
Evaluating RPC for Cloud-Native 5G
Mobile Network Applications

Master’s thesis in Computer science and engineering

Rasmus Johansson, Hanna Kraft

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Evaluating RPC for Cloud-Native 5G
Mobile Network Applications

Rasmus Johansson, Hanna Kraft

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Evaluating RPC for Cloud-Native 5G Mobile Network Applications

Rasmus Johansson and Hanna Kraft

© Rasmus Johansson and Hanna Kraft, 2020.

Supervisor: Romaric Duvignau, Department of Computer Science and Engineering
Advisor: Maysam Mehraban, Ericsson
Examiner: Vincenzo Massimiliano Gulisano, Department of Computer Science and
Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Evaluating RPC for Cloud-Native 5G Mobile Network Applications

Rasmus Johansson
Hanna Kraft
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis investigates the communication between services in 5G network func-
tions. The development of the 5G Core (5GC) is by design increasing the amount of
communication needed in the control plane. The reason for this is the migration to
the cloud and the adoption of a microservices architecture. The telecommunications
domain sets strict requirements on performance, which implies the need for the im-
plementation of inter-service communication to be carefully constructed. This thesis
evaluates the use of Remote Procedure Call (RPC) as inter-service communication
in a 5GC network function. The purpose is to evaluate whether RPC frameworks
will fulfill the requirements of inter-service communication and the strict require-
ments on telecom applications. The frameworks evaluated are gRPC and Apache
Thrift. We also compare the frameworks to a TCP solution since this is the approach
currently considered for this use case and a solution with minimal overhead to the
communication. The evaluation is both quantitative, with benchmarks on latency,
throughput and CPU usage, and qualitative where qualities such as availability and
ease of development are evaluated. From the evaluation, we can conclude that using
RPC frameworks would suit most needs. Even if the evaluated RPC frameworks
perform slightly worse than a reference TCP solution in the quantitative evaluation,
they can provide many other benefits such as bidirectional streaming RPC and high-
availability features. Among the evaluated RPC frameworks, Apache Thrift stands
out slightly in terms of performance, while gRPC stands out in the qualitative eval-
uation.

Keywords: RPC, inter-service communication, 5G, 5G Core, Network Function,
Microservices, Cloud-Native.

v

Acknowledgements
We would like to thank our supervisor Romaric Duvignau and our examiner
Vincenzo Massimiliano Gulisano. We would also like to thank our advisor at
Ericsson, Maysam Mehraban and our manager at Ericsson Marcus Oscarsson.

Rasmus Johansson and Hanna Kraft, Gothenburg, November 2020

vii

Contents

List of Figures xi

Acronyms xiii

1 Introduction 1
1.1 Problem description . 2
1.2 Novelty . 2
1.3 Limitations . 2
1.4 Research questions . 3
1.5 Organization of the thesis . 3

2 Background 5
2.1 5GC . 5
2.2 Cloud-Native Applications . 6

2.2.1 Microservices . 7
2.3 Asynchronous Function Calls . 7
2.4 RPC . 8
2.5 RPC Frameworks . 10

2.5.1 gRPC . 10
2.5.2 Apache Thrift . 12

3 Related Work 15

4 Methods 17
4.1 Assessment Criteria and System Model 17

4.1.1 Assessment Criteria for Qualitative evaluation 17
4.1.2 Assessment Criteria for Quantitative Evaluation 18
4.1.3 System Model . 18

4.2 Choosing RPC Frameworks . 21
4.3 Integration of frameworks . 21

4.3.1 Adapters . 21
4.3.2 gRPC . 22
4.3.3 Thrift . 24

5 Results 25
5.1 Evaluation of qualitative properties of adapters 25
5.2 Evaluation of quantitative properties of adapters 28

ix

Contents

5.2.1 Single-client evaluation results 28
5.2.2 Multi-client evaluation results 32
5.2.3 Summary of quantitative results 37

6 Discussion 39
6.1 gRPC adapters . 39
6.2 Thrift-adapters . 40
6.3 Comparison of RPC frameworks and TCP-adapter 41
6.4 Comparison of Thrift and gRPC . 41

6.4.1 Comparison of quantitative results 41
6.4.2 Comparison of qualitative results 43

7 Concluding remarks 45
7.1 Conclusion . 45
7.2 Future work . 45

Bibliography 47

x

List of Figures

2.1 The 5GC and its control plane. 6
2.2 Network Function architecture, the circles are microservices. 6
2.3 The process of an RPC. 9
2.4 Example of asynchronous bidirectional gRPC. 11

4.1 Overview of the system. 20
4.2 Event loop of the grpc-as’s server. 23
4.3 Finite state machine of grpc-as’s server. 23
4.4 Callbacks of grpc-asbi’s server. 23
4.5 The asynchronous Thrift adapter. 24

5.1 Mean latency for rates in rate mode with 0 payload. 29
5.2 Mean latency for payload sizes in no-rate mode. 29
5.3 Tail latency for payload sizes in no-rate mode. 99th percentile. 29
5.4 Throughput for different payload sizes in no-rate mode with a single

client, higher results are preferable. 30
5.5 Mean CPU usage for payload sizes in no-rate mode. 31
5.6 Throughput/CPU usage for payload sizes in no-rate mode. Higher

results are preferable. 31
5.7 Mean latency with multiple concurrent clients, running 0 B payload. . 33
5.8 Mean latency with multiple concurrent clients, running 10 kB payload. 33
5.9 Mean latency with multiple concurrent clients, running 100 kB payload. 34
5.10 Throughput(QPS) with multiple clients and 0-100 kB payload in no-

rate mode. Higher results are preferable. 35
5.11 99th percentile tail latency with multiple concurrent clients, running

0-100 kB payload in no-rate mode. Lower results are preferable. . . . 36

xi

List of Figures

xii

Acronyms

3GPP Third Generation Partnership Project. 5
5GC 5G Core. v

AMF Access and Mobility management Function. 5
API Application Programming Interfaces. 1

CNCF Cloud Native Computing Foundation. 6
COTS Commercial-Off-The-Shelf . 5

GUAMI Globally Unique AMF Identifier . 6
GUTI Globally Unique Temporary Identifier . 3

IDL Interface Definition Language. 10

NF Network Functions. 1
NFV Network Function Virtualization. 5

QPS Queries Per Second. 18

RAN Radio Access Network. 5
REST Representational State Transfer . 7
RPC Remote Procedure Call. v

SBA Service-Based Architecture. 1
SBI Service-Based Interfaces. 6
SDN Software-Defined Networking. 5

TMSI Temporary Mobile Subscriber Identity. 6

UE User-Equipment. 3

xiii

Acronyms

xiv

1
Introduction

5G is the new generation of mobile networks. 5G will improve the efficiency and
performance of regular smartphone users, and enable new technologies such as au-
tonomous vehicles, and increase the potential of IoT. Furthermore, Ericsson expects
that mobile data traffic will expand by a factor of eight by 2023 [9], which will re-
quire mobile networks to enable lower latency and at the same time higher capacity,
allowing for more network traffic. In the 5G standard, the packet core, 5GC, is
migrated from the previous generation’s monolithic architecture to a cloud-native
Service-Based Architecture (SBA), consisting of decoupled applications called Net-
work Functions (NF). Each NF can be implemented as several microservices. The
microservices that make up an NF need to communicate with each other, which
introduces extra delay compared to the previous generation of networks. The mi-
croservices architecture also introduces many Application Programming Interfaces
(API)s, and the need for maintaining these can quickly become cumbersome. Fur-
thermore, features such as upgradability, scalability, and backward-compatibility are
essential for microservices applications and need to be handled efficiently.

For ease of development, it could be beneficial to adopt a general third-party com-
munication framework for the inter-service communication of the NFs rather than
to use a legacy solution or to develop a framework from scratch. Moreover, a third-
party framework built for use in a cloud-native environment could bring relevant
technologies needed to fulfill many of the requirements set on 5G. Although it could
potentially increase the productivity of developing microservices, the framework
might not have been built with the strict performance requirements of the 5G do-
main in mind, as they are generally built for the web-scale domain.

This thesis consists of quantitative and qualitative research methods to evaluate
third-party RPC frameworks as inter-service communication in the NFs of the 5GC.
This thesis aims to assess whether a third-party framework can comply with the
strict requirements of 5G. We have chosen two RPC frameworks to evaluate, gRPC,
and Apache Thrift.

Since the area of cloud-native applications in 5GC is novel, there is not yet any stan-
dard for inter-service communication within an NF. Besides, there is limited research
available, and preliminary results are not always validated thoroughly. Therefore,
our results could potentially be of great interest to anyone integrating inter-service
communication between microservices for applications with similarly strict require-

1

1. Introduction

ments on performance.

1.1 Problem description
This thesis is a collaboration with Ericsson, who is migrating the packet core to
the cloud and upgrading it to follow 5G standards. One crucial design principle for
cloud-native applications, according to Ericsson, is to follow a microservices archi-
tecture [3]. Microservices need to communicate with each other through inter-service
communication, which introduces additional delay and overhead to the application.
Adopting a microservices architecture also introduces new APIs that need to be
maintained. Furthermore, deployed microservices can be upgraded independently
of each other, meaning communication needs to be backward-compatible. Due to the
nature of microservices, software needs to be scalable, and allow for more through-
put than before. As 5GC becomes cloud-native, there are even more demands in
place. Mainly, the inter-service communication for 5GC NFs has strict requirements
on latency.

This thesis aims to evaluate if a third-party RPC framework is suitable as inter-
service communication in a 5GC NF, taking into account the high demands presented
above. The full list of evaluation requirements are described in Section 4.1. We are
investigating this subject on behalf of Ericsson, who wants to find a simpler solution
than writing a custom communication interface, while at the same time not losing too
much performance. There is currently no standard for inter-service communication
in 5GC NFs, and there is little or no research on the subject.

1.2 Novelty
Several studies investigate inter-service communication, some also in a 5G setting,
such as in the papers of Kempf et al. [22], Zhang et al. [34], and Buyakar et al. [12].
However, no previous work has consisted of a qualitative and quantitative evaluation
of different RPC frameworks in 5G. Our work evaluates RPC frameworks as inter-
service communication and compares the frameworks to each other and a reference
solution based on TCP. Our thesis contributes with a thorough evaluation of the
performance of single-request gRPC and Apache Thrift, as well as bidirectional
streaming gRPC. This thesis also provides a qualitative comparison of design styles
and the design complexity of the frameworks.

1.3 Limitations
Due to the limited scope of the thesis, RPC is the only type of communication
explored, even though many different protocols are potentially usable for this use
case. This limitation is also due to several qualities of RPC, which we believe make
it very suitable for fulfilling the requirements.

