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Summary 

Atlas Copco has delivered mining products since the last century and in 2007 they 
introduced an autonomous centre articulated LHD (Load-Haul-Dumper). LHD:s are 
used in most underground mines for transport of ore and the idea of an autonomous 

LHD was to improve safety, efficiency and productivity in underground mines. The 
autonomous LHD contains a number of sensors including an odometer, a hinge angle 
sensor in the articulation joint, a gyro and two laser scanners needed for autonomous 
operation. All of them need to be calibrated because of pose errors from high tolerances 
in the machine construction. 

In this thesis a method for calibrating the angular offset of the hinge angle sensor and 
another method for calibrating the angular offsets of the two laser scanners using data 
from the already existing sensors are presented. The hinge angle method relies on the 
gyro, the odometer and a kinematic model of a centre articulated vehicle to estimate the 
offset. For calibration of the laser scanners the offsets are augmented on to the states in 
the state space model used for positioning of the LHD. The augmented state is then 
estimated using a combination of an Extended Kalman filter and an Unscented Kalman 
filter in a SLAM algorithm that uses the kinematic model and the laser measurements. 

Experiments in simulated and real environments have shown that the hinge angle sensor 
estimates the angular offset to within 0.3o. Tests of the laser scanner calibration method 
have shown that it estimates the angular offset to within 0.5o. The methods run offline, 
are easy to operate and require that the operator drives at least 50 m in a straight mine 
drift at 2.5 m/s to collect enough data. 

The report is written in English. 
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1 Introduction 

1.1 History 
The mining industry is a dangerous workplace, especially underground mining. 
During the last decades mining companies have tried to improve efficiency, 
productivity and safety. Atlas Copco AB started out in 1873 as a railway 
company but turned into air compressors and air tools in the end of the 19th 
century. Today they are in a number of markets and at the beginning of the 20th 
century they started producing air driven rock drills to the mining industry. The 
development has moved on and today they produce a number of mining 
products including the centre articulated LHD (Load-Haul- Dump) Scooptram 
ST14 for loading, hauling and dumping materials in underground mines.  

All LHD:s have traditionally been manually driven by an operator placed in the 
machine. But for some years ago solutions began to be used where the LHD 
was remote controlled and teleoperated from a control room (Hainsworth 
2001). With teleoperation the operator was removed from the dangerous mine, 
but teleoperation includes delays and the cameras restrict the view for the 
operator which decreases the productivity (Larsson, Broxvall & Saffiotti 2010). 
To solve the problems related to teleoperation and also remove the need of a 
operator to each LHD autonomous systems have been developed and are 
commercially available, see (Automine 2011), (Scooptram Automation 2011) 
and (MINEGEM 2011). Atlas Copco’s Scooptram Automation includes both 
teleoperation and autonomous operation. 

1.2 System overview 
Atlas Copco’s autonomous system works using the principle Teaching, Route 
profiling and Playback. First the LHD is driven manually along the route it 
should operate on and all sensor data are logged. During route profiling data are 
converted to a number of grid maps (Marshall, Barfoot, & Larsson 2008) and a 
route profile containing waypoints, desired speeds and pause points for loading 
and dumping.  

During playback the route is followed with help of the sensors. Data from a 
hinge angle sensor in the articulation joint, a gyro and an odometer are 
weighted together using an EKF (Extended Kalman Filter) to estimate the 
position. Laser scans from two laser scanners are then compared with the map 
using UKF (Unscented Kalman Filter) to update the position estimate. 
Deviation from the desired route point is used as input to a control algorithm 
that steers the LHD towards the route point in the desired speed. The system is 
built to operate in an obstacle free environment, but simple obstacle avoidance 
algorithms are built in the system to make the machine stop if obstacles come in 
its way. 
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1.3 Objective 
All of the sensors need calibration because of errors from high tolerances in the 
machine construction. This project focuses on calibration of the hinge angle 
sensor and the laser scanners. The hinge angle sensor is used to measure the 
angle between the front and rear part. A method was searched that could find an 
angle offset that when applied reduces it to within ±0.2o. Before this project it 
was required that someone climbed on the back of the LHD and tried to align 
the machines back- and front end while the LHD was moving. When aligned 
one was able to get a reading of the angular offset.  

To get correct maps it’s important that the orientation of laser scanners relative 
the LHD:s coordinate system is known. This project is focused on the laser 
heading, which is the most critical parameter. The goal was to find the angular 
offsets of the laser scanners to give a maximum scan matching error less than a 
predefined value of 0.35. Before this project the lasers heading where manually 
put to zero by eye sighting. 

1.4 Contribution 
A new method is here proposed that can be used on any centre articulated 
vehicle to automatically find the offset of the hinge angle sensor. It uses the 
kinematic model in (Ridely & Corke 2001) together with the hinge angle 
sensor, the gyro and the odometer to get an estimate of the hinge angle offset. 
Error propagation was made to get an early estimate of the accuracy of the 
method. Different confidence intervals were then estimated to be able to 
guarantee its performance. Experiments have shown that the method delivers a 
hinge angle offset with an accuracy of ±0.3o. The requirement is that the 
machine is driven straight at least 33 m at 2.5 m/s  

A new method is here proposed that can be used to find the angular offset of a 
number of lasers on a moving vehicle automatically. It uses an augmentation of 
the original vehicle model, an EKF for prediction, an UKF for filtering and a 
SLAM (Simultanoues Localization and Mapping) algorithm. No error 
propagation nor a confidence interval were calculated for the laser offset 
because the method was too complex and too few data existed to get a good 
enough confidence interval. Experiments have verified that if the vehicle is 
driven straight in a 23 m normal sized mine drift it can estimate the angular 
offsets of two lasers to within ±0.5o, which is need to get a maximum scan 
matching error less than a predefined value of 0.35. 

1.5 Report structure 
In Chapter 2 the report evaluates different ideas before going through the 
sensors, algorithms and methods used for finding the offsets of both the lasers 
and the hinge angle sensor in Chapter 3. After going through the methods it 
continues with dealing with how the driving and sensor measurements affect 
the accuracy of the estimated hinge angle in Chapter 4. It then goes through the 
real experiments done to verify the accuracy of the system and its results in 
Chapter 5. The report then proceeds with taking up the required angular 
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accuracy of the laser offset estimation deduced from the given laser scan 
matching error in Chapter 6. In Chapter 7 it investigates the true accuracy found 
from test made in real environments and ends with a conclusion and future 
work in Chapter 8. 

2 Requirements and approach 
A literature research was made to find previous work in the area. For both 
problems, which were estimating the hinge angle offset and the laser scanner 
offsets, ideas were put-up and evaluated to find the best working methods that 
for filled the following requirements: 

• Deliver estimates with high enough accuracy. 

• Not need any surrounding equipment or extra sensors.  

• Be easily handled by the machine operator. 

• Operate in mine drifts that are 50 m or shorter, because mine drifts are 
often short. 

• Need a time less than 30 minutes for calculations. 

2.1 Hinge angle offset 
The hinge angle sensor has before this project been calibrated using the method 
described in Chapter 1.3. It delivered an offset in the range of ±0.2o, which has 
shown to be good enough for the system to operate without problems, because 
of that we require that the new hinge angle calibration method should deliver an 
offset in the same range. Different cases similar to this were investigated. 
Martinelli et. al. (2003), Madhavan, Dissanayake & Durrant-Whytel (1998) and 
Dall Larsen, Bak, A. Andersen & Ravn (1998) used EKF and AKF (Augmented 
Kalman filter) for online training to estimate constant errors. The first two used 
an onboard laser scanner and the last one camera measurements fused together 
with odometry measurements as inputs. Borenstein (1996) and De Ceccco 
(2002) used special drive patterns together with absolute measurements from 
surrounding equipment to calculate the odometric parameters.  

Tests were made to only use the hinge angle for calibration but it became 
unpractical. Instead it was decided to use the gyro and the odometer. Their data 
is quite easy to analyse compared to the laser data and it contains all the 
information needed for calibrating the hinge angle sensor. The odometer and 
gyro can also easily be calibrated before the hinge angle sensor. Calibrating a 
hinge angle sensor on similar vehicles with help of a gyro and an odometer has 
never been done before so some new ideas were born. The final idea was to use 
a kinematic model of a centre articulated vehicle to calculate the hinge angle 
offset from the rotation speed given by the gyro and the transitional speed 
estimated from the odometer. Due to the simple calculations the computation 
time is less than a minute. More about the ideas can be read in Appendix A. 
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2.2 Laser offsets 
A literature research showed that there didn’t exist any earlier work in the area 
of estimating the laser scanners angular offset. The closest work were the 
constant model error estimation in (Martinelli, Tomatis, Tapus, & Siegwart 
2003) and (Madhavan, Dissanayake & Durrant-Whytel 1998) which uses EKF 
on laser data together with augmentation of the states.  

When estimating the laser offsets the laser measurements needs to be used, 
which increases the level of complexity compared to the hinge angle calibration 
case. One alternative was to by brute force test all positive combinations of 
laser offsets to see which two gave the smallest scan matching error but early 
experiments showed that it took too long time. The system is built around an 
EKF together with an UKF so a natural choice was to use them together with 
state augmentation to estimate the laser offset parameters.  

A problem with this solution was that the map needs to be known a priori, 
which isn’t always the case. To solve this problem we needed to implement 
SLAM. UKF based SLAM can be seen in (Martinez-Cantin & Castellanos 
2005), which is one of many that uses one state for each feature. The original 
system uses a grid map and thereby the feature space become to large if each 
grid point should be represented by one state variable. A solution to this was 
created in (Merwe, Doucet, Freitas & Wan 2000) using a more complex particle 
filter. Instead of using it, it was concluded that one could create a less complex 
algorithm that reused the existing mapping algorithm together with the EKF 
and UKF. The computations of this method are still heavy and depend on a 
number of parameters but its faster than brute force search.  

3 Theory and methods 
This chapter goes through the theory and methods used for estimating the hinge 
angle offset and the laser scanners angular offset. The chapter begins with 
going through the kinematic model of the centre articulated LHD in chapter 3.1 
and then continues with the sensors used in Chapter 3.2. Chapter 3.3 goes 
through the hinge angle offset estimation and its error analysis together with the 
statistics used for calculation of the confidence intervals. Chapter 3.4 then 
continues with estimation of the laser scanners offset using EKF and UKF in a 
SLAM algorithm. The chapter ends with a brief walk-through of the 
implementation of the two methods and also the simulator used for creating 
simulated log-files. 
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3.1 Kinematic model 

 
Figure 1: Model of a centre-articulated vehicle. 

