
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Empirical assessment of Model-Driven
Engineering in a middlesized e-commerce
organization
Master of Science Thesis in Software Engineering and Technology

EMIL SELMERYD

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, May 2012

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Empirical assessment of Model-Driven Engineering in a middlesized e-commerce organi-
zation

EMIL SELMERYD

c© EMIL SELMERYD, May 2012.

Examiner: MIROSLAW STARON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2012

Abstract

In this thesis we strive to assess the feasibility of Model Driven Engineering (MDE) in
a middlesized e-commerce organization. We intend to fill a gap of empirical research on
the subject matter by providing our own case study. Using a qualitative data analysis
approach, we base our research on data gathered from a project carried out at an internet
auctions and valuations company. We raise the question of when to implement MDE
and reflect on the idea that MDE is suitable only in situations when existing company
methods are not sufficient to solve the problem at hand.

Acknowledgements

I would like to thank the people at Kvarndammen KVD for giving me the chance to
conduct my research. Without their economic support and their openness to cutting
edge technology this thesis would not have been possible. I would especially like to
thank Jan Book who helped me in starting up this project. His leadership and critical
eye have been outstanding. Also, sincere thanks to Calle Kabo for guiding me through
the technical jungle at KVD and for his professional and creative feedback.

Also, I must thank my supervisor Lars Pareto for his support during the work of
this thesis. His enthusiasm, academic expertise and experience in the field of Software
Engineering have been invaluable.

Emil Selmeryd, Gothenburg 2011

Contents

1 Introduction 1

2 Theoretical framework 3
2.1 Model Driven Engineering . 3

2.1.1 Domain Specific Languages . 5
2.1.2 Metamodeling . 6

2.2 Domain Specific Modeling . 7
2.3 Eclipse Modeling Tools . 8
2.4 Studies on productivity and MDE . 10

3 Method 14
3.1 Research strategy . 14
3.2 Research procedure . 14
3.3 Research design . 15
3.4 Research methods . 16

3.4.1 Observations . 16
3.4.2 Archival analysis . 16
3.4.3 Literature study . 16
3.4.4 Current process . 16
3.4.5 Vision document . 17
3.4.6 Qualitative Data analysis . 17
3.4.7 Iterative prototyping . 17
3.4.8 Proposed process . 18
3.4.9 Prototype and Focus groups . 18
3.4.10 Diagnostic evaluation . 18
3.4.11 Coding . 19
3.4.12 Focus groups evaluation . 19
3.4.13 Hutchinson’s table . 19
3.4.14 Evaluation outcomes . 19
3.4.15 Strength and weaknesses table . 19

i

CONTENTS

3.4.16 Conclusions and recommendations 19

4 Results 20
4.1 Observations . 20
4.2 Archival analysis . 20
4.3 Current process . 21
4.4 Vision document . 23
4.5 Qualitative Data analysis . 23
4.6 Iterative prototyping . 23
4.7 Proposed process . 24
4.8 Prototype and Focus groups . 24

4.8.1 Implementation of prototype . 25
4.9 Diagnostic evaluation . 28
4.10 Coding . 29
4.11 Focus groups evaluation . 31

5 Discussion 32
5.1 Why KVD is a representative company for SMEs 32
5.2 What productivity means . 32
5.3 Has MDE missed the boat? . 34
5.4 Does MDE improve understandability? . 36
5.5 Advantages and disadvantages . 36
5.6 Coding analysis . 36
5.7 Validity of findings . 39
5.8 Hutchinson’s table . 40

5.8.1 Productivity . 40
5.8.2 Portability . 40
5.8.3 Maintenance . 41

5.9 Reflections on the impact of the study at KVD 41

6 Related Work 43
6.1 Other applications of MDE to e-commerce systems. 43

7 Conclusions and Future works 44
7.1 Conclusions . 44

7.1.1 How does the introduction of MDE alter the object template cre-
ation and maintenance process? . 44

7.1.2 What performance gain, in record definition and maintenance, can
be achieved by model transformation in e-commerce systems? . . . 44

7.1.3 Can MDE be recommended as a solution to KVDs current problem
with object template maintenance? 44

7.2 Future works . 45

Bibliography 48

ii

CONTENTS

A Appendix 49
A.1 Scenarios . 49
A.2 Vision document . 50

iii

Chapter 1

Introduction

Model-driven engineering (MDE) is a software development approach that builds on the
use of models. The intention behind MDE is to raise the level of abstraction from just
coding to also use models, thereby improving productivity, maintainability and porta-
bility. Promoters of MDE have long claimed this approach to provide the same level of
improvement to developers as the transition from assembler to procedural programming
languages offered in the 1960’s [1].

MDE, however, is controversial. Results from recent empirical studies on MDE [2][3]
contradict improvement claims such as the one mentioned above. In fact, the empirical
support is scarce regarding actual benefits of MDE [4]. The few empirical studies in
favour of MDE, explore large scale industries (such as Ivensys Rail [1] or Motorola [5])
which often have a history of using engineering methods similar to MDE. Little research
on the benefits of MDE in smaller organizations has been carried out.

This controversy and the limited scope of success studies makes it difficult for compa-
nies to decide on whether or not to apply MDE and if it would be a feasible investment.

Kvarndammen (KVD) is one company with this problem. KVD is an actor in internet
auctions and valuations. In 2010, they sold 33 000 objects online and are expecting an
increased activity in coming years. Because of this increase, they are looking for ways
to increase maintainability of their current auction system and to make new kinds of
auctioning objects easier to implement. For this, MDE, as described by proponents,
appeared to be a promising solution. What KVD did not know was whether or not
MDE would be feasible and effective for their specific system.

Purpose statement

The purpose of this case study is to explore the feasibility of MDE for middle-sized
organizations working in an e-commerce context (such as KVD). At this stage in the
research, the feasibility of MDE will be generally described as whether or not an MDE
approach is manageable and beneficial. Manageable, in the sense that the end product
satisfies the requirements, and beneficial, in the sense that an MDE approach would
decrease the costs and/or improve the value of the end product compared to an existing

1

CHAPTER 1. INTRODUCTION

development approach.

Relevance of study

The relevance of this study is for organizations deciding on whether or not to adopt an
MDE approach. This study aims to provide a real case scenario with lessons learned
that could help to make such decisions. Also, this study is relevant as it adds to the
knowledge-base of MDE research, particularly by providing empirical results.

Research questions

In order to state the research questions of the case study, we need to briefly describe
the problem KVD had with their auction system. The problem was that their process
of modifying the information displayed for a certain object type was slow and tedious.
In order to make a change, something called object templates had to be modified. An
object template defined what information could be displayed for a certain object type, for
instance the object template for object type motorcycles required different information
than the object template for object type boats. This process needed to be improved, in
order for the organization to handle the increasing flow of objects going up for auction
in an efficient and correct manner.

The case study states the following research questions in order to determine the
feasibility of MDE for KVD’s problem:

• RQ1: How does the introduction of MDE alter the object template creation and
maintenance process?

• RQ2: What performance gain, in object template creation and maintenance, can
be achieved by using MDE in the systems of the company?

• RQ3: Can MDE be recommended as a solution to KVDs current problem with
object template maintenance?

To answer these research questions our case study applies mixed methods and tri-
angulation. Methods include focus groups[6], observations[6][7], archival analysis[6][7],
literature study[6], qualitative data analysis[6], iterative prototyping[8] and diagnostic
evaluation[9].

The core of our study is a prototype MDE tool developed to speed up and reduce
routine work in KVD’s current processes. The prototype we developed, called OTM,
supports a domain specific language [10] with object template management as problem
domain. It uses concepts from the problem domain, such as Field and Template to
maintain a high abstraction close to the problem space. As output, it generates code
that can be used by other components in external systems.

Our results show that for middle-sized e-commerce companies, MDE is just one out
of many approaches to raise the level abstraction and to increase productivity, maintain-
ability and portability.

2

Chapter 2

Theoretical framework

This chapter will explain the theoretical framework used for this thesis, which in our
case means the main technologies used in development of the prototype. We will also
look at related research that is used as a basis for our reasoning around the topic of
MDE.

2.1 Model Driven Engineering

A quick search online for “what is Model Driven Engineering” returns few results. There
is a Wikipedia entry on the subject but the actual definition of MDE is in lack of a
reference. Here are, however, four definitions from four different sources:

• “Model Driven Engineering (MDE) is a software development approach family
based on the use of models in the software construction. It allows the exploitation
of models to simulate, estimate, understand, communicate and produce code.” [11]

• “Model driven engineering is based on the systematic use of metamodels and trans-
formations.” [12]

• “MDE is about the use of relevant abstractions that help people focus on key de-
tails of a complex problem or solution combined with automation to support the
analysis of both the problem and solution, along with the mechanism for combin-
ing the information collected from the various abstractions to construct a system
correctly.” [13]

• “[MDE is] the systematic use of models as primary artifacts during a software
engineering process.” [14]

Although these quotes are formulated in different ways, they are not contradictory. The
reason for their differences could be explained by MDE lacking a formal definition; there
is no official organization behind the acronym, it is rather a buzzword that has become

3

2.1. MDE CHAPTER 2. THEORETICAL FRAMEWORK

MDA
(OMG Standards)

MDE
(Software Engineering)

MDD
(Development Process)

2006

2003

2000

Figure 2.1: Figure showing the evolution of Model driven-families. Original picture by
Ameller [15].

commonplace in recent years. Although a buzzword, it is still a valid software engineering
process because of its widespread use and acceptance in the industry.

From the above definitions it is, however, possible to draw the conclusion that MDE is
a software development approach that by a systematic use of models and transformations
strive to help people focus on the key details of a problem. MDE concerns not only
implementation but also analysis. After the construction of a model it is possible to
verify it and receive feedback from stakeholders, before any implementation has been
done.

A part of MDE is transformations and a common transformation is code generation.
The vision of MDE is that after creating a domain specific model, the user should be
able to generate code from it by the click of a button. Full code generation means
that all code is generated without any additional code needed to be written manually.
But even if full code generation1 is not achievable, partial code generation can still be
advantageous.

DSLs are common in the realms of MDE(see section 2.1.1 on page 5). They are
developed in MDE by the use of metamodels (section 2.1.2, page 5).

Related terms in the Model Driven-family are Model Driven Development (MDD)
and Model Driven Architecture (MDA). MDA is a trademarked acronym from the Ob-
ject Management Group [16] to brand architectures developed using modeling standards
such as UML. Ameller [15] explains that MDA is something that must follow a modelling
language since it advocates the use of models as primary artefact. This tie to modeling
languages makes it the strictest model-driven family. MDD is basically a term for devel-
opment of software using models. What the models look like does not matter; they can
be graphical, textual or other. MDE is the broadest term of the three and incorporates

1“Full code generation” is also a matter of definition. Code can be considered as fully generated in
the application context, but at the same time only partially implemented in the system context.

4

2.1. MDE CHAPTER 2. THEORETICAL FRAMEWORK

Frameworks

Manually written code

Libraries

Schematic code (manually written) Frameworks

Manually written code

Libraries

Schematic code (manually written)

Model

Generator

Figure 2.2: Left; Figure showing schematic code written manually. Right; Figure showing
schematic code being generated. Original picture by Merks[17].

software engineering parts such as requirements, testing and management. Figure 2.1
shows the MD*-technologies relationship, type and history.

A key guideline for MDE is to separate schematic code from creative code. By
schematic code we mean repetitive code that might reappear in project after project.
By creative code we mean the challenging parts of programming that demands special
attention from the developer. MDE aims to generate the schematic code as far as possible
and then let the developer manually write the creative code (see figure 2.2).

Gherbi [11] makes no difference between MDE, MDD or MDSE. Mohagheghi and
Dehlen [2] also suggests that MDE and MDD can be used interchangeably.

Through the course of this thesis, however, MDE means the development of MDD
tools. We make a distinction between the two but as can be seen from above, sometimes
there is not a clear difference.

There are currently many MDE technologies available on the market. Some com-
mon technologies are Microsoft DSL Tools, XSLT,the Eclipse Modeling Project and
Metaedit+. We used the Eclipse Modeling Project and our hands on MDE experience
comes from this perspective – we do not have sufficient experience of other modeling
tools to make any comparisons.

2.1.1 Domain Specific Languages

Domain Specific Languages (DSLs) are languages developed to work in a small problem
domain. The opposite to a DSL would be a general-purpose language such as Java or
C. DSLs function on a higher abstraction level than general purpose languages and by
doing so aims to (1) raise the level of abstraction beyond programming and (2) generate
final products(in the form of code or other data) [10]. Because a DSL is specific to a
problem it is possible to create generators and languages for that purpose and thereby
achieving automation and increased productivity.

DSLs should not be confused with APIs, although they share similarities. Without
going into a detailed discussion on the definition of a DSL we would like to suggest

5

2.1. MDE CHAPTER 2. THEORETICAL FRAMEWORK

that an API requires a programmer’s know-how but a DSL does not. Because of the
raised abstraction level, knowledge of the problem domain is enough to operate a DSL.
With that said, we would like to admit that the lines between DSLs, APIs and even
general-purpose languages are blurry at times.

To make the distinction somewhat more clear, we can take the example of the system
being developed in this thesis. The prototype we developed, called OTM, is a DSL that
has the problem domain of object template management. It uses concepts from the
problem domain, such as Field and Template to maintain a high abstraction close to the
problem space. As output, it generates code that can be used by other components in
external systems.

2.1.2 Metamodeling

Stahl and Völter [18] acknowledges metamodeling as one of the most important aspects
of Model-Driven Engineering. They list the following activities of MDE to display the
importance of a metamodel:

• Construction of domain-specific modeling languages: the metamodel describes the
abstract syntax.

• Model validation: it depends on the constraints set in the metamodel.

• Model-to-model transformations: their complexity depends on the design of the
two metamodels.

• Code generation: it refers to the metamodel.

• Tool integration: it is based on the metamodel.

What follows is that metamodelling affects the quality of all the above listed activities
of MDE.

There is an important difference between abstract and concrete syntax, in regard to a
domain-specific language. The abstract syntax is defined by the metamodel the concrete
syntax by the interface generated from the metamodel. An example of a concrete syntax
would be the syntax used by, for instance, a graphical or textual editor.