This thesis only evaluates two RPC frameworks due to time constraints, gRPC and

2

1. Introduction

Apache Thrift. Furthermore, the evaluation performed in this thesis focus on a
specific use-case in the 5GC, namely the process of allocating a 5G Globally Unique
Temporary Identifier (GUTI) for a User-Equipment (UE).

1.4 Research questions
This thesis attempts to answer the following research questions:

1. Is it possible to fill all the demands on communication between microservices
in a cloud-native 5GC NF using a general RPC framework?

2. Is the performance of a cloud-native 5GC NF high enough if implementing
inter-service communication using a general RPC framework?

1.5 Organization of the thesis
The remainder of the thesis is organized as follows: Chapter 2 introduces background
information such as cloud-native applications, state-of-the-art RPC frameworks, as
well as the 5GC and its enabling techniques. Chapter 3 describes related work to
this thesis. Chapter 4 describes in detail the assessment criteria and system used in
the evaluation as well as the implementation needed to integrate RPC frameworks
into a prototype application. The results are presented in Chapter 5, and discussed
in Chapter 6. Finally, Chapter 7 consists of concluding remarks of the thesis.

3

1. Introduction

4

2
Background

This chapter contains the necessary background knowledge needed to comprehend
the work presented in this thesis. Section 2.1 includes an overview of the control
plane and NFs in 5G. Section 2.2 and Section 2.2.1 describe cloud-native applications
and microservices respectively. Furthermore, Section 2.3 includes information on
asynchronous and synchronous communication, and finally, Section 2.4 consists of
background on RPC, as well as the RPC frameworks evaluated in the thesis.

2.1 5GC
The 5GC is the packet core of the 5G system. Packet core is the core network that
connects the Radio Access Network (RAN) and external access network, i.e., the
Internet. Some of the packet core’s functions include mobility as well as session
management. Mobility management is a responsibility of the Access and Mobility
management Function (AMF) NF. It handles the connection of a geographically
moving UE, e.g., a smartphone, connecting to different radio base stations in the
RAN. In contrast, session management maintains a session towards the UE. More-
over, the 5GC has functions for networking, such as packet-forwarding rules and
deep packet inspection.

Two critical enablers for the 5GC, moving from the previous generation’s packet
core, are Software-Defined Networking (SDN) and Network Function Virtualization
(NFV). SDN is used for the separation of control-signaling functions (control plane)
and packet-processing functions (user plane) of the packet core, allowing them to
deploy, and thus scale separately [22, 30]. NFV is used for the virtualization of
NFs, allowing them to migrate from expensive dedicated hardware to Commercial-
Off-The-Shelf (COTS) hardware in the cloud [30]. Using these technologies, SDN
and NFV, together with cloud-native technologies, Third Generation Partnership
Project (3GPP) has defined the next generation packet core, the 5GC, to be of a
cloud-native SBA [33]. SBA is a type of software architecture which focuses on the
use of services.

5GC Control Plane
The 5GC’s control plane’s function is to manage all the control signaling required
for serving UEs. The control plane consists of several NFs, which are defined and

5

2. Background

User
Equipment

(Radio)
Access
Network

N9

User
Plane

Function
InternetN3

N1

NF7

N2

NF8

NF3

NF6

NF2 NF4

Nnf7

Nnf3

Nnf6

Nnf2

Nnf8

Nnf4

N4

N6

Control Plane

5G System

NF5
Nnf5

NF1
Nnf1

(smart
phone,IoT
device,etc)

Figure 2.1: The 5GC and its control plane.

standardized by the 3GPP. Figure 2.1 gives an overview of the 5GC control plane’s
architecture. All NFs are crucial to have a working control plane. Service-Based
Interfaces (SBI) are defined and standardized for how NFs communicate with each
other [33] and are referenced to as Nnfx (e.g., Nnf1) in Figure 2.1. Each NF is,
in turn, implemented as microservices that provide the functionality of the NF, see
Figure 2.2.

Service 1 Service N

Network Function

RPC

Service M

RPC RPC

Figure 2.2: Network Function architecture, the circles are microservices.

5G GUTI

A 5G GUTI consists of two parts, Globally Unique AMF Identifier (GUAMI), and
Temporary Mobile Subscriber Identity (TMSI). The GUAMI identifies one or several
AMFs from a set, while the TMSI identifies the UE within the AMF. The GUTI’s
purpose is to provide a UE with a unique identity in the network. The AMF NF is
responsible for allocating the GUTI [33].

2.2 Cloud-Native Applications
The Cloud Native Computing Foundation (CNCF) defines cloud-native as: “tech-
nologies [that] empower organizations to build and run scalable applications in mod-
ern, dynamic environments such as public, private, and hybrid clouds. Containers,
service meshes, microservices, immutable infrastructure, and declarative APIs ex-
emplify this approach” [4].

6

2. Background

There are several benefits of adopting a cloud-native architecture: better perfor-
mance, higher efficiency, and scalability features such as load-balancing and auto-
matic scaling [23]. Automatic scaling means that more resources are allocated to a
process when needed. Automatic scaling can ensure that applications keep on run-
ning when suddenly experiencing a substantial increase in traffic. Load balancing
means that workload is split over machines so that one or a few machines are not
overloaded with work.

2.2.1 Microservices
Microservices are both a type of software architecture, and a term meaning services,
usually running in a cloud-native environment. Dragoni et al. define a microservice
as “a cohesive, independent process interacting via messages” [13]. Microservices
architecture can be very beneficial in sizable applications, for example, when it
comes to upgrading or scaling. When having several small services, one or a few
pieces of software can be upgraded at a time, which reduces, or entirely removes
downtime for the application [28]. Furthermore, developers can usually deploy two
copies of a service of different versions simultaneously, to test out new features.
Microservices also give developers the possibility of adjusting requirements on each
microservice, rather than for the entire application. This could mean that different
technologies are used for different parts of the application, potentially improving
performance.

A common way to run microservices is to use containers, such as Docker [5]. Con-
tainer orchestration systems such as Kubernetes [7] are used to manage them. In
Kubernetes, a smaller group of containers is called a pod [8]. Orchestration sys-
tems provide many different services, such as health monitoring and scheduling.
These containers communicate with each other and internally through inter-service
communication. Inter-service communication comes in many different forms, where
some of the most common ones are Representational State Transfer (REST), RPC,
and message queues.

2.3 Asynchronous Function Calls
Asynchronous function calls are function calls that are performed without the calling
thread waiting for the function to complete its execution. As a regular function call
executes in the calling thread, a function called asynchronously must be executed
in a separate thread, allowing the calling thread to continue its program execution.

Asynchronous function calls can be achieved on the level of the programming lan-
guage using a keyword to the function signature or similar, on the level of a library,
for example wrapping the function in an asynchronous object, or on the level of the
function itself, implementing it in a way to facilitate an asynchronous behavior.

In the typical case where the calling thread eventually relies on the result of the
asynchronously executed function, some synchronization mechanism is needed for
the calling thread to access the function’s result. One such mechanism is a promise

7

2. Background

connected to a future. The promise and future together form a shared state between
the calling thread and the asynchronous function [24]. The function provides the
calling thread with a promise that a value in the shared state will be set eventually.
The calling thread can initiate a future object from the promise provided by the
asynchronous function, creating a data channel between the function and the calling
thread. When the calling thread needs the promised result, it will wait on the future
object, sleeping, until the function sets the promised value as well as wakes up the
calling thread, and the calling thread can access the promised value. Instead of
sleeping, it can also check the state of the future object, and continue doing other
work while waiting.

2.4 RPC
Bruno Nelson defined RPC in his dissertation on the subject as “the synchronous
language-level transfer of control between programs in disjoint address spaces whose
primary communication medium is a narrow channel” [27]. Essentially, RPC is
a mechanism that enables a program to invoke a function(procedure/method) in
another program. The goal of RPC is for a call to have the same semantics as if
it was a local function call [27]. Since Nelson’s dissertation on RPC, the definition
of RPC has relaxed to exclude the requirement on both the type of underlying
communication medium and that of RPC calls to be synchronous [32].

Figure 2.3 illustrates the general process of an RPC call. The client application
invokes an RPC method available in the client stub with input parameters (1). The
stub marshalls (packs) the method name and parameters into a request message
and passes it to the RPC library run-time (2). The run-time performs some internal
bookkeeping before writing it to the underlying transport (3). The client sends the
message over the wire to the server (4), where the server’s RPC library reads it
from the transport and reconstructs the message (5). The message is unmarshalled
(unpacked) and passed on to the server stub (6), which invokes the method, imple-
mented in the server application, with input parameters from the request (7). The
method’s return value is marshalled into a response message (8) by the server stub,
which the server stub passes down to the run-time (9). The response message is then
transferred to the client stub (10-13) in the same way as the request message was
transferred to the server-stub. The client stub unmarshalls the response message
into the return value of the RPC method and returns it to the client application
(14), finishing the RPC.

8

2. Background

Application

Client stub

RPC library run-time

Transport

Application

Server stub

RPC library run-time

Transport

1

2

3

4

5

6

7
8

9

10

11

12

13

14

Client Server

Figure 2.3: The process of an RPC.

An RPC function can be either synchronous or asynchronous. The standard proce-
dure is synchronous RPC, which means that the client is blocked during the RPC
call, waiting for the RPC return. However, this is not feasible in many cases, as the
latency of an RPC call is in orders of magnitude larger than a local function call,
leaving the client blocked for a very long time. By having an asynchronous RPC,
the client can invoke the RPC call, without getting blocked, and retrieve the return
value at a later point in time, when the value is needed. During the time of the RPC
call, it can do other processing. Asynchronous RPC can be naively implemented
on top of a synchronous RPC method, using asynchronous primitives, as described
in Section 2.3. However, this would not scale very well with many concurrent RPC
calls, as each RPC call would spawn a new thread. Therefore, it is more beneficial
to have an RPC system with proper built-in functionality for asynchronous RPCs.

Motivation for RPC
Using RPC has several advantages. The main reason for investigating RPC for this
thesis is that RPC abstracts many underlying mechanics behind communication,
meaning that a developer can instead focus on the functionality of the application
rather than the communication itself [11]. Furthermore, the API design philoso-
phy of RPC is well suited for communication between microservices. The simple
implementation of RPC could also make development more efficient and code less
complicated. Moreover, the simplicity of RPC makes it very efficient [11].

Comparison of RPC and REST
There are several options for inter-service communication, and all alternatives have
their advantages and disadvantages, and no solution will be optimal for all mi-
croservices applications. An alternative inter-service communication protocol could
be REST. REST is widely adopted an API, where the operations on a resource
are limited to the HTTP verbs such as GET, PUT, and DELETE. This API style
may become a limitation for an inter-service communication where the purpose of
the communication is to access another microservice’s function, rather than its re-

9

2. Background

sources. Some benchmarks also point to the conclusion that RPC could be more
efficient than REST [12].

