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Approximate Bayesian Computation with Sequential Surrogate Likelihoods
FILIP WIKMAN
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract
The purpose of this thesis was to implement, analyze, and possibly expand a Bayesian
inference method related to approximate Bayesian computation (ABC). This method
was initially suggested by the supervisor and was given the working name approx-
imate Bayesian computation with sequential surrogate likelihoods (ABC-SSL). The
underlying idea for the method was to replace ABC distances with predicted dis-
tances obtained using some regression technique, thus circumventing generation of
synthetic datasets from the Bayesian model. These predictions would then be im-
proved in a sequential manner, leading to a significant decrease of computational
cost for parameter inference.
The literature on ABC was studied in search of similar techniques with the intent
of finding suitable methods to be compared to ABC-SSL in a simulation study.
Gaussian process regression was chosen to model the distances due to the need for
flexibility. An interpretation and generalization of the preliminary ABC-SSL method
was given, relating it to some of the methods found in the literature. The simulation
study was constructed with three examples, including one of the standard models in
the ABC literature, the g-and-k distribution. These examples were chosen to give
an understanding of potential use of the method. Due to lack of promising results
of these numerical results, the complexity of the tested models were kept low.
No conclusive evidence was found for the inference method to be suitable for practical
use in its current state due to questionable asymptotic properties and difficulties
in finding appropriate surrogate models. One possible application is to use the
proposed technique to find regions of suspected high posterior probability of the
parameter space to be used in combination with traditional ABC methods. Another
possibility is to consider Bayesian optimization problems, although such problems
were not explicitly investigated in this thesis.

Keywords: Approximate Bayesian computation, ABC, Bayesian statistics, statistics,
Gaussian process regression.
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1
Introduction

1.1 History of ABC

The study of Approximate Bayesian Computation (ABC) has gained attention in the
statistical community since the turn of the century. Its popularity stems from the
wide range of applications, with notable examples such as population genetics [20].
The purpose of ABC is to infer parameters for a Bayesian model with intractable
likelihood where one can sample from the likelihood using a simulator. There are
multiple review articles on the topic which give a more complete view of ABC
methods than what is presented here [13, 12].

The simplest form of ABC is known as Rejection ABC (R-ABC) and consists of gen-
erating parameter proposals from a prior distribution, simulating data using these
parameters, and accepting the parameters as a sample from the posterior if the data
is within a given “distance” from the observed data [26]. Even though convergence
is guaranteed for virtually any model with finite dimensional data [1], this simple
approach is often not feasible in practice due to the large number of samples required
to achieve precise inference. The ABC framework consists of multiple algorithms
all derived from these ideas with the goal of aleviating some of the problems with
R-ABC. Notable examples include Markov chain Monte Carlo ABC (ABC-MCMC,
[14]), Kernel ABC (K-ABC, [27]), Sequential Monte Carlo ABC (ABC-SMC, [25, 2])
and many more. Further difficulties arise when simulating from the model or com-
puting distances is computationally expensive. As a work-around for this problem,
Umberto Picchini proposed an algorithm which consists of “learning” the likelihood
function with some type of regression, e.g. Gaussian process regression, and using
this to sequentially improve the parameter proposals, thus reducing the number of
model simulations needed.

The suggested working name for this method is ABC with Sequential Surrogate
Likelihoods, or ABC-SSL. The method was inspired by Sequential Neural Likelihood
(SNL) [17].
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1. Introduction

1.2 Aim of the Project

The main objective of this project is to implement, analyze and expand the suggested
method of inference and compare it to similar methods in the literature, highlighting
limitations and benefits. This is achieved through a simulation study including
variants of ABC-SSL and a selection of other methods for reference.

The focus is on putting the proposed method into the context of ABC. Relevant
methods for comparison include forms of ABC such as the widely popular ABC-
SMC [25, 2] ABC-MCMC [14, 24] as well as SNL [17]. The ABC-SSL method was
implemented and tested in a simulation study with three examples, including one
of the standard models in the ABC literature, the g-and-k distribution.

1.3 Outline

In Chapter 2, we go through some methods from the ABC literature. Chapter 3
introduces the proposed method of inference. Chapter 4 contains three numerical
experiments with the purpose of investigating the quality of inference in comparison
to some related methods. Discussion and conclusions are found in Chapter 5.
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2
Background/Theory

Bayesian statistics is a popular statistical paradigm stemming from the assignment
of probabilities to parameters of statistical models, which could be said to model
ones “belief” in said parameters. These parameter beliefs are then updated through
the use Bayes theorem with account to observed data, or “evidence”.

Throughout this thesis, we assume to be given a Bayesian model with observed data
x0 ∈ X generated from x ∼ f( · | θ) where f(x0 | θ) is the likelihood of parameters θ ∈
Θ. We also assume that a prior distribution π is given. In order to do parameter in-
ference we are interested in the posterior distribution π(θ |x0) ∝ f(x0 | θ)π(θ). This
can be used for estimation of quantities of interest E(ψ(θ) |x0) =

∫
Θ ψ(θ) dπ(θ |x0)

for some function ψ : Θ→ R.

2.1 Approximate Bayesian Computation

The traditional way of doing parameter inference for a Bayesian model is through the
likelihood function. More complex models can sometimes have a likelihood function
that is intractable by not being known in any useful analytic form or simply being
prohibitively time-consuming to evaluate numerically. Methods of addressing such
situations are sometimes referred to as likelihood-free inference. When the likelihood
is intractable but one can simulate synthetic datasets x from the likelihood, it can
be suitable to make use of approximate Bayesian computation (ABC).

