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Abstract
To correctly transform and merge measurements from multiple vehicle-mounted Li-
dar sensors, it is essential to know the correct position of each Lidar. By using a
genetic algorithm we have designed an alternative calibration technique which simul-
taneously estimates the x, y, and yaw coordinates of four 2D Lidars. A grid-based
approach with decreasing cell size is used to evaluate the alignment of point cloud
merging. Additionally, the method overcome difficulties of sparse input data by
utilizing information from multiple perspectives attained as the vehicle is moving.
With this feature the algorithm successfully calibrate the Lidar setup in more than
95% of the test cases. These tests are performed using data from indoor or outdoor
environments and show that the technique is very much capable of calibrating such
Lidar setups irregardless of the operating environment. Gathering data while the
Lidars are moving induce distortions of the Lidar scans, wherefore compensation is
also taken into account.

Keywords: 2D Lidar, extrinsic calibration, genetic algorithm, autonomous driving,
multiple scenes,
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Glossary

Abbreviations
FL Front Left, Lidar location
FR Front Right, Lidar location
GA Genetic Algorithm
ICP Iterative Closest Point
IMU Inertial Measurement Unit
Lidar Light Detection and Ranging
RL Rear Left, Lidar location
RR Rear Right, Lidar location
RWS Roulette Wheel Selection

Technical terms

Term Definition
Base link The vehicle’s point of rotation. Also, the origin of the

coordinate system of the truck.
Chromosome The information contained by an individual.
Gene A part of a chromosome.
Individual A candidate solution of a genetic algorithm.
Initial guess A set of starting values (in the form of a chromosome)

which estimates the 12 Lidar coordinates.
Point cloud A set of data points in space.
Population A set of individuals.
Premature convergence The Genetic Algorithm converges to a local minima so

the global optimum is not reached.
Scan A 270° sweep of Lidar measurements.
Scan skewing distortion Distortion of Lidar measurements if the Lidar is moving

but assumed stationary.
Scan timing inconsistency Lidar scans from different Lidars are unsynchronized in

time.
Scene A set of scans, one from each Lidar obtained at approx-

imately the same time instance.
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1
Introduction

In recent years, autonomous trucks and heavy duty vehicles have been introduced in
work yards and mines. In order to navigate such vehicles, it is of great importance to
understand the surrounding environment. Various systems and methods have been
developed both in academia and industry for navigation of autonomous vehicles.
The navigation systems typically relies on clean and preprocessed data from various
sensors such as Light detection and ranging (Lidar). In this thesis a truck equipped
with four 2D Lidars is considered, as depicted in Figure 1.1. The raw available data
from Lidars are, however, not suitable to be used directly. Instead, the individual
scans can be merged into a single data set forming a virtual sensor covering a wider
horizontal angle. A scan is here formed by a 270° sweep of Lidar measurements.

Figure 1.1: An illustration of a tractor unit equipped with four 2D Lidars marked
as blue circles. The Lidar scans are transformed to the vehicle coordinate frame in
order to be merged into a single point cloud.

By transforming all scans to the vehicle’s coordinate system, denoted by xT and
yT in Figure 1.1, the scans can be merged together. The result is a point cloud
which resembles the view of all four Lidars, as if one, positioned at the vehicle
origin. A point cloud is a set of data points in space. In this process, the x, y and
yaw coordinates of each Lidar are important to correctly transform measurements
from each Lidar to form one merged point cloud. Using incorrect Lidar coordinates

1



1. Introduction

results in duplicates of detected objects and consequently, the perception will not
be accurate. Therefore, there is a need to accurately calibrate the position and
yaw angle of each Lidar. However, to accurately measure each Lidar’s coordinates
by hand implies tedious, on the egde of impossible, work due to their physical
arrangement. Instead one can make use of measured objects in common field of
views and match their corresponding observations to estimate the coordinates. To
do this, CPAC Systems, a developer of control systems for trucks manufactured by
Volvo AB, makes use of a method called Iterative Closest Point (ICP). However, as
will be described in Section 1.2.1, the ICP method has several drawbacks, where of
one is the need of densely overlapping measurements. Therefore there is a desire
for a more robust method which can estimate the Lidar coordinates despite sparse
overlap. A further objective, which is a more challenging task, is also to carry out
the calibration in cases where the truck is moving. This is the topic of this thesis
work, which has been carried out in collaboration with CPAC Systems.

1.1 Purpose and limitations
The purpose of this thesis is to investigate how stochastic optimization can be used
to calibrate the x, y and yaw coordinates of multiple Lidars. The work is focused
on a genetic algorithm used to calibrate a set of four 2D Lidars. Trying to apply
such an algorithm to this problem, the most central question of the project arises,
What is a good calibration?
The project assumes that all Lidars are scanning within the same horizontal plane.
However, the Lidars may be mounted such that its z-axis is pointing up or down.

1.2 Related work
In this section some calibration techniques and related literature are introduced
and compared to the setup used in this work. The work on Lidar calibration can be
divided in three general categories; Iterative Closest Point, feature-based calibration
and occupancy grids. Hereafter, a summary of each of the methods is given in a
separate section.

1.2.1 Iterative Closest Point
Iterative Closest Point (ICP) based methods are often applied to minimize the differ-
ence between two point clouds, and has been widely used within robotic positioning
[1], [2], [3]. In Lidar calibration, a variant of ICP is used [4]. The basic idea of the
algorithm is to align one geometric shape S to another similar shape, as described
in the comprehensive review [5]. The two shapes are referred to as reference and
reading and the objective is to find the transformation matrix with which the best
alignment between two shapes is achieved. As is usually the case, a shape S in this
context is analogous to one Lidar scan. Let PFL be a reading scan from the Front
Left (FL) Lidar and QFR a reference scan from the Front Right (FR) Lidar. Here,
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1. Introduction

FL and FR represent the coordinate frames of each Lidar. The first step of the algo-
rithm is to estimate the transformation from FL to FR, TFL→FR(S), by minimizing
an error function error(P,Q):

T̂FL→FR = argmin
T

(
error(T (PFL), QFR)

)
(1.1)

The data points of the two scans are associated using a matching function. The
simplest version of this method is to associate each point in the reading to the
closest point in the reference, i.e. point-to-point. A variant to this known as point-
to-line is described in [4]. Let M = match(P,Q) = {(p, q) : p ∈ P, q ∈ Q} be
the set of matches between P and Q, and d(p, q) the distance function between
two matching points. The error function can then be described as the sum of all
matching distances:

error(P,Q) =
∑

(P,Q)∈M
d(p, q) (1.2)

To increase the robustness of the method, each distance is scaled using a weight such
that its influence in the error function can be altered. With W = outlier(M) =
{w(p, q) : ∀(p, q) ∈ M} being the set of weights and the error function (defined in
Equation (1.2)) is augmented to:

error(P,Q) =
∑

(P,Q)∈M
w(p, q)d(p, q) (1.3)

With ideal matching, this error would yield the best transformation estimate TFL→FR,
but, in practice, it is unlikely that the matching function provides the best associa-
tions at once. However, the idea of ICP is that also an imperfect matching function
can provide a better estimate of the transformation which in turn can bring better
matching. This motivate an iterative process where intermediate transformations
i+1T are found using:

i+1T ← argmin
T

(
error(T (iP ), Q)

)
(1.4)

where iP is a scan gradually transformed using all previous estimates. Finally, the
complete transformation is the combination of all intermediary transforms together
with the initial guess provided at the start. Nevertheless, the initial transformation
is of great importance because if the associations found during the first iteration is
not sufficiently good the algorithm may get stuck at local minima. In practice this
means that careful measurements has to be made between adjacent Lidars such that
the initial transformation can be sufficiently determined.
In order to calibrate the four Lidars in practice, one Lidar is measured by hand such
that its coordinates are known in relation to the truck. A scan from this Lidar is
then used to generate the reference scan to which another Lidar scan can be fit. It
is a pairwise procedure where one Lidar, i.e. reading, is calibrated to the reference
Lidar. Given the physical arrangement, only adjacent Lidars have overlapping field
of view and, therefore, the reading Lidar has to become the reference Lidar (after its
own calibration) in order to calibrate the remaining ones. This implies that errors
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1. Introduction

from one calibration can propagate to Lidars later in the calibration sequence, as the
position of the reference Lidar is also estimated through calibration. In conclusion,
using the ICP method in practice results in multiple drawbacks:

• One Lidar has to be accurately measured by hand and then used as a reference,
after which the other Lidars coordinates can be optimized for. If the reference
Lidar is badly estimated, the rest of them will also be inaccurate.

• The algorithm need very good initial positions in order to converge.
• The algorithm is prone to converge to local minima.
• The calibration is done using a set of scans, containing only one from each

Lidar, and thus it is essential to measure objects in all the common field of
views

1.2.2 Feature-based calibration
In feature-based calibration methods, certain features are extracted and used as
common target points for several sensors. A feature can be a natural or artificial
landmark extracted from the Lidar data, usually objects that are distinguishable
from the surrounding and perceived similarly from different perspectives. Natural
landmarks are typically trees, walls and intersections between walls and floors. Arti-
ficial landmarks are often simple geometrical objects added to the environment such
as spheres, cylinders, poles or boxes. More elementary shapes are easier to detect
and segmented with simpler algorithms using less memory. However, such shapes
have to be added to the environment using artificial landmarks.

