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Sensor calibration for autonomous mine vehicles

Calibration of laser scanners and hinge angle senso
MAGNUS OLOFSSON

Department of Applied Information Technology

Chalmers University of Technology

Summary

Atlas Copco has delivered mining products sincddbecentury and in 2007 they
introduced an autonomous centre articulated LHDad-blaul-Dumper). LHD:s are
used in most underground mines for transport obokthe idea of an autonomous

LHD was to improve safety, efficiency and produityivn underground mines. The
autonomous LHD contains a number of sensors inotudn odometer, a hinge angle
sensor in the articulation joint, a gyro and tweelascanners needed for autonomous
operation. All of them need to be calibrated beeaafpose errors from high tolerances
in the machine construction.

In this thesis a method for calibrating the angoféset of the hinge angle sensor and
another method for calibrating the angular offedtdhe two laser scanners using data
from the already existing sensors are preseitee.hinge angle method relies on the
gyro, the odometer and a kinematic model of a eemtiiculated vehicle to estimate the
offset. For calibration of the laser scanners fifigets are augmented on to the states in
the state space model used for positioning of tHB LThe augmented state is then
estimated using a combination of an Extended Kalfiti@n and an Unscented Kalman
filter in a SLAM algorithm that uses the kinematodel and the laser measurements.

Experiments in simulated and real environments Iséwosvn that the hinge angle sensor
estimates the angular offset to within®Bests of the laser scanner calibration method
have shown that it estimates the angular offsatitioin 0.5°. The methods run offline,
are easy to operate and require that the operat@sdat least 50 m in a straight mine
drift at 2.5 m/s to collect enough data.

The report is written in English.

Keywords: calibration, offset, LHD, centre articidd, laser scanner, hinge angle,
SLAM, Kalman filter.
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1 Introduction

1.1 History

The mining industry is a dangerous workplace, d@sfigainderground mining.
During the last decades mining companies have to@thprove efficiency,
productivity and safety. Atlas Copco AB started mut873 as a railway
company but turned into air compressors and alstioadhe end of the 19th
century. Today they are in a number of marketsarte beginning of the 20th
century they started producing air driven rocklgltib the mining industry. The
development has moved on and today they producender of mining
products including the centre articulated LHD (Ld4alul- Dump) Scooptram
ST14 for loading, hauling and dumping materialsmderground mines.

All LHD:s have traditionally been manually driveg &n operator placed in the
machine. But for some years ago solutions begae tesed where the LHD
was remote controlled and teleoperated from a obrdom (Hainsworth
2001). With teleoperation the operator was remdx@u the dangerous mine,
but teleoperation includes delays and the camesdsat the view for the
operator which decreases the productivity (LarsBooxvall & Saffiotti 2010).
To solve the problems related to teleoperationasd remove the need of a
operator to each LHD autonomous systems have bmasiaped and are
commercially available, see (Automine 2011), (S¢mop Automation 2011)
and (MINEGEM 2011). Atlas Copco’s Scooptram Autoim@tncludes both
teleoperation and autonomous operation.

1.2 System overview

Atlas Copco’s autonomous system works using thecjie Teaching, Route
profiling and Playback. First the LHD is driven noafly along the route it
should operate on and all sensor data are loggathdproute profiling data are
converted to a number of grid maps (Marshall, Bat;f& Larsson 2008) and a
route profile containing waypoints, desired spesu$ pause points for loading
and dumping.

During playback the route is followed with helptbé sensors. Data from a
hinge angle sensor in the articulation joint, aoggnd an odometer are
weighted together using an EKF (Extended Kalmateiito estimate the
position. Laser scans from two laser scannershame ¢compared with the map
using UKF (Unscented Kalman Filter) to update tbsifion estimate.

Deviation from the desired route point is usedngsli to a control algorithm
that steers the LHD towards the route point indésired speed. The system is
built to operate in an obstacle free environmeut,dimple obstacle avoidance
algorithms are built in the system to make the rirechtop if obstacles come in
its way.



1.3 Objective

All of the sensors need calibration because ofrefrom high tolerances in the
machine construction. This project focuses on catlibn of the hinge angle
sensor and the laser scanners. The hinge anglerssensed to measure the
angle between the front and rear part. A methodsgasched that could find an
angle offset that when applied reduces it to witti?. Before this project it
was required that someone climbed on the backeoEHD and tried to align
the machines back- and front end while the LHD masing. When aligned
one was able to get a reading of the angular offset

To get correct maps it's important that the oriéotaof laser scanners relative
the LHD:s coordinate system is known. This projed¢bcused on the laser
heading, which is the most critical parameter. gbal was to find the angular
offsets of the laser scanners to give a maximum sgatching error less than a
predefined value of 0.35. Before this project #els heading where manually
put to zero by eye sighting.

1.4 Contribution

A new method is here proposed that can be usedynoemtre articulated
vehicle to automatically find the offset of the ¢dnangle sensor. It uses the
kinematic model in (Ridely & Corke 2001) togethathathe hinge angle
sensor, the gyro and the odometer to get an estiaidhe hinge angle offset.
Error propagation was made to get an early estiofatee accuracy of the
method. Different confidence intervals were thetinggted to be able to
guarantee its performance. Experiments have shioatrttie method delivers a
hinge angle offset with an accuracy of £0.Bnhe requirement is that the
machine is driven straight at least 33 m at 2.5 m/s

A new method is here proposed that can be usadddte angular offset of a
number of lasers on a moving vehicle automatic#llyses an augmentation of
the original vehicle model, an EKF for predictiam UKF for filtering and a
SLAM (Simultanoues Localization and Mapping) algiom. No error
propagation nor a confidence interval were caledldor the laser offset
because the method was too complex and too fewest&tted to get a good
enough confidence interval. Experiments have \atithat if the vehicle is
driven straight in a 23 m normal sized mine dtiftan estimate the angular
offsets of two lasers to within +@,5wvhich is need to get a maximum scan
matching error less than a predefined value 0f.0.35

1.5 Report structure

In Chapter 2 the report evaluates different idefsrie going through the
sensors, algorithms and methods used for findiegffsets of both the lasers
and the hinge angle sensor in Chapter 3. Afterggthirough the methods it
continues with dealing with how the driving and semmeasurements affect
the accuracy of the estimated hinge angle in Clhdpté then goes through the
real experiments done to verify the accuracy ofsystem and its results in
Chapter 5. The report then proceeds with takinthegequired angular



accuracy of the laser offset estimation deduceah fitee given laser scan
matching error in Chapter 6. In Chapter 7 it inigeges the true accuracy found
from test made in real environments and ends withrelusion and future

work in Chapter 8.

2 Requirements and approach

A literature research was made to find previouskworthe area. For both
problems, which were estimating the hinge anglsatfdnd the laser scanner
offsets, ideas were put-up and evaluated to fiedbtrst working methods that
for filled the following requirements:

» Deliver estimates with high enough accuracy.
* Not need any surrounding equipment or extra sensors
» Be easily handled by the machine operator.

* Operate in mine drifts that are 50 m or shortecabse mine drifts are
often short.

« Need a time less than 30 minutes for calculations.

2.1 Hinge angle offset

The hinge angle sensor has before this project balédrated using the method
described in Chapter 1.3. It delivered an offsgharange of +02which has
shown to be good enough for the system to operdit@w problems, because
of that we require that the new hinge angle catibnamethod should deliver an
offset in the same range. Different cases simidhis were investigated.
Martinelli et. al. (2003), Madhavan, Dissanay@kBurrant-Whytel (1998) and
Dall Larsen, Bak, A. Andersen & Ravn (1998) usedEad AKF (Augmented
Kalman filter) for online training to estimate coast errors. The first two used
an onboard laser scanner and the last one camasureenents fused together
with odometry measurements as inputs. Borensté&@g)land De Ceccco
(2002) used special drive patterns together widoklbe measurements from
surrounding equipment to calculate the odometriampaters.

Tests were made to only use the hinge angle fdsreséibn but it became
unpractical. Instead it was decided to use the gybthe odometer. Their data
is quite easy to analyse compared to the laserashaté contains all the
information needed for calibrating the hinge arggasor. The odometer and
gyro can also easily be calibrated before the hargge sensor. Calibrating a
hinge angle sensor on similar vehicles with help giyro and an odometer has
never been done before so some new ideas wereHuwariinal idea was to use
a kinematic model of a centre articulated vehioledlculate the hinge angle
offset from the rotation speed given by the gyrd tre transitional speed
estimated from the odometer. Due to the simpleutations the computation
time is less than a minute. More about the ideasearead in Appendix A.



2.2 Laser offsets

A literature research showed that there didn’ttexnyy earlier work in the area
of estimating the laser scanners angular offses.clbsest work were the
constant model error estimation in (Martinelli, Tats, Tapus, & Siegwart
2003) and (Madhavan, Dissanaya&k®urrant-Whytel 1998) which uses EKF
on laser data together with augmentation of thiesta

When estimating the laser offsets the laser measmnts needs to be used,
which increases the level of complexity compareth&hinge angle calibration
case. One alternative was to by brute force tégbaitive combinations of
laser offsets to see which two gave the smallest statching error but early
experiments showed that it took too long time. $y&tem is built around an
EKF together with an UKF so a natural choice wass® them together with
state augmentation to estimate the laser offseinpaters.

A problem with this solution was that the map ne@dse known a priori,
which isn’t always the case. To solve this problgenneeded to implement
SLAM. UKF based SLAM can be seen in (Martinez-GagtiCastellanos
2005), which is one of many that uses one statedoh feature. The original
system uses a grid map and thereby the feature figmome to large if each
grid point should be represented by one state Marid solution to this was
created in (Merwe, Doucet, Freitas & Wan 2000) gisiimore complex patrticle
filter. Instead of using it, it was concluded tbbae could create a less complex
algorithm that reused the existing mapping algaritbgether with the EKF
and UKF. The computations of this method are sélvy and depend on a
number of parameters but its faster than brutesfeearch.

