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Abstract

Hepatocellular carcinoma (HCC) is a deadly disease without existing
cure or effective treatment. If the genetics and metabolics of this form of
liver cancer would be better understood the chance of developing effective
treatments would likely increase.

HCC cells are different from normal liver cells. When it comes to gene
expression the traditional way is to define these differences in terms of
up- or downregulation of genes or metabolic subnetworks. The purpose
of this report however is to present an alternative approach regarding the
definition of what makes HCC cells different from matched liver cells. This
approach does not primarily focus on between-phenotype differential gene
expression but rather on metabolic network regulation and can be viewed
in terms of metabolic network entropy.

This alternative approach is made possible through implementation
of the so called Differential Rank Conservation algorithm (DIRAC). In
addition traditional differential expression analysis and detection of dif-
ferentially expressed metabolites by the reporter metabolites algorithm
was performed. The basis of the analysis was RNA-Seq data from 163
HCC patients downloaded from The Cancer Genome Atlas database.

The results indicate fundamental alterations in network regulation of
central metabolic pathways in HCC. For example the TCA cycle, the elec-
tron transport chain and fatty acid metabolism show general apparent
dysfunction with network deregulation and concomittant average down-
regulation of gene expression in HCC. In contrast fatty acid biosynthesis
seems to be under tight regulatory control with average upregulation of
gene expression in HCC. The DIRAC algorithm also revealed large scale
average metabolic network disorganization in HCC, a phenomena referred
to as global deregulation. In addition six other cancers were also analysed
in terms of their global regulation of their metabolic networks. This anal-
ysis revealed a correlation between the degree of global deregulation and
malignancy of the cancer.

In conclusion the DIRAC algorithm offers an alternative view on between-
phenotype differences of gene expression which reveales important alter-
ations of the metabolism in HCC.



1 Goal and purpose

The Differential Rank Conservation algorithm (DIRAC) offers an alternative
perspective on between-phenotype differences of gene expression. This algo-
rithm falls in the category of so called relative expression analysis and is designed
to analyse network-level behaviour of cell metabolism. It offers a perspective
beyond differential expression which would be described in terms of network
regulation rather than up- or downregulation.

The purpose of this project was (i) to implement the DIRAC algorithm
on RNA-Seq data from samples of HCC and matched adjacent normal liver
tissue in order to define differences between HCC and normal liver in terms of
network regulation and (ii) to make a comparison of these results to traditional
differential expression-based approaches.

The goal of the project was to offer alternative information of the metabolic
behaviour of HCC, information which traditional analytical approaches might
overlook.

2 Thesis outline

The basic outline of this project is straight-forward. The Cancer Genome Atlas
(TCGA) is an ongoing project with the purpose of collecting and sequencing
many different cancer tissues and matched control tissues and making this data
publically available. RNA-Seq gene expression data was downloaded from the
TCGA data base and subsequently analysed. The analysis was two-fold. The
main analysis was the implementation of the DIRAC algorithm on the TCGA
RNA-Seq gene expression data of HCC. In addition differential expression-
analysis was performed and the reporter metabolites algorithm was implemented
on the output of the differential expression analysis (see figure 1 below). The
DIRAC algorithm was also implemented on TCGA RNA-Seq gene expression
data from six other cancers in order to analyse the global network behaviour of
these cancers in comparison with HCC.
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Figure 1: Basic outline of this master thesis project. The main focus of the
project was the implementation of the DIRAC algorithm on the RNA-Seq data
from the 163 hepatocellular carcinoma samples and the 49 matched adjacent
liver control samples. Differential expression with subsequent reporter metabo-
lites analysis was also performed. In addition the DIRAC algorithm was imple-
mented on RNA-Seq data from six other cancers.
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3 Introduction

Here information about hepatocellular carcinoma, the TCGA data base, RNA-
Seq data, gene set collections, the DIRAC algorithm and the reporter metabo-
lites algorithm will be presented. In addition some general interpretations of
what the results from the DIRAC algorithm could mean in a biological context
will be presented.

3.1 Hepatocellular carcinoma

Cancer in the liver can arise and manifest in several different ways. A first
broad division can be made between benign and malignant liver cancers. Benign
tumours do not cause severe symptoms and is usually curable [1]. Malignant
liver cancer on the other hand is often life threatening. Malignant liver cancer
can be of primary or secondary nature. Primary liver cancer originates in the
liver whereas secondary liver cancer forms in another part of the body and later
metastasize to the liver. There are different kinds of primary liver cancers.
Intrahepatic cholangiocarcinoma arises from the cells of the bile duct canal, the
canal that delivers bile to the gallbladder, and makes up approximately 10-20
percent of all liver cancers [1]. Fibrolamellar carcinoma is rare, making up less
than one percent of all liver cancers and often have a better outlook than other
malignant liver cancers [1].

The most common form of liver cancer and the form studied in this project
is as mentioned called hepatocellular carcinoma. HCC is of primary type making
up approximately 80 percent of all liver cancers. HCC can form as a single tu-
mour and grow in size or can start as many small cancer nodules spread through-
out the liver. This nodule form is often associated with cirrhosis (widespread
scarring of tissue). The prognosis of HCC are poor with a one-year survival
rate of less than 50 percent [2]. For men HCC is the second leading cause of
cancer-related deaths in the world and for women the sixth leading cause [2].
The risk of developing HCC is highly incresed with infection of hepatitis B or
C. Worldwide around 80 percent of all cases of HCC are related to hepatitis B
or C infection [3]. Another leading risk factor is alcohol abuse which can lead
to cirrhosis and ultimately HCC. Another correlating factor is obesity, probably
because obese people have a higher prevalence of non-alcoholic fatty liver dis-
ease and non-alcoholic steatohepatitis which leads to increased risk of cirrhosis
and HCC [1]. In the United States the overall prevalence of HCC has tripled
from 1975 to 2005 with the largest increase in prevalence in middle-aged men
[2].

There are several treatment options available for HCC. A common treat-
ment strategy is to surgically remove the tumour tissue or replace the whole
liver by transplantation. Tumour ablation aims at destroying the tumour with-
out removing it. Radiofrequency and microwave ablation destroys the tumour
by heating it up. Cryotherapy kills the cancer cells by freezing them. Another
ablation technique is called percutaneous ethanol injection where, as the name
suggests, ethanol is injected in order to kill the cancer cells. Tumour emboliza-
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tion is another treatment option which involves cutting the blood supply to
the tumour but not to nearby liver tissue thereby selectively killing the cancer.
External radiation therapy is also an option to treat HCC. Chemotherapy can
also be used although ususally with limited success [4]. Even with all these
treatment strategies the survival rate is as mentioned above very low. Aquiring
HCC today almost inevitable leads to death [2]. Therefore more targeted and
effective treatments are highly desirable.

3.2 The Cancer Genome Atlas (TCGA) data base

The Cancer Genome Atlas is a coordinated project between two American in-
stitutes (National Cancer Institute and the National Human Genome Research
Institute) aimed at accelerating the understanding of many types of human
cancers. Tumor tissue from many different patients are in this project collected
and carefully catalogued. Different sequencing technologies are then applied
including next generation RNA-sequencing. The transcriptome of a typical cell
contains vast amount of information. Previous methods based on microarray-
technologies have been shown to not entirely accurately cover and capture the
complete information of the transcriptome. Next generation sequencing in the
form of RNA-Seq offers superior accuracy and coverage through massively par-
allell direct sequencing of cDNA [5]. This method is thus the method of choice
when it comes to accurate estimations of gene expression. The RNA-Seq data
generated within the TCGA project is made publically available so that re-
searchers all over the world can easily and freely access and analyse the data
[6].

3.3 Gene set collections

A gene set collection is an attempt to categorize genes into gene sets represent-
ing subnetworks of the metabolic network of a cell. The gene sets are most
often composed in such a way to reflect a certain cellular function. The genes
and gene products which performs the cellular function in question are catego-
rized together, constituting the gene set. There are lots of gene set collections
available. In this project three gene set collections were used. Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) contains a collection of pathways of well
known cellular functions and metabolic activities [7]. Biocarta is the name of
another similar collection of cellular pathways. Biocarta produces gene sets in
an open-source fashion, integrating genomic and proteomic data from the scien-
tific community to produce gene set collections covering many cellular functions.
The Human Metabolic Reaction (HMR) database is an attempt to collect sto-
ichiometric information of human metabolic reactions into one large generic
genome-scale metabolic model [8].
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3.4 The DIRAC algorithm

When analysing gene expression between phenotypes a common basic approach
is to study individually differentially expressed genes. The idea behind this is
of course to identify genes that correlate with and perhaps cause the observed
between-phenotype differences. However a systems approach to biology and
medicine preferrably puts the individual genes in a more global context in the
form of metabolic networks. To enable richer understanding of human disease,
network based approaches such as gene set enrichment analysis (GSEA) are
successfully employed. A GSEA-type of approach identifies pre-defined subnet-
works where genes of these subnetworks are collectively co-regulated [9]. Other
similar approaches uses single statistics such as mean or median gene expres-
sion to compare subnetworks between phenotypes. The aim of these types of
methods is to identify differentially expressed subnetworks. However these ap-
proaches do not take into account combinatorial differences in gene expression,
which might have important impact on cellular behaviour.

The DIRAC algorithm is a network based approach like GSEA but specifi-
cally designed to take into account these combinatorial effects. For a given gene
set the DIRAC algorithm calculates the order of the gene expressions in the
gene set. The average ordering in one phenotype is called the rank template
(T) and is simply put a ranked list of gene expressions. The calculation of the
rank template is done separately for each phenotype so that each phenotype has
its own rank template for each gene set. The rank template is based on that
the majority of the samples for each phenotype fits the rank template (rarely
the rank template fits each and every sample). Next the rank matching score
(RMS), which is a measure of how well each sample matches the rank template,
is calculated. The average of all samples RMS for each phenotype is called the
rank conservation index (RCI) and is a measure of the so called entropy of the
gene set in the phenotype. A highly ordered gene set in a phenotype is said to
have low entropy. Conversely a highly disordered gene set in a phenotype is said
to have high entropy. To put this in more clear terms a network can be seen
as tightly regulated if the entropy is low and conversely loosely regulated if the
entropy is high. This tightness/looseness is however somewhat of an interpre-
tation of what the entropy means for a network, so entropy can be considered a
more neutral term. These different designations will both be used throughout
this report.

The general outline of the DIRAC algorithm can be seen in figure 1.
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Figure 2: A basic description of the DIRAC algorithm. Rank template, rank
matching score and rank conservation index is explained.

The above described procedure importantly first focuses on within-phenotype
information. From this analysis however there are subsequently two types of
between-phenotype differences to extract (also depicted in figure 2):

1. Identification of networks with differing entropy between phenotypes. Or
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put in other words: Identification of tightly regulated networks in one
phenotype and loosely regulated in another phenotype. This phenomenon
is referred to as deregulation in this report.

2. Identification of differently ranked networks between phenotypes, that is
networks with differing rank templates. This phenomenon is referred to
as differential regulation in this report.

