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Mats Erik Setterberg
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Abstract
As the requirement for bandwidth continues to increase in the video market, re-
taining the signal integrity becomes increasingly more difficult. For many of todays
commonly used video interfaces, there are devices that can be used to assist in this
matter. However, the use of such a device is only partially documented in the Dis-
playPort specification for the receiving image device, which means that the receiving
side of the video link is free to choose its own implementation. This report presents,
together with background research and design decisions, a suggestion for such an
implementation. This implementation would need to be compatible towards a wide
range of possible video Source devices and DisplayPort cables. This suggestion will
be tested, implemented and verified using the Pulse platform developed by Barco.
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1
Introduction

The video display market today presents a wide range of available display devices
in the form of projectors, TVs and computer monitors. A common factor for all of
these is that they need some kind of interface between the display device and the
video source. A wide range of interfaces are available for this purpose, but with the
introduction of the 4K resolution displays, and with 8K displays on the horizon [6],
the requirements for these interfaces have significantly increased.

1.1 Background

The DisplayPort protocol was first released by the Video Electronics Standards As-
sociation (VESA) in 2006 and has been upgraded to new versions in the following
years with support for extra functionality and higher bandwidths. DisplayPort[7]
is one of today’s more commonly used interfaces, together with HDMI[8] and DVI[9].

After the introduction of version 1.2 in 2009, DisplayPort has supported data rates
up to 5.4 Gbps. Transfers at this speed, especially across slow mediums like copper
which is commonly used in DisplayPort cables, introduces signal attenuation and
noise. This grows with the length of the cable. DisplayPort includes a feature to
counteract some of these problems, called the link training procedure. The purpose
of link training is to acquire the most optimal transmission settings possible for data
transfer between the source and receiving DisplayPort device.

Even if the DisplayPort protocol includes some functionality to counteract these
problems, it might not be able to compensate for all the signal loss in some cables.
An equalizer or re-driver may be added to the video link to help counteract these
problems even further. The use of such a component is partially documented for
the source side of the link [5], but the DisplayPort standard does not include any
implementation guidelines for the use of this component on the receiving side of
the link. Even though there are some parts of the protocol that have taken the use
of such a component into consideration, the receiver side is free to choose its own
implementation. The DisplayPort equalizer and re-driver components are usually
designed with a wide range of settings that are changeable to optimize the compo-
nent towards each specific implementation.
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1. Introduction

1.2 Barco

Barco is a global technology company that develops and manufactures high end
projectors [10]. Barco has a wide projector product range that covers everything
from small venue set-ups all the way to large cinema projectors [10]. The new Pulse
platform from Barco is fully compatible with DisplayPort and uses a DisplayPort
equalizer and re-driver in the DisplayPort video link. As Barco has a main focus
on high quality rather than low cost, their customers expect no problems when
connecting their devices to any image source. Barco is therefore interested in an
implementation that uses the flexibility of the equalizer or re-driver settings to im-
prove the outcome of the link training procedure.

1.3 Goal

The goal of this thesis project is to create an implementation that utilizes the full
flexibility of an equalizer during the DisplayPort link training procedure in order to
improve the outcome of the link training procedure.

If possible, this implementation should also be extended to included real-time mon-
itoring of the video link. If some unexpected event would cause an increase in signal
attenuation or noise over the video link, the equalizer should be configured in real
time to try to prevent the video link from shutting down.

1.4 Delimitations

Due to the limited time span, some delimitations have been set for the thesis project.
• Even though there are several DisplayPort equalizers available on the mar-

ket, only the SN75DP130[2] from Texas Instruments will be tested during this
project.

• The optimized DisplayPort sink equalizer needs to work across a wide range
of sources and set-ups. Because of the limited time budget, the devices used
for testing needs to be limited to one from Nvidia, one from AMD and one
from Intel.

• No new hardware will be added to the Barco Pulse platform.

• The DisplayPort protocol supports custom test patterns to be used during link
trainnig [5], in order to achieve optimal link quality. This feature will not be
investigated.
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1. Introduction

1.5 Ethical Aspects
The ethical aspects of this project has been taken into consideration and concluded
not to be highly relevant.

The final implementation could lead to more DisplayPort cables and sources be-
ing compatible towards more DisplayPort sink devices. This would reduce the total
number of new cables and sources needed to be purchased, where the devices are not
compatible. Over a longer time span, this could reduce the environmental impact
of cables and electronics thrown into the trash. Electronics and cables often contain
a lot of copper, which can then be used for other things.

1.6 Report structure
This thesis report starts with presenting theoretical aspects that is required in or-
der to follow the design decisions during construction of the target implementation.
Block diagrams and flow charts of the implementation will then be presented to-
gether with a walk through of the design decisions made for this implementation.
Test result from the design verification stage will be presented at the end of the
work. Future work will also be discussed.
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2
Theory and technical background

This chapter provides some of the technical background knowledge needed to follow
and understand some of the implementation- and design decisions made during this
thesis project.

2.1 High-speed signal propagation on slow medi-
ums

As signal frequencies move into the gigahertz domain, the use of slow mediums,
such as copper wires or PCB-traces, become increasingly more difficult [11]. If not
handled properly, the medium can distort the signal beyond recognition. [12, 13].
This happens especially if the impedance between two conductors, such as a PCB-
trace and a cable, is mismatched [11]. Impedance is defined as the effective resistance
of an electronic circuit during alternating current [14]. The impedance of a conductor
is represented by the following formula:

Z0 =
√
R + jωL

G+ jωC
, G = 1

R
, ω = 2πf (2.1)

, where R is the resistance, L is the inductance, G is the conductance and C is the
capacitance of the conductor per unit length [15]. f is the frequency of the signal
traveling along the conductor. The resistance, inductance and capacitance depends
on the length, width and height of the conductor [11]. Formulas for calculating these
parameters are different for each signal medium.

As shown by Equation 2.1, the impedance of the conductor depends on the fre-
quency of the signal. On lower frequencies, the impact of the L and C components
of the equation is reduced. This removes a lot of the design challenges that occur
on higher frequencies, where the impedance of the signal path must be taken into
account during the design process. If this is not handled correctly, certain phenom-
ena, such as oscillations or ringing, might start to appear on the signal [13]. The
cause of these problems are often reflections. This may lead to signal distortion so
severe that the receiver might not be able to decode the signal. The frequency of
the signal then needs to be lowered in order to allow information to flow through
the medium.

5



2. Theory and technical background

Reflections occur when a signal moves between mediums with different impedance.
Reflections can be limited by having the same impedance for all used mediums. This
is often referred to as impedance matching [12]. Impedance matching significantly
reduces the amplitude of the reflection generated, and is achieved in different ways
for different mediums. For common interfaces, such as DisplayPort and HDMI, the
cables and PCB-traces are designed for a specific characteristic impedance [5].

Because the reflections and attenuation will distort the signal, DisplayPort has an
assigned procedure called link training. This procedure is intended to compensate
for these signal distortions, and thereby make error free communication possible.

2.2 The DisplayPort protocol
The DisplayPort protocol is published and developed by the Video Electronics Stan-
dards Association(VESA) [16]. The DisplayPort protocol was first introduced with
version 1 in 2006, but new versions were presented by VESA in later years with
version 1.2 in 2009, 1.3 in 2014 and 1.4 in 2016. This thesis project is based around
the DisplayPort version 1.2, which is the only version that will be discussed further
in this report, unless otherwise specified.