To perform ABC for a Bayesian model with prior θ ∼ π( · ) and data x | θ ∼ f( · | θ),
we select a summary statistic S : X → S with some metric ρ on S. We denote
the observed statistic s0 = S(x0). The idea is to to approximate the posterior
π(θ | s = s0) with π(θ | s ≈ s0) through π(θ | s0) ≈ πδ(θ | s0) = π(θ | ρ(s, s0) ≤ δ) for
some threshold δ > 0. The distribution πδ( · |s0) tends to the posterior when δ → 0,
and to the prior when δ → ∞. Computational cost can increase drastically when
δ → 0, so in practice we are forced to use a fixed δ that is taken to be as small as our
computational resources and allow. When presenting the various ABC algorithms, it
is assumed that the Bayesian model, observed data, summary statistics, and metric
are fixed beforehand and are therefore not considered as input to the algorithms.

3



2. Background/Theory

2.1.1 Rejection ABC

The simplest way of using ABC is through the original Rejection ABC algorithm
from 1999 [26]. The procedure is shown in Algorithm 1. We assume that we have
a joint density function fs,θ(s, θ) for θ ∈ Θ ⊂ Rp, s ∈ Rq and wish to produce a
sample from the ABC posterior θ(δ)

1 , . . . , θ(δ)
n ∼ π( · | ρ(s, s0) ≤ δ) where

π(θ | ρ(s, s0) ≤ δ) ∝
∫

Bδ(s0)
fs,θ(s, θ) ds (2.1)

where Bδ(s0) denotes the ball of radius δ around s0.

Algorithm 1 R-ABC

1: Input: Sample size N , threshold δ.
2: Output: Sample θ1, . . . , θN from the ABC posterior.
3: Set n← 0.
4: while n < N do
5: Sample proposal θ′ ∼ π( · ).
6: Simulate x′ ∼ f( · | θ′) from the model.
7: s′ ← S(x′)
8: if ρ(s′, s0) ≤ δ then
9: Accept proposal θn ← θ′

10: n← n+ 1
11: end if
12: end while

Assume that we wish to estimate ψ0 = E(ψ(θ) |x = x0) for ψ : Rp → R. Under
sufficiency of S, we have ψ0 = E(ψ(θ) | s = s0). Set Y (δ)

n = 1
n
∑n
j=1 ψ(θ(δ)

j ). Theorem
1 shows that we have a type of convergence to ψ0 as the sample size n→∞ and the
threshold δ → 0 almost everywhere with respect to fs which denotes the marginal
distribution in s of fs,θ. One should note that the assumptions are quite weak and
the assumption that we have a density fs,θ is not necessary for this particular result
[1].

Theorem 1 ([1, Proposition 3.1]). Assume E(|ψ(θ)|) <∞. Then, for fs-a.e. s0 ∈
R
q,

1. ∀δ > 0 Y (δ)
n −→ E(Y (δ)

n ) a.s. as n→∞;

2. ∀n ∈ N E(Y (δ)
n ) −→ E(ψ(θ) | s = s0) as δ → 0.

Although Theorem 1 seems to suggest that ABC works as soon as one can find a
finite-dimensional sufficient statistic S, it is not clear how one should decrease δ.
Some suggestions have been made in the literature for handling this problem, but
it remains a challenge [1, 23]. Furthermore, it can be difficult in practice to find
suitable S. There are techniques to aid in finding summary statistics for ABC but
one often has to settle for approximate sufficiency and take into account the error
that comes with it [16, 19].
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2. Background/Theory

2.1.2 Kernel ABC

Kernel ABC can be achieved by choosing some smoothing kernel Kδ with bandwidth
δ and replacing the condition ρ(s, s0) ≤ δ in Algorithm 1 and instead accepting θ′ as
a sample from the posterior with probability proportional to Kδ(ρ(S(x′), s0)) after
simulating synthetic data x′ ∼ f( · | θ′) from the model [3]. We use the abbreviation
ρ = ρ(S(x), s0) which indicates that the ABC distances are the objects of most
direct interest. We can consider the distances ρ as random variables with conditional
distribution

ρ | θ = ρ(S(x), s0) | θ ∼ h( · | θ).

The goal is to obtain a sample from the ABC posterior

πδ(θ | s0) ∝ π(θ)
∫
X
Kδ(ρ(S(x), s0))f(x | θ) dx = Eh(Kδ(ρ) | θ)π(θ)

where Eh(Kδ(ρ) | θ) is the likelihood of θ.

K-ABC is a generalization of R-ABC since Algorithm 1 is retrieved by setting
Kδ(ρ) = 1[0,δ](ρ), called a uniform kernel. For the remainder of this thesis, we
settle on using the uniform acceptance kernel, but we keep the representation of the
ABC posterior in terms of Kδ for extensibility. Some discussion about other kernels
can be found in Appendix A.

2.1.3 ABC-MCMC

Algorithm 1 is not always practically useful, since the acceptance probability can be
extremely low for small δ. This is in part due to drawing the majority of parameter
proposals from regions of low posterior density from the prior distribution. We would
prefer for the algorithm to sample proposal parameters of high posterior density
with higher frequency. This can be achieved through an adaptation of Markov
chain Monte Carlo method to the ABC framework. Algorithm 2 presents ABC-
MCMC with kernel Kδ (K-ABC-MCMC, see e.g. [24]). Theorem 2 states that the
stationary distribution of the chain in θ is the ABC posterior. A proof can be found
in Appendix A.

Theorem 2. The stationary distribution of the Markov chain in θ from Algorithm
2 is πδ(θ | s0) ∝ π(θ)Eh(Kδ(ρ) | θ).