Figure 3: Two types of information can be extracted from the DIRAC algorithm.
Depicted in the left hand side of the figure DIRAC can measure the entropy of a
network and thus identify deregulated networks. Depicted in the right hand side
DIRAC can also identify differently regulated networks as a differing ordering
of gene expresisons within a network between phenotypes.

The reason for identifying networks with differing entropy is to capture in-
formation of the regulation of that network. It can be speculated that dysreg-
ulation of a network in a diseased state is accompanied with high entropy of
that network. If a network has low entropy it might suggest that the network is
under tight regulation due to important cellular function of the network. Loss
of importance or loss of function can be correlated with an increase in entropy.

The reason for identifying differently ranked networks between phenotypes
is to capture information of altered cellular regulation of the network. If there is
a large difference in ranking of a network between two phenotypes this provides
information of what cellular functions is correlated with or even causes disease.
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Since a network does not need to be up- or downregulated to have differing
entropy, the DIRAC algorithm can provide useful information which could be
overlooked by other GSEA-types of algorithms.

In the next subsections further elaboration of interpretations of the results
of the DIRAC algorithm follows.

3.4.1 What does deregulation mean?

There are a few interpretations of what low or high rank conservation index
for a network means. As defined above a network with low entropy is said
to be “tightly regulated”. Conversely a network with high entropy is said to
be “loosely regulated”. When a network has gone from tight regulation in one
phenotype to loose regulation in another the network can be said to have become
“deregulated”. Exactly what biological meaning this has is not always entirely
clear and does not necessarily mean the same thing for different networks.

If a subnetwork is tightly regulated it could mean two opposing things. In
one situation a subnetwork could be tightly regulated with high gene expres-
sion because the network performs some important function requiring constant
activity of the pathway. Another situation with tight regulation could be when
the function of the network is supposed to be repressed and closely controlled in
order for its activity to not “go out of control”. This means that deregulation
can possibly both reflect loss of activity and gain of activity.

Another interpretation of deregulation can be plasticity. There might be
situations where varying external environments puts adaptive pressure on cells.
If for example nutrients and oxygen supply varies there might be systems in
the cell that respond to this by varying the activity and thus internal gene
expression of certain subnetworks.

3.4.2 Can deregulation reveal frequently mutated subnetworls?

One hypothesis about what it means that a subnetwork is deregulated is related
to mutation and selection. If a subnetwork is deregulated in a phenotype, spec-
ulatively this might suggest that mutations occuring in this subnetwork poses
a selective advantage for the cancer cell. If the subnetwork normally has some
function anatgonizing cancer cell characteristics, meaning that a well function-
ing version of the network hinders cancer cell development, then mutations of
the subnetwork arguably would be beneficial for the cancer cell. When viewed
in this perspective two stereotypical scenarios would occur. In one scenario mu-
tations of only a single specific gene results in a selective advantage. In another
scenario mutation of any of the members of the gene subnetwork would result
in a selective advantage.

The first scenario is traditionally well studied using established methods
such as analysing single-gene somatic mutations. The second scenario would
reflect a situation where mutations of different genes gives rise to the same
selective advantage. For example, say there is a subnetwork containing five
genes. This network performs some function that when lost or altered would
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pose a selective advantage for a cancer cell. This selective advantage would
emerge if any of the five genes would be mutated, no matter which gene is
mutated. Now there are five different situations the cancer cell could aquire the
selective advantage and if mutation is random then different cancer cells will
have different mutations in the same subnetwork. This second scenario would
likely result in internal relative variation of gene expression and thus be detected
by the DIRAC algorithm as high entropy and deregulation.

Further on this hypothesis implies that the most deregulated subnetworks
detected by DIRAC are the networks that when mutated in any way give rise
to the most beneficial selective advantage for cancer cells. One could say that
the most deregulated networks are under highest so called disruptive selective
pressure. Conversely the least deregulated or even more tightly regulated sub-
networks in the cancer might reflect the subnetworks with the highest stabilizing
selective pressure. This means that any mutation of such a network would re-
sult in a selective disadvantage. Interestingly this situation might be revealing
of therapeutic targets because the conservation of the function between different
cancer cells could indicate importance for cancer cell survival and growth.

3.4.3 What does differential regulation mean?

The other scenario detected by the DIRAC algorithm is not deregulation but
differential regulation. More specifically this reflects a situation where the rank
templates are different between the phenotypes (see above). This means that
the genes in a subnetwork are ranked (according to gene expression) in one
particular order in one phenotype but ranked in another particular order in the
other phenotype. This does not mean that the gene order is shuffled around as
in the deregulated scenario.

One interpretation of differential regulation is that the subnetwork in ques-
tion has aquired altered functioning. It might reflect that a pathway has become
altered in a specific way to achieve some specific altered function. Usually one
or several genes of the subnetwork are in this scenario differentially expressed. A
key difference from deregulation is that the subnetwork is usually (but with ex-
ceptions) still tightly regulated in both phenotypes. So a subnetwork is usually
not deregulated and differentially regulated at the same time.

The altered functioning can either be in terms of activation or deactivation.
The whole subnetwork could be upregulated or downregulated or parts of the
network can be up- or down-regulated. One example could be a signaling path-
way. In healthy tissue the signaling pathway would perhaps be latent but has
become activated by some perturbation of the network in a cancer cell. If this
results in differential expression of some of the genes in the network then the
rank templates will become different which will be detected by the algorithm.

If a scenario where mutations of specific genes (as described above) leads to
a selective advantage for a cancer cell then these specific genes would change the
rank templates in a specific way which would again be detected as differential
regulation by the algorithm. These kinds of specific alterations might indicate
importance for the cancer cell for its ability to survive and/or grow and thus
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might reveal possible therapeutic targets.

3.5 Reporter metabolites

The reporter metabolites algorithm is constructed to detect significantly up-
or downregulated metabolites between two conditions or phenotypes [10]. The
algorithm uses information about which enzymes and metabolites are interact-
ing. An enzyme and a metabolite are defined as interacting if the metabolite is
involved in the reaction that the enzyme is catalyzing. From this information
enzymes can also be defined as interacting if they share a common metabolite.
The resulting network of interacting metabolites and enzymes is then combined
with gene expression data of up- and downregulated genes. This combination
makes it possible to, based on the gene expression data, estimate which metabo-
lites should also be up- or downregulated. The reporter metabolites algorithm
thus needs two pieces of input. As mentioned it needs a list of genes with thier
corresponding p-values and fold changes, statistics provided by differential ex-
pression analysis. It also needs information of which genes interacts with which
metabolites. This information is provided in the form of a tissue specific genome
scale metabolic model (GEM) for HCC generated by the Integrative Network
Inference for Tissues (INIT) algorithm [11]. A GEM is a collection of informa-
tion of all the metabolic reactions connected to the underlying genes coding for
the enzymes catalyzing these reactions. GEMs are constructed in a bottom-up
fashion meaning gene, protein and metabolic reaction data is integrated and
used to reconstruct a metabolic network. Tissue-specific GEMs are useful for
interpreting high-throughput data and is being applied to systems medicine in
order to better understand human complex disease [12, 13, 14, 15].
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4 Results & Discussion

Here the main results from the implementation of the DIRAC algorithm on the
TCGA RNA-Seq data is presented. For reasons of space only the most relevant
results are presented here. For complete results see Appendix. The relevant
results of high-entropy networks, low-entropy networks and differentially regu-
lated networks will separatley be presented and discussed. The results of the
reporter metabolites algorithm will be presented separately but will be included
in the above mentioned discussion. The DIRAC algorithm was implemented
not only on HCC but also on six other cancers in order to estimate the average
entropy of these cancers. Theses results are also presented and discussed.

4.1 High-entropy networks in HCC

Here the top 15 deregulated subnetworks from the DIRAC-analysis with three
different gene set collections are presented. The three gene set collections are
KEGG, Biocarta and HMR.
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Table 1: The table contains the KEGG pathways with the highest degree of
deregulation, that is the largest difference in entropy between HCC and matched
adjacent liver tissue (set as “control”). The name of the pathway, the number
of genes in the pathway, the rank conservation indices, the absolute difference
in rank conservation indices between phenotypes and the p-value of a difference
in rank conservation indices between phenotypes are presented.

Pathway
No. of
genes

Rank conservation
indices

P-value

Cont
rol

HCC Diffe
rence

D-glutamine and
D-glutamate metabolism

4 0.980 0.782 0.198 < 6.7·10−16

Caffeine metabolism 7 0.949 0.765 0.183 < 6.7·10−16

Vitamin b6 metabolism 5 0.918 0.774 0.144 5.21·10−6

Citrate cycle 27 0.945 0.805 0.140 5.21·10−6

3 chloroacrylic acid
degradation

15 0.963 0.824 0.138 5.21·10−6

Pantothenate and CoA
biosynthesis

16 0.957 0.825 0.131 2.6·10−5

Cyanoamino acid
metabolism

6 0.964 0.838 0.126 5.73·10−5

Methionine metabolism 17 0.969 0.844 0.125 5.73·10−5

Glyoxylate and
dicarboxylate metabolism

13 0.956 0.832 0.124 5.73·10−5

Fatty acid metabolism 45 0.949 0.827 0.122 6.77·10−5

Bile acid biosynthesis 38 0.955 0.834 0.121 6.77·10−5

Glycine serine and
threonine metabolism

44 0.935 0.818 0.117 7.29·10−5

One carbon pool by folate 16 0.958 0.846 0.112 9.9·10−5

1 and 2
methylnaphthalene

degradation

20 0.965 0.854 0.111 1.51·10−4
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Table 2: The table contains the Biocarta pathways with the highest degree of
deregulation, that is the largest difference in entropy between HCC and matched
adjacent liver tissue (set as “control”). The name of the pathway, a short de-
scription of the pathway, the number of genes in the pathway, the rank con-
servation indices, the absolute difference in rank conservation indices between
phenotypes and the p-value of a difference in rank conservation indices between
phenotypes are presented.

Pathway
Short
description

No.
of
ge
nes

Rank conservation
indices

P-value

Cont
rol

HCC Diffe
rence

UREA-
CYCLE

Feeding of
amino acids

into urea
cycle

7 0.949 0.731 0.218 < 6.7·10−16

KREB TCA-cycle 8 0.960 0.797 0.163 < 6.7·10−16

TSP1 Angiogenesis 7 0.915 0.758 0.157 < 6.7·10−16

MALAT-
EX

Mitochondria-
shuttle of

acetyl-
groups

8 0.955 0.799 0.156 < 6.7·10−16

ACET-
AMINO-
PHEN

Prostaglandin
production
and liver
toxicity

5 0.974 0.820 0.154 < 6.7·10−16

REELIN

Signaling
pathway,

actin
cytoskeleton

7 0.943 0.798 0.145 < 6.7·10−16

TERC
Telomerase

activity
6 0.929 0.796 0.133 < 6.7·10−16

MRP
Multi drug
resistance

6 0.924 0.792 0.132 < 6.7·10−16

FBW7
Cell cycle

control
8 0.964 0.853 0.111 < 6.7·10−16

SRCRPTP
Cell cycle

progression
9 0.973 0.863 0.109 < 6.7·10−16

ALTERN-

ATIVE

Immune
system - cell

lysis
6 0.927 0.819 0.107 < 6.7·10−16

ETC
Electron

Transport
Chain

9 0.97 0.864 0.107 < 6.7·10−16

PKC
Activation of

protein
kinase C

6 0.960 0.854 0.106 < 6.7·10−16

ARF
Inhibition of

ribosomal
biogenesis

16 0.946 0.841 0.105 < 6.7·10−16

CDMAC
Cellular

proliferation
15 0.944 0.841 0.103 < 6.7·10−16



Table 3: The table contains the HMR pathways with the highest degree of
deregulation, that is the largest difference in entropy between HCC and matched
adjacent liver tissue (set as “control”). The name of the pathway, the number
of genes in the pathway, the rank conservation indices, the absolute difference
in rank conservation indices between phenotypes and the p-value of a difference
in rank conservation indices between phenotypes are presented.