The kinematic model of the LHD already in use in the system assumes no slip 
and can be found in a number of papers (Altafini 1999) and (Ridely & Corke 
2001). It uses the setup seen in Figure 1 where γ  is the angle between the 

centre lines of the two bodies. θ , Rθ  is the heading of the front and rear body 
respectively in relation to the x-axis of the global coordinate system. lF is the 
distance between the hinge G and the front axle centre F and lR the distance 
between the hinge G and the rear axle centre R. The models for the rotation of 
the LHD are 
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γγθ
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sin &
&  

( 1 ) 
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RF

F
R ll

lv

+
−

=
γ

γγγθ
cos

cossin &
&  

( 2 ) 

where v is the speed of the front body. From the model it can be concluded that 
the rotation increases in magnitude with speed, hinge angle and if the hinge is 
rotated 0≠γ& . The rotation also decreases with increased machine length. 

The LHD has four wheel drive. There are separate differentials for the front and 
rear wheels but a stiff driveshaft connects between the two differentials. This 
makes the front and back wheels get the same speed. According to the model 
they shouldn’t have the same speed if RF ll ≠  or the vehicle is not driving 
straight, 0≠γ , and thereby is a slippage introduced when γ  is increased. So the 
models performance decreases with increased γ . 

In Ridely & Corke (2001) one error was found in Eq. ( 2 ) where they had 
missed the multiplication with γcos , which was proven by simple calculations 
and later confirmed by reading Altafini (1999).  

lF 
lR 
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The nonlinear discrete time state space model in Marshall, Barfoot, & Larsson 
(2008) is created from a continuous one using Euler steps giving 
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h in the model is equal to the sampling time and )(nω  is equal to the angular 

speed of the hinge angle )(nγ& . The state update matrix sΦ  is the identity matrix 

because we don’t model the dynamics. 

3.2 Sensors 

 
Figure 2: The LHD and its sensors. 

As seen in Figure 2 the LHD is equipped with a hinge angle sensor to measure 
the angle between the front and rear part. It uses and odometer mounted on the 
driveshaft in order to measure the speed and the distance travelled. Mounted on 
the top of the machine are two laser scanners used to map the surrounding and 
position the LHD. One of the scanners is mounted backwards on the rear part 
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and one is mounted forward on the front part. Together with the front laser an 
IMU (Inertial Measurement Unit) is mounted, containing a heading gyro to 
measure the rotation of the front part. 

3.2.1 IMU Navigation02  

The IMU Navigation02 is delivered by the company AIMS. It has three gyros 
with 24 bits resolution each giving angular speed resolution of 16 so /µ . The 
following parameters can be found for the gyros: 

• Range ±120 o/s 

• Bias Error 0.06 o/s (1 σ ) 

• Scale Factor Error 0.25 % (1 σ ) 

• Non-linearity 0.5 % of FS 

• Noise 0.1 o/s (Broadband RMS) 

• Bandwidth 25 Hz 

• Misalignment 5 mrad 

It’s only the heading gyro that is used and a simple model of its measurements 
is 

)()()( nvnn
mbm θθθθ &

&&& ++=  

where 

))(,0(~)( 2 nNnv
mm θθ σ &&  

and 

)(0025.0%3.0001.0)(0025.03/005.0*120)( nnn
m

θθσ θ
&&

& +=++= . 

)(nθ&  is the true angular speed, bθ&  is the bias error and )(nv
mθ&  is the Gaussian 

noise affecting the measurements. The non-linearity and the scale factor are 
modelled as Gaussian noise even though they are constant for each unique IMU 
unit. Reasons for modelling them as Gaussian noise are that they aren’t known 
and that they vary with the size of bθ&  so Gaussian noise is the closest 

approximation. It’s approximated that three standard deviations contains all 
errors and that is why the non-linearity is divided by three to get one standard 
deviation. The bias bθ&  is instead modelled as a constant because of that it’s 
later estimated and removed in the analysis and its sample variance is small. 
Misalignment is approximated to be zero due to its small size. It should also be 
mentioned that the IMU is mounted in a rubber suspension to remove some 
vibrations. 
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3.2.2 Odometer 

The odometer is base on a driveshaft encoder that measures the number of teeth 
passing by to calculate the distance travelled. It uses the fact that if the distance 
between the teeth, the radius of the wheels and the number of teeth passed are 
known the distance travelled dm can be determined. The mounting on the 
driveshaft makes the odometer insensible to turns. 

The odometer system consists of three parts, an encoder, an I/O module and the 
machine computer, which is illustrated in Figure 3. The I/O module checks the 
encoder pulse counter every 5 ms and the machine computer then checks the 
I/O module around every system sampling time h, equal with 40 ms. This 
makes it possible that the value in the I/O module is up to 5 ms old. When 
calculating the distance travelled the system calculate it as 40 ms has gone 
between two samples, which then isn’t always true. The error can never grow 
larger than a time error of around 5 ms.  

 

Figure 3: Odometer sample flow from sensor to machine computer 

The measured speed vm is estimated from dm using the model  

h

nv
nv

h

nvhnv
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ndnd
nv mm
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It’s approximated that the synchronization error in each sample is zero mean 
Gaussian. According to the Gaussian distribution ≈

mvσ3 max error which 

makes 

h

nv
n

mv 3

10*5*)(
)(

3−

=σ . 

Drift due to slip is approximated to be zero according to previous 
measurements done with the machine. Also the radius of the wheels is said to 
be known without errors. 

3.2.3 Hinge angle sensor 

The hinge angle sensor is an encoder mounted in the joint holding the front and 
rear body together. The encoders range is (0,360]o and it has 16 bits resolution 
giving an angular resolution of 6 millidegrees. Previous measures have shown 
that the angular measurements )(nmγ  have a Gaussian noise )(nv

mγ , which 

have a standard deviation 
mγσ  of approximately 0.01o. The hinge angle sensor 

is mounted to give approximately 180o when the machine is straight. 0o is 
wanted so the offset oγ  is 180o under ideal conditions but there is also a 

mounting error that introduces an offset. The machine can operate in the range 

Machine computer I/O module Encoder 
pulse 
counter 

5 ms 40 ms 
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[-45,45]o  where 0o is when the machine is straight. A measurement from the 
hinge angle can be modelled as 

)()()( nvnn
mom γγγγ ++=  ( 4 ) 

where )(nγ  is the true hinge angle and 

),0(~)( 2

mm
Nnv γγ σ . 

3.2.4 SICK Laser scanner 

The SICK laser uses a moving laser beam to scan the environment in one plane. 
It has a maximum scanning range of 32 m in the interval [-90, 90]o degrees with 
an angular resolution of 1o giving Npoints=181 scans. A laser beam i where 
i=1,…, Npoints can be modelled as 

)()()( ivziziz zcispotm ++=  

where 

),0(~)( 2
zz Niv σ . 

zci is a constant error in the range [0,0.03] m and zσ =0.01 m is the stochastic 
error. The laser beam creates a spot, with aperture angle 0.11 milliradians, that 
increases with distance and angle to the objects normal. zspot(i) is the distance to 
the closest point on the object hit by the laser beam. 

3.3 Hinge angle offset 

3.3.1 Estimation of the hinge angle offset oγ  

The idea is to rearrange Eq. ( 1 ) in Chapter 3.1 to get an expression for the 
hinge angle and then use it for estimation of the hinge angle offset oγ . 

Estimation is made by using the unbiased rotation speed ubmθ̂& (n) measured by 
the heading gyro, the measured speed vm(n) and the hinge angle 
measurementmγ (n), where n=1,…,N is the number of measurements. To 

simplify the rearrangement estimation is done only for the rotation created from 
forward motion and not from change in hinge angle.γ&  is therefore put to zero 
and Eq. ( 1 ) is rearranged to give 

RF llv ⋅=⋅− θγθγ && cossin . 

It is known that adding two sinusoidal waves with the same frequency and 
different phase gives a new wave with the same frequency but a new phase and 
amplitude. For example 

)sin(cossin 22 ϕ++=+ xbaxbxa   
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Applying this makes it possible to get only oneγ  in the equation   
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Solving for γ  gives 
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and for negative v  
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The rotation ubmθ̂& (n) includes both the rotation caused by the speed v(n) and by 

γ& (n). To remove the rotation caused by γ& (n) we use the approximation   

h
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n mm )1()(
)(ˆ

−−
≈

γγγ&  

which is independent of oγ  and thereby only contains the articulation rate plus 

some noise. The approximation is used in the non-speed part (v equal zero) of 

Eq. ( 1 ) and is then subtracted from ubmθ̂& (n) giving 
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where γ̂ (n) is an estimate of the true hinge angle.  

If mγ (n) is used as γ̂ (n) it introduces an error in the final offset estimate 

oγ̂ because of the offset. The error introduced is limited as long as oγ  is 

reasonably close to zero but that isn’t always the case because the offset oγ  can 

be between (-180, 180]o. From the analysis in Chapter 4.2 it has been found that 
if the whole algorithm is iterated m=1,…,M times and γ̂ (n) is estimated from 

mγ (n)  by removing the previous offset estimate oγ̂ (m-1) the offset estimate 

oγ̂ (m) converges towards the true offset oγ . Given that the vehicle is driven 

along a straight line a first estimate of oγ̂  can be calculated from 
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The difference between )0(ˆoγ  and the true offsetoγ  is then the mean of the true 

hinge angle )(nγ  as seen by taking the mean of Eq. ( 4 )  

o
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nmean

nvmeanmeannmeannmean

γγ
γγγγ γ
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++==

))((

))(()())(())(()0(ˆ
 

( 8 ) 

If the vehicle is driven straight the mean of γ (n) is zero and the approximation 
is exact. In reality this is impossible, which implies that an error still remains. 
The above discussion gives the following conclusion 
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By inserting vθ& (n) and vm(n) into Eq. ( 5 ) or Eq. ( 6 ) the hinge angle, now 

called νθγ
,&

(n), is found. The estimated sample offset )(ˆ nsoγ  is then given by 

)()()(ˆ
,

nnn mso νθγγγ &−=  ( 9 ) 

and includes noise from vθ& (n), vm(n) and mγ (n). By taking the mean of all  

soγ̂ (n) from the whole data set 

∑
=

=
N

i
soo i

N
m

1

)(ˆ
1

)(ˆ γγ  
( 10 ) 

the best estimate of the hinge angle offset )(ˆ moγ  is found. This should then be 
repeated M times. 

3.3.2 Estimation of gyro bias 

The rotation speed mθ& (n) measured by the gyro includes a bias bθ&  that is 

temperature dependent and thereby changes over time due to temperature 
changes in the IMU. The change over a short time period, as a calibration run, 
is small and the bias can be estimated when the machine stands still as the mean 
of mθ& (i) giving 

∑=
0

)(
1ˆ

0 N
mb i

N
θθ &&  i=1,…,N0 

where N0 is the number of measurements when standing still. The 
measurements is then compensated to form unbiased measurement estimates 

bmubm nn θθθ ˆ)()(ˆ &&& −=  

that can be used for the calibration. 
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3.3.3 Error propagation 

Using error propagation the propagation of the stochastic errors through the 

hinge angle method can be analysed. By inserting combinations of ubmθ̂& (n), 

vm(n), mγ (n) and the number of measurements N the variance of oγ̂  can be 
found. It should be remembered that this requires that the model is correct and 
thereby doesn’t the analysis give any information regarding effects from errors 
in the model.  