2.1.4 ABC-SMC

One of the most popular ABC methods is called Sequential Monte Carlo ABC (ABC-
SMC, [25]) which is presented in Algorithm 3. The idea of ABC-SMC is to use a
sequence of proposal distributions πr, r = 1, . . . , R, which approximate the posterior
distribution in order to iteratively improve the acceptance ratio Pr(ρ(s, s0) ≤ δr)

5



2. Background/Theory

Algorithm 2 ABC-MCMC

1: Input: Chain length T , threshold δ, transition kernel g(θ′ | θ).
2: Output: Chain realization θ1, . . . , θT with the ABC posterior as its stationary

distribution.
3: Initialize (θ1, x1).
4: for t = 1, . . . , T do
5: Sample proposal θ′ ∼ g( · | θt).
6: Simulate x′ ∼ f( · | θ′) and set ρ′ ← ρ(S(x′), s0).
7: Compute acceptance probability

α← min
(

1, Kδ(ρ′)π(θ′)g(θt | θ′)
Kδ(ρt)π(θt)g(θ′ | θt)

)
.

8: With probability α, set (θt+1, ρt+1)← (θt, xt).
9: Otherwise set (θt+1, ρt+1)← (θ′, ρ′).

10: end for

while simultaneously decreasing the acceptance threshold δr. The idea of the algo-
rithm is to maintain a “population” of parameter proposals that is updated sequen-
tially. At each round r, new proposals are generated by drawing candidates from
the previous population and perturbing them.

We set the initial proposal distribution π0 to be the prior distribution. For rounds
r = 1, . . . , R, one instead chooses πr as a mixture distribution by first sampling a
proposal θ(r−1)

m′ from the population at round r − 1 with probability proportional
to w(r−1)

m′ and perturbing it with some kernel θ′ ∼ gr( · |θ(r−1)
m′ ), typically additive

multivariate Gaussian noise. The weights are chosen to minimize the Kullback–
Leibler divergence of the proposal distribution with respect to the target distribution
as

w(r)
m = π(θ(r)

m )
M∑
j=1

w
(r−1)
j gr(θ(r)

m | θ
(r−1)
j )

, (2.2)

and with proposal distribution gr(θ | θ(r−1)
m ) = N(θ(r−1)

m , 2Σ(r−1)) being the multivari-
ate Gaussian centered in θ(r−1)

m with variance being twice the sample variance of
(θ(r−1)
m )m=1,...,M , denoted Σ(r−1) [2, 8].

2.2 Gaussian Process Regression

Gaussian processes (GP) have proven to be a valuable modelling tool for regres-
sion, and their versatility has earned them considerable attention from the machine
learning community. Below is a short presentation of the Gaussian process regression
(GPR) based on the standard reference book by Rasmussen (2006, [22]).

6



2. Background/Theory

Algorithm 3 ABC–SMC

1: Input: Number of rounds R, population size M .
2: Output: Sample θ1, . . . , θM from the ABC posterior.
3: for r = 0, . . . , R do
4: if r > 0 then
5: Compute weights (2.2) for proposal distribution πr.
6: Set threshold δr and compute weights w(r)

1 , . . . , w
(r)
M .

7: Set parameters µr,Σr for perturbation kernel.
8: end if
9: m← 1.

10: while m ≤M do
11: Sample proposal θ ∼ πr( · ).
12: Simulate synthetic data x ∼ f( · | θ).
13: Compute s← S(x).
14: if ρ(s, s0) ≤ δr then
15: θ(r)

m ← θ, m← m+ 1
16: end if
17: end while
18: end for

We say that a collection of random variables {f(x)}x∈X is a Gaussian process on an
index set X if (f(x1), . . . , f(xn)) has multivariate normal distribution for any finite
combination x1, . . . , xn ∈ X . Given a mean function m : X → R and non-negative
and symmetric covariance kernel k : X × X → R we denote f ∼ GP(m, k) since
these functions completely specify the process by

f ∼ N(m,Σk), f = (f(x1), . . . , f(xn))ᵀ, m = (m(x1), . . . ,m(xn))ᵀ,

and (Σk)i,j = k(xi, xj).

Suppose we are given noisy observations of a Gaussian process y = (y1, . . . , yn)ᵀ
where

y |f ∼ N(f , σ2In), f ∼ N(m,Σk),

with m, f and Σk as above and where σ is the standard deviation of the normally
distributed Gaussian noise, and In ∈ Rn×n is the identity matrix. We can predict
the value at a new point x∗ ∈ X by

f∗ ∼ N(kᵀ
∗(Σk + σ2In)−1y, k(x∗, x∗)− kᵀ

∗(Σk + σ2In)−1k∗).

where k∗ = (k(x∗, x1), . . . , k(x∗, xn))ᵀ.

A typical example of covariance kernel in for a GP in Rd would be a squared expo-
nential covariance kernel

k(x, x′) = η1e−(x−x′)ᵀ(x−x′)/2η2

7



2. Background/Theory

for x, x′ ∈ Rd some hyperparameters η1, η2 > 0. Hyperparameters can be chosen by
maximization of the log marginal likelihood which is the conditional density

log p(f |x1, . . . , xn) = −1
2fᵀΣ−1

k f − 1
2 log |Σk| − n

2 log 2π

with respect to η1, η2.

8



3
Sequential Surrogate Likelihoods

In order to make parameter inference with ABC methods it is often necessary to
simulate a large number of synthetic datasets from the model. If this task is com-
putationally demanding, e.g. for some complex dynamical systems in biology, one is
forced to limit the the number of simulations, which in the worst case scenario could
render such methods useless. In particular, if there is very little prior knowledge
about parameters of the model of interest, one is condemned to simulate synthetic
datasets with little information about the posterior distribution. The same effects
could be caused by computational cost due to the computation of summary statis-
tics or ABC distances [4]. This motivates the search of methods of decreasing the
number of simulations needed for successful parameter inference. The hope is to ex-
tract as much information about the posterior as possible from each computed ABC
distance. Sequential neural likelihoods is an example of a technique that can be used
to address this problem, and it is one of the main inspirations for the method we
propose here [17].