Pathway
No. of
genes

Rank conservation
indices

P-value

Control HCC Diffe
rence

Biotin metabolism 4 0.9267 0.7570 0.1696 < 6.7·10−16

Carnitine shuttle
(mitochondrial)

8 0.9821 0.8156 0.1665 < 6.7·10−16

Beta oxidation of di-
unsaturated fatty

acids (n-6)
(peroxisomal)

10 0.9507 0.7989 0.1517 < 6.7·10−16

C5-branched dibasic
acid metabolism

3 0.9867 0.8373 0.1493 < 6.7·10−16

Beta oxidation of
unsaturated fatty

acids (n-9)
(peroxisomal)

8 0.9564 0.8095 0.1468 < 6.7·10−16

Bile acid recycling 14 0.9472 0.8113 0.1359 < 6.7·10−16

Pyruvate metabolism 34 0.9612 0.8287 0.1326 8.55·10−6

Beta oxidation of
poly-unsaturated fatty
acids (mitochondrial)

10 0.9533 0.8401 0.1131 8.55·10−6

Glycine, serine and
threonine metabolism

55 0.9478 0.8380 0.1092 2.56·10−5

Arachidonic acid
metabolism

28 0.9472 0.8384 0.1088 2.56·10−5

Estrogen metabolism 41 0.9402 0.8326 0.1076 2.56·10−5

Beta oxidation of
even-chain fatty acids

(peroxisomal)

6 0.9253 0.8201 0.1052 2.56·10−5

Sulfur metabolism 10 0.9676 0.8641 0.1034 4.27·10−5

Panthotenate and
CoA biosynthesis

15 0.9491 0.8483 0.1008 4.27·10−5

Beta oxidation of
branched-chain fatty
acids (mitochondrial)

9 0.9561 0.8561 0.1000 4.27·10−5
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Here results from differential expression analysis of individual genes of some
of the most highly deregulated subnetworks in HCC are presented.

Table 4: The table shows results from differential expression analysis. Adjusted
p-values and fold changes are presented for the genes in the TCA cycle as defined
by KEGG.

TCA cycle (KEGG)
Gene Adjusted p-value log2FC

PCK1 1.07667E-32 -2.261662035
OGDHL 1.66665E-15 -1.355752826
PCK2 1.81166E-14 -1.296023429
ACLY 5.89657E-08 1.144451747

SUCLG2 9.8968E-08 -0.954876884
CLYBL 2.41548E-07 -1.007286189
SDHB 8.42112E-06 -0.835039333

PC 3.91037E-05 -0.809449609
SDHD 6.896E-05 -0.760153507
SDHA 0.000320178 -0.680765938
ACO1 0.00066606 -0.675664688

CS 0.002381327 0.662456888
IDH2 0.011435845 -0.545721606

IDH3G 0.057586969 0.48546214
IDH1 0.140324523 -0.356650998
DLST 0.141507146 -0.318311241

SUCLA2 0.152209105 -0.393693585
OGDH 0.2833108 0.269351421

SUCLG1 0.303284288 -0.232236239
MDH2 0.310737718 0.297669296
DLD 0.414442221 -0.205992328

ACO2 0.488729179 0.196856207
IDH3B 0.504137746 0.215998936
IDH3A 0.687148764 -0.144959285

FH 0.712071128 -0.055884232
MDH1 0.776657314 0.122204916
SDHC 0.851431229 0.078581439
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Table 5: The table shows results from differential expression analysis. Adjusted
p-values and fold changes are presented for the genes in fatty acid metabolism
as defined by KEGG. Only the significantly differentially expressed genes are
included.

Fatty acid metabolism (KEGG)
Gene Adjusted p-value log2FC

CYP4A11 4.02525E-41 -2.221676293
ADH4 4.19485E-28 -2.31950626

ACADSB 5.19033E-26 -1.774215507
ACSL1 5.6804E-24 -1.713170139
ACADS 5.96231E-24 -1.753279139
ALDH2 4.3937E-23 -1.621870595
ADH1A 2.06399E-21 -1.72216862
ACAA1 1.20743E-19 -1.541857315
ADH6 4.42987E-19 -1.586158232

ACAA2 8.10946E-17 -1.418732314
GCDH 7.88538E-15 -1.353528542
ADH1B 8.80644E-15 -1.652899762
ACAT1 1.14936E-14 -1.322541384
ACADL 1.207E-14 -1.517445322
ADH1C 3.86931E-14 -1.549310058
ECHS1 2.49468E-12 -1.19600793

EHHADH 3.96515E-12 -1.230875395
CYP4A22 3.02784E-11 -1.914329601
ALDH1B1 3.33338E-10 -1.261794406
ACADM 5.33911E-10 -1.124972993

CPT2 8.62112E-09 -1.034642431
ACOX1 1.16167E-06 -0.904198126

ADHFE1 1.25688E-06 -0.936300147
ALDH9A1 2.57717E-05 -0.824212504

ACSL4 3.83584E-05 2.25612074
HADH 5.63138E-05 -0.755916948

ACADVL 0.000198987 -0.664284483
ALDH1A3 0.000415123 -1.084252322
ALDH3A1 0.000815668 5.645506613

ACSL5 0.001564602 -0.786310653
HADHB 0.002307008 -0.617973862
ACAT2 0.00237431 -0.68151633

ALDH7A1 0.003966976 -0.587986156
HSD17B10 0.022996581 -0.454298314

CPT1A 0.023864082 -0.509708872
ADH5 0.027584368 -0.436588576
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Table 6: The table shows results from differential expression analysis. Adjusted
p-values and fold changes are presented for the genes in the electron transport
chain as defined by Biocarta.

Electron transport chain (Biocarta)
Gene Adjusted p-value log2FC

SDHB 8.42112E-06 -0.835039333
SDHD 6.896E-05 -0.760153507
SDHA 0.000320178 -0.680765938
GPD2 0.036198419 0.566964957

NDUFA1 0.05729895 0.496614018
CYCS 0.082074042 0.429422692

ATP5A1 0.292397509 -0.249363942
UQCRC1 0.548804447 -0.153307937

SDHC 0.851431229 0.078581439
MTCO1 missing missing

As can bee seen above there are lots of highly deregulated or high-entropy
networks in HCC. In fact most metabolic subnetworks in HCC are significantly
deregulated (see Appendix). This general trend towards high entropy in HCC-
metabolism is here called global deregulation. This global trend makes it hard
to pinpoint specific metabolic subnetworks as being responsible for disease oc-
curence or progression. In other words to zone in on specific subnetworks or
genes is nonsensical when it comes to deregulation in HCC. To analyse and
discuss all deregulated networks would be a challenging task.

However there are some immediately noticable results in terms of deregula-
tion of central metabolic pathways such as the TCA-cycle, electron transport
chain and fatty acid metabolism. These pathways stand out because of the
central role of the pathways in normal cell metabolism and the high degree of
deregulation. Therefore these pathways will be discussed in this report.

4.1.1 TCA cycle

The TCA cycle shows highly significant deregulation both in the KEGG and
Biocarta analysis. The differential expression of the individual genes of the
KEGG TCA cycle can be seen in Table 10. Out of the 27 genes in the TCA
cycle, as defined by KEGG, 13 genes were significantly differentially expressed.
Out of these 13 genes 11 were downregulated in HCC and thus only two were
upregulated. Interestingly these two genes are citrate synthase (CS) and ATP-
citrate lyase (ACLY). CS catalyses the formation of citrate from oxaloacetate
and acetyl-CoA and is located in the mitochondrial matrix. ACLY is located
in the cytosol and essentially catalyses the inverse reaction: the formation of
acetyl-CoA and oxaloacetate from citrate. The net effect of these reactions is the
transport of acetyl-CoA from the mitochondria to the cytosol. These reactions
compensate for the fact that acetyl-CoA cannot be transported directly over
the mitochondrial membrane. ACLY is an important enzyme in fatty acid
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biosynthesis because it produces cytosolic acetyl-CoA which is essential for fatty
acid biosynthesis.

4.1.2 Electron transport chain

The electron transport chain is another central pathway in energy metabolism
whith highly significantl deregulation. The pathway, defined by Biocarta, con-
tains 10 genes. Four of these show differential expression, three of which are
downregulated. These downregulated genes are three out of the four subunits of
succinate dehydrogenase, SDHA, SDHB and SDHD. Succinate dehydrogenases
(SDH:s) have been shown to act as tumour suppressors and mutations of both
SDHB and SDHD have been linked to cancer formation [16, 17]. According to
one theory of how mutation of SDH:s induce cancer, the metabolite succinate ac-
cumulate in mitochondria and leaks out to the cytosol where it affects a kind of
enzymes called prolyl hydroxylases. This in turn induces resistance to apoptotic
signals and can also enhance the Warburg-type of metabolism (for further ex-
planation see subsection 4.1.6) by inducing glycolysis through hypoxia-inducible
factor (HIF) [18]. The reporter metabolites analysis also reveals a trend toward
accucmulation of the metabolite succinate, with a p-value of upregulation for
succinate of 0.109 (see Appendix).

4.1.3 Fatty acid metabolism

The KEGG-subnetwork fatty acid metabolism is constituted of 45 genes. This
subnetwork is one of the most deregulated subnetworks according to the DIRAC
analysis indicating possible dysfunction of the pathway. The differential expres-
sion analysis revealed 36 of the 45 genes as significantly differentially expressed.
Interestingly 34 of these 36 genes were found to be downregulated in HCC
and thus only two were upregulated. The two upregulated genes were found
to be Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) and Alde-
hyde Dehydrogenase 3 Family Member A1 (ALDH3A1). ALDH3A1 catalyses
the conversion of an aldehyde to its corresponding carboxylic acid, producing
NADPH in the process. It is involved in the metabolism of corticosteroids
and lipid peroxidation [19]. ACSL4 catalyses the reaction of free long-chain
fatty acids into fatty acyl-CoA esters. ACSL4 plays a key role in fatty acid
degradation and lipid biosynthesis [20]. The reporter metabolites analysis re-
vealed many significantly upregulated acyl-CoA esters such as palmitoyl-CoA,
propanoyl-CoA, arachidonyl-CoA, linoleoyl-CoA and several others. Interest-
ingly palmitoyl-CoA is needed for sphingolipid biosynthesis (for further discus-
sion see subsection 4.3.1).