2.2.1 Overview
An illustration of a typical DisplayPort link between a source and a sink device is
shown in Figure 2.1. This link consists of the main data link, the AUX channel and
the Hot-Plug Detect(HPD) signal. The HPD signal is used by both the source and
the sink to detect when two devices has been connected together.

Figure 2.1: Illustration of a DisplayPort Link

6



2. Theory and technical background

2.2.2 The data channel
The data channel consists of a total of four high-speed parallel data lanes and handles
all the video transfer over the DisplayPort link. The data channel mainly has four
different settings:

• Voltage swing (VOD)
• Pre-emphasis (PRE)
• Lane speed
• Lane count

The voltage swing is the amplitude of the electrical signal. This varies between
340 mV and 1000 mV for the lowest and the highest setting [2]. The pre-emphasis
parameter adds an overshoot to the signal as it leaves the transmitter. This over-
shoot is added to the signal to compensate for signal attenuation in the medium. An
example of how the pre-emphasis impacts the electrical signal is shown in Figure 2.2.

Figure 2.2: Impact of pre-emphasis on the electrical signal [1].

As both the voltage swing and pre-emphasis is used to control the electrical signal,
there are some combinations of these settings that are invalid, which is represented
in Table 2.1 below.

Table 2.1: Valid combinations of pre-emphasis(PRE) and voltage swing(VOD)[5].

PRE0 PRE1 PRE2 PRE3
VOD0 OK OK OK OK
VOD1 OK OK OK NOK
VOD2 OK OK NOK NOK
VOD3 OK NOK NOK NOK

The lane speed represents the transfer speed of each respective lane. The different
lane speeds defined in the protocol are Reduced Bit Rate(RBR), High Bit Rate
1(HBR1) and High Bit Rate 2(HBR2), presented in Table 2.2

7



2. Theory and technical background

Table 2.2: Different lane speeds available for DisplayPort [5].

Name Abbreviation Speed (Gbps)
High Bit Rate 2 HBR2 5.4
High Bit Rate 1 HBR1 2.7
Reduced Bit Rate RBR 1.6

2.2.3 The AUX channel
The AUX channel is a separate communication channel between the source and the
Sink device. This channel runs at a much lower speed compared to the main data
channel, running at about 1 Mbps [5]. This channel is mainly used during the link
training procedure, before communication over the main link has been established.

2.2.4 DisplayPort Configuration Data (DPCD)
DPCD is a register map used by both the source and receiver device in a DisplayPort
video link. The register map holds information such as current lane count, current
lane speed, pre-emphasis, voltage swing, max supported lane speed by the source
and max supported lane speed by the receiver. There are a lot of other information
stored in the DPCD register. The contents of these registers will be discussed in
further detail when they become relevant later in this report.

2.2.5 Link training in general
When a DisplayPort source and receiving device is connected together using a Dis-
playPort cable, a procedure called Link Training is initiated. The purpose of link
training is to acquire the most optimal transmission settings possible for data trans-
fer between the source and receiving DisplayPort devices. With the increased re-
quirement for bandwidth over the physical layer, the link training procedure becomes
more important to enable good signal integrity for the high speed video signals.
Cables built using slow mediums, such as copper, may introduce noise and signal
attenuation [11]. The vast number of available DisplayPort sources and DisplayPort
cables available on the market makes the number of possible source- and cable-
combinations almost infinite. This means that the sink side implementation of the
DisplayPort link needs to be quite flexible to enable linking with as many other
devices as possible.

An equalizer or re-driver may be used in order to counteract some of these problems.
The use of an equalizer or re-driver is partially documented in the DisplayPort stan-
dard for the source side of the link [5], but there are no implementation guidelines
for the use of this component on the receiving side of the link. Even though there
are some parts of the protocol that have taken the use of such a component into
consideration, the sink side is free to choose its own implementation.

8



2. Theory and technical background

There are a number of different re-drivers or equalizers available on the market
[17, 18, 19]. One of these is the SN75DP130 from Texas Instruments [2]. This
components contains both a reconfigurable equalizer and re-driver. This device is
very flexible due to all its configurable settings. If this flexibility is taken advantage
of and the DisplayPort re-driver is dynamically configured for each setup, the link
training should be able to succeed with a wider range of DisplayPort sources and
cables.

2.2.6 Signal propagation in DisplayPort
The communication link can be set up either as an internal chip-to-chip configu-
ration, or an external box-to-box configuration [5]. The chip-to-chip configuration
is often referred to as embedded-DisplayPort and is used between chips on a PCB.
Box-to-box configurations are often between PCs and monitors, TVs or projectors.
The box-to-box configuration requires a cable to connect each device. Some cables,
if not properly manufactured, can introduce a lot of noise into the video signal. This
noise can originate from external sources, or crosstalk between the conductors in the
cable itself. The PCB traces used between the two chips in a chip-to-chip configu-
ration, or between the DisplayPort transmitter and the DisplayPort connector in a
box-to-box configuration, can introduce signal attenuation. Both of these problems
can be mitigated by the use of an equalizer and a re-driver.

Taking a standard box-to-box configuration as an example, the signal gets affected
in different ways along the signal path. The path mainly consists of PCB traces and
the cable. Starting off at the PCB level, the DisplayPort specification suggest that
the two traces making up the differential pair for each lane should be as close to each
other as possible [5]. This introduces a big capacitive load on the differential pair,
which in its turn also increases the noise resilience of the conductor [20]. In order
to match this differential pair to the correct impedance, the thickness of the trace
needs to be reduced, as this increases the conductor inductance [20]. The down-
side of reducing the width of the trace is that the resistance increases significantly,
which also increases the signal attenuation in the conductor [21]. This is one of the
reasons that the re-driver on the DisplayPort link is placed close to the DisplayPort
connector on the source side. Because the signal gets attenuated between the GPU
transmitter and the connector, the re-driver is needed to make sure that the sig-
nal integrity are as good as possible before the signal starts traveling across the cable.

In the cable, the problem is a little bit different. Here, the distance between the pos-
itive and negative rail of the signal is larger, in addition to the dielectric properties
of the cable materials are much different than that of the PCB. The thickness of the
conductor in the cable is larger compared to the PCB. This reduces the resistance
in the cable, which in turn reduces the signal attenuation. Now, one might think
that this solves a lot of the problems that were present on the PCB, but there still
is a small catch to this. Because the distance between the leads in the cable now
has increased, the conductor capacitance is much lower. This means that the signal

9



2. Theory and technical background

is much more susceptible to external noise. The four lanes in the video link are now
also connected very close together in parallel. This introduces a lot of cross-talk be-
tween the signals. This added noise gets increasingly worse with longer cables. This
is why longer cables does not manage to run at the maximum transfer speeds. The
DispalyPort protocol specifies a maximum cable length of 1.8 meters when running
at 5.4 Gbps [5].

After the cable, the sink device may place an equalizer or re-driver right at the
input connector. The equalizer will then filter out the noise introduced in the cable,
while the re-driver amplifies the signal before being sent across the PCB leads to
the receiver chip.

2.3 The Barco Pulse platform
The hardware platform used for this thesis is the new Pulse platform designed by
Barco. This platform is designed to output video at 4K resolution with up to
120 frames per second. The platform is FPGA-based with an external equalizer
from Texas Instruments. An overview of the platform is shown in Figure 2.3. The
input from the DisplayPort cable is connected directly to the Texas Instruments
SN75DP130 equalizer. This equalizer is controlled via a I2C bus from the FPGA.
The video signal output from the equalizer is connected to a transceiver input on
the FPGA.

Figure 2.3: Block diagram showing the contents of the Barco Pulse platform.