3 Theory and methods

This chapter goes through the theory and methoel$ fas estimating the hinge
angle offset and the laser scanners angular offeetchapter begins with
going through the kinematic model of the centreealdted LHD in chapter 3.1
and then continues with the sensors used in Ch@@ieChapter 3.3 goes
through the hinge angle offset estimation andritsreanalysis together with the
statistics used for calculation of the confidentervals. Chapter 3.4 then
continues with estimation of the laser scannersetfiising EKF and UKF in a
SLAM algorithm. The chapter ends with a brief wétkeugh of the
implementation of the two methods and also the kitauused for creating
simulated log-files.



3.1 Kinematic model

D E—

Figure 1: Model of a centre-articulated vehicle.

The kinematic model of the LHD already in use ia flystem assumes no slip
and can be found in a number of papers (Altafii)and (Ridely & Corke
2001). It uses the setup seen in Figure 1 wheirgthe angle between the
centre lines of the two bodie8, &, is the heading of the front and rear body
respectively in relation to the x-axis of the glbbaordinate systentg is the
distance between the hinGeand the front axle centfeandly the distance

between the hingé and the rear axle centiRe The models for the rotation of
the LHD are

g_vsiny+IRy (1)
|- cosy+1,
and
g = Vsiny=lgycosy (2)
R 1_cosy+l,

wherev is the speed of the front body. From the modedit be concluded that
the rotation increases in magnitude with speedyehangle and if the hinge is
rotatedy # 0. The rotation also decreases with increased madéamngth.

The LHD has four wheel drive. There are separdferdntials for the front and
rear wheels but a stiff driveshaft connects betwberntwo differentials. This
makes the front and back wheels get the same speedtding to the model
they shouldn’t have the same speetlif |, or the vehicle is not driving
straight,y # 0, and thereby is a slippage introduced wheis increased. So the
models performance decreases with incregsed

In Ridely & Corke (2001) one error was found in EQ.) where they had
missed the multiplication witlcos y , which was proven by simple calculations

and later confirmed by reading Altafini (1999).



The nonlinear discrete time state space model irsivdl, Barfoot, & Larsson
(2008) is created from a continuous one using Esibps giving

s(n+1) =®s(n) + T, (s(n)) Lu(n) + v(n)). (3)
x(n)
y(n) v(n)
s(n) am,UUD LJM}
y(n)
where
hcosd(n) 0 i
hsing(n) 0
I',(s(n))=| =hsiny(n) -hlg
|- cosy(n)+1, |- cosy(n)+l,
i 0 h ]

v(n) is model errors and other uncertainties and asgumiee Gaussian noise

v(n) ~N(0,Q)

with covariance

g 0
S
hin the model is equal to the sampling time ai(ah) is equal to the angular

speed of the hinge anglén) . The state update matriR, is the identity matrix
because we don’t model the dynamics.

3.2 Sensors

Bucket

Drive shaft
encoder

Figure2: The LHD and its sensors.

As seen in Figure 2 the LHD is equipped with a biaggle sensor to measure
the angle between the front and rear part. It asdsodometer mounted on the
driveshatft in order to measure the speed and #tardie travelled. Mounted on
the top of the machine are two laser scannerstosedp the surrounding and
position the LHD. One of the scanners is mountegkwards on the rear part



and one is mounted forward on the front part. Tlogetvith the front laser an
IMU (Inertial Measurement Unit) is mounted, contagha heading gyro to
measure the rotation of the front part.

3.2.1 IMU Navigation02

The IMU Navigation02 is delivered by the company/A. It has three gyros
with 24 bits resolution each giving angular spessblution of 16:°/s. The
following parameters can be found for the gyros:

+ Range +120/s

« Bias Error 0.06/s (1o)

» Scale Factor Error 0.25% @)

* Non-linearity 0.5% of FS

* Noise 0.1%s (Broadband RMS)
« Bandwidth 25 Hz

* Misalignment 5 mrad

It's only the heading gyro that is used and a sempbdel of its measurements
is

6,,(n) =6(n) +6, +v, (n)

where

v, (N) ~N(0,0, ()

and

7, (n) =120 0.005/3+0.0025)(n) + 0.001= 0.3%+ 0.0025(n) .

é(n) is the true angular speeéU is the bias error and, (n) is the Gaussian

noise affecting the measurements. The non-linearitythe scale factor are
modelled as Gaussian noise even though they astardrior each unique IMU
unit. Reasons for modelling them as Gaussian raves¢hat they aren’t known

and that they vary with the size 8f so Gaussian noise is the closest
approximation. It's approximated that three stadateviations contains all
errors and that is why the non-linearity is dividgdthree to get one standard
deviation. The bia#), is instead modelled as a constant because at'that

later estimated and removed in the analysis arghitgle variance is small.
Misalignment is approximated to be zero due tentsil size. It should also be
mentioned that the IMU is mounted in a rubber sosjg® to remove some
vibrations.



3.2.2 Odometer

The odometer is base on a driveshaft encoder teasuanes the number of teeth
passing by to calculate the distance travelledsdss the fact that if the distance
between the teeth, the radius of the wheels anduh®er of teeth passed are
known the distance travellet}, can be determined. The mounting on the
driveshaft makes the odometer insensible to turns.

The odometer system consists of three parts, asdencan 1/0O module and the
machine computer, which is illustrated in Figur&Be 1/0O module checks the
encoder pulse counter every 5 ms and the machmewer then checks the
I/O module around every system sampling timequal with 40 ms. This
makes it possible that the value in the 1/O modkilgp to 5 ms old. When
calculating the distance travelled the system ¢afleut as 40 ms has gone
between two samples, which then isn’'t always tile error can never grow
larger than a time error of around 5 ms.

Machine computer| I/O module | Encoder
40 ms 5 ms| pulse
counte

Figure 3: Odometer sample flow from sensor to machine coerput
The measured speggis estimated frondl, using the model

—_ —_ * E*x -3 * K% -3
d,(n) :m(n 1) _ v(n)hiv(:\]) 510~ _ v(n) + v(n) ﬁ 10 _

It's approximated that the synchronization erroeath sample is zero mean
Gaussian. According to the Gaussian distribuBop = max error which

makes

V(M) =

v(n) *5*107°
3h '
Drift due to slip is approximated to be zero acaogdo previous

measurements done with the machine. Also the raditie wheels is said to
be known without errors.

g, (n)=

3.2.3 Hinge angle sensor

The hinge angle sensor is an encoder mounted joititeholding the front and
rear body together. The encoders range is (0736@] it has 16 bits resolution
giving an angular resolution of 6 millidegrees.\Roes measures have shown
that the angular measurememg(n hgve a Gaussian noisg (n , Which

have a standard deviatiar), of approximately 0.0’L The hinge angle sensor

is mounted to give approximately f80hen the machine is straight.ig
wanted so the offset, is 180 under ideal conditions but there is also a

mounting error that introduces an offset. The maelwan operate in the range



[-45,45F where Ois when the machine is straight. A measuremem tiee
hinge angle can be modelled as

V() = p(N) +y, +v, () (4)
where y(n) is the true hinge angle and

v, (N~N@Oa; ).

3.2.4 SICK Laser scanner

The SICK laser uses a moving laser beam to scaanyieonment in one plane.
It has a maximum scanning range of 32 m in theniatg-90,90]° degrees with
an angular resolution of Biving Nyoints=181 scans. A laser bedrwhere

i=1,..., NpoinsCan be modelled as

2, (1) = 2 (1) + 2 +V, (i)
where
v,(i)~N(O,07).

Z is a constant error in the range [0,0.03] m ane0.01 m is the stochastic

error. The laser beam creates a spot, with apestugks 0.11 milliradians, that
increases with distance and angle to the objecta@lozg«(i) is the distance to
the closest point on the object hit by the lasamine

3.3 Hinge angle offset

3.3.1 Estimation of the hinge angle offset y,

The idea is to rearrange Eg. ( 1) in Chapter @det an expression for the
hinge angle and then use it for estimation of tingé angle offsey, .

Estimation is made by using the unbiased rotaqimedé’ubm(n) measured by
the heading gyro, the measured spegd) and the hinge angle
measurement, (n), wheren=1,... N is the number of measurements. To
simplify the rearrangement estimation is done daiythe rotation created from
forward motion and not from change in hinge angles therefore put to zero
and Eq. (1) is rearranged to give

vsiny - @0, cosy = 81,

It is known that adding two sinusoidal waves whk same frequency and
different phase gives a new wave with the sameufrgy but a new phase and
amplitude. For example

asinx+bcosx =+a” +b® sin(x + ¢)



where

4= tan‘l(Ej +{O if a=0

a a if a<O0

Applying this makes it possible to get only gne the equation
ﬂVZ + (H'FIR)2 Sir{tan‘l(_—fF] + VJ = aR .

Solving for y gives

. . (5)
y=sin" T tan‘l(&j
W+ (8, v

and for negative

: : (6)
y= —Sin'1[¢] + tan'l(ﬁ] i
V2 + (61 R)2 v

The rotationéf?ubm (n) includes both the rotation caused by the spé@dand by
y (n). To remove the rotation caused pyn) we use the approximation

Yn(N) ~ (N—1)
h

which is independent of, and thereby only contains the articulation ratespl
some noise. The approximation is used in the needpart\y equal zero) of

Eq. (1) and is then subtracted fray, . (n) giving

y(n) =

O I 151 (7)
8,(n) = G (N) W-

where y(n) is an estimate of the true hinge angle.

If y.(n)is used ag/(n) it introduces an error in the final offset estima
y, because of the offset. The error introduced istéthas long ag, is
reasonably close to zero but that isn’t alwaysctme because the offget can

be between (-180, 180]From the analysis in Chapter 4.2 it has beenddbat
if the whole algorithm is iterateu~=1,... M times andy (n) is estimated from

¥..(n) by removing the previous offset estimgtgm-1) the offset estimate
¥, (m) converges towards the true offget Given that the vehicle is driven
along a straight line a first estimate jgf can be calculated from

10



m@=%gmm

The difference betweep, (@nd the true offset, is then the mean of the true
hinge angley(n) as seen by taking the mean of Eq. (4 )

¥, (0) = mean(y,,(n)) = mean(y(n)) + mean(y, ) + mean(v, (1)) (8)

= mean(y(n)) + ¥,

If the vehicle is driven straight the meanjofn) is zero and the approximation
is exact. In reality this is impossible, which inggl that an error still remains.

