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Abstract 
Silver is used as an antimicrobial agent in wound care products due to its effectiveness against a 

broad range of bacteria. Despite extensive use of silver-containing dressings, silver release 

measurements vary significantly for instance in release method and test fluid used, thus making 

it hard to compare results. In addition, existing methods for silver release involve the dressing 

being totally saturated with test fluid, this however does not mirror the real situation in wound 

treatment. The aim with this master thesis is to develop a test method for measuring silver re-

lease from silver-containing dressings that are not fully saturated with test fluid. Silver release at 

different degrees of moisture saturation was investigated using inductively coupled plasma opti-

cal emission spectroscopy. 

 

In order to simulate wound-like conditions pieces of dressings were pre-wetted with test fluid to 

a certain moisture level and placed on an acceptor compartment (AC) containing a defined 

amount of salts and proteins. After incubation, the AC was digested in acid prior to analysis with 

ICP-OES.  

 

Results show that silver release depends on the test fluid used. For deionized water a silver re-

lease of at most 19 µg Ag/cm2 AC was obtained. For solution A, which consists of distilled water 

with NaCl and CaCl2, a release of 1 µg Ag/cm2 AC was found. Silver release for SWF, which con-

sists of fetal calf serum mixed with equal amount of peptone water, was 4 µg Ag/cm2 AC. Meas-

urements performed on 0%, 25%, 50%, 75% and 100% moisture saturation show that silver 

release is dependent on the moisture saturation of dressing. A higher silver release was seen for 

dressings pre-wetted to higher moisture saturations. Digestion of the acceptor compartment 

prior to analysis with ICP-OES was found to be satisfactory. Finally, silver release on human skin 

was performed in order to evaluate the relevance of the method being developed. Results show 

good agreement between silver release in the acceptor compartment model used and skin as 

acceptor compartment which strengthens the relevance of the developed method.  

 

Keywords: silver, release, dressing, wound, ICP. 
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Abbreviations 
 

AAS Atomic Absorption Spectroscopy 

AC Acceptor Compartment 

ATR Attenuated Total Reflectance 

FCS Fetal Calf Serum 

FTIR Fourier Transform Infrared Spectroscopy 

ICP-MS Inductively Coupled Plasma Mass Spectroscopy 

ICP-OES Inductively Coupled Plasma Optical Emission Spectrometry 

Mölnlycke Mölnlycke Health Care 

POM Polyoxymethylene 

SEM Scanning Electron Microscopy 

SWF Simulated Wound Fluid 
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1. Introduction 
 

The normal amounts of microorganisms in humans are estimated to be 1014, most of which are 

not pathogenic. Still, some of these microorganisms can cause infections. All chronic wounds are 

colonized with bacteria which delays wound healing (Lindholm, 2010). Hard to heal wounds like 

venous leg ulcers and pressure ulcers are a great concern since they cause pain and discomfort 

to patients and increases treatment costs for the health care sector.  

 

The use of silver as an antimicrobial agent has been recognized since ancient times. Settlers who 

came to western America placed silver dollars in their water barrels to preserve the water. In 

1884 a 1% silver nitrate solution was used to prevent eye infections in infants (Burell, 2003). 

However, the incorporation of silver in wound dressings is a relatively new invention and was 

first investigated in 1987 (Thomas, 2010). Silver is used in dressings because of its antibacterial 

effect against a broad range of aerobic, anaerobic, Gram-positive, Gram-negative bacteria, fungi, 

viruses and yeasts (Burell, 2003). Nowadays there are a large number of silver-containing dress-

ings available on the market, claiming to be effective against a wide range of bacteria over multi-

ple days. The dressings differ significantly regarding the silver content and substance, silver re-

lease kinetics and material properties.  

 
Studies have shown that silver release from different silver-containing dressings is widely af-

fected by the silver release methods and the test fluid used (Walker et al., 2006; Rigo et al. 2012; 

Lindsay et al. 2010). In addition, all silver release methods available involve that the dressings 

are totally saturated with test fluid. This does not mirror wound like conditions and does not 

make it possible to measure silver release at different moisture saturations. A system that simu-

lates the wound environment to a better extent is therefore necessary in order to obtain credible 

results of silver release. A better understanding of silver release from silver-containing products 

may lead to development of new and improved dressings.  

 

To be able to measure silver release at different moisture saturations it is relevant that the 

dressing is absorbent. The test methods used in this project is therefore developed for absorbing 

wound dressings and materials.  

 

1.1 Aim 
This master thesis aims to develop a method to measure silver release from silver-containing 

dressings and materials at different levels of moisture saturation. A semi-solid matrix that mim-

ics the conditions in the wound is required as acceptor compartment. The silver concentration is 

determined by inductively coupled plasma optical emission spectroscopy (ICP-OES).   
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2. Background 
 

The wound healing process and use of silver in wound care products will be explained in this 

chapter. Also, different methods for dissolving silver from wound care dressings will be present-

ed together with analytical techniques for measuring silver as well as sample preparations be-

fore analysis.  

 

2.1 Silver in wound care 
The skin is the largest organ in the body and has several important functions like regulation of 

body temperature, protection from external threats and storage of body fluids to mention a few. 

The skin is divided into two main parts, epidermis which is the superficial and thinnest part and 

provides a protective barrier and dermis which is the deeper layer which provides flexibility and 

strength to the skin. Wound healing is a complex process where the skin repairs itself after an 

injury. 

 

Wounds can be divided into two groups; acute wounds and chronic wounds, the latter often 

called hard to heal wounds. Acute wounds usually include surgical wounds, traumatic wounds 

and burns. These wounds occur suddenly and normally heal after a shorter time. Chronic 

wounds are usually caused by a disease or tissue damage and the healing time is often long 

(Lindholm, 2003).  The normal wound healing process consists of three phases; inflammatory 

phase, proliferative phase and remodeling phase (Lindholm, 2003). The inflammatory phase 

lasts for approximately 3-4 days but for chronic wounds inflammation in the wound is active 

during the entire healing time. During this time blood vessels expands and white blood cells ac-

cumulate around the injury to protect the wound against infection by killing bacteria (Lindholm, 

2003). The proliferative phase is characterized by regeneration of tissue that has been lost or 

damaged. This stage lasts for 3-4 weeks for acute wounds. The final stage in the wound healing 

process, the remodeling phase, can last up to several years and includes processes to increase 

the flexibility in the tissue. 

 

Bacteria are considered to be one of the main reasons for why wound healing may stall, and col-

onized and infected wounds may lead to discomfort for the patient, possibility of life-threatening 

illness and delayed wound healing. Silver has been recognized for its antimicrobial effect since 

ancient times, long before the existence of microorganisms were first suspected. Due to its effec-

tiveness against a broad range of bacteria silver is nowadays used as an antimicrobial agent in 

wound dressings. Numerous silver-containing dressings are available on the market with differ-

ent properties regarding material, release kinetics, amount of silver and silver substance. It is 
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however shown that there is no correlation between silver release and total content in the 

dressing (Hamberg, 2012). 

 

Silver is widely used in medical applications and is employed in catheters, dentistry, prostheses, 

surgical needles and water purification to mention a few (Lansdown, 2004). Silver is a precious 

metal, is less reactive compared to other elements and does not react with human tissue in its 

non-ionized form. However, when in contact with moisture, wound fluids and exudates silver 

readily forms Ag+ which is generally accepted to possess the antimicrobial effect. Silver may also 

form Ag2+ and Ag3+, but these are unstable and therefore rare (Lansdown, 2004). In order for 

silver release from dressings to occur, different silver salts and complexes are used as carriers 

which are dissolved when in contact with fluids, thus releasing Ag+. According to Lansdown and 

Williams (2004) silver is incorporated into wound dressings as: 

 Elemental silver – nanocrystalline particles or foil 

 Inorganic compounds/complexes – silver sulphate, silver nitrate, silver sulphadiazine, 

silver oxide, silver phosphate, silver chloride or a silver zirconium compound 

 Organic complexes – colloidal silver preparations, silver-zinc allantoinate or silver pro-

teins.  