2.3.1 DisplayPort Equalizer SN75DP130
The SN75DP130 contains both a re-driver and an equalizer, as well as some built-in
link training functionality. These features makes the device suitable for both source
and sink implementations. A simplified block diagram of the architecture of the
equalizer is shown in Figure 2.4.

The SN75DP130 is divided into two parts; the equalizer stage and the re-driver
stage. Settings for each stage can be set by changing registers within the device

10



2. Theory and technical background

Figure 2.4: Core of the SN75DP130 DisplayPort Equalizer.

through the I2C interface. The maximum speed for the I2C interface is 100 kHz.
The I2C address of the equalizer is selectable by setting the voltage level on the
ADDR_EQ pin.

The first stage is the equalizer stage, taking the four differential data lanes as inputs.
The purpose of the equalizer is to reduce frequency response deviations and possible
noise introduced to the signal. There are eight level of equalization settings available
for the equalizer input, ranging from level 0 to level 7. Each level corresponds to
an amount of equalization, that is dependent on the link speed. These equalization
levels is listed in Table 2.3. Changing the level of equalization changes the impulse
response of the equalizer stage. See Figure 2.5 for an overview of the frequency
response based on equalization level.

Following the equalization stage is the re-driver part of the component. The re-
driver will output the incoming video data with new pre-emphasis and voltage levels,
specified in the component register map.
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2. Theory and technical background

Table 2.3: Equalization levels of the SN75DP130, based on link speed [2].

Level Equalization
HBR1(dB) HBR2(dB)

0 0 0
1 1.5 3.5
2 3 6
3 4 8
4 5 10
5 6 13
6 7 15
8 9 18

Figure 2.5: Frequency response for different gain levels of the equalizer stage inside
the SN75DP130 [2].

2.3.2 The DisplayPort IP Core

The FPGA hosts a 3rd party DisplayPort IP block. This IP block acts as the
DisplayPort receiver controller and manages everything related to the DisplayPort
video link such as link training, decoding the video signals, bit error counting and
more. The IP block offers a wide range of trigger signals, status bits and other
information available as VHDL ports. These ports will be presented later in this
report when relevant.

Some additional information might be needed that is not available on the VHDL
port. The IP block includes an Avalon MM interface that can be used to read the
internal registers of the IP block. More about the Avalon MM interface is presented
in Section 2.5.

12



2. Theory and technical background

2.4 I2C

I2C is a 2-wire bidirectional interface developed by Philips Semiconductor[3]. The
interface allows communication between one or more master nodes and a set of slave
nodes. The communication bus only consists of two wires, the SDA data line and
the SCL clock line. These two wires are connected to all nodes on the I2C bus. [3].

The bus uses an address priority system. The lower the address number, the higher
priority of the message. Address zero gets the highest priority. A typical I2C transfer
is represented by Figure 2.6 below.

S

1 - 7 8 9 1 - 7 8 9 1 - 7 8 9

P

STOP

condition

START

condition

DATA ACKDATA ACKADDRESS ACKR/W

SDA

SCL

mbc604

Figure 2.6: A typical data transfer over the I2C bus [3].

The transfer is started by the SDA pin being pulled low. This is followed by the 8
address bits that represents the receiver address. The 8th bit in the address byte is
used to differentiate between read and write commands. For every byte sent, there
needs to be an acknowledgement signal from the receiver. This acknowledgement
signal is used by the receiver to signal to the sender that the byte was successfully
received [3].

Followed by the address byte and the acknowledgement bit, the first data byte is
sent. This data byte is also acknowledged by the receiver. The sender can send
more than one databyte to the receiver. This is signaled by a repeated start signal,
followed by the second data byte. This will repeat untill the sender sends a stop
signal. After the stop signal, other nodes can start using the bus, or the same master
can start transmitting data to other nodes with different addresses.

2.5 Avalon Communication Interfaces
The Avalon communication interfaces is developed by Altera with a purpose to
simplify communication between IP blocks within Altera FPGAs[22]. The Avalon
interface can also be connected to external chips outside the FPGA, if the Avalon
interface is supported by the chip.
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2. Theory and technical background

The Avalon Communication interface consists of different sub-protocols, which is
listed below:

• Avalon Clock and Reset Interfaces
• Avalon Memory-Mapped Interfaces (Avalon MM)
• Avalon Interrupt Interfaces
• Avalon Streaming Interfaces
• Avalon Conduit Interfaces
• Avalon Tristate Conduit Interfaces

All of these interfaces are designed for different purposes, but only the Avalon
Memory-Mapped Interface is used for this thesis project. Therefore, only this sub-
protocol is discussed in this section.

The Avalon Avalon MM interface is used in a master-slave configuration, where each
Avalon MM interface contains one master node and several slave nodes. How many
slave nodes that can be used depends on how big of an address area that is reserved
for each slave node.

The mandatory signals in a Avalon MM interface is listed below:
• clk is the communication interface main clock.

• read is a single bit signal which is asserted by the master when it wants to
read from the slave.

• write is a single bit signal which is asserted by the master when it wants to
write to the slave.

• chipselect is a single bit signal that controlled via a separate memory con-
duit block.

• address is the address of the memory location the master wants to read from
or write to. This vector can be of variable bit size.

• readdata contains the data read from the memory specified memory location.
This vector can be of variable bit size.

• writedata contains the data that the master wants to write to the specific
memory location. This vector can be of variable bit size.

A typical Avalon MM read operation is illustrated in Figure 2.7. The read and
chipselect signals will be asserted at the same time as the address for the re-
quested register is presented on the address bus. This will be picked up by the slave
on the following avalon bus clock sycle. The requested data will be presented on the
readdata bus on the next clock cycle.

A typical Avalon MM write operation is illustrated in Figure 2.8. On a rising edge
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clk

read

write

chipselect

address A0

readdata D0

Figure 2.7: Waveforms of a standard Avalon MM read operation.

of the bus clock, the master will present the data and address on each dedicated
vector. The write and chipselect signals will also be asserted. The data will be
stored in the slave memory on the next rising edge of the bus clock.

clk

read

write

chipselect

address A0

writedata D0

Figure 2.8: Waveforms of a standard Avalon MM write operation.
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3
Method

A work plan for the entire project will be created, based on the project description
written by Barco. The steps in this work plan, as well as the equipment needed to
complete the project, is further explained in this chapter.

The first part of the thesis project will be to acquire all the background knowl-
edge needed to design the implementation requested by Barco. This will be done
by studying relevant datasheets and documentation for the related protocols and
components. This includes:

• Technical information regarding the Barco Pulse platform
• The DisplayPort protocol
• The I2C protocol
• Datasheet for the equalizer
• Documentation for the DisplayPort IP core
• Inspecting the already implemented VHDL code

This information is critical in order to create an implementation that fulfills all re-
quirements set by Barco, but at the same time does not interfere with any of the
surrounding components in the system.

During the second part of the thesis project, the focus will be on implementation of
the DisplayPort link training module. The purpose of this module will be to set up
the equalizer correctly during link training. Texas Instruments have published an
application note on the implementation of an equalizer in a sink device[23] that will
be evaluated before starting the design of the VHDL module. The design approach
for this module will be to first draw block diagrams and flow charts for the entire
link training module. The block diagrams should contain all signals in the imple-
mentation, and show where they are connected.

The block diagrams and flow charts should be used as a template when writing the
VHDL code for the implementation. When the VHDL code is complete the design
will be tested through simulations using the Mentor Graphics ModelSim package.
All sub-blocks will first be tested individually before they are connected together
and tested as a complete module.