3.1 Main Algorithm

In Section 2.1, we saw that the goal of the ABC algorithms was to obtain a sample
from the ABC posterior distribution πδ(θ | s0) ∝ π(θ)Lδ(s0 | θ) where the likelihood
Lδ(s0 | θ) is given by

Lδ(s0 | θ) = Eh(Kδ(ρ) | θ). (3.1)
If we knew the likelihood in an explicit form, we could target the ABC posterior
distribution directly with MCMC, as opposed to using ABC-MCMC which can have
low acceptance probability for small thresholds δ and can suffer when simulation or
computation of ABC distances is expensive. It is typically not the case that πδ(θ | s0)
is known since not much is known about h( · | θ), but we can introduce a model for
the distances ρ̂ | θ ∼ ĥ( · | θ), such that we can compute the corresponding ABC
posterior density π̂δ(θ | s0) ∝ L̂δ(s0 | θ)π(θ) analytically. We refer to ĥ( · | s0) as the
surrogate model and L̂δ(s0 | · ) as the surrogate likelihood.

We propose ABC with sequential surrogate likelihoods (ABC-SSL) in Algorithm
4. This algorithm differs slightly from the one that was initially proposed, which
can be seen in Algorithm 5 in Appendix B. These differences consist of removing

9



3. Sequential Surrogate Likelihoods

some details and a generalization by explicitly targeting ABC posteriors given by
the randomness in the surrogate model.

Algorithm 4 ABC-SSL

1: Input: Number of rounds R, sample size M , family of surrogate models.
2: Output: ABC posterior sample θR,1, . . . , θR,M under the surrogate model.
3: Initialize π0 ← π, D0 ← {}.
4: for r = 1, ..., R do
5: for m = 1, ...,M do
6: Sample θr,m ∼ πr−1( · ) (e.g., by MCMC).
7: Simulate xr,m ∼ f( · | θr,m).
8: Compute ρr,m ← ρ(S(xr,m), s0).
9: end for

10: Let Dr ← Dr−1 ∪ {(ρr,m, θr,m) : m = 1, . . . ,M}.
11: Fit ρ̂ | θ,Dr ∼ ĥr( · | θ) on Dr.
12: Set threshold δr.
13: Set πr(θ) ∝ π(θ)Eĥr(Kδr(ρ̂) | θ).
14: end for

Much like in ABC-SMC, we update the proposal distribution πr(θ) sequentially in
an attempt to approximate the posterior distribution. We maintain a set of training
data Dr = {(ρt,m, θt,m) : m = 1, . . . ,M, t = 1, . . . , r} on which we train our model
ρ̂ | θ,Dr ∼ ĥr( · | θ) each round by choosing ĥr( · | θ) from a predetermined family of
distributions. We set the proposal distribution to be the ABC posterior under the
surrogate model

πr(θ) ∝ L̂r(θ | s0)π(θ) = Eĥr(Kδr(ρ̂) | θ)π(θ),

after first choosing a suitable threshold δr.

In Line 6 of Algorithm 4, we want to generate M samples from the proposal distri-
bution πr( · ). There are a multitude of Monte Carlo methods for sampling from a
given distribution, but it can be difficult to find a suitable method with little prior
knowledge of the target distribution. We choose to use the Adaptive Metropolis al-
gorithm [10] with a large chain length N and pick a sample from the posterior by
thinning the tail to achieve a reasonable effective sample size. For simplicity, we
decide on computing the acceptance ratio α for the last M elements of the chain
and then draw M points from the last bM/αc elements of the floor at uniform.

3.2 Implementation

Since extremely large distances are not very informative about the posterior distri-
bution, it seems appropriate to suppress these by modeling the distances in log-scale.

10



3. Sequential Surrogate Likelihoods

Let us choose the model

log(ρ̂) | θ,Dr ∼ N (µr(θ), σ2
r(θ)), (3.2)

that is, we let log(ρ̂) be normally distributed, conditionally on θ, with conditional
mean µr(θ) and conditional variance σ2

r(θ). We can fit models of this form using,
e.g., linear regression or Gaussian process regression. It could be practical in some
situations to consider a model with no noise. This can be achieved in either case
for this model by setting σ2

r(θ) = 0. Since we only consider the uniform kernel
Kδ(ρ) = 1{ρ ≤ δ} we get a resulting surrogate likelihood

L̂r(s0 | θ) ∝ Pĥr(ρ̂ ≤ δr | θ) = Φ
( log(δr)− µr(θ)

σr(θ)

)

where Φ denotes the cumulative distribution function of the standard normal dis-
tribution.

Having decided on a family of surrogate models of the form (3.2), we need to find
a way of fitting such a model on data Dr. A simple idea is to fit a linear model
on Dr. Here we choose to do polynomial regression, so that the mean µr(θ) is a
polynomial of degree d. In this case, we will have constant noise σ2

r(θ) = σ2
r which

we can choose to ignore by setting σ2
r = 0.

If we choose surrogate model by training a Gaussian process log(ρ̂) ∼ GP(mr, kr)
with observational noise on Dr, for some mean function mr and covariance kernel
kr we get µr(θ) and σ2

r(θ) that vary in θ where. The posterior variance σ2
r(θ) will be

larger in regions of parameter space with fewer observations which can be interpreted
as uncertainty caused by lack of evidence. We train the GP surrogate model by
choosing a constant mean and setting the covariance kernel to be of the squared
exponential type. It should be noted that the choice of covariance kernel here is
quite arbitrary and may affect the inference. To mitigate this, we optimize the
hyperparameters by maximizing the marginal likelihood every few rounds as the
model is trained. There are software packages available that can automate the
task of training, predicting and optimizing hyper-parameters with gradient based
optimization method for some common choices of mean function and covariance
kernel [21].
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3. Sequential Surrogate Likelihoods
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4
Numerical Experiments and

Results

We start off with a simple example with one single parameter in Section 4.1, move
on to a common test model from the ABC literature in Section 4.2 and finish with
an example with real world data in Section 4.3.