The above discussion gives the following conclusion
Ym(n) = mean(y,,(n) it m=0

’A’(n):{ y (-7 (m-1 if m>0

By inserting 8, (n) andvi,(n) into Eq. (5 ) or Eq. ( 6 ) the hinge angle, now
calledy, , (n), is found. The estimated sample offgef(n) is then given by

Vo (N) = ¥, (N) =y, (N) (9)
and includes noise frord, (n), vim(n) andy,, (n). By taking the mean of all

V., (n) from the whole data set
N 18 . (10)
yo(m) :NZVS)(I)

i=1
the best estimate of the hinge angle offgdm is fpund. This should then be
repeatedM times.

3.3.2 Estimation of gyro bias

The rotation speed, (n) measured by the gyro includes a bthshat is

temperature dependent and thereby changes ovedtien® temperature
changes in the IMU. The change over a short timegeas a calibration run,
is small and the bias can be estimated when théimastands still as the mean

of é_ (i) giving
6=1ya.0 i=1,...No
NO No

whereN is the number of measurements when standing Bhid.
measurements is then compensated to form unbiasasumrement estimates

A

B (1) = 6, (M) - 6,

that can be used for the calibration.
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3.3.3 Error propagation
Using error propagation the propagation of thetsstic errors through the

hinge angle method can be analysed. By insertingbamations ofé,  (n),

V(n), ¥.,(n) and the number of measuremeNtthe variance of/, can be

found. It should be remembered that this requinasthe model is correct and
thereby doesn’t the analysis give any informategarding effects from errors
in the model.

In Eqg. ( 7 ) the measurement error in all paransedeg independent. The error
propagation through Eq. ( 7 ) can then be estimasaty

2 _ 69\, 2 69\, 2 aev 2
Oy == 19, Y5319 T 7 19
C 108, " 19Vm 0Yms
where
9, _y.
aeubm
08, _ | 2 #1008V +1 (Vi = Vina)SINYy
W (I, +1, cosy,, )’
and
06 l,

\

dy,, h(,+l,cosy, )’

In Eq. (5) the measurement errors are also inkpd giving

ay, ay,
o’ =| oo’ +| oYl g2
by ‘ agv v ‘avm m
where
1
Wow - 1 @i -(eouz)an,6
5 p 2, A212 42 2
08, - 0712 Vo6l ve Ol
v+ v
and
sy _ -1 AR
P 3 2 212 °
ov,, 6212 (Vz+gz|12)5 Ve + 071,
TS a5 5 \
V2 + 22
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The above equations holds for each measurensdnt.. N. The total variance
of the estimated offsef, is then from Eq. ( 10)

o 1Y (11)
5; == ler 0t )20, (00, (0 )

Y, isinEq. (7)andin Eq. (9) which impliesitthere is a correlation
Py, - The variancea§0 is largest wher)oyé . =1 but experiments have
shown that the effect of the correlation is small.

Using &% one could estimate a 99 % confidence intervattfery,. The
sensors have Gaussian errors and therefore theoerijg is also Gaussian.
Using the Gaussian distribution the confidencervratels given by

Vv, - 2.576&% <y, <y, + 2.576&%

3.3.4 Measurement statistics

By repeating the same experimé@ittimes and each time colleldg
measurements the 99 % confidence interval of thgehangle method can be
found. There exist two methods to calculate thdidence interval.

The first method begins with calculating the estedastandard deviation
s;, (p), wherep=1,... Ny, of the sample offsetg,(n ysing

s,..(P) =J S (7 (P) P )

wheren=1,... N, is the number of samples in each experimem; I& large an
approximation can be made thgt (p) is equal to the true standard deviation
g,_(p)of the whole population and thereby having a Gaumsdistributed and
not a Student-t distribution.

We assume that the spreadjgfp) is not correlated as a result of that the

measurement noise can be assumed to be white Gaussse. Then the
estimated standard deviation of tfigp) from all N, measurements is given by

1 (12)
0;1(P) =—==0;_(p).

Nl
According to the Gaussian distribution one couldwwith 99 % confidence
that the true offsey, is in the interval
Vo =25760;,(p) <y, <V, +25760,,(p).

This should be tested for &l experiments. One experiment had been enough
in the ideal world to assure the statistics butereperiments with the same
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setup are made to confirm the result. The intesiiauld be smaller than +6.2
to confirm that the method is good enough. Ideaibhould be enough to
increaseN; to get into that interval. Also if the spread esrelatedo, , (p) is

going to be smaller than the true standard dewviatio

The second method calculates the standard deviatigr(p) directly. To begin
with the mean of al, (p) is

= 1.
Yo :WZVO(p)
1 p=1

and the estimated standard deviation is then

s, =\/I\lll_li(ffo(p)-f/o)2 -

p=1
Due to thaN; is relatively smalls;, has an uncertainty. If the spread is
Gaussians, has ay? distribution and the 99 % confidence interval gf is

N, -1)s? N, -1s?
Ll= (21#<0'%2<L2= (21#_
X 099/2,N,-1 X1-099/2,N,-1

The confidence interval of, is then

~

y, - 2576L, <y, <}, +2576L,
This method only relies on that the spread is Gansd is therefore more
reliable. It gives a larger confidence interval doi¢he uncertainty iro;, ,. The

uncertainty can be decreased by increasingVhenN; goes to infinity the
confidence interval decreases to the true configlémerval.

One could compars, with each of thé\; estimated standard deviatioas ,

by assuming thas; is the true standard deviation and using thetfeatts; is

the spread of thg, (p):s aroundf/o. This gives
)(2 _ 1 Al 1 . _m N2

N1, _1;4051 (7o(P) = Vo)?.

if X

1
using the first method. This means that the spieadobably not uncorrelated.

XZ

-
that Eq. ( 13 ) doesn't take in to consideraticat #) is an uncertain estimate

(13)

2

>1 thano, ,<s, and we have under estimated the standard deviation

can be use to scatg, , to its true value but it should be remembered

of g, if N7 is small.
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3.4 Laser scanners angular offset

3.4.1 Creating and evaluating the map

Under normal operation is the mipcreated under Route Profiling from the
log data, containing all the sensor data recoraelkuthe teaching step. To
createM the log is gone through step by step to estimafedusing backward
Euler ony,, anddy. u(n) is then input to Eq. ( 3 ) to get the psée) of the
machine at each time step. The map, which is repted by a 2 dimensional
binary grid is then finally updated using ray tragalong the recorded laser
beams at each positig(n) for both the front and rear laser.

After creation a simulated Playback is made inntiag to evaluate it using the
logged data as input. In the simulation the loggsdr beams’ lengths are
compared to the simulated ones. From the compaagenall samples a scan
matching errore,_ ., is calculated. If the map is identical to the nealld the

machine should get identical laser scans apg, equal to zero. The
must at all times be under 0.35 for the map todk@a@wledged.

match

3.4.2 State estimation using nonlinear Kalman filter

To keep track of the machine under playback thte s{a) needs to be
estimated at each sample time. A good predictidghefttate can be found by
using the kinematic state space model in Eq. (T® get better accuracy and
compensate for drift the state is then filterechviielp of the measured laser
data. This method of first predicting using a maated then update using
measured data is called Kalman Filtering. A stathd@man Filter can only
operate on linear equations. For nonlinear equstibare exist a number of
different solutions. This machine uses a mix of ®ayman Filters, an EKF
(Extended Kalman Filter) for prediction and an UKscented Kalman
Filter) for filtering. The implementation of the Ekand UKF used can be seen
in (Marshall, Barfoot, & Larsson 2008). To simplifptation lets™(n) be the
prediction of the state using EKF asgh) the filtered estimate of the state

using UKF. In the same way I& (n) be the predicted state covariance and
P(n) be the filtered covariance.

To solve the problem that the Kalman filter neaedsdr equations the Extended
Kalman Filter uses linearization of the state elguaEq. ( 3 ) around the
previous state. Eq. ( 3) is linearized to get

§(N)=H_Bn-1)Bn-1)+T,&n-1)m@(n). (14)
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where

Hsn-1)=2% =
1 0 - hv(n)sirnl_(é(nn -1) 0 i
0 1 hv(ny)cos@(n-1) 0
= 00 1 —hlgv(n)cos/(n—-1)) —v(n)l.  ha(n)ll. sin(y(n-1))
(IR + |F cos(/(n _1)))2 (lR + IF cos(/(n _1)))2
00 0 1

The covariance of the estimate is calculated as

P™(n) =I',(8(n-1) [Q O'{ (3(n —D) + H(8(n - 1)) (P(n-1) (H (§(n-1)). )( 15

s(0) is set to a by the user predicted stateR(@d is set to the initial
covariance of that stat® is the covariance in the inputs defined in Chapter
3.1.

To use an EKF for the filter step the state-to-autpatrixG is needed, which
maps the states to the laser measurem@rtsto complex to express explicit
and because of that Unscented Kalman Filteringesl unstead. Numerical
methods could have been used to estir@abait in (Simon 2006) it's shown
that UKF gives higher order estimation than EKFjchtonly gives a first
order. UKF also simplifies the estimation. As stiate (Simon 2006) UKF is
based on the two facts. The first is that it isygasperform a nonlinear
transformation on single points. The second fatitas it is not too hard to find
a set of individual points in a state space whasepe probability density
function approximate the true probability densiipdtion of the states.

The UKF uses®+1 points, called sigma-points, which is found gdime

covarianceP™(n )and put into a matrix

S=fm sm+xP M §m-x/P M) (16)
N is the number of state variables and
X=IN+A
where
A=a?*(N+k)-N.
K is a constant often chosen to 0 ands constant in the range [0.001,1].