Plenty of feature-based methods have been used to calibrate various Lidar setups,
for example, using boxes [6] and planar boards [7] in combination with cameras.
Moreover, in [8] and [9], natural landmarks are used to calibrate 3D Lidars and
in [10] poles with reflective tape are used to find translational and rotational offsets
of a single 3D Lidar. Additionally in [11] multiple 2D Lidars are calibrated without
specific targets but by collecting data while moving in a pre-scanned environment.
Feature-based methods are mostly used with sensor setups containing at least one 3D
Lidars and/or camera. Very few works have been done with featured-based methods
for 2D Lidars, due to the difficulties in searching for, and extracting, features in 2D
data. When calibrating 2D Lidars, it is popular to use either supplementary sen-
sors or additional landmarks to bridge the gap between different 2D representations.

In [12], calibration of two 3D Lidars and one 2D Lidar is performed with a moving
sphere. A ball is used as target in the mutual field of view to estimate the Lidar
positions. Multiple scans are gathered in cases where the ball is moved to different
spots. One scan sequence of a moving ball (measured at three locations) is sufficient
for determining the relative pose. As 2D Lidars only provide measurements in one
plane, finding the center of the ball is slightly different from when using a 3D Lidar.
The 2D method can be divided into three steps: 1. segmentation of the laser scan
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1. Introduction

(finding circular arcs, taking advantage of the fact that any planar section of the
ball is a circle), 2. detection of circle and calculation of its center coordinates and
radius and 3. calculation of the center of the ball from the known diameter of the
ball. Due to the symmetry of the ball it is not possible to know if the center is
under or above the scan, which has to be known a priori. The 3D method is using
the 2D algorithm repeatedly for every scan layer giving as many estimated centers
as there are layers with hits of the ball. The midpoint of the ball is approximated
as the mean of all estimations.

Instead of using a sphere, [13] finds the relative pose of two 2D Lidars using two
orthogonal planes. The goal is to calibrate all degrees of freedom, i.e. translation
as well as rotation, using the following steps: 1. extract two vectors in each tar-
get planes (one from each Lidar) from the scans with a least mean square method,
2. compute the normal vector to each plane by cross product of the two vectors and
3. assuming the planes are perpendicular, the dot product between the normal vec-
tors is zero. This way, the Lidar’s coordinates can be determined in two dimensions:
those which are normal to the target planes. To solve for the remaining degree of
freedom the planes are re-positioned and the calibration is performed once more. In
the special case when the two Lidar scans are in parallel planes, as in this project,
the normal to the target planes cannot be uniquely determined (step 2). This special
case was considered in [13] and solved using an alternative least square method. The
general method was further extended to handle planes close to, but not perfectly
perpendicular by applying non-linear optimization.

The described methods of using a sphere or orthogonal planes has the advantage
that it requires no initial guess, i.e. measurement of the relative pose between the
Lidars. However, using the method on four Lidars does not allow the calibration of
all to be carried out simultaneously. The reason being that this algorithm calibrates
the Lidars in a pairwise manner, similar to the ICP method, which results in a se-
quence of calibrations. Thus, estimation errors will be propagated as one previously
calibrated Lidar is used as reference.

1.2.3 Occupancy grids and map merging
The fusion of 2D Lidar scans is similar to multi-robot exploration and indoor map-
ping. Multiple robots can be used to simultaneously explore an environment and
the observations of each robot can then be used to construct a more detailed
map. Occupancy grids can then be used to pairwise merge maps from several
robots [14], [15], [16]. In short, occupancy grids can be described as an image where
each pixel indicate whether a part of the map is considered as free space, occupied
or unknown. In these articles occupancy grids are visualized as images where each
class (free, occupied, unknown) is assigned with a separate colour. Using this rep-
resentation, maps are merged by moving one map over another until identical parts
are aligned. In [14] and [15] a similarity metric ψ is used to find identical regions in
the two maps. However, solely using ψ as a heuristic function causes more overlaps
of the maps than intended, thus, an additional measure is added to the heuristic

5



1. Introduction

in order to prevent over merging. To solve for the best transformation parameters
({x, y, θ}) stochastic optimization techniques are used. In [14] an adaptive random
walk is applied where the algorithm manages to merge maps from several robots, as
long as there are overlapping observations, but struggles if the overlap is sparse. In-
stead of a random walk, [15] proposed to use a genetic algorithm to prevent getting
stuck in a local optima and to improve the convergence speed. In their work, the
crossover and mutation probabilities are changed as the average fitness increases,
which also helps to avoid premature or slow convergence.

The scans of 2D Lidars could be considered as separate maps and hence the tech-
nique could be a viable alternative to feature-based or ICP calibration methods.
However, a single scan of a 2D Lidar generally contains less information than a map
and thus such an algorithm is less likely to succeed given a single scan. Furthermore,
the heuristic function ψ is designed for quite detailed maps, it is therefore believed
to be superfluous when the data is more sparse.

Nevertheless, recent research [9] suggests how occupancy grids can be used to cal-
ibrate the yaw angles of multiple 3D Lidars. Four 3D Lidars are mounted on each
side of a vehicle such that every Lidar has overlapping field of view with both its
neighbors. To calibrate the yaw angle of each Lidar, a scan from each Lidar is fused
to form a single 3D point cloud. The 3D point cloud is projected onto the x-y plane
and the resulting map is used to form an occupancy grid. The grid is handled as
a gray scale image where each pixel is represented by an 8-bit value. 0 represents
the highest certainty of an object, 255 is considered as free space and intermediate
values indicate less certain assumptions. A genetic algorithm is then used to solve
for all four yaw angles. However, the heuristic used is much simpler than in [14]
and [15]. By counting the number of pixels whose values are below a threshold,
i.e. pixels considered as objects, each fuse can be evaluated. If the yaw angle of each
Lidar is more accurate, the fused image concise less pixels considered as objects and
thus receives a lower heuristic value. Large overlapping regions of Lidar data guide
the search which results in a successful calibration. But, similar to multi-robot map
merging, it becomes more difficult when the overlapping of data is less present.

1.2.4 Conclusion of literature
In general there are typically three different approaches to calibration of Lidars: ICP,
feature-based and occupancy grid representation. Using 2D or 3D Lidars influences
the technique in use since the amount of common information varies. Feature-based
techniques are more commonly applied when calibrating 3D Lidars as the scanning
view and data set is significantly larger, so more intricate objects can be identified.
For instance, using a sphere as a calibration target can be very suitable when cali-
brating 3D Lidars as the object is perceived round from all perspectives. However,
using spheres when working with 2D Lidars is not as straight forward as the case
with the 3D Lidars, due to the ambiguity in the absolute position and requirement
of prior information. In order to make use of features from solely 2D scans simpler
shapes can be used such as orthogonal walls. However, if the Lidars are scanning
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in parallel planes, to the authors’ knowledge, no feature-based methods have been
developed.

The ICP methods have been commonly used and tried out in different applications,
such as in robot positioning. It benefits from extensive research and documenta-
tion but is sensitive to the initial transformation, i.e. measurement between Lidars.
With inaccurate measurements, the algorithm may get stuck at local minima and
thus not reach an optimal solution. Therefore, the ICP solution is not suitable and
development of an alternative method is required.

Occupancy grids based methods originate from a map merging perspective but has
recently been used within calibration of Lidars. The work carried out in [9] is found
highly relevant and shows promising results applying occupancy grids together with
a Genetic Algorithm to calibrate the yaw angles of four 3D Lidars. With one Lidar
mounted at each side of a vehicle, the setup and the field of view are closely related
to the problem formulated in this thesis. However, the x, y and z coordinates of each
Lidar is known in advance and also 3D Lidars rather than 2D are used. 3D Lidars
provide point clouds in three dimensions rather than two, and with more information
a projection to the x-y plane will result in a more comprehensive 2D representation.
The amount of overlapping data between Lidars is thus greater which is beneficial
when aligning the grids.