4.1.4 Carnitine shuttle and β-oxidation

The HMR subnetworks carnitine shuttle and β-oxidation (of di-unsaturated,
unsaturated and polyunsaturated fatty acids in peroxisomes and mitochondria
respectively) show highly significant deregulation. The carnitine shuttle is a
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system for transport of fatty acids into the mitochondrial matrix for subsequent
breakdown into acetyl-CoA via β-oxidation. There are eight genes in the car-
nitine shuttle as defined by HMR, six of which are significantly differentially
expressed. Four are downregulated and two upregulated. All in all there are
65 genes involved in mitochondrial β-oxidation, 42 of which are significantly
differentially expressed. Only four of these are upregulated and thus 38 are
downregulated in HCC.

From the DIRAC analysis, differential expression and reporter metabolites
analysis there are clearly differences in the overall metabolism of fatty acids
with deregulation and downregulation as a general rule. As will be discussed
(in subsection 4.2.1) fatty acid biosynthesis on the other hand seems to display
opposite behaviour with apparent tight regulatory control and upregulation.

4.1.5 Glutamine and glutamate metabolism

The most deregulated KEGG pathway is D-glutamine and D-glutamate metabolism.
Besides glucose the amino acid glutamine has been shown to be important for
proliferating cells [21]. Cancer cells display an increased uptake of glutamine
and it has been known for several decades that many cancer cell lines show a
dependence of glutamine for cell growth [22]. It is hypothesized that glutamine
is a source of nitrogen for protein and nucleic acid synthesis. A new interesting
hypothesis proposes that glutamine is used by cancer cells to neutralize the lac-
tic acid build up from aerobic glycolysis by enzymatically cleaving glutamine to
ammonia [23].

All four genes in the pathway is significantly differentially expressed with
three down and one upregulated. In the reporter metabolites analysis glu-
tamine is the single most upregulated metabolite with a p-value of 0.0396 while
glutamate is significantly downregulated with a p-value of 0.00625. The three
methods of analysis: DIRAC, differential expression and reporter metabolites
all show abnormal glutamine and glutamate metabolism indicating that HCC
cells use these metabolites differently from matched liver cells.

4.1.6 Altered energy metabolism in HCC

The fact that the TCA cycle and electron transport chain is highly significantly
deregulated may point to altered energy metabolism in HCC. Under aerobic con-
ditions normal cells break down glucose via glycolysis to pyruvate. The pyruvate
then enters the TCA cycle and via the process of oxidative phosphorylation is
ultimately converted to carbon dioxide and water generating large amounts of
ATP in the process. Under anaerobic conditions normal cells switch to gly-
colysis for ATP production due to lack of intracellular oxygen. Otto Warburg
discovered in the 1930:s that cancer cells use glycolysis even under aerobic con-
ditions. This effect is called “aerobic glycolysis” or the “Warburg effect”. Why
cancer cells display this behaviour has been elusive. At a first glance aerobic
glycolysis seems inefficient since glycolysis has an 18-fold lower ATP produc-
tion than oxidative phosphorylation. However one theory suggests that aerobic
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glycolysis enables cancer cells to optimize growth. In fact this seems to be a
characteristic not only for cancer cells but also for rapidly growing embryonic
cells [24]. This suggests that aerobic glycolysis might be employed by all grow-
ing cells, not only malignant cells. The mechanism for this enabling of growth
is suggested to be due to accumulation of glycolytic intermediates that can be
shuttled into various biosynthetic pathways. Supporting this idea is the discov-
ery that signaling pathways involved in proliferation affect metabolic pathways
that incorporate nutrients into biomass [25]. It can be hypothesised that ATP
production and cell growth cannot be maximized at the same time meaning
there is a trade-off between biomass production and ATP production. Cancer
cells maximize their biomass production and therefore switches to glycolysis,
lowering their ATP production. Another supporting observation to this idea is
that certain cancer related mutations enables cancer cells to utilize metabolites
in a way that increases biomass production [25]. The TCA cycle in quiescent
cells functions as an ATP producer but in a tumor cell the TCA cycle might
function more as a source of biosynthetic precursors. Metabolites are constantly
taken out of the TCA cycle, a process called cataplerosis, and therefore it needs
to be refilled. Glutamine might function as a refiller of the TCA cycle, a pro-
cess called anaplerosis [26]. As already discussed, glutamine metabolism indeed
seems to be different in HCC cells compared to matched liver cells.

The fact that central metabolic pathways such as the TCA cycle is highly
deregulated in HCC means that the individual genes of the metabolic path-
ways have a high degree of internal relative variation. One interpretation of
this behaviour is that the pathway is dysfunctional but it might also indicate
metabolic plasticity. Some cancers have been found to contain two different sub-
populations of cells. One cell-type engages in Warburg-type aerobic glycolysis
with breakdown of glucose and subsequent high production of lactate. Another
subpopulation has been found to use the lactate produced by the first subpopu-
lation as their main energy source. Part of the TCA cycle is used in these cells
to harvest the energy from lactate [27, 28]. Oxygenation has also been shown
to fluctuate both from cell to cell and over time in cancer tissue [29]. It can
be hypothesized that these two observations may at least partially explain the
deregulation of many of the metabolic pathways in HCC. The individual cells
in the HCC tissue may have a varying type of metabolism (aerobic glycolysis or
lactate metabolism) and a varying degree of nutrient and oxygen supply.

Activation of oncogenes or inactivation of tumor suppressor genes has been
linked to altered energy metabolism in cancer cells. The proto-oncogene Myc
was shown to activate lactate dehydrogenase A and other enzymes of the gly-
colytic pathway thereby upregulating glycolysis [30, 31]. Mutated Ras has also
been shown to upregulate glycolysis partly due to increased activity of Myc and
also increased activity of hypoxia inducible factor, HIF [32, 33]. The protein ki-
nase Akt together with HIF-1 has been shown to increase glycolysis. Mutations
of PI3K is a common event in human cancers. PI3K both activates Akt and sta-
bilizes HIF-1 thereby affecting glycolysis. Mutation of tumor suppressor PTEN
is also a common event in human cancers [34]. Since PTEN has an opposing ef-
fect of PI3K the combined activation of PI3K and loss of PTEN with subsequent
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activation of Akt and stabilization of HIF-1 has a profound impact on cellular
energy metabolism [35]. Altered energy metabolism seems to be widespread in
cancer and might be considered as a hallmark of cancer [36]. In agreement to
this the DIRAC algorithm seems to detect large and fundamental differences in
energy metabolism of HCC cells. One interpretation of the above observations
is to view aerobic glycolysis in cancer cells as just another consequence of the
mutated oncogenes and tumor suppressors.

4.1.7 Global deregulation

Interestingly the majority of all metabolic subnetworks in HCC seems to have
significantly higher entropy than matched liver tissue. This phenomenon is, as
mentioned, here called global deregulation. One plausible reason for this could
be cancer cell heterogeneity.

There exists a body of evidence that tumours are not simply masses of uni-
form cells. There is considerable genetic, epigenetic and phenotypic variations
between tumours of the same origin in different patients but also between dif-
ferent regions of the same tumour in one patient [37, 38]. Tumours seem to be
heterogenic by nature. There are two theories attempting to explain this hetero-
geneity. One is called the cancer stem cell model and according to this theory
not all cells in a tumour are able to form new tumours, only a subset is (this
ability is called tumourigenity). The originating tumourigenic cells are called
cancer stem cells (CSCs). According to this model cancer arises from the CSCs
and further develops into both tumorigenic and non-tumorigenic pregenitor cells
making up a varying degree of the tumour. The heterogeneity of the tumours
arises because of differences in originating CSCs. These differences results in
a tumour being made up of different subpopulations, of both tumorigenic and
non-tumorigenic cells, branching out from different CSCs.

The cancer stem cell model is however debated. Conflicting evidence regard-
ing consistency of CSC markers and varying results from different xenograft
models makes the credibility of the model questionable. Another theory sug-
gested by Peter Nowell in 1976 is called clonal evolution. According to this
theory cancer originates from a single cell and through the process of muta-
tions different subpopulations of cells with different cell characteristics arises.
Again the resulting tumour is heterogenic by nature with different cells perhaps
evolved to be adapted to different parts of the tumour with different supplies of
oxygen and nutrients.

Both theories are not completely mutually exclusive. For example it has been
suggested that CSCs undergoes clonal selection thereby giving rise to subsequent
different subpopulations of tumour cells.

Whatever the source, cancer cell heterogeneity could be one explanation
for the global deregulation detected by the DIRAC algorithm. If this is the
case it suggests an interesting use of the DIRAC algorithm, as a quantifier of
tumour heterogeneity. In this project liver samples from different patients were
analysed. And since the majority of the networks were highly varied and thus
deregulated, in the light of the above resoning, this might suggest that the
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tumour samples from the different patients are heterogenous. This does not
however mean that the individual tumours are heterogenous. No conclusions
of within-tumour heterogeneity can be drawn from this analysis since several
samples from the same tumour were not analysed.

Further on, to conclude that the global deregulation measured by DIRAC
is solely or even partly caused by tumour heterogeneity is not certain by any
means. DIRAC can measure deregulation but the reson behind it can only
be speculated upon even if tumour heterogeneity is a plausible contributing
factor. If it would be certain that the network-variability is solely caused by
heterogeneity then DIRAC could be used to quantify tumour heterogeneity.

4.2 Low-entropy networks in HCC

Here the subnetworks with tighter regulation (higher rank conservation in-
dices) in HCC compared to adjacent liver tissue are presented. Some are non-
significantly more tightly regulated but are still included since they are at least
not deregulated. These non-significant networks can be said to have equal en-
tropty in HCC and adjacent liver tissue.
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Table 7: The table contains the Biocarta pathways with equal or lower entropy
in HCC compared to matched adjacent liver tissue (set as “control”). The
name of the pathway, a short description of the pathway, the number of genes
in the pathway, the rank conservation indices, the absolute difference in rank
conservation indices between phenotypes and the p-value of a difference in rank
conservation indices between phenotypes are presented.

Pathway
Short
description

No.
of
genes

Rank conservation
indices

P-value

Cont
rol

HCC Diffe
rence

BB
CELL

Bystander
B-Cell

Activation
4 0.913 0.955 -0.0415 0.00375

PLCD
Phospholipid

associated
cell signaling

4 0.923 0.964 -0.0405 0.00414

ASB
CELL

Antigen
Dependent

B Cell
Activation

8 0.952 0.979 -0.0270 0.0204

ION

Ion channel
and phorbal

esters
signaling
pathway

4 0.857 0.883 -0.0269 0.0206

CREM
Regulation

of Spermato-
genesis

7 0.958 0.980 -0.0218 0.0388

EEA1
Vesicle

transport
7 0.8838 0.9013 -0.01751

0.0700
(non- sig-
nificant)

FLUMA
ZENIL

Cardiac
protection

against
reactive
oxygen
species

9 0.9072 0.9239 -0.01664
0.0791

(non- sig-
nificant)
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Table 8: The table contains the KEGG pathways with equal or lower entropy in
HCC compared to matched adjacent liver tissue (set as “control”). The name of
the pathway, the number of genes in the pathway, the rank conservation indices,
the absolute difference in rank conservation indices between phenotypes and
the p-value of a difference in rank conservation indices between phenotypes are
presented.