An essential principle of REST is that each request shall contain all information
regarding the session, making the server stateless towards the client session. At this
stage, we cannot tell if this is tolerable in all aspects of the 5GC control plane. There-
fore, it might be safer to go for an RPC solution that does not set this requirement
on the server. Inter-service communication is generally used by a microservice to
access another microservice’s functionality, which suits an operations-focused com-
munication protocol such as RPC well. Since this thesis considers inter-microservice
communication within a product’s internal architecture, we also believe that RPC
design-wise is more suitable since an RPC call aligns well with the flow of the pro-
gram. If we instead would have an application that is available for external entities,
one might choose REST for an external API due to its well-defined API principles.

2.5 RPC Frameworks
An RPC framework is a set of tools that together implement RPC and enables devel-
opers to build RPC services. Using an RPC framework, a developer will commonly
define services and messages they want to use with an Interface Definition Language
(IDL). The RPC framework generates code based on the IDL definitions that the
developer can use to define new clients and servers, which sends and receives RPC
calls. We explore two different RPC frameworks in this thesis, gRPC, and Apache
Thrift, which we describe in this section

2.5.1 gRPC
One of the most widely used RPC frameworks today is gRPC [16]. This framework
is a former Google project which is currently hosted by the CNCF as an incubating
project. gRPC provides low latency and is very well suited for developing cloud-
native applications by design [15].

The protocol stack used in gRPC is HTTP/2 on top of TCP for transport, and
Protocol Buffers (protobuf) for data serialization. gRPC uses protobuf’s IDL for
defining services and messages. It has built-in support for secure communication
with authentication and encryption using TLS, as well as client-side load balancing
policies. Furthermore, gRPC has support for integrating health checking into the
server. Health checking means that the client can query the server for its health
or status via a well-defined API. For example, this mechanism could be used by an
external monitoring service to check the status of the server [18].

Developers define the API in a .proto file using protobuf as IDL, from which the
gRPC compiler generates code for client and server stubs. The API consists of
services and messages. A service is composed of a set of RPC methods as API end-
points, and a message is an entity of data structured in strongly typed numbered
fields. A field can also be another message, creating nested messages. Protobuf
provides backward-and forward-compatibility for the messages and services, how-

10

2. Background

ever, with some inevitable limitations. This backward and forward compatibility
is beneficial when a system runs clients and servers of different versions, which can
occur when updates roll out gradually. When updating a message, some precautions
are necessary in order to maintain back-compatibility. A new field cannot reuse the
field number of a previously removed field. A field can change type if the new type
is compatible with the current type. When an RPC endpoint reads a message and
does not recognize some field, the RPC endpoint ignores the field. All fields are
optional, so if an expected field is missing during serialization or deserialization,
they are either set to zero or a specified default value.

gRPC implements streaming by using HTTP/2 streams. A bidirectional stream
allows a single RPC method to consist of an arbitrary number of request messages
and response messages, sent and received in any order.

The run-time of gRPC uses a completion queue to convey the state of the RPCs to
the application to provide asynchronous RPC calls. When the application invokes
an RPC operation, it needs to provide the operation with a unique tag. The tag
is pushed to the completion queue when the gRPC run-time has completed the
operation. The application queries the completion queue for a tag using the Next
or AsyncNext method on the completion queue and thus know when an operation
finishes. Next is a blocking method, and the gRPC borrows the calling thread for the
processing of RPCs until a tag is pushed to the completion queue. With AsyncNext,
a timeout can be set to limit the time that gRPC may borrow the thread. If no
thread is performing Next or AsyncNext, the RPCs will not be processed, and no
progress will be made.

With asynchronous single-request mode, gRPC offers an API for sending the request
and receiving the response. The application invokes an RPC with the completion
queue and the request as input parameters. The application informs the gRPC run-
time where to store the response, and what to tag the completed operation (RPC)
with. When the response is received, the gRPC run-time pushes the tag to the
completion queue, from which the application can read the tag.

gRPC runtime

#1 #2completion
queue (cq)

Write(tag=#1, cq) tag =cq->Next()

if (tag == #1)
Write completed

Read(tag=#2, cq)

if (tag == #2)
Read completedApplication

Figure 2.4: Example of asynchronous bidirectional gRPC.

11

2. Background

gRPC’s API for asynchronous bidirectional streaming is similar to, but more com-
plex than the asynchronous single-request API, as illustrated in Figure 2.4. The
application sends or receives a message by invoking a read or write operation with
a unique tag on a stream. The gRPC run-time will notify the application on com-
pletion of the operation by adding the unique tag to the completion queue. The
application continuously polls the completion queue for a tag, which returns when
a tag is added to the completion queue by the gRPC run-time. A limitation set on
the completion queue by gRPC is that there may only ever be at most one read and
one write per stream issued by the application at any point in time.

When using the synchronous mode, the completion queue is unexposed to the appli-
cation, as opposed to asynchronous mode. There is no need for this since the RPC
call blocks the application while waiting for a response.

2.5.2 Apache Thrift
Apache Thrift, henceforth referred to simply as Thrift, is a framework that combines
serialization and code generation for RPC [1]. Thrift generates API code by using
an IDL to define data types and services in a .thrift file. The IDL used for Thrift
is heavily influenced by C in its syntax and uses types such as structs to define
messages and objects [31]. To enable upgradability and backward-compatibility,
Thrift supports reading data from clients that are of older versions than the server.
Thrift handles versioning by using field identifiers, which encodes field headers in
Thrift structs.

Thrift has both single-threaded servers and multi-threaded servers. The simplest
kind of server is the TSimpleServer which uses one thread all in all, but can
only serve a single client at a time. TThreadedServer, TThreadpoolServer and
TNonblockingServer can all use multiple threads. TThreadedServer and
TThreadpoolServer use one thread per client. The TThreadpoolServer has a fixed-
size pool of threads and reuses threads for new clients, while TThreadedServer de-
stroys threads when clients disconnects and creates new threads for new clients [10].
The TNonblockingServer uses one or several threads dedicated to IO and can use
a thread pool for the processing of incoming RPCs. If a thread pool is used, the IO
threads distribute incoming RPCs among these threads for processing. If not, then
the IO thread itself serves the RPC. A single IO thread can serve multiple client
connections. It uses the library libevent to receive notification of incoming data
on multiple client connections’ file descriptors simultaneously.

Thrift servers use a TProcessor that reads and writes data from the wire. Proces-
sors can be either synchronous and asynchronous. Thrift supports several different
transport protocols for data transport, not only TCP sockets [10]. Furthermore,
Thrift also supports several different serialization protocols. Binary serialization
can be utilized to gain speed, while compact serialization can be used to instead get
as compact a message as possible.

Thrift provides an asynchronous TEvhttpServer, asynchronous
TEvhttpClientChannel and TAsyncChannel for some languages. The TEvhttpServer

12

2. Background

needs to be initialized with an asynchronous TProcessor, which is generated by the
Thrift compiler. The asynchronous client uses TEvhttpClientChannel, which ex-
tends the TAsyncChannel class with the use of the libevent library’s evhttp API
to make HTTP requests to the server. The client assigns a callback function to
each RPC, which is called when the response has returned from the server. The
client is reliant on the application to provide the client with an event_base from
the libevent library, and to run libevent’s event_base_loop on the event_base.
Each RPC call registers an event on the event_base which gets processed in the
event_base_loop.

13

2. Background

14

3
Related Work

This chapter covers previous work in areas related to this thesis, such as mobile
networking and cloud-native architecture. Furthermore, this section highlights the
differences between the previous work and this thesis.

Kempf et al. describe how to theoretically move the evolved packet core to the cloud
using SDN in their work Moving the mobile evolved packet core to the cloud [22].
This solution includes modifying OpenFlow to separate the control plane and the
user plane, making it possible to deploy control plane in the cloud, separate from
the packet-processing functions in the user plane. This work does not implement or
evaluate RPC framework but theorizes on the potential in using RPC as a candidate
for communication in the proposed architecture.

In Performance evaluation of candidate protocol stack for service-based interfaces
in 5G core network [34], Zhang et al. propose a protocol stack for the SBIs of the
5GC by individually comparing several different properties, both quantitatively and
qualitatively. These properties include API design styles, as well as data serialization
formats. The work of Zhang et al. is similar to the work presented in our thesis,
as it also concerns cloud-native 5G and RPC communication, however the SBIs
are external interfaces towards other NFs, which results in other requirements on
the API design compared to the interfaces used for internal communication within
an NF. Zhang et al. provide a qualitative comparison of RPC to REST, based
on API design style. However, Zhang et al. only consider RPC as communication
between network functions, and not as inter-service communication. Moreover, their
study does not compare or mention RPC frameworks or perform benchmarks on
performance of any RPC framework.

Buyakar et al. have built a prototype of 5G SBI and SBA and evaluated it with
regards to latency and CPU usage in their work Prototyping and Load Balancing
the service based architecture of 5G core using NFV [12]. Buyakar et al. used
open-source tools to prototype SBA and deployed it in a network function virtu-
alization environment. Their work compares the latency and CPU usage of gRPC
and REST and, based on the evaluation, they chose to implement gRPC as SBI for
the prototype. Their work differs from ours in that gRPC is used as SBI rather
than inter-service communication. Buyakar et al. compare gRPC to REST, while
we compare gRPC to TCP and Thrift. Our work also provides a more rigorous
evaluation.

15

3. Related Work

Nguyen et al. evaluate the performance of gRPC and Thrift as communication
between microservices in Benchmarking performance of data serialization and RPC
frameworks in microservices architecture: gRPC vs. Apache Thrift vs. Apache
Avro [29], similar to our thesis. This work, however, does not involve 5G and thus
concerns very different requirements.

Manso et al. demonstrate a cloud-native SDN controller for control of transport net-
work in their work Cloud-native SDN controller based on micro-services for trans-
port Networks [26]. The SDN controller is implemented as multiple microservices
communicating via RPC, namely gRPC. While it is not strictly within the telecom-
munications domain, it is still architecturally similar to the control plane of the
5GC, with the similar requirements from the cloud-native domain. Manso et al.
chose gRPC due to it being a modern framework built for the cloud-native domain.
However, Manso et al. do not present any comparison to alternative RPC frame-
works, nor do they perform any further evaluation on the performance impact of
using gRPC compared to other candidates.

Hawilo et al. describe the challenges of a microservices architecture as the plat-
form for NFV in Exploring microservices as the architecture of choice for network
function virtualization platforms [20]. This article brings up communication in vir-
tualized network functions, but on another level than in our thesis, and in this regard
mainly focuses on reducing latency while also fulfilling demands on placement of vir-
tual network function components. While our thesis investigates the inter-service
communication to find the impact that RPC frameworks have on communication,
Hawilo et al. target the same problem, inter-service communication, but on plat-
form rather than application level. By minimizing the network path delay between
communicating entities, they lower the latency of inter-service communication.