Stochastic optimization techniques are commonly used together with occupancy
grids with various heuristic functions. The simple function used in [9] should also
be applicable to 2D Lidars. However, the need of elaborate occupancy grids becomes
less important when simply counting the number of pixels with greater value than
a constant threshold. In contrast to the ICP, this technique allows for simultaneous
calibration of multiple sensors and could possibly be extended to include x and
y translations. Calibrating four Lidars, with three parameters each, results in a
12-dimensional search space. Therefore, using stochastic optimization algorithms
(e.g. a genetic algorithm) is well motivated considering their capability of handling
large and complex search spaces.
Regardless of the method used, the quality of the data plays an important role.
Laser scans which are too sparse may not provide enough information to achieve
convergence and/or may lead to inaccurate solutions.
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2
Lidar properties

The Lidars used on the truck are of type SICK LMS 111. These build upon an
IR sensor and a rotating mirror to transmit light beams which are reflected on
surrounding objects. By measuring the time of flight, i.e. the time from the ray
being transmitted to the return, the range to surrounding objects is estimated. The
range estimation together with the corresponding angle and intensity of reflection
make up one measurement. With measurements comprising angle and range the
surrounding environment is represented in polar coordinates and intensities may be
used to distinguish objects from noise. The measurements cover a sector of 270°. All
Lidars used in this project spin with 50 Hz and the angular resolution between the
measurements is 0.5°. Chapter 2 includes some theory regarding radial distance and
complications which emerge while a Lidar is simultaneously moving and scanning.

2.1 Effects of radial distance
The physical distance between two consecutive measurements increase with the
range, and this distance is of importance when evaluating a calibration, see Sec-
tion 3.1.2 below. Assuming that the light beams have an infinitesimal diameter,
and measure with a 0.5° angular resolution, the arc length between two consecutive
measurements follows from Equation (2.1).

Larc = 2πr · 0.5
360 (2.1)

By approximating the distance between measurements using the arc length, Fig-
ure 2.1 display how the gap between two consecutive measurements are affected by
the range. The measurements are marked with red dots and the distance between
these two increase with the range. The maximum range of the Lidars are 20 m and,
thus, the largest arc length is 0.1754 m.

Figure 2.1: The distance between Lidar measurements are estimated using the arc
length of a circle sector with central angle 0.5°. Thus, the distance between two
consecutive measurements varies dependant of the range.
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Moreover, if multiple Lidars operate in common, and observe the same object, the
distance between measurements become less. As depicted in Figure 2.2, if two
adjacent Lidars measure the same object, the distance between measurements can
be at most halved the distance, compared to using only one Lidar.

Figure 2.2: Distance between measurements for a double Lidar setup. When
the same object is observed by two Lidars, measurements overlap and the distance
between them is less compared to using just one Lidar.

2.2 Moving Lidar complications
Measuring the surrounding environment involves sampling of the continuous time
domain. No Lidar scans are performed instantaneously, and therefore subject to
distortion if the Lidar is moved during scanning. The speed of a moving truck is
relatively large compared to the scanning frequency of the Lidars. Therefore, two
types of distortions occur: timing inconsistencies caused by a multi Lidar setup and
sweep distortion of scans due to the spinning motion of each Lidar. Here effects of
longitudinal and turning velocities are discussed, but the traversing movements are
not considered.

When the truck is turning, the distance to base link affect how far the Lidars are
traveling in lateral direction. The base link is the vehicle’s point of rotation and
also the origin of the coordinate system of the truck. The front and rear Lidars are
located approximately 6 respectively 3 m ahead of this point. The truck is generally
driven at 25 km/h and no more than 80 km/h. A turning rate of 0.1 rad/s is typical
for an operating truck while 0.2 rad/s is possible, but requires an aggressive maneu-
ver. These numbers are used to exemplify the magnitude of timing inconsistencies
and sweep distortion.

2.2.1 Scan timing inconsistency
As the Lidars operate with a frequency of 50 Hz, one revolution takes 20 ms. In
the ideal case all Lidars measure synchronously and deliver their scans at the same
time instance, but in reality this is rarely the case. Each Lidar spins continuously,
so, theoretically the maximum time difference between all four scans should not ex-
ceed 20 ms. However, network latency and CPU priorities could cause longer time
windows between scan deliveries so that the complete time difference may increase.
These distortions also occur unpredictably and with varying magnitude, so the effect
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is irregular.

In order to construct one scene, i.e. one scan from each Lidar, it is generally assumed
that all scans represent the surrounding at the same time instance. But, when
the truck is moving, scan timing affects how the Lidars perceives the surrounding
environment. Figure 2.3 displays a scenario where two Lidars, L1 and L2, observe
the same tree but with a time difference of ∆t. L1 first observes the tree at time
t0 and later L2 observes the same tree at time t0 + ∆t. This will cause a problem
when scans are about to be merged. Assuming that both Lidars observed the tree
at the same time t0, the result will be a fusion indicating two trees instead of one.
Neither of the observations are wrong, but assuming both scans are synchronized in
time causes the resulting perception to be inaccurate.

Figure 2.3: The moving Lidars L1 and L2 observe the same tree but from two
different perspectives, at time t0 and at time t0 +∆t. Merging these two observation
as if scanned at the same time instance result in a perception including two trees.

This phenomenon is present regardless of which direction the truck is moving, but,
the most common movements are forward driving and turning. Therefore, effects
of such movements are given in Table 2.1 and 2.2. The synchronization error ∆t
represent possible time differences between the first and last scan in a scene. 20 ms is
the theoretical maximum timing error given the Lidar properties, but 50 ms is rather
common because of network latency. At slow longitudinal velocities, the difference
is considered minor but becomes significant if the truck is driven faster.

Table 2.1: Longitudinal distance ∆d (m) which the Lidars moved due to truck
speed and time synchronization error ∆t.

Long. dist. ∆d (m) Long. velocity vT (km/h)
5 25 75

∆t (ms) 20 0.0278 0.1389 0.4167
50 0.0694 0.3472 1.0417

As the Lidars are located with an offset to the base link, there are also lateral shifts
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when turning. Examples of lateral movements, withing one scene, are presented in
Table 2.2.

Table 2.2: Lateral distance ∆d (m) which the Lidars moved due to truck turn rate
and time synchronization error ∆t. 6 and 3 m is the longitudinal distance from the
front and rear lidars to base link.

Lateral dist. ∆d (m) Turn rate ωT (rad/s)
0.05 0.10 0.20

3 ∆t (ms) 20 0.0030 0.0060 0.0120
Long. dist. to 50 0.0075 0.0150 0.0300
base link (m) 6 ∆t (ms) 20 0.0060 0.0120 0.0240

50 0.0150 0.0300 0.0600

The lateral distances, presented in Table 2.2, are not as significant as the longitudinal
affects given in Table 2.1. Nonetheless, timing inconsistencies are always present
during driving and may inflict misinterpretations despite accurate measurements.

2.2.2 Lidar sweep distortion
If the truck moves during the scanning period, the location of the Lidar will change
between the individual measurements, thus introducing sweep distortions as de-
scribed in [17]. If the Lidar is stationary during the scan, the light rays will form
a pure circular pattern, as illustrated with blue in Figure 2.4 (a). But if the Lidar
is moving, and observed from a stationary point, the Lidar rays will instead form a
skewed curve, as illustrated with red in Figure 2.4 (a).

(a) (b)

Figure 2.4: Lidar sweep distortion. Blue curves represent a sweeping light ray
from a stationary Lidar. In panel (a), the red curve represent the Lidar light ray
trajectory as observed from a stationary point. In panel (b), the red curve represent
the sweep as perceived in the coordinate system of the moving Lidar.

After the light ray has rotated 270°, the measurements are collected and grouped
into a scan marked with the time of the first measurement, i.e ray angle 0°. Still, all
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but the first measurements occurred after this time. Thus, if the Lidar is moving, the
perception of the surroundings is incorrect if assuming that the sweep was gathered
instantaneously. Figure 2.4 (b) demonstrate an example where a Lidar was moving
during a sweep. The red curve represent the sweep as perceived in the coordinate
system of the moving Lidar. This is also the information delivered by the Lidar, so,
if it is assumed stationary, the measurements are inaccurate. The magnitude of the
sweep distortion is dependant on the velocity of the truck and angular difference
from the first ray. Table 2.3 show the longitudinal movement of a Lidar between the
first and last ray. All intermediate rays are thus subject to less distortion.

Table 2.3: Longitudinal distance ∆d (m) a Lidar moved over one complete scan
with constant truck velocity. The angular span of the Lidar is 270°, but, all inter-
mediate rays are subject to less distortion than the last ray, as, the time difference
is proportional to the angle of each ray.

Long. dist. ∆d (m) Long. velocity vT (km/h)
5 25 75

Ray angle 270° 0.0208 0.1042 0.3125

The largest source of sweep distortion is due to the longitudinal velocity, but as the
truck is turning, angular turn rate introduces lateral distortions as well. The lateral
distance a Lidar moves for different turning rates are given in Table 2.4.

Table 2.4: Lateral distance ∆d (m) which the Lidars moved due to truck turn rate
and angle increment of Lidar ray during one sweep. 270° is the Lidar scan range, 6
and 3 m is the longitudinal distance from the front and rear Lidars to base link.