In Eq. ( 7 ) the measurement error in all parameters are independent. The error 
propagation through Eq. ( 7 ) can then be estimated using 
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In Eq. ( 5 ) the measurement errors are also independent giving 
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The above equations holds for each measurement n=1,…,N. The total variance 
of the estimated offset oγ̂  is then from Eq. ( 10 ) 

( )( )∑
=

++=
N

n

nnnnn
N mvmvmvo

1

22
,

22
2

2
ˆ )()()(2)()(

1
ˆ

,,, γγγγγγγ σσρσσσ
θθθ &&&

. 
( 11 ) 

mγ  is in Eq. ( 7 ) and in Eq. ( 9 )  which implies that there is a correlation 

mv γγθ
ρ ,,&

. The variance 2
ˆoγσ is largest when 1,,

=
mv γγθ

ρ
&

 but experiments have 

shown that the effect of the correlation is small. 

Using 
oγσ ˆˆ  one could estimate a 99 % confidence interval for the oγ̂ . The 

sensors have Gaussian errors and therefore the error on oγ̂  is also Gaussian. 

Using the Gaussian distribution the confidence interval is given by 

oo ooo γγ σγγσγ ˆˆ ˆ576.2ˆˆ576.2ˆ +<<−  

3.3.4  Measurement statistics 

By repeating the same experiment N1 times and each time collect N2 

measurements the 99 % confidence interval of the hinge angle method can be 
found. There exist two methods to calculate the confidence interval.  

The first method begins with calculating the estimated standard deviation 

so
sγ̂ (p), where p=1,…,N1, of the sample offsets )(ˆ nsoγ  using 

( )∑
=

−
−

=
2

1

2

2

ˆ )(ˆ)(ˆ
1

1
)(

N

n
soo np

N
ps

so
γγγ  

where n=1,…,N2 is the number of samples in each experiment. If N2 is large an 
approximation can be made that )(ˆ ps

soγ  is equal to the true standard deviation 

)(ˆ p
soγσ of the whole population and thereby having a Gaussian distributed and 

not a Student-t distribution.  

We assume that the spread of oγ̂ (p) is not correlated as a result of that the 

measurement noise can be assumed to be white Gaussian noise. Then the 
estimated standard deviation of the oγ̂ (p) from all N2 measurements is given by 

)(
1

)( ˆ

1

1ˆ p
N

p
soo γγ σσ = . 

( 12 ) 

According to the Gaussian distribution one could know with 99 % confidence 
that the true offset oγ  is in the interval 

)(576.2ˆ)(576.2ˆ 1ˆ1ˆ pp
oo ooo γγ σγγσγ +<<− .  

This should be tested for all N1 experiments. One experiment had been enough 
in the ideal world to assure the statistics but more experiments with the same 
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setup are made to confirm the result. The interval should be smaller than ±0.2o 
to confirm that the method is good enough. Ideally it should be enough to 
increase N2 to get into that interval. Also if the spread is correlated )(1ˆ p

oγσ  is 

going to be smaller than the true standard deviation. 

The second method calculates the standard deviation of oγ̂ (p) directly. To begin 

with the mean of all oγ̂ (p) is  

∑
=

=
1

11

)(ˆ
1

ˆ
N

p
oo p

N
γγ  

and the estimated standard deviation is then  
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N
s

o
γγγ . 

Due to that N1 is relatively small 
o

sγ̂  has an uncertainty. If the spread is 

Gaussian, 
o

sγ̂  has a 2χ  distribution and the 99 % confidence interval of  
o

sγ̂  is 

2
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The confidence interval of oγ  is then  

22 576.2ˆ576.2ˆ LL ooo +<<− γγγ  

This method only relies on that the spread is Gaussian and is therefore more 
reliable. It gives a larger confidence interval due to the uncertainty in 2ˆoγσ . The 

uncertainty can be decreased by increasing N1. When N1 goes to infinity the 
confidence interval decreases to the true confidence interval.  

One could compare 
o

sγ̂  with each of the N1 estimated standard deviations 1ˆoγσ  

by assuming that 
o

sγ̂  is the true standard deviation and using the fact that 
o

sγ̂  is 

the spread of the oγ̂ (p):s around oγ̂ . This gives  

2

1
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11
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1
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=
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. 
( 13 ) 

If 
11

2

−N

χ
>1 than 1ˆoγσ <

o
sγ̂  and we have under estimated the standard deviation 

using the first method. This means that the spread is probably not uncorrelated. 

11

2

−N

χ
 can be use to scale 1ˆoγσ  to its true value but it should be remembered 

that Eq. ( 13 ) doesn’t take in to consideration that 
o

sγ̂  is an uncertain estimate 

of 
oγσ ˆ  if N1 is small. 
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3.4 Laser scanners angular offset 

3.4.1 Creating and evaluating the map 

Under normal operation is the map M created under Route Profiling from the 
log data, containing all the sensor data recorded under the teaching step. To 
create M the log is gone through step by step to estimated u(n) using backward 
Euler on mγ  and dm. u(n) is then input to Eq. ( 3 ) to get the pose s(n) of the 

machine at each time step. The map, which is represented by a 2 dimensional 
binary grid is then finally updated using ray tracing along the recorded laser 
beams at each position s(n) for both the front and rear laser. 

After creation a simulated Playback is made in the map to evaluate it using the 
logged data as input. In the simulation the logged laser beams’ lengths are 
compared to the simulated ones. From the comparison over all samples a scan 
matching error matchε  is calculated. If the map is identical to the real world the 

machine should get identical laser scans and matchε  equal to zero. The matchε  

must at all times be under 0.35 for the map to be acknowledged.  

3.4.2 State estimation using nonlinear Kalman filter 

To keep track of the machine under playback the state )(ns  needs to be 
estimated at each sample time. A good prediction of the state can be found by 
using the kinematic state space model in Eq. ( 3 ). To get better accuracy and 
compensate for drift the state is then filtered with help of the measured laser 
data. This method of first predicting using a model and then update using 
measured data is called Kalman Filtering. A standard Kalman Filter can only 
operate on linear equations. For nonlinear equations there exist a number of 
different solutions. This machine uses a mix of two Kalman Filters, an EKF 
(Extended Kalman Filter) for prediction and an UKF (Unscented Kalman 
Filter) for filtering. The implementation of the EKF and UKF used can be seen 
in (Marshall, Barfoot, & Larsson 2008). To simplify notation let )(ˆ n−s  be the 

prediction of the state using EKF and )(ˆ ns  the filtered estimate of the state 

using UKF. In the same way let )(n−P  be the predicted state covariance and 
)(nP be the filtered covariance.  

To solve the problem that the Kalman filter needs linear equations the Extended 
Kalman Filter uses linearization of the state equation Eq. ( 3 ) around the 
previous state. Eq. ( 3 ) is linearized to get 

)())1(ˆ()1(ˆ))1(ˆ()(ˆ nnnnn us usΓssHs ⋅−+−⋅−=− . ( 14 ) 
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The covariance of the estimate is calculated as 

))1(ˆ()1())1(ˆ())1(ˆ())1(ˆ()( −⋅−⋅−+−⋅⋅−=− nnnnnn T
ss

T
uu sHPsHsΓQsΓP .  ( 15 

) 

)0(s  is set to a by the user predicted state and P(0) is set to the initial 
covariance of that state. Q is the covariance in the inputs defined in Chapter 
3.1.  

To use an EKF for the filter step the state-to-output matrix G is needed, which 
maps the states to the laser measurements. G is to complex to express explicit 
and because of that Unscented Kalman Filtering is used instead. Numerical 
methods could have been used to estimate G but in (Simon 2006) it’s shown 
that UKF gives higher order estimation than EKF, which only gives a first 
order. UKF also simplifies the estimation. As stated in (Simon 2006) UKF is 
based on the two facts. The first is that it is easy to perform a nonlinear 
transformation on single points. The second fact is that it is not too hard to find 
a set of individual points in a state space whose sample probability density 
function approximate the true probability density function of the states. 

The UKF uses 2N+1 points, called sigma-points, which is found using the 
covariance )(n−P  and put into a matrix 

[ ])()(ˆ)()(ˆ)(ˆ)(
~

nnnnnn −−−−− −+= PsPssS χχ . ( 16 ) 

N is the number of state variables and 

λχ += N  

where 

 ( ) NN −+= καλ 2 .  

κ  is a constant often chosen to 0 and α  is constant in the range [0.001,1].  

At each sigma-point, represented by the columns in )(
~

nS , an artificial laser 

scan is made in the map M to form a matrix )(
~

nZ . From )(
~

nZ  the mean is 
calculated for each beam direction over all laser scans as 
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Using the mean, the covariance of the artificial measurements is calculated as 
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where 

( )
( )( )




≠+
=+−++

=
02/1

0)1(/ 2

,
iN

iN
w ic λ

βαλλ
. 

β  is typically 0 and IR 2δ=  is a diagonal matrix with each diagonal element 
equal to the variance of each scan line. To get a relation between the state 
change and the change in the artificial laser measurements the covariance 
between them is calculated as 

( )( )Tii
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i
ic nnnnwn )()(

~
)()(
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2

0
, sSzZJ −−=∑

=

. 
( 19 ) 

Using )(nZ  and )(nJ  the update matrix is calculated as 

)()()( 1 nnn T −= ZJK  ( 20 ) 

and is then used together with the true measurements to update the states and 
estimate the covariance of the states as follow 

))()()(()(ˆ)(ˆ nnnnn zzKss −+= −  ( 21 ) 

)()()()( nnnn JKPP −= − . ( 22 ) 

3.4.3 State augmentation of laser offsets 

The rear and front laser have angular offsets )(nRφ  and )(nFφ  respectively. To 
estimate the laser offset they are added as states to form an augmented state 

vector [ ]T
FRa nnnnnynxn )()()()()()()( φφγθ=s . In the state space 

model Eq. ( 1 ) )(nRφ  and )(nFφ  are now modelled as constants with an 
uncertainty modelled as white noise. The uncertainty is used in the UKF to 
make them converge to their true value. Convergence time and variance of the 
offset estimates is adjusted by the size of the variances 2

Rφσ  and 2

Fφσ  of the 

white noises.  
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After augmentation the input vector is 

 [ ]Tnnvn 00)()()( ω=u  and the noise vector is again 

),(~)( Q0v Νn   

but with covariance 





















=

2

2

2

2

000

000

000

000

F

R

v

φ

φ

ω

σ
σ

σ
σ

Q . 

