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Spatial Modeling of Formation of Gel
A simulation study to investigate aggregation dynamics of colloidal silica
Jakob Antonsson
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Understanding and predicting colloidal interaction is important in a variety of
applications. In this study, we investigate aggregation dynamics of colloidal sil-
ica by generating simulated structures and comparing them to experimental data
gathered through scanning transmission electroscopy (STEM). More specifically,
diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggrega-
tion (RLCA) models with different functions for the probability of particles sticking
upon contact were used. Aside from using a constant sticking probability, the stick-
ing probability was allowed to depend on the masses of the colliding clusters and
on the number of particles close to the collision. It was found that in comparison
to using a constant sticking probability, both the mass-dependent and neighbor-
dependent sticking probability improved the goodness-of-fit of spatial summary
statistics when the simulated data were compared to the experimental data. The
models were also compared based on fractal dimensions. Both in terms of goodness-
of-fit for the summary statistics and the fractal dimension, the structures generated
with a neighbor-dependent sticking probability were the most similar to the ex-
perimental data. This model was further analyzed by conducting global envelope
tests based on the spatial summary statistics. The tests showed that although the
summary statistics are similar for the simulated and experimental structures, there
are also systematic deviations. Structures generated with the same model were also
compared with the STEM data by simulating flow and diffusion. From this analy-
sis, it was seen that the permeability and the geometry factor of the simulated and
experimental structures were relatively similar.
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1
Introduction

The study of colloidal interaction is relevant in many applications areas, such as food
processing, battery science and pharmacology. For instance, prediction of colloidal
aggregation is often important in target drug delivery systems [1]. In this project,
different 3D models for aggregation of silica nanoparticles are investigated by com-
paring simulated post-aggregated structures with data from experiments. Colloidal
silicas are suspensions of typically nearly spherical silica nanoparticles in a liquid
phase, and such a suspension can turn into a gel through aggregation of the silica
particles. Silica gels are of great use for studying colloidal aggregation since various
structures can be obtained.

In Häbel et al. (2019), silica particle aggregation was studied in 3D by comparing an
experimentally obtained aggregate to simulated structures [1]. The aggregation was
simulated using diffusion-limited cluster aggregation (DLCA) and reaction-limited
cluster aggregation (RLCA) models. In DLCA and RLCA, particles follow Brow-
nian motion, but the models differ in the probability of particles aggregating upon
collision. To analyze the models, Häbel et al. looked at the goodness-of-fit of spa-
tial summary functions. In their simulations, all primary particles had a diameter
of 20 nm, but they noticed variations in the diameter in the experimental gel struc-
ture. Lovisa Köllerström followed up on this in her Master Thesis (2020) [2] and
performed simulations with particles of different sizes. This led to an improvement
in the goodness-of-fit of the summary statistics, but there is still interest in further
development.

This thesis investigates different functions for the probability of particles and clus-
ters sticking upon contact. This will be referred to as the sticking probability. More
specifically, models involving the mass of the clusters and interaction with multiple
particles at the collision site are tested. The comparison of simulated structures and
data from experiments consists of comparing the structural resemblance through
spatial summary statistics, fractal scaling, and mass transport properties.
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2
Colloidal Silica and Experimental

Data

In this chapter, some main characteristics of silica hydrogels and how they are formed
are presented. Furthermore, the experiment conducted to gather the data used in
this study is briefly laid out along with some properties of the data set.

2.1 Silica hydrogel
A gel is a semi-solid material composed of microscopic subunits, for instance, nanopar-
ticles, which bind to each other and form a continuous network in a liquid medium.
The nanoparticles comprising the network are sometimes also called primary parti-
cles. Two main types of gels are physical and chemical gels, in which the internal
network is held together by physical forces and chemical bonds, respectively. In
the case of amorphous silicon dioxide (SiO2), the silica nanoparticles are bound to
each other through covalent bonds. Therefore, it is a type of chemical gel. If the
nanoparticles are not bound to each other but are merely suspended in a solvent,
we call it a sol. It is important to distinguish this from a solution where the parti-
cles dissolve into single molecules/ions in the solvent [3]. The surface of amorphous
silica is the silanol group (≡ Si − OH) and siloxane group (≡ SiO2). However,
the silanol group is not very important for the surface characteristics discussed in
this thesis since they are chemically inactive in most industrially produced silica
sols [3]. The silanol group can become negatively charged through the reaction
SiOH⇔ SiO− + H+ for pH in the range from the point of zero charge (PZC) to 12.
The PZC is the pH at which the net surface charge equals 0. This kind of deproto-
nation will lead to silica nanoparticles carrying a negative surface charge since the
charge can become stabilized through hydrogen bonds between neighboring groups.
For most industrially produced silica sols, this is the main factor of stabilization
when pH is above the PZC, since the electromagnetic repulsion between silica par-
ticles hinders aggregation.

In order to induce aggregation in silica, the most common method in industry is
to add cations to the sol. The cations are attracted to the silica particles’ negative
surfaces and reduce the surface charge. Consequently, the repulsive electromagnetic
forces are diminished, and at a critical concentration of ions, the formation of a
silica hydrogel starts. The time it takes for the gel to form can be controlled by the
concentration of ions in the solvent, where a higher concentration gives rise to less

3



2. Colloidal Silica and Experimental Data

repulsion between the particles and a quicker gel time.

2.2 Experimental data
No physical experiments were carried out as a part of this thesis; however, the simu-
lated silica hydrogels were compared to data consisting of positions of the centroids
of silica particles in an experimentally created silica hydrogel. The data had already
been imaged, preprocessed, and analyzed in earlier studies. This section contains
a brief description of the experiments to understand the data that has been used.
More detailed explanations of the experiments and the estimation of the particle
centroids can be found in Hamngren Blomqvist (2016) [4].

The gel was created from a colloidal silica sol (Bindzil 40/130), provided by Ak-
zoNobel, with a 42.3 wt% silica concentration. The suspension’s pH was lowered
by adding NaCl and using ion exchange pearls that were removed after use with
suction filtration. Ultra-pure deionized water and NaCl was added to the filtered
sol resulting in a 9 wt% concentration of silica. The NaCl concentration was then
adjusted to 0.5 M and the pH to 7.8 before the mixture was vortexed and left to gel
for one day.

After the gelation had finished, a sample of an inner part of the gel was extracted
and cut into thin slices between 70 and 300 nm thick. These slices were then im-
aged using high angle annular dark field (HAADF) scanning transmission electron
microscopy (STEM). By using tools from image analysis, a binary image separat-
ing particles and void was generated. The particle centroids were estimated from
this image by using a maximum-likelihood approach. In the sample that has been
studied in this project, 1699 particles were found in an observational window of size
740 × 1075 × 100 nm3. A geometrical representation of the data can be found in
figure 2.1.

Figure 2.1: Geometrical representation of the experimental data where all particles
have been assumed to have a diameter of 21 nm.

4



3
Cluster aggregation models

In the following sections, the models used to simulate particle aggregation are in-
troduced.

3.1 Brownian motion and diffusion
Industrially produced silica sols often contain particles smaller than 100 nm. The
main movement of such particles can be modeled as a random walk behaviour driven
by thermal energy in the system [3]. The motion of particles can be assumed to fol-
low Brownian motion or a Wiener process {W (t)}t≥0. A one-dimensional Wiener
process W is a stochastic process that fulfills the following conditions [5]:

• W (0) = 0.