Lateral dist. ∆d (m) Turn rate ωT (rad/s)
0.05 0.10 0.20

Long. dist. to 3 Ray angle 270° 0.0023 0.0045 0.0090
base link (m) 6 270° 0.0045 0.0090 0.0180

Similar to scan timing inconsistency the Lidar sweep distortions depends on both the
longitudinal velocity and turning rate. However, longitudinal distortions, presented
in Table 2.3, are much greater than distortions generated if the truck is turning,
given in table Table 2.4. A longitudinal velocity of just 5 km/h cause more distortion
than a hard turn of 0.20 rad/s. Furthermore, sweep distortion is an effect of the
fundamental properties of Lidars and therefore inflict on every individual scan.
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3
Methods

In order to produce a clear single point cloud using multiple Lidars, the x, y and yaw
coordinates of each Lidar must be known. The coordinates are used to transform
measurements from each Lidar to be resembled from a common perspective, the base
link. To solve for the respective positions, the proposed method does not require any
artificial objects or external measurements of the environment. Instead it relies on
alignment of mutual observations which does however assume Lidar hits in common
field of views. With a set of four Lidars, the goal of the calibration is to estimate a
total of twelve parameters. The proposed method simultaneously calibrates all four
Lidars, therefore, the problem’s solution space is large. Given this, and the nonlinear
nature of rotational transformations, a genetic algorithm is a suitable choice for this
problem.

3.1 Genetic Algorithm

Genetic algorithm (GA) is a type of Evolutionary Algorithm which, as its name
indicate, is inspired by Charles Darwin’s theory of evolution. Therefore, most ter-
minologies used in GAs stems from biology but the implications are greatly simplified
compared to their original counterparts. As described in [18], the basic GA builds
upon the six phases initializing a population, fitness evaluation, selection, crossover,
mutation and elitism. These reflect the process of natural selection where well suited
individuals, i.e. a candidate solution, get to produce offspring which form the next
generation. The process can also be described as survival of the fittest because more
fit individuals have a greater chance of having offspring. By iterating such a pro-
cess better individuals will be found and the concept is used to search for optimal
solutions.

In this project, the overall idea of the algorithm is to simultaneously calibrate all
four Lidars. Therefore, all twelve parameters are encoded in a single individual using
real-number encoding (see [18]). Real-number representation allows for unrestricted
ranges as no decoding function is required. Each gene, a unit of an individual,
therefore directly represents the x, y or yaw coordinate of a Lidar. The 12 genes
form a chromosome, which is the complete information contained by an individual,
see Figure 3.1.
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Figure 3.1: Chromosome layout. The x, y and yaw coordinates of all four Lidars
are represented using real-number encoding.

The algorithm starts by initializing the first set of individuals called a population.
The size of the population is kept constant throughout the calibration and set to
contain 50 individuals, as proposed by [18]. Each individual’s fitness is evaluated
by determining how good the scans align when transformed according to the chro-
mosome. After evaluation, selection, crossover, mutation and elitism are performed
to build the next generation of individuals. The process in then repeated until a set
number of generations is reached.

3.1.1 Initial population
The initial population should include a diverse set of chromosomes such that various
solutions are considered and evaluated. It is, however, not necessary to include
coordinates and angles far different to an intuitive guess. A measurement accuracy
is used to bound the gene values. For each chromosome, every gene is drawn from
a uniform distribution in the following way:

Genei = Initial guessi + Meas Accuracy · r , i = 1:12, r ∈ [−1:1] (3.1)

Where Initial guess is a set of starting values (in the form of a chromosome) which
estimates the 12 Lidar coordinates. MeasAccuracy is the expected error of the
coordinate system of each Lidar (typically measured by hand), and r is a random
number uniformly drawn between -1 and 1. As the yaw angles and x-y coordinates
are of separate ranges the measurement accuracy is set accordingly. This procedure
is repeated until a complete population is filled.

3.1.2 Fitness evaluation
In order to compare the individuals of a population one use a fitness measure. If
an individual is considered to be favourable it receive a high fitness score and vice
versa. The fitness score determines the probability for an individual to produce
offspring for the next generation. However, the fitness function varies depending on
the problem and often there are multiple viable alternatives. It is a very central
part of the algorithm and should be chosen carefully.

In this project, the genes of a chromosome are used to transform a scan from each
Lidar’s local coordinate system to a system using the base link as its origin, as in
Figure 1.1. The resulting four point clouds are then concatenated into one single
cloud used to evaluate the chromosome. In this way, the fitness evaluation can
measure how good the scans align after transformation. Figure 3.2 display the
concatenation of the FL and FR Lidar with two different chromosomes. In panel
(a) a good chromosome is used and in panel (b) a bad one.

16



3. Methods

(a) (b)

Figure 3.2: Concatenation of point clouds measured by the FL and the FR Lidars.
The quality of the chromosome determines how well the scans align. In panel (a) a
good chromosome is used and in panel (b) a bad one.

The fitness measure is based on the idea that hits of the same objects coincide if the
Lidars are well calibrated, as in Figure 3.2 (a). To do this, the fused point cloud
is downsampled by removing points in regions where the data is dense. Thus, good
alignment results in a greater reduction of points and the chromosome is rewarded
with a higher fitness score. Downsampling in the algorithm is performed by applying
a filter which replace closely placed points by their centroid. Figure 3.3 display a
conceptional example where two scans are downsampled using a square grid. Points
from two different scans are coloured with red and green. After filtering the result is
presented with black points. How well the scans align determine how many points
are removed by the filter.

(a) (b)

Figure 3.3: A conceptual fitness evaluation example. A square grid filter is used
to replace multiple points in a cell by their centroid and the fitness is equal to the
number of removed points. In panel (a), two scans are well aligning and the fitness
is equal to 4. In panel (b) the scans align badly and the fitness is two.

The example of Figure 3.3 is used to display the general idea behind the fitness
evaluation. The fitness score is simply equal to the number of removed points.
However, in this project, a circular filter grid is used to downsample the merge of
scans.
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3.1.2.1 Circular filter grid

The filter grid used to evaluate fitness is defined in polar coordinates by radial width
r, angle θ and radius R as in Figure 3.4. Each cell is a segment of a circle sector
and, therefore, the cell area increase with the radius R. As described in Section 2.1,
more distant Lidar measurements are inherently further apart than close ones. A
circular grid allow fitness evaluation to be geometrically suitable for points both
close to and far from the truck as the cell area varies proportionally to the distance
from the truck.

(a) (b)

Figure 3.4: A circular grid filter is used to evaluate each chromosome, displayed
in panel (a). Each cell size is defined using an angle θ and width r, displayed in
panel (b). To evaluate each chromosome, points within each cell are replaced by
their centroid and the fitness score is equal to the total number of removed points.

The grid origo is set to coincide with the centroid of the four Lidar positions. This
is not ideal for any Lidar because the origo of the filter do not coincide with any
Lidar, but, in a geometric perspective it is equal for all of them.

3.1.2.2 Sparsify input data

The result of the filtering depends on the size of the observed objects. Big objects
such as walls, see top right corner panel (a) in Figure 3.5, result in scans with dense
clusters of points. When evaluating such a scan, close measurements inherently yield
a higher fitness even if there are no matching hits from another Lidar. Reversely,
small objects such as scattered poles, bottom part of panel (a) in Figure 3.5, result
in sparse or even single hits and is therefore only removed if aligned with points from
another Lidar. Thus, the maximum number of points that can possibly be reduced
when filtering small objects only depend on how many Lidars observed the object.

Before concatenating the point clouds from each Lidar, a preparatory filter is applied
to reduce the number of points in dense clusters. This filter is similar to the one
used during evaluation. By downsampling each Lidar’s separate scans, hits of smaller
object are unaffected given that the filter cells are small enough. In Figure 3.5, a
scan from the FR Lidar is displayed. The bottom hits of both panels are unaffected
by filtering, but, the measurements of walls are sparsified.
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(a) (b)

Figure 3.5: The scans from each Lidar are sparsified to avoid increased fitness
due to dense measurements. Panel (a) includes a raw scan from the FR Lidar and
panel (b) show the same scan, but sparsified. Sparse objects are unaffected and
thus maintain the same potential fitness.

The sparsified point clouds, one from each Lidar, are then concatenated before
evaluation. This ensures that big objects which would have had higher fitness mainly
due to denser cluster, are instead rewarded with higher fitness only if they are
aligned with another Lidar point cloud. In order for this to work in symbiosis with
the evaluation, the size of the cells follow the same grid size used for evaluation. In
other words, the evaluation procedure can be summarized in four step:

1. Transform each Lidar’s scan to the coordinate system of the vehicle.
2. Sparsify each transformed scan.
3. Merge all sparsified scans.
4. Evaluate the fitness using the merge of scans.

3.1.2.3 Grid size reduction

When evaluating a chromosome using a grid filter, see section 3.1.2, the result is
highly dependant on the size of the cells. Large cells are likely to encompass many
points resulting in a large reduction of points, and vice versa using a tighter grid.
Moreover, big cells allow for an exploratory search as only major changes of a chro-
mosome alter the fitness score. On the contrary, smaller cells can reveal if small
changes are beneficial and, thus, useful to achieve better precision. This calls for a
decrease in the grid size during optimization to allow both exploration and precision.