After testing through simulations, the VHDL implementation will be synthesized
using the Altera Quartus Prime package, before being transferred into the Arria 10
FPGA. Because the DisplayPort IP block will not be available during simulations
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in ModelSim, the rest of the functionality will have to be tested inside the FPGA.
Altera SignalTap II will be used to monitor and verify the correct behavior of the
different signals when the functionality is tested within the FPGA.

When the correct behavior of the design have been fully verified, the quality of the
implementation will be tested by trying to set up a video link against different video
sources. This should be one source from Nvidia, one from Intel and one from AMD.
These sources will also be tested with cables of lengths between 0.8 and 10 meter.

The third and final part of the thesis will be to implement the Link Monitoring
module. The purpose of this module is to monitor the video link, and detect if the
quality of the link starts to degrade. If this situation occurs, the link monitoring
module should try to tune the equalizer to prevent the video link from shutting down.
The design approach for this module will be the same as for the link training module.

3.1 Equipment
A list of the equipment that will be used for testing, simulation and measurements
for this thesis project is listen below.

• Barco Pulse mainboard [24]

• ModelSim - Altera starter edition [25]

• Quartus Prime 16 [26]

• UNIGRAF DPA-400 DisplayPort AUX-channel monitor [27]

• Quantum 980 Video source [28]

• DisplayPort cables of variable types and lengths
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Implementation

The following chapter contains a description of the VHDL implementation that has
been created during this thesis project. Design decisions, background research, block
diagrams and flow charts will be presented for every component.

Figure 4.1 below shows a block diagram that illustrate the entire system. Each
component will be explained in further detail later in this chapter.

Figure 4.1: A block diagram of the entire system.

4.1 Link training in detail
When two devices are connected through a DisplayPort cable, the protocol runs a
link training procedure. The purpose of the link training is to configure the link
with optimal settings for voltage swing, pre-emphasis, lane speed and lane count for
the coming session. The link training procedure is controlled from the source side
of the link, in a master-slave configuration. The receiver, which is the slave, only
responds to commands sent by the source [5].
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Once a DisplayPort cable is connected, the source and sink device will communicate
the supported link speed, lane count, maximum screen resolution as well as maxi-
mum frame rate using the AUX channel [5]. This information will be used to set
the first test parameters for the first section of the link training procedure.

4.1.1 Clock Recovery
The first step in the link training procedure is clock recovery. The purpose of clock
recovery is for the sink to recover the source clock from the data stream. Unlike
HDMI, DisplayPort does not transfer any clock signal across the physical medium.
The source and sink device each has a referance clock of 270 MHz, that gets upscaled
using a PLL [5]. The phase and frequency of the sink PLL will be synchronized with
the datastream during clock recovery. A flow chart of the clock recovery sequence
during link training is presented in Figure 4.2.

The clock recovery procedure starts with the source transmitting a predetermined
test pattern to the sink unit, with the lowest settings for voltage swing, pre-emphasis
level and at the highest supported bit rate. This training pattern will be repeatedly
transmitted for a delay set in a DPCD register. This time is between 100 µs and 16
ms, and is specified in the TRAINING_AUX_RD_INTERVAL register.

The source will then check via the AUX channel if the source and sink has managed
to recover the clock. If the clock has not been recovered, the sink device can request
new settings for voltage swing and pre-emphasis to try for the next iteration. The
training pattern will then be re-transmitted for another 100 us and the source will
again check if the sink has managed to synchronize the reference clocks.

This behavior will loop until the pre-emphasis and voltage swing have changed up
to five times, or until the reference clocks have been synchronized. At the fifth iter-
ation, if the clocks are still not synchronized, the source will reduce the lane speed,
and restart from the lowest level of pre-emphasis and voltage swing, and repeat for
five new iterations.

The source will keep trying to synchronize the clocks until it succeeds, or until it
failed with max voltage swing and pre-emphasis settings on the slowest lane speed.
As soon as the clocks get synchronized, the source will continue to the next step in
the link training procedure.

4.1.2 Channel Equalization
Following clock recovery comes channel equalization. The behavior of this stage of
the link training is very similar to that of the clock recovery stage. A flowchart of
the channel equalization sequence during link training is presented in Figure 4.3.
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Figure 4.2: Flow chart for the clock recovery sequence during link training.

The channel equalization procedure starts out with the source transmitting one out
of two pre-defined training patters, with the same settings used when clock recovery
successfully managed to synchronize the clocks. This training pattern will be re-
peatedly transmitted for the time specified in the DPCD register TRAINING_AUX_RD_
INTERVAL. After the specified delay, the source will check if the reference clocks are
still synchronized as well as checking if the source managed to recognize the trans-
mitted training pattern. If the pattern was not recognized, the source will read new
suggested settings for pre-emphasis and voltage swing through the AUX channel
and re-transmit the training pattern. This will loop until the source manages to
recognize the training pattern, or it has reached five itterations.
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Figure 4.3: Flowchart for the channel equalization sequence during link training.

4.2 Link training module

The purpose of the link training module is to configure the equalizer during the link
training procedure. This section covers the design process of this module. Some of
the background research is first presented together with the general design decisions
, before the design of each submodule is described in more detail.
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4.2.1 Before starting the design
Some research went in prior to starting the design of the link training module. The
first step was to evaluate the suggested application note from Texas Instruments on
implementations of a DisplayPort equalizers in a sink unit.

4.2.1.1 Texas Instruments equalizer application note

Texas Instruments has published an application note on implementation of a Dis-
playPort equalizer in sink units, using the SN75DP130. This application note was
evaluated in order to see if the suggested implementation was suitable for the Barco
pulse platform.

The application note suggests that a constant higher level of equalization should be
used. This way of implementing the equalizer is deemed not suitable, because in the
case where a lower level of equalization is needed, the link training would fail.

For the parameters of the output re-driver stage, the application note suggests that
these should be set to constant values. Because the signal path between the re-
driver and the FPGA are non-changing, the re-driver settings can be tuned for this
particular signal path. This also means that less parameters needs to be changed in
real time during the link training procedure, making the implementation of the link
training module less complicated. This suggestion is therefore deemed suitable.

4.2.1.2 Transfer times

Because the parameters of the SN75DP130 would have to be configured in real time
during link training, the transfer times over the I2C bus was further investigated.

The SN75DP130 supports a maximum I2C bus speed of 100 kHz. To configure the
equalization levels on all inputs, eight bytes would have to be written to the equalizer.
Adding the address byte, start-, stop- and acknowledgment-bits, this means that a
total of 83 bits would need to be written in order to configure the equalization levels.
Write time for the equalizer is calculated by the following formula:

Writetime = 83 bits
100000 Hz = 830µs (4.1)

The datasheet for the equalizer does not specify any setup time for a new equalizer
level, but a setup time of 170 µs was added to the calculation to introduce some mar-
gin. This means that at least 1 ms is required to change the input equalization levels.

4.2.1.3 DisplayPort protocols deviations

During the early research phases of this thesis project, some deviations on the Dis-
playPort protocol was noticed on some video sources. An AUX-channel analyzer
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from UNIGRAPH[27] was used to inspect some of the traffic on the AUX-channel
between the Barco Pulse platform and four different video sources. The tested
sources was the Quantum 980 video source[28], Nvidia Quatro 2200, Nvidia Quatro
1000M and a Nvidia Quatro 5000 graphics cards. While monitoring this AUX traffic,
a couple of deviations from the DisplayPort protocol was observed. Firstly, some of
the video sources did not follow the settings for voltage swing and pre-emphasis sug-
gested by the sink device, as specified by the DisplayPort protocol. See Figure 4.2
and Figure 4.3 for reference. This means that the link training module could not
rely on affecting the output settings of the source device, as this part of the protocol
was not supported by all image sources.