A meta relationship is something that should be seen as relative to a model. Take for
example an instance of a Car. The car has a name “Audi” and a license plate “XYZ321”.
A metamodel to this instance would be its class Car. A Car class has two attributes
“maker” and “licensePlate”. A metamodel to the class would be a model describing the
elements Class and Attribute. This sort of meta-relationship could go on forever to reach
until one would reach the desired level of abstraction. In the case of MDE and EMF
the levels of abstraction tend to stay between these three levels. The third level models
the elements with which you design a DSL with (Ecore EClass, Ecore EReference and
so on). The second level is where you would specify the DSL elements and at the first
level is the instantiation of the 2nd level model (carName, licensePlate).

6

2.2. DSM CHAPTER 2. THEORETICAL FRAMEWORK

Furthermore, Stahl and Völter discusses that modeling only makes sense if the model
ends up being used in software development. They state that “metamodels should be
implementable and support the further development process” [18]. In order for meta-
models to live up to that statement it is necessary to not only create the metamodel
but to also adapt supporting development tools. This reasoning supports the findings
of Kelly and Tolvanen’s research [10] and the idea that DSLs increases productivity the
highest. Modeling alone is not as efficient as creating a DSL. There is a cost factor in
order to keep models updated and synchronized. Traditionally this has gone two ways,
either:

• Once implementation starts, models are no longer maintained and becomes out-
dated.

• Once implementation starts, models are kept up to date at the cost of both money
and development time.

Pitfalls in metamodeling

Stahl and Völker list a number of issues and common errors in metamodel design.

• Using interfaces the wrong way: interfaces should be used to model common at-
tributes and operations among entities.

• Accidentally finding oneself on the wrong metalevel2: it is often hard to distinguish
between metalevels and to decide whether an entity should be in the metamodel
or the implementation model.

• Modelling an ID the wrong way: there is a need that an entity has exactly one
attribute titled ID. A common mistake would be to add an attribute to an entity,
call it ID and set the multiplicity to exactly one. The right way to do this would
be to use a constraint.

An interesting part related to metamodeling is how to model behaviour. Metamodels
can do this in two ways; either they implicitly hide the behaviour within or the behaviour
is modelled explicitly by using concepts such as state diagrams.

EMF has support for modelling behaviour, in the form of EOperations. They work
in an implicit way and tell the user where different behaviour (functions, methods etc.)
should exist in the system. This is a matter of just marking the behaviour, you are not
describing it.

2.2 Domain Specific Modeling

DSM is a superset of DSL and consists of (1) a DSL, (2) a domain specific code generator
and (3) a domain framework [10]. DSL have a reported high productivity rate, between
500-1000% [10].

2M0,M1,M2,M3 etc.

7

2.3. EMT CHAPTER 2. THEORETICAL FRAMEWORK

“Compared to creating the initial prototype, turning it into something that could
be used in the real world is a much harder task. Building such a system without
significant personal experience of industrial scale DSM appears to be near an im-
possibility. This is sad, but not surprising: if building a metamodel requires the top
expert developer in a domain, building a meta-metamodel for all such top developers
requires the very highest levels of experience as well as intelligence and skill. The
only other hope is dumb luck, but then current authors probably used most of that
up already, leaving little for newcomers!” [10]

The authors points out meta-metamodeling as a critical factor for the success of
a DSL-tool, because if the meta-metamodel is updated in new releases it would mean
too much work to adapt your current models. Compare this with updates such as
notation and modeling tool functionality, from which modelers could benefit without
much redesign, and one can see why the meta-metamodeling is such an integral part.

Kelly and Tolvanen [10] rates EMF as a level 3 DSL-tool for real word cases and
level 4 for simpler examples. Level 3 is defined as “metamodel, generate a modeling tool
skeleton over a framework, add code” while level 4 is defined as “metamodel, generate
the full modeling tool over a framework”

Even though DSM takes away parts of traditional software product development,
the important part of design is still present. It is only the error-prone, tedious and
time-consuming task of turning design into finished product that is automated [10]. By
removing those tasks developers will be given more time to spend on the creative part
of development. At least that is the aim of DSM.

2.3 Eclipse Modeling Tools

Eclipse Modeling Tools is a package available for download on the official Eclipse site. It
contains EMF, GMF and many other frameworks that are used to leverage models. Once
installed it has its own IDE and from the Help menu one can easily install additional
modeling components such as ATL and Acceleo. EMF, Acceleo and ATL were the
primary frameworks used to design the OTM and when we refer to Eclipse modeling
tools in this thesis, these three are what we are referring to. While the plug-ins and
frameworks in the following text are highly developed and provide many features, we
will focus on those features related to the OTM development.

EMF

EMF comes with the Ecore framework and can be used to create metamodels. The
official documentation describes EMF as a Java framework and code generation facility
for building tools and other applications based on a structured model. EMF supports
code generation to Java from an Ecore model. It also comes with a graphical user
interface for model creation that provides the user with an intuitive drag and drop
interface but it also supports textual specification of models using XMI. The generated
implementation code can be modified, for instance by adding methods and instance

8

2.3. EMT CHAPTER 2. THEORETICAL FRAMEWORK

variables. Upon regeneration after a model change, this modified code is preserved; the
user would only have to update the code if necessary to match the changes in the model.

Since EMF only supports generation to Java, custom code transformation had to be
written for the OTM. This can be achieved by using Acceleo which is described below.

EMF uses a core metamodel called Ecore that is similar to MOF. Ecore consists of a
multitude of classes that all starts with the letter E in order to signify their belonging to
EMF. To name a few of the classes there are EClass, EReference, EEnum and EAttribute.
These were the main classes used to create the OTM. They are similar to the elements
in Java and can be understood straightforwardly if the user has an object oriented
background. When designing a metamodel it is common to start with a primary class
and think about how that class relates to other classes in the domain. For instance, a
class for car is created with attributes brand and price. Then a car might have many bids,
so a bid class is created with a one to many reference from car to bid. When modeling
with Ecore the concept of relations becomes much more prevalent, in our experience.
This is thanks to graphical representation of relations and the fact that we understand
visible relations better than text relations.

Acceleo

Acceleo is a Model-to-text (M2T) plug-in for Eclipse that allows you to generate code
from a model. It uses the Model to text language (MTL) originally create by the Object
management group (OMG). MTL is a markup language that is similar to HTML – each
start tag must have an end tag (or finish with /). Any text written outside of a tag pair
is simple printed to file. Elements in a model are accessed by referencing a metamodel
node, for instance [car.name/] would provide the name variable of the element car. We
can say that dynamic code is written inside tags (for-loops, conditionals) and static code
outside. Acceleo uses a concept called Template. A Template normally corresponds to a
file to be generated. If a Java-class is to be generated, its class header for instance (public
class [c.name/]) would be written as static code in the Template, while its variable value
would be dynamic, inside MTL-tags. Acceleo comes with useful features such as syntax
highlighting, content assistant and error detection.

ATL

ATL allows Model to model transformations. In the ATL documentation, we can read
that model transformation, in the context of having models as first class entities, appears
to be a central operation for model handling.

ATL supports two meta-metamodel technologies, Meta object facilities by the OMG
and Ecore meta-metamodel defined by EMF, which was the technology used in the de-
velopment of the OTM. In other words, ATL can handle metamodels specified according
to either the MOF or Ecore semantics.

Model transformations can be useful to transform a PIM to a PSM. This can be
done by adding platform specific elements to a model or creating new relations. ATL
stands for Atlas transformation language and consists of three kinds of ATL units: ATL

9

2.4. STUDIES ON... CHAPTER 2. THEORETICAL FRAMEWORK

transformation modules, ATL queries and ATL libraries. These units can, according to
their type, be composed of ATL helpers, attributes, rules, matched and called rules. The
language is based on OMG OCL norm. Its syntax is similar to a functional language,
such as Haskell.

OCL operations are supported by ATL and are used for standard commands, for
instance car.oclType() will return the type of car. An ATL module holds many ATL
helpers and rules. A module is normally created for a certain M2M transformation, for
example car2invoice could be a module for transforming a car model into an invoice
model. This module would consist of a rule called carname2invoicename that would
simply use the car’s name for the name of the invoice. A helper could be used to
determine the price of the car. The helper could take the brand of the car and set a
price accordingly (if Volvo then 20 000 �, if Lamborghini then 100 000 �).

helper context metamodel!Car def: determinePrice(): Int =

if self.brand.oclIsTypeOf(Volvo) then

20000

else if self.brand.oclIsTypeOf(Lamborghini) then

100000

else

-1

endif;

Family to Person example

The basic example in the ATL documentation gives a good introduction to M2M-
transformations. We want to transform a family into persons. This means using a
metamodel for families and one for persons. A family, in this example, can consist of
zero or one father and zero or one mother. Each family can have zero or more sons or
daughters. A person consists of a first and last name and has a gender. The family
metamodel consists of a Family class with a last name variable and a Member class with
a firstname. Family roles are modeled as relations. The persons metamodel consists of
a Person class with variable full name and genders represented as subclasses. An ATL
transformation allows us to take an instance of a Family and recreate it as an instance
of a Person. This means transforming relations into genders (if relation isFather then
male subclass etc.) and combining a family name and a first name to create a full name.
The families to person example provides an illustrative implementation of M2M. More
commonly M2M could be used to transforms an abstract model to a certain techno-
logical domain. This was the case for the OTM, were we transformed a model into a
SQL-domain. For further reading we refer to the implementation chapter.

2.4 Studies on productivity and MDE

Focused on qualitative research methods, a study by Hutchinson et. al [4] investigated
social and technical factors that influence organizational responses to MDE.

10

2.4. STUDIES ON... CHAPTER 2. THEORETICAL FRAMEWORK

They discuss claims that have been made about how MDE increases productivity,
maintainability, portability and interoperability but that these claims have developed
without the support of empirical data. Also there are conflicting reports of both suc-
cessful and unsuccessful projects implementing MDE.

They also propose a table, which shows that MDE not only has positive effects on
productivity, portability and maintenance, but also negative.

The conflicting results of MDE research are confirmed. Positive productivity was
found to be anything between 20% and 800%, while negative productivity, received from
anecdotal evidence, was quantified at 27%. Hutchinson et al. suggest that this conflict
comes from that it is difficult to measure MDE productivity benefits and also, that a
MDE benefit might come with a drawback. For example, they mention code generation,
which is usually considered as having a positive effect on productivity, as something that
could come with a drawback in the form of having to integrate generated code causing
maintenance problems. It is concluded that the dependencies between such factors are
unknown.

The respondents of their questionnaire were to a large extent experienced software
engineers (40% had over 10 years experience in the field). Also, the majority of respon-
dents were positive towards MDE as a method.

A majority (74%) thought that MDE required significant extra training for current
staff. Regarding code generation, they discovered that there were more practitioners for
whom code generation had a positive impact on their productivity than there were for
those who had a problem integrating generated code. Two thirds thought that MDE
helped understandability between stakeholders, while around 25% thought that MDE
resulted in unexpected confusion/misunderstanding between stakeholders.

By having paired questions, they managed to demonstrate a couple of dependencies
and conflicts, such as the following:

For example, a company that believes that MDE will enable them to hire software
engineers with less experience but doesn’t prepare for the necessary training may
well find itself in a difficult predicament and with a need for training time and costs
that have not been planned for. Similarly, if for some legitimate reason a company
finds that it must manually adapt code that is autogenerated, it will probably need
to explicitly address how it should be done and what procedures are required to
control the process if it is not to encounter difficulties with keeping the model and
code synchronized.

This supports the idea that a benefit gained from applying MDE might come with a
drawback. They also conclude that understandability improvements are essential to the
perceived success of an MDE implementation.

From the interviews carried out it was clear that the selection of an initial project
to try out MDE, is very important; the suitability of the project can make or break
the successful implementation of MDE. The users of MDE must be motivated and the
organization must be motivated to make the project a success, since the adoption of MDE
is more turbulent than the adoption of, for instance, a new programming language. Often
it will be difficult to introduce MDE in an organization that already has a satisfactory

11

2.4. STUDIES ON... CHAPTER 2. THEORETICAL FRAMEWORK

way of working because in such a case a radical change like MDE is not motivated. On
the contrary, Hutchinson et al. suggests MDE should be more readily embraced in an
environment where the current process is time-consuming, difficult and uninspiring.

Many adopters consider prototyping MDE on projects isolated from important dead-
lines (this was the premise of our OTM implementation). Unfortunately, this might lead
to that not the best people are working on the project and that it will not receive top
priority and, as have been discussed by Kelly and Tolvanen[10], top people and priority
is necessary for successful creation of a DSL. Many MDE implementations have been
successful thanks to its application on a critical project.

Organizations that have hardware as their main product are generally more wel-
coming to MDE compared to companies that have software as their main production
artefact; “companies that don’t do software do MDE”.

Negative and positive influences of MDE

Hutchinson et al.[4] proposed a number of aspects of MDE that had both positive and
negative influences on a software project. The idea was that a positive change might
also come with a negative. For instance, code generation has a positive effect on speed,
but can have the negative effect of time to integrate the generated code.

Table 2.1 on page 13 shows the suggested aspects. For this thesis, the table has been
modified. The aspect regarding portability was dropped since there was no data coming
from the case study related to that issue. When analysing the results from the case
study this table will be used as a reference.

12

2.4. STUDIES ON... CHAPTER 2. THEORETICAL FRAMEWORK

Impact Factor Illustrative Examples of MDE Influences

Positive Influences Negative influences

Productivity

Time to develop code Reduced by: automatic code
generation.

Increased by: time to de-
velop computer-readable
models; implement model
transformations, etc.

Time to test code Reduced by: fewer silly mis-
takes in generated code; mod-
elbased testing methods, etc.

Increased by: effort needed
to test model transformations
and validate models, etc.

ROI on modeling effort Positive influences of model-
ing: more creative solutions;
developers see the“bigger pic-
ture”.

Negative influences of model-
ing: “model paralysis”; dis-
tracting influence of models.

Portability

Time to migrate to a new
platform

Reduced by: simply applying
a new set of transformations.

Increased by: effort required
to develop new transforma-
tions or to customize existing
ones.

Maintenance

Time for stakeholders to
understand each other

Reduced since: easier for
new staff to understand ex-
isting systems; code is “self-
documenting”.

Increased since: generated
code may be difficult to un-
derstand.

Time needed to maintain
software

Reduced since: maintenance
done at the modeling level;
traceability links automati-
cally generated.

Increased since: need to keep
models/code in sync, etc.