At each sigma-point, represented by the columré('n), an artificial laser

scan is made in the map to form a matrixZ(n) . From Z(n) the mean is
calculated for each beam direction over all lasans as
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2 =3 w, Z, () ()

where

m,i

A(N+2A) i=0
{1/(2(N +A) 120

Using the mean, the covariance of the artificiahmwements is calculated as

2N - - - 18
Z(n)=ZWc,i (Zi(n)-i(n))(zi(n)—i(n)) +R (18)
where

_[A(N+A)+@-a®+p) i=0
¢! 1/(2(N +2)) i20

[ is typically 0 andR = &l is a diagonal matrix with each diagonal element

equal to the variance of each scan line. To getation between the state
change and the change in the artificial laser nreasents the covariance
between them is calculated as

J(n) =§Wc,i(zi(n) -2(n))(§.(n) -§(n))T- (19)

Using Z(n) andJ(n) the update matrix is calculated as
K(n)=J"(n)Z*(n) (20)

and is then used together with the true measurenenipdate the states and
estimate the covariance of the states as follow

§n) =5"(n) + K (n)(z(n) -z()) (21)

P(n) = P~(n) =K (n)J(n). (22)

3.4.3 State augmentation of laser offsets

The rear and front laser have angular offgg(® and ¢ (n)respectively. To
estimate the laser offset they are added as statesm an augmented state
vectors,(n) = [x(n) y(n) én) y(n) @) @ (n)]T. In the state space
model Eq. (1 )g(n) and g (n) are now modelled as constants with an

uncertainty modelled as white noise. The unceamtised in the UKF to
make them converge to their true value. Convergéneeand variance of the

offset estimates is adjusted by the size of themeeso;, andg;, of the
white noises.

17



After augmentation the input vector is

u(n) :[v(n) wn) O O]T and the noise vector is again

v(n) ~N(0,Q)
but with covariance
avz 0 0 0
o 0 af, 0 0
0O O J;R 0
2
0O O 0 g,

The input matrix changes into

cosd(n)
sing(n)
—siny(n)

0
0

_IR

I, (s(n) =| I cosy(n) +1,

0
0
0

[ cosy(n) +1,
1

0
0

oOr O O OO
= O O O O o

But the state matrixp is still an identity matrix and the linearizatibecomes

H.(s(n-1)) =

1 0 -v(n)sin@(n))
0 1 v(n)cos@(n))
_ 00 1

00 0
00 0
00 0

0
0

—IRv(n)cos(y(n—l))—v(n)IF _ w(n)IRIF sin(y(n-1))

0R+4Famwm—n»2

Finally the initial covariance matriR(0) change into
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oo -
Xinit
2
Yinit 0
0.2
P(O) = Bt 5
Vinit
0 ¢2h'nil
2
L Prinit ]

3.4.4 SLAM

The UKF needs a map to be able to estingatand ¢ but the mapping
procedure in Chapter 3.4.1 is affecteddpyand ¢ because of that can’t the
map be created before the offsets are estimatadetts to be done
simultaneously.

The mapM could be created by adding laser scan informaionto M at each
samplen using §,(n) , estimated from Kalman filtering using artificial

measurementi(n) onM atn-1. This method has some drawbacks, one being

that earlier estimates @, and ¢ affectsZ(n) and experiments showed that
this made the Kalman filter unable to maggeand ¢ converge to their true
values. It's solved by recreating the map arourdniachine at samptefrom
scratch for each setup g, and @ in §(n). To recreate the map ray tracing is
used in each old pose §(n+n,;,, With scanz(n+nminu), Where

Nminus= ~Netep, ~2Nsteps - - -» “Nminus @NANgep IS the updating step used to decrease
computation time.

Another drawback is that the map is less updatédardriving direction. This

is solved by using the EKF to estimate future st&fén+n_,.. ), where
Npositive=Netep, 2Nstep - - -, Npositive. T poses i, (n+n_,,,. Are then used
together with the laser scar(&+nysiive) t0 add data to the recreated map for
each sigma setup i§(n) of ¢, and ¢ . This works over short travelled
distances given that the model is correct.

Each ray tracing to a point on the map overwritesdld value. So the update
order is of importance. The start position of thechine is exactly known when
mapping, because we decide its coordinates. Posegative time are also
more accurate because of that they have been éstimsing the whole

Kalman filter. For this reason it is more convemignstart with mapping in the
future poses and end with mapping in the negathsep.

To get a more stable final output value the meahetaser angle estimatég

and qBF in §,(n) from samples at>Ngy are used to gap, and ¢ . The first
Nsv samples is skipped to give the estimated offsmits to settle because it
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takes some time for the Kalman filter to make tleemverge to the true value.
The reason to using the mean is that the Kalmger flut more weight in new

information than old and thus can ma}sgaandgoF deviate because of bad new
information. This could be helped with lowey, ando, , but then it

converges to slow and/or gets stuck because dfhoicémas in the search
space.

The final algorithm is:

Create a state matrix for old states sy
Toop over all samples n
predict state S,(n) Eq.(14)

calculate covariance P (n) Eq.(15)
calculate sigma-points é(n) Eq.(16)

loop over the 2N+1 columns of S(n,p) using index p
Allocate a clean map M
Allocate a temporary NX Npstive/Nsep State matriX Ssgtes
Allocate a temporary state vector Seco=S(N, P)

Toop from 1to NysivweuUsing index i
predict state Seco(N+) Eq. (14)

Sstatedl) =Svector
end Toop

Toop from Npsie to 1 step -ngg Using index i

update M at Syefi) using ¢ and @ 1in é(n, p)
end loop
Toop from -1to -Npegaive Step -Ngepusing index i

update M at sy(n+) using ¢ and @ in é(n, p)
end Toop

ray trace in M at §(n, p) to get Z(n, p)
end loop

calculate z(n), Z(n), J(n), K(n) Eqg.(17)(18)(19)(20)
filter to get S,(n) Eq.(21)

calculate covariance P(n) Eq.(22)

Soa(N)= éa (n)

if n> Ngartmean

— - B

R v

- B®

A=At TN
end if

end loop
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3.5 Implementation

Laser and hinge angle offset estimation is madaeftising a log-file
containing all necessary data. The log file is rded when the vehicle is driven
a certain distance at a certain speed. To be aluleeate log-files, to test
different laser offsets, an at Atlas Copco alreexigting SIMULINK simulator
was modified. It simulated the kinematics of thel8Been in Eq. ( 3), the
sensors and the laser scanning. Laser scans wegirgaly made on maps
created using lines but was modified to also hagdtémaps. The laser
simulation was also modified to include the lagmt®ffect discussed above so
that the final simulator was able to simulate albes in the laser sensor. Noises
in the other sensors were skipped to decreasethplexity. The grid maps
used were created using Profiling from real logge Route Profiling was
together with the Simulated Playback, describe@hapter 3.4.1, already
implemented by Atlas Copco in C++ and ready to use.

The hinge angle offset estimation and error propagaogether with the
measurement statistics in Chapter 3.3 were allemphted in MATLAB. As
input to the hinge angle offset estimation methoeah log-file was used. A
script was also made to be able to go through aeuwf log-files to analyse
the confidence interval of the method using thesueament statistics in
Chapter 3.3.4.

All laser offset estimation parts in Chapter 3.4evenplemented in C++ using
Microsoft Visual Studio 2005 and used data in aflEgtogether with a
configuration file with all parameters as inputeTlaser offset implementation
was built on modifications of an already existinguie Profiling and Playback
code. From the C++ programs mat-files were deliv¢hat could be analysed
by MATLAB. A script was written in MATLAB to be ablto automatically run
estimations from many log-files automatically.

4 Error propagation in the hinge angle method

To see how the errors propagated through the langke offset estimation two
analyses were made using the error propagatiomapt@r 3.3.3. The analyses

shows how the unbiased angular speed measurefpefn), speed
measurementy(n) and hinge angle measurement(n) affects the standard
deviation of the estimated offsét% . A third analysis was made to see the
effect of just iterating the hinge angle estimawores usingy,, (n) as the
estimated hinge anglg(n) in Eq. (7).

4.1 Analysis setup

All analyses were made at the systems sample fmegdigof 25 Hz. An early
analysis shown that the error isn't affectedjny(n) when smaller than 1%s,

which is maximum steering speed, so no furthenamafor it was made. In all
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experimentsy (n) was swept from 0 to 45where 48is the maximum steer
angle.6?’ubm (n) was calculated from Eq. ( 1) usimg(n) and y,,,(n) as inputs.

0,.. (N), vm(n) and y_ (n) were then inserted to the error propagation eopst
to give o, .

Different analyses were made starting with invediingy how the standard
deviation behaved when only using one sample fardifit speedgn(n) equal

to {1; 2.5; 4.5} m/s. Using more samplEonly decrease?% with one divided
by the square root ™ and doesn’t change the characteristic.

When travelling at low speed more samp\esre collected compared to
travelling at high speed. It was investigated hbis affected&% using Eq. (11
) at the speeds,(n) equal to {1; 2.5; 4.5} m/s when travelling 50 m.

A final analysis was made to evaluate the errog,ifirom usingy;, (n),
including the offsety,, as the estimated hinge angtén) in the denominator of

Eq. ( 7)) and iterate the hinge angle estimatiothoteonly one time. It should
be noticed that the error is a constant errordeaends ory,and not a random

error as those above. Hepgn) affects the error and according to Eq. ( 7 ) does
larger y (n) give larger effects, s¢(n) was put to its absolute maximum value

of 14°%s. The error also increase with decreased spetfgal the maximum
error the speed was put to the lowest speed used@d.0 m/s.

Increased offset also increases the error accotdifgl. ( 7 ). To see the effect
of different offsetsy,, the set {2, 5, 25, 48was tested.

4.2 Results

Using only one sample to estimate the offset gikiesstandard deviatioﬁryo
seen in Figure 4 at different hinge angjesn) and speed&y(n). As seen&%
increases withy,. (n) and decreases with increased spg#n).

The result for travelling 50 m, giving differentmber of samples, can be seen
in Figure 5. As seen in the figur’e% increase less for large angles and low

speeds compared with Figure 4.