Pathway
No. of
genes

Rank conservation indices
P-value

Control HCC Difference
Fatty acid

biosynthesis
6 0.9187 0.9386 -0.01990 0.0469

Biotin metabolism 4 0.8633 0.8815 -0.01819 0.0584 (non-
significant)

Terpenoid
biosynthesis

6 0.9120 0.9177 -0.00567 0.4240 (non-
significant)

Table 9: The table contains the HMR pathways with equal or lower entropy in
HCC compared to matched adjacent liver tissue (set as “control”). The name of
the pathway, the number of genes in the pathway, the rank conservation indices,
the absolute difference in rank conservation indices between phenotypes and
the p-value of a difference in rank conservation indices between phenotypes are
presented.

Pathway
No. of
genes

Rank conservation indices
P-value

Control HCC Difference
ROS detoxification 4 0.7733 0.8263 -0.0530 0.0017

Fatty acid
biosynthesis
(even-chain)

6 0.8867 0.8904 -0.0037 0.65 (non-
significant)
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Here results from differential expression analysis of individual genes of some
of the least deregulated, or even more tightly regulated, subnetworks in HCC
are presented.

Table 10: The table shows results from differential expression analysis. Adjusted
p-values and fold changes are presented for the genes in fatty acid biosynthesis
as defined by KEGG.

Fatty acid biosynthesis (KEGG)
Gene Adjusted P-value log2FC

ACACB 2.72971E-11 -1.225108023
ACACA 2.30459E-05 0.931114131
FASN 0.000476437 1.099825811
OXSM 0.191528364 -0.330962651
OLAH 0.508532433 3.14741506
MCAT 0.678844489 -0.112029586

Table 11: The table shows results from differential expression analysis. Adjusted
p-values and fold changes are presented for the genes in terpenoid biosynthesis
as defined by KEGG.

Terpenoid biosynthesis (KEGG)
Gene Adjusted P-value log2FC

SQLE 6.81035E-07 1.638904424
FDPS 0.000129089 0.945182536

GGPS1 0.042640054 0.521482392
IDI1 0.175626495 0.365292724

FDFT1 0.540195981 0.178774804
IDI2 0.618654367 0.355486663

As can be seen above there are few networks with intact or lower entropy
in HCC. If global deregulation exists in HCC then these few subnetworks with
intact or lower entropy in HCC is plausibly informative of what parts of the
metabolism is important for the cancer cells. These pathways can be seen as
static and conserved in the otherwise chaotic metabolic environmet of the cancer
cells which is why possible targets of treatment might be found among these
pathways.

4.2.1 Fatty acid biosynthesis

Fatty acid metabolism overall and β-oxidation of various fatty acids is highly
significantly deregulated in HCC compared to control. Interestingly fatty acid
biosynthesis is at the same time equally or even more tightly regulated in HCC
compared to matched liver. This might indicate that fatty acid biosynthesis is
for some reason important for HCC cells. The differential expression analysis
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shows the key enzyme fatty acid synthase (FASN) as significantly upregulated in
HCC as well as the important enzyme acetyl-CoA-carboxylase-alpha (ACACA
or ACC-α). Acetyl-CoA-carboxylase-beta (ACACB or ACC-β) is in contrast
downregulated in HCC. However ACACB may be involved in fatty acid oxida-
tion rather than fatty acid biosynthesis [39].

There are mounting evidence to suggest that altered lipid metabolism is a
common feature of cancer cells in general [40]. Human cells have two sources
of fatty acids, exogenous fatty acids imported from outside the cell or endoge-
nously produced fatty acids from so called de novo lipogenesis. Proliferating
embryonic cells seem to be dependent on de novo lipogenesis whereas adult qui-
escent cells prefer exogenous sources for their meatbolic demands of fatty acids.
Interestingly, like embryonic cells cancer cells also seem to be dependent on de
novo lipogenesis for their survival and proliferation [40]. For example, even
when exogenous sources are abundant, breast cancer cells have been shown to
synthesize 95 % of their metabolic demands of fatty acids [40].

Oncogenic signals seem to play a role in regulating lipid metabolism. Com-
mon oncogenes and tumour supressors such as PI3K, MAPK, Myc, EGFR and
p53 have been shown to regulate several enzymes involved in fatty acid synthe-
sis. As discussed above oncogenic signals also seem to play a role in the shift to
aerobic glycolysis. Taken together this suggests profound metabolic alterations
influenced by oncogenes and tumour supressors.

FASN plays a key role in de novo lipogenesis and has been reported as a
possible therepeutic target in several cancers [41]. FASN inhibition has been
shown to supress cell growth and induce apoptosis of breast cancer cells in vitro
and in vivo [42]. FASN inhibition by siRNAs in prostate cancer cell line LNCaP
induced apoptosis of the cancer cells and was shown to not affect cell viability of
nonmalignant cells [43]. RNA interference of ACC-α was also reported to induce
apoptosis in LNCaP cells without affecting nonmalignant cells. The knockdown
of ACC-α resulted in major reduction of cellular pools of palmitic acid. Further
on, growth-media supplementation with palmitic acid rescued both FASN inhib-
ited and ACC-α inhibited LNCaP cells from apoptosis [44]. One recent study
of FASN inhibition in prostate cancer cells showed prevention of pseudopodia
formation and suppressed cell adhesion, migration, and invasion [45]. Fatty acid
biosynthesis produces important cellular building blocks for growing cells such
as vital components of phospholipids. It is plausible to argue that FASN inhi-
bition results in lipid starvation and membrane dysfunction in growing cancer
cells ultimately resulting in reduced growth and/or apoptosis of the cancer cell.
However other mechanisms such as disruption of important signaling systems
might also contribute to the effect of FASN or ACC-α inhibition [45].

The tight regulation of fatty acid biosynthesis found in this analysis might
reflect importance of this pathway for HCC cells. Even if tumour heterogeneity
might play a role in the observed global deregulation, meaning the HCC tu-
mours might be made up of several subpopulations of cancer cells with different
cellular characteristics, the fatty acid biosynthesis pathway seems to be con-
served among these possible subpopulations. It might be speculated that the
fatty acid biosynthesis pathway is important for cellular growth, providing im-
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portant cellular building blocks in the form of for example phospholipids for cell
membrane production. These building blocks might be vital for dividing cells
since fatty acids from exogenous sources might not be suitable cellular building
blocks. This reasoning however remains speculative but nevertheless might be
one plausible explanation for the tighter regulation of fatty acid biosynthesis in
HCC.

4.2.2 Terpenoid biosynthesis

The terpenoid biosynthesis pathway has a slightly higher rank conservation in-
dex in HCC compared to adjacent liver tissue but not significantly higher. How-
ever it is not lower either which makes it a rarely tightly regulated subnetwork
worth discussing. The differential expression analysis revals three significantly
differentially expressed genes out of the six genes in total in the pathway. These
three genes (SQLE, FDPS and GGPS1) are all upregulated. Terpenoid biosyn-
thesis is thus tightly regulated as well as upregulated indicating importance of
this pathway for HCC cells.

The first stage of biosynthesis of cholesterol is the synthesis of the ter-
penoid backbone. The pathway starts with the molecule mevalonate which
is further convereted to IPP, FPP and squalene. Squalene is the starting
molecule of cholesterol biosynthesis. The widely used cholesterol-lowering drugs
statins target the terpenoid biosynthesis pathway by inhibiting the production
of mevalonate. It has been debated whether statins prevent HCC or not. Two
large (n=17380 and n=33413) case-control studies showed a correlation between
statin use and decreased risk of HCC and in a dose-dependent manner in one of
the studies [46, 47]. However possible confounding effects in concomittant type-
2 diabetes medication arguably lowered the credibility of these studies showing
a causal relationship between statin use and decreased risk of HCC.

A recent (2013) meta-analysis showed a 37 percent risk-reduction of aquiring
HCC in statin-users [48]. A Danish study including the entire Danish cancer
population showed a 15 percent decreased risk of overall cancer mortality in
statin-users over non-users, with a similar reduction in mortality in the HCC
subgroup [49]. The conclusion from these observational studies are that there is
a need for randomized controlled trials on statins for the treatment or prevention
of HCC.

4.2.3 ROS detoxification

Interestingly detoxification of reactive oxygen species seems to be conserved and
even significantly more tightly regulated in HCC which might indicate impor-
tance of ROS detoxification for cancer cell survival and growth. Cancer cells
have been observed to have increased levels of ROS [50]. In this light the tighter
regulation of ROS detoxification can be seen as a response to this. ROS have
the ability to damage DNA, lipids and proteins and can therefore be seen as
protumorigenic but the increased levels of ROS in cancer cells could pose a dis-
advantage for the cancer cell and could possibly be a target of therapy [51, 52].
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4.3 Differentially regulated networks in HCC

Here the top 10 most differentially regulated subnetworks from the DIRAC-
analysis with three different gene set collections are presented. The three gene
set collections are KEGG, Biocarta and HMR.

Table 12: The table contains the Biocarta pathways with the highest degree
of differential regulation between HCC and matched adjacent liver tissue. The
name of the pathway, a short description of the pathway, the number of genes in
the pathway and the between-phenotype cross-validation accuracy is presented.

Pathway Short description of function No of
genes

cross-
validation
accuracy

ERK MAP kinase signaling 30 0.95
FMLP Chemokine gene expression induction 37 0.95
PYK2 Links between pyk2 and MAP kinase 28 0.95

FCER1 Fc Epsilon receptor signaling 37 0.94
TCR T-cell receptor signaling 42 0.94

HCMV Cytomegalovirus and MAP kinase
signaling

16 0.93

BCR B-cell receptor signaling 34 0.93
PPARA Persoxisome proliferator activated

receptor alpha
50 0.93

GPCR G-protein signaling 34 0.92
NFAT Hypertrophy-like cell growth

(enlargment of cells)
52 0.92
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Table 13: The table contains the KEGG pathways with the highest degree of
differential regulation between HCC and matched adjacent liver tissue. The
name of the pathway, the number of genes in the pathway and the between-
phenotype cross-validation accuracy is presented.

Pathway No of
genes

cross-
validation
accuracy

Arrhythmogenic Right Ventricular
Cardiomyopathy

74 0.98

Dilated Cardiomyopathy 91 0.98
Hypertrophic Cardiomyopathy 85 0.97

Focal Adhesion 191 0.97
Cell Adhesion Molecules Cams 131 0.97

Glioma 62 0.96
Axon Guidance 126 0.95
Prostate Cancer 86 0.95

Hedgehog Signaling 57 0.95
Neuroactive Ligand Receptor

Interaction
237 0.94

Table 14: The table contains the HMR pathways with the highest degree of
differential regulation between HCC and matched adjacent liver tissue. The
name of the pathway, the number of genes in the pathway and the between-
phenotype cross-validation accuracy is presented.