Secondly, some video sources did not follow the delay specified in the TRAINING_AUX_
RD_INTERVAL register, which was set to 16 ms for these tests. The video source
should start transmitting a training pattern, then wait for the delay specified in this
register while the sink device has time to set up the correct settings for the link.
See Figure 4.2 and Figure 4.3 for reference. Some of these sources only used the
standard delay which is 100 µs for clock recovery, and 400 µs for channel equaliza-
tion. As shown by the calculations in Section 4.2.1.2, more time than 100 µs or
400 µs will be needed in order to re-configure the equalization levels during run-
time. This means that if the source unit does not follow the delay specified in the
TRAINING_AUX_RD_INTERVAL register, the link training module would not be able
to reconfigure the equalizer during runtime.

This issue was resolved by using a unit that was known to follow this delay during
testing of the link training module, more specifically the Nvidia Quatro 5000 graph-
ics card. If there was time left at the end of the project, an extra module should be
added to the design that disabled the link training module if the video source did
not follow this delay.

4.2.2 System overview
Initially, there were five parameters available to be changed in order to achieve
optimal transmission settings for the link. These were the pre-emphasis and volt-
age swing at the output of the source transmitter, the equalization level as well as
pre-emphasis and voltage swing at the SN75DP130. Based on the research of the
parameters before starting the design, three of these parameters are no longer viable.
Firstly, the implementation may not rely on affecting the output parameters of the
source device, as this is not supported by all video sources. Secondly, the output
parameters of the SN75DP130 does not have to be changed, as these may be set to
constant values. This leaves only the input equalization levels on the SN75DP130
that needs to be changed in real time during the link training protocol. The lane
count and link speed of the equalizer will also have to be configured. These settings
are not very critical in form of timing, which means they have a lower priority com-
pared to the equalization level.
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The module will reconfigure different parts of the equalizer based on different inputs
from other VHDL blocks in the system. The link training module consist of several
smaller blocks that configures different parts of the equalizer. All modules, and how
they are connected together, are shown in Figure 4.4.

Figure 4.4: Blockdiagram of the link training module

4.2.3 I2C Master
The purpose of the I2C Master is to interface the I2C bus with the implemented
logic inside the FPGA. The I2C master is an IP-block developed by Barco. How the
input signals of the I2C master are used is described in more detail in Section 4.2.4.
Figure 4.5 below illustrates the inputs and outputs of the I2C-master.

4.2.3.1 Input and output signals

The I2C master uses two inout VHDL type signals, SCL and SDA which is connected
directly to two of the pins on the FPGA. These are the clock and data signals for
the I2C interface, which is further explained in Section 2.4.

The input signals of the component is listed below.
• clk is the main clock input. This clock is used to drive the internal state

machine as well as generate the clock for the I2C bus.

• reset is the block reset input. When this signal is asserted, any ongoing
transfer will be stopped, and the component will return to an idle state.

• I2C_Address is a 7-bit vector containing the address of the target I2C com-
ponent connected to the I2C bus.
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Figure 4.5: Inputs and outputs from the I2C Master component

• I2C_WData is an 8-bit vector that holds the data to be written to the target
address.

• I2C_Write is a single bit signal that starts a write transfer from the I2C master
to the target component connected to the bus once asserted. This signal can
be kept asserted to enable burst writes to the I2C component.

• I2C_RRequest is used to request a read from the specified I2C address. This
signal is not used for this implementation.

There are a number of output signals available from the I2C master block.
• I2C_Busy is a signal used by the I2C master to signal that a transfer is in

progress. If I2C_Write is kept asserted, I2C_Busy will be deasserted for one
clock cycle to signal that new data has been read by the I2C master for burst
transfer to the I2C component.

• I2C_RData is an 8-bit output vector that contains the data read through the
I2C bus after a read operation. This vector is not used in this implementation.

This component also has two generic input integers called ClockFrequency and
I2C_ClockFrequency, that holds in input frequency of the input signal clk, as well
as the desired clock frequency for the I2C bus.

4.2.4 I2C bus handler

The purpose of the I2C bus handler is to process all communication between the
different blocks in the link training module and the external equalizer. The bus
handler implements a priority system with mutual exclusion of the I2C bus among
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all the different blocks in the link training module. This functionality is required be-
cause all the different blocks in the link training module trigger off different signals,
and the I2C master does not contain any mutual exclusion or support for receiving
data from several blocks. Preemption is not supported by the I2C bus handler. A
block diagram of the component can be seen in Figure 4.6.

Figure 4.6: Inputs and outputs for the I2C handler block

4.2.4.1 Input and output signals

There are four output signals coming from the I2C bus handler block.

• I2C_address is a 7-bit vector that contains the equalizer I2C bus address.
This address vector is set to a constant value of 0b0101100.

• I2C_WData is a 8-bit vector which is connected to the data input pins on the
I2C Master block. This vector holds the internal equalizer register address as
well as the data to write to each respective register.

• I2C_Write is a single bit signal that is asserted to start a new I2C write. This
signal is kept asserted until all data has been transferred to the equalizer. This
signal is explained in more detail in Section 4.2.3.

• REQUEST_REC is a 5-bit vector, where each bit is connected to different blocks
in the link training module. This signal is asserted by the bus handler to signal
the requesting block that all information needed to start communication with
the equalizer has been received.

There are also five different inputs to the bus handler.

• clk is the 100 MHz clock input for the block.
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• reset is the block synchronous reset signal. When reset is asserted, all inter-
nal signals are set to zero, and the state machine returns to its idle state.

• REQ_DATA is a 119-bit vector that holds the input data to the bus handler.
The bus is set up to allow parallel transfers of bytes from other blocks to the
bus handler.

• REQUEST is a 5-bit vector, where each bit is connected to different blocks in the
link training module. When one of these bits are asserted, the bus handler will
store the data available on REQ_DATA in an internal array, and start a transfer
to the equalizer. This signal is used to set the priority of the different blocks,
where bit 0 has the highest priority.

• I2C_Busy is an input signal coming from the I2C master block. This signal
is used to synchronize transfers of data between the bus handler and the bus
master to enable burst transfers.

4.2.4.2 Block functionality

A flowchart of the I2C bus handler can be seen in Figure 4.7.

The bus handler is implemented using a state machine, that will start when at least
one of the bits in the REQUEST input vector is asserted. Each asserted bit in this
vector indicates that one of the other blocks in the link training module wants to
write to the equalizer. If two or more bits are asserted, the block will give priority
to the block represented by the least significant bit that is asserted. As an example;
if both bit 1 and bit 4 is asserted, priority will be given to the block represented by
bit 1. A transfer example is presented in Figure 4.8.

Based on which REQUEST-bit that is asserted, the bus handler will store data from
REQ_DATA into an array called SENDARRAY, capable of storing up to nine bytes (one
equalizer register address byte and up to eight data bytes). MessageCount is also
updated with the number of bytes that is stored in SENDARRAY. This variable is later
used to determine if all bytes has been transferred to the equalizer.

As soon as all relevant information is stored in the internal registers of the bus han-
dler, one of the bits in the REQUEST_REC vector will be asserted in order to signal
to the requesting block that the data has been received by the bus handler. As an
example; if bit 1 in the REQUEST vector triggered the initial transfer, bit 1 in the
REQUEST_REC vector will be triggered to signal that the data has been received by
the bus handler. This signal will stay asserted for two clock pulses, which is enough
time for the requesting block to react to the signal, but not too long so that the
block can trigger off the same REQUEST_REC signal twice.