 

Silver can be distributed in different ways within the dressing. Some dressings have silver even-

ly distributed in the entire material while other dressings only have silver present on the wound 

contact surface. Some dressings consist of an absorbent material while others cannot absorb 

moisture. 

 

Silver ions bind readily to thiol-groups on proteins (including albumins and metallothioneins) 

and interact with trace metals in metabolic pathways (Thomas, 2010). According to Lansdown 

(2004) silver ions absorbed by sensitive strains: 

 Impairs bacterial cell wall integrity 

 Binds and disrupts subcellular components 

 Inhibits respiration 

 Impairs essential enzymes and metabolic events modulated by sodium, magnesium, 

phosphate, etc. 

 Inactivates bacterial DNA and RNA. 

 

Previous studies have shown that silver release from wound dressings is greatly dependent on 

the type of medium (Walker et al. 2006, Rigo et al. 2012 and Lindsay et al. 2010). Body fluids 

contain proteins and salts to which silver ions can readily bind and form precipitates. Wound 
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exudates contain a high percentage of chloride ions (Cl-) that Ag+ can bind to. This will lead to 

formation of AgCl which has a low solubility (Ksp = 1.77*10-10 at 25°C) (Lide, 1990). The common 

opinion is that silver chloride does not possess an antimicrobial effect, resulting in reduced an-

timicrobial effect when silver ions come in contact with chloride ions in wound exudates. The 

silver ion most likely also binds to other compounds in exudates. However, the amount of silver 

that has to be present in the wound for antimicrobial effect is debated. Some argue that a high 

amount of silver release is better, while others believe that a slow silver release is to prefer. Still, 

there is no information on what silver concentration that should be present in the wound since 

no biopsies have been performed. However, Burrell (2003) has reported that as low as 0.01 

µg/mL silver in an aqueous system may be sufficient to control bacteria. Nevertheless, a higher 

silver content is probably required in wounds.  

  

The increase in exposure of silver has raised the concern about possible resistance. Silver is not 

solely used in medical applications but also incorporated into commercial products like shoes, 

socks and underwear due to its antibacterial properties and prevention of odor. This extensive 

use increases the risk of silver resistance, however the mechanism behind it is poorly under-

stood. Some argue that since silver does not target a specific site on the cell but attacks multiple 

sites the risk of resistance to silver is reduced (Percival et al., 2005). The fact that resistance to 

antibiotics is a large concern is that antibiotics target a specific site, thus increasing the possibil-

ity of resistance.  Even if the probability of resistance to silver is reduced due to the multifunc-

tional properties studies have shown silver resistance in some bacteria. Therefore, silver re-

sistance cannot be ignored and more research has to be made in that area. 

 

2.2 Silver release measurements from silver-containing 
dressings 

 
Silver release has become a well studied property for silver-containing dressings, both for pre-

dicting antimicrobial effect and for safety reasons. There is currently no standard method avail-

able for silver release from dressings. Therefore, wound dressing manufacturers develop their 

own methods. This results in a number of methods available for dissolving/releasing silver ions 

from wound care dressings into solutions. For the methods described below a number of im-

portant parameters can be varied, for example test fluids used, rotation/shake, size of dressing, 

temperature of incubation, covering of the system, time intervals for silver release measure-

ments, volume of test fluid and detection method.  
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Beaker method / shake flask 

The beaker method is a simple method for measuring silver release from products that are fully 

saturated with test fluid. The method is widely used for silver release measurements 

(Cavanaugh et al, 2010; Wright et al. 1998; Lindsay et al. 2010; Parson et al. 2005 and Walker et 

al. 2006) as it is easy to perform and requires simple equipment. A piece of dressing or material 

is added to a beaker with a defined amount of test fluid. For silver release measurements, sam-

ples are taken out at defined time intervals. The advantage with this method is its simplicity, 

however it does not mirror the real situation in wound environment since the product or mate-

rial is fully saturated and exposed to an excess of test fluid. The disadvantages with this method 

are that the products may stick to the beaker, products may float and because of this the method 

does not take into account the different sides of the product. 

 

Diffusion cell 

Diffusion cell is a method used for studying transfer kinetics through membranes (Hanson, 

1991). One type of diffusion cell is Franz Cell diffusion, see Figure 1. This method is used for 

pharmaceutical formulation, mainly for topical and transdermal drug delivery formulations. 

Franz Cell diffusion consists of two compartments separated by a membrane. The donor and 

acceptor compartment are held together using a clamp. The acceptor compartment is filled with 

test fluid. Samples are withdrawn at specific time intervals through the sampling port and vol-

ume is replaced in the same manner. The method can be modified for wound dressings 

(Schwarzkopf et al. 2010, Dolmer et al. 2004). Then the dressing serves as the donor compart-

ment. The advantage with the Franz Cell is that a water jacket is present, thus giving a tempera-

ture control of the acceptor compartment. 

 

 
Figure 1 Schematic illustration of Franz diffusion cell (The European Virtual Institute for Specification Analy-
sis, 2010). 
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Paddle over disc 

The paddle over disc method is an official technique for in vitro testing of transdermal devices 

(Hanson, 1991). This method consists of a rotating paddle with a blade and a disc that holds the 

transdermal product at the bottom of the flask, with the wound contact surface towards and 

parallel with the paddle blade (Hanson, 1991; US Pharmacopeia, 2006). For a schematic illustra-

tion of the method, see Figure 2. The flask is placed in a water bath so that the temperature of 

the system can be controlled. Test fluid is added to the flask. The paddle provides agitation of the 

test fluid and test fluid specimens are collected for evaluation at given time intervals. However, 

since the product is fully saturated with test fluid as well as exposed to an excess of test fluid it 

does not mirror the real situation in wound environment. The method can be modified for 

wound dressings with silver, but no references to confirm this was found during this thesis 

work.  

 

Figure 2 Schematic illustration of Paddle over disc. 

 

Two compartment model 

The two compartment model was developed at Mölnlycke (Hamberg et al., 2012) in order to 

measure silver release in products where only one side of the product is in contact with the test 

fluid, see Figure 3. The two compartment model uses 6-well plates with lids together with in-

serts in which pieces of products are placed.  Test fluid is added to the wells and thereafter the 

inserts are placed in the wells. The inserts can have membrane or be modified so that the mem-

brane is replaced with a plastic film with one big hole. Also, a weight may be placed on top of the 

product. The aim with this method is to improve the simulation of wound environment to a bet-

ter extent than the previous presented methods.  
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Figure 3 Schematic illustration of two-compartment model. 

The previously described release methods involve that the dressings are fully saturated with test 

fluid. This may not mirror the usage of silver-containing dressings in healthcare at which the 

dressing is not totally saturated during use. Development of a new method for silver release 

measurements from dressings that are not fully saturated is needed to obtain a system that sim-

ulates a wound like environment.  

 

2.3 Analysis of silver 
The methods for silver release presented in chapter 2.2 are used to extract silver from the dress-

ings. Methods for analyzing the silver content are subsequently necessary in order to determine 

silver release. A number of common techniques for silver determination are presented in this 

section. Finally, to be able to measure silver in the above mentioned methods different sample 

preparation methods including digestion are needed.   