Pathway No of
genes

cross-
validation
accuracy

Sphingolipid metabolism 105 0.94
Inositol phosphate metabolism 105 0.94

Protein modification 94 0.93
Purine metabolism 98 0.91

Omega-3 fatty acid metabolism 47 0.91
Glycosphingolipid metabolism 58 0.91

Lysine metabolism 48 0.90
Phenylalanine tyrosine and tryptophan

biosynthesis
109 0.90

Serotonin and melatonin biosynthesis 52 0.88
Nicotinate and nicotinamide

metabolism
44 0.87

Here results from differential expression analysis of individual genes of the
most differentially regulated subnetwork in HCC are presented.
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Table 15: The table shows results from differential expression analysis. Adjusted
p-values and fold changes are presented for the genes in sphingolipid metabolism
as defined by HMR. Only the significantly differentially expressed genes are
included.

Sphingolipid metabolism
Gene PPEE log2FC

GBA3 7.66349E-32 -2.181856212
PPAP2B 2.11275E-19 -1.562249741

GBA 9.63897E-11 1.385897185
B4GALNT1 3.59245E-10 4.542742434

ALG1L 2.72001E-09 3.52689765
LPIN2 7.2724E-08 -0.953063003
LPPR2 2.70996E-07 1.242605439
GLA 4.2049E-07 1.253746226

SGMS2 1.26603E-06 -1.539511474
KDSR 1.1146E-05 -0.832416802

ST6GALNAC6 3.36003E-05 -0.76646436
ST6GALNAC4 0.000144149 1.158390229

LPPR4 0.000167888 3.070799283
CERS1 0.000168689 4.485069757

B4GALNT2 0.000252071 9.354887267
B4GALT3 0.000390308 0.807767791

B3GALNT2 0.000561763 0.862442278
PPAP2C 0.000650014 2.336046506

FUT2 0.000778422 3.053379167
GAL3ST1 0.000849577 2.618111119
B4GALT1 0.000894711 -0.671887478
A4GALT 0.000903833 1.009492141
B3GNTL1 0.001029273 1.729001144
B3GNT3 0.001908899 2.289709896
B4GALT7 0.002051555 0.745871944

SGPP1 0.002215181 -0.697335782
SMPD1 0.003686074 -0.574009297

B3GALNT1 0.006110679 1.054741943
B3GNT5 0.006464294 0.984094761
GALC 0.012621718 -0.617684678

B4GALNT4 0.013175946 4.211164881
B3GNT4 0.014543646 3.311288353

FUT1 0.019431993 0.909979401
GLB1L 0.021663587 0.810431018
SMPD4 0.022500963 0.497491413
SPTLC3 0.025581457 -0.578257103
DEGS1 0.026413508 0.540086139

ST6GALNAC5 0.028412809 2.726811672
ST6GALNAC2 0.028760463 1.245281581

SMPD3 0.032070762 -1.47761981
CERS5 0.034272562 0.573262191



As can be seen above there are lots of differentially regulated networks in
HCC. There are some general conclusions to be drawn from these results. The
main theme of the differentially regulated Biocarta networks is cell signaling
and cell growth. For example is the well known MAP kinase signaling pathway
involved in cell growth and proliferation. Other differentially regualted Biocarta
networks involved in cell signaling are HCMV, PYK2, FCER1, GPCR and also
TCR. Another noteworthy differentially regulated subnetwork is the peroxisome
proliferator activated receptor alpha (PPARA) which is a major regulator of
lipid metabolism in the liver [53].

Three of the differentially regulated KEGG subnetworks are involved in
hypertrophy-like cell growth (enlargment of cells) as is the Biocarta subnet-
work NFAT. The KEGG subnetworks are generally large containing many genes,
which makes the interpretation of the results difficult. However different types
of cell signaling and cell growth is also here a common occurence. The three
pathways involved in hypertrophy-like cell growth do have considerable overlap.
These pathways show involvment of extracellular matrix receptor interactions
resulting in alterations of TNF-α, insulin like growth factor-1 (IGF-1) and TGF-
β signaling cascades.

As can be seen from the HMR analysis three pathways are involved in lipid
signaling in the form of sphingolipid metabolism, inositol phosphate metabolism
and glycosphingolipid metabolism. Yet another evidence of alterations in fatty
acid metabolism in HCC can be seen in the form of differential regulation of
omega-3 fatty acid metabolism. Also the metabolism of purines seems to be
different in HCC. As is the metabolism of nicotinate and nicotinamide, possibly
indicating altered redox status of the cancer cells. The reporter metabolites
algorithm also seem to detect altered concentrations of nicotinate and nicoti-
namide.

4.3.1 Sphingolipid and glycosphingolipid metabolism

One HMR subnetwork with among the highest degree of differential regulation
is sphingolipid metabolism. Glycosphingolipd metabolism is also among the
most differentially regulated subnetworks and the two pathways have a fairly
high degree of overlapping genes. The two pathways combined contain 116
unique genes, 46 of which are significantly differentially expressed. 32 of these
are upregulated and 14 are downregulated.

Sphingolipids are a class of lipids with a so called sphingosine as a base.
Sphingosine contains an 18-carbon chain with an amino alcohol attached as a
head. Further attachement of a fatty acid makes a so called ceramide molecule.
If a sugar is also attached a glycosphingolipd is formed. There are many kinds
of sphingolipid and glycosphingolpidid molecules.

The biosyntehesis of sphingolipids starts with the addition of serine to palmitoyl-
CoA. This forms the molecule dehydrosphingosine which is further converted to
dihydrosphingosine and ultimately sphingosine. Sphingosine can, as mentioned,
later be converted to ceramide and other more complex sphingolipids. Ceramide
can also be formed from breakdown of phospholipids and also from conversion
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of other sphingolipid species into ceramide, a process termed salvation.
Sphingolipids and glycosphingolipids possibly play a role in cancer occurence

and progression. It has been shown that sphingolipids influence cell cycle pro-
gression, telomerase function, cell migration and also stem-cell biology [54]. Two
important sphingolipid species are ceramide, as mentioned, and sphingosine-
1-phosphate (S1P). S1P is believed to promote cell growth and proliferation,
angiogenesis, metastasis and resistance to apoptosis possibly by acting as a lig-
and for G-protein coupled recepors [55]. Ceramide on the other hand induce
apoptosis, cell cycle arrest and autophagic responses and can be considered a
powerful tumour supressor [56]. Cancer cells however may have defects in ce-
ramide metabolism making them resistant to apoptosis. It has been shown that
the de novo generated ceramides can have opposing effects. Some cermides have
an 18-carbon base while some have a 16-carbon base. Addiction of 16-carbon
ceramide of head and neck squamos cell carcinoma culture has beens shown
indicating 16-carbon ceramide cancer promotion [55]. 18-carbon ceramide on
the other hand has been shown to have strong tumour suppressor activities, as
mentioned above.

The reporter metabolites analysis reveals a trend toward upregulation of the
ceramide pool (p-value 0.095). Also another pool of the sphingolipid LacCer
(lactosylceramide) show a trend towards upregulation with a p-value of 0.078.
In addition palmitoyl-CoA also show a trend toward upregulation with a p-value
of 0.07.

In conclusion, the DIRAC algorithm show clear differential regulation of
sphingolipid and glycosphingolipid metabolism. The pathways displays some
enrichment in the 32 significantly upregulated genes in contrast to the 14 down-
regulated which is supported by the reporter metabolites analysis showing some
upregulation of ceramide and lactosylceramide. The metabolism of sphingolipids
seems according to these analyses to be clearly altered in HCC.

A summary of some of the above discussed results can be seen in figure 4.
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Figure 4: A summary of some of the detected alterations in the metabolic net-
work of HCC. The TCA cycle, the electron transport chain, the carnitine shuttle
and β-oxidation are highly deregulated according to the DIRAC analysis. In
addition the majority of the genes in these pathways are downregulated. In con-
trast fatty acid biosynthesis and terpenoid biosynthesis are tightly regulated in
HCC with concomittant average upregulation of gene expresison. Sphingolipid
metabolism is differentially regulated in HCC compared to matched liver, with
a cross-validation accuracy of 98 %. All the genes in the TCA cycle are down-
regulated except citrate synthase (CS) and ATP-citrate lyase (ACLY) which
are responsible for effectively transporting acetyl-CoA from the mitochondrial
matrix to the cytosol. The two key regulatory genes of fatty acid biosynthe-
sis acetyl-CoA-carboxylase-alpha (ACC-α) and fatty acid synthase (FASN) are
both upregulated. In addition the gene Acyl-CoA Synthetase Long-Chain Fam-
ily Member 4 (ACSL4) which synthetises fatty-acyl-CoA esters from long chain
fatty acids is upregulated in the KEGG pathway fatty acid metabolism (includ-
ing genes of β-oxidation and the carnitine shuttle). This pathway contains 47
genes, 34 of which are downregulated and only two upregulated.

4.4 Reporter metabolites

Here the top 25 most upregulated and downregulated metabolites from the
analysis with the reporter metabolites algorithm between HCC and matched
liver tissue is presented.
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Table 16: Top 25 most upregulated reporter metabolites
Metabolite p-value

glutamine 0.039571
DNA 0.039627

DNA-5-methylcytosine 0.039627
se-adenosyl-L-

selenohomocysteine
0.039627

se-adenosylselenomethionine 0.039627
propanoyl-CoA 0.041204

dUMP 0.043918
UTP 0.047238

arachidonyl-CoA 0.052907
linoleoyl-CoA 0.052907

(13Z)-eicosenoyl-CoA 0.054602
SAH 0.05606
SAM 0.05606

trans-4-hydroxy-L-proline 0.059098
cysteine 0.059332
dTDP 0.059332
glucose 0.059789

(13Z)-eicosenoyl-CoA 0.060877
linoleoyl-CoA 0.060877

arachidonyl-CoA 0.063097
choloyl-CoA 0.063852

S-(11-hydroxy-9-deoxy-delta12-
PGD2)-glutathione

0.066594

GDP 0.067878
GTP 0.067878

palmitoyl-CoA 0.069959
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Table 17: Top 25 most downregulated reporter metabolites
Metabolite p-value

O2 1.85E-07
NADP+ 9.90E-06
NADPH 1.32E-05

H2O 0.00028916
aflatoxin B1 0.00052756
aflatoxin M1 0.00052756

H+ 0.00088892
11,12-EET 0.00095339
14,15-EET 0.00095339

(1aalpha,2beta,3alpha,11calpha)-
1a,2,3,11c-tetrahydro-6,11-

dimethylbenzo[6,7]phenanthro[3,4-
b]oxirene-2,3-diol

0.0010616

1,1-dichloroethylene 0.0010616
1-nitronaphthalene 0.0010616

4-
[(hydroxymethyl)nitrosoamino]-

1-(3-pyridinyl)-1-butanone

0.0010616

7,12-dimethylbenz[a]anthracene
5,6-oxide

0.0010616

7,12-dimethylbenz[a]anthracene 0.0010616
9-hydroxybenzo[a]pyrene 0.0010616

9-hydroxybenzo[a]pyrene-4,5-
oxide

0.0010616

aflatoxin M1-8,9-epoxide 0.0010616
aflatoxin Q1 0.0010616

benzo[a]pyrene 0.0010616
benzo[a]pyrene-7,8-dihydrodiol-

9,10-oxide
0.0010616

benzo[a]pyrene-7,8-oxide 0.0010616
benzo[a]pyrene-9,10-oxide 0.0010616

bromobenzene 0.0010616
chloral 0.0010616

4.5 Network entropy in other cancers

In table 18 an average rank conservation index of all 186 KEGG pathways can
be seen in samples of different tissues. This average rank conservation index is
a reflection of the entropy of the average pathway in the metabolic network of
these tissues. Higher rank conservation index means lower entropy and tighter
regulation of the metabolic network of the tissue in question.
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Table 18: The table shows the average rank conservation index for all 186
KEGG pathways for a range of different non-cancerous matched tissues and
tumour tissues of different kinds.