4.1 Example 1: Explicit Distribution of Distances

Consider a Bayesian model with prior θ ∼ Uni([−1, 1]) and ABC distances with
distribution ρ | θ ∼ N(θ2, 0.1). The reason to consider a model like this is that the
distances can easily be modeled as a Gaussian process and estimated with GPR. It
is also possible to find the true ABC posteriors as well as the ABC posteriors under
the surrogate models which allows for good visualizations.

We run the ABC-SSL algorithm for R = 10 rounds and use GPR for the surrogate
model. Each round, Mr = 30 training points are sampled from πr( · ) and included
into the training data. The training data was initialized with M0 = 100 parame-
ter proposals and generated ABC distances. After each round, the threshold was
updated to be the smallest ABC distance in the training data

δr+1 = min{ ρt,m : t = 1, . . . , r, m = 1, . . . ,Mt }.

We use uniform kernel Kδ(ρ) = 1(ρ ≤ δ) leading to the ABC posterior πδ(θ | s0) ∝
Eh(Kδ(ρ) | θ) = Ph(ρ ≤ δ | θ), which implies

πδ(θ | s0) =
Φ
( log(δ)− θ2

0.1
)

∫ 1

−1
Φ
( log(δ)− θ2

0.1
)

dθ
.

By Theorem 4 in Appendix A, the posterior distribution π( · | s0) is a point mass in
θ = 0.

Figure 4.1 shows the results of running ABC-SSL for 10 rounds. It should be noted
that not much improvement in the surrogate model nor in the ABC posterior is seen
after the first few rounds.
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4. Numerical Experiments and Results

4.2 Example 2: The g-and-k Distribution

The g-and-k distribution is a simple distribution with intractable likelihood which
is often used to test ABC methods [7]. The distribution is defined by its quantile
function

q(r) = A+B
(

1 + 0.81− e−gz(r)

1 + e−gz(r)
)

(1 + z(r)2)kz(r), r ∈ [0, 1],

where z(r) is the r-quantile of the standard normal distribution. Samples can be
generated by sampling from a normal distribution and plugging the value into this
defining formula.

We define our model by letting the data x consist of n = 2000 independent draws
from the g-and-k distribution with parameters θ = (A,B, g, k). As observed data,
we generate from the model with true parameters θ0 = (3, 1, 2, 0.5)ᵀ. We choose
prior distribution θ ∼ Uni([−10, 10] × [0, 10] × [−10, 10] × [0, 10]). As summary
statistics, we let S(x) be robust moment estimates s1, . . . , s4 computed from the
octiles q1, . . . , q7 of x as

s1 = q1, s2 = q6 − q2, s3 = (q6 + q2 − 2q4)/s2, s4 = (q7 − q5 + q3 − q1)/s2,

which is a common choice for this model [6]. To choose a suitable metric ρ, we
first sample 1000 parameter points from the prior distribution, simulate data and
compute summary statistics for each parameter. We set ρ to be the scaled Euclidean
distance where each summary statistic si is scaled with the component-wise inverted
median absolute deviations computed from the simulated summary statistics. This
scaling can avoid the situation where one summary statistic dominates the others
leading to a less informative metric [18].

We now present the results of running the proposed method for R = 15 rounds
with M = 1000 samples from each round. The surrogate likelihood is chosen from
the posterior mean after using Gaussian process regression for the surrogate model.
For comparison, we also run the algorithm with a 4th degree polynomial as the
mean of the surrogate model. At each round, we sample M = 100 parameters from
the approximate posterior induced by our surrogate likelihood using MCMC. In
Figure 4.3, we see the final approximate posterior distributions. Figure 4.2 shows
the marginal distributions of the training data from rounds 1 through 15. The ABC
posteriors shown are correspond to the same metric ρ (scaled Euclidean), summary
statistics and ABC threshold δ, so the inaccuracies stem mainly from modelling
error. That is, the surrogate model log(ρ) | θ ∼ N(µ(θ), σ(θ)2) was not optimal.
From Theorem 4, it is clear that the distances can not follow this type of model
since it would imply that the posterior distribution is degenerate, which, judging by
Figure 4.3, it is not. The surrogate model is particularly unreasonable for parameters
close to the true posterior, since the tails of a normal distribution are too light. This
is illustrated in Figure 4.4 where ABC distances were drawn from the true distance
distribution h( · | θ) for a few choices of θ. Finally, one should note that although
introducing a surrogate model significantly decreased the precision of the inference,
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Figure 4.4: Surrogate model fit for the g-and-k model. The histograms show
distances computed from repeated model simulations at the true parameters (mid-
dle) and two approximate posterior standard deviations away in each parameter
component. On top of the histograms are the distance distributions under the fi-
nal surrogate model ĥR( · | θ) (dashed) as well MLE normal densities based on the
histogram data.

the number of simulations of the model needed was only 2500 in the end. This
could have been a good trade-off if the simulations were extremely computationally
expensive.
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4. Numerical Experiments and Results

Table 4.1: Concentrations of sulfur dioxide (µg/m3) in the air measured at Maryl-
bone Road, London, between 1998–01–01 and 2005–06–23.

