.1.1 Simple HMMs

In figure 4.2 we see samples from four different simple HMMs. All four models were
trained on the whole data set, with different number of states. From visual inspec-
tion we see that none of the models capture the true nature of the errors. However,
in figure 4.2b and to some extent in figure 4.2d we see the 10 and 20 state HMMs
respectively capturing the high variance in the beginning and decreases towards the
end. Not too surprisingly the simple HMMs do not capture the autoregressiveness
of the data due to the conditional independence given the states of the emissions.
In figure 4.3 we see histograms of the validation data set (red) and the respective
samples from the different models (blue).

Note the distribution seen in figure 4.3b, where the 10 state HMM captures the
validation distribution with a Jensen-Shannon distance of 0.17. This is a drawback
of the evaluation method since it is permutation invariant, meaning that we will
get the same distribution by rearranging the generated values (i.e. loosing the time
dimension). Thus a good model will always have a low JSd, however a low JSd does
not imply a good model as seen in this case. It is therefore still important to look
at the log-likelihood and perform visual inspection of the generated data.
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(a) HMM with 5 states.
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(b) HMM with 10 states.
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(c) HMM with 15 states.
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(d) HMM with 20 states.

Figure 4.2: 100 samples from simple HMMs with different number of states.
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4. Results and discussion
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(a) HMM with 5 states, JSd: 0.90.
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(b) HMM with 10 states, JSd: 0.17.
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(c) HMM with 15 states, JSd: 0.27.
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(d) HMM with 20 states. JSd: 0.37

Figure 4.3: Histogram of validation data set (red) and samples from HMMs blue).
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4. Results and discussion

4.1.2 Homogeneous AIOHMMs

In figure 4.4 we see samples from different h-AIOHMMs (time-homogeneous transi-
tion matrices). From visual inspection we can see that the smoothness, autoregres-
siveness and long-term dependencies of the true data are much better captured than
in the case of the simple HMMs. The distributions as seen in figure 4.5 are close
to the true validation distribution, with a lowest Jensen-Shannon distance of 0.17
with a 9-state model with 2 inputs. It can be seen that the models are consistently
having problems with the tails of the distributions.

As with the simple HMMs, all models here were trained on the whole data set
with not much longer computational time needed. Thus we see that by adding the
error at the previous time step together with an input, the model is able to capture
the behaviour of the true data well.
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(a) 9 states with 2 inputs. JSd: 0.17.
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(b) 7 states with 1 input (lifetime).
JSd: 0.18.
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(c) 6 states with 1 input (lifetime).
JSd: 0.24.
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(d) 5 states with 1 input (absAng).
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Figure 4.4: 100 samples from AIOHMMs with homogeneous transition matrices,
different number of states and inputs.
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(a) 9 states with 2 inputs. JSd: 0.17.
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(b) 7 states with 1 input (lifetime).
JSd: 0.18.
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(c) 6 states with 1 input (lifetime).
JSd: 0.24.
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Figure 4.5: Histogram of validation data set (red) and samples from different
h-AIOHMMs (blue).
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4.1.3 AIOHMMs

In figure 4.6 we see samples from different AIOHMMs (inhomogeneous transition
matrices). Here the models were only trained on about 200 sequences out of the
11000 in the whole data set due to the gradient descent being computationally heavy.
The h-AIOHMMs converged in about 30-60 minutes depending on the number of
states when running 40 iterations of EM, whereas the AIOHMMs took several days
to converge for only 7 iterations of EM. In figure ?? we see the histograms of the
validation data set as compared to the respective models.

We see that including a transition matrix that changes over time is in most cases
able to capture the smoothness of the data, even tough much less data were used.
In terms of Jensen-Shannon distance, the 5 state AIOHMM with absolute angle as
input in figure 4.6a performed the best. By visual inspection we see that it shares
aspects of the true data in a smooth fashion, capturing the important parts such as
high error in the beginning and then going towards zero.
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(a) AIOHMM with 5 states and 1
input (absAng). JSd: 0.13.
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(b) AIOHMM with 4 states and 2
inputs. JSd: 0.19.
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(c) AIOHMM with 3 states and 1
input (lifetime). JSd: 0.21.
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Figure 4.6: 100 samples from AIOHMMs with inhomogeneous transition
matrices, different number of states and inputs.
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(a) AIOHMM with 5 states and 1
input (absAng). JSd: 0.13.
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(b) AIOHMM with 4 states and 2
inputs. JSd: 0.19..
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(c) AIOHMM with 3 states and 1
input (lifetime). JSd: 0.21.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
0

5

10

15

20

data
synthetic

(d) AIOHMM with 5 states and 2
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Figure 4.7: Histogram of validation data set (red) and samples from different
AIOHMMs (blue).
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4.1.4 Summary of statistics
In table 4.1 we see a summary of different trained models. We can see that the 5
state AIOHMM has a high log-likelihood together with a low Jensen-Shannon dis-
tance as compared to the h-AIOHMMs. It manages to capture a better behaviour
compared to the homogeneous models even though fewer states and a smaller part
of the data were used. In figure 4.8 we see the likelihood-iteration plots for the best
three models from each model type.

In table 4.3 we see the a and b parameter for the 5 state AIOHMM for each state.
To recall, the mean for each state was modelled as

µit = µi(1 + aiXt + biYt−1).