The grid size is reduced linearly with number of generations. It is a straightforward
but perhaps reckless approach as the performance of the population is not taken into
consideration. If the grid size is decreased too quickly, the algorithm is prone to get
stuck with incorrect transformations and the final result is incorrect. However, it
is intuitive and easy to alter the rate of reduction by simply changing the number
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of generations. With a varying grid size, additional tuning parameters emerge and
make it harder to use. Even so, the initial and maximum grid size is rather easy
to tune since the only requirement is to allow higher chance of exploring the search
space in the initial phase of the optimization. However, one must be careful in
setting the final and simultaneously minimum grid size.
The smallest effective grid size is closely connected to the fundamental properties of
Lidars. As described in Section 2.1, the distance between consecutive measurements
for multiple Lidars are at most half the distance compared to a single scan. The
Lidars measure with an angular precision of 0.5°, thus the smallest angular distance
between points is 0.25° which is also used as the smallest angle of the grid cells. The
radial measurement accuracy of the Lidars are ±3 cm, and the radial minimum cell
width is set to 0.025 m.

3.1.3 Selection
In the selection phase it is determined which individuals get to transfer their genes
to the next generation. There exist different selection methods, but in this thesis
roulette wheel selection (RWS) is used. In RWS, each individual is selected with
a probability proportional to its fitness. This way, the absolute fitness scores are
accounted for. Each individual retrieve a probability of being selected proportional
to its fitness. Since the assigned probabilities are proportional to an individual’s
fitness, the chance of an individual being selected increases if it has a higher fitness
(i.e. better alignment). The selection procedure is repated until a new generation is
filled under the constraint that the size of the population is kept constant.

A detailed description of RWS is given in [18] and here follow an explanatory example
using four individuals A, B, C and D with fitness fA > fB > fC > fD. The selection
probability may therefore be as in Figure 3.6.

Figure 3.6: Proportionate selection example using roulette wheel selection. The
fitness distribution is fA > fB > fC > fD.

The probability of selecting an individual thus follow the formula:

Pind = find∑N
j=1 fj

ind = {A,B,C,D}, N= number of individuals (3.2)

Where f is the fitness of an individual and Pind is the probability of selecting an
individual.

3.1.4 Crossover
The idea with crossover is to mix the genes of two individuals causing new offspring,
as in biological mating. Crossover of two selected individuals (Section 3.1.3), is
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performed by randomly selecting a crossover point, allowing the two chromosomes
to be divided and then assembled as in Figure 3.7.

Figure 3.7: Example of one point crossover. A randomly selected crossover point
is used to cross two individuals resulting in new chromosomes.

Crossover is a powerful tool to generate new solutions and, thus, provide efficient
exploration of the search space. However, if the diversity of the population is low
it is unlikely that the crossover further help the optimization progress. Mating of
two similar individuals results in closely related offsprings. To control its influence,
the crossover is performed with a probability of Pcross. More advanced alternatives
exists such as two-point crossover or non length preserving crossovers, but they are
not considered in this work.

3.1.5 Mutation
As a new offspring is produced, crossed or not, all of its genes are subject to muta-
tion. Mutation of a gene is performed with a probability of Pmutate. Mutation adds
diversity to the next generation but the mutation rate Pmutate should be kept low
because otherwise the search becomes more random than evolutionary.

Using real-number encoding, the mutation procedure is performed using creep mu-
tation. If the gene is subject to mutation, the new value is drawn from a uniform
distribution centered around the original gene value. The interval of the mutation
span is set using a creep rate. By randomizing a number r, between -1 and 1, the
new value of the gene is formed using:

Genemutated = Geneoriginal + CreepRate · r , r ∈ [−1:1] (3.3)

Mutation introduces new genetic material into the population which is important to
maintain the diversity of the population for better exploration of the search space.
Nevertheless, the creep rate influences the potential fitness variation. With a large
evaluation grid the fitness can only be stimulated using a big mutation creep. To
refine the solution, and achieve good accuracy, a more subtle creep is better. There-
fore, the creep rate (the range in which the new gene values are defined) is reduced
linearly with increasing generations analogous to the grid size reduction. This, how-
ever, does not affect the probability of a gene to be mutated. By coupling the creep
rate to generational count tuning parameters are kept to a minimum. Nonetheless,
starting and final mutation creep must be determined. In this work, the starting
creep rate is set to a fraction of the measurement accuracy in order to avoid exces-
sive boundary hits and the final creep rate is determined through trial-and-error.
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Moreover, using a real-number representation, together with creep mutation, the
genes may ultimately take any value. The solution could drift from the base link
without changing the relative positions as the evaluation only relies on alignment
of points. In order to avoid drifting, the chromosomes are kept within a reasonable
range by restricting the gene values. If a gene is mutated outside the range specified
in Section 3.1.1, it is instead set to the border value. Using such a restriction the
search space is limited and each Lidar’s coordinates are kept within a virtual box.

3.1.6 Elitism
After a new population has been formed using selection, crossover and mutation
the best individual of the previous generation may be lost. It is likely to have
been selected, but if so possibly crossed or mutated. In order to preserve the best
individual, it is stored away and inserted into the new generation, a procedure called
elitism.

3.2 Absolute positioning relative to truck
Even with a high quality calibration the absolute positions relative to the truck is
not uniquely determined. With the proposed method only the relative poses between
the Lidars are estimated, leaving three undetermined degrees of freedom (x, y, ϕ) of
the complete Lidar setup. Both front and rear Lidars are assumed to be mounted
symmetrically with respect to the longitudinal center of the truck. Adjusting the
Lidar setup to the coordinate system of the truck is done in two steps, 1) rotation
and 2) longitudinal translation. Figure 3.8 display the point of rotation, angle of
adjustment and the translation adjustment of a skewed Lidar setup.

(a) Positioning adjustment step 1. (b) Positioning adjustment step 2.

Figure 3.8: Absolute positioning adjustment of four Lidars displayed as blue points.
Step 1: Rotate the Lidar setup such that the center line of the Lidars coincide
with the longitudinal center of the truck. Step 2: The Lidar setup is adjusted in
longitudinal direction to match a measured distance.

When rotating the Lidar setup (step 1), the yaw angle (ϕ) of each Lidar must be
adjusted to avoid introducing angular distortions. If the complete setup is rotated
clockwise with the angle α, each Lidar’s yaw angle becomes ϕ−α. Shifting the com-
plete setup in this way ensures that the relative poses are preserved in all coordinates
x, y and ϕ. This procedure is performed to all chromosomes in each generation so
that the setup does deviate in position relative to the truck.
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3.3 Multiple scene evaluation
Calibrating the Lidars using one scan from each Lidar, i.e. a scene, may not provide
sufficient information for the calibration to converge. If the data is sparse, such as
large regions without hits, not even multiple Lidars may provide any mutual in-
formation, which in turn makes the calibration very difficult. To accommodate for
cases with less data, multiple scenes from various time instances can be included
such that it is more likely to have hits from multiple Lidars in the common field of
views. By gathering a set of scenes, all/a subset of them can be used during eval-
uation. Thus, the fitness evaluation needs to be modified to account for multiple
scenes, see below.

The evaluation step, see Section 3.1.2, is extended to include a set of scenes where
each of them provide a fitness score. The fitness from all evaluated scenes are
then summed such that the new fitness score represent how well a chromosome
accommodate to all of the applied scenes. In Figure 3.9, an example of three different
scenes are displayed. The truck is moving forward and, thus, the object visible to
the front Lidars in Figure 3.9a, will eventually end up in the common field of view
of either of the rear Lidars. One should note that the execution time to evaluate
each chromosome is highly dependant on the number of evaluated scenes.

(a) Scene 1. (b) Scene 2. (c) Scene 3.

Figure 3.9: A set of Lidar scenes are used to evaluate each chromosome to in-
crease robustness. With multiple scenes it is more likely that all Lidars provide
measurements in mutual field of views so that points can align.

3.4 Velocity compensation
As mentioned in Section 2.2, two types of complications occur when dealing with
moving Lidars: scan timing inconsistency and sweep distortion. Two approaches
have been used to compensate for such effects. Scan timing compensation is per-
formed as a Lidar position modification, where the coordinates of each Lidar are
altered to better represent the true position of the Lidar at the time the scan is
performed. Unlike scan timing compensation, sweep skew compensation is a point
cloud modification, where individual points in the scanned point cloud are moved
to represent the surroundings more accurately. In order to simplify the equations,
each Lidar is referred to by their location on the truck as Front Left (FL), Front
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Right (FR), Rear Left (RL) and Rear Right (RR). The subscript L represent any
of the Lidars.

L = {FL, FR,RL,RR}

3.4.1 Scan timing compensation
It is difficult to assure that all Lidar spin synchronously and deliver their scans at
the same time instant in real-time systems. As demonstrated in Section 2.2.1 there
may be major deviations of the Lidars positions if the truck is moving while gath-
ering scans to construct a scene. The longitudinal velocity vT and turn rate ωT of
the truck is obtained using external IMU measurements. Each scan also holds the
time-stamp of the first ray, making it possible to adjust the scans in such a way that
they were obtained at the same time instant. There are two adjustments to account
for: the longitudinal speed of the truck and the movement generated if the truck is
turning.