Concentration 0 3 5 8 11 13 16 19 21
Count 2180 8196 9032 8300 7432 6530 5172 4049 2997

Concentration 24 27 29 32 35 37 40 43 >43
Count 2237 1576 1105 782 506 363 233 189 656

4.3 Example 3: Real-world Data Example

We wish to fit a g-and-k model to 61535 sulfur dioxide concentrations measured
at Marylebone Road, London, between 1998–01–01 and 2005–06–23 made available
through the Automatic Urban and Rural Network [5]. To model these data as
i.i.d. observations from a g-and-k distribution serves little practical purpose, but
it constitutes a suitable example due to the computational cost that comes with
the large data size [11]. We use the same setup as in the previous example but we
let the summaries S(x) be the octiles q1, . . . , q7 of x and we let ρ be the Euclidean
metric without any scaling of the summaries. As prior distribution, we choose
θ ∼ Uni([0, 20], [0, 20], [−5, 5], [0, 5]).

The data only takes certain integer values, some of which can be seen in Table
4.1. The peculiar values are likely to have been caused by nearest integer rounding
and conversion xi = round(w round(zi)), i = 1, . . . , 61535, where zi are the true
concentrations, xi are the observations in the model, and w is some conversion
factor (units omitted). From the full data, after assuming that 3 = round(w), the
conversion factor w can be inferred to lie in [133/50, 149/56], say w = 2.6605.

This view of the data gives rise to an alternative model, namely a multinomial model
parametrized by the g-and-k distribution parameters θ = (A,B, g, k),

(y0, . . . , yJ) | θ ∼ Multinomial
(
p0(θ), p1(θ), . . . , pJ(θ)

)
where yj is the bin count for bin j and

pj(θ) = Pθ(x̂j−1 < x ≤ x̂j), j = 1, . . . , J, p0(θ) = 1−
J∑
j=1

pj(θ),

with bin edges x̂0 = 0, x̂j = (2j − 1)w/2, j = 1, . . . , J . The log-likelihood can
be written `(θ) = ∑J

j=1 yj log(pj(θ)) so there is no need for ABC although com-
putation of the bin probabilities pj(θ) requires inversion of the g-and-k quantile
function. Nevertheless, for comparison, we employ ABC for this model by let-
ting the summaries S(y), y = (y1, . . . , yJ), be be the bin counts after first com-
bining bins to reduce computational burden, ending up with bin edges kw/2 for
k = 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23,∞. We do not scale the statistics in the ABC
distances.
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4. Numerical Experiments and Results

Algorithm 4 was run for R = 8 rounds with a GP surrogate model. The ABC
threshold δ was decreased to be in the 0.1 quantile of the training data distances
from the previous round. The parameter samples in the training data for each
round can be seen in Figure 4.7. In Figure 4.5, we see the ABC posterior densities
compared to the true posterior densities found with MCMC. For ABC-MCMC, the
ABC threshold δr was chosen to achieve an acceptance probability of approximately
15%. The difference in the location of the posterior densities in parameters g and k
for the multinomial model with and without grouping of bins can be attributed to
the influence of very large concentrations xi. In many cases the true density lies far
out in the tail of the corresponding ABC densities which is partially due to the large
sample size leading to narrow posterior distributions. Little weight should be given
the ostensible similarity of the posterior densities for ABC-SSL and ABC-MCMC
since they do not use the same ABC thresholds.

Figure 4.6 shows the g-and-k densities compared to the observed data. For the ABC
methods, point-estimates were taken using minimum mean square error estimates
(MMSE) (or posterior mean). The ABC methods for the raw g-and-k model seem
have produced point-estimates that are slightly skewed in relation to the observed
data. This could be a result from non-informative ABC summaries or the misspeci-
fication of the model leading to poor inference. It should be noted that the g-and-k
distribution is distributed over R so it is not a suitable choice for non-negative data
despite the figures suggesting a decent fit.

In this example, the computational benefit of using a surrogate model for the ABC
distances is not justifiable, since the computational burden can be addressed by
mindful modelling choices. An important take-away is that it is often preferable
with exact inference for an approximate model instead of approximate inference for
a more exact model.
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Figure 4.5: Approximate marginal posterior densities for the models for the UK
air data. The shaded regions show the posterior density for the multinomial model
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5
Conclusions

5.1 Discussion

The main difficulty with ABC-SSL lies in finding a suitable surrogate model ρ̂ | θ,Dr ∼
ĥr( · | θ). The Gaussian process surrogate model works well enough for the exam-
ples shown here, but this is not the case in general. This can easily be seen since
Theorem 4 in Appendix A shows that the ABC posterior under the surrogate model
degenerates to a point weight. One should take this into account by not selecting
too small thresholds δ. In the examples we did this somewhat carelessly by setting
δ to be some quantile of the observed distances generated from the model. The
GPR framework provides more flexibility than the simplistic models chosen here, so
it could still be more useful. Perhaps a technique such as autoregressive flow which
was proposed to use for SNL could be more suitable as a model for ABC distances
[17].

One should note that the normality assumption that comes with using a linear
model or Gaussian process regression is not properly justified theoretically. Ideally
one should be able to refer to a central limit theorem to use such a model. This is
possible in some cases when modelling the summary statistics instead since these can
be constructed to be approximately normal (with the potential loss of descriptive
power) [28, 15].

Under some regularity assumptions, the GP posterior mean will converge to the
conditional expectation Eh(log(ρ) | θ) [22]. Unfortunately, this is not enough for
this surrogate model to be suitable with much generality. One could instead model
acceptances, which will have Bernoulli distribution conditional on θ. In this case
the posterior mean is all that is needed to compute the approximate posterior, but
the problem with doing so is that one also disregards much of the information in
the distances.

If one instead considers deterministic simulator models, using the GP posterior mean
would suffice, but in this case, something like a Bayesian optimization approach
could be more suitable [9].
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5. Conclusions

5.2 Conclusions

The method was found to approximately locate the posterior distribution for the
considered models with significantly fewer synthetic dataset simulations than tradi-
tional ABC, but was not able to match the precision of the ABC posterior due to
inaccurate surrogate models.