When all relevant information is stored in the internal array and the correct REQUEST
_REC bit has been asserted, the transfer to the equalizer will start. The transfer is
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Figure 4.7: Flowchart for the I2C bus handler

started by setting an internal counter to zero, as well as outputting the first byte
in SENDARRAY to the I2C master through the I2C_Data port. Before I2C_Write is
asserted, the bus handler will wait for I2C_Busy to be deasserted, in case a previous
transfer has not yet finished.

When I2C_Write has been asserted, the bus handler will wait for I2C_Busy to be
asserted, signaling that the data has been received and a transfer has been started
by the I2C master. The next byte will then be output to the I2C_Data port. As
long as I2C_Write is kept asserted, the I2C master will continuously transmit the
bytes available on the I2C_Data port. The I2C master signals to the bus handler that
the transfer of the next byte has started by deasserting I2C_Busy for one clock cycle.
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These steps will keep looping until the internal counter reaches the value of MessageCount
−1, in which case I2C_Write will be deasserted and the bus handler will prepare
for receiving the next request from one of the blocks in the link training module.

clk

REQ_DATA[63:56] D0

REQ_DATA[71:64] D1

REQ_DATA[79:72] D2

REQUEST[2]

REQUEST_REC[2]

SENDARRAY[7:0] D0

SENDARRAY[15:8] D1

SENDARRAY[23:16] D2

I2C_Write

I2C_WData D0 D1 D2

I2C_Busy

Figure 4.8: Timing diagram for changing the equalizer link rate.

4.2.5 Equalizer initiation

The purpose of the initialization block is to set up the equalizer with a set of pre-
determined settings as soon as a reset occurs. The settings that was set during
initialization was maximum input equalization, maximum link speed and highest
lane count.

A flowchart for the equalizer initiation module can be seen in Figure 4.9. The block
runs when reset is asserted and will send a series of bytes to the equalizer via the I2C
interface. These bytes are stored in two separate 8-bit arrays with a generic amount
of elements. One of the arrays holds the address for the different target registers,
and the other vector holds the data to be written to each respective register.

The block will start with setting a counter to zero and loop until it reaches the total
number of messages to be sent to the equalizer. This variable is called I2C_Parameter
_count and is also used to set the number of elements in the I2C data and address
arrays mentioned above. When all data has been transferred to the equalizer, a flag
called INIT_OK will be asserted, signaling for all the other blocks in the link training
module that the equalizer setup is complete.
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Figure 4.9: Flowchart of the equalizer initializer.

4.2.6 Equalizer gain reconfiguration

The equalizer gain reconfiguration block monitors the DisplayPort link training pro-
cedure and reconfigures the external equalizer with appropriate settings for the cur-
rent link conditions. This is one of the primary components of the thesis project, so
a lot of thought went in to the design process of this part.

The equalizer gain configuration block is illustrated in Figure 4.10.

Figure 4.10: Illustration of the equalizer gain reconfiguration block.
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4.2.6.1 Input and output signals

The equalizer gain reconfiguration block uses the following input signals.

• clk is the design 100 MHz reference clock.

• reset is the synchronous reset input. When a reset occurs, the design will
return to its start state as well as return all internal variables to zero.

• INIT_OK is a signal coming from the equalizer initiation module. This signal
will be asserted as soon as the equalizer has been programmed with a set of
predetermined settings after a reset has occurred.

• REQUEST_REC is a signal coming from the I2C bus handler. This signal is as-
serted once all data needed for a I2C transfer to the equalizer has been received
by the bus handler. See the I2C bus handler section for more info regarding
this signal.

• core_CR_SL is an 8-bit vector coming from the DisplayPort IP core. The four
least significant bits in this vector holds the clock recovery status for each lane,
while the four most significant bits holds the symbol lock status for each lane.
This information is used to configure the link during link training.

• rx_reconfig is a 26-bit vector coming from the DisplayPort IP core. This
input signal is explained in further detail later in this chapter.

• lane_count is a 5 bit vector coming from the DisplayPort IP core. This vector
holds information regarding how many lanes that are currently active in the
video link.

The block output signals are listed below.

• REQ_DATA is a 40-bit output vector that is connected to the I2C bus handler.
This vector holds the data bytes used to set gain for the different video lanes.
One byte is used for addressing the first gain register in the equalizer, the
remaining 4 bytes holds gain data for each lane.

• REQUEST is used to signal the I2C bus handler that new data is available on
the REQ_DATA vector that needs to be transferred to the equalizer.

4.2.6.2 Block functionality

A flowchart for the equalizer gain reconfiguration block can be seen in Figure 4.11.

The equalizer gain reconfiguration block is implemented using a state machine. Once
a reset occurs the state machine will go to its start state, where it will wait for
INIT_OK to be asserted. Once INIT_OK has been asserted, it will go to its idle state,
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Figure 4.11: Flowchart for the equalizer gain reconfiguration block

where it will wait for a trigger signal from the DisplayPort IP core to signal that
a new link setting has been set, and the equalizer needs to be reconfigured. This
trigger is located within the rx_reconfig vector, called reconfig_analog. All con-
tents of the rx_reconfig vector is presented in Table 4.1. When the DisplayPort
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IP core asserts reconfig_analog, this indicates that the video source has changed
its pre-emphasis and voltage-swing output settings. This signal will cause the state
machine to start the gain reconfiguration sequence.

Table 4.1: Data contents of the rx_reconfig vector, based on current lane count.

rx_reconfig
Signal 4 lanes 2 lanes 1 lane

reconfig_linkrate rx_reconfig[0] rx_reconfig[] rx_reconfig[]
link_rate[7:0] rx_reconfig[8:1] rx_reconfig[8:1] rx_reconfig[8:1]
reconfig_analog rx_reconfig[9] rx_reconfig[9] rx_reconfig[9]
vod_lane0[1:0] rx_reconfig[11:10] rx_reconfig[11:10] rx_reconfig[11:10]
vod_lane1[1:0] rx_reconfig[13:12] rx_reconfig[13:12] Not used
vod_lane2[1:0] rx_reconfig[15:14] Not used Not used
vod_lane3[1:0] rx_reconfig[17:16] Not used Not used
pre_lane0[1:0] rx_reconfig[19:18] rx_reconfig[15:14] rx_reconfig[13:12]
pre_lane1[1:0] rx_reconfig[21:20] rx_reconfig[17:16] Not used
pre_lane2[1:0] rx_reconfig[23:22] Not used Not used
pre_lane3[1:0] rx_reconfig[25:24] Not used Not used

The gain reconfiguration sequence will have up to 16 ms, as set by the TRAINING_AUX_
RD_INTERVAL DPCD register, to find a suitable equalizer setting after asserting the
reconfig_analog signal.

4.2.7 Equalizer link rate reconfiguration
The purpose of the link reconfiguration block is to change the equalizer link rate, to
follow the same speed of the video link. This is implemented by a state machine.

Figure 4.12: Inputs and outputs of the equalizer link rate reconfiguration block.
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4.2.7.1 Input and output signals

The block uses the following input signals.

• clk is the 100 MHz input clock for this block.

• reset is the synchronous reset input.

• INIT_OK is the signal coming from the equalizer initiation block, signaling that
initiation of the equalizer has finished.