• The process W has stationary and independent increments, i.e. if
r < s ≤ t < u thenW (u)−W (t) andW (s)−W (r) are independent stochastic
variables.

• For s < t the stochastic variable W (t)−W (s) has normal distribution
N [0, σ2(t− s)].

• W has continuous trajectories.

In a multidimensional setting, we define a standard d-dimensional Weiner process
as a vector-valued stochastic process

W (t) = [W (1)(t),W (2)(t), . . . ,W (d)(t)] (3.1)

where the components are independent standard one-dimensional Wiener processes.

The Wiener process gives us a microscopic description of how a single particle moves
under diffusion. A macroscopic representation is instead given by the diffusion equa-
tion [6]. Let us consider a monodisperse system where all particles have the same
diffusion coefficient, and the surrounding medium is homogeneous. The diffusion
equation is a partial differential equation (PDE) of the form:

∂ϕ(x, t)
∂t

= D∇2ϕ(x, t) (3.2)

5



3. Cluster aggregation models

and describes how the concentration ϕ(x, t) which depends on location x ∈ R3 and
time t ∈ [0,∞) changes with respect to time. The coefficient D > 0 is called the
diffusion coefficient, and ∇2 is the Laplace operator. If we solve equation 3.2 for a
total of n particles which are all located at the origin at t = 0 we get the unique
solution

ϕ0(x, t) = n√
4πDt

exp (− x2

4Dt).

(3.3)

Hence, the concentration of particles is a gaussian function around the initial po-
sitions of the particles with variance proportional to the time passed. There is a
natural connection between this representation and that of the Weiner process since
the transition probability

P (W (t) ∈ dx|W (0) = 0) = 1
n
ϕ0(x, t) (3.4)

for a Wiener process with σ = 2D.

3.2 DLVO theory and Smoluchowski coagulation
equation

The physicochemical forces during the aggregation of silica are complex. As a conse-
quence, simplified models have been proposed. Among the more prominent models
is the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, in which the interaction
between particles is assumed to only consist of electrostatic repulsion and London-
van der Waals attraction [7]. The London-van der Waals interaction energy is given
by

Vatt = − A12H(d, r) (3.5)

where A is the Hamaker constant and H(d, r) is the Hamaker function dependent
on the interparticle distance and particle radius. The Hamaker constant of silica
is smaller than what is typical for other electrostatic colloidal oxides such as tita-
nium dioxide TiO2. For instance, the Hamaker constant of silica has been found to
be about 35 times smaller than that of TiO2 for particles of the same size. Con-
sequently, the attraction energy is not as strongly dominated by the London-van
der Waals interaction in the case of silica. Experiments have shown that other
short-range forces, known as structural forces, play an important role in the in-
teraction process [8]. In addition, the DLVO theory only considers the interaction
between pairs of single particles and not clusters [7]. It has therefore been difficult
to satisfactorily explain the behaviour of colloidal silica using only the DLVO theory.

An earlier and more general attempt at modeling aggregation kinetics was developed
by Smolushowski and describes how the distribution of cluster masses develops in

6



3. Cluster aggregation models

time [9]. In the case when the masses of the aggregates are continuous variables,
the number of clusters n(m, t) with mass m at time t evolves as

∂n(m, t)
∂t

= 1
2

∫ m

0
K(x,m− x)n(x, t)n(m− x, t) dx−

∫ m

0
K(m,x)n(m, t)n(x, t) dx.

(3.6)
An important part of the model is the coagulation kernel K(m1,m2) which describe
the rate at which clusters of mass m1 and m2 form clusters of mass m1 + m2. For
certain functional forms of the coagulation kernel, the Smoluchowski coagulation
equation can be solved analytically for the DLCA and RLCA models presented
below. The Smoluchowski coagulation equation has not been used directly in this
project; however, studies investigating the development of cluster masses for DLCA
and RLCA models will be relevant for discussing our results.

3.3 DLCA and RLCA models
In both diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster ag-
gregation (RLCA) models, the particles are assumed to follow Brownian motion due
to diffusion. The Brownian particles only interact with one another upon collision,
at which they have some probability of sticking together. In DLCA, all collisions
lead to the particles sticking together and diffusing as a cluster, whereas in RLCA,
the sticking probability is smaller than 1.

The DLCA regime corresponds to a scenario where repulsive mechanisms between
clusters can be neglected. Since the main reason for the repulsion between clusters is
electromagnetic repulsion, this model has been considered more applicable in cases
when the concentration of ions is high in the surrounding solvent [3]. Reversely,
when the ionic concentration is low, aggregates will be formed to reduce the surface
energy by having fewer surface groups. This gives rise to more compact clusters,
which is the case for RLCA models since particles can penetrate deeper into clusters
before sticking to them.

Clusters formed through DLCA and RLCA have been found to have fractal proper-
ties. One consequence of this fractal morphology is that the mass of an aggregate
mcl scales with the radius of gyration Rg according to

mcl ∝ RDf
g (3.7)

where Df is the mass fractal dimension, which will be referred to as simply the
fractal dimension from this point onward. The fractal dimension Df is often used as
a fundamental description of the morphology of an aggregate. It provides a quan-
titative measure of the degree to which a structure fills the physical space [10]. In
three-dimensional Euclidean space, the values of Df can range from 1-3. A fractal
dimension of 1 corresponds to a line, 2 to a plane and 3 to a cube.

As mentioned earlier, structures formed through RLCA will, in general, be denser
compared to DLCA, and as a consequence, the fractal dimension is higher for RLCA

7



3. Cluster aggregation models

than DLCA. In three dimensions, the values of the fractal dimensions have been
found to typically vary between 1.7− 1.8 for DLCA and 1.9− 2.1 for RLCA. How-
ever, the fractal dimension also depends on the concentration and the sizes of the
primary particles [11].

The mobility of a cluster in DLCA and RLCA simulations depends on its mass.
In particular, the diffusion coefficient Dcl of a cluster with mass mcl is given by

Dcl = Cmγ
cl (3.8)

where C is a constant and γ accounts for effects from cluster geometry [12]. In the
case of a cluster in a fluid, one expects that γ ' −1/Df , since the mobility of a
cluster in a fluid is inversely proportional to its hydrodynamic radius, which for an
aggregate of fractal dimension Df is close to its linear extension.

3.4 Distribution of particle diameter
In previous work by Häbel et al. (2019), the particle diameter was kept constant
at 20 nm in the simulations, whereas in Köllerström (2020), the particles sizes were
generated from different distributions that had been fitted to the nearest neighbor
distances in the experimental data [1], [2]. This approach was used in this work
as well; however, in Häbel et al. (2019) and Köllerström (2020), particles were
generated until a volume fraction of 5.96 % was reached. A 5.96 % volume fraction
corresponds to a weight percentage of 9 wt%, which was used in the experimental
gel. In this study, the number of particles was instead set to be the same as the
number of particles per volume unit in the experimental data. The distribution of
particle sizes was estimated from the nearest neighbour distances d1, . . . , dn for the
n particles by using kernel density estimation (KDE)

f̂h(d) = 1
nh

n∑
i=1

K(d− di
h

) (3.9)

where K(·) is the kernel smoothing function and h is the bandwidth. The smooth-
ing function K(·) was chosen as the standard normal density function, and the
bandwidth was selected using Silverman’s rule of thumb

h = 0.9 min(σ̂, IQR
1.34 )n− 1

5 (3.10)

where σ̂ is the sample standard deviation and IQR is the inter-quartile range of the
data [13]. A proper choice of the bandwidth h is essential in order to avoid over-and
under-smoothing. A histogram of the experimental data can be seen along with the
estimated density in figure 3.1.