Analyses of the effects of using, (n) as y(n) in Eq. ( 7 ) showed that the error
in y, increased almost linearly with increasgd(n) as seen in Figure 6. It
could also be seen that the errorjnis always smaller then the true offset.
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Figure 4. The estimated standard deviatidpo of the hinge angle offset at one

A

sample ofvn(n) equal to {1; 2.5; 4.5} m/sy, (n) equal to [0 45]and 4§, (n),
calculated using Eq. (1). It should be obserhed cﬁ% increases with
decreasedy(n) and increaseg,, (n).
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Figure5: 5% after sampling withs and travelling 50 mv(n) is equal to {1;
2.5; 4.5} m/s angr_ (n) is equal to [0 45] It should be observed thét%

increases with decreaseg(n) and increasegr (n) but less at low speeds.
From the figure, it is clear that for small angiéspeed 2.5 m/s and above we
are able to estimate the offset within +0a2th 99 % confidence (258w, <
0.2).
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Figure 6: Error in estimated offset at the known offsets§225, 45¥ because
of using y,,(n) as y(n) in Eq. ( 7). It should be observed that the rEiso

always less than the true offset.

4.3 Discussion

From Figure 4 and Figure 5 it can be concludedttimestimated standard
deviation &% increases with increased hinge anglgn) and decreases with
increased speeg(n). The reason for increaseih with increasedy,, (n) is
because of that uncertainty in speed increasasntertainty in rotation speed
€ with increasedy,, (n). If the uncertainty in speed is zero thé;l is almost
constant for increaseg, (n). Increasingim(n) gives increased when keeping
., (n) constant and thereby better readings. It shdstulze remembered that
according to Eq. ( 11 ) increasing the sample Nibg driving a longer distance
decreasesff% . From Figure 5 it could be concluded that wheridg 50 m the
99 % confidence interval 2.5¢6 is only 0.2% even for low speeds at small
¥, (n), which is close to +022

When analysing the error introduced because ofjugjr(n) as y(n) in Eq. (7

) it was found that the error increased almostlihyewith y, (n). It was also
found that the error iry, was always smaller than the true offset which rmake
it possible to iterate to find the best estimggeof the true hinge angle. The

error is a constant error, which means that takioge samples doesn’t help,
but iterating as described in Chapter 3.3.1 redtileegrror to zero.

24



A conclusion is that because of increasi;g at high hinge angles it's expected

that the machine is going to be driven as straaghtossible. When using the
mean ofy, (n) as an first approximation of the offset this gieremaining

offset in the hinge angle estimaggn) equal to the mean of the hinge

angley (n), see Eq. ( 8). Ity (n) is small the error is even smaller according to
Figure 6 so as long as the machine is not driven twihigh y (n) no iteration

is needed.

5 Hinge angle experiments

To test the calibration method a series of expertmwere needed. A list of
goals below was created to fully test the systemisd.

» Find the minimum length needed to get good enougbigion.

» Check the precision in relation to speed. Find mum speed.

» Check the precision in relation to turn radius.demaximum angle.

» Check the deadband of the machine.

» See if stretching the machine in one direction gjivetter performance.

45 experiments to achieve these goals were puhupost of them one drove
straight or in an arc. No experiment was made wildrge hinge angle offset
because the theoretical analysis above prove# tthaésn’'t work.

The experiments were made on an ST14 LHD in amotttrground mine in
Kvarntorp in Kumla by an experienced driver. Theadaere then saved
analysed offline in MATLAB. The third goal couldrbe tested because of
limited space in the mine drift.

5.1 Experiment setup

All experiments were repeated at the speeds {132;£25} m/s because they
are the maximum speeds at each gear and therepyodesep constant. In all
cases the driver tried to drive relaxed so norroaiection oscillations should
be included. The hinge angle sensor was pre-ctdifbta give a reasonable
hinge angle. Then the mean of the sampled hingesmden driving straight
300 m was calculated, which gave the remaininghinge angle offset with a
precision of around +0.05The true offset was then used as a referendeein t
experiments. To get the gyro bias the machine sstibdor 10 s before and
after completing a run through the drift to collggto bias data.

The first experiments were made to test the metimol#r normal conditions.
To collect data the machine was driven straighttortevo times back and forth
through a 300 m long tunnel at the different spe@dstraight path was chosen
because that should give the smallest errors.

To test the last two goals the machine was drivigm the true hinge angles of
{0.2; +0.7}° at different speeds a distance of 100 m in an liide tunnel. The
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hinge angle of 02was chosen to see if better performance was aatiéthe
machine was stretched in one direction. The thowgistthat if one stretches
the machine in one direction the machine shouldrotllate because of the
play in the axles and the hinge. This then shautdeiase the performance of
the method. +07were chosen to see if there was any play in thgehangle
sensing and thereby different results in the ofésgimation.

The reason to not test with random moves was tiga¢trors arise when the
angle is high and/or speed low. Also the error toaes from
increasing/decreasing the angle is small. If tptalhdom moves had been
made the errors had cancelled out.

Enough with data were collected at each setup &bbeto divide it into a
number of partions containid, measurements/hereN, was chosen to 250,
500 and 1000 samples, to test the precision ardift lengths. Each
experiment setup was repeabtédtimes to find the confidence interval of the
estimated offsets.

A number of statistics were then calculated usiregdata starting with the
mean y, of all N; offset estimateg, to see that they were centred on the true

offset. Then the maximum deviation from the trusetfd . was calculated

Yo max
for each experiment setud,, .. is the maximum error from our

measurements, which is only a small amount of thelevpopulation.
Confidence intervals take the whole population cdasideration and are more
assertive statistics. The methods described in €h8.3 and 3.3.4 were
therefore used to find different 99 % confidenderivals for jy,. For each

measurement in experimenp the 99 % confidence interval was calculated
using the error propagation with the measuremenisput. The largest

confidence intervak max(&yo(p Ywherez,,,=2.576, was then recorded
for each setup.

The largest and smallest confidence intexg) max(o; ,(p)) respectively
Z,4o Min(o;,,(P)) , using the standard deviation in each experirpenere
recorded for each setup. By using the estimateuiatd deviatiors, of all the
¥,'s, the confidence interval with lower boardgy,L, and higher boarder
z,,,L, was calculated and recorded for each setup togeitrethe estimated

X

1

2

confidence intervak,y,s, and the mean of al, ratios for each

experiment setup.
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5.2 Results

From the mean value, when driving 300 m straidiwais found that the true
remaining hinge angle was 0.310.05°. So the goal for the experiments is to
get hinge angle offsets in the range 0.20.20°, to show that the method can
operate under all conditions.

5.2.1 Driving straight

Table 1. (a) The experiment setups, mean hinge off§§tand maximum
deviating offsetsd, . when driving with a true hinge angje of 0°. (b) The

Yo max
Gaussian 99 % confidence intervals for the expartmeasing different
methods.

a.
Exp. | V v =
Setup | [?] | Gear|[m/s]| N, f; | Distance | Ny Yo df/omax
11 O 1| 1.3 250| 20 16.25| 19| 0.34 0.36
2, 0 2| 2.6 250| 20 32.50| 38| 0.30 0.20
3] 0 3| 4.5 250| 20 56.25| 38| 0.32 0.15
4/ 0 1| 1.3 500| 20 32.50 9| 0.34 0.20
5| 0 2| 26 500| 20 65.00| 18| 0.30 0.11
6| O 3| 4.5 500| 20 112.50| 18| 0.32 0.11
7/ 0 1| 1.3| 1000| 20 65.00 4| 0.34 0.19
8/ O 2| 2.6 1000| 20 130.00 6| 0.30 0.05
9, O 3| 45| 1000| 20 225.00 6| 0.31 0.05
b.
EXp. Zg99Max@;, (P)) | zpooMin(as, 1(P) | ZngoMax@: 4(p)) Zn00S X2 (p)
Setup| 099 Yo 099 Vol 099 7ol Zgggly | “099°7, | Zggolp | Ny-1
1 0.26 0.08 0.20| 0.20 0.29| 0.49 6.40
2 0.13 0.06 0.19| 0.14 0.19| 0.26 5.39
3 0.08 0.04 0.19| 0.12 0.15| 0.21 7.94
4 0.19 0.07 0.11| 0.15 0.25| 0.60 9.47
5 0.10 0.04 0.13| 0.10 0.14| 0.23 4.06
6 0.06 0.03 0.12| 0.08 0.11| 0.19 9.88
7 0.13 0.05 0.07| 0.14 0.28| 1.79 23.23
8 0.07 0.03 0.06| 0.03 0.06| 0.24 2.61
9 0.04 0.03 0.06| 0.04 0.07| 0.25 7.30

The results from driving straight with differentegals and using different
number of samples can be seen in Table 1, fordgysee appendix B. As seen,

the estimated offsetg, have a mear)rf0 very close to 0.31in all cases. If one

looks at their distributions one finds out thatytlrave Gaussian distributions
which tell us that our assumptions made in Chapt&B and 3.3.4 are valid.
From Table 1 it could be seen that for all casesides the one when only
using 250 samples and driving with the first geyr, ., is smaller than or

equal to 0.2
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Using gear 2 and 3 instead of gear 1 largely imgsdhe performance
according tod Also increasing the distance driven and therébysample

7o max *

size decreased, . for gear 2 and 3 but only a small amount for deat

Vo Max
larger sample sizes. The difference between ustag 2 and 3 decreases with
increased sample size.

Table 1b shows the positive borders of differen#®8onfidence intervals
calculated using the methods in Chapter 3.3.3 a®d.3 L, and z 4L, tell

in which interval the true positive confidence mt border is. They only
relies on that the measurements are Gaussian anldesefore the most reliable

0oNes.z, max(&%(p ))is the most uncertain statistic. As seen in Tablé
compared toz,,,L, underestimates the confidence interval in mostas
Z,450;,,(P) also underestimates the confidence interval sonestbecause of
that z,,, min(o;,,(p)) is smaller tharz,,,L, for all setups and sometimes leave
reasonable estimates, max@; ,(p ,)hich in most cases are in the interval
defined byz,,L, and z,,,L,. But on average it underestimate the confidence

2
interval according to the mean ele
-

It can be seen fronzgs; that using confidence intervals insteaddgf, ..,

gives similar results. By looking &,.,L, it can be seen that for gear 2 and

gear 3 the error is smaller thanOirBall cases if one includes the measurement
error of the true offset. Increasing the distamaedlled from 33 m doesn’t
improve z,,,L,. To see the spread of the offsets and their cenfid intervals

see appendix B.