 

2.3.1 Sample preparation 
Sample preparation involves that the sample is transformed to make it suitable for analysis. This 

may include dissolving the sample, extracting analyte from matrix, concentrating an analyte so it 

becomes measurable, chemically convert the analyte into a detectable form, and removing or 

masking interfering species (Harris, 2007). When choosing a suitable method for sample prepa-

ration several factors have to be considered as the type of analytical method for metal analysis, 

type of matrix in which the element to be measured exist and the concentration range of the 

element (Kebbekus, 2003). The most common sample preparation methods involve digestion 

with acid and dry ashing. Worth mentioning is that these methods will not give any information 

about the original amount of silver ions released from the dressing. 
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Acid digestion  

Acid digestion is the most common type of sample preparation method for elemental analysis 

such as ICP-MS, ICP-OES and AAS. Nitric acid is the most frequently used acid since it prevents 

formation of insoluble silver salts (Kebbekus, 2003).  

 

The matrix with the element to be analyzed is weighed and placed in a beaker together with the 

chosen acid(s). The beaker is covered and heated. More acid can be added to prevent the matrix 

from drying out (Kebbekus, 2003). When the matrix is fully dissolved it is evaporated and then 

taken up in a dilute acid solution and diluted to volume for analysis (Kebbekus, 2003). Several 

factors have to be considered when choosing the appropriate acid for digestion. If possible the 

mildest acid that will dissolve the matrix with the element of interest should be used, thus 

providing a safer environment in the laboratory and minimizing the risks of acid attack on tubes 

when measuring silver analysis with ICP for example. Hydrochloric acid together with nitric acid 

can be used to improve the digestion of the matrix. Sulfuric acid may be used if further digestion 

is necessary. For digestion of matrices with noble metals like silver and gold, aqua regia (3:1 

volume ratio mixture of concentrated hydrochloric and nitric acid) may be used (Kebbekus, 

2003), see reaction 1 and reaction 2 in Figure 13. Finally, sulfuric acid with hydrogen peroxide 

and hydrofluoric acid can dissolve all metals and alloys, as well as minerals, soils, rocks and sed-

iments (Kebbekus, 2003).  

 

Microwave digestion  

Microwave digestion is a wet-ashing procedure that includes digestion in microwave with acid 

in a Teflon bomb (Harris, 2007). It is a common technique used for digestion of metals in organic 

matrices. Digestion is performed in a closed vessel made of high-temperature polymers like 

PTFE.  The matrix to be digested is placed inside the vented vessel and exposed to acid. Both 

pressure and temperature inside the vessels can be controlled. Digestion is often divided into 

stages where the temperature and pressure are slowly raised. In addition, the digestion time as 

well as oven power can be programmed so that each sample is subjected to the same conditions. 

Microwave digestion has been successfully used for determination of trace levels of mercury in 

foliage (Rea et al. 1998) using nitric acid. The advantages with microwave digestion compared to 

open container dissolution methods is the smaller risk of metal contamination from the high-

temperature polymer vessels compared to beakers or crucibles (Kebbekus, 2003). Also, since 

digestion is performed in closed vessels the risk of evaporation of volatile metals is reduced and 

less acid solution for digestion is required. 
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Ultrasound-assisted extraction 

Ultrasound assisted extraction uses sound waves to create mechanical vibrations in solids, liq-

uids and gases (Priego-Capote, 2004). Sound waves together with extremely high temperatures 

and pressure cause implosions in the liquid and lead to extraction of the sample. Ultrasound-

assisted extraction has in recent years emerged as an efficient method for sample preparation 

for trace element analysis using both probe and bath ultrasonic processors and has been used as 

a sample pre-treatment when analyzing arsenic, selenium, nickel and vanadium in fish and shell-

fish by electrothermal atomic absorption spectrometry (Lavilla, 2007). Digestion is carried out 

by placing the sample in a flask with extraction solvent. The flask is immersed in an ultrasound 

bath and by controlling the amplitude of sonication, time of extraction, solvent ratio, tempera-

ture and frequency good extraction can be achieved (Priego-Capote, 2004).  The advantages with 

ultrasound-assisted extraction compared to conventional digestion methods like acid digestion 

include simplicity of use, no need of expensive equipment and no risk of evaporation during di-

gestion. It is often used with the sole aim of saving time (Priego-Capote, 2004). 

 

Dry ashing 

Dry ashing can sometimes be used to facilitate sample preparation. It can be used if the com-

pound to be analyzed is present in extremely low concentrations or if digestion methods nor-

mally used is not enough. Also, some samples are very difficult to digest, and by oxidizing the 

sample it will be easier to dissolve. Dry ashing is a relatively simple method for analysis of non-

volatile metals in organic matrices and can be used for measuring nutritional elements in food 

like iron, potassium, calcium and magnesium among others (Kebbekus, 2003). The matrix is 

placed in a crucible which is put in a muffle furnace. The temperature in the furnace is an im-

portant factor since too high temperatures can result in volatilization of the element to be ana-

lyzed. A temperature of approximately 400 to 450°C is recommended. Salts and sulfuric acid 

may aid in the dry ashing process since salts helps retain some elements thus avoiding volatiliza-

tion and since sulfuric acid has a chemical charring effect (Kebbekus, 2003). However, difficul-

ties may arise with fats and oils since these compounds ignite, thus leading to possible loss of the 

element of interest. The combusted ash is dissolved with concentrated nitric acid and water.  

 

2.3.2 Methods for silver analysis 

 
There are a number of quantitative methods available for detection of silver. The methods pre-

sented below measure the amount of silver or silver ions in a fluid, using calibration standards 

except for Volhard titration method.  
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Silver ion electrode 

Silver ion electrode is a simple and quick method for measuring silver ion concentration by plac-

ing the silver ion electrode in a water solution. The silver ion electrode consists of a thin mem-

brane that only attracts and detects the ion of interest (Harris, 2007). The membrane consists of 

a ligand that has a high affinity for the ion of interest. Hence, the method is not suitable for 

measuring silver ions in protein solutions or solutions with interfering ions like chloride. In ad-

dition, the method only measures silver ions (Ag+), and not elemental Ag. Unwanted ions can 

also attach to the ligand which may interfere with the result from the electrode.  

 

Titration method (Volhard method)  

The Volhard method is an end-point detection method for determination of Ag+ that form com-

plexes with Cl-, Br- and I-. Titration of Ag+ is performed in HNO3 solution and for Cl-, a back titra-

tion is necessary (Harris, 2007). Cl- is precipitated by excess of AgNO3 standard.  

                   

AgCl is filtered and washed, and the excess Ag+ in the filtrate is titrated with potassium thiocya-

nate (KSCN) solution together with Fe3+ (Harris, 2007).  

                    

In this reaction silver ions react with thiocyanate ions and form silver thiocyanate precipitate. 

When all silver ions have reacted, the slightest excess of thiocyanate will react with Fe3+ to form 

FeSCN2+ which is a red complex (Harris, 2007). 

                   

When the solution changes color the titration is finished and the volume of KSCN is recorded. 

The available amount of silver ions in the solution can be calculated with this method. In a solu-

tion where it is assumed that only silver ions forms complexes with thiocyanate, the concentra-

tion of Ag+ can be determined.  

 

Atomic absorption spectroscopy (AAS) 

Atomic absorption spectroscopy (AAS) is a spectroanalytical method for quantitative and quali-

tative determination of metals in solution. AAS utilizes the fact that each element absorbs and 

emits characteristic wavelengths of light (Lampman, 2010). The element is first atomized for 

instance in a flame and illuminated by light with a wavelength characteristic for the sample. For 

example, if silver measurements are to be performed on a solution a silver cathode lamp is used. 