The input matrix changes into 



























+
−

+
−

=

1000

0100

0010

00
)(cos)(cos

)(sin
000)(sin

000)(cos

))(( RF

R

RFa lnl

l

lnl

n
n

n

n γγ
γ

θ
θ

sΓ

.

 

 

But the state matrix sΦ  is still an identity matrix and the linearization becomes  
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Finally the initial covariance matrix P(0) change into 



 19 



























=

2

2

2

2

2

2

0

0

)0(

Finit

Rinit

init

init

init

init

y

x

φ

φ

γ

θ

σ
σ

σ
σ

σ
σ

P . 

 

3.4.4 SLAM 

The UKF needs a map to be able to estimate Rφ  and Fφ  but the mapping 

procedure in Chapter 3.4.1 is affected by Rφ  and Fφ  because of that can’t the 
map be created before the offsets are estimated. It needs to be done 
simultaneously.  

The map M could be created by adding laser scan information z(n) to M at each 
sample n using )(ˆ nas , estimated from Kalman filtering using artificial 

measurements )(
~

nZ  on M at n-1. This method has some drawbacks, one being 

that earlier estimates of Rφ  and Fφ  affects )(
~

nZ  and experiments showed that 

this made the Kalman filter unable to make Rφ  and Fφ  converge to their true 
values. It’s solved by recreating the map around the machine at sample n from 

scratch for each setup of  Rφ  and Fφ  in )(
~

nS . To recreate the map ray tracing is 

used in each old pose in )(ˆ min usa nn +s  with scan z(n+nminus), where 
nminus= -nstep, -2nstep,…, -Nminus and nstep is the updating step used to decrease 
computation time. 

Another drawback is that the map is less updated in the driving direction. This 
is solved by using the EKF to estimate future states )(ˆ pozitivea nn +−s , where 

npositive=nstep, 2nstep …, Npositive. The poses in )(ˆ pozitivea nn +−s  are then used 

together with the laser scans z(n+npositive) to add data to the recreated map for 

each sigma setup in )(
~

nS  of Rφ  and Fφ . This works over short travelled 
distances given that the model is correct. 

Each ray tracing to a point on the map overwrites the old value. So the update 
order is of importance. The start position of the machine is exactly known when 
mapping, because we decide its coordinates. Poses in negative time are also 
more accurate because of that they have been estimated using the whole 
Kalman filter. For this reason it is more convenient to start with mapping in the 
future poses and end with mapping in the negative poses. 

To get a more stable final output value the mean of the laser angle estimates Rφ̂  

and Fφ̂  in )(ˆ nas  from samples at n>NSM are used to get Rφ  and Fφ . The first 

NSM samples is skipped to give the estimated offsets time to settle because it 
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takes some time for the Kalman filter to make them converge to the true value. 
The reason to using the mean is that the Kalman filter put more weight in new 

information than old and thus can make Rφ̂  and Fφ̂  deviate because of bad new 

information. This could be helped with lower 
Fφσ  and

Rφσ , but then it 

converges to slow and/or gets stuck because of local minimas in the search 
space. 

The final algorithm is: 

Create a state matrix for old states sold 

loop over all samples n 

predict state )(ˆ na
−s  Eq. ( 14 ) 

 calculate covariance )(n−P  Eq. ( 15 ) 

 calculate sigma-points )(
~

nS  Eq. ( 16 ) 

 loop over the 2N+1 columns of ),(
~

pnS  using index p 

  Allocate a clean map M 

  Allocate a temporary Nx Npositive/nstep state matrix sstates 

  Allocate a temporary state vector svector= ),(
~

pnS  

  loop from 1
 
to Npositive using index i 

   predict state svector (n+i) Eq. ( 14 ) 
   sstates(i)=svector 

  end loop 
  loop from Npositive to 1 step -nstep using index i 

   update M at sstates(i) using Rφ  and Fφ  in ),(
~

pnS  

  end loop 
  loop from -1 to -Nnegative step -nstep 

using index i 

   update M at sold(n+i) using Rφ  and Fφ  in ),(
~

pnS  

  end loop 

  ray trace in M at ),(
~

pnS to get ),(
~

pnZ  

 end loop 

 calculate )(nz , )(nZ , )(nJ , )(nK  Eq. ( 17 )( 18 )( 19 )( 20 ) 

 filter to get )(ˆ nas  Eq. ( 21 ) 

 calculate covariance )(nP  Eq. ( 22 ) 

 sold(n)= )(ˆ nas  

 if n> NStartMean  

  

SM

RR
RR Nn −

−+= φφφφ
ˆ

  

  

SM

FF
FF Nn −

−+= φφφφ
ˆ

 

 end if 

end loop 
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3.5 Implementation 
Laser and hinge angle offset estimation is made offline using a log-file 
containing all necessary data. The log file is recorded when the vehicle is driven 
a certain distance at a certain speed. To be able to create log-files, to test 
different laser offsets, an at Atlas Copco already existing SIMULINK simulator 
was modified. It simulated the kinematics of the ST14 seen in Eq. ( 3 ), the 
sensors and the laser scanning. Laser scans were originally made on maps 
created using lines but was modified to also handle grid maps. The laser 
simulation was also modified to include the laser spot effect discussed above so 
that the final simulator was able to simulate all errors in the laser sensor. Noises 
in the other sensors were skipped to decrease the complexity. The grid maps 
used were created using Profiling from real logs. The Route Profiling was 
together with the Simulated Playback, described in Chapter 3.4.1, already 
implemented by Atlas Copco in C++ and ready to use. 

The hinge angle offset estimation and error propagation together with the 
measurement statistics in Chapter 3.3 were all implemented in MATLAB. As 
input to the hinge angle offset estimation method a real log-file was used. A 
script was also made to be able to go through a number of log-files to analyse 
the confidence interval of the method using the measurement statistics in 
Chapter 3.3.4. 

All laser offset estimation parts in Chapter 3.4 were implemented in C++ using 
Microsoft Visual Studio 2005 and used data in a log-file together with a 
configuration file with all parameters as input. The laser offset implementation 
was built on modifications of an already existing Route Profiling and Playback 
code. From the C++ programs mat-files were delivered that could be analysed 
by MATLAB. A script was written in MATLAB to be able to automatically run 
estimations from many log-files automatically. 

4 Error propagation in the hinge angle method 
To see how the errors propagated through the hinge angle offset estimation two 
analyses were made using the error propagation in Chapter 3.3.3. The analyses 

shows how the unbiased angular speed measurement ubmθ̂& (n), speed 

measurement vm(n) and hinge angle measurement mγ (n) affects the standard 

deviation of the estimated offset 
oγσ ˆˆ . A third analysis was made to see the 

effect of just iterating the hinge angle estimation ones using mγ (n) as the 

estimated hinge angle γ̂ (n) in Eq. ( 7 ). 

4.1 Analysis setup 
All analyses were made at the systems sample frequency fs of 25 Hz. An early 
analysis shown that the error isn’t affected by mγ& (n) when smaller than 14 o/s, 
which is maximum steering speed, so no further analysis for it was made. In all 
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experiments mγ (n) was swept from 0 to 45o, where 45o is the maximum steer 

angle. ubmθ̂& (n) was calculated from Eq. ( 1 ) using vm(n) and mγ (n) as inputs. 

ubmθ̂&  (n), vm(n) and mγ (n) were then inserted to the error propagation equations 

to give 
oγσ ˆ . 

Different analyses were made starting with investigating how the standard 
deviation behaved when only using one sample at different speeds vm(n) equal 
to {1; 2.5; 4.5} m/s. Using more samples N only decrease 

oγσ ˆˆ  with one divided 

by the square root of N and doesn’t change the characteristic. 

When travelling at low speed more samples N are collected compared to 
travelling at high speed. It was investigated how this affected 

oγσ ˆˆ using Eq. ( 11 

) at the speeds vm(n) equal to {1; 2.5; 4.5} m/s when travelling 50 m. 

A final analysis was made to evaluate the error in oγ̂  from using mγ (n), 

including the offset oγ , as the estimated hinge angle γ̂ (n) in the denominator of 
Eq. ( 7 ) and iterate the hinge angle estimation method only one time. It should 
be noticed that the error is a constant error that depends on oγ and not a random 

error as those above. Here γ& (n) affects the error and according to Eq. ( 7 ) does 
larger γ& (n) give larger effects, so γ& (n) was put to its absolute maximum value 
of 14 o/s. The error also increase with decreased speed so to find the maximum 
error the speed was put to the lowest speed used around 1.0 m/s.  

Increased offset also increases the error according to Eq. ( 7 ). To see the effect 
of different offsets oγ , the set {2, 5, 25, 45}o was tested. 

4.2 Results 

Using only one sample to estimate the offset gives the standard deviation 
oγσ ˆˆ  

seen in Figure 4 at different hinge angles mγ (n) and speeds vm(n). As seen 
oγσ ˆˆ  

increases with mγ (n) and decreases with increased speed vm(n).  

The result for travelling 50 m, giving different number of samples, can be seen 
in Figure 5. As seen in the figure 

oγσ ˆˆ  increase less for large angles and low 

speeds compared with Figure 4. 

Analyses of the effects of using mγ (n) as γ̂ (n) in Eq. ( 7 ) showed that the error 

in oγ̂  increased almost linearly with increased mγ (n) as seen in Figure 6. It 

could also be seen that the error in oγ̂  is always smaller then the true offset. 
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Figure 4: The estimated standard deviation 
oγσ ˆˆ  of the hinge angle offset at one 

sample of vm(n) equal to {1; 2.5; 4.5} m/s, mγ (n)  equal to [0 45]o and ubmθ̂& (n), 

calculated using Eq. ( 1 ). It should be observed that 
oγσ ˆˆ  increases with 

decreased vm(n) and increased mγ (n). 

 
Figure 5: 

oγσ ˆˆ after sampling with fs and travelling 50 m. vm(n)  is equal to {1; 

2.5; 4.5} m/s andmγ (n)  is equal to [0 45]o. It should be observed that 
oγσ ˆˆ  

increases with decreased vm(n) and increased mγ (n)  but less at low speeds. 
From the figure, it is clear that for small angles at speed 2.5 m/s and above we 
are able to estimate the offset within ± 0.2o with 99 % confidence (2.576

oγσ ˆ   < 

0.2o).  
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Figure 6: Error in estimated offset at the known offsets {2, 5, 25, 45}o because 
of using mγ (n) as γ̂ (n) in Eq. ( 7 ). It should be observed that the error is 
always less than the true offset. 