Table 2.1: Illustrative influences of MDE

13

Chapter 3

Method

The following chapter introduces the methods used to gather and analyse the data that
was used as a foundation to answer the research questions. We describe how we gathered
information, how it was analysed and how we conducted the practical development of
the prototype tool.

3.1 Research strategy

Case studies are suitable for SE because they study a contemporary phenomenon in its
natural context [7]. It was also an appropriate format for the purpose of this thesis
because only one company was available for data collection. Another advantage of a
case study is its possibility to go into depths on a specific topic. A deep understanding
of a topic can be achieved through, for instance, interviews and observations.

The case study was carried out on site in the summer and fall of 2011 over a period
of four months.

3.2 Research procedure

In order to answer the research questions, the problems were examined from multiple
perspectives to provide a triangulation of facts. Data was collected from observations,
interviews and focus groups during our time at the company. Also, a literature study
was conducted to complement the empirical data. Finally, a diagnostic evaluation of the
prototype developed was made to provide some additional empirical ground on which
to formulate the conclusions. Figure 3.1 shows the activities and relationships of our
research process. Boxes denote activities, curved boxes denote text documents, rhomboid
denotes other kinds of artefacts (software products, application of theoretical models),
whereas the ovals denote theoretical results. The activities are briefly described in the
following sections.

14

3.3. RESEARCH DESIGN CHAPTER 3. METHOD

Research
papers

Books

Literature
study

Archival
analysis

Documentation
from KVD

Information
from KVD

Web

Obser-
vations

Focus
groups

Vision
document Iterative

prototyping

Focus
group

evaluation

Current
process

Qualitative
Data

Analysis

Proposed
process

Diagnostic
evaluation

Interview
transcript

Coding

Meeting
minutes

Evaluation
outcomesPrototype

Strength and
weaknesses

table

Hutchinson’s
table

Conclusions

KVD Staff

Recomen-
dation

Figure 3.1: A figure showing the research process.

3.3 Research design

This research design section briefly describes how this study was carried out. Figure
3.1 on page 15 illustrates the research process and provides information on two things.
First, it shows how the above described research methods are related. Secondly, it shows
in what order the research was conducted (from left to right).

The first output of the research was the Vision document. This document summa-
rized the requirements specified by KVD. The Vision document was created based on
the initial archival analysis made and the focus groups held at KVD. The document was
used to create a common understanding between stakeholders and developers.

After that we finished the Vision document, work began on the actual prototype.
We used an iterative work method were the prototype was developed in weekly cycles.
At the end of a cycle, we received an evaluation of the current status of the prototype
from the focus group. This evaluation was then used to further develop the prototype.

The description of the current process was based on the archival analysis, focus groups
and observations. The description can be found in chapter 5 and was also featured in
the Vision document. A qualitative data analysis was made on the current process from
which we extracted a basis for the proposed process.

The proposed process was evaluated in focus groups. These meetings resulted in the
evaluation outcomes that lead to our final conclusions.

We scheduled the diagnostic evaluation near the end of the research, when the proto-
type was near completion. The diagnostic evaluation was used to improve the scientific
level of the case study and to reduce the possible biased opinions that could influence our
conclusions, as was mentioned in the above Case study research section. The evaluation
was recorded as an mp3-file which was transcribed to a document. This document was

15

3.4. RESEARCH METHODS CHAPTER 3. METHOD

then coded to finally be summarized in a strength and weaknesses table.
The use of Hutchinson’s table was a way to relate our research to previous. We used

a modified framework created by Hutchinson et al. [4] with the goal in mind to find out
how the prototype affected areas of productivity and portability.

3.4 Research methods

The following section describes the steps involved in our research. Every step is featured
in illustration 3.1 on page 15.

3.4.1 Observations

The data collection method of observation was used during group meetings. Often the
project manager and the lead developer started discussions during the group meetings
that generated valuable project data. These observations were summarized after each
meeting in a Meeting minutes document – every meeting was briefly written down in-
between 3-20 sentences. This document proved to be a major data source for the case
study, containing the company’s requests, problems and feedback.

3.4.2 Archival analysis

An archival analysis is a case study method that means looking at existing documen-
tation. In our case, we analysed the documentation from KVD and put the results in
the Vision document. Input was documentation from KVD, for instance a document
describing how a car was received, registered and tested. Another input was information
about the process through info texts on KVD’s website.

3.4.3 Literature study

A method that helped us gain a greater understanding about MDE and to build on
previous research. Books about MDE provided information how to develop the prototype
and also helped us to make our final recommendation. A complement to the books was
research papers. They were gathered from online databases such as IEEE Explore and
ACM digital library.

3.4.4 Current process

The description of the current process was based on the archival analysis, focus groups
and observations. The description of the current process can be found in chapter 4 and
additional info about it can be found in the Vision document. A qualitative data analysis
was made on the current process from which we extracted a basis for the proposed
process.

16

3.4. RESEARCH METHODS CHAPTER 3. METHOD

3.4.5 Vision document

The first output of the research was the Vision document. This document summarized
the requirements specified by KVD. The Vision document was created based on the
initial archival analysis made and the focus groups held at KVD. The document was
used to create a common understanding between stakeholders and developers.

3.4.6 Qualitative Data analysis

Qualitative data analysis methods were used for the data collected in the case study.
Runesson and Höst explain that the objective of qualitative data analysis is to derive
conclusions from the data, keeping a clear chain of evidence. In our case, this meant
mapping ideas from the project meetings on to the research questions. By doing so, we
were able to make the conclusions described in chapter 5. This form of analysis was
a continuous process throughout the data collection. For instance, during a meeting
the idea of a Template field group arose. Then this new insight would need further
investigation through, for example, another meeting.

3.4.7 Iterative prototyping

The prototype was developed using an iterative method. A small set of requirements was
implemented each week and then showcased in the focus groups. Then the prototype
was modified based on the feedback from the focus group and new requirements were
set for the next iteration.

Nielsen[19] stresses the fact that a usability interface should be developed iteratively
because it is virtually impossible to design a user interface without any usability problems
from start. We would like to suggest the same line of thinking for domain models. It is
hard to design a domain model without any domain problems, such as missing domain
elements, from start.

Iterative prototyping was a natural choice for our project because there were few
upfront requirements. The iterative process helps with this problem because it is open
to change. By maintaining short iterations and keeping weekly focus groups with the
project team we managed to keep the model responsive to change. For instance, the
first model developed was simple; it featured only a subset of the requirements specified
by KVD. It was, however, useful as a meeting artefact on which we could base our
discussion. We learnt that there is better to have something physical as a starting point
for a discussion than to not have anything at all.

Iterate basically means re-do, which was the basic design approach for us in this
project. We also added onto the model after each meeting which made the process an
incremental method as well.

Cockburn[20] mentions two main rework strategies for iterative development.

• Develop the system as well as possible, in the thinking that if it is done sufficiently
well, the changes will be relatively minor and can be incorporated quickly.

17

3.4. RESEARCH METHODS CHAPTER 3. METHOD

• Develop the least amount possible before sending out for evaluation, in the thinking
that less work will be wasted when the new information arrives.

Of these two strategies, the one most closely resembling our work process is the latter.
By having weekly meetings we only developed what was necessary. Iterative development
helps to reduce time-waste in that sense.

The openness of iterative development can, however, also be a problem. By allowing
change and new requirements, the development time can be drawn out. If requirements
are given in their entirety upfront, as could be the case in a waterfall approach, and no
change is allowed, than a more accurate time estimation may be given from developers
to managers.

3.4.8 Proposed process

The MDE based process proposed to KVD that aimed to improve their business.

3.4.9 Prototype and Focus groups

After that we finished the Vision document, work began on the actual prototype. We
used an iterative work method were the prototype was developed in weekly cycles. At
the end of a cycle, we received an evaluation of the current status of the prototype from
the focus group. This evaluation was then used to further develop the prototype. Output
was meeting minutes. Meeting minutes is a written document that summarizes every
meeting held over the course of a project. In our case, we wrote down 3 – 20 lines after
each meeting held. Meeting minutes turned out to be an effective way to remember
what was said at each meeting. Meeting minutes captured the desires of KVD staff,
their opinions of the prototype and practical details.

3.4.10 Diagnostic evaluation

By recommendation of UsabilityNet [9], a diagnostic evaluation was chosen as a mea-
surement of the developed tool. The method was selected because it was suitable for
projects with limited time and resources. The evaluation was carried out as suggested
by UsabilityNet except for a few limitations. These limitations had to be made due to
the lack of time available from KVD staff:

• Evaluation was only performed with one user, not 3-5 as suggested.

• Only one administrator was present during the test.

• No developers (except for the user performing the tasks) were present during the
evaluation.

We scheduled the diagnostic evaluation near the end of the research, when the proto-
type was near completion. The diagnostic evaluation was used to improve the scientific
level of the case study and to reduce the possible biased opinions that could influence

18

3.4. RESEARCH METHODS CHAPTER 3. METHOD

our conclusions, as was mentioned in the above Case study research section. The evalua-
tion was recorded as an mp3-file which was transcribed to a document. This document,
the interview transcript, was then coded to finally be summarized in a strength and
weaknesses table.

3.4.11 Coding

The method of coding[21] was used to analyze the interview transcript. Common themes
were found and coded in the transcript. The goal is to find specific categories for which
the nouns and verbs of a text are instances of.

3.4.12 Focus groups evaluation

Focus group evaluations were used in order to make sure that the stakeholders were
satisfied with the proposed process and also to involve them in the development of the
prototype. KVD staff provided information about the current process by word of mouth.

3.4.13 Hutchinson’s table

The use of Hutchinson’s table was a way to relate our research to previous. We used a
modified framework created by Hutchinson et al. [4] with the goal in mind to find out
how the prototype affected areas of productivity and portability.

3.4.14 Evaluation outcomes

The outcomes were documented in the meeting minutes and provided results for us to
base our conclusions on.

3.4.15 Strength and weaknesses table

A strength and weaknesses table was designed for the prototype. This provided a clear
overview of the quality of the prototype.

3.4.16 Conclusions and recommendations

The final results of our research. The conclusions were the analysed and evaluated results
that lead to our end recommendation.

19

Chapter 4

Results

In the following text we describe the results of our research carried out at KVD. We
attempt to present the results in an neutral and objective fashion and leave conclusions
and discussions for chapter 5.

4.1 Observations

The results from the observations method can be found in the below section titled Cur-
rent process.

4.2 Archival analysis

The archival analysis resulted in a better understanding of MDE and provided a knowl-
edgebase for this report. A concrete result is for example the quotes that occur frequently
throughout this thesis.

A central discovery from the archival analysis was the following quote:

[...] if the process already employed by a company is working ’sufficiently well’, it
will be very difficult to introduce as radical a change to that process as introducing
MDE. However, if the existing process is itself a significant risk to a project, or
if that process involves the developers in difficult, time-consuming and uninspiring
activities, then process change in the form of MDE adoption will be more readily
embraced.[4].

We discuss this further in chapter 5.

20

4.3. CURRENT PROCESS CHAPTER 4. RESULTS

4.3 Current process

The current process at the company had been around since the release of their web
based auctions1. In the beginning their domain area consisted solely of cars and the
system was tailored for that purpose. With the passing of time, additional objects were
incorporated into their range of products and the car tailored system did no longer fit
these new objects. To address this issue, the system had to be modified, often with quick
fixes. This has resulted in the system of today which is a large legacy system that is
hard to maintain, slow and provides unsatisfactory description of objects.

The current process consisted of a practical part (figure 4.1) and a software part
(figure 4.2). The practical part was for instance the handling of cars and other objects
in the testing facilities and the contact with customers. The software part was the
technical process of creating object templates that would suit the objects coming in for
auction.

To create a new template with the current process a staff member of IT needs to be
available. He/she needs to make changes in the FileMaker based system Kastor, create
scripts that transport the template to SQL and to the web. He/she must make changes
in 9 places which is a possible source of error. When having to make changes in so
many places, developers witnessed that some scripts can be forgotten. Also, there was
a performance issue because Kastor was used for other purposes, mainly financial, and
had a lot of traffic at certain hours of the day. This resulted in sluggish response for the
users of Kastor and meant that if Kastor somehow could be relieved2 it would benefit
by allowing better response times for the staff members, and in the end provide a faster
workflow.

The current process has three main actors: the tester, the administrator and the
client. The client is the organization that wants to sell something on the company’s web
page. The administrator is responsible for the contact with the client, the presentation
of the object to be sold and follow up. The tester is responsible for testing the object to
be sold and assuring its condition. The tester provides his/hers description of an object,
the administrator his/hers. The version displayed on the web is the version corrected by
the administrator.

At the start of a process a client contacts an administrator, they agree on what
terms the object is to be sold. The administrator then collects the object and brings
it to a testing station. There the tester follows a template which instructs the tester
what aspects of the object are to be tested. This template depends on the type of the
object (car, boat, motorcycle etc.). This so called test template, which is in paper form,
is carried by the tester upon his/hers inspection of the object and is manually filled in
during the course of the test. After the test is finished and the necessary fields of the test
template have been filled in, the tester transcribes this information to a digital template
on a computer. The test template itself is originally printed out from the computer

1There had been a recent transition to object oriented PHP, but many of the concepts from the legacy
system remained the same

2There was a desire from management to completely remove object template management from
Kastor.

21

4.3. CURRENT PROCESS CHAPTER 4. RESULTS

Object received

 Tester
reconditions and
evaluates object

Manual testing
protocol completed

Manual testing
protocol

transferred to
digital

Digital testing
protocol completed

Data automatically
transferred from
digital testing

protocol

Valuation tab Presentation tab Other object tab Internet info tab

Current process: practical part

Data synchronized
with web

Production

Kastor

Figure 4.1: A figure showing the practical part of the current process: receiving objects,
evaluating objects and the digitalization of data.

from this digital version. Once all information has been described by the tester, the
description of the tester is available in Kastor.

After the tester is finished with his/hers test, an administrator reviews the informa-
tion provided by the tester and makes corrections. Short forms are written out and any
uncertainties are addressed so that the information is presentable to customers on the
web. When the administrator is finished with this task, the presentation will be available
on-line.