A monochromator is used to reduce the effect of emission from the atomizer (Harris, 2007). A 

beam of light with a specific wavelength for the element to be detected is focused through an 

atomizing flame (flame AAS) or a quartz cuvette if the element to be analyzed is volatile (flame-

less AAS). The solution with the element to be detected enters the flame. The element to be de-
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tected absorbs some of the light, thus reducing the intensity of the beam of light. A detector 

measures the change in intensity, converts this into absorbance and the concentration of the 

element is obtained by using Lambert-Beers Law. AAS measures total amount of silver atoms in 

solution. Hence, AAS does not differentiate between silver ions and silver atoms since an ioniza-

tion buffer is usually added to keep the silver in atomic form. AAS is suitable for all solutions, 

provided that an appropriate sample preparation has been performed prior to analysis. A graph-

ite furnace (GFAAS) can be used together with AAS to increase the sensitivity of the instrument 

(Harris, 2007). 

 

ICP-OES 

Inductively coupled plasma optical emission spectroscopy is an analytical technique used for 

detection of elements in liquids, particularly applicable to metals. ICP-OES uses argon to produce 

excited atoms and ions that emits electromagnetic radiation with wavelengths that are charac-

teristic of a particular element. The concentration of the element can be determined from the 

intensity of the emission. The solution is pumped through a nebulizer which atomizes the solu-

tion into an aerosol in a spray chamber (Lampman, 2010). A part of the aerosol is introduced to 

a plasma flame created from argon gas. When the element of interest reaches the plasma it dis-

sociates into atoms, ions and electrons due to the high temperature of approximately 8000°C in 

the plasma. Owing to the extremely high temperatures the atoms, ions and electrons collide with 

each other, resulting in excitation and de-excitation (Lampman, 2010). From the latter, light is 

emitted which is characteristic for each element. By knowing the intensity of these emissions 

and at what wavelength they occur the concentration of the element can be determined. ICP-OES 

is an advanced technique and measures total amount of silver in the solution. However, it does 

not give information on how much of the total amount of silver measured that was silver ions in 

the matrix. ICP is suitable for all solutions, provided that an appropriate sample preparation has 

been performed prior to analysis. Matrix effects on the yield of ions in the plasma are significant, 

therefore calibration standards should be in the same matrix as the unknown (Harris, 2007). It 

is also a very sensitive technique with a detection limit in the region of µg/L. In the experiments 

carried out for silver release from silver-containing dressings, the sensitivity obtained with ICP-

OES is generally sufficient. Compared to AAS, ICP provides a higher sensitivity, a larger linear 

range and is a robust method (Lampman, 2010).  

 

ICP-MS 

This technique uses inductively coupled plasma as described in the previous section together 

with a mass spectrometry detector that separates the ions according to their mass-to-charge 

ratio.  Compared to ICP-OES, ICP-MS provides higher sensitivity and is often used for measuring 



 

12 

 

trace elements in the region of ng/L. ICP-MS is also suitable when small amounts of samples are 

to be analyzed that has to be diluted (Lampman, 2010).  

 

Due to the reactive nature of silver ions, different problems may arise when measuring silver. 

Silver may prove to be insoluble under certain conditions, it readily forms precipitates with 

chlorides and binds to thiol groups on proteins. In this project, silver release will be measured 

using a matrix that contains proteins and salts, thus simulating the wound environment to a 

large extent. This will however create problems when silver ions bind to chlorides, thus forming 

silver chloride precipitates, see reaction 1 in Figure 13.  To avoid this problem, an excess of hy-

drochloric acid is used which will result in the formation of      
   (see reaction 2 in Figure 13). 

Also, since hydrochloric acid is in extreme excess the concentration ratio between H+ and Ag+ 

results in a negligible loss of Ag+. Therefore, the probability that Ag+ will bind to a negatively 

charged surface is insignificant. Nitric acid is used to oxidize and degrade the organic com-

pounds in the matrix. 
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3. Development of release method 
 

In this chapter the development of the release method is presented together with the selection 

of acceptor compartment and donator compartment.  

 

3.1 Principle of the method 
Plastic rings made of polyoxymethylene (POM) were manufactured at Mölnlycke, see Figure 4 

and Figure 5. A semi-solid matrix was poured into the rings and was left to gel. A piece of dress-

ing of a suitable size was pre-wetted with test fluid to mimic the conditions in the wound and 

was put on top of the semi-solid matrix. A weight was put on the dressing to ensure that the 

dressing was in contact with the acceptor compartment. The plastic ring with matrix, dressing 

and weight was put into a Petri dish to obtain a closed system and was incubated at 35°C for 24 

hours, see Figure 6 for a schematic illustration of the set-up. The semi-solid matrix was put into 

a plastic container and digestion of the matrix was performed with hydrochloric acid and nitric 

acid. Silver determination was performed with ICP-OES.   

 
 

Figure 4 Schematic illustration of 1 mL POM ring without bottom (left illustration) and with bottom (right 
illustration). 
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Figure 5 Acceptor compartment consisting of agar in POM ring equipped with bottom and piece of Mepilex® 

Ag dressing. 

For all experiments in this work the incubation time and temperature was set to 24 hours and 

35°C respectively. A time of 24 hours was chosen to allow silver release from the dressing and to 

have a reasonable working time. Incubation was performed at 35°C to simulate the temperature 

in the wound.  

 
Figure 6 Schematic illustration of the set-up of the plastic ring (without bottom) with acceptor compartment, 
dressing and weight.  

 

3.2 Acceptor compartment 
In this section the choice of acceptor compartment including which type of gelling agent and 

concentrations are presented. A semi-solid matrix is necessary in order to determine silver re-

lease from dry or partly wetted products and material. The acceptor compartment was decided 

to contain approximately 50% fetal calf serum and approximately 50% saline solution to simu-

late the wound environment. 

3.2.1 Choice of gelling agent 
The method requires a semi-solid matrix in order to measure silver release. In this project three 

different types of gelling agents were examined; agar, collagen and gelatin. The gelling agents are 

to create a semi-solid matrix to be able to determine release from dry or partly wetted products 
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and material. Also human skin was tested as a matrix, to evaluate the relevance of the method 

being developed. 

 

 Agar is a gelatinous substance derived from red algae. Agar contains agarose, a polysac-

charide, and agaropectin. Agar is widely used in microbiology as a gelling substance and, 

together with nutrients, provides a solid media and a growth medium for bacteria and 

fungi. Concentrations tested were the following: 8 g/L, 10 g/L, 12 g/L. 

 Collagen is a naturally occurring protein in mammals and is the main component of con-

necting tissue and the skin (Mathews, K. C., van Holde, K. E., Ahern, K. G., 1999). Concen-

trations tested were the following: 2 mg/mL, 2.39 mg/mL, 2.75 mg/mL and 4.6 mg/mL.  

 Gelatin is a hydrolyzed form of collagen and consists of approximately 90% proteins, 

10% water and only traces of salts. Concentrations tested were the following: 15 g/L, 20 

g/L, 25 g/L, 30 g/L and 40 g/L.  

3.2.2 Concentration of gelling agent 
 
Preparation of agar as gelling agent 

For an agar matrix solution with a concentration of 8 g/L, 10 g/L and 12 g/L, 0.8 g, 1.0 and 1.2 g 

respectively of agar-agar powder was weighed in a sterile flask. 50 mL saline solution (0.85% 

NaCl) was added and the solution was heated in microwave until the agar powder was dissolved 

and the solution became clear. The agar solution was put in a water bath (approximately 44°C) 

for one hour. 10 mL of fetal calf serum was heated in water bath (approximately 44°C) for 5 

minutes and then mixed with 10 mL of agar solution in a centrifuge tube. For the small plastic 

rings 1 mL of the agar matrix solution was added and for the large plastic rings 2 mL of agar ma-

trix solution was added to each ring. 