Further insight is needed to achieve reliable inference with this method of inference
in practice, but it can be used to find an initial estimate of a posterior distribution
which can speed up the inference with traditional ABC methods.
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A
Theoretical Details

A.1 Limit Distributions for the Considered Sur-
rogate Models

In order to analyze the ABC posteriors under the surrogate model (3.2), we need
a simple lemma about the tail behavior of the cumulative distribution function
Φ : R→ (0, 1) of the standard normal distribution.

Lemma 3. Let a1, a2 > 0, b1, b2 ∈ R. Then

Φ(a1x+ b1)
Φ(a2x+ b2) −→ 0

as x→ −∞ if one of the following is true:

1. a1 > a2;

2. a1 = a2 and b1 < b2.

Proof. Integration by parts gives that

∫ x

−∞
e−y2/2 dy =

∫ x

−∞

(
− 1
y

)(
− ye−y2/2

)
dy

= −1
x

ex2/2 −
∫ x

−∞

1
y2 e−y2/2 dy

and, similarly

∣∣∣∣ ∫ x

−∞

1
y2 e−y2/2 dy

∣∣∣∣ ≤ 1
|x|3

∫ x

−∞

(
− ye−y2/2

)
dy = 1

|x|3
e−x2/2.
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A. Theoretical Details

Hence Φ(x) = 1√
2π|x|

e−x2/2 + O
(
|x|−3e−x2/2

)
. Furthermore,

Φ(a1x+ b1)
Φ(a2x+ b2) = |a1x+ b1|−1e−(a1x+b1)2/2 + O(|a1x+ b1|−3e−(a1x+b1)2/2)

|a2x+ b2|−1e−(a2x+b2)2/2 + O(|a2x+ b2|−3e−(a2x+b2)2/2)

= |a2x+ b2|
|a1x+ b1|

e(a2
2−a

2
1)x2/2e(a2b2−a1b1)xe(b2

2−b
2
1)/2 1 + O(|a1x+ b1|−2)

1 + O(|a2x+ b2|−2)
,

so Φ(a1x+ b1)/Φ(a2x+ b2)→ 0 as x→ −∞ if (a2
2−a2

1)x2/2 + (a2b2−a1b1)x→ −∞
as x → −∞. This occurs if and only if one of the conditions hold, so the proof is
done.

Consider Algorithm 4 with ABC distances log(ρ) | θ ∼ N(µ(θ), σ(θ)) for continuous
functions µ, σ. The following theorem states that under some simple assumptions,
the posterior distribution corresponding to these

Theorem 4. Consider the ABC posterior distribution corresponding to the surrogate
model (3.2),

πδ(θ | s0) =
Φ
( log(δ)− µ(θ)

σ(θ)
)
π(θ)∫

Θ
Φ
( log(δ)− µ(θ)

σ(θ)
)
π(θ) dθ

.

for continuous functions µ, σ.

(i) Take constant σ(θ) = σ0, and let µ(θ0) = µ0 be a unique minimum with π(θ0) >
0 such that for all ε > 0 there exists µ1 > µ0 such that µ(θ) ≥ µ1 whenever
θ ∈ Θ \ Bε(θ0). Then πδ(·|s0) converges weakly to a point weight in θ0.

(ii) Let µ(θ) ≥ µ0 and let σ(θ0) = σ0 be a unique maximum with π(θ0) > 0 such that
for all ε > 0 there exists σ1 < σ0 such that σ(θ) ≤ σ1 whenever θ ∈ Θ \Bε(θ0).
Then πδ(·|s0) converges weakly to a point weight in θ0.

Proof. In both cases we show that for arbitrarily small ε > 0,

Pδ(θ /∈ Bε(θ0))
Pδ(θ ∈ Bε(θ0)) → 0

as δ → 0, which ensures the sought convergence.

(i) Fix arbitrary ε > 0 and take µ1 as in the statement. Choose µ2 ∈ (µ0, µ1)
and take ε′ ∈ (0, ε) such that µ(θ) < µ2 for all θ ∈ Bε′(θ0). Such µ2 exists by
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continuity of µ. We get

Pδ(θ /∈ Bε(θ0))
Pδ(θ ∈ Bε(θ0)) =

∫
Θ\Bε(θ0)

πδ(θ | s0) dθ∫
Bε(θ0)

πδ(θ | s0) dθ

=

∫
Θ\Bε(θ0)

Φ
( log(δ)− µ(θ)

σ0

)
π(θ) dθ∫

Bε(θ0)
Φ
( log(δ)− µ(θ)

σ0

)
π(θ) dθ

≤
Φ
( log(δ)− µ1

σ0

) ∫
Θ\Bε(θ0)

π(θ) dθ

Φ
( log(δ)− µ2

σ0

) ∫
Bε′ (θ0)

π(θ) dθ
−→ 0

as δ → 0 by Lemma 3.

(ii) By the same argument as above, we take arbitrary ε > 0 and take σ1 < σ0
as in the statement. Likewise, we choose σ2 ∈ (σ1, σ0) and take ε′ > 0 such
that σ(θ) > σ2 for all θ ∈ Bε′(θ0). Let µ1 = supθ∈Bε′ (θ) µ(θ). Without loss of
generality, we assume that log(δ) < µ0. We get

Pδ(θ /∈ Bε(θ0))
Pδ(θ ∈ Bε(θ0)) =

∫
Θ\Bε(θ0)

Φ
( log(δ)− µ(θ)

σ(θ)
)
π(θ) dθ∫

Bε(θ0)
Φ
( log(δ)− µ(θ)

σ(θ)
)
π(θ) dθ

≤
Φ
( log(δ)− µ1

σ1

) ∫
Θ\Bε(θ0)

π(θ) dθ

Φ
( log(δ)− µ2

σ2

) ∫
Bε′ (θ0)

π(θ) dθ
−→ 0

as δ → 0 by Lemma 3.