3.5 Models for sticking probability
In previous work done by Häbel et al. (2019) and Köllerström (2021) the sticking
probability, i.e., the probability for particles to aggregate upon contact with each

8



3. Cluster aggregation models

Figure 3.1: Histogram of nearest neighbor distances from the experimental data
and the estimated probability density function of particle diameters.

other was assumed to be constant. Simulations with a constant sticking probability
were carried out as part of this project as well, but in addition to this, two other
functions for the sticking probability were tested. The functions for the sticking
probabilities presented in sections 3.5.1, 3.5.2 and 3.5.3 will be referred to as models
1, 2 and 3, respectively.

3.5.1 Constant sticking probability
Since the concentration and sizes of particles had been estimated differently com-
pared to previous studies, it was seen as interesting to carry out simulations with
a constant sticking probability. The values that were investigated in the studies by
Häbel et al. (2019) and Köllerström (2021) were

p ∈ {1, 0.1, 0.01, 0.001, 0.0001}. (3.11)

In Häbel et al. (2019) the best fit overall was obtained with p = 0.0001 whereas in
Köllerström (2020) the overall best value was concluded to be p = 0.01. The set of
values in equation 3.11 were used in this thesis as well in order to make comparisons
to the previous studies.

3.5.2 Sticking probability dependent on cluster size
In the second model that was tested, the sticking probability was made dependent of
the masses of the two colliding clusters. Several previous cluster aggregation studies,

9



3. Cluster aggregation models

including studies of silica specifically, have studied cluster aggregation simulations
carried out with a sticking probability of the form

p(S1, S2) = min(1, p0(S1 · S2)σ) (3.12)

where S1 and S2 are the number of particles in the two colliding aggregates while
p0 ∈ [0, 1] and σ ∈ R are model parameters [14], [15], [16]. Thus, collisions between
single particles have the probability p0, and σ decides how this probability changes
with the cluster size. In order to take into account that particles in our simulation
have different sizes and that the mass of an aggregate is not proportional to the
number of particles in it, the sticking probability was instead expressed in terms of
the masses m1 and m2 of the two colliding clusters through

p(m1,m2) = min
(

1, p0

(
m1

m

)σ (m2

m

)σ)
. (3.13)

where m is the average mass of a particle in the simulation. The parameter values
used in this study can be found in table 3.1.

p0 = 1 σ = −0.5,−0.25
p0 = 0.1 σ = −0.5,−0.25, 0.25, 0.5
p0 = 0.01 σ = −0.25, 0.25, 0.5
p0 = 0.001 σ = 0.25, 0.5
p0 = 0.0001 σ = 0.25, 0.5

Table 3.1: Every row contains the values of p0 and σ that have been tried in
combination when simulating with model 2.

3.5.3 Sticking probability dependent on particles close to
collision

The third model tested was a sticking probability dependent on the number of
particles close to the collision. More specifically, let C1 and C2 denote two colliding
clusters and let dij be the distance between the surfaces of two particles i and j.
Then the sticking probability for a collision between particles i ∈ C1 and j ∈ C2 can
be written as

p = min
1, p0 + δ(

∑
k:k∈C1,k 6=i

1(dkj ≤ s) +
∑

k:k∈C2,k 6=j
1(dik ≤ s))

 (3.14)

where p0 ∈ [0, 1] and δ, s ≥ 0 are the parameters of the model. Hence, the probability
of a collision is p0 and then increases with δ for every other particle in an opposite
cluster that has surface within distance s from the colliding ones (see figure 3.2). It
can be seen as taking into account multiple particle interactions at the collision site.
The values that were tested in this work were all combinations of

p0 ∈ {0.01, 0.001, 0.0001}
δ ∈ {0.01, 0.001, 0.0001}
s ∈ {0.5, 2.5, 4.5, 6.5}

10



3. Cluster aggregation models

with s given in nm.

Figure 3.2: Illustration of how the sticking probability in equation 3.14 is calcu-
lated.

3.6 Implementation
The aggregation simulations were carried out using Fortran code, written by Matias
Nordin and Tobias Gebäck, which was called from Matlab. The main modifications
to this code were to allow particles to have different sizes and use different functions
for the sticking probability. No rearrangement of particles due to bond breakage or
rotational rearrangement was included. Gravitational effects and rotational diffusion
were also disregarded in this study. The computations were enabled by resources
provided by the Swedish National Infrastructure for Computing (SNIC) at Chalmers
Centre for Computational Science and Engineering (C3SE), partially funded by the
Swedish Research Council through grant agreement no. 2018-05973.
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4
Model Evaluation

This chapter describes the methods used for comparing the simulated structures
to the experimental data. The main part of the model evaluation consists of com-
paring the spatial structure through spatial summary statistics from point process
theory. Parameters are selected based on the goodness-of-fit of the spatial summary
statistics, and further testing is then done by comparing fractal scaling and mass
transport properties.

4.1 Spatial Point Processes
This part of the model evaluation focuses on the centroids of the particles, which
form a point pattern. By regarding such a point pattern as a realization of a point
process, one can use summary statistics from point process theory to characterize
the point pattern.

4.1.1 Basic Definitions
In this section, we start by giving a formal definition of point processes along with
their distributions which mainly follow the book Stochastic Geometry and its Appli-
cations by Stoyan et al. (2013) [17]. The characteristics stationarity and isotropy
are defined as well as the intensity. Throughout section 4.1, we let B(Rd) denote
the Borel sets on Rd and B0(Rd) the family of all bounded Borel sets on Rd. The
d−dimensional Lebesgue measure is denoted as νd(·) while ∂(A) is the boundary of
a set A ⊂ Rd.

4.1.1.1 Point Process

In order to define a point process on Rd for d ≥ 1 we first consider a probability
space (Ω,F ,P) and a measurable space (N,N ). Here N is the family of sequences
ϕ = {xn} of points of Rd that satisfy two conditions:

• The sequence ϕ is locally finite, meaning that every B ∈ B(Rd) must only
contain a finite number of points of ϕ.

• The sequence ϕ is simple, meaning that two points in the sequence, xi and xj,
cannot be equal if i 6= j.

13



4. Model Evaluation

The σ-algebra N is defined as the smallest σ-algebra on N that makes all mappings
ϕ 7→ ϕ(B) measurable, for B ∈ B0(Rd) and where ϕ(B) denotes the number of
points in the set B.

A formal definition of point process Φ is that it is a measurable mapping of a prob-
ability space (Ω,F ,P) into (N,N ) as above. More intuitively, it can be thought of
as a random choice of one of the ϕ in N. As such, it generates a distribution P on
[N,N ], which is called the distribution of the point process Φ.

4.1.1.2 Notation

Point processes can be interpreted in two different ways, either as random sets of
discrete points or as random measures that count how many points that lie in cer-
tain spatial regions. Two different notations correspond to these interpretations:

• x ∈ Φ, denoting that the point x belongs to the random sequence Φ

• Φ(B) = n, denoting that the set B contains n points of Φ.

In this section, we will switch between these interpretations depending on what best
suits the context.