4.3 Discussion 
From Figure 4 and Figure 5 it can be concluded that the estimated standard 
deviation 

oγσ ˆˆ  increases with increased hinge angle mγ (n) and decreases with 

increased speed vm(n). The reason for increased 
oγσ ˆˆ  with increased mγ (n) is 

because of that uncertainty in speed increases the uncertainty in rotation speed 
θ&  with increased mγ (n). If the uncertainty in speed is zero then 

oγσ ˆˆ  is almost 

constant for increased mγ (n). Increasing vm(n) gives increased θ&  when keeping 

mγ (n) constant and thereby better readings. It should also be remembered that 
according to Eq. ( 11 ) increasing the sample size N by driving a longer distance 
decreases 

oγσ ˆˆ . From Figure 5 it could be concluded that when driving 50 m the 

99 % confidence interval 2.576
oγσ ˆ is only 0.21o even for low speeds at small 

mγ (n), which is close to ±0.2o. 

When analysing the error introduced because of using mγ (n) as γ̂ (n) in Eq. ( 7 

) it was found that the error increased almost linearly with mγ (n). It was also 

found that the error in oγ̂  was always smaller than the true offset which makes 

it possible to iterate to find the best estimate oγ̂  of the true hinge angle. The 
error is a constant error, which means that taking more samples doesn’t help, 
but iterating as described in Chapter 3.3.1 reduces the error to zero.  
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A conclusion is that because of increased 
oγσ ˆˆ  at high hinge angles it’s expected 

that the machine is going to be driven as straight as possible. When using the 
mean of mγ (n) as an first approximation of the offset this gives a remaining 

offset in the hinge angle estimate γ̂ (n) equal to the mean of the hinge 
angleγ (n), see Eq. ( 8 ). If γ (n) is small the error is even smaller according to 
Figure 6 so as long as the machine is not driven with to high γ (n) no iteration 
is needed. 

5 Hinge angle experiments 
To test the calibration method a series of experiments were needed. A list of 
goals below was created to fully test the systems limits. 

• Find the minimum length needed to get good enough precision. 

• Check the precision in relation to speed. Find minimum speed. 

• Check the precision in relation to turn radius. Find maximum angle. 

• Check the deadband of the machine. 

• See if stretching the machine in one direction gives better performance. 

45 experiments to achieve these goals were put up. In most of them one drove 
straight or in an arc. No experiment was made with a large hinge angle offset 
because the theoretical analysis above proves that it doesn’t work. 

The experiments were made on an ST14 LHD in an old underground mine in 
Kvarntorp in Kumla by an experienced driver. The data were then saved 
analysed offline in MATLAB. The third goal couldn’t be tested because of 
limited space in the mine drift. 

5.1 Experiment setup 
All experiments were repeated at the speeds {1.2; 2.5; 4.5} m/s because they 
are the maximum speeds at each gear and thereby easy to keep constant. In all 
cases the driver tried to drive relaxed so normal correction oscillations should 
be included. The hinge angle sensor was pre-calibrated to give a reasonable 
hinge angle. Then the mean of the sampled hinge angles when driving straight 
300 m was calculated, which gave the remaining true hinge angle offset with a 
precision of around ±0.05o. The true offset was then used as a reference in the 
experiments. To get the gyro bias the machine stood still for 10 s before and 
after completing a run through the drift to collect gyro bias data. 

The first experiments were made to test the method under normal conditions. 
To collect data the machine was driven straight one to two times back and forth 
through a 300 m long tunnel at the different speeds. A straight path was chosen 
because that should give the smallest errors. 

To test the last two goals the machine was driven with the true hinge angles of 
{0.2; ±0.7}o at different speeds a distance of 100 m in an 11 m wide tunnel. The 
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hinge angle of 0.2o was chosen to see if better performance was achieved if the 
machine was stretched in one direction. The thought was that if one stretches 
the machine in one direction the machine should not oscillate because of the 
play in the axles and the hinge. This then should increase the performance of 
the method. ±0.7o were chosen to see if there was any play in the hinge angle 
sensing and thereby different results in the offset estimation. 

The reason to not test with random moves was that the errors arise when the 
angle is high and/or speed low. Also the error that comes from 
increasing/decreasing the angle is small. If totally random moves had been 
made the errors had cancelled out.  

Enough with data were collected at each setup to be able to divide it into a 
number of partions containing N2 measurements, where N2 was chosen to 250, 
500 and 1000 samples, to test the precision at different lengths. Each 
experiment setup was repeated N1 times to find the confidence interval of the 
estimated offsets. 

A number of statistics were then calculated using the data starting with the 

mean oγ̂  of all N1 offset estimatesoγ̂  to see that they were centred on the true 

offset. Then the maximum deviation from the true offset maxˆo
dγ  was calculated 

for each experiment setup. maxˆo
dγ  is the maximum error from our 

measurements, which is only a small amount of the whole population. 
Confidence intervals take the whole population into consideration and are more 
assertive statistics. The methods described in Chapter 3.3.3 and 3.3.4 were 
therefore used to find different 99 % confidence intervals for oγ̂ . For each 

measurement n in experiment p the 99 % confidence interval was calculated 
using the error propagation with the measurements as input. The largest 
confidence interval ))(ˆmax( ˆ99.0 pz

oγσ , where 99.0z =2.576, was then recorded 

for each setup.  

The largest and smallest confidence interval ))(max( 1ˆ99.0 pz
oγσ  respectively 

))(min( 1ˆ99.0 pz
oγσ , using the standard deviation in each experiment p, were 

recorded for each setup. By using the estimated standard deviation 
o

sγ̂  of all the 

oγ̂ :s, the confidence interval with lower boarder 199.0 Lz  and higher boarder 

299.0 Lz  was calculated and recorded for each setup together with the estimated 

confidence interval 
o

sz γ̂99.0  and the mean of all N1 ratios 
11

2

−N

χ
 for each 

experiment setup. 
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5.2 Results 
From the mean value, when driving 300 m straight, it was found that the true 
remaining hinge angle was 0.31 o ±0.05 o. So the goal for the experiments is to 
get hinge angle offsets in the range 0.31 o ±0.20 o, to show that the method can 
operate under all conditions. 

5.2.1 Driving straight 

Table 1: (a) The experiment setups, mean hinge offsets oγ̂  and maximum 

deviating offsets maxˆo
dγ  when driving with a true hinge angle γ  of 0o. (b) The 

Gaussian 99 % confidence intervals for the experiments using different 
methods. 

a. 
Exp. 

Setup 
γ  

[o] Gear 
v 

[m/s] N2 fs Distance N1 oγ̂  maxˆo
dγ  

1 0 1 1.3 250 20 16.25 19 0.34 0.36 
2 0 2 2.6 250 20 32.50 38 0.30 0.20 
3 0 3 4.5 250 20 56.25 38 0.32 0.15 
4 0 1 1.3 500 20 32.50 9 0.34 0.20 
5 0 2 2.6 500 20 65.00 18 0.30 0.11 
6 0 3 4.5 500 20 112.50 18 0.32 0.11 
7 0 1 1.3 1000 20 65.00 4 0.34 0.19 
8 0 2 2.6 1000 20 130.00 6 0.30 0.05 
9 0 3 4.5 1000 20 225.00 6 0.31 0.05 

b. 

Exp. 
Setup 

))(ˆˆmax(99.0 p
o

z γσ  ))(1ˆmin(99.0 p
o

z γσ  ))(1ˆmax(99.0 p
o

z γσ  
199.0 Lz  o

sz γ̂99.0  
299.0 Lz  )(

11

2
p

N −
χ  

1 0.26 0.08 0.20 0.20 0.29 0.49 6.40 
2 0.13 0.06 0.19 0.14 0.19 0.26 5.39 
3 0.08 0.04 0.19 0.12 0.15 0.21 7.94 
4 0.19 0.07 0.11 0.15 0.25 0.60 9.47 
5 0.10 0.04 0.13 0.10 0.14 0.23 4.06 
6 0.06 0.03 0.12 0.08 0.11 0.19 9.88 
7 0.13 0.05 0.07 0.14 0.28 1.79 23.23 
8 0.07 0.03 0.06 0.03 0.06 0.24 2.61 
9 0.04 0.03 0.06 0.04 0.07 0.25 7.30 

The results from driving straight with different speeds and using different 
number of samples can be seen in Table 1, for figures see appendix B. As seen, 

the estimated offsets oγ̂  have a mean oγ̂  very close to 0.31o in all cases. If one 
looks at their distributions one finds out that they have Gaussian distributions 
which tell us that our assumptions made in Chapter 3.3.3 and 3.3.4 are valid. 
From Table 1 it could be seen that for all cases, besides the one when only 
using 250 samples and driving with the first gear, maxˆo

dγ  is smaller than or 

equal to 0.20o.  
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Using gear 2 and 3 instead of gear 1 largely improves the performance 
according to maxˆo

dγ . Also increasing the distance driven and thereby the sample 

size decreases maxˆo
dγ  for gear 2 and 3 but only a small amount for gear 1 at 

larger sample sizes. The difference between using gear 2 and 3 decreases with 
increased sample size. 

Table 1b shows the positive borders of different 99 % confidence intervals 
calculated using the methods in Chapter 3.3.3 and 3.3.4. 199.0 Lz  and 299.0 Lz  tell 
in which interval the true positive confidence interval border is. They only 
relies on that the measurements are Gaussian and are therefore the most reliable 
ones. ))(ˆmax( ˆ99.0 pz

oγσ  is the most uncertain statistic. As seen in Table 1b it 

compared to 199.0 Lz  underestimates the confidence interval in most cases. 

)(1ˆ99.0 pz
oγσ  also underestimates the confidence interval sometimes because of 

that ))(min( 1ˆ99.0 pz
oγσ  is smaller than 199.0 Lz  for all setups and sometimes leave 

reasonable estimates ))(max( 1ˆ99.0 pz
oγσ , which in most cases are in the interval 

defined by 199.0 Lz  and 299.0 Lz . But on average it underestimate the confidence 

interval according to the mean of 
11

2

−N

χ
. 

It can be seen from 
o

sz γ̂99.0  that using confidence intervals instead of maxˆo
dγ  

gives similar results. By looking at 299.0 Lz  it can be seen that for gear 2 and 
gear 3 the error is smaller than 0.3o in all cases if one includes the measurement 
error of the true offset. Increasing the distance travelled from 33 m doesn’t 
improve 299.0 Lz . To see the spread of the offsets and their confidence intervals 
see appendix B. 

5.2.2 Small turning 

Table 2 (a) The experiment setups, mean hinge offsets oγ̂  and maximum 

deviating offsets maxˆo
dγ  when driving with a true hinge angle γ  of 0.2o. (b) The 

Gaussian 99 % confidence intervals for the experiments using different 
methods 

a. 
Exp. 