As mentioned above, there are two versions of an object description -– the description
of the tester and the description of the administrator. This is important for KVD since
it provides that the original test description is kept. If there are any misunderstandings
between tester and administrator, it is possible to see who wrote what in the descrip-
tion. Also, if there are customer complaints regarding the description of an object, it
is possible for the company to see where in the process an error appeared. Therefore,
a requirement of KVD was, what they called “version control” (not to be confused with
revision systems such as SVN) that meant that the above described security check was
featured in the new system. Also, there was a demand for additional user type descrip-
tions; for instance, it could be possible for the client to provide a separate description
on the object. Potentially, there would be even more roles in the future and the system

22

4.4. VISION DOCUMENT CHAPTER 4. RESULTS

Current process:
Software part

New object
template ordered

Backend developer
receives order

Internal test
protocol created.

External test
protocol created.

Layout
”Värdering”

created.

Layout
Presentation

created

Common fields
from existing
templates are

copied. New fields
are created.

Manual sync
between Kastor

and SQL.

Kastor script
created

Object template
”Visa all info”

created.

Object template
web created.

Object template
”Kundobjekt”

created.

Creates addtional
templates

Adjust translation
tools for new fields.

Figure 4.2: A figure showing the software part of the current process of managing object
templates.

should be adoptable to that.

4.4 Vision document

The resulting Vision document can be found in the appendix.

4.5 Qualitative Data analysis

The result of the qualitative data analysis was a greater understanding of the problem at
hand. It resulted in the understanding of the existing process (its lack of flexibility and
its lack of speed in getting objects up for sale) and the need for a new one (the proposed
process).

4.6 Iterative prototyping

Iterative prototyping resulted in a weekly build of the prototype. The method also
resulted in weekly feedback that was gathered in meeting minutes.

23

4.7. PROPOSED PROCESS CHAPTER 4. RESULTS

We developed an initial skinny model, inspired by Jacobson’s concept of skinny sys-
tems [22], with basic features. The model was then presented to the project team from
whom we received feedback. In an iterative fashion the model was then redesigned and
changed after each weekly project focus group.

4.7 Proposed process

To address the current problems of the system a MDE approach was proposed. The vision
was to make a model based system that, at the push of a button, would automatically
spread out the generated files to the right place in the system. Because KVD had
common information (object templates) that they wanted to distribute across multiple
platforms (web, mobile and SQL), MDE seemed as a feasible solution to the problem.

The process suggested was initially a web interface from which any staff member
at the company could work from and manage object templates. The interface was to
be generated from the meta-model. However, since we had previous experience of GMF
(the framework for creating graphical model interfaces) we knew that there was a tedious
process to create any graphical interface and how to create a web interface simply was not
known. Because of these reasons the idea of a custom graphical interface was dropped,
and instead an interface based on the Eclipse tree editor was developed. The project
team was, however, satisfied with this compromise.

From the Eclipse editor a developer should create an object template and then gener-
ate files from it. The transformations would handle all the necessary creations of files for
the MVC structure that KVD’s web page consisted of. It would generate the database
structure, PHP-view files and PHP-ORM-objects – anything necessary for the display
of an object on-line. The introduction of this new process would cut down the number
of places that needed to be modified each time an object template was to be changed,
resulting in reduced lead time, better descriptions of objects and faster sales.

In order to make this process possible Eclipse Modeling Framework was to be used,
because of our prior experience with it. The metamodel were to be developed with EMF,
Model-to-text transformations could be handled with Acceleo and potential model-to-
model transformations could be handled by ATL.

4.8 Prototype and Focus groups

The discussion from the focus groups was summarized in meeting minutes. A prototype
was developed to showcase the general functionality of the MDE solution.

A metamodel (figure 4.3) was created for the prototype. The metamodel allowed
creation of Templates, which was an abstraction of KVDs object templates. Each tem-
plate consisted of a number of Fields. A Template could be created for, for example, a
car. The car could then have the Fields “motor”, “horsepower” and “model” etc.

24

4.8. PROTOTYPE AND FOCUS GROUPS CHAPTER 4. RESULTS

Figure 4.3: The ecore metamodel developed for the prototype.

4.8.1 Implementation of prototype

To demonstrate the MDE approach a tool called OTM (Object Template Manager) was
developed as part of the case study. The tool was delivered iteratively and evolved
through many versions through the course of the project. Focus of the tool was mainly
on the editor and to gain an as accurate representation of the current business model at
KVD as possible, but the tool also had automatic partial code generation to display the
possibilities of MDE.

The OTM was developed from an Ecore model (figure 4.3). Elements were taken
from business domain of KVD and were implemented into the metamodel. After the
metamodel was finished, transformations were written for Acceleo. The initial transfor-
mations only generated SQL-code and the editor provided no possibilities to set SQL-
properties. After weighing pros and cons of having a general editor vs a SQL-specific
one, a SQL-specific one was created with the justification that it would be handled
only by developers of KVD and because of that there would not be any problems with
SQL-syntax.

After the initial model was done, it was demoed for the project team. Based on

25

4.8. PROTOTYPE AND FOCUS GROUPS CHAPTER 4. RESULTS

Figure 4.4: A figure showing the dummy HTML-page with a generated table (”KVDs
skickbedömning”) by the OTM.

the feedback received we decided to re-design the tool. The concept of Model-to-model
transformations was introduced and the pros and cons of another technology (ATL)
were evaluated. We reasoned that a M2M-transformation would provide for a more
elegant MDE-solution but on the other hand it would require another transformation
and possibly more effort put on the end-user. The vision of “one-click-everything-is-
generated” became one step further away.

In order to improve the automation, we investigated the possibility of a script solu-
tion. Apache Ant[23] is used to build Java applications, and was considered as a script
solution but when searching for help on how to use it with modelling we found little doc-
umentation. Apache Ant-scripting for ATL was well documented and proved successful,
alas that help little as long as there were no control for Acceleo or EMF. Eventually, the
ANT-solution was abandoned due to lack of time and our failure to find documentation
on the topic. Instead a Windows batch-solution was created, that automatically copied
the generated files to their respective folders and started a dummy HTML-page (figure
4.4), where the user could see the generated PHP-arrays and SQL-tables displayed as
actual KVD tables. After several iterations of the OTM, it finally generated three PHP-
files and a SQL-create script. These files had been received from KVD and were reverse
engineered. The static code parts were separated from the dynamic parts. Certain dy-
namic areas were, however, too complex to be generated so limitations were made. In the
PHP-files the code being generated was an array that contained the names of the field in
the SQL. The SQL generation on the other hand allowed for more variability. Primary
keys could be set by adding a primary key node in the editor. Default, auto increment
was set by Boolean properties.

The design of the metamodel passed several phases during development. In the
initial design, a Template was represented by a node and under that node each field

26

4.8. PROTOTYPE AND FOCUS GROUPS CHAPTER 4. RESULTS

Figure 4.5: A figure showing a inputModel xmi with Template (Boat and Dumper) and
Field (Warranty, ObjectNr, Hp etc.) instances.

belonging to that Template was represented as a child node. This solution provided,
according to the project team, a good overview of Templates. It was possible to see
which Templates were available in the system and what their Fields were thanks to
the graphical tree-view. One problem with this solution was the duplication of fields.
KVD’s current database structure only allowed one instantiation of each field (i.e. one
field shared many Templates). With that in mind, we proposed another design that
only allowed one instance of each Field. Instead of having fields instantiated for each
Template, Fields where instantiated in one place and then referenced by Templates
(figure 4.5). This created another way of interacting with the OTM. To an extent,
the overview became less obvious since the tree structure for fields was lost. Instead a
Template was represented by a node and its fields were visually represented as an array
in the properties view. On the other, adding and removing fields became quicker for
the user since all fields could be selected from a list view in eclipse. Compared to the
previous version, in which the user needed to create a new field for each Template, this
made re-use of Templates faster.

But a problem for the list view was that, while it worked fine for 10-20 fields, it
would become less viewable once the number of fields got to 200 and above, and the
company at that time was using around 270 fields. This was a limitation in the tool. A
workaround for the problem was, however, to use the search feature of the Eclipse list
view. That combined with the introduction of naming conventions of tools would reduce

27

4.9. DIAGNOSTIC EVALUATION CHAPTER 4. RESULTS

the problem.
The default setting for the Eclipse editor does not allow for setting properties for

multiple nodes at the same time. This could be a serious usability problem, but was not
addressed in the prototype version. A question was posted on the eclipse forums for a
solution and it was answered within days, but the solution was not trivial to implement
and we failed to solve the issue during the time of the project. But to summarize, this
issue is known in the Eclipse modelling community and there is a plug-in fix available
for the Eclipse-crafty.

There was a clear requirement from the company that they needed multilingual sup-
port. They currently used English and Swedish but since they were expanding in North-
ern Europe, they were going to need support for additional languages. This requirement
was however not addressed in the OTM.

The requirement to automatically spread out all files into the right of the system was
demonstrated by the way the OTM generated PHP and SQL-files. With the additional
batch-script the project team got a sense of what a future system could look like, and
they were happy with the result. Of course, since the OTM was only a prototype there
were many features missing from a ready-to-be-released version. Some of these features
were for instance indexing, which was not present at all in the OTM. However, it is
something that could be implemented using enums.

4.9 Diagnostic evaluation

In the following text, the result of each scenario will be described in detail and usability
problems will be discussed. The scenarios, that were tested with a developer from KVD,
can be found in appendix A.1. They will, however, be given by name here for easy
reference: Scenario 1 – Object template from scratch, Scenario 2 – Object template with
similar fields and Scenario 3 – SQL settings.

The user started exploring the properties right away. It was apparent that he was
used to the eclipse environment; there was no need for a general introduction to Eclipse.
When naming elements that had “-” characters he naturally removed them. We believe
this was because he was used to SQL-syntax and understood that that is an illegal
character for SQL. Once the test had started it became clear that the instructions were
lacking – there was no explanation about the concept of Templates. This was blurry to
the user.

Without being instructed to do so the user created subtemplates in order simulate
inheritance. The user was instructed to create a Minidumper based on the earlier created
Dumper, and thought that this was something that should be done using inheritance.

There was confusion about the types. A reason for this was because the instructions
for adding types were located at the end of the manual. Because of this the SQL code
generated contained errors. The user managed to create primary keys by following the
manual.

After all files had been generated the user discovered that there was a bug in the
system. All PHP-files were identical except for the array. This error could be traced to

28

4.10. CODING CHAPTER 4. RESULTS

a copy and paste error and was addressed in the post analysis.
There were additional properties that the user requested. Among these was the

ability to set indexes on fields. In future releases this is something that could be addressed
using enums in a similar fashion that Tables are selected for primary keys.

Scenario 1 was completed in 4 min. The user got confused about Allfields. The user
did not grasp that concept from the instructions given. Here the user received help in
order to finish the scenario. Also there was some confusion with siblings and children. It
was not apparent to the user that he needed to right click and select node under which
he wanted to create a child. Also it was not obvious that a sibling creates a parallel
element to the selected node. The user created a group under the wrong node but solved
that problem by moving (clicking and dragging) the node to the right place. The error
was that the user created a Template group instead of a Template for Dumper. The user
needed instructions to correct this error because the instructions given in the manual
was not enough.

Scenario 2 was completed in 2 min 25 s. Here, inheritance i.e. a sub-template, was
created under a template (Dumper/Minidumper) and used to complete the task. It was
not the original solution to the scenario but was acceptable as an alternative solution.
A source to the idea behind inheritance could have been that the instructions stated
that a Dumper should be “based on” a Minidumper. This led the user to interpret that
Minidumper should inherit from Dumper but there was not supposed to be an actual
inheritance because Minidumper did not have all fields that Dumper had. Therefore,
the solution was erroneous; a better solution would have been to create a new Template
for Minidumper, instead of a sub-template to Dumper.

Scenario 3 took 13 min 40 s to complete. This was the scenario that took the longest
time to complete but it was also the test that required the most configurations. The user
was questioning why Object number was to be used as a primary key but accepted it as
a when explained to that it was used as such in the test environment. The user tried to
generate code in this scenario (which was not part of the scenario) and that added to the
resulting test time. The user had problems navigating between the folders in the Eclipse
workspace, especially the Acceleo-files that were located in a separate package in the
Acceleo project. The user tried to generate files before having set any types and because
of that the dummy page displayed errors. The user got instructions that he needed to
set types and was directed to the help section covering that area. After leaving the
input.xmi-file to view the generated files, the user had problems navigating back to the
input-model and needed instructions to find it. There was confusion about FText type,
but the user was told that it was a long string which was enough for him to comprehend
the concept. Also, the user found it odd that there was no bool. Primary keys were
created without errors.

4.10 Coding and Strength and weaknesses table

The interview transcript from the diagnostic evaluation was coded into categories (such
as productivity and maintainability). The transcript was colour coded with a colour

29

4.10. CODING ANALYSIS OF D.E. CHAPTER 4. RESULTS

representing a category. The aim was to find common themes and issues and an in
depth coding analysis is found on page 36 chapter 5.6.

Strength Impact

Features 1. Creating sub-templates Mid

Familiarity 2. Eclipse environment High

Learnability 3. Primary keys were created without errors High

Tool support 4. Drag and drop Low

Table 4.1: Strengths gathered from the diagnostic evaluation of the OTM.

Weakness Impact Workload

Learnability 1. Concept of Templates Low High

2. Confusion about types. Mid Mid

3. Confusion about All fields Low Low

4. Created a Template group instead of a
Template

Low High

5. Lots of configurations needed for sql High High

6. Difficult navigating between folders Low High

7. Different structure in diff. technologies Mid High

Authenticity 8. Object number should not be used as a
primary key

Low Low

Features 9. No boolean types Mid Mid

10. No indexes Mid Mid

Vulnerability 11. SQL generated contained errors High High

Familiarity 12. FText type unfamiliar Low Low

Expressiveness 13. Created subtemplates in order to simulate
Inheritance

Low High

Tool support 14. Right click to select node Low High

15. Difficulties navigating between models
and files

Low High

Table 4.2: Weaknesses gathered from the diagnostic evaluation of the OTM.

Tables 4.1 and 4.2 shows the, from the diagnostic evaluation, encountered strengths
and weaknesses. Impact means the issue’s estimated effect on the quality of the finished
application. Workload is an estimate of how difficult we believe it would be to address
the issue.

30

4.11. FOCUS GROUPS EVALUATION CHAPTER 4. RESULTS

The result of the qualitative analysis was a total of 15 weaknesses compared to 4
strengths. These weaknesses would need to be addressed for another iteration of the
OTM. Further discussion about each specific weakness will reveal its seriousness and
whether it could be fixed or not.