4.1.1.3 Distributions

The distribution P of a point process is determined as

P (Y ) = P(Φ ∈ Y ) = P({ω ∈ Ω : Φ(ω) ∈ Y }), for Y ∈ N . (4.1)

Here the meaning of Φ ∈ Y is that it specifies that Φ has property Y , and P(Φ ∈
Y ) denotes the probability that Φ has this property. We might, for instance, be
interested in looking at the probability that the point process contains a certain
number of points in different sets

P(Φ(B1) = n1, . . . ,Φ(Bk) = nk) (4.2)

where B1, B2, . . . , Bk ∈ B(Rd) and n1, . . . , nk ≥ 0. The expression in equation 4.2
denotes the probability that the point process Φ has n1 points in B1, n2 points in
B2, . . . and nk points in Bk. These probabilities are sometimes called the finite-
dimensional distributions.

A special case of the above probabilities is the void-probabilities

P ({ϕ ∈ N : ϕ(B) = 0}) = P(Φ(B) = 0), for B ∈ B(Rd). (4.3)

The interpretation is that equation 4.3 gives us the probability that B does not
contain any points of Φ.
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4.1.1.4 Stationarity and Isotropy

A point process is said to be stationary if its distribution is invariant under trans-
lation. Let Φ = {x1, . . . , xn} and Φx = {x1 + x, . . . , xn + x} with x ∈ Rd. Then for
a stationary point process, we have that

P(Φ ∈ Y ) = P(Φx ∈ Y ) (4.4)

for all configuration sets Y .

The concept of isotropy is analogous to that of stationarity, but instead means
that the distribution of the point process is invariant under rotation around the
origin. If we let R be a rotation matrix, then a point process Φ is isotropic if

P(Φ ∈ Y ) = P(RΦ ∈ Y.) (4.5)

4.1.1.5 Intensity measure and intensity

The intensity measure Λ : B(Rd) → [0,∞) of a point process Φ is similar to the
expected value of a random variable. It is given by

Λ(B) = E[Φ(B)] =
∫
B
λ(s)ds, for B ∈ B(Rd), (4.6)

in the case when Λ has an intensity λ: B(Rd)→ [0,∞) with respect to the Lebesgue
measure. [18]. Hence, Λ(B) is the mean number of points in B.

If the point process is stationary, then the intensity measure must also be trans-
lation invariant since

Λ(B) = E[Φ(B)] = E[Φx(B)] = E[Φ(B−x)] = Λ(B−x), for all x ∈ Rd. (4.7)

It then follows that the intensity measure can be written in the form

Λ(B) = λvd(B), (4.8)

where λ is a non-negative constant. If we take B of volume 1, we see that λ can
be interpreted as the mean number of points per volume unit. For the rest of this
section we assume that 0 < λ <∞.

4.1.2 Summary Statistics
In this section, we introduce four summary statistics that are used to compare
the simulated structures and the ones in the experimental data by considering the
centroids of the particles as point patterns. The summary statistics are the empty
space function, L-function, clustering function and the mean cluster size function.
All these summary statistics can be estimated from the observations of a point
process Φ inside an observational window W in Rd. We assume that the observed
point process Φ is stationary and isotropic. For the rest of this section, we will let
d = 3, since we work with data and simulations in 3D.
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4.1.2.1 Empty Space Function

The empty space function F : [0,∞)→ [0, 1] gives the probability that the distance
from an arbitrary test point o ∈ R3 to its nearest neighbor in Φ is less than or
equal to r ≥ 0 [19]. It is a valuable summary statistic to describe the amount of
empty space between clusters of points but is less useful for describing the actual
clusters. Start by denoting the shortest euclidean distance between o and any closed
set A ∈ R3 as

p(o, A) = inf(||o− a||2 : a ∈ A). (4.9)
Let b(o, r) be the ball of radius r ≥ 0 centered at o ∈ R3. The empty space function
is then given as

F (r) = P(p(o,Φ) ≤ r) = 1− P(Φ(b(o, r)) = 0). (4.10)

An unbiased estimator for the empty space function is given by a Kaplan-Meier
estimator with hazard rate

ĥ(r) = ν2(∂(Φ⊕r) ∩W	r)
ν3(W	r\Φ⊕r)

. (4.11)

for Φ⊕r = Φ ⊕ b(o, r) where ⊕ is the Minkowski addition and W	r = W 	 b(o, r)
where 	 is Minkowski subtraction. We can note that the sets

{o ∈ W : min(p(o,Φ), p(o, ∂W )) ≥ r}
and {o ∈ W : p(o,Φ) = r, p(o,Φ) ≤ p(o, ∂W )}

are the closures of W	r\Φ⊕r and ∂(Φ⊕r) ∩ W	r respectively. These sets may be
interpreted in our context as the points "at risk of failure at distance r" and "observed
failures at distance r", where a failure would be for a point o to have p(o,Φ) = r.
The full estimator for F (r) is then given by

F̂ (r) = 1− exp
[
−
∫ r

0
ĥ(s)ds

]
. (4.12)

for r ≥ 0.

4.1.2.2 L-function

A commonly used second-order characteristic is Ripley’s K-function K : [0,∞) →
[0,∞), which measures the average number of points that can be found within a
distance r ≥ 0 from an arbitrary point o of the process Φ [1]. If λ denotes the
intensity, the K-function is defined as

K(r) = λ−1Eo[Φ(b(o, r))\o] (4.13)

for r ≥ 0 and where Eo is the expectation given that there is a point of Φ in o.

In order to estimate the K-function, one might consider using an estimator of the
form

ν3(W )
n(n− 1)

n∑
i=1

∑
j 6=i
1(dij ≤ r). (4.14)
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where n = Φ(W ) and dij is the pairwise inter-point distances between points in
Φ ∩W . However, this estimator is biased, and we need to account for the edges
of the observational window W . To correct this, Ripley’s isotropic edge correction
can be used, in which every term in equation 4.14 is adjusted by the fraction of the
search ratio that lies within the observational window W . This is done through the
weights wij so that

K̂(r) = ν3(W )
n(n− 1)

n∑
i=1

∑
j 6=i

w−1
ij 1(dij ≤ r). (4.15)

where
wij = w(xi, dij) = ν2(∂(xi, dij) ∩W )

ν2((xi, dij))
. (4.16)

The K-function is often not studied directly. Instead, it is common to use summary
statistics based on the K-function with stabilized variance. In this project we use
the L-function L : [0,∞)→ [0,∞) which is given as

L(r) = 3

√
3K(r)

4π , for r ≥ 0. (4.17)

We get an estimator L̂ for this summary statistic by simply using K̂(r) instead of
K(r) in the expression above.

4.1.2.3 Clustering function

The clustering function c : [0,∞) → [0, 1] is a third order characteristic based
on graph theory which was extended to point processes by Rajala (2010) [20]. In
the clustering function, one considers triplets of points within some distance r and
compares it to the maximal theoretical number of triplets. As such, the summary
statistic can be interpreted as a measure of the internal connectivity around an
arbitrary point at distance r. For o ∈ Φ the number of triplets within a distance r
from o is given by

∆o,r =
∑

i,j:xi,xj∈Φ∩b(o,r)\{o}
1(dij ≤ r). (4.18)

The theoretical number of possible triplets for o ∈ Φ within a distance r is obtained
as

∆max
o,r =

(
δ(o)

2

)
= 1

2(δ(o)2 − δ(o)), where δ(o) =
∑

i:xi∈Φ\{o}
1(||o− xi|| ≤ r).