Setup 
γ  

[o] Gear v [m/s] N2 fs Distance N1 oγ̂  maxˆo
dγ  

10 0.2 1 1.3 250 25 13.00 12 0.30 0.25 
11 0.2 2 2.6 250 25 26.00 12 0.27 0.18 
12 0.2 3 4.5 250 25 45.00 12 0.37 0.25 
13 0.2 1 1.3 500 25 26.00 4 0.29 0.13 
14 0.2 2 2.6 500 25 52.00 4 0.28 0.05 
15 0.2 3 4.5 500 25 90.00 4 0.39 0.18 
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b. 
Exp. 
Setup 

))(ˆˆmax(99.0 p
o

z γσ  ))(1ˆmin(99.0 p
o

z γσ  ))(1ˆmax(99.0 p
o

z γσ  
199.0 Lz  o

sz γ̂99.0  
299.0 Lz  )(

11

2
p

N −
χ  

10 0.31 0.20 0.47 0.22 0.34 0.70 1.75 
11 0.16 0.10 0.20 0.15 0.23 0.47 2.36 
12 0.10 0.08 0.14 0.15 0.23 0.46 4.65 
13 0.22 0.16 0.26 0.13 0.26 1.69 2.35 
14 0.11 0.11 0.12 0.02 0.05 0.28 0.15 
15 0.07 0.07 0.08 0.08 0.15 1.01 4.92 

From Table 2 it can be seen that with high probability, by looking at 199.0 Lz  and 

o
sz γ̂99.0 , the performance has not improved when turning 0.2o. Instead it’s 

possible that it has decreased, especially for gear 3. For gear 3 also the mean 

offset estimate oγ̂  is unusually high both at a sample size of 250 and 500 

samples. To see the spread of the offsets and their confidence intervals see 
appendix B. 

5.2.3 Increased turning and deadband 

Table 3: (a) The experiment setups, mean hinge offsets oγ̂  and maximum 

deviating offsets maxˆo
dγ  when driving with a true hinge angle γ  of ±0.7o. (b) 

The Gaussian 99 % confidence intervals for the experiments using different 
methods. 

a. 
Exp. 

Setup 
γ  
[o] Gear v [m/s] N2 fs Distance N1 oγ̂

 maxˆo
dγ  

16 0.7 1 1.3 250 25 13.00 16 0.38 0.51 
17 0.7 2 2.6 250 25 26.00 16 0.36 0.29 
18 0.7 1 1.3 500 25 26.00 8 0.39 0.45 
19 0.7 2 2.6 500 25 52.00 8 0.37 0.19 
20 -0.7 1 1.3 250 25 13.00 10 0.17 0.47 
21 -0.7 2 2.6 250 25 26.00 10 0.25 0.32 
22 -0.7 1 1.3 500 25 26.00 4 0.19 0.24 
23 -0.7 2 2.6 500 25 52.00 4 0.24 0.13 

b. 
Exp. 
Setup 

))(ˆˆmax(99.0 p
o

z γσ  ))(1ˆmin(99.0 p
o

z γσ  ))(1ˆmax(99.0 p
o

z γσ  
199.0 Lz  o

sz γ̂99.0  
299.0 Lz  )(

11

2
p

N −
χ  

16 0.31 0.19 0.44 0.36 0.53 0.95 4.31 
17 0.16 0.10 0.24 0.28 0.41 0.73 8.15 
18 0.22 0.15 0.26 0.26 0.45 1.18 5.60 
19 0.11 0.09 0.15 0.11 0.18 0.47 3.30 
20 0.31 0.25 0.45 0.31 0.50 1.14 2.17 
21 0.16 0.11 0.17 0.18 0.29 0.65 4.32 
22 0.22 0.21 0.26 0.16 0.32 2.01 1.94 
23 0.11 0.10 0.11 0.06 0.12 0.74 1.34 

 



 30 

By looking at the oγ̂  at ±0.7o in Table 3 it’s found that turning positive 

increases the estimated hinge angle oγ̂  and turning negative decreases oγ̂ . It 
could also be seen that the deviation from the true hinge angle offset decreases 
with speed. If Table 2 and Table 3 are compared it can also be observed that 
increased turning also increases the deviation in oγ̂ . One exception is at gear 3 
in Table 2 where the deviation is equally large as those at other gears in Table 
3. To see the spread of the offsets and their confidence intervals see appendix 
B. 

5.3 Discussion 
From the results when driving straight one can draw the following conclusions:  

1. Performance improves with higher speed and longer distance.  

2. The difference of using gear 3 and 2 decreases with distances travelled. 

3. Driving slower than 2.5 m/s and shorter than 33 m is not recommended. 

As seen in Table 1 both )(ˆ ˆ99.0 pz
oγσ  and )(1ˆ99.0 pz

oγσ  are underestimating the 

true confidence interval. One of the reasons for )(ˆ ˆ99.0 pz
oγσ  to underestimate 

the confidence interval is that it uses a model, which in reality always contains 
model errors. It also only takes into consideration the standard deviations of the 
sensors that for the speed and the gyro contain modelling errors. Errors like 
slippage and vibrations, which affects the gyro, is also not considered. Even 
when )(ˆ ˆ99.0 pz

oγσ  underestimates the confidence interval it still models the 

behaviour correctly, when compared to 
o

sz γ̂99.0  in Tables 1, 2 and 3. 

Driving at 4.5 m/s didn’t give any significant improvement in both the straight 
case and when a small turn was made. It gave the same confidence interval, 
driving 56 m at 4.5 m/s, as driving 65 m at 2.5 m/s, as seen in Table 1. Driving 
slower makes it easier to perform the calibration in small and narrow mines so 
2.5 m/s is preferred to 4.5 m/s. 

)(1ˆ99.0 pz
oγσ  only rely on the facts that the measurements are not correlated, that 

the sample size is large and that they have a Gaussian distribution. The later has 
been confirmed and the sample size is large. By calculating the correlation it 
was found that there exists an oscillation with a period of around 1 s in the 
sample offsets. By looking at the gyro readings and the machine when the 
machine stops it has been seen that the LHD is swaying for some seconds with 
a period of 1 s. From this it can be concluded that the LHD has a swaying 
resonance frequency of around 1 s and because of the correlation the variance is 
under estimated. The error introduced by the swaying is small if large sample 
sizes are used. 

The experiments made when turning with a small hinge angle shows that there 
is nothing gained in precision by doing it. It’s even so that the precision seems 
to decrease according to Table 2. When using 500 samples and gear 2, Table 2, 
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it seems like that the confidence interval is largely decreased, but looking at 

299.0 Lz  one understands that it is possible that it’s underestimated. These results 
are also backed up by the mean ratio, which normally is larger than 1. The 

reason for the mean offset estimate oγ̂  to be high at high speeds can’t be 
explained by other than the occurrence of slippages at high speed when turning. 
This is probably also the reason for the increased confidence interval, but it 

should be remembered that there exists a uncertainty in oγ̂ . 

Another conclusion is that when the turning is increased a deadband is created 
according to Table 3. It’s not a normal mechanical deadband because it 
shouldn’t increase with turning angle. More likely it appears because of 
slippages.  It can also be observed from 199.0 Lz  and 

o
sz γ̂99.0  in Table 1, 2 and 3 

that the confidence interval and thereby the spread increases with increased 
hinge angle. From this a conclusion can be drawn that driving as straight as 
possible is recommended.  

It should be noted that the 199.0 Lz  to 299.0 Lz  intervals are too large and 
overlapping, because of too few experiments with each setup, in order to with 
99 % confidence assure the above conclusions. But there is a high probability 
that they are right. It should be remembered that 199.0 Lz  and 299.0 Lz  depends on 
the number of samples and therefore converges to the true confidence interval 
when the number of experiments with the same setup goes to infinity and vice 
versa. Without more data it can only be assured that the offset estimation error 
is less than 299.0 Lz . A effect of this can be seen in the straight case where it 

seems as increasing the distance doesn’t decrease 299.0 Lz . This happens because 
the sample size decreases with distance. If one instead looks at the estimated 
confidence interval 

o
sz γ̂99.0 it decreases. The problem of too few samples is also 

one of the factors that drives 299.0 Lz  high in the cases when making small turns.  

From the above experiments it can be concluded that the method can deliver a 
hinge angle offset with a precision better than 0.3o with a 99 % confidence as 
long as the machine is driven straight 33 m or longer at a speed of 2.5 m/s. The 
goal of 0.2o can’t be achieved following the criterions in Chapter 2.1 but it is 
possible, with high probability, that more experiments is going to show that the 
true 99 % confidence interval lies lower than the here estimated L2:s. 

Later investigations of the LHD used at data collection in Kvarntorp showed 
that a part in the hinge angle sensor was broken. This gave the hinge angle 
sensor a play. The load on the hinge angle changes when the machine goes in 
different directions which then probably affected its readings because of the 
play. This can have altered the results negatively and is probably the reason for 
the deadband. 
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6 Required laser offset accuracy 
For the lasers the required accuracy was specified as a maximum scan matching 
error in the map. To be able to specify the corresponding required precision of 
the angular offset of the lasers a set of offsets in a number of environments 
were tested to find the ones giving the maximum allowed scan matching error 
of 0.35. 

6.1 Analysis setup 
To find the offsets giving the maximum allowed scan matching error a grid of 
varying laser offset combinations (Rφ , Fφ )  was created. It was expected that the 
laser offsets never would be larger than ±3o degrees. But we chose to use a grid 
with the range [-5 5]o in each direction and a resolution of 1o. The grid was 
applied on real log data from six different routes in a mine in the Finnish town 
Kemi. Three routes were straight and three routes had a turn. For each grid 
point and route the mapping and evaluation procedure described in Chapter 
3.4.1 was applied using the offsets in the grid as correction. The reference 
offsets were estimated from the three straight routes using the above method 
with a resolution of 0.3o and were found to be equal to (-0.8;0.3)o, which then 
were represented by the vector refφ . 

6.2 Results 

 

Figure 7: Highest scan matching error from all routes at each offset 
combination. Green crosses and the red shaded area in the middle show the 
offsets giving a matchε  smaller than 0.35. The red circle shows the offset refφ  

and the red square shows the offsets Goptimaφ  with lowest matchε . 

Figure 7 shows the total maximum of the scan matching errors, when driving 
the paths with different offsets. The green crosses and the red shaded area in the 
middle show the offset combinations that give a matchε  smaller than 0.35 for all 
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paths. The red circle shows the offsets refφ  closest to the reference offsets, 

where ( Rφ , Fφ ) is equal to (-0.8; 0.3)o. As seen it doesn’t lie in the middle of the 

allowed angles and nor do the offsets GOptimaφ  with lowest matchε , shown as a 

red square in (0.0;0.0)o. It can also be seen that refφ  doesn’t coincide with 

GOptimaφ  and that the allowed area based on the matching error criterion is just 

allowing the offsets to vary -0.5o from their reference value refφ . 