• REQUEST_REC is a signal coming from the I2C bus handler signaling that data
has been received and transmission to the equalizer has been started.

• rx_reconfig is a 26-bit vector coming from the DisplayPort IP core. This
vector is presented in Table 4.1.

The link rate reconfiguration block uses the following output signals.

• REQ_DATA is a 24-bit output vector that is connected to the I2C bus handler.
This vector holds the data bytes used to set the link rate for the equalizer.

• REQUEST is used to signal the I2C bus handler that new data is available on
the REQ_DATA vector that needs to be transferred to the equalizer.

4.2.7.2 Block functionality

A flowchart for the link rate reconfiguration block can be seen in Figure 4.13.

Once a reset occurs, the link rate reconfiguration block will return to its start state
waiting for INIT_OK to be asserted. As soon as this happens, the state machine will
jump to its idle state, waiting for a change in the video link rate.

A change in the video link rate is signaled by the DisplayPort IP core asserting a bit
in the rx_reconfig vector, earlier presented in Table 4.1, called reconfig_linkrate.
This will trigger the link rate reconfiguration module to send the new link rate to
the equalizer through the I2C bus handler, using the REQ_DATA and REQUEST signals.

4.2.8 Equalizer lane count reconfiguration

The purpose of the lane count reconfiguration block is to make sure that the amount
of active lanes on the equalizer matches that of the video link.
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Figure 4.13: Flowchart for the equalizer link rate reconfiguration block.

4.2.8.1 Input and output signals

The input signals for the lane count reconfiguration block can be seen in the list
below.

• clk is the 100 MHz system reference clock.

• reset is the block synchronous reset input.

• INIT_OK is a signal coming from the equalizer initiation module that is as-
serted when the equalizer is programmed with a set of predetermined settings
after a reset occurs.

• REQUEST_REC is a signal used by the I2C bus handler, signaling that data has
been received and a transfer to the equalizer has been started.
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• rx_lane_count is a 5-bit vector coming from the DisplayPort IP core. This
signal holds information about how many lanes that is currently active over
the link.

The lane count reconfiguration block only uses output signals that are connected to
the I2C bus handler.

• REQ_DATA holds data to be transferred to the equalizer over the I2C bus.

• REQUEST is asserted to let the bus handler know that there are new data ready
to be transferred to the equalizer via the I2C bus.

4.2.8.2 Block functionality

A flowchart for the lane count reconfiguration state machine can be seen in Fig-
ure 4.14.

Figure 4.14: Flowchart for the lane count reconfiguration block.

Since there is no trigger signal dedicated for lane count reconfiguration, like the
previously mentioned reconfig_linkrate and reconfig_analog used in the other
modules, a slightly different approach was used for this block. This block monitors
the output signal from the DisplayPort IP core called rx_lane_count. Once this
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signal changes value, the new lane count will be transferred to the equalizer.

4.3 Nios II core

The Nios II core[29] is a soft processor provided by Altera as an IP block to be used
within the FPGA. In this project, the Nios II core is used to acquire data from the
DisplayPort IP core internal registers via the Avalon MM interface, which is not
available on any of the IP core VHDL signal ports. For more information regarding
the Avalon MM interface, see Section 2.5. The implementation in this core is written
in the C programming language.

Prior to implementing the link training module, the Nios soft processor was already
used to run a monitoring function for the DisplayPort IP core. The functionality
of the monitoring function is unknown, but the documentation accompanying the
DisplayPort IP core states that the monitoring function is run at least once every
50 ms. This requirement was taken into account when additional functionality was
added for the link monitoring module.

A flowchart of the Nios II program can be seen in Figure 4.15.

After a reset, the Nios core runs a setup function for the DisplayPort IP core. The
behavior of the setup function is unknown. When setup is complete, the program
enters an infinite while-loop, where the main program code is placed. The Display-
Port IP core monitor is one of the functions that is called in this while-loop.

The additional code that is added is the reading of the internal DisplayPort IP core
registers. This is done by using a function provided in one of Altera’s libraries for
the Nios core called IORD. The data exported from the DisplayPort IP core through
the Avalon MM interface are clock recovery information, symbol lock information
and bit error counters for all lanes.

To export the data to the VHDL domain, a separate VHDL component is written,
called the MemoryReMapper. This component is further explained in Section 4.4.
The data is written from the Nios processor to the MemoryReMapper using the IOWR
function, defined in the same library as the previously mentioned IORD function.

4.4 MemoryReMapper

The purpose of the MemoryReMapper component is to act as a bridge between the
Avalon MM communication bus and the rest of the VHDL-implementation.

38



4. Implementation

Figure 4.15: Flowchart of the Nios II soft processor program.

4.4.1 Input and output signals
The input signals for the MemoryReMapper can be seen below.

• avalon_mm_clk is the Avalon MM bus clock. This signals is used as the block
main clock input.

• avalon_mm_address holds the address for the register where the Nios core
wants to write.

• avalon_mm_read will be asserted if the Nios core wants to read data from the
MemoryReMapper. This signal is used in this implementation.

• avalon_mm_write will be asserted if the Nios core want to write data to the
specified address.

• avalon_mm_writedata holds that data that is to be written to the Memo-
ryReMapper.
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The remapper outputs the data received on the Avalon to the following output pins.
• dp_sink_CR_SL holds the clock recovery and symbol lock data for each lane.

• dp_sink_BER_0_1 holds the bit error counters for lane 0 and lane 1.

• dp_sink_BER_2_3 holds the bit error counters for lane 2 and lane 3.

4.4.2 Block functionality

The MemoryReMapper will monitor the input address from the Avalon MM bus.
When the address is within the memory area dedicated to the MemoryReMapper
and the Avalon MM write signal is asserted, data will be read from the Avalon data
bus and output to the correct vector. This behavior is demonstrated in Figure 4.16.

Figure 4.16: Flowchart for the memory remapper.

4.5 Link monitor module

The second implementation of this project is the link monitoring module. The pur-
pose of this module is to monitor the quality of the video link during runtime and
prevent the link from shutting down. The initial idea for this module was to monitor
the bit error rate for all lanes on the DisplayPort communication link. If any of the
error values started to increase in value due to some unknown reason, the goal was
to try to reconfigure the equalizer to compensate for the added errors, before the
link was shut down.
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4.5.1 Before starting the design
A set of tests was set up before the design of this component was started. The goal
was to see how the the link reacted to bit errors. It was quickly discovered that
the DisplayPort IP core took action to correct for the bit errors before the bit-error
registers was updated. This was often in the form of shutting down the link. There
was no way to control this behavior of the DisplayPort IP core.

Because of the delayed update of the bit-error rate registers, combined with the slow
bus speed of the I2C interface, there was no time available to reconfigure the equal-
izer in time to compensate for the bit errors before the DisplayPort IP core shut
down the video link. Because of this, the link monitor module was not implemented.

41



4. Implementation

42



5
Results and discussion

This chapters covers some of the main results from this project, as well as some
discussion and future work that can be based off this project.

5.1 Design verification
Every submodule of the link training module was first tested and verified individ-
ually. The submodules were then connected together and simulated as an entire
unit. The link training module was finally tested within the FPGA together with
the DisplayPort IP core as soon as the simulations showed correct behavior.
Figure 5.1 below shows the I2C bus activity during a single iteration during link
training. In this situation, the link training module first sets the input equalization
on all lanes to 7. After a short delay, the equalization levels is set to 5. After another
delay, the equalization level is set to 0. Data is collected by the link training module
for these three scenarios and evaluated. When the optimal equalization level has
been found, it is written to the equalizer.