(4.19)
In order to compare the observed and theoretical number of triplets, we consider

Co,r =

∆o,r/∆max
o,r , if δ(o) ≥ 2

0, if δ(o) < 2
(4.20)

and then take the expected value c(r) = E[Co,r|o ∈ Φ] = Eo[Co,r].
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We can estimate c(r) as c̃(r) = Eo[∆o,r]/Eo[∆max
o,r ] by using that

Eo[∆o,r] ≈
1
n

∑
i:xi∈Φ∩W

∑
j,k:xj ,xk∈

Φ∩W∩b(xi,r)\{xi}

1(||xj − xk|| < r) (4.21)

and
Eo[∆max

o,r ] ≈ 1
n

∑
i:xi∈Φ∩W

1
2(δ(xi)2 − δ(xi)), (4.22)

where n = Φ(W ). Edge effects can be handled by applying the minus-sampling
scheme where we only use points within the eroded window W	,r (see figure 4.1).

Figure 4.1: The observational window W and the eroded window W	,r, which is
shaded in grey. We can see that for points in W\W	,r there is the possibility that
points have neighbors at distances smaller than r that we do not observe.

4.1.2.4 Mean cluster size function

The mean cluster size function M : [∞, 0) → [∞, 0) is a summary statistic that
describes how dense and spread out the clusters are [1]. From the points x in Φ∩W
we create a geometric graph with nodes in the points x and connect all points xi
and xj for which dij ≤ r. A cluster at distance r can then be defined as the set of
all points that are connected by such edges. Assume that there are K clusters for
distance r and that cluster k has nk points in it. The size of cluster k can then be
measured by using the diameter of gyration

Dk(r) = 1
nk

√√√√2
nk∑
i=1

nk∑
j=1

d2
ij. (4.23)

The mean cluster size function in three dimensions for distance r was defined by
Häbel et al. (2019) as

M(r) = 1
K

K∑
k=1

Dk(r), (4.24)
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for r ≥ 0. In order to account for edge effects, we can use the minus-sampling
scheme.

4.1.3 Evaluation of models based on functional summary
statistics

In the following sections, the evaluation of the goodness-of-fit of the spatial summary
statistics is explained, and how the best model and parameters were selected. For
the best model, global envelope tests were conducted to compare the model with
the experimental data further.

4.1.3.1 Parameter selection

The best sets of parameters for every model were selected based on the four summary
statistics introduced in section 4.3.2 by performing simulations in a 700× 700× 700
nm3 box with periodic boundary conditions. The summary statistics were calculated
for r in the range 0-50 nm. To achieve more robust results, the experimental and
simulated data were divided into subpatterns for which the summary statistics were
calculated and then averaged over. The real data was divided into 4 subpatterns of
size 360×520×100 nm3 whereas the simulated data was divided into 6 subpatterns of
the same size. These subpatterns had enough space between them to be considered
independent replicates. The average over subpatterns was calculated by pooling
according to

f̂(r) =
∑npat
i=1 nifi(r)∑npat

i=1 ni
(4.25)

where npat is the number of subpatterns, fi(r) is the summary statistic for subpat-
tern i at distance r and ni is the number of points in subpattern i.

The pooled summary statistics from the simulated and STEM data were compared
by using a least square approach similar to Redenbach and Särkkä (2013) [21]. By
calculating the pooled summary functions at equally spaced distances r1, . . . , rT , the
sum of squares could be obtained as

Sj = 1
T

T∑
t=1

( ˜̂
fj(rt)− f̂j(rt)

f̂j(rt)

)2
(4.26)

where j goes through the different summary statistics F,L, c,M and f̂j(·) and ˜̂
fj(·) is

the pooled summary statistic from the experimental and simulated data respectively.
The total sum of squares of the evaluated summary statistics is then given as

S = SF + SL + Sc + SM , (4.27)

and was calculated for all simulations to select the best parameters for every model
of the sticking probability.
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4.1.3.2 Global envelope test

After selecting a candidate model based on the total sum of squares in equation 4.27,
a global envelope test was conducted to make a more detailed comparison between
the selected model and the experimental data. In a global envelope test, one tests
if a certain null model is appropriate to describe an observed point pattern based
on performing Monte Carlo simulations from the chosen model and then comparing
summary statistics from the simulated and observed patterns. More explicitly, let
Tobs(r) be the value of a summary statistic estimated from the observed data at
distance r ≥ 0. An envelope is a band bounded by the functions Tlow(r) and Tupp(r)
on an interval I [22]. A global envelope test is a statistical test that rejects the null
hypothesis H0, i.e., that the null model is appropriate for the data, in the case that
the observed function Tobs(r) is not completely inside the envelope

ϕenv(Tobs) = 1(∃r ∈ I : Tobs(r) /∈ (Tlow(r), Tupp(r))). (4.28)

It is desirable to establish the bounds so that the test has a controlled global type
I probability for a certain number of simulations nsim.

In this study, a type of global scaled maximum absolute difference (MAD) enve-
lope test was chosen for which the recommended number of simulations nsim was
small, typically nsim = 99 or nsim = 199 [23], [24]. More specifically, the directional
quantile MAD envelope test was used in which the critical bounds are given by

T ulow(r) = T0(r)−u·|T (r)−T0(r)| and T ulow(r) = T0(r)+u·|T (r)−T0(r)|. (4.29)

Here, T0(r) is the expectation under the null model and T (r) and T (r) are the r-wise
2.5% upper and lower quantiles of the distribution of T (r) under H0. Since neither
of these are known analytically, they were estimated from the simulations of the null
model. For the directional quantile MAD envelope test, u is taken as

u = max
r∈I

(
1(T (r) ≥ T0(r)) T (r)− T0(r)

|T (r)− T0(r)|
+ 1(T (r) < T0(r)))T (r)− T0(r)

T (r)− T0(r)

)
.

(4.30)
and a 100(1− α)% envelope from s simulations is obtained by using the α(s+ 1)th
largest value of the u’s in equation 4.30 for the bounds in equation 4.29. In addition
to only requiring a small number of simulations, this test considers variations of the
variance for the summary statistic for different values of r as well as asymmetry
in the distribution, which both seemed to be features of the simulated summary
statistics when inspecting the data.

4.1.4 Computational tools
The spatial data analysis was conducted in the R software version 4.1.3 with the
packages spatstat, GET, and a slightly modified version of the SGCS package.
Code written by Henrike Häbel that had been used in previous studies was received
at the start of this project.
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4.2 Fractal scaling properties
In section 3.3 it was mentioned that structures from DLCA and RLCA simulations
have been found to have fractal scaling properties. The fractal dimension has also
been used to compare the experimental STEM data and the simulated structures.
The fractal dimensions of the experimental and simulated structures were calculated
using a version of the box-counting algorithm. In the box-counting algorithm, one
chooses a box that covers the structure, referred to as the bounding box, and places
evenly spaced grids with boxes with side length ε within the bounding box. The
minimal number of boxes N(ε) needed to cover the set is calculated, and the fractal
dimension can be estimated from how N(ε) scales with the box size. For a set S in
Rn, the box-counting dimension is defined as

Dbox(S) = − lim
ε→0

log(N(ε))
log(ε) . (4.31)

Roughly speaking, a set with a non-integer box-counting dimension is considered to
have fractal geometry since it suggests that it scales differently from the space that
it resides in [25].

In practical settings, the limit in equation 4.31 cannot be taken, and the box-
counting dimension is instead estimated through the slope between log(N(ε)) and
log(ε) as ε decreases. The idea of the box-counting algorithm is to choose a set
of decreasing box sizes ε1, . . . , εn and calculate the corresponding N(ε1), . . . , N(εn)
from which the box-counting dimension can be approximated by performing linear
regression. The total volume of the analysis should be kept the same for all box sizes.