5.2.2 Small turning

Table 2 (a) The experiment setups, mean hinge off§§tand maximum
deviating offsetsd, __ when driving with a true hinge angje of 0.2. (b) The

Vo max
Gaussian 99 % confidence intervals for the expeartmesing different
methods

a.

Exp. y =

Setup [9] Gear | v[m/s] | N, fs | Distance | N; Yo df/o max
10 0.2 1 1.3| 250| 25 13.00| 12| 0.30 0.25
11 0.2 2 26| 250| 25 26.00| 12| 0.27 0.18
12 0.2 3 45| 250| 25 45,00 12| 0.37 0.25
13 0.2 1 1.3| 500| 25 26.00 4] 0.29 0.13
14 0.2 2 2.6| 500| 25 52.00 4| 0.28 0.05
15 0.2 3 45| 500| 25 90.00 4| 0.39 0.18
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b.

52

EZ&p 2099M@y (P)) | zgggmin(ay 1(P) | ZoggMax(@y 1 (P | 0 1 | Z099%, | zogqbs #—1( 2
10 0.31 0.20 0.47| 0.22| 0.34| 0.70 1.75
11 0.16 0.10 0.20| 0.15| 0.23| 0.47 2.36
12 0.10 0.08 0.14| 0.15| 0.23| 0.46 4.65
13 0.22 0.16 0.26| 0.13| 0.26] 1.69 2.35
14 0.11 0.11 0.12| 0.02| 0.05| 0.28 0.15
15 0.07 0.07 0.08| 0.08| 0.15| 1.01 4.92

From Table 2 it can be seen that with high prolitgblby looking atz,.L, and
Z000S;, » the performance has not improved when turnin§ Matead it's
possible that it has decreased, especially for elgor gear 3 also the mean
offset estimatef/0 is unusually high both at a sample size of 25050

samples. To see the spread of the offsets andatiidence intervals see
appendix B.

5.2.3 Increased turning and deadband

Table 3: (a) The experiment setups, mean hinge off§gtand maximum
deviating offsetsd
The Gaussian 99 % confidence intervals for the ex@ats using different

Vo max

when driving with a true hinge angje of +0.7. (b)

methods.
a.
Exp. y =
Setup [°]|Gear| v[m/s]| N2| fs| Distance| N1 Yo dffomax
16 0.7 1 1.3] 250| 25 13.00| 16| 0.38 0.51
17| 0.7 2 2.6| 250| 25 26.00| 16| 0.36 0.29
18| 0.7 1 1.3| 500| 25 26.00 8| 0.39 0.45
19| 07 2 2.6| 500| 25 52.00 8| 0.37 0.19
20| -0.7 1 1.3| 250| 25 13.00| 10| 0.17 0.47
21| -0.7 2 2.6| 250| 25 26.00| 10| 0.25 0.32
22| -0.7 1 1.3| 500| 25 26.00 4| 0.19 0.24
23| -0.7 2 2.6| 500| 25 52.00 4| 0.24 0.13
b.
-2
EZ&p 2099M@y (P)) | zgggmin(ay 1(P) | ZoggMax(@y 1(P) | 0 1 | Z099%, | zogqbs #—1(")
16 0.31 0.19 0.44] 0.36 0.53] 0.95 4.31
17 0.16 0.10 0.24| 0.28 0.41| 0.73 8.15
18 0.22 0.15 0.26| 0.26 0.45| 1.18 5.60
19 0.11 0.09 0.15| 0.11 0.18| 0.47 3.30
20 0.31 0.25 0.45] 0.31 0.50| 1.14 2.17
21 0.16 0.11 0.17| 0.18 0.29| 0.65 4.32
22 0.22 0.21 0.26| 0.16 0.32| 2.01 1.94
23 0.11 0.10 0.11| 0.06 0.12| 0.74 1.34
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By looking at thef/0 at +0.7 in Table 3 it's found that turning positive
increases the estimated hinge angjeand turning negative decreases It
could also be seen that the deviation from theltinge angle offset decreases
with speed. If Table 2 and Table 3 are comparedntalso be observed that
increased turning also increases the deviatiop, irOne exception is at gear 3
in Table 2 where the deviation is equally larg¢hase at other gears in Table

3. To see the spread of the offsets and their denée intervals see appendix
B.

5.3 Discussion

From the results when driving straight one can dtafollowing conclusions:
1. Performance improves with higher speed and lonig¢artte.
2. The difference of using gear 3 and 2 decreasesdistances travelled.
3. Driving slower than 2.5 m/s and shorter than 33 mat recommended.

As seen in Table 1 bothy,G, (p dnd 2,40, ,(p ) are underestimating the
true confidence interval. One of the reasonsZgrd; (p) to underestimate

the confidence interval is that it uses a modeictvin reality always contains
model errors. It also only takes into consideratimnstandard deviations of the
sensors that for the speed and the gyro contairelinaglerrors. Errors like
slippage and vibrations, which affects the gyr@ls® not considered. Even
when z,,,d, (p) underestimates the confidence interval it stilldeis the

behaviour correctly, when compared2g,s; in Tables 1, 2 and 3.

Driving at 4.5 m/s didn’t give any significant imgyement in both the straight
case and when a small turn was made. It gave the sanfidence interval,
driving 56 m at 4.5 m/s, as driving 65 m at 2.5,mafsseen in Table 1. Driving
slower makes it easier to perform the calibratiosrmall and narrow mines so
2.5 m/s is preferred to 4.5 m/s.

Z,450;,,(P) only rely on the facts that the measurements arearrelated, that

the sample size is large and that they have a @Gaudistribution. The later has
been confirmed and the sample size is large. Byutating the correlation it
was found that there exists an oscillation witleaqu of around 1 s in the
sample offsets. By looking at the gyro readings twednachine when the
machine stops it has been seen that the LHD isieg&gr some seconds with
a period of 1 s. From this it can be concluded that_HD has a swaying
resonance frequency of around 1 s and because obthelation the variance is
under estimated. The error introduced by the svgpigrsmall if large sample
sizes are used.

The experiments made when turning with a small énizuggle shows that there
is nothing gained in precision by doing it. It'seevso that the precision seems
to decrease according to Table 2. When using 5@ples and gear 2, Table 2,
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it seems like that the confidence interval is l&ygkecreased, but looking at
Z,5,L, One understands that it is possible that it's vesténated. These results

are also backed up by the mean ratio, which noynmalarger than 1. The
reason for the mean offset estimgteto be high at high speeds can't be

explained by other than the occurrence of slippatiésgh speed when turning.
This is probably also the reason for the increassedidence interval, but it

should be remembered that there exists a uncariaint, .

Another conclusion is that when the turning is @ased a deadband is created
according to Table 3. It's not a normal mechantesdband because it
shouldn’t increase with turning angle. More likélpppears because of

slippages. It can also be observed fragglL, and z,.s;, in Table 1, 2 and 3

that the confidence interval and thereby the sprea@ases with increased
hinge angle. From this a conclusion can be drawhdhving as straight as
possible is recommended.

It should be noted that the, L, to z,,L, intervals are too large and

overlapping, because of too few experiments witthesetup, in order to with
99 % confidence assure the above conclusions.Heu is a high probability
that they are right. It should be remembered thgjl, and z,,,L, depends on

the number of samples and therefore convergesttiub confidence interval
when the number of experiments with the same sgep to infinity and vice

versa. Without more data it can only be assuretthigeoffset estimation error
is less tharnz,L, . A effect of this can be seen in the straight eaisere it

seems as increasing the distance doesn’'t dec®gds . This happens because

the sample size decreases with distance. If oneadsooks at the estimated
confidence intervak,s; it decreases. The problem of too few samples & als

one of the factors that driveg,L, high in the cases when making small turns.

From the above experiments it can be concludedhleainethod can deliver a
hinge angle offset with a precision better tharf &igh a 99 % confidence as
long as the machine is driven straight 33 m or érad a speed of 2.5 m/s. The
goal of 0.2 can’t be achieved following the criterions in Ctea®.1 but it is
possible, with high probability, that more expenngeis going to show that the
true 99 % confidence interval lies lower than tkechestimated,:s.

Later investigations of the LHD used at data caoidecin Kvarntorp showed
that a part in the hinge angle sensor was brokleis. Jave the hinge angle
sensor a play. The load on the hinge angle chames the machine goes in
different directions which then probably affectesireadings because of the
play. This can have altered the results negatiaet/is probably the reason for
the deadband.
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6 Required laser offset accuracy

For the lasers the required accuracy was spe@selmaximum scan matching
error in the map. To be able to specify the cowadmg required precision of
the angular offset of the lasers a set of offsess mumber of environments
were tested to find the ones giving the maximumvatid scan matching error
of 0.35.

6.1 Analysis setup

To find the offsets giving the maximum allowed scaatching error a grid of
varying laser offset combinationgy, ¢ ) was created. It was expected that the
laser offsets never would be larger thafi dé8grees. But we chose to use a grid
with the range [-5 5]in each direction and a resolution 8f The grid was
applied on real log data from six different routea mine in the Finnish town
Kemi. Three routes were straight and three rougelsahturn. For each grid

point and route the mapping and evaluation proeedascribed in Chapter
3.4.1 was applied using the offsets in the gridasection. The reference
offsets were estimated from the three straighta®using the above method
with a resolution of 0Band were found to be equal to (-0.8;8.8)hich then
were represented by the vectpy, .

6.2 Results

Rear offset [degrees]

Front offset [degrees]

Figure 7: Highest scan matching error from all routes at exfset
combination. Green crosses and the red shadednateamiddle show the
offsets giving as ., Smaller than 0.35. The red circle shows the offggt

and the red square shows the offsgts,;, with loweste .

Figure 7 shows the total maximum of the scan matghirors, when driving
the paths with different offsets. The green crossekthe red shaded area in the
middle show the offset combinations that give, g, smaller than 0.35 for all
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paths. The red circle shows the offsgts closest to the reference offsets,
where (@,, @) is equal to (-0.8; 0.3)As seen it doesn't lie in the middle of the
allowed angles and nor do the offsets,;,, with loweste, ., shown as a

red square in (0.0;0.0)lt can also be seen that, doesn’t coincide with
Pcomma @Nd that the allowed area based on the matching @iterion is just
allowing the offsets to vary -(®%rom their reference value, .