 
Preparation of collagen gel as gelling agent 

For 10 mL collagen matrix solution (2 mg/mL, 2.39 mg/mL, 2.75 mg/mL and 4.6 mg/mL colla-

gen type 1), 2.2 mL, 2.6 mL, 3.0 mL and 5 mL respectively of collagen stock solution (9.18 

mg/mL) was mixed with 1 mL acetic acid (0.1 vol.%), 6 mL SWF and 1 mL NaOH (0.1 M). The 

solution was kept on ice until use to prevent polymerization of the collagen. For the small plastic 

rings 1 mL of collagen matrix solution was added and for the large plastic rings 2 mL of collagen 

matrix solution was added to each ring. The rings with collagen matrix solution were incubated 

for 60 minutes at 35°C to allow for collagen polymerization. 
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Preparation of gelatin as gelling agent 

For a gelatin matrix solution with a concentration of 15 g/L, 20 g/L, 25 g/L, 30 g/L and 40 g/L, 

1.5 g, 2.0 g, 2.5 g, 3.0 g and 4.0 g respectively of gelatin powder was weighed in a sterile flask. 50 

mL saline solution (8.5 g/L NaCl) was added and the gelatin solution was heated in microwave 

until the gelatin powder was dissolved and the solution became clear. The gelatin solution was 

allowed to cool down in a water bath (approximately 44°C) for one hour. 10 mL of fetal calf se-

rum was heated in water bath (approximately 44°C) for 5 minutes and then mixed with 10 mL of 

gelatin solution in a 50 mL centrifuge tube. For the small plastic rings 1 mL of the gelatin matrix 

solution was added and for the large plastic rings 2 mL of gelatin matrix solution was added to 

each ring. 

 

It was important to determine an appropriate concentration of acceptor compartment. To pre-

vent the dressing absorbing moisture from the acceptor compartment thereby changing the de-

gree of moisture saturation in the dressing it was important to have a sufficiently high concen-

tration of the gelling agent in the acceptor compartment. However, since the developed method 

may be used in future microbiological studies a too high concentration of the acceptor compart-

ment results in difficulties in decomposing the acceptor compartment mechanically (lumps of 

the acceptor compartment is not desirable for this purpose). In order to determine the optimal 

concentration of the gelling agent different concentrations were tested, see section 3.4. Different 

concentrations of gelling agents were prepared and poured into the plastic rings with a volume 

of 1 mL. Dry pieces of Mepilex® Ag (Ø31 mm) and Mepilex® Ag pieces that were pre-wetted 

with SWF to obtain a moisture saturation of 50% were placed on separate acceptor compart-

ments. Four replicates were made for each concentration of agar. The pieces of dressing were 

weighed before placing them on the acceptor compartment. The plastic ring with acceptor com-

partment and the piece of dressing were put in a Petri dish and incubated for 24 hours at 35°C. 

After 24 hours the piece of dressing was weighed and the amount moisture absorbed by Mepi-

lex® Ag was calculated.  

 

3.2.3 Size and volume of acceptor compartment 
Different parameters had to be considered when setting the dimensions of the acceptor com-

partment. The acceptor compartment should not be too big since the whole compartment was to 

be digested prior to analysis with ICP-OES. In addition, the acceptor compartment should be of 

manageable size and since the existing digestion method at Mölnlycke is suitable for a sample 

weight of 0.2–1 g, a smaller ring was manufactured which resulted in an acceptor compartment 

with a volume of 1 mL. However, the acceptor compartment should not be too small since the 

silver content had to be above the detection limit of ICP-OES. Therefore, to increase the detec-
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tion limit a larger ring was also manufactured which resulted in an acceptor compartment with a 

volume of 2 mL. Digestion of this volume was proven to be sufficient. The dimensions of the ac-

ceptor compartments used were as following. For the acceptor compartment with a volume of 1 

mL the inner diameter of the ring was 20 mm with an outer diameter of 40 mm. The thickness of 

the acceptor compartment was 3 mm. For the acceptor compartment with a volume of 2 mL the 

inner diameter of the ring was 30 mm with an outer diameter of 50 mm. The thickness of the 

acceptor compartment was 2.8 mm. Also, some rings were equipped with a bottom of a few mil-

limeters and some did not have a bottom, see Figure 4.  

 

3.2.4 Human skin as acceptor compartment 

Assessment of silver release on a piece of human skin was performed to evaluate the relevance 

of the method being developed. Skin explants were obtained from a patient undergoing breast 

reduction surgery. Skin explants were kept in saline at maximum 8°C until use. The piece of skin 

was punched and cut into Ø12 mm large circles. Pieces of Mepilex® Ag was punched into Ø14 

mm large circles to ensure that the entire skin piece was in contact with the dressing. Dry pieces 

of dressing and pieces pre-wetted with SWF to obtain a moisture saturation of 50% and 100% 

were placed on the piece of skin with a weight on top to ensure contact between skin and dress-

ing. Each level of moisture saturation was performed in triplicate. The skin with dressing and 

weight was put in a Petri dish and incubated for 24 hours at 35°C. When human skin was used as 

acceptor compartment the rings were not needed.  

 

3.3 Donator compartment (dressing/material) 
In this section the dressing used is presented as well as the size of the dressing and the pre-

wetting of dressing.  

3.3.1 Dressing used 
Mepilex® Ag was chosen as model dressing to be used during the development of the release 

method. The dressing consists of a silicone layer on polyurethane foam containing silver sulfate, 

see Figure 7. Mepilex® Ag is an absorbent dressing and has a backing consisting of waterproof 

and vapor permeable film. The dressing has a silver content of 1.2 ± 0.2 mg/cm2. Batch 

11438332 with expiry date 2013-10 was used for silver release measurements.  
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Figure 7 Mepilex® Ag. 

 

3.3.2 Size of donator compartment 
The size of dressing was chosen to cover the entire acceptor compartment and to create an over-

lap, see Figure 6. This overlap was to ensure that the total amount silver measured from the ac-

ceptor compartment was released from the surface of dressing intended for the wound. There-

fore, test pieces of dressing were punched into Ø31 mm large circles for the acceptor compart-

ment with a volume of 1 mL and Ø38 mm large circles for the acceptor compartment with a vol-

ume of 2 mL giving approximately 5 mm overlap on each side, see Figure 6.  

 

3.3.3 Pre-wetting of dressing and used fluids 

Pre-wetting of dressing was performed to simulate the usage of the dressing and to measure 

silver release at different degree of moisture saturation. There are a large number of silver-

containing dressings on the market which vary significantly in terms of texture and their ability 

to absorb wound exudates. The moisture levels are therefore highly dependent on the materials 

or dressings being tested.  

 
The dressings were pre-wetted before placing the dressing on the acceptor compartment. Three 

different media have been used in this project for pre-wetting the test pieces. 

 Simulated Wound Fluid (SWF) which consists of fetal calf serum mixed with equal 

amount of peptone water. This media is used for simulating the environment in wounds. 

SWF contains salt, proteins, carbohydrates, amino acids, vitamins and other trace ele-

ments. Reports indicate that the total protein concentration of wound fluids collected 

from chronic wounds and acute wounds is dependent on many individual factors and 

can vary significantly; however, generally accepted protein values for both chronic and 

acute wound exudates are up to 50% of the total protein level of serum (Trengove et al. 