 

a 

 

b 

Figure 8: Maximum scan matching error from straight routes in a and routes 
with a turn in b. Green crosses and the red shaded area in the middle shows the 
offsets giving a matchε  smaller than 0.35. The red circle shows the offsets closest 

to the true offsets refφ  and the red square in shows the offsets, SOptimaφ  in a and 

TOptimaφ  in b, with lowest matchε . 
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In Figure 8a and 8b the maximum scan matching errors from straight paths 
respectively paths with a turn can be observed. Figure 8a from the straight paths 
shows that the offsets SOptimaφ  with lowest matchε  in the straight cases coincides 

with refφ . It also shows that the area of allowed offset is larger than in Figure 

7, centred around refφ  and allows the offset to vary ±2o. These results are also 

valid if one looks at the three paths separately. It could be seen that Figure 8b 
from the turning paths resembles Figure 7 since it has a higher matchε  for almost 
all angles and thereby dominates Figure 7. It should however be mentioned that 
it’s only one path that dominates the other three and decides the shape of Figure 
7 and 8b. In all turning cases TOptimaφ  varied but the area of allowed offsets was 

centred around refφ  and had the same size as in the straight cases with 

exception of the dominating one. 

6.3 Discussion 
It’s the worst cases that set the limits because the scan match error must always 
stay under 0.35. From Figure 7 the conclusion can be drawn that the offsets 
can’t be allowed to deviate more than -0.5o from their true value. One also 
assumes that one can’t allow them to deviate more than +0.5o. This conclusion 
comes from the symmetry in the systems dimensions which should give 
symmetric scan matching errors and is confirmed by the straight cases where 
the allowed area is centred around trueφ . More cases had been needed to 
investigate this further but because of too large computation times as well as 
lack of relevant data this was not possible.  

 
Figure 9: Data from one of the turning paths. As seen there exist an offset that 
gives a lower maximum scan matching error at the turn than the true offset. 
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The reason for TOptimaφ  to sometimes deviate from refφ  in the turning cases can 

be explained by Figure 9 showing data from one of the turning paths. In Figure 
9 the blue line is matchε  using refφ , the red line is matchε  using TOptimaφ  and the 

green line is the hinge angle γ  in radians. From the figures it can be observed 

that matchε  goes high when γ  goes high. refφ  gives a better matchε  on average 

but TOptimaφ  gives the lowest maximum matchε . One of the reasons for matchε  to 

increase in turns is because of the geometry of the mine drift and the side drift, 
which the turn is made into, because matchε  is also increasing when just passing 

a side drift, which can be seen by looking at matchε  for each sample in the 
straight cases.  

Sometimes there are also walls with ventilation tubes or cable ladders that make 
the laser data corrupt and increasematchε . matchε  also goes down at erroneous 
offsets because of above mentioned reasons. As a result of that we didn’t 
collect the data ourselves, we can’t know where there were things interfering 
with our measurement. Nevertheless, non true offsets have shown to sometimes 
give better scan matching errors. 

7 Accuracy of the laser offset estimation 
To evaluate that the method provide reliable offsets with high enough precision 
a set of experiments were performed on real and simulated data. 

7.1 Test setup 
Table 4: Places, angles used at simulation and number of real tests at each 
location. 
 Simulated ( Rφ ; Fφ ) [o] Real [number of tests] 

Kemi Straight (0,0), (0,3), (3,3) 10 
Kemi Turn (0,0), (0,3), (3,3) 3 
Kvarntorp (0,0), (0,3), (3,3) 5 

A test schema seen in Table 4 was created with different conditions to test. It 
contains tests to see if the method could handle both straight and turning paths 
in real and simulated cases. The tests were done using log-files from a mine in 
Kemi, which has representable proportions. The simulation tests were made to 
see that the method could handle all expected offsets Rφ  and Fφ  because we 
couldn’t do real experiments where we turned the lasers. Routes from the same 
area in Kvarntorp were used to test how it handled large mine drifts with many 
side drifts. It was also of interest to see how fast it converged in the different 
cases and how long driving distance that was needed. 

The method shouldn’t need reconfiguration for each environment so in all tests 
the same parameter configuration was used. A speed of around 2.5 m/s was 
used because the early tests had shown that higher speeds gave the best result 
and 2.5 m/s is the maximum usable speed. The hinge angles measurements of 
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the real data where compensated for sensor offset using the method described in 
Chapter 3.3.1. In the simulations the same driving path was used in each 
location for all offsets to not affect the results. 4o turns were made in the end of 
the Kvarntorp runs to see if the Kalman filter could handle it. 

When analysing the real paths the true offsets were known for the Kemi data 
from the analysis above and equal to (-0.8;0.3)o. In Kvarntorp the true offsets 
weren’t known but constant in all routes. The reason to use real cases was to be 
able to analyse the accuracy under real circumstances. In the straight Kemi 
cases 10 different log-files had been recorded in parts of two areas in the mine.  

As a result of this the following tests are in the same areas 

• 1, 3, 4 and 8 

• 6, 9 and 2 

• 7, 10 and beginning of 5 

The Kalman filter uses the scan matching error matchε  to update its estimates 

and a larger matchε  makes the algorithm to converge faster. As seen in Figure 7 
equal offsets and opposite offsets give almost the same scan matching error 

matchε . If ( Rφ , Fφ ) are (3,0)o or (0,3)o it should be harder than if they are (3,3)o to 

find them, due to lower scan matchε . But the convergence shouldn’t depend on if 
the offsets are (3,0)o or (0,3)o. From this a conclusion was drawn that it’s 
enough to test with the offsets (Rφ , Fφ ) equal to {(0,0) (0,3) (3,3)}o. 

7.2 Results 

7.2.1 Driving straight in a normal mine drift 

 

 Rφ  Fφ  

Figure 10: Rφ  and Fφ  from the simulated straight path in Kemi at laser offsets 
{(0,0) (0,3) (3,3)}o. 
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 Rφ  Fφ  

 

 Rφ̂  Fφ̂  
Figure 11: Angular offsets estimated from 10 different data sets recorded along 
straight paths in Kemi. 

 
Figure 12: Maps and paths, in blue, from the straight areas in Kemi. The paths 
starts in position (0,0) m with heading equal to 0o. 
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In Figure 11 Rφ , Fφ , Rφ̂  and Fφ̂  can be seen from data recorded along real 
straight paths in Kemi, see maps in Figure 12. From looking at the figure it can 
be seen that the offsets are spread around (Rφ , Fφ ) equal to (-0.8; 0.3)o, which is 

the true offset. 8 of the 10 final (Rφ , Fφ ):s are inside the ±0.5o limit and the 

same 8 are inside the limits after only 23 m. By looking at ( Rφ̂ , Fφ̂ ) it can be 
seen that some estimates converge fast and some takes longer time, especially 

for Fφ̂ . All of them have converged close to their final value after 40 m and 

( Rφ , Fφ ) have get close to their final values after around 50 m. The computation 
time was around 17 minutes in all cases. 

7.2.2 Turning in a normal mine drift 

 Rφ  Fφ  

 
 Rφ̂  Fφ̂  
Figure 12: Angular offsets estimated from a simulated route in Kemi with a 

turn and laser offsets {(0,0) (0,3) (3,3)}o. As seen, Fφ̂  get affected at the turn 
after 55 meters. 

Figure 12 shows Rφ , Fφ , Rφ̂  and Fφ̂  when simulating with the offsets {(0,0) 
(0,3) (3,3)}o. The offsets have converged to within ±0.1o when the mean 
valuing is started after 23 m and doesn’t get largely affected by the turn after 50 

m. As seen by (Rφ̂ , Fφ̂ ) the offsets converge after a few meters. Fφ̂  does get 

affect in the turn but then returns to its original value. For Rφ̂  it’s hard to see if 
it is affected by the turn. Its largest reaction happens after 70 m, which is when 
the back has left the turn and is facing towards it. 
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 Rφ  Fφ  

 
 Rφ̂  Fφ̂  
Figure 13: Angular offsets estimated from real data recorded along a path 
including a turn. 

The same accuracy was not achieved when using real data in real turning cases. 

This can be seen in Figure 13 showing Rφ , Fφ , Rφ̂  and Fφ̂  when driving the 
routes seen in Figure 14, starting at (0,0) m with heading 0o. Test 3 is the only 
case when both offsets are within the ±0.5o limit and close to the true offsets. 
Test 2 is on the border of the ±0.5o range with Fφ  and close but outside with 

Rφ . In test 1 only Rφ  is in the range but by looking at Fφ̂  in Figure 13, it’s seen 

that Fφ̂  after the turn, seen in Figure 14, converges towards the true offset. It 

could also be seen that Fφ̂  in test 3 deviates at the turn after 60 m and then 
returns. In test 2 the offset is deviating all the time from the true but especially 
when the turn is made. The computation time is around 15 minutes. 
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Figure 14: Maps and paths, in blue, from 3 areas with a turn in Kemi. The 
paths begins at position (0,0) m with heading 0o. 

 Rφ  Fφ  

 Rφ̂  Fφ̂  
Figure 15: Angular offsets estimated from 5 real routes in Kvarntorp. 
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7.2.3 Driving in a straight wide mine drift 

Simulations from Kvarntorp gave offsets (Rφ , Fφ ) within ±0.2o of the true 
offsets. The simulations also showed that the effects of the small turns in the 
end are neglect able. 

Figure 15 shows Rφ , Fφ , Rφ̂  and Fφ̂  estimated from data recorded in 
Kvarntorp. For all the Kvarntorp runs the offsets are the same but not known 
and it’s hard by just looking at Figure 15 to see what the true offsets could be 
because of the large spread. The worst ones are the rear offsets which are 
spread ±0.25o at all times. Even though it’s hard to see the true offsets it can be 
seen in Figure 15 that (Rφ , Fφ ) are inside the ±0.5o limit after 23 meters if the 
true offsets are somewhere between the estimated ones. The computation time 
is around 20 minutes. 

From looking at ( Rφ̂ , Fφ̂ ) in Figure 15 it could be seen that for both offsets test 
1, 3 and 5 are grouped together and similar with test 2 and 4. Figure 16 shows 
the driven paths super imposed on maps of the environment. All paths begin in 
position (0,0) m with heading 0o. In tests 1, 3 and 5 the machine was driving 
forward, while 2 and 4 are recorded while driving backwards. It’s thereby a 
correlation between the direction and especially the rear offsets.  From Figure 

15 it can be seen that it takes 50 m for (Rφ̂ , Fφ̂ ) to stabilize and because the 

paths are not longer than 80 m (Rφ , Fφ ) do not have time to stabilize at the final 
value. The noise on the maps in Figure 16 is because of holes in the wall into a 
side drift.  