In 5G enhanced service-based core design [25], Lu et al. propose a new SBA design
which is called Not-only-stack. In the Not-Only-stack design, each NF consists of
a server-processing entity and Sidecar. The server-processing entity handles logic
while the Sidecar handles communication and cloud-native functionality such as
load balancing. The Not-only-stack design was created to simplify inter-service
communication in network functions, and is presenting a different solution to the
issue at hand in our thesis.

Gal and Delimitrou highlight the impact that a microservice architecture has on the
ratio between application and communication processing, compared to a monolithic
architecture. Their evaluation shows that up to 70% of time is used for commu-
nication processing in an application implemented in a microservice architecture,
compared to 41% for a monolithic implementation [14]. The inter-service com-
munication in the application based on microservices uses RPC, and their results
highlight the need for efficient communication when moving from a monolithic ar-
chitecture towards a microservice architecture. Their findings are interesting as our
thesis investigates the inter-service communication of an NF based on a microservice
architecture, software that has been migrated from monolithic architecture in earlier
generations of mobile networking.

16

4
Methods

In this thesis, we use a prototype application that simulates a 5GC application
to measure the performance and other aspects of two different RPC frameworks.
We do this by integrating and evaluating several different communication adapters
into a 5G prototype application. In this case, we define an adapter as a client
and server that integrates a specific framework or transport protocol, and mode of
communication. The prototype application used initially has a simple asynchronous
communication solution that uses TCP sockets to send and receive data. We refer
henceforth to this adapter as the TCP-adapter. We have added new server and client
classes to the prototype application, which use gRPC and Thrift RPC frameworks.

The rest of this chapter is organized in the following way: Section 4.1 describes the
assessment criteria and system used for the evaluation, which includes a description
of the prototype application on which the benchmarks are run. This section also
contains a description of the communication of the prototype application at the
start of the thesis, the TCP-adapter. Section 4.2 describes how we chose the RPC
frameworks used in this thesis. Section 4.3 consists of a description of the RPC
frameworks.

4.1 Assessment Criteria and System Model
This section describes the assessment criteria and system used for the evaluation.
The evaluation consists of a qualitative as well as a quantitative evaluation. Sub-
section 4.1.1 describes the qualitative properties, and subsection 4.1.2 describes the
quantitative properties of the assessment criteria. Finally, subsection 4.1.3 describes
the system used for the quantitative evaluation.

4.1.1 Assessment Criteria for Qualitative evaluation
The qualitative evaluation evaluates the adapters based on the properties listed
below. The properties were evaluated based on available features of the RPC frame-
works and TCP-adapter.

1. High-availability features: features that can benefit applications in a cloud-
native setting on being continuously available.

17

4. Methods

2. Backward-compatibility: interoperability between services of different ver-
sion.

3. Cross-language support: support for multiple languages.

4. Bidirectional streaming RPC: allow a single RPC method to contain sev-
eral RPC requests and responses.

5. Asynchronous communication: sending and receiving messages without
the calling thread blocking until a response is received.

6. Secure communication through TLS: authentication and encryption us-
ing TLS.

4.1.2 Assessment Criteria for Quantitative Evaluation
The following properties were evaluated in the quantitative evaluation:

1. Latency: the time it takes for a request registered on the client to reach the
server and get a response.

2. Tail latency: the 99th percentile of latency, i.e., the 1 % of messages with
the highest latency.

3. Throughput: measured as both the number of successful Queries Per Second
(QPS) and bytes per second.

4. CPU usage: measured for the server during single-client evaluation.

4.1.3 System Model
To run benchmarks in an environment that simulates cloud-native 5G, we used a sys-
tem consisting of a client-server architecture with the server being a 5GC prototype
application. Henceforth we refer to this 5GC prototype application as the GUTI-
prototype. The GUTI-prototype simulates the process of allocating a 5G GUTI
while not being actual production code used in a real 5GC NF. The prototype has 2
API-endpoints, Allocate and Deallocate, however only Allocate is used in the eval-
uation. The former is for allocating a GUTI. Allocate takes an AllocateRequest
object as input parameter, and the server returns an AllocateResponse object
which contains a GUTI object. Deallocate performs the opposite operation; it takes
a DeallocateRequest object containing the GUTI object that is to be deallocated
and returns a DeallocateResponse object. For evaluation, the AllocateRequest
and AllocateResponse objects also contain a field named payload that is a variable-
length byte-array. Henceforth, the term payload refer to this field.

We integrated two different modes of generating requests for clients. The client can
either send a large number of messages as fast as possible and measure the time it
takes to send and receive all messages. We henceforth refer to this mode of operation
as no-rate mode. The client can also use a rate, which means that a benchmark

18

4. Methods

runs for a predefined amount of time, in which it tries to send a specific amount of
messages per second. We henceforth refer to this mode as rate mode. For example,
a client using a rate of 10 and a set duration of 60 seconds will attempt to send ten
messages per second for 600 requests. The rate mode runs in one of seven different
rates: 10, 20, 50, 100, 200, 500, and 1000 requests per second. Different amounts of
payload can be used in the benchmarks, from 0 B to 100 kB. The different payload
sizes evaluated are 0, 10, 100, 1k, 10k, and 100k. When altering the payload, the
payload field of the request and response messages are altered. With 0 B payload,
a GUTI is still returned from the server.

The purpose of running benchmarks with different rates and payloads is to evaluate
if adapters perform well for different use cases. It is interesting to know if a particular
adapter performs very poorly in one specific use case. For example, if an adapter
performs well for some use cases, but has a significant drop in performance for other
use cases, it might not be the best option.

The client measures the latency of each RPC, i.e each request-response pair, using
the std::chrono::steady_clock primitive of C++. It records the maximum,
minimum and mean latency over the course of the benchmark. Moreover, it
records the throughput and a histogram of the latency. We calculate mean latency
by dividing the sum of the latencies of the requests by the number of requests. We
calculate throughput as the total number of requests divided by the total duration of
the benchmark. The histogram has 400 bins with a granularity of 50 µs. The 400th
bin contains the number of recordings of latency that are 20 ms and above. In post-
processing of the data, median latency, tail latency and standard deviation
are calculated from the latency histogram. We calculate the standard deviation as
the square root of the variance. CPU usage of the server process is also measured,
using a Bash script running top in a loop on the server. Moreover, the underlying
mean network latency between client and server is measured using netperf on
the client and netserver on the server, illustrated in Figure 4.1.

The benchmarks are performed in a Kubernetes environment, running on a cluster
of virtual nodes. The nodes are virtual machines running on the same hardware.
We compile the server program into a docker image. The docker image runs in a
docker container deployed in a Kubernetes pod on a node in the cluster, as can be
seen in Figure 4.1. The client program is compiled in the same way as the server
and deployed in a pod on another virtual node. We initialize the benchmarks with
a warm-up phase. This means that the client starts sending requests in no-rate
mode for a specified time before the actual benchmarking starts. It is possible to
run benchmarks with several clients for all adapters, and all clients run in the same
docker container. The hardware on which the virtual nodes run has 12 CPU cores.
The server container is limited to use one core via Kubernetes, while the client
container does not have such restriction. However, it is in practice limited to the
capacity of the server.

19

4. Methods

Pod

Client #1

Client #2

Client #n

netperf

Server

netserver

Pod

Container
Container

Node Node

Figure 4.1: Overview of the system.

We evaluate the adapters with a single client as well as multiple clients. For the
single-client benchmarks, we evaluate the adapters with every combination of rate
and payload. In rate mode, the benchmarks run for 120 seconds and in no-rate mode,
one million requests are performed. Multi-client benchmarks are run in no-rate mode
with payloads of 0, 10 k and 100 kB. The amount of clients evaluated is 2, 4, 6,
8, 10, 12, 14, and 16 clients. The benchmark runs for 120 seconds, and each client
starts at the same time. The recorded results of each client is combined to obtain
a result that includes all clients. When running benchmarks with multiple clients,
throughput can be measured with the server running at 100 % CPU utilization.
Moreover, we can observe how the adapters scale with multiple clients.

TCP-adapter

The TCP-adapter has an asynchronous client, a blocking server, and uses TCP as
the transport protocol. It uses a custom data serialization method that marshalls
a message into a byte array containing a fixed-length header and a variable-length
body. The header consists of a message type, a request tag, and the message length.
The body consists of the message, i.e., the payload in case of a request message.
The body also contains a GUTI and the payload in case of a response message. We
represent the payload as a byte array and the GUTI as a C struct.

We implement the client-side of the adapter with two threads: the main thread
from which the application sends a request to the server, and another thread for
reading responses from the TCP socket. A promise-future channel is generated for
the request. The promise is registered as the tag in the request header, and the
main thread holds on to the future. When the thread reading responses receives a
response, it identifies the promise from the tag and sets the promised value. Thus,
the main thread gets notified on a returned response.

The server implements a fixed-size pool of worker threads (thread pool) where each
worker thread handles a client connection exclusively, i.e., it is blocked while serving
a client. When the client connection is closed, the worker thread is unblocked and
returned to the thread pool. The main thread uses a listening socket to listen for

20

4. Methods

incoming client connections. An incoming client connection is accepted on a new
file descriptor, which the client hands to an available worker of the thread pool. If
there are no available workers, it hangs until a worker becomes available, i.e., the
size of the thread pool limits the number of concurrent client connections.

To optimize TCP performance, TCP_NODELAY option is set on the sockets, which
disables Nagle’s algorithm, whose purpose is to reduce the number of TCP packets.
In the case of the TCP-adapter, TCP_NODELAY makes sure that the requests and
responses are sent over the wire immediately, which potentially improves latency.

4.2 Choosing RPC Frameworks
We researched several different RPC frameworks to find suitable candidates for
the thesis. The first requirement was that the frameworks had to be suitable for
inter-service communication between microservices in a cloud-native environment.
Therefore we considered frameworks from the RPC frameworks listed on the Cloud-
Native Computing Foundation (CNCF) landscape, which lists several open-source
tools suitable for cloud-native applications. These frameworks are gRPC, Thrift,
Apache Avro, Tars, SOFARPC, and DUBBO.

Ultimately, we chose two RPC frameworks for the evaluation, gRPC, and Thrift. A
reason for choosing these two is that they are widely used, which means that there
exists a decent amount of documentation. These frameworks are also compatible
with several programming languages, unlike the other frameworks considered. Both
gRPC and Thrift are compatible with C++, which is widely used in the telecom in-
dustry. Furthermore, both of these frameworks include data serialization, backward
compatibility, and security through TLS.

4.3 Integration of frameworks
We integrated two different frameworks into the system described in subsection 4.1.3
with several different modes of operation per framework. This section describes how
we integrated Thrift and gRPC, which includes developing the clients and servers.