1996, Aiba-Kojima et al. 2007) 

 Solution A which consists of distilled water with NaCl (8.298 g/L) and CaCl2•2H2O (0.368 

g/L). Solution A has the same ionic strength as body fluids and SWF.  
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 Deionized water. Used for Ag release determination from wound care products 

(Cavanagh et al. 2010, Parson et al. 2005, Wright et al. 1998) 

To be able to measure silver release at different degree of moisture saturation it was important 

to know what volume to add to each dressing piece. The maximum amount of test fluid was 

measured and thereafter the amount of fluid to be added to obtain a certain degree of moisture 

was calculated. To obtain different moisture levels with the test fluids used, see Table 1. For a 

0% moisture a dry piece of dressing was used. Test fluid was added by carefully pressing down 

the tip of the pipette on the wound contact surface of the dressing. To ensure that the test fluid 

was distributed evenly in the dressing the tip of the pipette was taken off and carefully rolled 

over the dressing. As can be seen in Table 1, the maximal absorption capacity of the product de-

pends on the type of test fluid used and size of dressing.  

 

Table 1 Weight of maximal absorption (given in grams) of two sizes of Mepilex® Ag with three different test 
fluids. 

SWF Solution A H2O 
Ø31 mm Ø38 mm Ø31 mm Ø38 mm Ø31 mm Ø38 mm 
4.2 7.4 4.0 6.7 4.2 6.7 

 

To obtain a moisture saturation of 75%, 50% and 25%, the maximal absorption was multiplied 

with 0.75, 0.5 and 0.25 respectively. The dressing was then pre-wetted to the calculated weight. 

 

3.4 Results and discussion of release method 

3.4.1 Acceptor compartment 

When choosing a suitable gelling agent for the acceptor compartment collagen, gelatin and agar 

were evaluated. It was of great importance to obtain a suitable concentration of the acceptor 

compartment. A sufficiently solid matrix was not obtained with collagen, although the highest 

concentration of collagen available on the market was used. When placing a piece of dressing on 

the acceptor compartment with collagen, the dressing absorbed most of the moisture resulting 

in change of moisture saturation inside the dressing. In addition, since the acceptor compart-

ment was absorbed by the dressing a very small amount, only approximately 6% of the original 

weight of the acceptor compartment for a concentration of 2.39 mg/mL collagen remained for 

silver release measurements. Consequently, collagen was not used as acceptor compartment in 

this work. However, since collagen resembles the skin to a great extent it would be interesting to 

use collagen as acceptor compartment if a higher concentration of collagen was available.  

Due to the low solidifying temperatures of gelatin (below 35°C), the acceptor compartment 

melted after incubation after merely some minutes. In this work a temperature of 35°C was set 
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to simulate wound environment and usage of dressing and for that reason the temperature was 

not tested in this thesis. Since gelatin melted at the chosen temperature, gelatin was not used as 

acceptor compartment in this work.   

 

Compared to gelatin, agar was proven to be a more useful solidifying agent due to the better 

solidifying temperatures and it is available in concentrations that make a hard gel (comparison 

to collagen). Agar-agar powder mixed with FCS provided proteins and salts to the acceptor com-

partment, thus simulating the wound environment.  

 
As described in section 3.2.2 an appropriate agar proportion in the AC was needed in order to 

measure silver release at different degree of moisture saturation. A low agar proportion in the 

AC results in larger absorption of moist to the dressing, thereby changing the degree of moisture 

saturation in the dressing. A too high agar proportion in the AC may result in transfer of test 

fluid in the dressing to the AC. Three different concentrations of agar as gelling agent were eval-

uated, 8 g/L, 10 g/L and 12 g/L. For the result, see Figure 8. An equal amount of absorption and 

desorption was preferred, therefore a concentration of 8 g/L was chosen. 

 

 

Figure 8 Amount SWF absorbed by Mepilex® Ag at different agar compositions. Error bars represent standard 
deviation. n=3 

From the beginning, plastic rings were made without bottoms for easier removal of AC after in-

cubation. Later on, experiments were also performed on rings equipped with bottoms. This re-

sulted in a closed system and since the developed method may be used in the future for culturing 
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bacteria it was preferred to have a closed system for this purpose. Furthermore, there were no 

difficulties upon removal of the acceptor compartment in neither of the two types of plastic 

rings. The rings with a volume of 2 mL were produced to increase the detection limit of ICP-OES. 

Results showed that silver release could be detected from both rings.  However, a precipitation 

after digestion could be seen for the larger AC (see chapter 4), and therefore the smaller ring 

was chosen. In Figure 9 silver release measurements from 1 mL and 2 mL rings with and without 

bottom are presented. The higher silver release from rings without bottom might be explained 

by a capillary attraction between the AC and the Petri dish.  

 

 

Figure 9 Silver release in µg Ag/cm2 measured from Mepilex® Ag on agar pre-wetted with SWF to 100% satu-
ration. Error bars represent standard deviation. n = 4.  

When comparing agar with skin as acceptor compartment, see Figure 10, good agreement re-

garding the silver release was obtained. This implies that the method developed is relevant for 

the analysis of silver release in a wound like environment. It also implies that agar as acceptor 

compartment can work well as a matrix that simulates wound like conditions. Although the ex-

periment with skin was performed only one time, it gives an indication that agar can be used 

instead of skin. In addition, the use of skin raises questions about ethical issues as well as the 

risk of infection. Also, skin from different people can differ. The use of agar as acceptor com-

partment means more control and reproducibility of the acceptor compartment. 
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Figure 10 Silver release from AC consisting of skin and agar at different degree of moisture saturation with 
SWF. Error bars represent standard deviation. n = 4 for agar and 3 for skin. 

 

3.4.2 Pre-wetting of dressing 
It was difficult to get the test fluid evenly distributed on the wound contact surface on Mepilex® 

Ag. This was solved by carefully rolling the tip of the pipette over the piece of dressing.  

 

Three different test fluids were used for pre-wetting of Mepilex® Ag, see Figure 11, namely SWF, 

solution A and deionized water. As can be seen the silver release is highly dependent on the type 

of test fluid used which is in agreement with Walker et al. 2006, Rigo et al. 2012 and Lindsay et 

al. 2010. The highest silver release is obtained with deionized water with a release of approxi-

mately 19 µg Ag/cm2 AC. Dressing pre-wetted with solution A results in the lowest silver release, 

only about 1 µg Ag/cm2 AC. SWF gives a silver release of approximately 4 µg Ag/cm2 AC. 
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Figure 11 Silver release dependent on type of fluid used for pre-wetting. Experiment performed on 1 mL AC 
without bottom and 2 mL AC with bottom with agar as gelling agent. Error bars represent standard deviation. 
n= 4. 

 

According to Walker et al. (2006) and Rigo et al. (2012) silver release is strongly dependent on 

the type of test fluid used for pre-wetting of dressing. The lowest silver release is obtained when 

pre-wetting the dressing with solution A which is a saline. Since solution A contains salts and no 

proteins the silver ions will presumably bind to the salts forming precipitates inside the product 

and will therefore not be released from the dressing, resulting in a low silver release.  Rigo et al. 

(2012) showed in their study that high Cl- concentrations tend to inactivate the dressings, thus 

reducing silver release from the product.  

 

Pre-wetting with SWF, which is a fluid that contains both salts and proteins, leads to silver ions 

binding to both salts and proteins. A possible explanation for the higher silver release in SWF 

compared to solution A can be that the silver ions being bound to proteins is still in solution and 

is therefore able to be released (Rigo et al. 2012). However, silver bound to salts forms precipi-

tates in the same way as with solution A and are therefore not released from the product. There-

fore, the equilibrium is pushed so that silver will bind to proteins and therefore making the sil-

ver available for detection.  
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Water represents a simple dissolution medium and is not physiological appropriate as a model 

for wound exudates due to the lack of counter-ions (anions, such as chloride ions) that is nor-

mally present in exudates and which helps precipitate silver ions to form silver salts (Walker et 

al. 2006). Water was used as test fluid since studies have shown that Mepilex® Ag has the high-

est release of silver in water (Rigo et al. 2012).  In their study it was shown that Mepilex® Ag 

released more than 50% of the total amount of silver within 5 minutes in ultra pure water. After 

90 minutes, 96% of the total amount silver had been released. However, they used the beaker 

method as silver release method, see chapter 2.2, and the product was in excess of test fluid. The 

test fluid used was deionized water and silver could be released from the edges of the product. 