Each chromosome holds the coordinates of each Lidar used to transform the scans
as if measured from the base link. Section 3.1.2 describes the evaluation procedure
with the assumption that the relativity of all coordinates are static which is incorrect
once the truck is moving and the scans are obtained at slightly different times.
Therefore, each Lidar coordinates are adjusted (before evaluation) by including a
timing compensation in the transformation from each Lidar to the base link. Thus,
the chromosomes remain unmodified but will be evaluated in the correct way despite
timing inconsistencies. Here, all scans are adjusted to the time of the FL Lidar scan.
The time difference ∆tL for each Lidar is the difference between the FL Lidar scan
time tFL and the respective Lidar scan time tL.

∆tL = tFL − tL (3.4)

3.4.1.1 Longitudinal movement compensation

The coordinate system of the truck is set to have its x-axis in the longitudinal
direction. Here, only such movements are considered and thus only the x-coordinate
needs to be compensated. The new coordinate x′

L is the actual position xL minus
the distance traveled since the FL Lidar delivered its scan.

x′
L = xL −∆tL · vT (3.5)

3.4.1.2 Turning compensation

All Lidars are located with an offset to the point of rotation, i.e. the base link.
So when the truck is turning, each Lidars movement can be represented as a ro-
tation around the base link. Using the angular velocity of the truck ωT the Lidar
coordinates, xL, yL and ϕL, can be compensated accordingly:

θL = ωT ·∆tL (3.6)[
x′
L

y′
L

]
=
[
cos θL −sin θL
sin θL cos θL

]
·
[
xL
yL

]
(3.7)

24



3. Methods

ϕ′
L = ϕL − θL (3.8)

where θL is the angular change of each Lidar with base link as the point of rotation.

3.4.2 Sweep skew compensation
Measuring the surroundings with Lidars involve sampling in the continuous time
domain. A complete scan of 270° takes 15 ms and if the Lidar is moving during
this time the perception of the surrounding environment is skewed. As discussed
in Section 2.2.2 both longitudinal and lateral movements cause skewing of scans.
Table 2.4 displays the lateral movement of a Lidar between the first and last ray
and there is generally no more than 0.018 m of lateral movement. Therefore, dis-
tortions generated during turning are considered as minor and, consequently, there
is no compensation for lateral movements. Longitudinal movements are, however,
taken into consideration and compensated for using the following method.

In order to observe 360° of the surrounding environment, all Lidars are mounted
to point in different directions. Figure 3.10 is a schematic representation of a truck
showing how the coordinate systems of each Lidar is pointing in relation to the truck.
As depicted, none of the Lidars coordinate system align with the coordinate system
of the truck. So if the truck is moving forwards, each Lidar is traveling in both x
and y direction relative to its own frame of reference. Therefore, sweep skew com-
pensation is a point cloud modification, where individual points in the point cloud
is moved in longitudinal direction to better represent the scanned surroundings.

Figure 3.10: An illustration of a tractor unit equipped with four 2D Lidars. All
Lidars point in different directions and thus longitudinal movements of the truck
result in both x and y movements if observed from either of the Lidars coordinate
systems.

In order to compensate for longitudinal movements, the longitudinal velocity of the
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truck vT is decomposed into each Lidars coordinate system as vx,L and vy,L, see
Equation (3.9). The velocity vT is obtained using external IMU measurements and
considered constant over one sweep. ϕL is the yaw angle of each Lidar. However,
the yaw angles are unknown but estimated during calibration. Therefore, the de-
composition makes use of the current best estimates of ϕL once calibration is run.

vx,L = vT · cos(ϕL)
vy,L = vT · sin(ϕL)

(3.9)

The point cloud used for compensation is defined in Cartesian coordinates using
each Lidars coordinate system. Each point in a scan corresponds to a ray angle α
which represents the angle from the first measurement. The ray angle α of each
point (px,L, py,L) is calculated using the equation

α = atan2(py,L, px,L)− α0, (3.10)

where the function atan2(y, x) returns the principal value of arctan(y/x) taking the
signs of x and y into consideration in order to determine the quadrant. The constant
α0 shift the ray angels from [-135°, 135°] to be in range [0°, 270°]. The Lidar ray
rotates with a constant speed meaning that the time stamp of each point (px,L, py,L)
is proportional to the ray angle α. It takes T seconds for the ray to complete one
revolution so the time of each point tα is calculated as a fraction of one revolution,
as shown in Equation (3.11).

tα = α

2π · T (3.11)

Longitudinal compensation of each point (px,L, py,L) is performed using Equa-
tion (3.12). The compensation is proportional to the velocity in x and y directions
in the frame of the Lidar, and the time from first scan to the current ray, tα. The
updated point (p′

x,L, p′
y,L) is compensated for the longitudinal sweep distortion.

p′
x,L = px,L + vx,L · tα
p′
y,L = py,L + vy,L · tα

(3.12)

The compensation is applied to all points in each point cloud delivered by the Lidars.
The procedure is shown in Algorithm 1.
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Algorithm 1 Longitudinal sweep compensation
vT = velocity of truck
for L = {FL, FR, RL, RR} do
ϕL = yaw angle of Lidar
vx,L = vT · cos(ϕL)
vy,L = vT · sin(ϕL)
for pi = {all points in Point CloudL} do
px,L = x-coordinate of point pi
py,L = y-coordinate of point pi
α = atan2(py,L, px,L)− α0
tα = α

2π · T
px,L = px,L + vx,L · tα
py,L = py,L + vy,L · tα

end for
end for
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4
Results

In this chapter a statistical robustness test of the genetic algorithm (GA) and the
ICP is presented and also the results of applying the GA to a real truck. Lastly, the
effects of velocity compensation is considered and examined visually.

4.1 Robustness of ICP and GA calibration

In order to evaluate the robustness of the GA and ICP algorithm, 200 initial guesses
were tried on both algorithms and the results were analyzed. Initial guess is a
set of starting values (in the form of a chromosome) which estimates the 12 Lidar
coordinates. Each output, i.e. x, y and yaw coordinates for each Lidar, was checked
by visually examining the merged Lidar scans to determine the correctness of the
calibration. The tests were performed on three different cases with no or minor
truck velocity to see how the algorithms performed on different sets of data without
distortions due to movement. Both algorithms were run with settings selected to
maximize their performances. Whenever possible, the GA calibration was performed
using multiple scenes but due to its architecture the ICP is always restricted to one.
The initial x, y and yaw coordinates were drawn from uniform distributions as in
Equation (4.1).

Coordinatei = meani + width · r , i = 1:12, r ∈ [−1:1] (4.1)

The width of the distribution was first set to 0.1 m for the x and y coordinates and
7.5° for all yaw angles. A second initialization was also used with width set to 0.05
m for x and y coordinates and 3.75° for all yaw angles. The mean values were set to
the corresponding coordinates of a previously calibrated truck. This way, two sets,
namely Swide and Snarrow including 100 coordinate collections each, were created
to replicate a wide range of feasible guesses as if a new truck would be calibrated
with the knowledge of an existing one. The ground truth is considered close to
the mean, though no absolute ground truth exist as the existing calibration is also
an estimation. Figure 4.1 displays 12 histograms of the coordinate sets generated
with Swide = {widthxy = 0.1 m, widthϕ = 7.5°} and Snarrow = {widthxy = 0.05 m,
widthϕ = 3.75°} and it is notable how the data follow uniform distributions.
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Figure 4.1: Input data. 100 initial guesses, coordinates of each variable was drawn
from two uniform distributions with mean of an existing calibration. Blue histograms
are variables drawn using widthxy = 0.1 m and widthϕ = 7.5°. Red histogram
display a set using half the spread: widthxy = 0.05 m and widthϕ = 3.75°.

Both coordinate sets Swide and Snarrow are run on both the ICP and the GA for
three different cases. The resulting calibrations were visually examined and judged
similar to the examples of panel (a) and (b) in Figure 4.2.

(a) Case 1. Good calibration. (b) Case 1. Bad calibration.

Figure 4.2: Case 1. The truck is parked in a garage facing rightwards with its
rear section surrounded by walls. Panel (a) display a good calibration where points
from all Lidars align which is not the case in panel (b).

Case 1 includes a single scan from each Lidar where the truck is parked inside a
garage. This indoor environment provides plenty of data points with overlap in all
common field of views. Figure 4.2 displays the measurements from all four Lidars.
The truck is parked facing right with its rear section surrounded by walls. The
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intersection of the red and green axes mark the base link and origin of the vehicle
coordinate system. Panel (a) of Figure 4.2 show a good calibration and panel (b) a
calibration which is unsuccessful. The difference could be thought as minor but gives
an indication of the accepted tolerance. The resulting rate of success is displayed in
Table 4.1.

(a) Case 2. Inside garage, one scene. (b) Case 2. Inside garage, five scenes.