The choice of the box sizes ε1, . . . , εn can heavily influence the estimated fractal
dimension [26]. A slight modification of the standard box-counting algorithm was
used in which the positions of the boxes were uniformly generated inside the bound-
ing box. Then the number of non-empty boxes was normalized with the total volume
of the generated boxes. As a consequence, the box sizes do not have to be chosen
in such a way that the bounding box can be decomposed into an integer number of
boxes to keep the total volume of analysis constant for different box sizes (see figure
4.2) [26]. Furthermore, effects from the overall placement of boxes is reduced using
this method.

4.3 Mass transport
The simulated materials and the data were compared also based on simulating mass
transport through the materials. Simulations of both flow and diffusion were carried
out as part of this study.

4.3.1 Flow
When a fluid is transported along, for example, a pressure or gravitational gradient,
we call it a flow [4]. In the case of a steady and laminar flow and the pores in the
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Figure 4.2: Illustration of the normal box counting procedure to the left and the
random box counting on the right.

gel can be regarded as straight pipes, we can use the Hagen-Poiseuille relationship

Q = πR4

8Lη∆p (4.32)

to determine how the volumetric flow rate Q (with units of m3/s) is transported
through a pipe with radius R and length L. η denotes the dynamic viscosity of the
fluid, and ∆p is the pressure difference that drives the flow. From equation 4.32 we
see that the flow through the pipe is proportional to R4, meaning that the radius
greatly impacts the flow through the material. Therefore, parts of the structure
with much empty space can greatly impact the overall flow through the material.

Another characteristic of the material that tells us how easily flow can pass through
it is the permeability κ defined through Darcey’s law

q = −κ
ηL

∆p (4.33)

where q is the average flow velocity (q = Q/A where A is the cross-sectional area)
[27]. Unlike the Hagan-Poiseuille relationship, which describes flow through a circu-
lar pipe, Darcey’s law is valid for any porous material assuming steady laminar flow.

In order to characterize the flow as laminar or turbulent, one can use the Reynold’s
number (Re), which is a dimensionless ratio between inertial and frictional forces in
the flow

Re = Finertial

Fviscous
= ρ

vl

η
. (4.34)

Here v and l denotes the investigated system’s characteristic velocities and length
scales, and ρ is the density of the fluid. Typically, any flow with Reynold’s number
less than unity can be considered clearly laminar, and it would be valid to apply
Darcey’s law [27]. In this project, the characteristic length scale is very small, and
the relevant flows are highly laminar.
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4.3.2 Diffusion
Diffusion was presented in section 2.1.1 in the context of aggregation of silica par-
ticles. In this section, we instead consider the diffusion of molecules through a
porous material along a concentration gradient. As before, the individual move-
ment of particles is governed by Brownian motion, but differences in concentration
will eventually fade away. In the diffusion simulations, the diffusion equation from
before is solved

∂ϕ(x, t)
∂t

= D0∇2ϕ(x, t) (4.35)

with the free diffusion coefficient D0. The effective diffusion coefficient Deff will then
be computed from Fick’s first law

j = −Deff
ϕ2 − ϕ1

d
(4.36)

where j is the average flux, ϕ2−ϕ1 is the concentration difference over the material,
and d is the thickness of the material. The effective diffusion coefficient Deff is
proportional to the free diffusion coefficient D0, and in order to get a quantity that
only depends on the geometry of the aggregate, we can calculate

G = Deff

D0
(4.37)

which will be called the geometry factor [28].

4.3.3 Software
Flow and diffusion simulations were performed using the lattice Boltzmann method-
based software Gesualdo, developed as a part of the SuMo Biomaterials collaboration
at Chalmers [29].
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5
Results

5.1 Goodness of fit for summary statistics
The results from comparing the spatial summary statistics from simulated and ex-
perimental data are presented in the following sections.

5.1.1 Constant sticking probability
The values for the total sum of squares S in equation 4.27 for different parameters
with model 1 can be seen in figure 5.1 and table 5.1. The sum of squares decreases
significantly between p = 0.1, p = 0.01 p = 0.001, while there is a smaller difference
between p = 0.001 and p = 0.0001. The smallest value of S was obtained for
p = 0.0001 and resulted in S ≈ 0.0819. Plots of the summary statistics can be found
in figure 5.2. At distances larger than 25-30 nm, all the summary statistics seem
to deviate systematically from the experimental data. The empty space function
suggests that there is more empty space in the experimental data for large values
of r. Looking at the L-function, it is evident that the simulated data appears to
be less clustered than the STEM data. For the c-function, the simulated structure
is initially less clustered, but as r gets larger the function increases and passes the
experimental data. The M -function fits the STEM data up until approximately
r = 28 nm and then results in smaller values.
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Figure 5.1: Total sum of squares from
simulations with model 1.

Index Parameters
1 p = 1
2 p = 0.1
3 p = 0.01
4 p = 0.001
5 p = 0.0001

Table 5.1: Parameters
that correspond to the
different indices in figure
5.1

Figure 5.2: Pooled averages for the four summary statistics from simulation with
a constant sticking probability p = 0.0001 (green) and from the STEM-data (black).
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5.1.2 Mass dependent sticking probability
Results from all simulations with model 2 can be seen in figure 5.3 and table 5.2.
All simulations with σ < 0 improve the sum of squares compared to model 1 with
the same value of p0. However, there is also one simulation with a positive σ that
improves the goodness-of-fit. The lowest value of S was obtained with p0 = 0.01 and
σ = −0.25 resulting in S ≈ 0.0657. This corresponds to a decrease of approximately
19.8% of S compared to the best simulation using model 1. The values of the
summary statistics can be seen in figure 5.4. The main improvement compared to
the best simulation from using a constant sticking probability is the fit of the mean
cluster size function.
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Figure 5.3: Total sum of squares S from
simulations with model 2 (blue) and cor-
responding value of S from model 1 with
p = p0 (orange).

Index Parameters
1 p0 = 1, σ = −0.5
2 p0 = 1, σ = −0.25
3 p0 = 0.1, σ = −0.5
4 p0 = 0.1, σ = −0.25
5 p0 = 0.1, σ = 0.25
6 p0 = 0.1, σ = 0.5
7 p0 = 0.01, σ = −0.25
8 p0 = 0.01, σ = 0.25
9 p0 = 0.01, σ = 0.5
10 p0 = 0.001, σ = 0.25
11 p0 = 0.001, σ = 0.5
12 p0 = 0.0001, σ = 0.25
13 p0 = 0.0001, σ = 0.5

Table 5.2: Parameters that cor-
respond to the different indices in
figure 5.3

Figure 5.4: Pooled averages for the four summary statistics from simulation with
a mass-dependent sticking probability with p0 = 0.01 and σ = −0.25, and from the
STEM-data (black).
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5.1.3 Sticking probability dependent on the number of par-
ticles close to collision

Figure 5.5 and table 5.3 contains the results of S from the simulations with model
3. Simulation 32 gives a much larger value of S than the other simulations. From
inspecting the summary statistics, it was seen that the mean cluster size function
from simulation 32 is much greater than for the experimental data. The smallest
value of S using model 2 was obtained with p0 = 0.0001, δ = 0.001 and s = 2.5 nm.
This resulted in S ≈ 0.0534, which is approximately 34.7% smaller than when using
a constant sticking probability.
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Figure 5.5: Total sum of squares S from simulations with model 2 (blue) and
corresponding value of S from model 1 with p = p0 (orange).