4.3.1 Adapters
Table 4.1 displays the different adapters and the names used to refer to them. There
are four synchronous and four asynchronous adapters. The asynchronous adapters
are tcp-as, grpc-as, grpc-asbi, and thrift-as. The synchronous adapters are
grpc-s, grpc-bi, thrift-nb and thrift-s.

grpc-bi and grpc-asbi are adapters with bidirectional streaming RPC, while all
other adapters are single-request adapters. Single-request mode is the trivial re-
quest/response protocol where the client makes a request and receives a response
from the server.

21

4. Methods

Abbreviation Adapter
grpc-s Synchronous single-request gRPC

grpc-as Asynchronous single-request gRPC
grpc-bi Synchronous bidirectional streaming gRPC

grpc-asbi Asynchronous bidirectional streaming gRPC
tcp-as TCP-adapter

thrift-s Synchronous Thrift
thrift-as Asynchronous Thrift
thrift-nb Synchronous Thrift with non-blocking IO on server

Table 4.1: Mapping of legend name and communication adapter.

4.3.2 gRPC
We integrated four different gRPC adapters. Two synchronous adapters, one of
which uses single-request RPC and the other uses bidirectional streaming RPC.
There are also two asynchronous adapters, one with single-request RPC, and one
with bidirectional streaming RPC.

Synchronous gRPC

The synchronous gRPC adapters are grpc-s and grpc-bi. Neither of these adapters
require much in terms of implementation to get them operational. Other than
implementing the Allocate function in the server stub, only the client and server’s
initialization are needed. For grpc-s, invoking the Allocate function invokes the
RPC call. In the case of grpc-bi, the Allocate function instead opens a stream
to the server and returns a stream object. The stream object is used to write
AllocateRequest to and read AllocateResponse messages from it.

Asynchronous gRPC

Implementing an asynchronous gRPC client or server is non-trivial compared to a
synchronous one. It requires much more logic put into the handling of an RPC
call. While gRPC provides an API for making asynchronous RPC calls, managing
the calls during their lifetime is not within the scope of gRPC, nor is the threading
model of the application.

We implement the clients of the asynchronous gRPC adapters with an event loop
that drives the progress of the RPC in the gRPC runtime by continuously reading
completion tags from the completion queue. A tag is a pointer to an object instance
that encapsulates the context of the actual RPC. The event loop is deployed in a
separate thread from the application. It communicates the receipt of a response to
the application thread using a promise-future channel accessible via the tag.

22

4. Methods

RPC #1 context

STATE st {INIT, PROCESS, FINISH}
Request rq;
Response rsp;
CompletionQueue CQ;
void Progress();

gRPC runtime
Application

Event loop

while(true){
 RPCcontext * tag;
 CQ->Next(&tag);
 tag->Progress();

}

(1)(2)

CQtagtag

(1)(2)

(1)(2)

Registered events Completed events

st == INIT
st == PROCESS

Figure 4.2: Event loop of the grpc-as’s server.

Progress()INIT Progress()PROCESS

Request to serve
an RPC

Serve the RPC and
send response

Self-deallocate

FINISH

Figure 4.3: Finite state machine of grpc-as’s server.

(2)(1)

(0) OnInit (1)

(2)
(3)

OnRead (3)OnWrite OnFinish

(0): RPC stream initated
(1): A request was read from the stream
(2): A response was written to the stream
(3): The last response was written to the stream

Figure 4.4: Callbacks of grpc-asbi’s server.

We also implemented the servers of the asynchronous gRPC with an event loop.
The adapter accepts incoming client connections and processes the incoming RPCs.
Each RPC is encapsulated in an RPC-context object containing context variables
and state. In the case of grpc-as, each RPC-context is a finite state machine
that the event loop progresses, as can be seen in Figure 4.2. The tag in the figure
is, in fact,a pointer to the instance of an RPC-context. The finite state machine
is detailed in Figure 4.3. The implementation of grpc-asbi is similar to that of
grpc-as. However, instead of a finite state machine, it operates solely based on
callback functions, which we detail in Figure 4.4.

Since the server is limited to one CPU core, the adapters are single-threaded. The
recommendation from the gRPC team for the best performance is to have one com-
pletion queue per thread and one thread per CPU core. Multiple threads per CPU
core would result in extra context switches, which are costly.

23

4. Methods

4.3.3 Thrift
Three different Thrift versions are implemented, two synchronous versions and one
asynchronous version.

Synchronous Thrift

We integrate two different synchronous servers into the system. The first syn-
chronous Thrift adapter, thrift-s, uses a TThreadedServer, which spawns a new
thread for each client. The other synchronous Thrift adapter, thrift-nb, uses a
TNonblockingServer with only one thread serving all incoming clients concurrently.
The synchronous adapters use the same client.

Asynchronous Thrift

The asynchronous Thrift adapter, thrift-as, uses a TEvhttpServer
and TEvhttpClientChannel, and promises and futures to asynchronously receive
data from the server after processing of an RPC call.

Client Server

AsyncClientChannel

AsyncChannel

sendAndRecvMessage

4

1 2 Allocate

3

Allocate

Callback

Figure 4.5: The asynchronous Thrift adapter.

As seen in Figure 4.5, the client’s call to Allocate passes through an TAsyncChannel
to the server (1). When the server has processed the RPC request, it sends a
response, again through the channel (2,3). Furthermore, the event loop triggers a
callback function on the client (4). In the callback function, the client calls on an
recv_Allocate function, which deserializes the RPC response.

24

5
Results

In this chapter, we present the results of a qualitative evaluation of gRPC and Thrift,
and the TCP-adapter, and the results of the evaluation of the RPC frameworks based
on the criteria and system detailed in section 4.1

5.1 Evaluation of qualitative properties of adapters
This section contains the results of the evaluation of gRPC and Thrift. We also
provide results of an evaluation of the TCP-adapter. The requirements surveyed are
features for obtaining high availability in a cloud-native environment, backward-
compatibility of the API, cross-language support, streaming RPC support, asyn-
chronous RPC calls, and secure communication using TLS. Moreover, this section
also presents the TCP-adapter’s and the frameworks’ compatibility with a cloud-
native setting. In addition, we also present an evaluation of the ease of development.
Further discussion regarding these results and a comparison between the frameworks
and the TCP-adapter are done in Chapter 6.

Table 5.1 summarizes what the two frameworks and the TCP-adapter offer from
the requirements set. We base these results on standard features, without any
modifications of, or additions to the framework. The signs corresponding to each
adapter and property aligns with how well the adapter fulfills the property. A
minus sign means that the adapter does not fulfill the property at all, while double
plus signs mean that it fulfills the property well. We provide more details of each
framework later in this section.

Requirements gRPC Thrift TCP-adapter
High availability ++ - -

Back-compatibility + + -
Cross-language support ++ ++ -

Bidirectional Streaming RPC + - -
Asynchronous RPC calls ++ + +

TLS ++ ++ -

Table 5.1: Fulfillment of requirements. Scale ++ > + > -.

25

5. Results

gRPC
Table 5.2 summarizes how gRPC fulfills the requirements set for the framework.

Requirements Features

High Availability Client-side load-balancing policies
Support for integrating health checking

Back-compatibility Add fields to Protobuf messages
Remove fields from Protobuf messages

Cross-language support Core implementation in C, Java and Go
Language-bindings for 10+ languages

Bidirectional Streaming RPC Yes, using HTTP/2 streams
Asynchronous RPC calls Asynchronous API

TLS Yes

Table 5.2: gRPC features.

gRPC has support for integrating health checking into the server and client-side and
load-balancing between multiple back-end servers to provide high-level features for
high availability. Load-balancing can be achieved via the DNS records received when
looking up the server name, or an external load-balancer can be used to provide the
client with a list of servers [19, 18]. Back-compatibility is provided not by gRPC but
Protocol Buffers, which gRPC uses by default. This enables compatibility between
old clients and new servers and vice versa when updating a message. There are some
restrictions on how a message can be updated, as detailed in Subsection 2.5.1.

The gRPC core is implemented in the languages C, Java, and Go, and there are
official bindings for ten additional languages built on top of a core implementation.
There are many other unofficial language bindings. An unofficial bindings’ language
also needs to have support in Protocol Buffers, unless using another serialization
protocol. As stated in Subsection 2.5.1, gRPC supports streaming RPC by the
use of HTTP/2 streams multiplexed over a single TCP connection. Streams can be
unidirectional or bidirectional. In the case of a unidirectional stream, the client sends
a single request, and the server responds with a stream of responses or vice versa
with the client streaming requests and the server responding with a single response.
In a bidirectional stream, either side can send as many messages as needed in any
order.

For asynchronous RPC, gRPC provides an asynchronous API that can build asyn-
chronous clients and servers. The API has the completion queue as a central con-
struct. An event loop is constructed by polling the completion queue for completed
operations. GRPC has built-in full support for secure communication using TLS.
Considering that gRPC is an incubating project at the CNCF whose primary focus
is to push the development of cloud-native software, one can assume that gRPC has
been implemented with cloud-native constructs in mind with a focus on more than
the single RPC protocol.

26

5. Results

Thrift
Table 5.3 summarizes how Thrift fulfills the requirements of the qualitative evalua-
tion.

Requirements Features
High availability None

Backward-compatibility Add fields to messages
Ignore unrecognized fields

Cross-language support Implementations in 28 languages
Bidirectional Streaming RPC None

Asynchronous RPC calls Yes, but limited
TLS Yes

Table 5.3: Thrift features.

Thrift is not explicitly adapted for running in a cloud-native environment. Moreover,
Thrift does not provide any features such as load-balancing or health checking.
Thrift does, however, offer backward-compatibility by allowing servers to read data
from clients with an older version than themselves, and vice versa. Furthermore,
to allow for backward-compatibility, empty or mismatched field identifiers can be
ignored.

Thrift is compatible with 28 programming languages, yet several features are only
available for certain languages [2]. For example, several languages, including C,
only supports TSimpleServer while most features are available for C++. Thrift
does currently not support streaming RPC for any language. Furthermore, Thrift
only offers limited support for asynchronous RPC requests with the TEvhttpServer,
TEvhttpClientChannel and TAsyncChannel. These features are not available for
all languages, however.

Furthermore, there is very little documentation on how to implement asynchronous
Thrift clients and servers. Moreover, the event loop used for asynchronous com-
munication in the client cannot run on a separate thread, which means that the
application and the event loop must run in the same thread. TLS is available and
easy to use for RPC clients and servers for many programming languages.

TCP-adapter
Table 5.4 summarizes the qualitative evaluation of the TCP-adapter. The TCP-
adapter is not built using a framework but is developed specifically for the appli-
cation use case; hence, it is missing all higher-level features sought after moving
towards a microservice architecture. The API and serialization scheme is hard-
coded into the adapter, and thus there are no guarantees that two different versions
would be compatible with one another. The adapter is implemented in just one
programming language, so there is no cross-language support either. Besides, the
GUTI is sent over the wire in the form of its C++ struct’s memory representation,
making it even less compatible for another programming language to parse.