4.11 Focus groups evaluation

This method led to evaluation outcomes that were used to draw conclusions. In prac-
tice, the focus groups resulted in written notes concerning feedback of the prototype
(for example, the prototype tree structure needs to have a separate parent node for
“groups”), new requirements (for example, multilingual support) or technical knowledge
(for example, information about KVD’s database structure from the lead programmer).

31

Chapter 5

Discussion

Based on the single case study performed in this thesis, general conclusions cannot be
made. We would still like to discuss some issues and lessons learned that we believe
could be common for SMEs that are thinking about implementing an MDE approach.
Based on these assumptions we find it reasonable to believe that the obstacles present
at KVD could be present in other SMEs:

• No previous experience of MDE.

• Works with legacy system that has maintenance issues.

• Small IT team (around 10 employees)

• Web based E-commerce architecture.

• Works according to a MVC pattern (figure 5.2).

5.1 Why KVD is a representative company for SMEs

They are working according to MVC. This is a very common development pattern in
software engineering. They are also using object-oriented PHP which is a widespread
web programming language. Their business model of online auctions is similar to other
businesses such as Tradera, Ebay and uBid.

5.2 What productivity means

An area commonly claimed to be improved by MDE is productivity. But what is actually
meant by productivity? Because MDE is a rather extensive term, it is important to
specify just what parameters are improved when talking about productivity. There is
the possibility of improving productivity in a process sense; through raised abstractions
faster implementations due to models and code generation. There is also the matter of

32

5.2. WHAT PRODUCTIVITY MEANS CHAPTER 5. DISCUSSION

improved productivity in the sense that the resulting DSL, i.e. the application developed
by an MDE approach, makes tasks easier to perform.

It is difficult to separate these two situations. We would like to make the distinction
of a process improvement and product improvement.

The process improvement is perhaps the most interesting area of productivity. Can
MDE shorten the time it takes to develop software? As an example, we could look at a
banking system. How much quicker would it be to develop this system using an MDE
approach compared to a traditional development method? In this case, productivity
concerns the efficiency of the team to deliver the finished software.

Product improvement, on the other hand, is the finished software product and to
what extent that product improves tasks at a company. Following the banking example,
the product would be the finished banking system. Productivity in this case refers to
how much faster clerks can handle customer services compared to the banks old way of
working (perhaps they were using a completely analogue system, to make an extreme
example). In this case we could expect rather drastic productivity improvements. We
suspect that these are the productivity improvements that DSLs often refer to, when
claiming that productivity was increased with 500-1000%.

We would like to argue, however, that such drastic productivity improvements are
not unique to MDE. Take the banking example; the bank would be likely to expect
a drastic product productivity improvement regardless of what software development
methodology was used to deliver their software. Because these product productivity
improvements are not unique to MDE, we believe that they therefore cannot be used as
an argument to motivate an MDE implementation.

In this thesis, we examine both process and product improvement but would like to
make clear that it is the process improvement that is the deciding factor when it comes
to adopting MDE. The product improvement is still necessary to examine, however,
because if there is no product improvement then most companies would not likely want
to use the MDE approach. If there is a possible product improvement then that is not
enough to justify an MDE adoption, because a product improvement would be likely
with another software development methodology as well.

Mohagheghi and Dehlen[2] talks mainly about process improvements, how much
quicker is an application to develop with MDE, although they argue that these measure-
ments are difficult to make. To make a fair comparison one would have to develop two
applications, one with the current process and one with MDE.

Kelly and Tolvanen[10] writes that a development task that earlier took days, using
code concepts, can be done in minutes with DSM. We would argue that this is an unfair
comparison. Of course a DSL will be more efficient to a third generation programming
language. The DSL is tailored to the domain and should be more efficient, the 3rd
generation programming language can be used in ANY domain. Is it reasonable two
make a comparison between the two at all? We would like to suggest that a fairer way
of comparing would be to take the DSL and put it up against an application developed
by a 3rd generation language. As an example, compare a DSL. It would be interesting
to see if the productivity gains would still be as drastic. For instance they have an

33

5.3. HAS MDE MISSED THE BOAT? CHAPTER 5. DISCUSSION

example of a mobile phone application. Instead of comparing the DSL with a 3rd
generation language, the application should be compared with an editor created with a
3rd generation language. This editor should contain the same concepts as the DSL.

With this reasoning in mind we further suggest that it is the process that is the
interesting area of improvement for MDE. Product improvements can be interesting to
look at if the comparison is fair, i.e. the two parts being compared share a similar
domain. Comparing a DSL to a 3rd generation language is like comparing a samurai
sword to a Swiss army knife. The former is a highly specialized tool and the latter a
multipurpose tool.

Since we are talking about two different things, it would perhaps be appropriate to
make a silly metaphor – is the trip shorter or is the destination more pleasant? The
metaphor as stated is not mutually exclusive, but the trip should be shorter and the
destination more pleasant to be able to recommend MDE.

5.3 Has MDE missed the boat?

In October 2011 a presentation with the title “Why did MDE miss the boat?” appeared
online. The presentation was unfortunately not available at the time of writing, but
summaries were and the lively discussions followed in the modelling community[24].
From these summaries and discussions the following text was created. We reasoned that
it would be of interest to the thesis to bring up these current reflections on MDE.

The main conclusion from this presentation is that MDE in terms of adoption in
industry and application on large scale projects has reached a halt. Bezivin argues that
in that sense MDE has failed and the promises made 10-20 years ago has not been
fulfilled.

One of the main arguments was that MDE has not had a killer app, an applica-
tion that fully showcases the capabilities of a modelling approach. As a comparison,
the first object-oriented “killer app” by Tom Love was mentioned as a landmark for
the widespread adoption of object-oriented programming. He created a 220 line object
oriented Smalltalk-80 prototype, that was estimated to have needed 10000 lines of FOR-
TRAN code[25]. A similar killer app would help to bring out MDE in the light and
promote widespread adoption.

There are too many definitions and theories (MDE, MDSD, MDA, MDD). We find
it difficult at times to distinguish between these definitions and we find it reasonable to
believe that MDE-outsiders are confused by the numerous acronyms.

UML is often used as a foundation for MDE but UML is a loosely defined language
that is too complex and too big. We did not experience this as a major problem in the
OTM mainly because Ecore uses its own language based on the MOF and not UML.

Drastic conclusions should not be drawn from a single unpublished presentation,
but we find the discussion that it spurs interesting. Many MDE practitioners admit
that they recognize the criticism from the presentation and there is an unscientific but
unmistakable sense of resignation in these comments. Tolvanen[10] adds to the debate
and agrees that “the idea of models transformations between CIM, PIM, PSM and code

34

5.3. HAS MDE MISSED THE BOAT? CHAPTER 5. DISCUSSION

Ruby On

Rails

M2T

(Acceleo)

EMF

M2M (ATL)

Forum topics

Figure 5.1: Topics distribution per technology.

has not happened. ” while he does not agree that MDE has failed.

Developers & MDE

After the presentation of MDE fundamentals, the reaction from the developers was
curious albeit somewhat questioning towards how to actually use it. In that sense MDE
is very different from a new attractive programming language. MDE does not appeal
to the developers imagination in the same way, the concept is more abstract and does
not spur the same “i-got-to-try-that-when-I-get-home” reaction that perhaps a Ruby-on-
rails presentation. If we look at the number of topics started on the Eclipse modelling
forums and the railsforum.com we can see that, as of the 3rd of November 2011, 1256
topics were started related to EMF, 1373 related to M2T, 2255 related to M2M. On the
railsforum.com 38340 topics in total were related to Ruby on Rails development (see
figure 5.1). This is an unfair comparison in many ways (perhaps there are other forums
having more traffic) but what we like to suggest with this simple example is that MDE
is not receiving a fan base online in the same way as Ruby on Rails. But parameters
as number of members that the forums attract and number of topics are interesting to
prove our point. A more active forum signals a more active technology.

We suggest that MDE is not developer-centric. MDE appeals more to those that
want to achieve engineering discipline. Is that necessary a bad thing? No, but MDE
lack of appeal to developers is a major liability to its widespread adoption.

35

5.4. DOES MDE IMPROVE... CHAPTER 5. DISCUSSION

5.4 Does MDE improve understandability?

An interesting discovery made, was that of understandability. According to the IT man-
ager at KVD, the model would not be helpful in discussions with stakeholders outside of
IT. He himself had troubles understanding the class diagrams. The IT lead, on the other
hand found the model understandable and helpful. They both agreed, however, that a
model could help improve the understandability of a system among IT developers at the
company. This is contrary to what most other papers about MDE report concerning
understandability[14][2].

There may be a potential issue here. MDE might not be exposed to many other
stakeholders than developers or people with modelling know how. If that is the case then
the benefit of improved understandability among stakeholders might not be a benefit at
all. But this is just a speculation based on the experience from this case study; it would
require more investigation before any conclusions could be drawn.

5.5 Advantages and disadvantages of MDE at KVD

Advantages

Platform independence would be achieved by keeping templates in a platform indepen-
dent model. In other words, the object template domain would be separate from the
technical platform. This would support future technology migrations.

Disadvantages

There would have to be MDE training of the project members. This comes with costs
and time delays. A 2-day Metaedit Proof of concept workshop for 5 attendees costs
3000�[26]. A 2-day eclipse modelling course costs 1200� per person[27].

5.6 Coding analysis of diagnostic evaluation

The following text refers to table 4.1 and 4.2 in the results chapter.

Strengths

S1: Although, not fully implemented in the OTM prototype, subtemplates are repre-
sented in the editor and were used by the user during the diagnostic evaluation. While
it is a strength that it is possible to create subtemplates in the editor, this, however, led
to some misunderstandings which are described in W13.

S2: The fact that the intended user group is familiar with the Eclipse environment is
an important strength in favour of the OTM. The advantages of this could be observed
in the diagnostic evaluation in means that the user got started quickly and finished the
scenarios without much help from the instructor.

36

5.6. CODING ANALYSIS CHAPTER 5. DISCUSSION

S3: The user created primary keys without any errors. This was an unexpected but
positive result because we had estimated this part to be one of the more complex and
unintuitive, since primary keys require creating a separate node that points to a table.

S4: Drag and drop interfaces are common place today, and thus it is appropriate that
Eclipse supports it. Template, sub-templates and Template groups can be rearranged
and duplicated by drag and drop actions. The user benefited from this feature in scenario
1 when a node, misplaced by the user, needed to be moved.

Weaknesses

W1 is a learnability issue that will reduce with time. The more the user gets accustomed
to the tool, the more natural the concept of Templates will become. Perhaps this issue
could be overcome with a WYSIWYG-editor, i.e. if the editor was further developed,
for instance if the user could see the Template being edited instead of an abstract tree
view, it would be easier for the user to understand the concept of Templates.

W2: Type definition is not intuitive and because of that the user had problems
setting types. Perhaps this could be addressed by having types as a reference (similar
to All fields) instead of containment. That way a type would be represented in the
properties view instead of as an individual node. The change would require modifying
the metamodel and updating transformations.

W3: The user got confused by template group All fields. The way All fields work
is as a Template group that points to the fields that should be in a Template. We see
this as having low impact on the OTM and expect the issue to decrease with increased
experience of the tool.

W4: The user created a template group instead of a template which lead to an
erroneous result. We could argue that this was a result of unclear instructions but on
the other hand it could be seen as a usability problem. Well designed interfaces today
does not need documentation to explain how they should be used, they are often intuitive
enough for the user to start using them right away. If this issue were to be solved in that
sense the editor would need to be redesigned, which we estimate to have a high workload.
Finally, it was out of the scope for this prototype to have that level of intuitiveness, so
the impact for this issue was estimated to be low.

W5: SQL configurations needed many parameters to be set. This was an expected
issue and the user needed help finishing scenario 3. A way to overcome the issue would be
to somehow transfer some of the manual settings to the transformations. For instance,
in ATL there could be a type check on the input of a field that would automatically set
an appropriate type. This, however, is not possible in the current version of the OTM
because input is handled outside in another web based system. Also, other SQL settings
such as “auto increment” and “default” are difficult to automatically set in ATL because
there are no general rules to when such settings are set and when they are not. Alas,
it will be difficult to remove the manual setting of SQL parameters and we estimate
a high workload (if possible) in fixing the issue. We also believe that this issue is a
major disadvantage for the OTM, because it is doing things that can be done in a more
controlled and dedicated way with other tools, namely SQL GUIs.

37

5.6. CODING ANALYSIS CHAPTER 5. DISCUSSION

W6: Difficult navigating between project folders in Eclipse. As the OTM looks today
it consists of a workspace with an EMF project, an ATL project, and an Acceleo project.
This led to the user having problems navigating between the three projects. A possible
fix for this would be to distribute the OTM as a coherent plug-in for Eclipse with folders
organized for models, transformations, and output.

W7: There were different structures in different technologies (ATL, Acceleo and
EMF). This is first of all a problem on the developer side but the results from the
diagnostic evaluation shows that it also has an impact on the user, who had problems
navigating in the Acceleo project. For possible fix, see W6.

W8: Object number as primary key was not an authentic representation of the
company’s current system. The reason that Object number was used as primary key
was to make the scenario simpler to complete. Because the test was mainly concerned
with usability aspects, we reasoned that this was a reasonable simplification but since it
lead to misunderstandings, it would be relevant to create future diagnostic evaluations
in a more authentic (i.e. make sure concepts in a scenario are the same as the ones in
existing systems) way. A fix to the problem would be to create another primary key, for
instance objListaNr, that is authentic to the KVD domain.

W9: The user requested boolean support. This is a valid request, however, in the
target domain of the company there was no Boolean types in the SQL tables. There-
fore Boolean types were left out of the implementation. The workload to implement
this feature would be of medium effort, requiring the adding of a Boolean class in the
metamodel and the creation of related transformations.

W10: There is no support for indexing in the OTM, which was something the user
requested. Indexing was never discussed during the requirements meetings but should be
considered for future versions of the OTM. A possible implementation of indexes would
be using an enum in a similar way that primary key tables are selected.

W11: The Acceleo generated SQL contained errors which lead to the dummy-page
displaying error messages. This is a serious issue and a possible vulnerability threat to
the system. As it is, there is no error checking or validation on the input side. We
thought about using OCL constraints in order to overcome the issue but we decided to
leave that technology out of the prototype in order to be able to finish on time, but
constraints could be a solution in coming iterations. For instance, constraints could be
written to force a field to have a type or to assure that a primary key must exist for
every table.