Index Parameters Index Parameters Index Parameters
1 p0 = 0.01, δ = 0.01, s = 0.5 13 p0 = 0.001, δ = 0.01, s = 0.5 25 p0 = 0.0001, δ = 0.01, s = 0.5
2 p0 = 0.01, δ = 0.001, s = 0.5 14 p0 = 0.001, δ = 0.001, s = 0.5 26 p0 = 0.0001, δ = 0.001, s = 0.5
3 p0 = 0.01, δ = 0.0001, s = 0.5 15 p0 = 0.001, δ = 0.0001, s = 0.5 27 p0 = 0.0001, δ = 0.0001, s = 0.5
4 p0 = 0.01, δ = 0.01, s = 2.5 16 p0 = 0.001, δ = 0.01, s = 2.5 28 p0 = 0.0001, δ = 0.01, s = 2.5
5 p0 = 0.01, δ = 0.001, s = 2.5 17 p0 = 0.001, δ = 0.001, s = 2.5 29 p0 = 0.0001, δ = 0.001, s = 2.5
6 p0 = 0.01, δ = 0.0001, s = 2.5 18 p0 = 0.001, δ = 0.0001, s = 2.5 30 p0 = 0.0001, δ = 0.0001, s = 2.5
7 p0 = 0.01, δ = 0.01, s = 4.5 19 p0 = 0.001, δ = 0.01, s = 4.5 31 p0 = 0.0001, δ = 0.01, s = 4.5
8 p0 = 0.01, δ = 0.001, s = 4.5 20 p0 = 0.001, δ = 0.001, s = 4.5 32 p0 = 0.0001, δ = 0.001, s = 4.5
9 p0 = 0.01, δ = 0.0001, s = 4.5 21 p0 = 0.001, δ = 0.0001, s = 4.5 33 p0 = 0.0001, δ = 0.0001, s = 4.5
10 p0 = 0.01, δ = 0.01, s = 6.5 22 p0 = 0.001, δ = 0.01, s = 6.5 34 p0 = 0.0001, δ = 0.01, s = 6.5
11 p0 = 0.01, δ = 0.001, s = 6.5 23 p0 = 0.001, δ = 0.001, s = 6.5 35 p0 = 0.0001, δ = 0.001, s = 6.5
12 p0 = 0.01, δ = 0.0001, s = 6.5 24 p0 = 0.001, δ = 0.0001, s = 6.5 36 p0 = 0.0001, δ = 0.0001, s = 6.5

Table 5.3: Parameters that correspond to the different indices in figure 5.5.
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The summary statistics that were obtained from this simulation can be seen in figure
5.6. Overall, the summary statistics from this simulation are similar to experimental
data; however, some differences can be noted. The value of the empty space function
is slightly below the experimentally observed values for r larger than 20 nm. The
biggest difference in the L-function is around r ∈ [22, 30] nm. This might be because
of differences in the sizes of the particles at these length scales. The c-function fits
better in the range r ∈ [28, 50] for this simulation and does not increase as much as
for the two other sticking probability functions. The fit of the M -function is also
better for this simulation. The biggest difference appears to be for large values of
r where the mean cluster size of the simulated structure is slightly smaller than for
the STEM data.

Figure 5.6: Pooled averages for the four summary statistics from simulating with
model 3 with p0 = 0.0001, δ = 0.001 and d = 2.5, and from the STEM-data (black).

5.1.4 Global envelope tests
As seen in the previous section, the simulation that resulted in the smallest value
of S was obtained using a sticking probability as in equation 3.14 with parameters
p0 = 0.0001, δ = 0.001 and s = 2.5. This model was further analyzed by calculating
envelopes with a significance level of α = 0.01 for the different summary statistics.
The observed summary statistics were taken by averaging the summary statistics
over 4 subpatterns in the experimental data as described in section 4.1.3.1. Simula-
tions were then carried out, and 99 averages over 4 subpatterns of the same size as
the structures in the observed data were used to compute the envelopes.

The global envelope for the F -function can be seen in figure 5.7. The experimental
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curve goes outside the envelope around r = 7 and for r ∈ [17, 46]. The null hy-
pothesis is therefore rejected. From the calculated envelope, we can see that overall,
the simulated structures give lower values of the empty space function than what is
observed in the experimental gel.

Figure 5.7: Global envelope test for the empty space function. The grey band is
the envelope, whereas the dashed line is the central function from the simulations.
The black curve corresponds to the STEM data.

The envelope for the L-function in figure 5.8 fits the data quite well, but there
are differences around r ∈ [18, 22]. Since the data curve is not entirely inside the
envelope, the null hypothesis is rejected. The reason that the curve goes outside
of the envelope might be due to differences in the estimated density of the particle
diameters and the nearest neighbor distances of the data.
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Figure 5.8: Global envelope test for the centered L-function. The black curve
corresponds to the STEM data.

Also, the test for the c-function is rejected. Figure 5.9 shows that at lower values of
r, the experimental data is more clustered than the simulated structures. However,
for r larger than approximately 28 nm, the data function and the central function
from the simulations are similar.

The global envelope test for the M -function is also rejected. As shown in figure
5.10, there are differences for small and large values of r. Overall, the M -function
is greater for the STEM data than for the simulated gels.
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Figure 5.9: Global envelope for the clustering function. The black curve corre-
sponds to the STEM data.

Figure 5.10: Global envelope for the mean cluster size function. The black curve
corresponds to the STEM data.
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5.2 Fractal dimension
The fractal dimension was estimated by using the random box counting algorithm
on a set of boxes of size ε = [2, 3, 4, 5, 6, 8, 10, 13, 16, 20, 25, 32, 40, 50] nm, which are
nearly logarithmically distributed. At every length scale, 105 boxes with random
positions were generated. The fractal dimension was calculated for the experimental
data and the simulated structures for every model with the best set of parameters as
selected in section 5.1. Since there is no unique way of assigning particle diameters to
the experimental structure with data only about the particle centroids, all particles
were assumed to have a diameter of 21 nm. The computed values of the fractal
dimension for the different aggregates can be seen in table 5.4.

Df ± SE
Data 2.4083 ±0.0459
Model 1, p = 0.0001 2.3718± 0.0564
Model 2, p0 = 0.01, σ = −0.25 2.3590± 0.0606
Model 3, p0 = 0.0001, δ = 0.001, d = 2.5 2.4252± 0.0378

Table 5.4: Estimated fractal dimensions Df with standard error (SE) from linear
regression.

All the simulations result in similar values for the fractal dimension; however, the
third model gives the closest fractal dimension to the estimated fractal dimension
for the physical gel. The fractal dimension for the simulation with model 2 is
the furthest from the estimated fractal dimension for the data, but it also has the
greatest standard error.

5.3 Mass transport properties
Mass transport simulations were carried out for a structure generated with model
3 with the parameters that gave the smallest value of S. As mentioned earlier,
the experimental data had been observed inside a window of size 740× 1075× 100
nm3. Mirror boundary conditions were applied in the directions perpendicular to
the flow/diffusion. The size of the structure may impact results, and simulated
structures of the same size as the experimental one were therefore generated to
make a good comparison. More precisely, a simulation was carried out in a box with
periodic boundary conditions of size 740× 1075× 700 nm3 from which 5 structures
of size 740× 1075× 100 nm3 were extracted. The particles were assumed to have a
diameter of 21 nm.