27

5. Results

The client is by design, communicating asynchronously with the server. Bidirectional
streaming is not an available concept. The adapter only has a single request-response
scheme. The adapter does not provide any form of authentication or encryption
using TLS.

Requirements Features
High availability None

Back-compatibility None
Cross-language support None
Bidirectional Streaming None

Asynchronous communication Yes
TLS None

Table 5.4: TCP-adapter features.

5.2 Evaluation of quantitative properties of adapters
This section contains the results from a quantitative evaluation of the RPC frame-
works based on the assessment criteria detailed in subsection 4.1.2 and using the
system described in subsection 4.1.3. We present a summary of the results in Sub-
section 5.2.3

5.2.1 Single-client evaluation results
Figure 5.1 shows the adapters’ mean latency relative to that of tcp-as, at different
rates with zero payload. The reason for displaying the mean latency relative to that
of tcp-as is due to the implementation of rate-mode. For gRPC in general, the
streaming RPC adapters have lower latency than the single-request adapters, and
the asynchronous adapters have lower latency than their synchronous counterpart.

Figure 5.2 displays the mean latency for adapters when running benchmarks with
different payload sizes in no-rate mode. The white fogged areas are the mean network
latency, as measured by netperf at the beginning of each benchmark. The black
vertical segment at the top of each bar is the standard deviation for that adapter.
Figure 5.3 shows the tail latency of the adapters. The tail latency is the 99th
percentile of messages in terms of high latency.

28

5. Results

10 20 50 100 200 500 1000 No-rate
Request rate (requests/s)

0.8

1.0

1.2

1.4

1.6

GRPC-S
GRPC-AS

GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

Figure 5.1: Mean latency for rates in rate mode with 0 payload.

0 10 100 1k 10k 100k
Payload size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y

(m
s)

GRPC-S
mean network latency
GRPC-AS
GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S
THRIFT-AS
THRIFT-NB

Figure 5.2: Mean latency for payload sizes in no-rate mode.

0 10 100 1k 10k 100k
Payload size (Bytes)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ta
il

la
te

nc
y

(m
s)

GRPC-S
GRPC-AS
GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S
THRIFT-AS
THRIFT-NB

Figure 5.3: Tail latency for payload sizes in no-rate mode. 99th percentile.

29

5. Results

0 10 100 1k 10k 100k
Payload size (Bytes)

104

105

106

107

108

Th
ro

ug
hp

ut
 (B

yt
es

/s
ec

on
d)

GRPC-S
GRPC-AS

GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

(a) Throughput measured in Bytes per second.

0 10 100 1k 10k 100k
Payload size (Bytes)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (k

QP
S)

(b) Throughput measured in 103(k) QPS.

Figure 5.4: Throughput for different payload sizes in no-rate mode with a single
client, higher results are preferable.

Figures 5.4a and 5.4b display the throughput of different adapters measured in bytes
per second and QPS, respectively. Figure 5.4a uses a logarithmic scale. While Figure
5.4b shows a decrease with increased payload, Figure 5.4b shows that in terms of
bytes per second, throughput increases rather than decreases.

Figure 5.5 displays the CPU usage of the adapters. The adapters are run in no-rate
mode with all payload sizes. The CPU usage is that of the server process.

Figures 5.6a and 5.6b display the throughput divided by the CPU usage for different
adapters to take into account the resources utilized for the achieved throughput.

30

5. Results

0 10 100 1k 10k 100k
Payload size (Bytes)

0

10

20

30

40

50

CP
U

us
ag

e
(%

)

GRPC-S
GRPC-AS
GRPC-BI

GRPC-ASBI
TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

Figure 5.5: Mean CPU usage for payload sizes in no-rate mode.

0 10 100 1k 10k 100k
Payload size (Bytes)

103

104

105

106

107

TP
(B

/s
)/C

PU
(%

)

GRPC-S
GRPC-AS

GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

(a) Throughput measured in Bytes/s.

0 10 100 1k 10k 100k
Payload size (Bytes)

0

100

200

300

400

TP
(Q

PS
)/C

PU
(%

)

(b) Throughput measured in QPS.
Figure 5.6: Throughput/CPU usage for payload sizes in no-rate mode. Higher

results are preferable.

31

5. Results

5.2.2 Multi-client evaluation results
This section presents the results of evaluating adapters while running multiple
clients.

Figures 5.7, 5.8 and 5.9 present the mean and median latency of the adapters in
the multi-client evaluation with 0 B, 10 kB, and 100 kB payload sizes, respectively.
These graphs are box plots which show the distribution of data for the adapters.
The box stretches from Q1, the 25th percentile of latency results (bottom of the
box) to Q3, the 75th percentile (top of the box). The whiskers, the vertical lines
coming out of the box, stretches from Q1 − 1.5 ∗ (Q3 − Q1) from the bottom and
from Q3 + 1.5 ∗ (Q3 −Q1) from the top. The white line on the box plots mark the
median latency while the slightly transparent black line marks the mean latency. For
payload zero, some adapters have a very compact distribution of values of latency
such as tcp-as, which makes the box plots look completely flat.

As can be seen in Figures 5.7, 5.8 and 5.9, some adapters have significant differences
between mean and median latency. This corresponds to large amount of tail latency
for these adapters.

Figures 5.10a, 5.10b, and 5.10c display the throughput in QPS for multiple clients
with payloads 0 B, 10 kB and 100 kB respectively. Note that we do not plot the
throughput divided by the CPU usage for multiple clients. The reason for this is
that in general, when running benchmarks with multiple clients, the CPU usage is
at 100 %.

Figures 5.11a, 5.11b and 5.11c present the tail latency of the adapters in the multi-
client evaluation with 0, 10 and 100 kB payload respectively.

32

5. Results

2 4 6 8

0.2

0.4

0.6

0.8

GRPC-S
GRPC-AS

GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

10 12 14 16
Number of clients

0.5

1.0

1.5

La
te

nc
y

(m
s)

Figure 5.7: Mean latency with multiple concurrent clients, running 0 B payload.

2 4 6 8

0.5

1.0

1.5

GRPC-S
GRPC-AS

GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

10 12 14 16
Number of clients

0.5

1.0

1.5

2.0

2.5

3.0La
te

nc
y

(m
s)

Figure 5.8: Mean latency with multiple concurrent clients, running 10 kB
payload.

33

5. Results

2 4 6 8

2

4

6

GRPC-S
GRPC-AS

GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

10 12 14 16
Number of clients

2

4

6

8

10

12La
te

nc
y

(m
s)

Figure 5.9: Mean latency with multiple concurrent clients, running 100 kB
payload.

34

5. Results

2 4 6 8 10 12 14 16
Number of clients

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (k

QP
S)

GRPC-S
GRPC-AS

GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

(a) 0 B payload.

2 4 6 8 10 12 14 16
Number of clients

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (k

QP
S)

(b) 10 kB payload.

2 4 6 8 10 12 14 16
Number of clients

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (k

QP
S)

(c) 100 kB payload.

Figure 5.10: Throughput(QPS) with multiple clients and 0-100 kB payload in
no-rate mode. Higher results are preferable.

35

5. Results

2 4 6 8 10 12 14 16
Number of clients

0
2
4
6
8

10
12
14
16
18
20

Ta
il

la
te

nc
y

(m
s)

GRPC-S
GRPC-AS

GRPC-BI
GRPC-ASBI

TCP-AS
THRIFT-S

THRIFT-AS
THRIFT-NB

(a) 0 B payload.

2 4 6 8 10 12 14 16
Number of clients

0
2
4
6
8

10
12
14
16
18
20

Ta
il

la
te

nc
y

(m
s)

(b) 10 kB payload.

2 4 6 8 10 12 14 16
Number of clients

0
2
4
6
8

10
12
14
16
18
20

Ta
il

la
te

nc
y

(m
s)

(c) 100 kB payload.

Figure 5.11: 99th percentile tail latency with multiple concurrent clients,
running 0-100 kB payload in no-rate mode. Lower results are preferable.

36

5. Results

5.2.3 Summary of quantitative results

Table 5.5, 5.6 and 5.7 provide a summary of the quantitative results of mean latency,
tail latency and throughput. As can be seen from these tables, three adapters
constantly perform the best in these areas, tcp-as, thrift-nb, and grpc-asbi. In
general, we can see that tcp-as has a larger amount of tail latency with multiple
clients. It also seems like thrift-nb performs the best of the three adapters for
benchmarks with zero payload and many clients. grpc-asbi has the best results in
these categories for a payload of 10 kB.

Client/Payload 0 10k 100k
1 tcp-as thrift-nb thrift-nb

2 thrift-s tcp-as tcp-asthrift-nb

4 tcp-as tcp-as tcp-as
thrift-s

6 tcp-as thrift-nb tcp-as
8 tcp-as thrift-nb tcp-as

10 tcp-as thrift-nb tcp-asthrift-nb
12 thrift-nb thrift-nb thrift-nb
14 thrift-nb thrift-nb thrift-nb
16 thrift-nb thrift-nb thrift-nb

Table 5.5: Adapter with lowest mean latency for different amount of clients for
payloads 0 B, 10 kB and 100 kB.

Client/Payload 0 10k 100k

1 tcp-as tcp-as thrift-nbthrift-nb thrift-nb

2
tcp-as

thrift-s tcp-as tcp-as
thrift-nb

4 tcp-as tcp-as tcp-as
6 tcp-as grpc-asbi tcp-as
8 thrift-nb grpc-asbi thrift-nb
10 thrift-nb grpc-asbi thrift-nb
12 thrift-nb grpc-asbi thrift-nb
14 thrift-nb grpc-asbi thrift-nb
16 thrift-nb thrift-nb thrift-nb

Table 5.6: Adapter with lowest amount of tail latency for different amount of
clients for payloads 0 B, 10 kB and 100 kB.

37

5. Results

Client/Payload 0 10k 100k
1 tcp-as thrift-nb thrift-nb
2 thrift-nb tcp-as tcp-as
4 tcp-as tcp-as tcp-as
6 tcp-as thrift-nb tcp-as
8 tcp-as thrift-nb tcp-as
10 thrift-nb thrift-nb tcp-as
12 thrift-nb thrift-nb tcp-as
14 thrift-nb thrift-nb thrift-nb
16 thrift-nb thrift-as thrift-nb

Table 5.7: Adapter with highest throughput for different amount of clients for
payloads 0 B, 10 kB and 100 kB.

38

6
Discussion

This chapter contains an evaluation of the results gathered in this thesis. Section
6.1 discusses the results of the different gRPC adapters, while Section 6.2 compares
results for the Thrift adapters. Section 6.3 contains a comparison of the RPC
frameworks and the TCP-adapter. Section 6.4 consists of a comparison of Thrift
and gRPC based on the results presented in Chapter 5.