Front offset [degrees]

Front offset [degrees]

Figure 8: Maximum scan matching error from straight routea and routes
with a turn in b. Green crosses and the red shaddin the middle shows the

offsets giving as,,,,, Smaller than 0.35. The red circle shows the dfskisest
to the true offset® . and the red square in shows the offsets,, ., in a and
Propina 1N D, With loweste, .
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In Figure 8a and 8b the maximum scan matching £from straight paths
respectively paths with a turn can be observedireiga from the straight paths
shows that the offselgg, ., with loweste ., in the straight cases coincides

with ¢, . It also shows that the area of allowed offsddriger than in Figure
7, centred aroung,, and allows the offset to vary $2rhese results are also
valid if one looks at the three paths separatélgolld be seen that Figure 8b
from the turning paths resembles Figure 7 sinbasta higheg, ., for almost

all angles and thereby dominates Figure 7. It shbolvever be mentioned that
it's only one path that dominates the other thires @ecides the shape of Figure
7 and 8b. In all turning cases,,,, varied but the area of allowed offsets was

centred around@,, and had the same size as in the straight cases wit
exception of the dominating one.

6.3 Discussion

It's the worst cases that set the limits becausestlan match error must always
stay under 0.35. From Figure 7 the conclusion @drbwn that the offsets
can't be allowed to deviate more than *Grém their true value. One also
assumes that one can't allow them to deviate ni@re +0.5. This conclusion
comes from the symmetry in the systems dimensidnshashould give
symmetric scan matching errors and is confirmethbystraight cases where
the allowed area is centred aroupg],.. More cases had been needed to

investigate this further but because of too largaputation times as well as
lack of relevant data this was not possible.

0.45 . .

T
Scan Error uging True Offsets
——— Scan Enor usin g Optimal Offsets

04k Hinge angle in radians H

RMS, Radians
o
i
T
|

\_E_I_F\_L\;
01+ L, -

ol -

005 | | | | |
a 200 400 600 800 1000 1200

Sample [n]

Figure 9: Data from one of the turning paths. As seen tbgrgt an offset that
gives a lower maximum scan matching error at the thian the true offset.
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The reason folp,q,;,, t0 sometimes deviate from,, in the turning cases can

be explained by Figure 9 showing data from ondefturning paths. In Figure
9 the blue line ist 4, USINg @, , the red line s, USING @1, @Nd the

green line is the hinge angjein radians. From the figures it can be observed
that €., goes high whery goes highe, ., gives a bettee_,, on average

matc

but @oyim ives the lowest maximura,_ . One of the reasons far_,, to

match

increase in turns is because of the geometry afihe drift and the side drift,
which the turn is made into, becausg,,, is also increasing when just passing
a side drift, which can be seen by lookingegt,,, for each sample in the
straight cases.

Sometimes there are also walls with ventilatioretubr cable ladders that make
the laser data corrupt and increasg,,. £, &lso goes down at erroneous
offsets because of above mentioned reasons. Asul of that we didn’t

collect the data ourselves, we can’'t know whereetieere things interfering
with our measurement. Nevertheless, non true affsate shown to sometimes
give better scan matching errors.

7 Accuracy of the laser offset estimation

To evaluate that the method provide reliable o$fsath high enough precision
a set of experiments were performed on real andlated data.

7.1 Test setup

Table 4: Places, angles used at simulation and numberbfests at each
location.

Simulated @,; @) [ Real [number of tests]
Kemi Straight (0,0), (0,3), (3,3) 10
Kemi Turn (0,0), (0,3), (3,3) 3
Kvarntorp (0,0), (0,3), (3,3) 5

A test schema seen in Table 4 was created witardift conditions to test. It
contains tests to see if the method could handle &toaight and turning paths
in real and simulated cases. The tests were dong lag-files from a mine in
Kemi, which has representable proportions. The kitrmn tests were made to
see that the method could handle all expectedtsffgeand ¢ because we

couldn’t do real experiments where we turned tBersa Routes from the same
area in Kvarntorp were used to test how it hantilege mine drifts with many
side drifts. It was also of interest to see howt itasonverged in the different
cases and how long driving distance that was needed

The method shouldn’t need reconfiguration for eaxmironment so in all tests
the same parameter configuration was used. A spledund 2.5 m/s was

used because the early tests had shown that legbeds gave the best result
and 2.5 m/s is the maximum usable speed. The langes measurements of
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the real data where compensated for sensor offgag the method described in
Chapter 3.3.1. In the simulations the same dripath was used in each
location for all offsets to not affect the resutdturns were made in the end of
the Kvarntorp runs to see if the Kalman filter @bblndle it.

When analysing the real paths the true offsets Weog/n for the Kemi data
from the analysis above and equal to (-0.8018)Kvarntorp the true offsets
weren’t known but constant in all routes. The reasouse real cases was to be
able to analyse the accuracy under real circumstarc the straight Kemi
cases 10 different log-files had been recordedanspf two areas in the mine.

As a result of this the following tests are in s#aene areas
« 1,3,4and8
* 6,9and?2
e 7,10 and beginning of 5
The Kalman filter uses the scan matching eagy,, to update its estimates

and a largek, ., makes the algorithm to converge faster. As seéigare 7

equal offsets and opposite offsets give almossémee scan matching error
E e+ If (@, @& ) are (3,0) or (0,3 it should be harder than if they are (38)

find them, due to lower scaf),,,. But the convergence shouldn’t depend on if

the offsets are (3,0pr (0,3f. From this a conclusion was drawn that it's
enough to test with the offsetgy, ¢1. ) equal to {(0,0) (0,3) (3,37}

7.2 Results

7.2.1 Driving straight in a normal mine drift

Figure 10: ¢, andg from the simulated straight path in Kemi at lasfsets
{(0,0) (0,3) (3.3)}.
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Figure 11: Angular offsets estimated from 10 different datis secorded along
straight paths in Kemi.
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Figure 12: Maps and paths, in blue, from the straight are&semi. The paths
starts in position (0,0) m with heading equal to 0
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In Figure 11¢,, ¢ , qZR and&F can be seen from data recorded along real

straight paths in Kemi, see maps in Figure 12. Hawking at the figure it can
be seen that the offsets are spread arogdy ) equal to (-0.8; 0.8) which is
the true offset. 8 of the 10 finayy, @ ):s are inside the +®%imit and the

same 8 are inside the limits after only 23 m. Bykiag at (&R,qZF) it can be
seen that some estimates converge fast and sop®ltaiger time, especially
for qZF . All of them have converged close to their finalue after 40 m and
(&, @ ) have get close to their final values after aro6@adn. The computation
time was around 17 minutes in all cases.
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7.2.2 Turning in a normal mine drift

—— Offsets (0:0)
Offsets (0:3)
Offsets (3:3)

—— Offsets (0:0)
Offsets (0:3)
Offsets (3:3)

Rear Mean offset [degrees]
Front Mean offset [degrees]

Figure 12: Angular offsets estimated from a simulated rout&émi with a
turn and laser offsets {(0,0) (0,3) (3,3)As seeng. get affected at the turn
after 55 meters.

Figure 12 showss,, @ , @ andg when simulating with the offsets {(0,0)

(0,3) (3,3)F. The offsets have converged to within f0ahen the mean
valuing is started after 23 m and doesn't get lgrgéected by the turn after 50

m. As seen by&R,(}F) the offsets converge after a few metq},_s.does get

affect in the turn but then returns to its origimalue. For(;JR it's hard to see if

it is affected by the turn. Its largest reactiopgens after 70 m, which is when
the back has left the turn and is facing towards it
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Figure 13: Angular offsets estimated from real data recordedga path
including a turn.
The same accuracy was not achieved when usingla&ain real turning cases.
This can be seen in Figure 13 showpg ¢ , ¢, andg when driving the

routes seen in Figure 14, starting at (0,0) m Witading 6. Test 3 is the only
case when both offsets are within the £0iffit and close to the true offsets.

Test 2 is on the border of the +Drange withg. and close but outside with
@ In test 1 onlyg, is in the range but by looking # in Figure 13, it's seen
that qZF after the turn, seen in Figure 14, converges tdsvtire true offset. It

could also be seen thé;_; in test 3 deviates at the turn after 60 m and then

returns. In test 2 the offset is deviating all tinee from the true but especially
when the turn is made. The computation time isadlb minutes.
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7.2.3 Driving in a straight wide mine drift

Simulations from Kvarntorp gave offsetgy @ ) within +0.2 of the true

offsets. The simulations also showed that the &ffetthe small turns in the
end are neglect able.

Figure 15 showss,, ¢ , ¢ and g estimated from data recorded in
Kvarntorp. For all the Kvarntorp runs the offsets the same but not known
and it's hard by just looking at Figure 15 to sdeatthe true offsets could be
because of the large spread. The worst ones aredheffsets which are
spread +0.25at all times. Even though it's hard to see the tffsets it can be
seen in Figure 15 thatg, ¢ ) are inside the +0%imit after 23 meters if the
true offsets are somewhere between the estimaesi ®he computation time
is around 20 minutes.

From looking at (ZR(;JF) in Figure 15 it could be seen that for both dSgest

1, 3 and 5 are grouped together and similar wgh2eand 4. Figure 16 shows
the driven paths super imposed on maps of the amwient. All paths begin in
position (0,0) m with heading’0In tests 1, 3 and 5 the machine was driving
forward, while 2 and 4 are recorded while driviragkwards. It's thereby a

correlation between the direction and especialiyrdar offsets. From Figure

15 it can be seen that it takes 50 m f@g,@) to stabilize and because the

paths are not longer than 80 @,(¢ ) do not have time to stabilize at the final

value. The noise on the maps in Figure 16 is becatisoles in the wall into a
side drift.

y [meters]
y [meters]

-100 -50 0
% [meters]

y [meters]
y [meters]

0 50 100 -100 -50 0
% [meters] X [meters]

¥ [meters]

0 50 100
% [meters]

Figure 16: The 5 maps and paths, in blue, from Kvarntorp. fédhs begins at
position (0,0) m with headind’0
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7.3 Discussion

In Chapter 6 it was found that an accuracy of *@&s needed to get a scan
matching error less than 0.35. It's here seenitlsghossible in most cases to
achieve this accuracy after only 23 m if the maeh#ngoing straight. Possibly
it could have been achieved faster if the meaninglbad started earlier since

the offsets (&RqZF ), according to Figure 11, in most cases have agedeafter

only a few meters. The computation time is alse tean the required 30
minutes.