W12: The user was unfamiliar with a type used by the OTM. The FText type, which
represents the SQL type Text, was not recognized by the user but did not cause much
confusion after it had been described as a long String. We see this issue as having low
impact on the OTM. It could possibly be addressed by naming OTM types exactly as
SQL types, but we believe that it is beneficial to distinguish OTM types from other
domains (by starting each type name with an “F”, for field).

W13: The user created a subtemplate to simulate inheritance, in a case where it was
inappropriate. This resulted in an unwanted result, because the subtemplate inherited
fields that it was not supposed to have. To make this clearer to the user perhaps

38

5.7. VALIDITY OF FINDINGS CHAPTER 5. DISCUSSION

what fields belonging to a subtemplate could be visualized in more intuitive way, for
instance by colour-coding subtemplates and their associated fields. There is, however,
no tool support for such a feature so the expected workload would be high. Also, an
actual inheritance feature is yet to be implemented. As it is now, inheritance is merely
represented in the editor (in the form of subtemplates) – the generated files are unaffected
by inheritance.

W14: The user had problems right clicking on the node for which to create a child
node but we expect this problem to decrease with increased experience of the OTM. A
high workload is estimated in order to overcome the issue because it would mean creating
a custom editor or changing the Eclipse source code.

W15: After leaving the inputModel.xmi view, the user had problems navigating back
to it. This could possibly be addressed the same way as for W6.

It is possible that this form of diagnostic evaluation is more likely to find flaws than
it is to find positive aspects.

5.7 Validity of findings and case study research

A disadvantage of case studies is that there is a lack of comparative sources. When only
one source is investigated, as the case was for our study, we may not draw any general
conclusions. For instance, if the source is a company then we cannot be certain that
the company is representative for all companies of its field. This is one reason why case
studies are sometimes criticized for being of less value than studies that uses multiple
sources.

This issue can, however, be addressed by applying proper research methods [7]. If we
use research methods such as interviews or diagnostic evaluations, then we can assure,
given that the methods are carried out in a scientific manner, a certain validity of the
data gathered and reduce the risk of biased opinions.

Benbasat et al. [28] mentions that a case study is information gathering from few
entities and a lack of experimental control and that description is appropriate for this
thesis. The few entities we had to gather information from were the staff at KVD and
there were few possibilities for experimental control.

A case study often incorporates research methods such as surveys and action re-
search. In our case, the research method of literature study was much used and also an
archival analysis of KVDs current process was made at the start of the project. The
archival analysis meant going through the documentation that KVD had available. The
documentation consisted of internal documents and the information available on their
web page.

When conducting case studies, trade-offs between realism and level of control must
be balanced. It was necessary to reduce the level of realism, i.e. leave out features such
as internationalization, when we created the prototype tool because the complexity of
KVD’s system would not allow a full prototype to be developed in the limited time-frame.

Data was collected in what Lethbridge et al. calls the 1st degree [29], meaning that
we interacted directly with the employees of the company and gathered the data through

39

5.8. HUTCHINSON’S TABLE CHAPTER 5. DISCUSSION

meetings, interviews and observations. There was also data gathered in the third degree
meaning that KVD’s existing system was analysed based on existing documentation, as
described above.

5.8 Hutchinson’s table

From Hutchinson’s table (2.1) we have three areas of interest; productivity, portability
and maintenance. For each of these there are both positive and negative consequences.
In the following section we will discuss how these areas of interest relate to our case
study.

5.8.1 Productivity

Time to develop code The amount of code generation implemented in the prototype was
the code for three PHP-files and a SQL-script. Here we do have increased productivity.
The code generation took around 40 s to be finished. We do not have any data on how
long it took to write those files manually but we assume that it was greater than 40 s.

On the negative side we have the time it took to implement the transformations.
This took approximately 25% (30 days) of the development time and we assume that
the creation of the transformation took longer time than the manual writing of the
original files.

This negative effect reduces over time, the more often the files are generated. These
files were, however, seldom changed and because of that the benefits of code generation
in this case were small.

Time to test code There was no explicit testing as part of the case study, but we
still made the following observations. Hutchinson et al. suggest that the amount of
silly mistakes reduces through code generation. In our experience, silly mistakes were
still prevalent in the code even though code generation was used. These mistakes were,
however in the transformations and once traced and fixed it was only a matter of regen-
erating the code to get rid of them. The models needed to be tested through proof of
concept, i.e. we had to find out if the model could generate the kind of code that existed
in the exemplars.

ROI on modelling effort We did experience the positive effects; it was easy to see
the whole picture and to come up with creative solutions. The negative effect of model
paralysis was on the other hand also experienced, especially after a first iteration of
the system was up and running. We experienced an unwillingness to change the model
that was working, in order to improve it. If this is an issue related to modelling or
development in general cannot be said.

5.8.2 Portability

Time to migrate to a new platform. In the short development time (roughly four months)
that existed we still had the opportunity to experience this parameter. The initial system
had only one model that generated code directly. Eventually, another PSM was added

40

5.9. REFLECTIONS ON THE IMPACT... CHAPTER 5. DISCUSSION

Figure 5.2: Figure of a MVC architecture [30].

for SQL and a PIM was created that only handled the domain of KVD. This was a small
portability problem. We had to move some of the SQL properties to the PSM from
the PIM, but a large part of the structure (concepts such as Fields and Groups) of the
initial model could be preserved showcasing some of the benefits of MDE portability.
Unfortunately, PIM was not as platform independent as preferred: it was cluttered with
SQL-syntax. The reason to do so was because we wanted to have a lot of control over
the SQL in the editor. The editor was created from the PIM. Removing the SQL-syntax
from the PIM would result in an editor that was not able to set properties such as
primary key and auto increment.

5.8.3 Maintenance

Unfortunately we never experienced the prototype’s effect on maintenance due to the
limited time frame of the thesis. The prototype would need to be used in production for
a period of time before such data could be gathered.

5.9 Reflections on the impact of the study at KVD

A main aspect of MDE that remain critical is that you as a developer spend a lot of
time thinking is this feasible/possible to do instead of just doing it. But is this just a
matter of inexperience with modelling or is it really a shortcoming?

During everyday meetings in different workplaces whiteboards are often used to col-
lect and share ideas. The sketches drawn on these whiteboards are often abstract and
can be incomprehensible for anyone who did not take part of the meeting. However, it
is not the whiteboard sketch that matters, it is the collaborative work that led up to
it that matters, and that is valid even for MDE. During the development of the OTM

41

5.9. REFLECTIONS ON THE IMPACT... CHAPTER 5. DISCUSSION

the very fruitful discussions that were triggered by the method itself was perhaps the
greatest achievement. It cannot be said on the other hand, that by using a non-model
driven approach these discussion would have been lacking.

The developers did not find that using models (in terms of Ecore metamodels) would
ease understanding among stakeholders. But as a mean of improving understandability
internally, among developers, they (KVD) were positive of the effect.

42

Chapter 6

Related Work

6.1 Other applications of MDE to e-commerce systems.

WebML is an organization that has developed an UML-like language for development
of data intensive web pages. They have successfully applied model-driven techniques in
web development but are mainly concerned with the construction productivity of the web
page, not the resulting process. The annual Model-Driven Web Engineering Workshop
has been running for seven years and features speeches and workshops related to web
modelling. At the 2011 event Eickhoff et al. [31] wrote an article on how to develop
enterprise web applications proposing a model-driven method. In that research paper
the focus was also on construction rather than process.

Stahl and Völter writes about a Web Application project, developed using MDE(or
rather MDSD, as their definition stands).Infrastructure code requires a lot of time but
is generally repetitive and not very complicated, i.e. it could be generated. 60% to 70%
of modern e-business applications consists of infrastructure code. If some technical ref-
erence implementation has been established the rest of the development will be mostly
copy and paste programming, says Stahl and Völter. This leads to a generative software
architecture, which would require a domain model of the application. Reverse engineer-
ing results in a model that is as abstract as the code, it is hard to create a PIM this
way. Using the PIM, PSM approach there is a risk of inconsistency problems because
the manual change of an intermediate model might not change automatically in a higher
abstraction model. They avoid round-trip engineering instead they use forward engineer-
ing – changes must always be done to the model. They use a PIM that is as abstract as
possible but still transformable into source code. No 100% code generation. While not
impossible, 60% to 80% code generation is more reasonable for AC-MDSD. In the web
application project they create a car-sharing system based on the J2EE framework. The
architectural concepts consisted of presentation, activityController, ValueObject among
other. The generator output was JSP,Struts-Config and Entity Beans.

43

Chapter 7

Conclusions and Future works

7.1 Conclusions

7.1.1 How does the introduction of MDE alter the object template
creation and maintenance process?

The introduction of MDE alters the process in the sense that a change in an object
template now only needs to be done in one place compared to the earlier nine. Templates
are created using a tree structure in Eclipse and not with the existing Filemaker interface.

7.1.2 What performance gain, in record definition and maintenance,
can be achieved by model transformation in e-commerce sys-
tems?

This question remains unanswered since the only test carried out was on the prototype
which was not comparable to the old process. No full tests were possible to be made
and therefore no performance gains could be measured.

7.1.3 Can MDE be recommended as a solution to KVDs current prob-
lem with object template maintenance?

The development of the prototype shows that KVD’s current process could be improved
by using an MDE approach. That does not, however, mean that the change to MDE is
worth the risk. In the case of KVD it was too much of a risk to be recommended.

Our final recommendation to KVD was for them to not adopt an MDE approach.
The main argument for this conclusion was that they could solve their problem with
their current work techniques; MDE was not necessary to solve their problem. This
argument follows the same thinking as the lessons learned presented by Hutchinson et.
al:

[...] if the process already employed by a company is working ’sufficiently
well’, it will be very difficult to introduce as radical a change to that process

44

7.2. FUTURE WORKS CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

as introducing MDE. However, if the existing process is itself a significant
risk to a project, or if that process involves the developers in difficult, time-
consuming and uninspiring activities, then process change in the form of
MDE adoption will be more readily embraced.[4].

During our stay at the company, we did not find any indications that their existing
process1 would be a risk to their projects. Quite the opposite; their SCRUM-based
project process had just recently worked well for their overhaul of the web page and
was thus tried and proven. It could be used, the prototype shows how it could be
implemented, but the actual benefits associated with that is hard to estimate and there
are many risks concerning the inexperience with MDE at the company.

7.2 Future works

Questions remain unanswered: would an MDE implementation go smoother with another
tool (Metaedit+, Microsoft DSL tools) compared with the Eclipse Modeling Tools? Was
the tool we used in itself a reason that led to the fact that an MDE solution could not
be recommended? We have seen research on MDE’s adoption in industry and through
the sheer number of research articles available on the topic we can confirm that there
is an adoption in academia as well. But what would be interesting to see is research on
how popular MDE is outside of these two areas; how big is the user community online?
Does anyone outside industry and academia use MDE? Does MDE appeal to software
development enthusiasts, whose interest is necessary to build a supportive community?

One aspect that interested KVD and that they ensured that they would implement
in coming projects was models. They were referring to the traditional idea of model-
based development but did not fully embrace the MDE approach of developing DSLs
and code generation. Model-based development was already, to an extent, part of their
development process. Many of their projects started on the whiteboard where simple
models were drawn. These models were used to come to agreements on new ideas and
to illustrate points that were hard to express verbally.

The transition is, however, still long to a fully realized MDE approach. Future MDE
tools should investigate the developments process used at businesses today. Since many
already worked with some form of models it is only a matter of getting the model into
the project as a primary artefact. A useful tool would be a whiteboard that transforms
drawings into an initial Ecore-model. A tool is needed that bridges the gap between sim-
ple sketch models and detailed system models. There have been attempts at developing
such tools and we believe that is a step in the right direction. The question to ask is,
if we are using a model in the development why not generate code from it? Well, it is
hard to generate code from a whiteboard, therefore a tool is needed.

1We would like to clarify that existing process in this case means the process of working at KVD
(MVC, object-oriented, SCRUM) not their process of object template management which indeed was a
risk, as explained in section 4.3.

45

Bibliography

[1] A. MacDonald, D. Russell, and B. Atchison, “Model-driven development within a
legacy system: An industry experience report,” in Proceedings of the 2005 Australian
conference on Software Engineering, (Washington, DC, USA), pp. 14–22, IEEE
Computer Society, 2005.

[2] P. Mohagheghi and V. Dehlen, “Where is the proof? - a review of experiences
from applying MDE in industry,” in Proceedings of the 4th European conference on
Model Driven Architecture: Foundations and Applications, ECMDA-FA ’08, (Berlin,
Heidelberg), pp. 432–443, Springer-Verlag, 2008.

[3] M. Staron, “Adopting Model Driven Software Development in industry – a case
study at two companies,” in Model Driven Engineering Languages and Systems
(O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, eds.), vol. 4199 of Lec-
ture Notes in Computer Science, pp. 57–72, Springer Berlin / Heidelberg, 2006.
10.1007/11880240 5.

[4] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empirical assess-
ment of MDE in industry,” in Proceeding of the 33rd international conference on
Software engineering, ICSE ’11, (New York, NY, USA), pp. 471–480, ACM, 2011.

[5] P. Baker, S. Loh, and F. Weil, “Model-driven engineering in a large industrial con-
text — Motorola case study,” in Model Driven Engineering Languages and Systems
(L. Briand and C. Williams, eds.), vol. 3713 of Lecture Notes in Computer Science,
pp. 476–491, Springer Berlin / Heidelberg, 2005. 10.1007/11557432 36.

[6] I. M. Holme and B. K. Solvang, Forskningsmetodik - Om kvalitativa och kvantitativa
metoder. Lund, Sweden: Studentlitteratur, 2nd ed., 1997.

[7] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study re-
search in software engineering,” Empirical Software Engineering, vol. 14, pp. 131–
164, 2009. 10.1007/s10664-008-9102-8.

46

BIBLIOGRAPHY BIBLIOGRAPHY

[8] E. M. Chocano, “A comparative study of iterative prototyping vs. waterfall pro-
cess applied to small and medium sized software projects,” Master’s thesis, Mas-
sachusetts Institute of Technology, 2004.

[9] N. Bevan, “UsabilityNet.” Retrieved October 25, 2011, from UsabilityNet: Diagnos-
tic Evaluation http://usabilitynet.org/tools/diagnostic.

[10] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full Code Gener-
ation. Hoboken, NJ, USA: John Wiley & Sons, Ltd, 2008.