 

Figure 16: The 5 maps and paths, in blue, from Kvarntorp. The paths begins at 
position (0,0) m with heading 0o. 
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7.3 Discussion 
In Chapter 6 it was found that an accuracy of ±0.5o was needed to get a scan 
matching error less than 0.35. It’s here seen that it’s possible in most cases to 
achieve this accuracy after only 23 m if the machine is going straight. Possibly 
it could have been achieved faster if the mean valuing had started earlier since 

the offsets ( Rφ̂ , Fφ̂ ), according to Figure 11, in most cases have converged after 
only a few meters. The computation time is also less than the required 30 
minutes. 

The reason for tests 3 and 4 in Figure 11 to lie outside the allowed range can’t 
be properly explained. Tests 1 and 8 are made in the same drift and in test 1 
there are only minor problems to converge in the beginning. In test 8 there are 
larger problems in the beginning and the start position is in the same place as in 
tests 3 and 4. It may be that the machine is starting in a junction, resulting in the 
estimated offsets getting stuck in local minima. 

It could also be observed that the wall is noisy after half the path. This may also 
be the reason why tests 3 and 4 don’t converge after the junction. Investigations 
of matchε  have shown that it decreases for tests 3 and 4 compared to in test 8 at 
the place of the noisy wall, which strengthens the theory. This happens because 
the noisy wall changes the optimal point searched for by the Kalman filter. The 
noise may come from a cable ladder or ventilation drum. What is causing the 
constant offsets between the tests in the same areas has yet to be proven. 
Probably it has to do with differences in the starting point, steering of the 
machine, noise in the gyro and so on.  

A probable reason for (Rφ̂ , Fφ̂ ) to deviate from their true offsets in the 
simulated and real turns in Figure 12 and Figure 13 is because of geometry of 
the turn, as mentioned in Chapter 6.3. The theory is strengthen by the fact that 

Rφ̂  in one of the simulated cases isn’t affected until after the turn, and that we 
don’t have simulated odometry errors. Test 2:s behaviour, seen in Figure 13, 
can’t be explained. Something makes the offset deviate even on the straight 
parts. 

Later examination of the machine used at data collection in Kvarntorp showed 
that a part in the hinge angle sensor was broken. This gave the hinge angle 
sensor a play. The load on the hinge angle changes when the machine goes in 
different directions, which then probably affected its readings because of the 
play. This is probably the reason for the grouping in the tests seen in Figure 15. 
Positioning of the rear part of the machine depends directly on the hinge angle, 
which can be the reason for the rear offsets to get more affected.  

The algorithm works in all simulated cases which mean that it is theoretically 
correct. More experiments in a controlled environment are needed to draw some 
definitive conclusions for the real cases but from the experiments made it can 
be concluded that the offsets in most cases can be estimated to within ±0.5o, if 
the environment doesn’t contain too much disturbance. The requirements are 
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that the machine is driven straight for at least 23 m at a speed of around 2.5 m/s. 
It even seems to work in wide drifts with side drifts. The computation time 
increases with the width of the drift but stays below 30 minutes. 

8 Conclusion 
This report presents two methods that have been developed for use in 
calibration of the hinge angle sensor respectively the two laser scanners on an 
Atlas Copco ST14 LHD. In both the hinge angle calibration and laser scanner 
calibration the new methods finds the angular offset of the sensors. 

For hinge angle calibration we have developed an algorithm based on the 
difference between the measured hinge angle value and the expected value 
modelled from the speed and the heading change as measured by the gyro. In 
the laser scanner calibration we used state augmentation together with an 
already existing Kalman Filter to estimate the angular offsets of the laser. A 
SLAM algorithm was also implemented to solve the problem with cross 
dependence between the map and the offsets at the calibration. 

Both methods satisfy the predefined criterions that no surrounding equipment 
should be needed and no extra sensors should be needed. They also satisfy the 
requirement of easy operation. The operator only needs to drive approximately 
straight for around 50 meters while recording data and then supply the 
calibration program with the log-file. Both methods can also operate offline and 
deliver estimates in under 30 minutes as requested. 

To test accuracy and dependence on outer parameters a number of experiments 
and tests were made with both methods. The dependence on speed, distance and 
steering angle was analytically investigated for the hinge angle calibration to 
get the characteristics of the system. Real experiments were then made to 
confirm the characteristics and find the limits of the system. For the laser 
scanners the required precision was only known as a maximum scan matching 
error in the map and not as a sensor offset. An investigation was therefore first 
made to find the offsets that gave the maximum scan matching error. The 
system was to complex to do analytical investigations, instead simulations and 
real tests were made to test the accuracy of the system and how long driving 
distance and time that was needed to do the estimation. The tests were made in 
normally sized tunnels, tunnels with a turn and wide tunnels with side drifts to 
test how the method handle different environments. 

The experiments showed that the hinge angle calibration method is only able to 
deliver accurate estimates two within ±0.3o in 33 m or more. It is also required 
that the machine drive straight for this to be achievable. The tests showed that 
the laser calibration method is able to deliver the required accuracy of ±0.5o in 
around 15 minutes, and that a distance of 23 m in most cases is sufficient if the 
machine is driven straight. Problems arise if there are to much environmental 
disturbance or if the machine makes large turns. For both methods a speed of 
2.5 m/s is recommended.  
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The laser calibration method and the hinge angle method both need further 
evaluation in the future. More experiments needs to be done to better establish 
the confidence interval of both methods. As explained above side drifts 
interfere the laser offsets estimation and maybe also the positioning so it needs 
to be investigated further. 

In Atlas Copco auto traming system maps are today created using only 
odometry. In the future one could use the maps from the laser calibration 
method instead where the positioning is made using both odometry and laser 
measurements. One could also augment the hinge angle sensor offset to the 
states and use the laser calibration method for the hinge angle offset estimation. 
The hinge angle method could also be run online, when the offset is known to 
keep track of the gyro and hinge angle sensor to see if an error occur, because 
then the method deliver a different value compared to the true offset. 

Finally the developed methods considerably simplify the calibration of the three 
sensors compared to the methods used before. Both methods delivered such a 
good results that Atlas Copco choose to implement them in their system.  
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10 Appendix A 

10.1 Only using hinge angle measurements 
One idea was to use the mean of all recorded hinge angle offsets, while driving 
in an almost straight mine, where one could see all the way. The maximum 
error occurs if one drives in an arc with width equal to two times the tunnel 
width and reaching from one end to the other. With a 5 m wide tunnel 
calculations using Eq. ( 1 ) combined with formulas for a circular segment 
showed that 203 m was needed to get a precision of 0.2o. The problem is that 
200 m long tunnel ways are rare. 

Another idea used the fact that if you drive in a tunnel in one direction and 
accumulate the angles then turn the machine around and drive the same way 
back while still accumulating. The mean of the accumulated angle is the offset. 
This solution had the problems that one need to turn the machine around and 
also drive exactly the same way back and get the same slip in the mine drift 
intersections to make it work. This ended up with the last alternative using the 
gyro. 
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10.2 Gyro ideas 

A number of ideas were put-up how to estimate the hinge angle offset oγ  using 
the gyro and the odometer information. Both the hinge angle sensor and the 
gyro give the same information. For example suppose the hinge angle γ  is 
small and γ&  is equal to zero. Then Eq. ( 1 ) can be simplified to 

12
1 ll

v

+
= γθ& . 

It shows that the rotation speed 1θ&  given by the gyro is only a scaling by speed 

of the hinge angle. At 1θ&  equal to zero the hinge angle sensor should give 
zeroγ .  

A method was wanted that found mγ (n) in the point where 1θ&  is equal to zero 

because then mγ (n) only contains oγ  and noise according to Eq. ( 4 ). One 

method was to drive straight with the mean of ubmθ̂& (n) equal to zero and then 

calculate the mean of the measuredmγ (n), which should then only include the 
offset. This was thought to be too hard for the driver. Another method was to 

interpolate a line between two ubmθ̂& (n) samples with opposite signs and two 

mγ (n) samples at the same time instants. Then use the proportional distance 

between the first ubmθ̂& (n) and zero on theubmθ̂& -line to find oγ on the mγ -line and 

taking the mean from many interpolations to find the true oγ . A third and final 
idea was to use Eq. ( 1 ) together with system identification and then insert the 

measured mγ (n) to find a oγ  that gives the best fit with the measuredubmθ̂& (n). 

This required an optimization algorithm. By analysing this idea further it was 
found out, as seen in Chapter 3.3.1, that oγ  could be found explicit. 

11 Appendix B 
Two plots were created for each experiment setup. The first shows data from 
using gear 1 and 2 and the second shows data from using gear 2 and 3. In the 
plots the estimated offsets oγ̂ (p) for each experiment can be seen as a circle and 

their individual 99 % confidence intervals )(1ˆ99.0 pz
oγσ  be seen as bars. The 

dashed doted lines show the mean hinge angle offset oγ̂  for each gear. Dashed 

lines indicate the estimated 99 % confidence interval 
o

sz γ̂99.0  for the true offset 

oγ , calculated from the spread of the offsets oγ̂ (p) for each gear. The coloured 

areas shows the 99 % confidence interval, defined by 199.0 Lz  and 299.0 Lz , for 

the true 99 % confidence interval of oγ . 
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Figure 17: 19 estimated offsets when using 250 samples and driving straight 
with gear 1 and 2. 

 
Figure 18: 38 estimated offsets when using 250 samples and driving straight 
with gear 2 and 3. 
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Figure 19: 9 estimated offsets when using 500 samples and driving straight 
with gear 1 and 2. 

 
Figure 20: 18 estimated offsets when using 500 samples and driving straight 
with gear 2 and 3. 
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Figure 21: 4 estimated offsets when using 1000 samples and driving straight 
with gear 1 and 2. 

 
Figure 22: 6 estimated offsets when using 1000 samples and driving straight 
with gear 2 and 3. 

 
Figure 23: 12 estimated offsets when using 250 samples and driving with a true 
hinge angle of 0.2o using gear 1 and 2. 
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Figure 24: 12 estimated offsets when using 250 samples and driving with a true 
hinge angle of 0.2o using gear 2 and 3. 

 

Figure 25: 4 estimated offsets when using 500 samples and driving with a true 
hinge angle of 0.2o using gear 1 and 2. 
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Figure 26: 4 estimated offsets when using 500 samples and driving with a true 
hinge angle of 0.2o using gear 2 and 3. 

 
Figure 27: 16 estimated offsets when using 250 samples and driving with a true 
hinge angle of +0.7o using gear 1 and 2. 

 

 
Figure 28: 16 estimated offsets when using 500 samples and driving with a true 
hinge angle of +0.7o using gear 1 and 2. 
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Figure 29: 10 estimated offsets when using 250 samples and driving with a true 
hinge angle of -0.7o using gear 1 and 2. 

 

Figure 30: 4 estimated offsets when using 500 samples and driving with a true 
hinge angle of -0.7o using gear 1 and 2. 

 