5.3.1 Flow
Flow simulations were performed in the X- and Y -directions of these boxes, and
the calculated permeabilities can be seen in table 5.5. The Reynold’s number was
smaller than 0.01 for all simulations, and no-slip conditions were used at the material
surface.
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Flow direction κdata κsim(κmin
sim , κ

max
sim )

X 4.76 4.12 (2.96, 5.01)
Y 2.92 5.26 (2.97, 5.31)

Table 5.5: Table of the calculated permeability from flow simulations in two differ-
ent directions. The average permeability from the 5 simulated structures is denoted
by κsim, whereas the minimum and maximum out of these permeabilities is denoted
by κmin

sim and κmax
sim .

From the table above we can see that when calculating the permeability for flow
in the X-direction, the value obtained for the physical gel lies between the max
and the min of the 5 values from the simulations and is slightly higher than the
average permeability from the simulations. When flow is instead simulated in the
Y -direction, the permeability from the data falls below the interval from the sim-
ulations. However, it is relatively close to the minimum value of the simulations.
Figures 5.11 and 5.12 show that the simulated structure seems to have more open
passages for flow to pass through, resulting in a higher permeability.
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Figure 5.11: Flow simulation for the experimental gel in the Y direction.
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Figure 5.12: Flow simulation in the Y -direction for the gel with permeability
closest to the average permeability of the simulated gels.

5.3.2 Diffusion

Diffusion through the materials was simulated for the same structures that had been
used for the flow simulations. Neumann (zero flux) boundary conditions were used
at the material surface. The geometry factor was calculated to characterize the
diffusion through the material, and the obtained results can be found in table 5.6.
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Diffusion direction Gdata Gsim(Gmin
sim , G

max
sim )

X 0.846 0.846 (0.825, 0.858)
Y 0.844 0.845 (0.823, 0.8596)

Table 5.6: The geometry factor from the diffusion simulations in two different
directions. The average of the geometry factor from the 5 simulated structures is
denoted by Gsim, whereas the minimum and maximum out is denoted by Gmin

sim and
Gmax

sim .

The geometry factor is very similar for the experimental data and the simulations.
The experimental value is close to the mean of the simulations in both directions
and lies between the minimum and maximum values from the simulations.
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6
Conclusions and suggestions for

further research

In this thesis, different functions for the sticking probability in DLCA and RLCA
simulations have been investigated. The sticking probabilities used in this study
have been assumed to be either constant, mass-dependent, or dependent on the
number of particles close to the collision. Post-aggregated structures from simula-
tions and from an experimental gel were compared by analyzing summary statistics
from point process theory, fractal scaling, and mass transport properties.

From comparing the goodness-of-fit of the spatial summary statistics, the best re-
sults were obtained using model 3 with parameters p0 = 0.0001, δ = 0.001 and
s = 2.5. Global envelope tests were carried out with this model, and it was seen
that even though the summary statistics are similar to the experimental data, there
are also systematic differences for all summary statistics. However, the neighbor-
dependent sticking probability still gave considerably better results than a constant
sticking probability in terms of the summary statistics.

For model 2, all simulations with a negative value of σ improved the sum of squares
of the summary statistics compared to using a constant sticking probability with
the value of p0. This suggests that the sticking probability decreases as clusters
grow larger; however, both the F -and L-function deviates considerably for the best
simulation using this model. In addition, the goodness-of-fit using model 3 was
significantly better than for model 2, in which all of the summary statistics fit the
experimental data relatively well.

The fractal dimension was calculated for the three models for the sticking prob-
ability with the parameters that had resulted in the smallest total sum of squares of
the summary statistics. All three models gave fractal dimensions that were similar
to the experimental gel. However, the fractal dimension for model 3 was closest
to the fractal dimension of the real gel. In most studies, the fractal dimension of
structures formed by RLCA lies around 1.9-2.1. The reason why larger values have
been obtained in this project is probably due to the relatively high volume fraction
of silica particles.

Flow and diffusion were simulated for the experimental data and structures ob-
tained using model 3 with the parameters that gave the smallest sum of squares of
the summary statistics. Due to time restrictions, flow and diffusion were not inves-
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tigated for structures formed with models 1 and 2. Some differences were found in
the flow simulations, but overall, the permeabilities were relatively similar for the
experimental and simulated structures. From the diffusion simulations, it was found
that the geometry factor from the diffusion simulations was very similar for the ex-
perimental and simulated gels. This is reasonable since the geometry factor mainly
depends on the volume fraction accessible to diffusion. Since the concentration
of primary particles used in the simulations was estimated from the experimental
data, the volume fraction is expected to be similar for the experimental and sim-
ulated materials. The permeability is instead highly dependent on the presence of
wider channels in the material for flow to pass through, which is expected to vary
more, especially since the structures investigated were relatively small.

The best results overall were obtained using model 3, which suggests that interac-
tion with other nearby particles is important to describe the aggregation dynamics.
The constructed sticking probability might be interpreted as similar to describing
pairwise interaction of particles with square well potentials. Interestingly enough,
in Häbel et al. (2019), parameters of square well potentials were fitted from sim-
ulations of static Gibbs point processes with an energy function based on pairwise
interaction. In that study, the jump points of the square well potential were ob-
tained to be at 18.27 (being the smallest diameter of a particle in the simulation)
and 22.5 nm. Interaction of particles with centroids at a distance up to 22.5 nm is
similar to the results in this study, as the best value of s was found to be 2.5 nm,
and the average diameter of particles is between 20-21 nm.

Since only a few values for the parameters of the different sticking probabilities
have been tested in this study, there is still a possibility that the other models of
the sticking probability could have given better results if different values had been
used. In addition, even though roughly the same number of values have been tested
(between 3 - 5 values of every parameter), the total number of simulations with the
different models has been quite different when comparing the total sum of squares
since more combinations of parameters have been tested for model 3.

For model 1, the sum of squares of the summary statistics decreased with using
smaller sticking probabilities between p = 0.1 and p = 0.0001. It is, therefore, pos-
sible that using even smaller sticking probabilities could have improved the result
further. It can also be interesting to investigate parameter values of model 2 further.
In a study by Family et al. (1985) the Smoluchowski coagulation in equation 3.6
was solved for the mass-dependent sticking probability, and it was found that the
development of the cluster size distribution n(m, t) changed in non-trivial ways for
different values of σ in equation 3.12 [14]. For instance, it was found that around
σ = −0.8 the distribution n(m, t) changes from a monotonically decreasing function
to a bell-shaped curve. Since such small values of σ were disregarded in this study,
it might be interesting for further research.

The results might have been affected by the weighted average of the subpatterns
taken in equation 4.25. This weighted average of the summary statistics is based
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on the idea that subpatterns with more points contain more information about the
summary statistics. Even though this might be reasonable for some of the summary
statistics, one could, for instance, question this procedure for the F -function, where
subpatterns with a lot of emptiness might also be seen as important. However, some
tests were done with simple averaging, and the results did not change much since
most subpatterns contained roughly the same number of points.

Another possibility for improvement can be to make the dynamics of the aggregation
simulations more realistic by including effects from rearrangement of particles due
to bond breakage or rotational rearrangement. In addition, gravitational effects and
rotational diffusion could also be interesting to include.

This work has suggested that interaction with several particles is important for de-
scribing the aggregation dynamics. The model that has been used in this project is
rather simplistic, and although there is value in its simplicity and the small number
of parameters, it might also be interesting to create more complex models. Since this
study’s best sticking probability model was similar to the fitted potential functions
for the same data, one might try to take inspiration from more accurate potential
functions that better describe the interaction between particles in future research.
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