A.2 Other ABC Kernel Functions

Below we see the surrogate likelihood under the model (3.2) for some of the most
common choices of ABC kernelKδ. For the sake of readability, abbreviate µ = µr(θ),
σ2 = σ2

r(θ) and ρ = ρ̂. We will now see that many of the popular ABC posteriors
have analytical form under this model.
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A.2.1 Uniform Kernel

Letting Kδ(ρ) = 1{ρ ≤ δ} is the simplest choice of ABC kernel which makes for a
good example. We get approximate likelihood

Lr(s0 | θ) = P(log(ρ) ≤ log(δ)) = Φ
( log(δ)− µ

σ

)
.

If we set σ = 0, we instead get

Lr(s0 | θ) = 1{µ ≤ log(δ)}.

That is, assuming a uniform prior, the approximate posterior will be a uniform
distribution on some subset of Θ. In the case when µr(θ) is a polynomial of degree
k and Θ ⊂ R, the subset will be a finite collection of intervals whose ends are the
zeroes of a polynomial of degree k, so at most k/2 + 1 intervals for intervals of finite
length. This severely limits the class of possible target distributions.

A.2.2 Epanechnikov Kernel

Let Kδ(ρ) = (1 − ρ2/δ2)1{ρ ≤ δ}. The resulting surrogate likelihood can be found
by using the substitution z = (log(ρ)− µ− σ2)/σ,

Lr(s0 | θ) = Φ
( log(δ)− µ

σ

)
− 1
δ2 e2(µ+σ2)Φ

( log(δ)− µ− 2σ2

σ

)
.

When we set σ = 0, we instead have

Lr(s0 | θ) =
(

1− e2µ

δ2

)
1{ρ ≤ δ}.

A.2.3 Gaussian Kernel

Let Kδ(ρ) = e−ρ2/(2δ2). The surrogate likelihood is found by integrating

Lr(s0 | θ) =
∫ ∞

0

1
ρσ
√

2π
exp

(
− ρ2

2δ2 −
(log(ρ)− µ))2

2σ2

)
dρ

since ρ is log-normally distributed. This integral is not straight-forward to compute,
so to target this distribution one could instead sample distances from the surrogate
model, which leads to ABC-MCMC but without sampling from the model. If we
instead consider σ = 0, we get

Lr(s0 | θ) = exp
(
− e2µ

2δ2

)
.
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A.3 Stationary distribution of ABC-MCMC

Here follows a proof of Theorem 2 which states that the stationary distribution of
the chain in Algorithm 2 is the ABC posterior.

Proof. Consider the Markov Chain in (θ, ρ) from Algorithm 2. Let t((θ′, ρ′) | (θ, ρ))
be the transition density of the chain described above. Fix (θ′, ρ′), (θ, ρ). Without
loss of generality, we assume that

Kδ(θ)π(θ)g(θ′ | θ) ≤ Kδ(θ′)π(θ′)g(θ | θ′).

We shall see that this chain fulfills the detailed balance condition with stationary dis-
tribution πδ(θ, ρ | s0) ∝ Kδ(ρ)q(ρ | θ)π(θ). By the assumption, we have t((θ′, ρ′) | (θ, ρ)) =
q(ρ′ | θ′)g(θ′ | θ), whereas

t((θ, ρ) | (θ′, ρ′)) = q(ρ | θ)g(θ | θ′) Kδ(ρ)π(θ)g(θ′ | θ)
Kδ(ρ′)π(θ′)g(θ | θ′) .

In combination, we get

t((θ′, ρ′) | (θ, ρ))πδ(θ, ρ | s0) = t((θ, ρ) | (θ′, ρ′))πδ(θ′, ρ′ | s0).

Hence π(θ, ρ | s0) is the stationary distribution fo the chain in (θ, ρ). Integrating out
ρ gives the marginal distribution in θ, πδ(θ | s0) ∝ π(θ)L(s0 | θ) as claimed.
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B
Original Algorithm Outline

Below is the algorithm outline suggested by Umberto Picchini.

Algorithm 5 ABC-SSL original outline.

1: Input: observed s0. Number of rounds R, simulations per round N . A positive
integer M � N . D = {}.

2: Output: M draws from the approximate posterior p̂(θ | s0).
3: Initialization:
4: for m = 1 : M do
5: sample θm ∼ π(θ), simulate xm ∼ f(x | θm), obtain sm ← S(xm) and ρm ←
ρ(sm, s0). Set D ← D ∪ (θm, ρm)

6: end for
7: Train qφ(s0 | θ)← GPφ,s0(θ) on D to obtain φ̂ and set π̂0(θ | s0) ∝ qφ̂(s0 | θ)π(θ).
8: for r = 1, . . . , R do
9: for n = 1, . . . , N do

10: propose θ∗n ∼ g(θ | θ#), predict ρ∗n from the fitted GP and form k∗n ≡
Kδ(ρ∗n), then accept θ∗n ∼ π̂r−1(θ | s0) with probability

α = min
(

1, k
∗
n

k# ×
π(θ∗)
π(θ#)

× g(θ# | θ∗)
g(θ∗ | θ#)

)

and if accepted set k# ← k∗n and θ# ← θ∗n.
11: end for
12: Disregard the initial N−M draws and run the following loop on the remain-

ing M draws.
13: for m = 1, . . . ,M do
14: simulate xm ∼ f(x | θm), obtain sm ← S(xm) and ρm = ρ(sm, s0). Set
D ← D ∪ (θm, ρm)

15: end for
16: re-train qφ(s0 | θ) ← GPφ,s0(θ) on D to obtain φ̂ and set π̂r(θ | s0) ∝

qφ̂(s0 | θ)π(θ).
17: end for
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