[11] T. Gherbi, D. Meslati, and I. Borne, “MDE between promises and challenges,” in
Computer Modelling and Simulation, 2009. UKSIM ’09. 11th International Confer-
ence on, pp. 152 –155, march 2009.

[12] R. I. Bull and J.-M. Favre, “Visualization in the context of model driven engi-
neering,” in MDDAUI 05, Model Driven Development of Advanced User Interfaces
2005, Proceedings of the MoDELS 05 Workshop on Model Driven Development of
Advanced User Interfaces, Montego Bay, Jamaica, October 2, 2005 (A. Pleuß, J. V.
den Bergh, H. Hußmann, and S. Sauer, eds.), vol. 159 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2005.

[13] M. R. Blackburn, “What’s Model Driven Engineering(MDE) and how can it impact
process, people, tools and productivity,” tech. rep., Systems and Software Consor-
tium, Inc., 2008.

[14] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engineering prac-
tices in industry,” in Proceeding of the 33rd international conference on Software
engineering, ICSE ’11, (New York, NY, USA), pp. 633–642, ACM, 2011.

[15] D. Ameller, “Considering non-functional requirements in model-driven engineering,”
Master’s thesis, Universitat Politècnica de Catalunya, 2009.

[16] OMG. Retrieved November 9, 2011, from http://www.omg.org/.

[17] E. Merks, “The unbearable stupidity of modeling.” Retrieved October 25, 2011,
from http://www.slideshare.net/peterfriese/the-unbearable-stupidity-

of-modeling. Presentation.

[18] T. Stahl and M. Völter, Model-Driven Software Development: Technology, Engi-
neering, Management. Hoboken, NJ, USA: John Wiley & Sons, Ltd, 2006.

[19] J. Nielsen, “Iterative user interface design.” Retrieved October 25, 2011, from http:

//www.useit.com/papers/iterative_design/, 1993.

[20] A. Cockburn, “Using both incremental and iterative development.” Retrieved April
25, 2012, from alistair.cockburn.us http://alistair.cockburn.us/Using+both+

incremental+and+iterative+development.

47

http://usabilitynet.org/tools/diagnostic
http://www.omg.org/
http://www.slideshare.net/peterfriese/the-unbearable-stupidity-of-modeling
http://www.slideshare.net/peterfriese/the-unbearable-stupidity-of-modeling
http://www.useit.com/papers/iterative_design/
http://www.useit.com/papers/iterative_design/
http://alistair.cockburn.us/Using+both+incremental+and+iterative+development
http://alistair.cockburn.us/Using+both+incremental+and+iterative+development

BIBLIOGRAPHY

[21] J. M. Corbin and A. L. Strauss, Basics of qualitative research. Sage Publ., 3 ed.,
2008.

[22] I. Jacobson and P.-W. Ng, Aspect-Oriented Software Development with Use Cases
(Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2004.

[23] A. Ant. Retrieved October 27, 2011, from http://ant.apache.org/.

[24] J.-J. Dubray and J. Bezivin, “Why did MDE miss the boat?.” Retrieved Novem-
ber 02, 2011, from http://www.infoq.com/news/2011/10/mde-missed-the-boat,
2011.

[25] T. Love, Object Lessons: Lessons Learned in Object-Oriented Development Projects.
Cambridge University Press, 1997.

[26] M. Consulting and Training. Retrieved November 01, 2011, from http://www.

metacase.com/papers/Service_Descriptions_and_Pricing.pdf.

[27] E. modeling training. Retrieved November 01, 2011, from http://eclipsesource.

com/fileadmin/doc/2009_course_reg/Anmeldung_EMF2Tage.pdf.

[28] I. Benbasat, David, and M. Mead, “The Case Research Strategy in Studies of In-
formation Systems,” MIS Quarterly, vol. 11, pp. 369–386, Sept. 1987.

[29] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers: Data
collection techniques for software field studies,” Empirical Software Engineering,
vol. 10, pp. 311–341, 2005.

[30] Kohana. Retrieved November 01, 2011, from http://dev.kohanaframework.org/

projects/kohana2/wiki/Kohana101.

[31] C. Eickhoff, N. Geiger, M. Hahn, and A. Zündorf, “Developing enterprise web appli-
cations using the story driven modeling approach,” (Kassel, Germany), University
of Kassel, 2011.

48

http://ant.apache.org/
http://www.infoq.com/news/2011/10/mde-missed-the-boat
http://www.metacase.com/papers/Service_Descriptions_and_Pricing.pdf
http://www.metacase.com/papers/Service_Descriptions_and_Pricing.pdf
http://eclipsesource.com/fileadmin/doc/2009_course_reg/Anmeldung_EMF2Tage.pdf
http://eclipsesource.com/fileadmin/doc/2009_course_reg/Anmeldung_EMF2Tage.pdf
http://dev.kohanaframework.org/projects/kohana2/wiki/Kohana101
http://dev.kohanaframework.org/projects/kohana2/wiki/Kohana101

Chapter A

Appendix

A.1 Scenarios

Scenario 1 – Object template from scratch

You have been asked to create a new object template for the object type Dumper. Since
a Dumper is very different from other object templates, no existing template can be
re-used and therefore the “Dumper”-template must be created from scratch. A Dumper
consists of the following:

• Object number

• Hp

• Year

• CE mark

• Loading cap.

• Color

• 1st wheelpair

• 2nd wheelpair

• 3rd wheelpair

Create a new Template that contains the above fields. For simplicity put them all in
a template group called “All fields”. Refer to the Help section for guidance.

49

A.2. VISION DOCUMENT APPENDIX A. APPENDIX

Scenario 2 – Object template with similar fields

You are asked to create a new template for Minidumpers. It will be based on the Dumper
template but will have some modifications. The Minidumper consists of the following
fields:

• Object number

• Hp

• Year

• CE mark

• Color

• 1st wheelpair

• 2nd wheelpair

• 3rd wheelpair

• AC

• Weight

Hint! The Minidumper should reuse common fields from the Dumper template.

Scenario 3 – SQL settings

The goal of this test is to generate correct SQL syntax from the model. Use the fields
created in the previous scenarios and set a suitable type for each of them. Use the default
properties for the types. Use Object number as a primary key and set its properties
Presentation, List, and Translate to true. Also set its type to FInteger. Create three
primary keys, one for objpres, one for objlista and one for objovers. Set the rest of
its properties as instructed in Set primary key in the Help section. When the SQL-
properties have been set, generate code from the model. The test is successful if at
least one field is generated for objpres, objovers and objlista and each table has Object
number as primary key.

A.2 Vision document

50

OTM - Object template manager
Vision

Version 1.1

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 ii

Revision History
Date Version Description Author

2011-08-15 1.0 Document created. Emil Selmeryd

2011-08-31 1.1 Minor corrections and extended
introduction. Added SQL metamodel.
Added new process figures in 2.3 and 3.3.
New product features. Added chapter 7.

Emil Selmeryd

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 iii

Table of Contents
1. Introduction 1

1.1 Purpose 1
1.2 Scope 1
1.3 Definitions, Acronyms and Abbreviations 1

2. Positioning 2

2.1 Business Opportunity 2
2.2 Problem Statement 3
2.3 Product Position Statement 3

3. Stakeholder and User Descriptions 4

3.1 Stakeholder Summary 4
3.2 User Summary 5
3.3 User environment 5
3.4 Key Stakeholder / User Needs 6
3.5 Alternatives and Competition 7

4. Product Overview 7

4.1 Product Perspective 7
4.2 Summary of Capabilities 8
4.3 Assumptions and Dependencies 8

5. Product Features 8

5.1 Create object templates 8
5.2 Change existing object templates 8
5.3 Delete existing object templates 8
5.4 Generation of O.R.M.-objects 8
5.5 Generation of SQL-scripts 8
5.6 M.V.C. Support 8
5.7 Multilingual 8

6. Constraints 9

7. Appendix 10

7.1 Example of an SQL-script (Model). Extract from kvd_web_utv_2011-08-18.sql: 12
7.2 Example of O.R.M.-object (Model). Objlist.php: 13
7.3 Example of PHP logic (Controller). Switch statement from objectmodule.php: 15
7.4 Example of PHP view (View). Description.html.php-file. 16
7.5 Metamodel example 18

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 1

Vision
1. Introduction

The purpose of this document is to collect, analyze and define high-level needs and features of the object
template manager (OTM). It focuses on the capabilities needed by the stakeholders, and the target users,
and why these needs exist. The details of how the OTM fulfils these needs are detailed in the use-case and
supplementary specifications.

The OTM is a system that will simplify the process of creating object templates. In the current process
there are several tedious tasks associated with modifying. It is the ambition of the OTM to reduce these
steps.

1.1 Purpose

The purpose of this document is to introduce the OTM by specifying its features and its intended usage.

1.2 Scope

This vision document is associated with the general handling of items and object templates and also the
project concerning customer objects (“Kundobjekt”).

1.3 Definitions, Acronyms and Abbreviations

• Items: The items for sale on KVD’s web page.

• Item group: The groups that the items are sorted in. For example: “Personbilar”, “Entreprenad”
and “MC/Moped”.

• Object template: The templates currently used in Kastor for different item groups. The templates
are forms with different sets of fields depending on their item group.

• Kastor: The Filemaker based database that handles all items.

• OTM: Object template manager.

• M.V.C.: Model View Controller, a design pattern in systems engineering that separates logic, GUI
and data storage.

• KVD Web: The collected web business of KVD including kvd.se, kvdauctions.com, m.kvd.se and
“Kundobjekt”.

The picture below describes the definition of Item and Item groups:

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 2

In the following picture we can see a screenshot of an Object template from Kastor of the Item group
“Tunga fordon”:

1.4 Overview

The Vision document will explain the positioning of the OTM, describe the stakeholders and product
features.

In the Appendix there are examples of actual code that the company currently is using. The code examples
are in this Vision document to give a clear picture of the desired output from the OTM. There is also a
simple metamodel in the appendix that serves to give stakeholders an idea of what the final metamodel
could look like. What the OTM’s interface might end up looking like can be seen in the screenshots of the
tree based editor and the GMF editor.

Finally, there is a detailed use case in the appendix describing the process of managing object templates in
the OTM.

2. Positioning

2.1 Business Opportunity

The business opportunity in this case comes from improving the old process for handling object templates.
This will help reduce maintenance costs and lessen the workload of IT personnel. Also, by moving the
process out of Kastor it will reduce some of the traffic and time waste therein.

The main economic benefit comes from the reduced lead time of getting items up for auction. The auction
business requires rapid processes because there is constant flow of incoming and outgoing items. Also, by
improving the current process the risk for auctioning out items under the wrong object template (i.e. giving
an incorrect presentation of items for sale) will be lower.

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 3

2.2 Problem Statement

The problem of Changing an object template.

affects IT Personnel, administrators

The impact of which is Increased lead time.

A successful solution
would

• Reduce lead time

• Improve maintainability

• Shorten the time for getting an
item up for auction

2.3 Product Position Statement

The OTM will help automate the existing process of managing object templates. It will also be developed
by using a MDE approach and can be seen as an opportunity to showcase this development methodology
for future projects.

The current process of getting items up for auction on the Web:

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 4

3. Stakeholder and User Descriptions

3.1 Stakeholder Summary

Name Represents Role

IT Personnel The in-house developers at KVD. Provides expertise regarding
technical issues and questions
concerning KVD’s existing
technologies. Also they are to some
extent involved in the OTM
development.

Buyer The buyer is the person who ordered
the OTM.

Ensure that the project is on budget.

IT Manager Development and managing. Link between all stakeholders. Wants
the project to be a balance between
satisfying the buyer’s demand,
improving existing process and
exploring new technology.

Client The customers who want to auction
items on KVD web.

Different clients might want to have
different object templates, therefore
clients affect the OTM’s
changeability.

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 5

3.2 User Summary

Name Description Stakeholder

Backend
developers

The personnel managing the backend at
KVD. They are the main users of the
OTM.

The IT Personnel are the
stakeholders for this user type.

In future versions there are plans on having users who are less capable and to also support multiple role
privileges (admin, user etc.). As for now, having only Backend developers as users is sufficient.

3.3 User environment

The main environment for the OTM is Eclipse. There are users running Eclipse on OS X and Windows.
The way that users interact with object templates in the current system and in the envisioned system is
illustrated below:

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 6

3.4 Key Stakeholder / User Needs

Need Priority Concerns Current Solution Proposed Solutions

Adoptable object
templates

High It is time
consuming to
change object
templates.

Creating and
changing templates in
Filemaker Pro and
writing
corresponding
scripts.

An Eclipse based
editor that generates
O.R.M.-objects and
SQL-scripts.

Low development
cost

High The buyer has
asked for that
the development
cost of the OTM
is low in
comparison
with other
projects.

The company is
currently working in
an agile fashion using
the SCRUM
methodology. The
technology is object-
oriented PHP
following the M.V.C.
design pattern.

Develop the product
using an agile
methodology and
Model Driven
Engineering.

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 7

Internationalizatio
n

Medium The company is
broadening their
activity into
new countries.
Object
templates must
be multilingual.

Dynamic PHP Model-2-Text
transformation in
multiple languages.

Reduced lead
time for new
items

High The company
wants to
improve process
of getting items
up for auction.

See Adoptable object
templates.

New working
environment (the
OTM) for backend
developers reducing
number of tasks such
as script writing.

3.5 Alternatives and Competition

An alternative to the OTM would be to continue developing Kastor to overcome the problems but the
company wants to move the object template handling out of there. Another alternative would be to replace
the entire infrastructure.

4. Product Overview
The OTM is used as an editor in Eclipse. IT Personnel will be able to use it to construct new object
templates and to make changes to existing ones. Also, database schemas and web interface components will
be generated from these templates.

4.1 Product Perspective

The OTM is a component working with other systems in order to generate content on the web.
Communication with the other systems is handled via O.R.M-objects and SQL. It also generates PHP-
views and logic for display on the web. An overview of the product perspective can be seen in the picture
below:

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 8

4.2 Summary of Capabilities

Object Template Manager
Customer Benefit Supporting Features
IT Personnel will spend less time on
managing object templates .

5.1-5.5

Reduced time to get items up for
auction.

See above.

4.3 Assumptions and Dependencies

The OTM is dependent on the communication with the frontend web page. A solution for this is to have the
OTM generate O.R.M-objects that later can be handled by PHP-code.

5. Product Features

5.1 Create object templates

Via the Eclipse editor it will be possible to create, change and delete object templates.