Figure 4.3: Case 2. The truck is slowly reversed inside a garage and multiple scenes
are gathered over one minute. Panel (a) display one scene used when applying the
ICP algorithm and panel (b) include four extra scenes also used by the GA.

Case 2 is also recorded inside a garage, but includes multiple scenes gathered over a
time span of one minute in a case where the truck was slowly reversing. Thus this
data set allow for multiple scene evaluation as described in Section 3.3. The ICP
make use of data from one scene, see panel (a) of Figure 4.3, but the GA utilize five
scenes as displayed in panel (b), Figure 4.3. Note that the GA evaluates each scene
separate, but here, all scenes are shown in one picture. These scans do, however,
provide less points in the rear common field of views compared to Case 1. The
rate of success from both algorithms provided with both input sets are displayed in
Table 4.1. The GA manages to calibrate almost all of the inputs but the ICP does
not ever succeed. The major reason for such large rejection of the ICP is because
of bad alignment of the RL Lidar. This could potentially be explained by the lack
of sufficient overlap of data, i.e. the RL Lidar has less points in common with its
reference Lidar, FL Lidar, compared to the rest.
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(a) Case 3. Outside, one scene. (b) Case 3. Outside, four scenes.

Figure 4.4: Case 3. The truck is slowly driving rightwards such that a corner ap-
pear at multiple relative locations. Panel (a) display one scene used when applying
the ICP algorithm and panel (b) include three extra scenes also used by the GA.

Case 3 was recorded outside while the truck was slowly driving forward (rightwards
in figure) such that a corner appeared at multiple relative locations. It includes less
data and more sparse objects such as poles. As similar to Case 2, this data set allows
for multiple scene evaluation, so the GA is set to make use of four scenes. Panel (a)
in Figure 4.4 and Panel (b) show the data used for the ICP and the GA respectively.
As presented in Table 4.1, the GA once again manages to calibrate regardless of the
initial spread while the ICP never succeeds. Using only one scene, there are very
few points which makes it a very difficult scene regardless of the algorithm used.
However, with the ability to use multiple scenes the GA manages to successfully
calibrate in almost all of these 400 tries.

Table 4.1: Rate of success. Each algorithm was run on three different cases ini-
tialized with coordinates drawn from two separate distributions. The result of 200
different coordinate combinations, 100 from each distribution, was evaluated visually
and judged as successful or not.

Distribution width
Swide Snarrow

0.1 m, 7.5° 0.05 m, 3.75°
Rate of success GA ICP GA ICP

Test case 1 56% 25% 42% 46%
Test case 2 100% 0% 99% 0%
Test case 3 98% 0% 96% 0%

Table 4.1 shows the results as rate of success for both algorithms using the two
initial sets. The GA manages to calibrate in majority of the tries but the ICP fails
if the overlapping data between Lidars is insufficient. The ability to make use of
multiple scenes becomes a key factor. Using multiple scenes thus enables the GA to
process more data and from various perspectives. However, the ICP only make use
of one scene and instead fails to calibrate one or multiple Lidars.
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4.2 Calibration of Lidars on truck
The GA was applied to find the coordinates of four new Lidars just mounted by the
supplier. 19 scenes were gathered when the truck was driven, reversing and turning,
inside a garage to capture various scenes from different perspectives. Figure 4.5
shows one of the scenes used during calibration. The truck was always moving
slowly and thus no speed compensation was used. The lateral distance of both rear
Lidars was measured and inserted as part of the initial guess. The mean value of
the two measurements are kept throughout the calibration as part of the absolute
positioning described in Section 3.2 and should, therefore, be measured with care.

Figure 4.5: A truck with four newly mounted Lidars was calibrated inside a garage.
The resulting coordinates were applied for real usage of the truck.

After calibration, the coordinates were used to run the Lidar setup in live per-
formance. To analyze the results, traffic cones, cardboard boxes and white board
screens were moved around the truck to examine the measurements of the objects
aligned. Each Lidar is mounted using a rigid housing, so trying to physically mea-
sure the coordinates is considered inaccurate. However, the resulting coordinates
were all considered feasible given the placement of each housing. Finally, the in-
spection indicated a set of well calibrated coordinates, so the result was used in the
Lidar-based navigation system of the truck.

4.3 Velocity compensation
As described in Section 2.2, scan timing inconsistency and Lidar scan skewing are
two effects of moving Lidars. In Section 3.4, two methods were introduced to com-
pensate for timing and scan skewing distortions. The results of applying these
methods on the overall performance of the calibration are presented and discussed
in the following two sections.
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4.3.1 Compensation of scan timing inconsistency
Assuming that the coordinates of all Lidars are known, scan timing inconsistency
causes misalignment of point clouds once merging them into a common perspec-
tive. However, if the GA is run with scenes containing timing inconsistency without
considering any compensation, the calibration is prone to result in inaccurate esti-
mation of the Lidar coordinates. The GA solves for coordinates which yields a good
alignment of points, so if the scenes are corrupted with timing inconsistency the GA
will not compensate for this. The resulting visualization of such a calibration may
be clear, but the coordinates are inherently wrong because the input is corrupted.
Therefore, the evaluation of this compensation was performed using a truck cali-
brated without velocity distortions.

Compensation of timing inconsistency, described in Section 3.4.1, was evaluated
by recording Lidar scans from the truck moving at vT = 20 km/h and turning at
ωT = 0.1 rad/s. From the recordings, a scene was tailor made such that it had
abnormal time differences between the scans. Figure 4.6 displays two versions of
the scene corrupted with timing inconsistency of ∆t = 800 ms between the first and
last scan. By visually examining the scene before and after the compensation, it is
clear how all the scans are moved to all be representative at the same time instance.
Panel (a) in Figure 4.6 shows the merged scene using a good set of Lidar coordinates,
before compensation. The result is a merge of scans which do not align. Panel (b)
in Figure 4.6 shows the results after applying timing inconsistency compensation to
the same scene. The scans align but note how points in the center of the figure are
also moved. These points are Lidar hits of the truck which align badly. Due to the
relative velocity between the truck and the Lidars is zero, compensation of these
points is incorrect.

(a) Before timing compensation (b) After timing compensation

Figure 4.6: Evaluation of scan timing compensation on a scene with time difference
∆t = 800 ms, velocity of vT = 20 km/h and turn rate ωT = 0.1 rad/s. Please
note that this is a scene with extra large time differences produced specifically for
evaluation. In panel (a), distortion is present and scans do not align. In panel (b),
the timing error is compensated and scans align. Lidar hits of the truck however
align badly.
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A timing difference of 800 ms is an extreme case, but, by looking at Figure 4.6
the example demonstrate how well the scans align despite such a large distortion.
The outcome is similar with less timing inconsistency but not as evident. However,
despite the compensation, the resulting merge is not perfectly aligned. Effects from
sweep distortion, varying speed, and turn rate may also inflict and restrain the
accuracy. With less timing error, however, the result is less exposed to varying
velocities.

4.3.2 Compensation of Lidar scan skewing
Scan skewing is a phenomenon that affects point clouds generated by each Lidar
and moves around the points in the horizontal plane. The compensation method to
remove such distortions, described in Section 3.4.2, shifts the points in longitudinal
direction since the lateral distortions are rather insignificant. Points in each Lidar’s
cloud are compensated to a different amount depending on the angular distance
from the first ray. The first ray is set as the starting point with the longitudinal
shift intensifying with increasing angle of the ray. Applying this to the multiple
Lidar setup, results in a varying amount of compensation around the truck. Fig-
ure 4.7 displays a merge of point clouds both before and after compensation. The
longitudinal velocity is vT = 35 km/h and with a turning rate of ωT = 0.17 rad/s.
White points represent the raw input point clouds as perceived by the Lidars while
black points are comprised by compensated clouds. Note, the longitudinal velocity
vT is utilized during compensation but the turn rate is disregarded as described in
Section 3.4.2.

Figure 4.7: Scan sweep distortion. White and black points represents the scans
before respectively after sweep compensation. The skewing can be seen varying in
magnitude over the area, similar to Figure 4.8. Detailed views of area A and B are
displayed in Figure 4.9.
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The difference between before and after compensation varies based on the objects’
location on the scene. For example, in the middle top part of Figure 4.7 denoted
by A, there is a distinguishable difference between the black and white points, but
in the bottom middle section it is not as clear. Figure 4.8 illustrates a theoretical
approach to this result. The blue curves represent the Lidar scans when the truck
was stationary and the red ones when the truck was moving in longitudinal direction.
The difference between these two represents the compensation. The region marked
with an A thus experience big compensation of both the FL and RL Lidars but
region B on the other hand has an intermediate compensation of the RR Lidar and
almost none of the FR and RL Lidars.

Figure 4.8: Scan sweep compensation of multiple Lidars setup. The blue curves
represent the Lidar scans when the truck was stationary and the red ones when
the truck was moving in longitudinal direction. The difference between these two
represents the compensation.