Figure 5.2 shows the I2C bus activity for the equalizer during the entire link train-
ing procedure. The two first data iterations, marked as 1, shows the clock recovery
phase. Training at PRE and VOD level 0 is first unsuccessful, which means that
the source has to increase VOD level to 1 in order to synchronize clocks. The link
training procedure then continues with channel equalization, which finished after
the first iteration. This is marked as 2 in Figure 5.2.

The design was meant to be tested with an Intel, AMD and Nvidia source. There
were however no AMD or Intel sources available that followed the delay specified
in the TRAINING_AUX_RD_INTERVAL register. Therefore, these sources has not been
tested. Testing with a Nvidia source showed that the implementation was compati-
ble. The implementation is expected to also be compatible with sources from AMD
and Intel.

5.1.1 Timing analysis
When correct functionality had been verified for the created implementation, a tim-
ing analysis was run for the design. One of the requirements for the design was to
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Figure 5.1: Oscilloscope plot showing the I2C bus activity during a single iteration
of link training during clock recovery. Bottom signal is the clock signal, while the
top signal is the data.

Figure 5.2: Oscilloscope plot showing the I2C bus activity during link training.
Bottom signal is the clock signal, while the top signal is the data.

not interfere with any of the other VHDL-blocks inside the FPGA. Timing analysis
was run on the FPGA both with and without the VHDL-implementation created
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during this project. The analysis showed that the critical path for the entire design
was unchanged when the project implementation was present.

The maximum frequency of the project VHDL implementation was also investi-
gated. Table 5.1 shows the timing slack of the design simulated with different clock
frequencies. It can be seen that the design has a large timing slack at the operation
frequency of this project, which is 100 MHz. It can also be seen that the design
could be run at 500 MHz, but with a very small slack.

Table 5.1: Timing slack analysis of the project VHDL-implementation.

Frequency Slack (ns)
100 MHz 7.784
200 MHz 3.291
250 MHz 2.259
400 MHz 1.291
450 MHz 0.926
500 MHz 0.01

5.2 Project time plan

The initial project time plan is presented in Appendix 1. The order in which the
different tasks were performed was followed for the major part of the project, but
the time spent on each task was changed significantly. As the Barco Pulse platform
is a very complex system, much more time was spent on investigating it than ini-
tially planned. There were also detected some deviations in the behavior of some
DisplayPort sources in the early stages of the project. Investigating these issues, as
well as figuring out how to overcome them, required a lot of extra time.

There were also other, smaller problems that occurred during the implementation
phase of the link training module. Some of the smaller problems faced was setting up
communication with the NIOS soft processor, problems when setting up the inout
VHDL signals for the I2C bus as well as some registers in the DisplayPort IP core
that did not update frequently enough. All these problems were fixed, but took
more time than expected.

When it was discovered towards the end of the project that the implementation of
the link monitoring module would be way more complex than initially planned, and
would require way more time to implement, this component was excluded from the
project. This made up for the extra time spent earlier in the project.
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5.3 Future work
Some of the future work that can be based on this project is presented in this section.

5.3.1 Avoiding DisplayPort deviations
The next step in this project would be to add an extra block that accounts for
the deviations from the DisplayPort protocol, especially sources that does not fol-
low the delay specified in the TRAINING_AUX_RD_INTERVAL register, as discussed in
Section 4.2.1.3. An example of this kind of implementation would be to monitor
the AUX-channel during the delay period, and stop the link training module if any
activity is detected. This way, the link training module designed during this project
could still be present and work with sources that does not follow the specified delay.

5.3.2 Compatibility towards other equalizers
The equalizer used for this project only supports datarates up to 5.4 Gbps per lane,
which is the maximum supported bandwidth for DisplayPort version 1.2. For the
new versions 1.3 and 1.4 of the DisplayPort protocol, the maximum bandwidth has
been increased to 8.1 Gbps per lane. Therefore, a different equalizer is needed. The
SN65DP141 from Texas Instruments is designed to support the new versions of Dis-
playPort. This equalizer supports up to 12 Gbps on the data lanes, as well as a
400 kHz bus speed for the I2C interface. The main signal path of this component
has a different architecture compared to the one used in this thesis project. This
architecture consists of an input gain stage, an equalization stage and an output
gain stage as is illustrated in Figure 5.3.

Figure 5.3: Blockdiagram for the SN65DP141 [4].

The changeable settings for the new architecture of the SN65DO141 is different
compared to that of the SN75DO130 that was used during this project. These set-
tings are also changeable through logic levels on the pins on the component package.
This means that the slow I2C interface can be avoided when changing the equaliza-
tion levels of the video path. The link speed and lane count would still have to be
changed through the I2C interface. If this interface would also be used to change
the video path parameters, the bus speed of the new equalizer is four times as fast,
giving time to test more parameters during the 16 ms delay.
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Support for the new SN65DP141 was not a requirement for the link training module
during the design process, but the final implementation could be modified without
much work in order to be compatible with this component as well.

5.3.3 The link training module
The link training module has not been implemented during this project due to timing
issues. This is a potential topic for future work, especially with the next generation
of equalizers that can be controlled using GPIO.
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6
Conclusion

The main goal of this project was to create an implementation that configures a
DisplayPort equalizer during runtime, with the most optimal settings on order to
create a stable video link between the video source and the displaying unit. This
implementation has been created using an FPGA with VHDL-code. The VHDL-
code has been tested and verified against an compatible Nvidia video source, which
means that the main goal of the project has been met.

The second goal of the project, which was designing a link monitoring, has not been
completed due to time issues. These issues is because of the slow I2 interface of
the currently used equalizer. The next generation of equalizers can be controlled
through a faster I2C interface, but also through GPIO pins. These features may
remove the timing issue that was faced in this project, and might make the link
monitor possible to implement.

The main implementation of this project has taken such a link monitor into account,
preparing some of the VHDL ports that might be needed for this module.

Even if the main goal of the project has been reached, there are still some work to be
done in the form of compensating for the deviation found in some of the DisplayPort
sources, especially for the missing TRAINING_AUX_RD_INTERVALL delay. The current
architecture of the created implementation has taken this into account.

The final implementation has been designed in order to cover as my corner cases as
possible. Even if the suggestion in the application note from the manufacturer of
the equalizer specifies that the equalizer gain should be set to the maximum value at
all times, the project implementation will end up using lower equalizer gain values
for those setups that might require this setting. The project implementation will
also set a gain level so that the threshold for a non-approved signal is as far away
from the current driving settings as possible. Having such an implementation in a
DisplayPort source is not required in order to pass DisplayPort certification, but it
may lead to a wider range of possible setups available to the user.

The implemented VHDL code will be handed over to Barco for further development.
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DisplayPort Sink Link training optimization
2017

Jan Feb Mar Apr May Jun

Misc
Planning report
Planning report

Prep Seminar I
Seminar I

Report for peer
review seminar 2
Prep Seminar II

Seminar II
Industry Collab-
oration Seminar

Final presentation
Final presentation

Report
Half-time report
Deadline report

Background
ResearchDisplayPort

Third party DP core
TI app-note[?]

Barco Pulse

Link Training
Hardware read-up

Setup EQ com
Setup dp module com

Setup routines to
access correct registersInvestigate parameter
impact on link trainingTest & evaluation

of TI app note
Evaluate setups/sources

Optimize for area, power
dissipation or performance
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Link Monitoring
Explore parameters
Implement monitor

Test thresholds
Test implementation
on different setupsMerge improved link-
training and monitorLink retraining

without shutdown
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