The ratio of the means of the absolute angle and the longitudinal error is approxi-
mately 20 and the medians 13. By multiplying the a parameter with these numbers
we can get a sense of how much the models weighs each variable. In most states
we still see that the model weighs the error more than the input which is not too
surprising since the error correlates about 98% with the previous error. We observe
that in state 4 the model weighs the input slightly more than the previous error.

To further investigate what impact the a and b parameters have on the model,
we compared the 5 state AIOHMM with itself when setting all ai to zero in one
model and all bi to zero in another. The results are summarised in table 4.2. We
see that by setting ai to zero in all states i, we get a slightly higher JSd and no
change in log-likelihood. This implies that the input does not affect the model that
much when conditioning it on the emissions. However, we see that the previous
error has a large impact on the model. The JSd drastically increases to 0.67 and
the log-likelihood decreases to −23 · 104 by setting all bi = 0. For this model, we
can conclude that the inputs are important for the transitions and that they do not
have a large impact on the emissions.
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4. Results and discussion

Table 4.1: A summary of different models.

Model States JSd Loglik (104) Input
HMM 10 0.17 1.1 N/A
HMM 15 0.27 2.4 N/A
HMM 20 0.37 3.1 N/A
HMM 5 0.9 −170 N/A
h-AIOHMM 9 0.17 14 Absolute angle, Lifetime
h-AIOHMM 7 0.18 12 Lifetime
h-AIOHMM 15 0.18 13 Absolute angle
h-AIOHMM 10 0.20 13 Absolute angle
h-AIOHMM 7 0.21 13 Absolute angle, Lifetime
h-AIOHMM 6 0.24 13 Lifetime
h-AIOHMM 5 0.26 12 Absolute angle
h-AIOHMM 5 0.32 12 Absolute angle, Lifetime
h-AIOHMM 3 0.38 12 Absolute angle, Lifetime
AIOHMM 5 0.13 9.9 Absolute angle
AIOHMM 4 0.19 1.7 Absolute angle, Lifetime
AIOHMM 3 0.21 5.7 Life time
AIOHMM 5 0.22 12.0 Absolute angle, Lifetime
AIOHMM 10 0.24 11.0 Absolute angle
AIOHMM 5 0.24 9.4 Life time
AIOHMM 3 0.28 12.0 Absolute angle, Lifetime

Table 4.2: Parameter values for the 5 state AIOHMM.

State 1 2 3 4 5
a -0.0146 -0.0342 -0.0142 0.4176 -0.0646
b 3.7407 49.8227 19.3975 4.1241 4.8731
µ 0.2700 0.0195 0.0474 0.1172 0.1328

Table 4.3: Comparison of the 5 state AIOHMM with itself, setting parameters to
zero.

Model JSd Loglik (104)
Original 0.13 9.9
ai = 0 0.14 9.9
bi = 0 0.67 -23

25



4. Results and discussion

0 20 40 60 80 100
Iteration

−3000000

−2000000

−1000000

0

1000000

Lo
g-

lik
el

ih
oo

d

Log-likelihood vs iteration

(a) HMM with 10 states.

0 5 10 15 20 25 30 35 40
Iteration

−5000000

−4000000

−3000000

−2000000

−1000000

0

1000000

2000000

Lo
g-

lik
el

ih
oo

d

Log-likelihood vs iteration

(b) h-AIOHMM with 9 states and 2
inputs.
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Figure 4.8: Log-likelihood vs iteration plots for the best model from each model
type.
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5
Conclusions and future work

5.1 Conclusions
To conclude, we can safely state that simple HMMs do not work for this type of
modelling due to too strong assumptions. Not many long-term dependencies are
captured because of this. Mainly the conditional independence assumptions be-
tween emissions severely limit the HMMs.

The h-AIOHMMs perform much better than simple HMMs and do not take much
longer time to train with respect to the size of the data. It manages to capture
the autoregressiveness of the data due to conditioning the emission probabilities on
previous errors as seen in figure 4.4. Further, by adding an input vector the models
manage to learn true structures from the data better.

Lastly, the AIOHMM with inhomogeneous transition matrices manage to perform
even better. We note that using an input and conditioning the transition probabil-
ities with it, the models learn the true nate of the data in a better fashion. At the
same time, we noticed that conditioning the emissions with an input had a very small
impact and that the previous emissions were more important. The down-side of the
AIOHMMs is that training takes much longer time, due to the gradient descent
when training the w parameter for the inhomogeneous transition probabilities.

5.2 Future work
For future work the implemented models in this thesis can be used in order to
model other time series, for example the lateral position error of tracked vehicles.
Further it would be interesting to optimise the gradient descent in the AIOHMM
training in order to yield faster training. By doing this we could train several differ-
ent AIOHMMs and perform further analysis, for example how the number of states
effect the performance of the models.

Moreover, it would be of great interest to improve the model evaluation, so one
does not need to rely on visual inspection of the generated data for evaluation. It
would be a great addition to the the model if we could develop a metric that tells
us how good it is. A great limitation of the current model evaluation is that it is
invariant under permutation, resulting in that bad models can yield good evaluation
values. An interesting approach would be to implement a robust classifier (e.g. a
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5. Conclusions and future work

neural network or a support vector machine) in order to distinguish true data from
generated one. If implemented well, the robust classifier should have problem sepa-
rating true data from generated one for a good AIOHMM.

Finally, comparing AIOHMMs with other generative models (e.g. recurrent neu-
ral networks, deep belief networks or generative adversarial networks) would be of
great interest in order to analyse the strengths and weaknesses of the AIOHMMs
with respect to other models.
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