6.1 gRPC adapters
Among gRPC adapters, grpc-asbi has the lowest latency results overall. These
results hold for all different latency evaluations, with different amounts of clients,
payloads, and rates. grpc-asbi also has lower tail latency than the other gRPC-
adapters. grpc-s and grpc-bi show the best median latency with multiple clients.
However, they also show a significantly wider distribution and a higher mean latency,
probably due to the tail latency they both suffer from. Regarding throughput, grpc-
asbi and grpc-bi have the highest throughput of the gRPC-adapters. However,
grpc-as has better throughput than grpc-bi for multiple clients.

Regarding ease of development, all adapters provide an abstraction of all the net-
working and data serialization. The adapters grpc-s and grpc-bi are very easy to
use and require close to no additional logic to function. grpc-asbi and grpc-as
take the most effort to implement. The reason for this is that the threading model,
as well as an event loop for processing the RPCs, need to be implemented in the
adapter. However, for an advanced user, this allows for more fine-grained tuning
of performance and other aspects such as handling external blocking IO without
blocking the application. Comparing these adapters, the streaming one requires
some more implementation since the handling of a streaming RPC requires more
logic than that of a single-request RPC, as detailed in Section 4.3.

Considering that grpc-asbi outperforms its counterpart grpc-bi combined with
the strict requirements for performance in the 5GC, going the extra mile to imple-
ment the needed functionality for grpc-asbi, is deemed worth it, especially since
asynchronous RPCs are desirable. If streaming is unnecessary for a specific use case,
then grpc-as would be worthwhile to implement in the case of several clients. If
only one client were to be connected and asynchronous RPCs are not needed, then
grpc-s would do just fine, as compared to grpc-as.

39

6. Discussion

6.2 Thrift-adapters

The thrift adapters vary in transport protocol, threading as well as IO-model.
thrift-s and thrift-nb have a very similar mean latency up until about six clients
across all payloads. After six clients, thrift-nb performs the best across the board.
thrift-nb shows the lowest CPU usage, the best mean and tail latency, and the
highest throughput. The reason why thrift-nb performs better than thrift-as
could be that the latter uses HTTP. HTTP probably induces more overhead to the
RPC in terms of transport and processing to pack and unpack the request and re-
sponse. Moreover, the uncertain performance of libevent’s evhttp interface for
constructing and parsing HTTP requests and responses is another factor that might
affect thrift-as.

thrift-s uses the same client as thrift-nb, so the differences in performance
between them are due to the server. Both adapters use TFramedTransport and the
same TProcessor. However thrift-nb uses libevent to handle the IO, which in
turn uses event poll (epoll) for efficient event notification. thrift-s uses regular
blocking read and write syscalls on the client connection socket. While thrift-nb
is not built with the use case of a single client connection in mind, it interestingly,
still performs very similar to thrift-s, which, with its simplistic design we thought
would excel at low amounts of concurrent clients. However, as the number of clients
increases, the efficiency and consistency of thrift-nb become clear. thrift-s
displays a low median latency; however, the tail latency is quite severe. If the server
would be allowed to use as many cores as clients connected, then the thrift-s
would be able to process the clients in parallel, increasing efficiency at the cost
of CPU. However, in a cloud-native setting, horizontal scaling would be preferred
over vertical. With thrift-nb, the optimal performance is theoretically obtained
with as many processing threads as cores available. So in our case, an increasing
number of threads would not result in improved performance as we only have one
core available to the server.

Secure communication using TLS is available for thrift-nb and thrift-s; however,
not for thrift-as.

Concerning ease of development, the framework severely lacks documentation on
how to use it practically. Much time is necessary to understand how to initiate a
client and server and how to tweak it for certain use cases. Often, the only way
is to dig into the source code. Once a client and server are up and running, using
them are easy, and they abstract all underlying data serialization and networking for
the developer. The hardest adapter to use is thrift-as, as the developer needs to
provide and run the client in an event loop using libevent’s event_base_loop and
provide a callback function with each RPC call. Moreover, the TEvhttpClient does
not allow the event loop to run in a thread separate from the thread that the RPC is
from, typically the application’s main thread, as doing this causes synchronization
problems in the TEvhttpClient. I.e. the TEvhttpClient is not thread-safe.

With the performance that thrift-nb show in comparison to thrift-as, it would

40

6. Discussion

be the preferred adapter. However, as it does not support asynchronous RPC invo-
cations, it would not suit all use cases, and thus thrift-as would be needed.

6.3 Comparison of RPC frameworks and TCP-
adapter

Looking at the summary of results in Subsection 5.2.3, the TCP-adapter has the
best results for several of the evaluation categories, and stands out in mean latency
and throughput, while not showing as good results in tail latency.

Before performing the quantitative evaluation, it seemed probable that the TCP-
adapter would perform best since all other adapters have TCP as transport protocol,
but with added overhead, meaning that the purest form of TCP is probably the most
efficient. However, this theory seems to be untrue, and it seems like the overhead
is not always enough to give TCP an advantage. Instead, using features such as
HTTP/2 streaming, or non-blocking server features, seems to compensate in many
cases.

When looking at the qualitative evaluation, it is clear the TCP-adapter cannot
compete with gRPC. While TCP is available for almost any programming language,
TCP has no built-in mechanisms for high availability or backward compatibility.
Furthermore, TLS is not a built-in feature for TCP sockets as they are for gRPC
and Thrift, so a lot more effort is required to integrate them.

To conclude, we judge that RPC seems to be a better option than using the TCP-
adapter for the use case investigated in this thesis.

6.4 Comparison of Thrift and gRPC
This section contains a comparison of Thrift and RPC based on the results in Chap-
ter 5.

6.4.1 Comparison of quantitative results
The most essential criteria of this evaluation is low latency. In this regard, the Thrift-
adapters outperform the gRPC adapters in every evaluation. The synchronous
Thrift adapters, thrift-s, and thrift-nb perform the best of all adapters except
the TCP-adapter when comparing mean latency for different payloads for single
clients. We see similar results when evaluating multiple clients at a time. An excep-
tion to these results is for payload 100 kB when the gRPC asynchronous and Thrift
synchronous adapters perform very similarly. This result may be because gRPC’s
overhead from using HTTP/2 becomes negligible at large payloads. When compar-
ing results in rate-mode, we can see similar results, where thrift-s and thrift-nb
have the lowest mean latency of the RPC-adapters.

Until a payload of 1 kB, results are very similar for tail latency for single-client

41

6. Discussion

evaluation with different payloads. grpc-s and grpc-as have slightly higher tail
latency, while tcp-as and thrift-nb have the lowest tail latency. Tail latency for
both grpc-as and thrift-as increases slightly more than the other adapters for
higher payloads.

grpc-asbi, thrift-as and thrift-nb have the lowest CPU usage of all RPC
adapters in the evaluation. Furthermore, the CPU usages are entirely consistent
until 100 kB payload, for which the Thrift adapters seem to be affected the most by
the increased payload.

Looking at throughput/CPU usage for single clients, thrift-nb, thrift-s, and
grpc-asbi are the adapters with the lowest CPU usage, and have very similar
results. Comparing throughput through CPU usage however, thrift-nb sticks out
from the rest of the RPC adapters as having the best results.

Throughput increases a lot when utilizing four clients instead of two for all adapters
except for grpc-s, grpc-as, and grpc-bi. Looking at these results, it seems like
Thrift, in general, handles multiple clients better, and therefore potentially scales
better than gRPC.

When only comparing asynchronous frameworks, the differences between gRPC and
Thrift are not as substantial. For example, when comparing mean latency for clients
in no-rate mode, thrift-as is about on par with the asynchronous gRPC adapters
and performs worse than grpc-asbi in some cases. Since only the synchronous
Thrift adapters stand out in performance, Thrift is probably only preferable for
use cases where synchronous, non-streaming communication is appropriate. The
reason for this could be the use of HTTP protocols in all of the asynchronous RPC
frameworks. While HTTP/2 brings features such as multiplexed streaming, the
added overhead from HTTP and HTTP/2 seems to increase latency and reduce
performance in general.

With multiple clients, there is a clear distinction as to which adapters handle mul-
tiple clients better than the others. At 10 kB payload, grpc-s, grpc-bi, tcp-as
and thrift-s manage tail latency very poorly, having a tail latency of highest mea-
surable value 20 ms. grpc-s and grpc-bi have this tail latency already at six
clients, while thrift-s and tcp-as show it at 10 and 12 clients. The common
denominator between these four adapters is that they require one thread per client
connection, which results in many thread switches that impact the performance. The
other group of adapters, those that perform well while handling multiple clients, are
grpc-asbi, grpc-as, and thrift-nb. Their common denominator is that they
all use an IO event notification scheme based on asynchronously watching several
client connections simultaneously. This means that a thread avoids being blocked
on one client connection but can serve multiple client connections per thread, reduc-
ing the number of thread switches and thus increases performance in a use case of
many times more clients than CPU cores. The main costs are increased complexity
of implementation and that an extended processing time of a request would block
incoming requests.

42

6. Discussion

6.4.2 Comparison of qualitative results
When considering the qualitative evaluation, gRPC is superior in most aspects.
Unlike Thrift, it has several features which ensure high availability, as described in
Section 5. Furthermore, gRPC fully supports streaming, which is nonexistent in
Thrift. Moreover, while Thrift technically supports asynchronous communication,
it is not as simple to implement as in gRPC due to the almost nonexistent docu-
mentation on the area. Furthermore, the developer has much more freedom when
implementing asynchronous communication for gRPC rather than Thrift. Moreover,
TLS is not available for asynchronous communication in Thrift.

One main difference between Thrift and gRPC is that, while Thrift is twice as old as
gRPC, gRPC is adopted on a larger scale than Thrift, and has a broader community
of developers. The CNCF landscape lists over 500 contributors for gRPC, while
approximately 300 are listed for Thrift. This might be because gRPC supports more
features than Thrift. Moreover, Thrift updates are few and far between, around two
each year. gRPC, is updated more often than every second month according to their
release schedule [17].

The only feature of Thrift that stands out is cross-language support, as Thrift cur-
rently supports 28 languages, and gRPC officially supports only 11. Due to the
frequent updating of gRPC, together with a larger adoption rate, this will likely
change in the future. If integrating Thrift rather than gRPC, one might have to
write more thorough documentation. Furthermore, streaming would need to be
added somehow. Even though Thrift outperforms gRPC, at present and in the
foreseeable future, it is probably better to instead integrate gRPC for this particu-
lar use case of inter-service communication in a 5G environment. Especially since
gRPC is being updated regularly, and new benchmarks are performed often, mean-
ing that performance is a critical property for gRPC, and will probably improve in
the future [21]. To conclude, when integrating an RPC framework as inter-service
communication in 5GC NFs, we judge that is that it is probably more beneficial to
integrate gRPC than Thrift.