This theoretical approach, as depicted in Figure 4.8, is also evident in the result.
Figure 4.9 shows the details of region A and region B. In A, all points are shifted by
about the same distance so the density is preserved. On the other hand, in region
B, points from the RR Lidar should be compensated longer in longitudinal direction
than points from the FR and RL Lidar. The resulting black points therefore end
up to be more condensed which is reasonable assuming that the Lidars scanned the
same object.
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(a) Points in region A (b) Points in region B

Figure 4.9: Detailed views of Figure 4.7. White and black points represent the
points before and after the sweep compensation, respectively. In region A, the
magnitude of sweep compensation is large, but similar for all points regardless of
the sourcing Lidars. In region B, the compensation is varying in magnitude for
points from different Lidars.

The examples of region A and B show how the sweep compensation varies around
the vehicle, thus, making the compensation unique in every direction and location
around the vehicle. In conclusion, with such minor adjustments, it is difficult to
verify the correctness. The ground truth is unknown and thus no absolute compari-
son can be made. However, the results do correlate with the theoretical description
of the phenomenon but there is no guarantee that the correction works perfectly.
Again, here the compensation only concerns the longitudinal distortions.
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5
Discussion

The purpose of this project was to explore the possibility of applying stochastic
optimization algorithms to the problem of Lidar calibration. The initiative grew
from a desire of a more convenient tool which did not require accurate measure-
ments in order to succeed. Running the algorithm, without velocity distortions as
in Section 4.2 and 4.1, shows very promising results. However, in order to reach
such results, two different methods were used to answer the most central question
of the thesis, What is a good calibration?. Firstly, the method of fitness evaluation,
see Section 3.1.2, quantify the alignment and thus determine if a set of coordinates
yields a good calibration or not. But, the constructed method only provides a rela-
tive measure which does not state whether the end result is useful. Secondly, to tell
if the output coordinates are good or bad, a more subjective evaluation was used. By
visually inspecting the composition of transformed point clouds the calibrations has
been judged as successful or not. The following sections discuss these two methods
in relation to the results and lastly also the results of velocity compensation.

5.1 Fitness evaluation
The fitness measure, described in Section 3.1.2, is a very central part of the GA
wherefore much time and effort was focused on this. A more intuitive and straight
forward method is to use a square filter grid to down sample and count the number
of removed points. Square voxel grids are a common functionality in point cloud
libraries and hence quite simple to apply. However, square grid cells are constant in
size which does not entirely comply with point clouds generated by Lidars. Instead,
a circular grid has an increasing cell size with the distance from the origin, similar
to Lidar measurements. Intuitively this yields a more correct comparison regardless
of the measurements being close or more distant form the truck. By using a circular
grid instead of a square grid, the algorithm became more robust and converge faster.
This was an impressive improvement and it is noteworthy that small changes of the
evaluation procedure may have major impact on the performance of the algorithm.

Moreover, sparsification of the input data described in Section 3.1.2.2 also con-
tributed to the increase in the robustness of the algorithm. This ensures that big
objects, which provide high fitness mainly due to dense cluster, are instead rewarded
with increased fitness only if aligned with another Lidars point cloud. By starting
with a large grid, and thus potentially removing many points, the evaluation rely
on more salient structures in the scans. It tends to guide the algorithm by easing
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the gap between good and bad alignment which otherwise can be quite significant.
It should, therefore, also relax the fitness gained if a local minimum is reached.

With roulette wheel selection, it is possible to increase the risk of premature converge
but with the preparatory sparsification it is not an apparent problem. Additionally,
introducing the ability to evaluate on multiple scenes, makes the calibration less
sensitive to premature convergence. By examining the results in Table 4.1, it is
clearly advantageous to make use of more than one scene. The unsuccessful cases
are often stuck in a local minimum and just slightly misaligned. Thus, the risk of
premature convergence is reduced by using several scenes. However, the carefully
prepared evaluation procedure is considered to be the underlying cause of such
success. The combination of applying preparatory sparsification (Section 3.1.2.2), a
circular grid evaluation (Section 3.1.2.1) and a gentle decrease of the filter grid size
(Section 3.1.2.3) is recognized as the fundamental component for the algorithm to
succeed in such a high number of cases.

5.2 Robustness, GA and ICP comparison
The performance of the algorithms are evaluated by visually inspecting the merged
scans. Because the ground truth is not available, manual and visual inspection are
the final assessment tools to judge the performance. Visual inspection is advanta-
geous because it is simple and accurate. A trained eye can easily reject incorrect
solutions, but because it is manual it is also tedious. To be able to evaluate the
robustness, the tests were restricted to 100 runs. This may not bring a thorough
statistical evidence, but it provides enough information for significant indication of
the performance.

As displayed in Table 4.1, the ICP method tends to converge more often with co-
ordinates drawn from the narrow distribution. It is a reasonable result because the
matching function should provide better matches given the guess is more accurate.
However, the GA tends to perform slightly better for all three cases once the coordi-
nates are drawn using the wider distribution. This is quite unexpected because more
accurate initial guesses should, intuitively, result in a more robust calibration. Fur-
ther more, the visual inspection is a subjective judgment and therefore not totally
accurate. Lastly, an alternative idea is that with a faulty guess the GA is maintain-
ing a higher degree of diversity and, therefore, more often finds the global optimum.
However, even though the results of the robustness tests are slightly surprising, it
shows significant indications of a well functioning algorithm. The GA outperforms
the ICP in most of the cases, especially when multiple scenes are available.

5.3 Velocity compensation
The compensation of scan timing inconsistency is a constant bias of the Lidar co-
ordinates because the distortion is solely apparent in the coordinate system of the
truck. As mentioned in Section 3.4.1, the magnitude of correction can be calculated
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before starting the GA because it only relies on the input scans and their time of
arrival rather than the Lidar coordinates. Furthermore, as shown in Section 4.3.1 it
is rather simple to visually examine if the compensation is viable. The evaluation
make use of a scene with exaggerated timing errors but despite this the compen-
sation produce a good, though not perfect, alignment. Since no ground truth is
available the correctness is difficult to fully verify, but with correct Lidar coordi-
nates, the alignment of the merge indicate an accurate compensation. Consequently
the scan timing compensation can handle timing errors and is considered adequate
to prevent the calibration from adapting to time distorted scenes. Compensation of
scan skewing on the other hand is not as straightforward.

As mentioned in Section 4.3.2, the merging of scans, including skewing compensa-
tion, is more persistent as points turn out to be more dense and closer to reality.
So, with correct Lidar coordinates this could improve the accuracy of the merged
scans. However, in difference to timing inconsistency the magnitude of scan skewing
is dependant on the location and angle of each Lidar. So if the estimated Lidar
coordinates are bad, the compensation will inherently be so as well. Consequently,
applying the compensation while running the GA could introduce errors. Incorrect
compensation may alter the search space and introduce new, and inaccurate, optima
which were otherwise not existent. The population would indirectly adapt to this
and the GA would likely succeed to produce a well aligned merge of the scans, but
the resulting coordinates would be incorrect. The alternation of the points is rather
minor so errors of such cases are difficult to detect. It is therefore very complex to
determine the effects on calibration if continuously altering the input scans.
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6
Conclusion

The purpose of this project was to come up with an alternative calibration tool to
estimate the x, y and yaw coordinates of four 2D Lidars mounted on a truck. We
have used a genetic algorithm to estimate the 12 Lidar coordinates and the algo-
rithm successfully do so in more than 95% of the test cases. The alignment of Lidar
point clouds are evaluated using a grid-based approach and with this method, no
artificial landmarks are required as long as there are sufficient Lidar measurements
in the overlapping fields of views. Nevertheless, making use of multiple scenes, i.e.
snapshots including a scan from each Lidar, has shown to overcome the issue of
insufficient Lidar measurements.

We have also studied distortions emerging once the truck and Lidars are moving.
The ultimate goal was to calibrate a new Lidar installation using data from a mov-
ing truck. Two methods to compensate for distortions caused by motion have been
developed and shown promising results of improving the accuracy of merged scenes.
However, the effects of scan skewing compensation was found difficult to verify and
it has not been proved sufficiently reliable to be used during calibration. Therefore
calibration should be performed on data recorded by a slowly moving truck. This
way only minor distortions are present but it is possible to acquire various perspec-
tives such that the advantages of multiple scene evaluation can be utilized.

A further development of the work may include modification of the algorithm to
be run online as a background task once the truck is operating. As the intended
environment is both rough and includes navigation in tight regions, the Lidar po-
sitions may change due to collisions. It would therefore be suitable to develop an
algorithm to monitor the Lidar setup and possibly adjust or warn if incorrect cali-
bration is detected. However, the proposed algorithm is computationally demanding
and unsuitable to be run on the truck with limited computational resources. Nev-
ertheless, the method of fitness evaluation is found successful and could possibly be
transferred to create an online version. By making use of a less computationally
demanding technique, such as particle swarm optimization, it could search for dis-
ruption in the point cloud alignment. Lastly, the work could be extended to include
3D Lidars, and with such field of view, the roll and pitch angles and z-coordinates
could be considered.
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