Tissue Average rank
conservation index (as a
mesure of entropy) of all

KEGG pathways

Matched liver 0.9459
Matched colon 0.9425
Matched lung 0.9400

Matched kidney 0.9345
Matched breast 0.9248
Prostate cancer 0.9240

Matched prostate 0.9235
Colon cancer 0.9107

Kidney chromophobe cancer 0.9056
Breast cancer 0.8992

Matched bladder 0.8978
Lung cancer (small cell) 0.8928

Hepatocellular carcinoma 0.8884
Bladder cancer 0.8795

Table 19: Difference in the average network entropy for each cancer versus the
corresponding tissue compared with the mortality rate of each cancer.

Cancer/matched tissue Difference in
average rank

conservation index
(difference in

entropy)

Percentage of
patients deceased

within five years of
diagnosis [57]

Liver vs HCC 0.0575 88.5 %
Lung vs lung cancer 0.0472 82.9 %

Colon vs colon cancer 0.0318 35.0 %
Kidney vs kidney cancer 0.0285 27.6 %
Breast vs breast cancer 0.0256 10.8 %

Bladder vs bladder cancer 0.0184 22.6 %
Prostate vs prostate cancer -0.0005 1.4 %

As can be seen above the average network entropy varies between tissues.
This average network entropy can be viewed as a measure of the global degree
of entropy in the metabolism of the different tissues. In a highly ordered tissue
with a static environment and tightly controlled metabolism one would expect
to see low average entropy (high average rank conservation index). Interestingly
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there seems to be a trend towards high entropy in cancerous tissue compared
with matched healthy tissue. Only for prostate cancer the average entropy in
cancerous tissue is lower than in matched tissue. For all other tissues the inverse
is true. In other words there seems to be a trend towards global deregulation in
other cancers besides HCC. However HCC displays the highest degree of global
deregulation of all other cancer types.

Interestingly the degree of global deregulation seems to correlate with the
5-year mortality rate indicating that entropy correlates with malignancy of the
cancer. If this is true for other cancers or not is unknown. Also the analysis
was done only on the KEGG gene set collection, if the correlation holds true on
other gene set collections or not is also unknown.
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4.6 Criticism

When it comes to the DIRAC algorithm there are some considerations to have
in mind in order to avoid drawing faulty conclusions. A network can have
low entropy not because there is little variation in individual gene expression
but because the average difference in gene expression of the members of the
subnetwork is large. For example if a network contains three genes, one with
average expression of 0.5, one with average expression of 100 and a third with
average expression of 10000 the chance of the entropy being other than low
is very small. Related to this there is also a tendency for small networks to
have low entropy because the chance of any two genes having similar average
expression values increases with increasing number of genes in the defined gene
set. In other words large subnetworks are more prone to high entropy and small
subnetworks are more proned to low entropy. This means that the DIRAC
algorithm can miss true deregulation for small subnetworks and faulty classify
them as tightly regulated. However if the rank conservation index is not equal
to 1 but well below 1 (for example 0.8 or 0.9) in the control tissue and the rank
conservation index in the diseased tissue is equal or higher then this misstake
is less likely to occur. This is because the entropy in the control tissue is then
clearly not as low as it could get and thus proves the existance of internal
variation in gene ranking.

The HCC-patients used in this analysis varied in several aspects such as age,
race, sex, concomittant conditions, stage of disease and risk-factors. Thus the
group was heterogenous. To say that this is the source of variation causing the
high entropy in HCC is however probably not correct for the simple reason that
the entropy would then also be high in the matched control-samples. However
the patients where the matched liver samples were taken from could possibly
be different from the whole group in certain aspects. This would then be a
confounding factor decreasing the reliability of the results of both the DIRAC
analysis and the differential expression- and reporter metabolites analysis.

5 Conclusions

In conclusion the DIRAC algorithm provides evidence of high degree of deregu-
lation of central metabolic pathways in HCC such as the TCA cycle, the electron
transport chain and fatty acid metabolism (see figure 3). In addition the differ-
ential expression analysis revealed concomittant alterations in gene expression
of these pathways. There seems to be a correlation between deregulation of a
pathway and average downregulation of the genes in that pathway. Conversely
there seems to be a correlation between tighter regulation of a pathway and
average upregulation of the genes in that pathway.

The DIRAC algorithm provides evidence for so called global deregulation in
HCC. This means that the average entropy of the metabolic pathways in HCC
is higher than in matched liver tissue. In addition a positive correlation was
found between the degree of global deregulation and the 5-year mortality rate
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for seven different cancers.
In contrast the metabolic pathways with equal or tighter regulation in HCC

are scarce. These include fatty acid biosynthesis, terpenoid biosynthesis and
ROS detoxification. The fact that these pathways have intact entropy in HCC
might indicate that they are important for growth and survival of the HCC cells.
Thus there is some rationale behind targeting these pathways for treatment of
HCC.

Some pathways also display so called differential regulation. These pathways
seem to be altered in HCC, not in terms of entropy but in terms of altered
internal ordering of gene expression of the pathways. One example of such a
pathway is sphingolipid metabolism.

One speculation of the implications of deregulation regards drug targets. As
mentioned there is logic behind targeting tightly regulated pathways in HCC.
However targeting a deregulated subnetwork might be nonsensical exactly be-
cause it is deregulated. Speculatively the reason behind the high entropy could
be differences in the so called cancer-driving mutations between different pa-
tients. If this is the case one drug might have an effect for one patient but not
for another patient. However this makes a case for personalized medicine. If
the driver-mutations are known, patients could hypothetically be classified into
different sub-categories with different treatment strategies.
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6 Materials & Methods

Here the implementation of the DIRAC algorithm is described as is the retrieval
of the TCGA RNA-Seq data and the differential expression analysis. Some
information about the patients and the tissue samples are included, however
further information can be found in the Appendix.

6.1 Implementation of DIRAC

The implementation of the DIRAC algorithm and subsequent calculations de-
scribed below was done using Matlab. The source code files are freely available
at Price Lab Institute for Systems Biology’s webpage [58]. The main detailed
analysis is done only on HCC but the DIRAC algorithm was also implemented
on some other cancer types with corresponding matched tissue. The purpose of
this was to compare the global average pathway entropy of these cancers and in
the other matched tissues. This analysis puts the high and low entropy in HCC
“on a scale” since a comparison with the other cancer types can be made.

6.1.1 Rank conservation indices

To calculate the tightness of regulation of a gene set the so called rank template
T is constructed for each phenotype. T is constructed so that the majority of
samples in the phenotype matches T. The rank matching score RMS can then
be calculated. RMS is a measure of how well each sample matches the template
T. The average of RMS in a phenotype is called the rank conservation index
RCI. RCI is thus a measure of how well all the samples in a phenotype matches
the rank template T. The values of RCI can range between 0.5 and 1.0 where
0.5 represents a completely disorganised state and 1.0 represents a completely
ordered state. In other words if all the samples in a phenotype perfectly matches
T the rank conservation index is 1.0. By comparing RCI between the phenotypes
for a given gene set differences in entropy can be detected.

6.1.2 Rank difference score

To detect difference in regulation as opposed to difference in entropy the rank
matching scores can be compared between the phenotypes. Say there are two
phenotypes A and B. The rank matching score for sample n of phenotype A
and gene set m is called RMS(m,A)(n). By also calculating the rank matching
score RMS(m,B)(n) even if sample n does not belong to phenotype B one can
capture differences in ranking of a gene set between the phenotypes. The rank
difference score ∆ is thus defined as: ∆ = RMS(m,A)(n)−RMS(m,B)(n). If
the gene set m is tightly regulated in both A and B but differently regulated the
templates Tm,A and Tm,B should be different. And thus if sample n belongs
to phenotype A RMS(m,A)(n) should be high and RMS(m,B)(n) should be
low which then is captured as a high rank difference score. To get a measure
of accuracy of the differenitally regulated pathways 5-fold cross-validation was
also performed.
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6.1.3 Significance testing of deregulation

To test the significance level of any supposed deregulation the following proce-
dure was performed. First samples of a gene set were randomly re-assigned to
one of the phenotypes. Secondly the rank conservation indices were calculated
for both phenotypes and compared between the phenotypes. These steps were
repeated 1000 times to get a null distribution of differences in rank conservation
indices between the phenotypes. The difference in rank conservation indices of
the correctly labeled phenotypes could then be compared to this null distribu-
tion in order to calculate p-values of deregulation. The above was done for all
gene sets using Matlab.

6.2 RNA-Seq data retrieval

The RNAseq data was downloaded from the TCGA data base using a TCGA-
assembler package in R. Normalized RNA-SeqV2 data from 49 liver control
samples and 163 HCC samples was downloaded. Raw count data from the same
samples was also downloaded and used to perform the differential expression
analysis. Normalized RNA-SeqV2 data from the other cancer-types were also
downloaded from the TCGA data base using this method. For more details
on how the retrieval of the TCGA RNA-Seq data was achieved see the TCGA-
assembler manual [59].

6.3 Patients and clinical data

The samples were collected from HCC tumour tissue and from adjacent non-
tumour tissue. The number of samples were in total 212 originating from 163
different individuals. Thus 163 tumour tissue samples and 49 adjacent non-
tumour tissue samples were used in this analysis. The median and average age
of the patients were 65 and 62.2 years respectively. There were 89 male patients,
52 female (and 22 where this information was not available). The race of the
patients varied, with 107 white, 10 black, 30 asian, 2 native american, 5 other
and 9 unknown. The patients clinical situation varied in several aspects. Some
patients had liver fibrosis or even cirrhosis while others did not. 35 patients had
hepatitis B or hepatitis C. Some patients had hepatic inflammation of varying
degree. The patients were also in different stages of disease ranging from stage
I to stage IVB. Alcohol consumption varied with 39 patients categorized as
alchohol consumers in the extent that it was counted as a life style risk factor.
5 patients had non-alchololic fatty liver disease. For more detailed information
on clinical data see supplementary information in Appendix.