These parameters made it possible for such a high silver release. In the proceeding of this pro-

ject SWF was chosen as test fluid since this simulates the wound environment to a better extent 

than deionized water or solution A.  

 

As can be seen in Figure 11 there is a large difference in silver release between the two sizes of 

acceptor compartments pre-wetted with deionized water (19 µg Ag/cm2 for 1 mL AC without 

bottom and 8 µg Ag/cm2 for 2 mL AC with bottom). A possible explanation for the higher silver 

release in the smaller acceptor compartment may be the lack of bottom as discussed in section 

3.4.1. There is a possible move of fluid under the plastic ring and the Petri dish, perhaps due to 

capillary forces, leading to an increased flow of silver in the AC resulting in a high silver release.  

 

3.4.3 Silver release at different moisture levels 

Silver release from Mepilex Ag was analyzed and the following results were obtained, see Figure 

12.  
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Figure 12 Silver release measurements at different degree of moisture saturation with SWF. Experiment per-
formed on 1 mL AC with ring equipped with bottom. Error bars represent standard deviation. n= 4. 

Experiments were performed in triplicates. A higher degree of moisture saturation accounted 

for a higher silver release. The developed method gives varying silver release at different degree 

of moisture saturation. Moreover, silver release could be detected and measured for dry pieces 

of dressings. However, there is no information on the amount silver that has to be present in the 

wound for antimicrobial effect. Therefore, most probably a sufficiently high liquid transport 

from the AC to the dressing may be necessary to obtain antimicrobial effect.  

 

3.5 Conclusion of release method 

To simulate the wound environment a suitable acceptor compartment needed to be evaluated 

with regard to gelling agent and concentration. Different gelling agents were analyzed, however 

agar with a concentration of 8 g/L was found to be most suited for the method being developed. 

Experiments performed on the different sizes of acceptor compartment and with/without bot-

tom showed differences in regard to silver content. The larger ring with a volume of 2 mL was 

produced to increase the detection limit of ICP-OES. However, since silver release could be 

measured with the smaller ring, the ring with a volume of 1 mL equipped with bottom was cho-

sen. To assess the relevance of the method being developed silver release on skin was analyzed 

and compared to the chosen acceptor compartment. The experiment showed good agreement 

with respect to silver release when comparing skin and agar with FCS as acceptor compartment. 
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Finally, measurements showed that silver release is highly dependent on the test fluid used for 

pre-wetting the dressing. The highest silver release was obtained with deionized water while the 

lowest amount of silver release was obtained with solution A. This behavior is probably caused 

by the presence/absence of proteins and salts. While the latter can bind with silver and form 

precipitates trapped inside the product, proteins that bind to silver may result in a higher silver 

release since these more likely will be in solution. Absence of proteins and salts means that noth-

ing binds to silver, thus giving a higher silver release.  

 

Measurements conclude that silver release depends on the moisture saturation of the dressing. 

The highest silver release was obtained for fully saturated pieces of dressings. The conclusion is 

that the developed method works well for analyzing silver release at different degree of mois-

ture saturation.  
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4. Development of silver detection 
 

In this section the digestion of acceptor compartment and human skin and the determination of 

silver release with ICP-OES are presented. 

 

4.1 Silver detection 

4.1.1 Digestion of acceptor compartment 

After incubation, the acceptor compartments were transferred from the plastic rings into 50 ml 

plastic centrifuge tubes with screw cap and weighed. Pieces of human skin were treated in the 

same way. Thereafter 15 mL of hydrochloric acid (32% w/w) and 3 mL of nitric acid (65% w/w) 

were added and the centrifuge tubes were allowed to stand in room temperature for at least 48 

hours. The screw caps were a bit loose during this period due to production of NO2 gas, and then 

the caps were tightened. The containers with the acidic centrifuge tubes were transferred to a 

65°C water bath for at least 4 hours and thereafter allowed to cool down. The content was later 

transferred to 50 mL volumetric flasks, the centrifuge tube was rinsed with deionized water and 

this was also transferred to the flask. The flask was filled with distilled water to the 50 mL mark. 

The content in the flask was analyzed within 2 days. In order to get a good calibration, matrix-

matched standards were prepared by adding 0, 0.025, 0.1, 0.5 and 1 mL of Silver ICP Standard 

1000 µg/mL to plastic centrifuge tubes containing 1 mL or 2 mL AC. This results in final calibra-

tion standard concentrations of 0, 0.5, 2, 10 and 20 mg/L respectively.  

 

Digestion was performed with excess of hydrochloric acid to ensure that silver ions would 

form      
                           . Nitric acid was also added and works as an oxidizer of 

organic material. Hydrochloric acid binds to the silver ions in the following way: 

 

                          Ksp at 25°C: 1.77 x       M2  

                        
          

 
Figure 13. Main silver reactions during digestion of matrix. 

 

4.1.2 FTIR analysis 
A precipitation could be seen for both 1 mL and 2 mL acceptor compartment after digestion. 

However, the precipitation was more evident for the acceptor compartment with a volume of 2 

mL.  There was a concern that this precipitate could contain silver that was not fully dissolved in 

the acid and FTIR analysis was performed to determine the content of the precipitate. Before 

analysis with FTIR the content in the flask was filtered using a glass fiber filter paper that could 

withstand the acidic solution. The precipitate appeared only as a small yellow discoloration on 
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the glass fiber filter paper. A small piece of the filter paper with precipitate was put on a dia-

mond crystal, attenuated total reflectance (ATR), and analyzed. FTIR analysis was performed at 

Chalmers University of Technology with a Nicolet 6700 from Thermo Scientific with a Durasam-

plIR II diamond ATR from SensIR Technologies. However, the database at Chalmers was inade-

quate for identification of the spectrum so a database search was performed at Mölnlycke using 

a Scientific Nicolet iS5 FTIR spectrometer equipped with ATR. 

 

Infrared spectroscopy is a useful technique used to identify and study chemicals. Different mole-

cules will absorb specific frequencies depending on the structure of the molecule when passing a 

beam of infrared light on it. FTIR imaging is useful tool when studying the distribution of chemi-

cal species with different molecular weights. With FTIR, vibrational transitions of a molecule can 

be detected and the benefit compared to conventional infrared spectroscopy is that all wave-

lengths can be measured immediately and greater sensitivity can be achieved (Lampman, 2010). 

An absorbance spectrum is obtained where the molecular structure of the compound can be 

determined.  

  

A beam splitter divides the incoming beam into two optical beams. One beam goes to a fixed 

mirror plane and returns to the beam splitter while the other beam goes to a moving mirror 

plane (Harris, 2007). The motion in the mirror plane results in different pathlenghts. The two 

recombined beams are transmitted through the sample and the energy is absorbed due to the 

excited vibration in functional groups through a change in the dipole moment. The infrared sig-

nal that reaches the detector is measured. To analyze the signals the mathematic equation of 

Fourier transform is needed to calculate the spectrum. The computer plots the spectrum with 

absorbance versus wavenumber (Lampman, 2010). 

 

4.1.3 SEM analysis 
Scanning Electron Microscopy (SEM) analysis was together with FTIR used to determine the 

content of the precipitate. The same filter paper used for FTIR analysis was also analyzed with 

SEM with FEI Quanta 200 FEG-ESEM instrument. A small piece of the filter paper was put inside 

the SEM together with a piece of clean glass fiber filter paper as a reference. The analysis was 

performed with low vacuum mode.  