43

6. Discussion

44

7
Concluding remarks

This chapter consists of a conclusion in Section 7.1 and future work in Section 7.2

7.1 Conclusion
This thesis aims to investigate whether RPC frameworks are suitable as inter-service
communication in 5GC NFs. This evaluation was necessary due to the high demands
on, for example, latency in 5G, coupled with a wish of making development more
manageable by using third-party frameworks.

We have evaluated gRPC and Thrift by implementing several adapters using differ-
ent frameworks and modes. We have evaluated these adapters quantitatively and
qualitatively. The quantitative evaluation consisted of benchmarks, while the qual-
itative evaluation consisted of comparing the adapters against each other based on
a set of properties deemed essential for the use case.

We can see from our results that the RPC frameworks, in general, have slightly
worse results in terms of mean latency, tail latency, and throughput than a TCP-
adapter. The results also point towards Thrift-frameworks performing better than
gRPC frameworks in the quantitative evaluation. When considering only qualitative
properties, however, gRPC is superior. Not only does gRPC provide many useful
features such as support for bidirectional streaming RPC, but it also comes with
excellent documentation and a large community.

Considering all results and the context of the thesis, we believe that RPC frameworks
seem to be suitable for use as inter-service communication in a 5GC NF, and gRPC
specifically, seems to be a preferable RPC framework in its current state.

7.2 Future work
This thesis provides an evaluation of only two RPC frameworks due to time limi-
tations. Potential future research could include more frameworks to evaluate and
compare. One particular framework that could be interesting to research is the Face-
book branch of Thrift [6]. This framework is built on regular Thrift, but has further
support for asynchronous communication, among other features. Furthermore, new

45

7. Concluding remarks

RPC frameworks could be developed with this specific use case to properly fulfill the
requirements presented in this thesis. Moreover, it could be interesting to further
develop the TCP adapter so that it has all the requested features. This comparison
would probably be on more fairgrounds.

Another aspect to consider could be to try to increase the performance of gRPC
and Thrift by changing the source code to accommodate this particular use case.
Another change in the integration of the frameworks could be to increase security
by adding mutual authentication through TLS.

To further evaluate the gRPC and Thrift, one could run additional benchmarks.
As discussed in 6, the difference in performance between TCP and the synchronous
Thrift adapters, and the gRPC adapters and asynchronous Thrift, could be caused
by the use of HTTP in the latter adapters. Therefore, it could be interesting to
run benchmarks with HTTP to measure the overhead of HTTP. Other types of
evaluation that could be interesting are more evaluation on the usage of TLS and
investigate how the use of authentication through TLS affects the frameworks dif-
ferently.

46

Bibliography

[1] Apache thrift. https://thrift.apache.org/. Accessed: 2020-03-26.

[2] Apache thrift language support. http://thrift.apache.org/docs/
Languages. Accessed: 2020-06-10.

[3] Cloud native design for telecom applications. https://www.ericsson.com/
assets/local/digital-services/doc/2101_cloud-native-design-pa4.
pdf. Accessed: 2020-06-16.

[4] Cncf cloud native definition v1.0. https://github.com/cncf/toc/blob/
master/DEFINITION.md. Accessed: 2020-06-16.

[5] Docker. https://docker.com/. Accessed: 2020-03-26.

[6] fbthrift. https://github.com/facebook/fbthrift. Accessed: 2020-06-09.

[7] Kubernetes. https://kubernetes.io/. Accessed: 2020-03-26.

[8] Pods. https://kubernetes.io/docs/concepts/workloads/pods/pod/. Ac-
cessed: 2020-03-26.

[9] This is 5g. https://www.ericsson.com/4a3114/assets/local/newsroom/
media-kits/5g/doc/ericsson_this-is-5g_pdf_v4.pdf. Accessed: 2020-05-
18.

[10] Randy Abernethy. Programmer’s Guide to Apache Thrift. Manning Publica-
tions, 2019. Accessed: 2020-07-1.

[11] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Trans. Comput. Syst., 2(1):39–59, February 1984. Accessed: 2020-07-1.

[12] Tulja Vamshi Kiran Buyakar, Harsh Agarwal, Bheemarjuna Reddy Tamma,
et al. Prototyping and load balancing the service based architecture of 5g
core using nfv. In 2019 IEEE Conference on Network Softwarization (NetSoft),
pages 228–232. IEEE, 2019. Accessed: 2020-07-1.

[13] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yester-
day, Today, and Tomorrow, pages 195–216. Springer International Publishing,

47

https://thrift.apache.org/
http://thrift.apache.org/docs/Languages
http://thrift.apache.org/docs/Languages
https://www.ericsson.com/assets/local/digital-services/doc/2101_cloud-native-design-pa4.pdf
https://www.ericsson.com/assets/local/digital-services/doc/2101_cloud-native-design-pa4.pdf
https://www.ericsson.com/assets/local/digital-services/doc/2101_cloud-native-design-pa4.pdf
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://docker.com/
https://github.com/facebook/fbthrift
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://www.ericsson.com/4a3114/assets/local/newsroom/media-kits/5g/doc/ericsson_this-is-5g_pdf_v4.pdf
https://www.ericsson.com/4a3114/assets/local/newsroom/media-kits/5g/doc/ericsson_this-is-5g_pdf_v4.pdf

Bibliography

Cham, 2017. Accessed: 2020-07-1.

[14] Y. Gan and C. Delimitrou. The architectural implications of cloud microser-
vices. IEEE Computer Architecture Letters, 17(2):155–158, 2018.

[15] gRPC contributors. Faq. https://grpc.io/faq/. Accessed: 2020-06-17.

[16] gRPC contributors. Grpc. https://grpc.io/. Accessed: 2020-03-11.

[17] gRPC contributors. grpc release schedule. https://github.com/grpc/grpc/
blob/master/doc/grpc_release_schedule.md. Accessed: 2020-06-22.

[18] gRPC contributors. Grpc health checking protocol. https://github.com/
grpc/grpc/blob/master/doc/health-checking.md, 2019. Accessed: 2020-
05-29.

[19] gRPC contributors. Load balancing in grpc. https://github.com/grpc/grpc/
blob/master/doc/load-balancing.md, 2019. Accessed: 2020-05-29.

[20] Hassan Hawilo, Manar Jammal, and Abdallah Shami. Exploring microservices
as the architecture of choice for network function virtualization platforms. IEEE
Network, 33(2):202–210, 2019.

[21] K. Indrasiri and D. Kuruppu. gRPC: Up and Running: Building Cloud Native
Applications with Go and Java for Docker and Kubernetes. O’Reilly Media,
2020. Accessed: 2020-07-1.

[22] James Kempf, Bengt Johansson, Sten Pettersson, Harald Lüning, and Tord
Nilsson. Moving the mobile evolved packet core to the cloud. In 2012 IEEE 8th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 784–791. IEEE, 2012. Accessed: 2020-07-1.

[23] David S Linthicum. Cloud-native applications and cloud migration: The good,
the bad, and the points between. IEEE Cloud Computing, 4(5):12–14, 2017.
Accessed: 2020-07-1.

[24] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. SIGPLAN Not., 23(7):260–267, June
1988. Accessed: 2020-07-1.

[25] J. Lu, L. Xiao, Z. Tian, M. Zhao, and W. Wang. 5g enhanced service-based
core design. In 2019 28th Wireless and Optical Communications Conference
(WOCC), pages 1–5, 2019.

[26] C. Manso, R. Vilalta, R. Casellas, R. Martínez, and R. Muñoz. Cloud-native
sdn controller based on micro-services for transport networks. In 2020 6th IEEE
Conference on Network Softwarization (NetSoft), pages 365–367, 2020.

[27] Bruce Jay Nelson. Remote procedure call. 1981. Accessed: 2020-07-1.

[28] Sam Newman. Building microservices: designing fine-grained systems. "

48

https://grpc.io/faq/
https://grpc.io/
https://github.com/grpc/grpc/blob/master/doc/grpc_release_schedule.md
https://github.com/grpc/grpc/blob/master/doc/grpc_release_schedule.md
https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://github.com/grpc/grpc/blob/master/doc/load-balancing.md
https://github.com/grpc/grpc/blob/master/doc/load-balancing.md

Bibliography

O’Reilly Media, Inc.", 2015. Accessed: 2020-07-1.

[29] Thuy Nguyen et al. Benchmarking performance of data serialization and rpc
frameworks in microservices architecture: grpc vs. apache thrift vs. apache avro,
2016. Accessed: 2020-07-1.

[30] Van-Giang Nguyen, Anna Brunstrom, Karl-Johan Grinnemo, and Javid Taheri.
Sdn/nfv-based mobile packet core network architectures: A survey. IEEE Com-
munications Surveys & Tutorials, 19(3):1567–1602, 2017. Accessed: 2020-07-1.

[31] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable cross-
language services implementation. Facebook White Paper, 5(8), 2007. Accessed:
2020-07-1.

[32] R. Thurlow. Rpc: Remote procedure call protocol specification version 2. RFC
5531, RFC Editor, 05 2009. Accessed: 2020-07-1.

[33] 3GPP TS 23.501 v16.3.0. 3rd generation partnership project; technical speci-
fication group services and system aspects; system architecture for the 5g sys-
tem (5gs); stage 2 (release 16). Technical report, 3rd Generation Partnership
Project, 2019. Accessed: 2020-07-1.

[34] Cheng Zhang, Xiangming Wen, Luhan Wang, Zhaoming Lu, and Lu Ma. Per-
formance evaluation of candidate protocol stack for service-based interfaces in
5g core network. In 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), pages 1–6. IEEE, 2018. Accessed: 2020-07-1.

49

Bibliography

50

	List of Figures
	Acronyms
	Introduction
	Problem description
	Novelty
	Limitations
	Research questions
	Organization of the thesis

	Background
	5GC
	Cloud-Native Applications
	Microservices

	Asynchronous Function Calls
	RPC
	RPC Frameworks
	gRPC
	Apache Thrift

	Related Work
	Methods
	Assessment Criteria and System Model
	Assessment Criteria for Qualitative evaluation
	Assessment Criteria for Quantitative Evaluation
	System Model

	Choosing RPC Frameworks
	Integration of frameworks
	Adapters
	gRPC
	Thrift

	Results
	Evaluation of qualitative properties of adapters
	Evaluation of quantitative properties of adapters
	Single-client evaluation results
	Multi-client evaluation results
	Summary of quantitative results

	Discussion
	gRPC adapters
	Thrift-adapters
	Comparison of RPC frameworks and TCP-adapter
	Comparison of Thrift and gRPC
	Comparison of quantitative results
	Comparison of qualitative results

	Concluding remarks
	Conclusion
	Future work

	Bibliography