The reason for tests 3 and 4 in Figure 11 to lisida the allowed range can't
be properly explained. Tests 1 and 8 are madesisdime drift and in test 1
there are only minor problems to converge in thggrbeng. In test 8 there are
larger problems in the beginning and the starttjowsis in the same place as in
tests 3 and 4. It may be that the machine is stami a junction, resulting in the
estimated offsets getting stuck in local minima.

It could also be observed that the wall is noiggrafialf the path. This may also
be the reason why tests 3 and 4 don’t convergethtigunction. Investigations
of £, have shown that it decreases for tests 3 and $amd to in test 8 at

the place of the noisy wall, which strengthensthi®®ry. This happens because
the noisy wall changes the optimal point searcledy the Kalman filter. The
noise may come from a cable ladder or ventilatiemd What is causing the
constant offsets between the tests in the same hesayet to be proven.
Probably it has to do with differences in the starpoint, steering of the
machine, noise in the gyro and so on.

A probable reason for@,@) to deviate from their true offsets in the

simulated and real turns in Figure 12 and FiguresIi&cause of geometry of
the turn, as mentioned in Chapter 6.3. The theosyrengthen by the fact that

(;JR in one of the simulated cases isn't affected witér the turn, and that we

don’t have simulated odometry errors. Test 2:s e, seen in Figure 13,
can’'t be explained. Something makes the offsetaeveven on the straight
parts.

Later examination of the machine used at datacabie in Kvarntorp showed
that a part in the hinge angle sensor was brokleis. Jave the hinge angle
sensor a play. The load on the hinge angle chames the machine goes in
different directions, which then probably affectedreadings because of the
play. This is probably the reason for the groupmthe tests seen in Figure 15.
Positioning of the rear part of the machine depeldstly on the hinge angle,
which can be the reason for the rear offsets torgee affected.

The algorithm works in all simulated cases whickam#hat it is theoretically
correct. More experiments in a controlled environtrege needed to draw some
definitive conclusions for the real cases but ftbm experiments made it can
be concluded that the offsets in most cases castimated to within £0%if

the environment doesn’t contain too much disturbaitie requirements are
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that the machine is driven straight for at leastr28t a speed of around 2.5 m/s.
It even seems to work in wide drifts with side @rifThe computation time
increases with the width of the drift but staysopeB0 minutes.

8 Conclusion

This report presents two methods that have beeslal@sd for use in
calibration of the hinge angle sensor respectitleytwo laser scanners on an
Atlas Copco ST14 LHD. In both the hinge angle galilon and laser scanner
calibration the new methods finds the angular off$¢he sensors.

For hinge angle calibration we have developed gorsthm based on the
difference between the measured hinge angle valdi¢he expected value
modelled from the speed and the heading changesasured by the gyro. In
the laser scanner calibration we used state augtn@mtogether with an
already existing Kalman Filter to estimate the dagaffsets of the laser. A
SLAM algorithm was also implemented to solve thelybem with cross
dependence between the map and the offsets atltbeation.

Both methods satisfy the predefined criterions timasurrounding equipment
should be needed and no extra sensors should Hedhékhey also satisfy the
requirement of easy operation. The operator onggado drive approximately
straight for around 50 meters while recording dattd then supply the
calibration program with the log-file. Both methazkmn also operate offline and
deliver estimates in under 30 minutes as requested.

To test accuracy and dependence on outer paranagteirsaber of experiments
and tests were made with both methods. The depeedsnspeed, distance and
steering angle was analytically investigated fer timge angle calibration to
get the characteristics of the system. Real exmerisnwere then made to
confirm the characteristics and find the limitdloé system. For the laser
scanners the required precision was only knownmaxamum scan matching
error in the map and not as a sensor offset. Aestigation was therefore first
made to find the offsets that gave the maximum seatching error. The
system was to complex to do analytical investigatjonstead simulations and
real tests were made to test the accuracy of stersyand how long driving
distance and time that was needed to do the egtim3the tests were made in
normally sized tunnels, tunnels with a turn andeatighnels with side drifts to
test how the method handle different environments.

The experiments showed that the hinge angle cébioranethod is only able to
deliver accurate estimates two within £0i333 m or more. It is also required
that the machine drive straight for this to be achble. The tests showed that
the laser calibration method is able to deliverrtaired accuracy of +&.5n
around 15 minutes, and that a distance of 23 mast iwases is sufficient if the
machine is driven straight. Problems arise if theeeto much environmental
disturbance or if the machine makes large turnsbbth methods a speed of
2.5 m/s is recommended.
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The laser calibration method and the hinge anglodeboth need further
evaluation in the future. More experiments needsetdone to better establish
the confidence interval of both methods. As ex@diabove side drifts
interfere the laser offsets estimation and maybe tile positioning so it needs
to be investigated further.

In Atlas Copco auto traming system maps are todegted using only
odometry. In the future one could use the maps ttwriaser calibration
method instead where the positioning is made usitiy odometry and laser
measurements. One could also augment the hinge segtor offset to the
states and use the laser calibration method fohitigee angle offset estimation.
The hinge angle method could also be run onlinenithe offset is known to
keep track of the gyro and hinge angle sensoregafs error occur, because
then the method deliver a different value compaodtie true offset.

Finally the developed methods considerably simghty calibration of the three
sensors compared to the methods used before. Baitiods delivered such a
good results that Atlas Copco choose to implentegrntin their system.
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10 Appendix A

10.10nly using hinge angle measurements

One idea was to use the mean of all recorded langke offsets, while driving
in an almost straight mine, where one could sethallvay. The maximum
error occurs if one drives in an arc with width alto two times the tunnel
width and reaching from one end to the other. \&@ighm wide tunnel
calculations using Eq. ( 1 ) combined with formuiasa circular segment
showed that 203 m was needed to get a precisior?bfThe problem is that
200 m long tunnel ways are rare.

Another idea used the fact that if you drive imantel in one direction and
accumulate the angles then turn the machine aranddirive the same way
back while still accumulating. The mean of the awulated angle is the offset.
This solution had the problems that one need totthie machine around and
also drive exactly the same way back and get timee sip in the mine drift
intersections to make it work. This ended up wiih fiast alternative using the

gyro.
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10.2Gyro ideas

A number of ideas were put-up how to estimate thgehangle offsey, using
the gyro and the odometer information. Both theyhiangle sensor and the
gyro give the same information. For example supplosdinge anglg is
small andy is equal to zero. Then Eq. (1) can be simplifeed

6=~

+|l

|2
It shows that the rotation speédgiven by the gyro is only a scaling by speed

of the hinge angle. A8, equal to zero the hinge angle sensor should give
zeroy .

A method was wanted that foury, (n) in the point whered, is equal to zero
because thery, (n) only containsy, and noise according to Eq. (4 ). One

method was to drive straight with the mear‘égy‘n (n) equal to zero and then
calculate the mean of the measurg), which should then only include the
offset. This was thought to be too hard for theelri Another method was to
interpolate a line between tv@bm (n) samples with opposite signs and two
¥, (n) samples at the same time instants. Then usedpenrional distance

om (N) @nd zero on th@, -line to find y, on the y,, -line and
taking the mean from many interpolations to find ttue y, . A third and final
idea was to use Eq. ( 1) together with systemtifiestion and then insert the

between the firsé

measuredy, (n) to find a y, that gives the best fit with the measusggd ().

This required an optimization algorithm. By anahgsthis idea further it was
found out, as seen in Chapter 3.3.1, thatould be found explicit.

11 Appendix B

Two plots were created for each experiment sethp.fifst shows data from
using gear 1 and 2 and the second shows data Bom gear 2 and 3. In the
plots the estimated offsefg (p) for each experiment can be seen as a circle and

their individual 99 % confidence intervatg,,0;, ,(p) be seen as bars. The
dashed doted lines show the mean hinge angle q?gsmr each gear. Dashed
lines indicate the estimated 99 % confidence irtlery,,s; for the true offset
¥, calculated from the spread of the offsgi§p) for each gear. The coloured
areas shows the 99 % confidence interval, defiryed L, and z,4L, , for

the true 99 % confidence interval gf.
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Figure 17: 19 estimated offsets when using 250 samples andglistraight
with gear 1 and 2.
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Figure 18: 38 estimated offsets when using 250 samples andglistraight
with gear 2 and 3.
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Figure 19: 9 estimated offsets when using 500 samples amthgrstraight
with gear 1 and 2.
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Figure 20: 18 estimated offsets when using 500 samples andglistraight
with gear 2 and 3.
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Figure 21: 4 estimated offsets when using 1000 samples andglistraight
with gear 1 and 2.
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Figure 22: 6 estimated offsets when using 1000 samples anidglistraight
with gear 2 and 3.
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Figure 23: 12 estimated offsets when using 250 samples andglwith a true
hinge angle of 0 2using gear 1 and 2.
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Figure 24: 12 estimated offsets when using 250 samples anidglwith a true
hinge angle of 02using gear 2 and 3.
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Figure 25: 4 estimated offsets when using 500 samples amthgnwvith a true
hinge angle of 0 2using gear 1 and 2.
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Figure 26: 4 estimated offsets when using 500 samples amthgnwith a true
hinge angle of 02using gear 2 and 3.
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Figure 27: 16 estimated offsets when using 250 samples andglwith a true
hinge angle of +07using gear 1 and 2.
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Figure 28: 16 estimated offsets when using 500 samples andglwith a true
hinge angle of +07using gear 1 and 2.
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Figure 29: 10 estimated offsets when using 250 samples anidglwith a true
hinge angle of -07using gear 1 and 2.

o
o

Hinge angle [degrees]

0 05 1 15 2 25 3 35 1
Experiment [nr]

Figure 30: 4 estimated offsets when using 500 samples amthgnwith a true
hinge angle of -07using gear 1 and 2.
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