 

SEM is a technique that uses electron beams to form an image. By utilizing the reversed photoe-

lectric effect electromagnetic radiation is emitted from the surface when hit by electrons. The 

technique gives information such as chemical composition, morphology and crystalline structure 

of the sample (Swapp, 2012). Electrons are formed by heating up a tungsten filament and the 

electrons are focused into a small beam through one or two lenses. The beam with electrons 
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later hits the sample. The accelerated primary electrons interact with the atoms of the sample 

and lose energy by absorption. These incidents cause the electrons of the sample to be emitted 

by elastic and inelastic scattering events. The elastic scattering events results in backscattered 

electrons, which give information about the crystal structure and the inelastic scattering events 

results in secondary electrons. Detectors measure the backscattered electrons and secondary 

electrons, thus forming the image (Swapp, 2012).  

  

4.1.4 Determination of silver content with ICP-OES 

Amount silver in the 50 mL volumetric flasks were determined by ICP-OES at two wavelengths 

using axial mode in the range 0.02-20 mg/L, according to Table 2. The ICP-OES was calibrated 

with the five calibration standards 0, 0.5, 2, 10 and 20 mg/L described in section 4.1.1.  

 
Table 2 Determination of silver release in solutions with ICP-OES. 

Element Wavelength View type Measuring range Comment 
Ag 328.068 nm Axial 0.02-20 mg/L Used to quantify 

Ag 
Ag 338.289 nm Axial 0.02-20 mg/L Used to verify 

absence of inter-
ferences 

 

 
4.1.5 Calculations 
The silver concentration obtained from ICP is expressed in mg/L. This value is converted to mg 

silver/flask by multiplying with 0.05 because of the dilution step in the preparation for ICP anal-

ysis. To express the concentration in µg silver/cm2, the area of the two different sizes of dress-

ings needs to be calculated. For the acceptor compartment with Ø20 mm the area is calculated to 

3.14 cm2 and for the acceptor compartment with Ø30 mm the area is calculated to 7.07 cm2. The 

piece of skin that was tested was punched into Ø12 mm so that the area became 1.13 cm2. 

  



 

30 

 

4.2 Results and discussion of silver detection 

It was found that the current method for digestion at Mölnlycke was suitable for digestion of the 

acceptor compartment. Still, a precipitation could be seen for both sizes of volume after diges-

tion of the acceptor compartment. However, the precipitation was more evident for the AC with 

a volume of 2 mL.  Since there was a concern that this precipitate could contain silver that was 

not fully dissolved in the acid FTIR analysis together with SEM analysis was performed to de-

termine the content of the precipitate. Result from SEM analysis is presented in Figure 14. The 

red curve represents the precipitate while the yellow graph represents a reference filter paper 

that was analyzed since the precipitate was analyzed on a glass fiber filter paper. If silver would 

have been present a peak at 2.95 keV should have been obtained. Since no peak was obtained at 

that position it was concluded that no silver was detected in the precipitate with this method. 

Instead, SEM results conclude that the precipitate consists of carbon, chlorine and nitrogen. 

These elements likely originate from HCl salts of the proteins from the AC consisting of agar, 

saline and FCS. Due to the low pH in the solution, probably cations formed will attract negatively 

charged chloride ions which are in excess. The high concentration of these salts results in precip-

itation. Finally, all silver seem to be in solution. Therefore, it is not necessary to develop the di-

gestion of AC further. 
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Figure 14 SEM analysis performed on the precipitation obtained from digestion of acceptor compartment. The 
red curve represents the precipitate while the yellow graph represents a reference filter paper. 
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Figure 15 SEM picture from analysis of precipitation on glass fiber filter. Picture A obtained from backscat-
tered electrons, picture B obtained from secondary electrons. 

 
Pictures of the precipitation on a glass fiber filter was taken with SEM, see Figure 15. Picture A is 

obtained from the backscattered electrons, and picture B is obtained from the secondary elec-

trons. The precipitation can be seen in picture B as a hazy deposit. In the pictures a large foreign 
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specimen can be seen in Picture A and SEM analysis was performed on the specimen. Large 

amounts of chlorine could be seen, and it was believed to be a contaminant, probably a small 

piece of polyvinyl chloride. 

 

The result from FTIR analysis is presented in Figure 16. When the graph was compared with 

Omnic software database a multi-component search was performed. The result showed good 

agreement with the protein polyglycine. After a search in the protein database, see Figure 17, it 

was believed to be the peptide N-CBZ-glycyl-L-pro-L-leu-gly-L-proline which might originate 

from FCS and the possibility of this not being fully digested. The analysis of the precipitate with 

SEM and FTIR is in agreement with each other.  

 

 

Figure 16 A multi-component search using FTIR for analyzing the precipitation.  
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Figure 17 A multi-component search using FTIR for analysis of the precipitation. This is compared to a pro-
tein database. 

To verify the ICP measurement with regard to silver content a reference was prepared with an 

acceptor compartment with the gelling agent agar. A known amount of silver solution calculated 

to result in a silver content of 20 mg/L was added to the acceptor compartment and digestion 

was performed in the same way as the other release measurements. The measured silver con-

tent in the reference sample showed acceptable agreement with the silver added from the be-

ginning (accuracy 112% with CV of 7.9%, n=6). The higher silver concentration obtained can be 

caused by something in the sample preparation.  

 

4.3 Conclusion of silver detection 

It was found that the current method for digestion at Mölnlycke was suitable for sample diges-

tion of the acceptor compartment and determination of silver. The precipitation that could be 

seen was analyzed with SEM and FTIR and concluded that no silver was detected and that the 

precipitation consisted of an organic compound, possibly a protein originating from the AC.   
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5. Conclusion 
 

Different types of gelling agents in the AC were investigated in this project and concluded that an 

AC produced from agar mixed with saline and 50% FCS was the most suitable. The relevance of 

the developed method was tested by using human skin as AC. Results showed good agreement 

with respect to silver release when skin and agar was compared as AC. Since a closed system 

was preferred due to possible future microbiological studies a ring equipped with bottom was 

chosen. The volume of the ring was selected to 1 mL. Measurements showed that silver release is 

highly dependent on the test fluid used for pre-wetting the dressing. The highest silver release 

was obtained with deionized water while the lowest amount of silver release was obtained with 

solution A. This behavior is likely caused by the presence/absence of proteins and salts. Salts can 

bind with silver and form precipitates which are trapped in the product and decrease silver re-

lease to the AC. Proteins that bind to silver are still in solution and can be released to AC which 

results in a higher silver release. Absence of proteins and salts means that nothing binds to sil-

ver, thus giving a higher silver release. Measurements performed at different degree of moisture 

saturations conclude that silver release depends on the moisture saturation of the dressing. The 

highest silver release was obtained for fully saturated pieces of dressings. The conclusion is that 

the developed method works well for analyzing silver release at different degrees of moisture 

saturation. 

 

The acid digestion method currently used at Mölnlycke was suitable for digestion of the AC. 

Analysis performed by SEM and FTIR on the precipitation concluded that no silver was present 

and that all silver was in solution. Furthermore, the precipitation was considered consisting of 

an organic compound, possibly a protein originating from the HCl salts of the proteins from the 

AC.  
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Further work 
 

As mentioned in section 3.1 some of the parameters were locked from the beginning and not 

evaluated in this project. Further studies could be done in order to investigate the effect of time 

on silver release. Since Mepilex® Ag can be used for up to 7 days it would be interesting to 

measure silver release for a longer time period than 24 hours.  

 

Future studies may include investigation of the antibacterial effect of silver with the developed 

method, use of collagen together with agar and more studies performed on skin. It would be 

interesting to examine silver transfer in the different layers of the skin. Finally, more silver re-

lease measurements can be done with the developed method. 
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