Detailed information of the samples from the six other cancer-types is not
available in this report. However the samples from all cancers are taken from
tumour tissue and adjacent matched healthy tissue. The number of samples
and matched controls are presented in the table below.
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Table 20: The number of tumour- and matched control tissue samples of the
six other cancers analysed in this project.

TCGA-code of
cancer type

Trivial name Number of
matched control

samples

Number of
tumour tissue

samples

BLCA Bladder cancer 19 231
BRCA Breast cancer 104 146
COAD Colon cancer 41 209
KICH Kidney cancer 25 66
LUSC Lung cancer

(small cell)
50 200

PRAD Prostate cancer 50 200

6.4 Differential expression

The differential expression analysis was performed using the R-package DESeq.
This is a package designed for differential expression of RNA-Seq data. As
input DESeq takes a data matrix called a count table where the rows are the
genes and the columns the samples/patients. The data was given in the form
of raw counts of sequencing reads. This is important since normalized values
will give nonsensical results. Metadata in the form of information of which
samples belongs to which phenotype was also given to the DESeq alorithm.
Normalization and variance estimation was performed according to the manual
before subsequent differential expression analysis. For more information on the
DESeq package see the manual [60].
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[21] Muñoz-Pinedo, C., Mjiyad, N. El & Ricci, J-E., (2012), Cancer metabolism:
current perspectives and future directions, Cell Death Dis. Jan 2012, Jan
12 2012. doi: 10.1038/cddis.2011.123

[22] Eagle, H., Oyama, V.I., Levy, M., Horton, C.L. & Fleischman, R., (1956),
The growth response of mammalian cells in tissue culture to L-glutamine
and L-glutamic acid, J. Biol. Chem., 218:607-616.

[23] Huang, W., Choi, W., Chen, Y., Zhang, Q., Deng, H., Wei, H., & Yigong,
S., (2013), A proposed role for glutamine in cancer cell growth through acid
resistance, Cell Res; 23(5): 724–727. doi: 10.1038/cr.2013.15

44



[24] Krisher, R.L., Prather, R.S., (2012), A role for the Warburg effect in preim-
plantation embryo development: metabolic modification to support rapid cell
proliferation, Mol Reprod Dev., doi: 10.1002/mrd.22037.

[25] Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B., (2009), Under-
standing the Warburg effect: the metabolic requirements of cell prolifera-
tion, Science, doi: 10.1126/science.1160809.

[26] DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., Thompson,
C.B., (2008), The Biology of Cancer: Metabolic Reprogram-
ming Fuels Cell Growth and Proliferation, Cell Metabolism, doi:
http://dx.doi.org/10.1016/j.cmet.2007.10.002

[27] Kennedy, K.M., Dewhirst, M.W., (2010), Tumor metabolism of lactate: the
influence and therapeutic potential for MCT and CD147 regulation, Future
Oncol., doi: 10.2217/fon.09.145

[28] Semenza, G.L., (2008), Hypoxia-inducible factor 1 and cancer pathogenesis.
IUBMB Life, 60: 591–597. doi: 10.1002/iub.93

[29] Hardee M.E, Dewhirst M.W., Agarwal N. & Sorg B.S., (2009), Novel imag-
ing provides new insights into mechanisms of oxygen transport in tumors,
Curr. Mol. Med. 9, 435–441, .

[30] Shim, H., Dolde, C., Lewis, B.C., Wu, C.S., Dang, G., Jungmann, R.A.,
Dalla-Favera, R. & Dang, C.V., (1997), c-Myc transactivation of LDH-A:
implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. USA,
94:6658–6663. doi:10.1073/pnas.94.13.6658

[31] Dang, C.V., O’Donnell, K.A., Zeller, K.I., Nguyen, T., Osthus, R.C. & Li,
F., (2006), The c-Myc target gene network. Semin Cancer Biol, 16: 253–264

[32] Sears, R., Leone, G., DeGregori, J., Nevins, J.R., (1999), Ras enhances
Myc protein stability. Mol Cell 3: 169–179.

[33] Semenza, G.L., (2010) HIF-1: Upstream and downstream of cancer
metabolism. Curr Opin Genet Dev 20: 51–56.

[34] Yamada, K.M. & Araki, M., (2001), Tumor suppressor PTEN: modulator
of cell signaling, growth, migration and apoptosis, Journal of Cell Science
114, 2375-2382.

[35] Elstrom, R.L., Bauer, D.E., Buzzai, M., Karnauskas, R., Harris, M.H.,
Plas, D.R., Zhuang, H., Cinalli, R.M., Alavi, A., Rudin, C.M., et al., (2004),
Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64:3892–3899

[36] Hanahan, D. & Weinberg, R.A., (2011), Hallmarks of Cancer: The
Next Generation, CellPress, Volume 144, Issue 5, p646–674, doi:
http://dx.doi.org/10.1016/j.cell.2011.02.013

45



[37] Meacham, C.E. & Morrison, S.J., (2013), Tumour heterogeneity and cancer
cell plasticity, Nature 501, 328–337, doi:10.1038/nature12624

[38] Burrell, R., McGranahan, N., Bartek, J. & Swanton, C., (2013), The causes
and consequences of genetic heterogeneity in cancer evolution, Nature 501,
338–345, doi:10.1038/nature12625

[39] GeneCards, The Human Gene Compendium, Weiz-
mann Institute of Science, http://www.genecards.org/cgi-
bin/carddisp.pl?gene=ACACB&search=ACACB

[40] Zhang, F. & Du, G., (2012), Dysregulated lipid metabolism in cancer, World
J Biol Chem. 26;3(8):167-74. doi: 10.4331/wjbc.v3.i8.167.

[41] Mashima, T., Seimiya, H. & Tsuruo, T., (2009), De novo fatty-acid syn-
thesis and related pathways as molecular targets for cancer therapy, British
Journal of Cancer, 1369–1372. doi:10.1038/sj.bjc.6605007

[42] Pizer, E.S., Thupari, J., Han, W.F., Pinn, M.L., Chrest, F.J., Frehywot,
G.L., Townsend, C.A. & Kuhajda, F.P., (2000), Malonyl-coenzyme-A is a
potential mediator of cytotoxicity induced by fatty-acid synthase inhibition
in human breast cancer cells and xenografts, Cancer Res., 15;60(2):213-8.

[43] De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G. & Swinnen,
J.V., (2003), RNA interference-mediated silencing of the fatty acid synthase
gene attenuates growth and induces morphological changes and apoptosis of
LNCaP prostate cancer cells. Cancer Res 63: 3799–3804. doi: 10.1007/0-
387-23761-5 33

[44] Chajès, V., Cambot, M., Moreau, K., Lenoir, G.M., & Joulin, V., (2006),
Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival, Can-
cer Res., 66: 5287–5294

[45] Yoshii, Y. et al., (2013), Fatty Acid Synthase Is a Key Target in Multi-
ple Essential Tumor Functions of Prostate Cancer: Uptake of Radiolabeled
Acetate as a Predictor of the Targeted Therapy Outcome, PLOS one, doi:
10.1371/journal.pone.0064570

[46] Lai, S.W., Liao, K.F., Lai, H.C., Muo, C.H., Sung, F.C. & Chen, P.C.,
(2013), Statin use and risk of hepatocellular carcinoma, Eur J Epidemiol.
28(6):485-92. doi: 10.1007/s10654-013-9806-y

[47] Tsan, Y.T., Lee, C.H., Wang, J.D., Chen, P.C., (2012), Statins and the risk
of hepatocellular carcinoma in patients with hepatitis B virus infection, J
Clin Oncol., 30(6):623-30. doi: 10.1200/JCO.2011.36.0917

[48] Singh, S., Singh, P.P., Singh, A.G., Murad, M.H. & Sanchez W.,
(2013),Statins are associated with a reduced risk of hepatocellular cancer: a
systematic review and meta-analysis, Gastroenterology;144(2):323-32. doi:
10.1053/j.gastro.2012.10.005

46



[49] Nielsen, S.F., Nordestgaard, B.G. & Bojesen S.E., (2012), Statin Use
and Reduced Cancer-Related Mortality, N Engl J Med 2012; 367:1792-
1802November 8, 2012

[50] DeNicola, G.M., et al, (2011), Oncogene-induced Nrf2 transcription
promotes ROS detoxification and tumorigenesis, Nature 475, 106–109,
doi:10.1038/nature10189

[51] Gorrini, C., Harris, I.S. & Mak, T.W., (2013), Modulation of oxida-
tive stress as an anticancer strategy, Nature Reviews Drug Discovery 12,
931–947, doi:10.1038/nrd4002

[52] Nogueira, V. & Hay, N., (2013), Molecular Pathways: Reactive Oxygen
Species Homeostasis in Cancer Cells and Implications for Cancer Therapy,
Clin Cancer Res,19; 4309

[53] Kersten, S., Desvergne, B. & Wahli, W., (2000), Roles of PPARs in health
and disease Nature 405, 421-424, doi:10.1038/35013000

[54] Oskouian, B. & Saba, J.D., (2010), Cancer treatment strategies targeting
sphingolipid metabolism, Adv Exp Med Biol., 688:185-205

[55] Ponnusamy, S., Meyers-Needham, M., Senkal, C.E., Saddoughi, S.A., Sen-
telle, D., Selvam, S.P., Salas, A., Ogretmen, B., (2010), Sphingolipids and
cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death
and drug resistance, Future Oncol., 6(10):1603-24. doi: 10.2217/fon.10.116.

[56] Morad, S.A. & Cabot, M.C., (2013), Ceramide-orchestrated signalling in
cancer cells, Nature Reviews Cancer 13, 51–65, doi:10.1038/nrc3398

[57] National Cancer Institute, SEER Cancer Statistics Re-
view 1975-2011, Age-Adjusted SEER Incidence and U.S.
Death Rates and 5-Year Relative Survival (2004-2010), link:
http://seer.cancer.gov/csr/1975 2011/results merged/topic survival.pdf

[58] Price Lab, Institute for Systems Biology, last updated: 2012,
https://price.systemsbiology.net/differential-rank-conservation-dirac

[59] Center for Biomedical Research Informatics, NorthShore Univer-
sity HealthSystem, Department of Health Studies, The Univer-
sity of Chicago, Chicago, TCGA-Assembler User Manual, link:
http://health.bsd.uchicago.edu/yji/TCGA-Assembler-files/TCGA-
Assembler%20User%20Manual.pdf, Feb 4 2014

[60] Anders, S., Huber, W., (2013), Differential expression of RNA-Seq
data at the gene level – the DESeq package, European Molec-
ular Biology Laboratory (EMBL), Heidelberg, Germany, link:
http://bioconductor.org/packages/release/bioc/vignettes/DESeq/inst/doc
/DESeq.pdf, Last revision: 2013-02-24

47