5.2 Change existing object templates

See above. When changing a template in the editor, a new SQL-script will be created. This will then be
compared with the existing database and only the new changes will be updated. In this way no existing data
will be lost.

5.3 Delete existing object templates

See above.

5.4 Generation of O.R.M.-objects

The OTM will generate O.R.M.-objects from the model to make it easy to display the info online via PHP.

5.5 Generation of SQL-scripts

Since the main storage of data is MySQL, the OTM will generate SQL-scripts that can be run to save a
created object template in the database. The SQL-script is a file with a series of CREATE-statements for
the tables to be created.

5.6 M.V.C. Support

The OTM will generate files conforming to the M.V.C. design pattern. This means the aforementioned
O.R.M.-objects and SQL-scripts that represent the Model part, plus the generation of PHP-files for the
View part and for the logic connecting the Model and the View known as the controller.

5.7 Tree-based EMF editor

The Eclipse Modeling Framework (EMF) supports the generation of a tree-based editor (see Appendix).
This will be the user interface for the OTM. (There is also a possibility to create graphical interface using
the Graphical Modeling Framework.).

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 9

5.8 Multilingual

The OTM will have support for multiple languages and generate necessary SQL-scripts and O.R.M.-
objects.

5.9 Automated installation

By the use of additional scripts, the OTM will be able to automatically install required PHP-files onto the
server and execute necessary SQL-scripts for persistency control. Apart from creating the templates in the
editor, the user will not have to make additional configurations.

5.10 View-control over fields

The OTM has support for controlling which fields are displayed in which web pages. For instance, a field
might not be displayed under some circumstances due to dependencies on language or region. In the editor,
the user can select the view properties of a field.

5.11 Grouping

It is possible to group fields into certain sets of common properties. There is one Shared group that is a set
of fields that are used in all object templates. There is also the possibility to group fields into subgroups
such as “Entreprenad\Väggbyggnadsmaskiner” or “Båt\Segelbåt” that in turn have sub-shared fields that
are used in all instances of a certain subgroup.

6. Constraints

• The OTM should be developed using the Eclipse platform.

• The editor will be created for the Eclipse environment.

7. Precedence and priority
Considering the complexity of the OTM it is necessary to divide the development into three major
milestones:

7.1 Milestone 1 – Basic functionality

• Generation of SQL-scripts
• Generation of PHP code for O.R.M.-objects
• Tree-based editor

7.2 Milestone 2 – Views and logic

• PHP-code for views and logic

7.3 Milestone 3 – Improved automatization and usabi lity

• Fully automated scripts (the OTM will automatically upload PHP-code and execute SQL-scripts to
the appropriate nodes of the system).

• Graphical user interface

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 10

8. Appendix

Figure 1: Example of a tree-based editor.

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 11

Engine

Engine

Year

Year

Brakes

Brakes

Add field

Add scroll list

Add group

Figure 2: A GMF based editor showing the workspace and a tool palette.

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 12

8.1 Example of an SQL-script (Model). Extract from kvd_web_utv_2011-08-18.sql:

Dump of table objlista
--- -----------

CREATE TABLE `objlista` (
 `ObjListaNr` int(10) unsigned NOT NULL auto_incre ment,
 `ObjektNr` int(10) unsigned default NULL,
 `ListNr` int(10) unsigned default NULL,
 `AuktionsTyp` char(60) default NULL,
 `Lagerort` char(60) default NULL,
 `Fabrikat` char(30) default NULL,
 `Modell` char(75) default NULL,
 `Arsmodell` int(11) default NULL,
 `Reservationspris` int(11) default NULL,
 `WebBud` char(5) default NULL,
 `Marknadspris` int(11) default NULL,
 `Status` tinyint(3) unsigned default NULL,
 `HogstaBudBelopp` int(11) default NULL,
 `HogstaBudAlias` char(30) default NULL,
 `Handlaggare` char(5) default NULL,
 `LagstaPris` int(11) default NULL,
 `HogstaPris` int(11) default NULL,
 `LagstaHojning` int(11) default NULL,
 `Visas` tinyint(3) unsigned default NULL,
 `SlagAvgift` int(11) default NULL,
 `SlagAvgiftHandlare` int(11) default NULL,
 `SlagAvgiftMoms` char(20) default NULL,
 `MomsBudgivning` varchar(95) default NULL,
 `UppdatKastor` tinyint(3) unsigned default NULL,
 `UppdatKastorVad` char(80) default NULL,
 `MomsText` varchar(95) default NULL,
 `AuktionStanger` datetime default NULL,
 `AuktionForlangSek` int(10) unsigned default NULL ,
 `AuktionNedrakning` datetime default NULL,
 `HogstaBudTid` datetime default NULL,
 `AuktionStangdTid` datetime default NULL,
 `SlagavgiftText` varchar(255) default NULL,
 `Export` varchar(45) default NULL,
 `Losenord` varchar(45) default NULL,
 `LosenordKrav` tinyint(3) unsigned default NULL,
 `Grupp` varchar(8) default NULL,
 `TimeStamp` timestamp NOT NULL default CURRENT_TI MESTAMP on update
CURRENT_TIMESTAMP,
 `Ikon` smallint(5) unsigned default NULL,
 `Villkor` varchar(90) default NULL,
 `Valuta` varchar(45) default NULL,
 `ObjektUrl` varchar(255) default NULL,
 `ListBenamning` varchar(90) default NULL,
 `VisaObjektKVD` int(10) unsigned default NULL,
 `VisaObjektExport` int(10) unsigned default NULL,
 `ArendeTyp` varchar(45) default NULL,

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 13

 `Finansiering` tinyint(3) unsigned default NULL C OMMENT 'Erbjud ej
finansiering när värde = 0. (False)',
 PRIMARY KEY (`ObjListaNr`),
 UNIQUE KEY `unique_ObjektNr` (`ObjektNr`),
 KEY `FabrikatModell` (`Fabrikat`,`Modell`),
 KEY `Reservationspris` (`Reservationspris`),
 KEY `Lagerort` (`Lagerort`),
 KEY `Marknadspris` (`Marknadspris`),
 KEY `Nedrakning` (`AuktionNedrakning`),
 KEY `AuktionStanger` (`AuktionStanger`),
 KEY `ListaSok` USING BTREE
(`ListNr`,`Visas`,`Status`,`AuktionNedrakning`,`Gru pp`),
 KEY `Fabrikat` (`Fabrikat`),
 KEY `Modell` (`Modell`),
 KEY `Visas` (`Visas`),
 KEY `Grupp` (`Grupp`),
 KEY `Status` (`Status`),
 KEY `AuktionStangdTid` (`AuktionStangdTid`),
 KEY `ListNr` (`ListNr`),
 KEY `TimeStamp` (`TimeStamp`),
 KEY `AuktionsNedrakning` (`AuktionNedrakning`)
) ENGINE=InnoDB AUTO_INCREMENT=96275 DEFAULT CHARSET=latin1
ROW_FORMAT=DYNAMIC;

8.2 Example of O.R.M.-object (Model). Objlist.php:

<?php
/**
 * Defines the Kvd_Model_Objlist class
 *
 * PHP Version 5
 *
 * @category KvdCore
 * @package KvdCore.class
 * @author Erik Hantelius <erik@kvd.se>
 * @license http://trac:8080/kvdcore/license KVD L icense
 * @link http://trac:8080/kvdcore
 */

/**
 * A Kvd_ORM class
 */
class Kvd_Model_Objlist extends Kvd_ORM_I18n
{
 public $db = 'modify';
 protected $table_name = 'objlista';
 protected $table_columns = array(
 'ObjListaNr',
 'ObjektNr',
 'ListNr',
 'AuktionsTyp',
 'Lagerort',

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 14

 'Fabrikat',
 'Modell',
 'Arsmodell',
 'Reservationspris',
 'WebBud',
 'Marknadspris',
 'Status',
 'HogstaBudBelopp',
 'HogstaBudAlias',
 'Handlaggare',
 'LagstaPris',
 'HogstaPris',
 'LagstaHojning',
 'Visas',
 'SlagAvgift',
 'SlagAvgiftHandlare',
 'SlagAvgiftMoms',
 'MomsBudgivning',
 'UppdatKastor',
 'UppdatKastorVad',
 'MomsText',
 'AuktionStanger',
 'AuktionForlangSek',
 'AuktionNedrakning',
 'HogstaBudTid',
 'AuktionStangdTid',
 'SlagavgiftText',
 'Export',
 'Losenord',
 'LosenordKrav',
 'Grupp',
 'TimeStamp',
 'Ikon',
 'Villkor',
 'Valuta',
 'ObjektUrl',
 //'ListBenamning',
 'VisaObjektKVD',
 'VisaObjektExport'
);
 protected $primary_key = 'ObjektNr';
 protected $has_many = array(
 'bids' => array('model' => 'bid', 'foreign_key' = > 'ObjektNr'),
);
 protected $belongs_to = array(
 'objpres' => array(
 'model' =>
'objpres',
 'foreign_key' =>
'ObjektNr'
)
);

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 15

 protected $trans_table_name = 'obj_oversatt';
 protected $trans_columns = array(
 'Objektstyp'
);
 protected $language_key = 'KeySprak';

}

8.3 Example of PHP logic (Controller). Switch state ment from objectmodule.php:

switch ($objpres->Mall) {

 case 1: //01: Personbil

 $view = View::factory(Site::instance()-
>view_path('objectmodules/facts_car'));

 $view->facts = self::getCarFactFields($objpres) ;

 $view->bp_link = self::getBPLink($objpres);

 break;

 case 17: // 17: Tunga fordon

 $view = View::factory(Site::instance()-
>view_path('objectmodules/facts_heavy'));

 $view->facts = self::getHeavyFactFields($objpre s);

 break;

 case 21: // 21: Båtar

 $view = View::factory(Site::instance()-
>view_path('objectmodules/facts_boat'));

 $view->facts = self::getBoatFactFields($objpres);

 break;

 case 2: //02: övrigt

 case 19: //19: entreprenad

 case 23: //23: Husvagn

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 16

 default:

 $view = View::factory(Site::instance()-
>view_path('objectmodules/facts'));

 // TODO Assign facts!

 break;

 }

 $view->objpres = $objpres;

 Kvd_TTL::add('object');

 Kvd_Apc::store($apcName, $view->render(), 15);

 $module = $view;

 }

8.4 Example of PHP view (View). Description.html.ph p-file.

<?php if($site == "mobile") { ?>
<?php echo ___('facts.description'); ?>
< ?php } ?>
<?php if(isset($_GET['allinfo'])) { ?>
<?php echo ___('facts.facts'); ?>
<?php } ?>
<?php
echo '<p>'.implode(', ', $fields['info']).'</p>';

if(implode(', ', $fields['equipment']) != "")
{
 echo '<h4>'.__('object.equipment', NULL, 'tag'). '</h4>';
 echo '<p>'.implode(', ', $fields['equipment']).' </p>';
}

if(implode(', ', $fields['truck_info']) != "")
{
 echo '<p>'.implode(', ', $fields['truck_info']). '</p>';
}

if(implode(', ', $fields['entrerpenad_info']) != "")
{
 echo '<p>'.implode(', ', $fields['entrerpenad_in fo']).'</p>';
}

if(implode(', ', $fields['Batteri']) != "")
{
 echo '<h4>'.___('object.battery').'</h4>';
 echo '<p>'.implode(', ', $fields['Batteri']).'</ p>';

OTM - Object template manager Version: 1.1
Vision Date: 2011-08-31
Draft

 KVD, 2011 17

}

if(implode(', ', $fields['Rototilt']) != "")
{
 echo '<h4>'.___('object.roto_tilt').'</h4>';
 echo '<p>'.implode(', ', $fields['Rototilt']).'< /p>';
}

if(implode(', ', $fields['stated_dimensions']) != " ")
{
 echo '<h4>'.___('object.transport_dimensions').' </h4>';
 echo '<p>'.implode(', ', $fields['stated_dimensi ons']).'</p>';
}

if(implode(', ', $fields['comments']) != "")
{
 if(Site::instance()->name == 'main'){
 echo '<span
class="graytitle2">'.___('field.object.Varderingsma nKommentar_facts').'';
 if (!isset($_GET['allinfo'])) {
 echo '<img
src="'.URL::site('assets/images/main/pointer_1.gif').'"
id="ShowAllInfoArrowImg" /><a class="iframe i frame_allinfo"
href="?allinfo=1">'.__('object.allinfo').'</spa n>';
 }
 } else {
 echo '<span
class="graytitle2">'.___('field.object.Varderingsma nKommentar_facts').'';
 }
 echo '<p>'.implode(', ', $fields['comments']).'< /p>';
}

OTM - Object template manager

Vision
Draft

8.5 Metamodel example

 Version: 1.1
 Date: 2011

KVD, 2011

Version: 1.1
Date: 2011-08-31

18

	Introduction
	Theoretical framework
	Model Driven Engineering
	Domain Specific Languages
	Metamodeling

	Domain Specific Modeling
	Eclipse Modeling Tools
	Studies on productivity and MDE

	Method
	Research strategy
	Research procedure
	Research design
	Research methods
	Observations
	Archival analysis
	Literature study
	Current process
	Vision document
	Qualitative Data analysis
	Iterative prototyping
	Proposed process
	Prototype and Focus groups
	Diagnostic evaluation
	Coding
	Focus groups evaluation
	Hutchinson’s table
	Evaluation outcomes
	Strength and weaknesses table
	Conclusions and recommendations

	Results
	Observations
	Archival analysis
	Current process
	Vision document
	Qualitative Data analysis
	Iterative prototyping
	Proposed process
	Prototype and Focus groups
	Implementation of prototype

	Diagnostic evaluation
	Coding
	Focus groups evaluation

	Discussion
	Why KVD is a representative company for SMEs
	What productivity means
	Has MDE missed the boat?
	Does MDE improve understandability?
	Advantages and disadvantages
	Coding analysis
	Validity of findings
	Hutchinson’s table
	Productivity
	Portability
	Maintenance

	Reflections on the impact of the study at KVD

	Related Work
	Other applications of MDE to e-commerce systems.

	Conclusions and Future works
	Conclusions
	How does the introduction of MDE alter the object template creation and maintenance process?
	What performance gain, in record definition and maintenance, can be achieved by model transformation in e-commerce systems?
	Can MDE be recommended as a solution to KVDs current problem with object template maintenance?

	Future works

	
	Appendix
	Scenarios
	Vision document

