
Unsupervised Learning for
Face Anti-Spoofing Models
A generative approach using Autoencoders and Adversarial
Networks

Master’s thesis in Engineering Mathematics & Complex Adaptive Systems

GUSTAV MOLANDER, JENS NILSSON

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Unsupervised Learning for Face Anti-Spoofing
Models

A generative approach using Autoencoders and Adversarial Networks

GUSTAV MOLANDER
JENS NILSSON

Department of Mathematical Sciences
Division of Artificial Intelligence

Chalmers University of Technology
Gothenburg, Sweden 2022

Unsupervised Learning for Face Anti-Spoofing Models
A generative approach using Autoencoders and Adversarial Networks
GUSTAV MOLANDER
JENS NILSSON

© GUSTAV MOLANDER, 2022.
© JENS NILSSON, 2022.

Supervisor and Examiner: Johan Jonasson, Department of Mathematical Sciences

Master’s Thesis 2022
Department of Mathematical Sciences
Division of Artificial Intelligence
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of Variational Autoencoder architecture.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Unsupervised Learning for Face Anti-Spoofing Models
A generative approach using Autoencoders and Adversarial Networks

GUSTAV MOLANDER
JENS NILSSON

Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Distinguishing images of bonafide (genuine) faces from Presentation Attacks (PA)
or spoofs attracts increasing attention in industry due to the wide application of reli-
able automatic authentication. The anomaly detection problem in high dimensional
data such as images can be addressed as a supervised or unsupervised learning prob-
lem, but when spoof data is sparse and not all spoof domains can be represented
in training the unsupervised model can generalize knowledge to unseen domains
to a higher extent. The unsupervised anomaly detection paradigm is essentially a
one-class learning problem to distinguish the distribution of bonafide images from
everything else.

In this thesis we explore the mathematical framework and implementation of encoder-
decoder-based deep learning models to learn the distribution of real images and clas-
sify spoofs. This thesis is preliminary work on the end goal of designing a lightweight
unsupervised anti-spoofing model to run in Smart Eye automotive software. The
researched models reproduce input images by utilizing a latent space embedding
fitted to the distribution of bonafide images. The latent space along with the recon-
structed image is used to classify spoofs.

The results of the experiments show promise but are not yet at the level feasible for
implementation in production devices. The models have been evaluated in terms of
the spoof precision and recall as well as the embedding of the spoofs in the latent
space. Further, some models use Gaussian Mixture Models (GMM) of the latent
space to determine the spoof affiliation, though these results are inconclusive.

Keywords: variational inference, deep learning, face anti-spoofing, variational au-
toencoder, Smart Eye, CNN, latent variable models

v

Acknowledgements
We would like to extend our thanks to Johan Jonasson whom have guided us through
the theory and in the writing of this thesis. We would also like to thank our mentors
at Smart Eye, Calle Ekdahl and Fredrik Walterson, for all their input and ideas.
Finally we would like to thank Oscar and cother olleagues at Smart Eye for sharing
their knowledge and helping us with big and small.

Gustav Molander & Jens Nilsson, 2022

vii

Contents

List of Acronyms xi

List of Figures xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Anti-spoofing . 2
1.1.2 Smart Eye . 2

1.2 Problem description . 3
1.2.1 Limitations . 3
1.2.2 Outline of report . 4

1.3 Related work . 4

2 Theory 5
2.1 Probabilistic framework . 5

2.1.1 Generative modelling . 6
2.1.2 Maximum likelihood . 6
2.1.3 Latent variable models . 7
2.1.4 Variational inference vs. MCMC 9
2.1.5 Kullback-Leibler divergence 9
2.1.6 Evidence lower bound (ELBO) 10

2.2 Artificial Neural Networks . 11
2.2.1 Stochastic gradient descent . 12
2.2.2 Activation functions . 12
2.2.3 Convolutional Neural Networks (CNN) 13
2.2.4 Pooling layers . 14

2.3 Variational Autoencoder . 15
2.3.1 Reparametrization trick . 15
2.3.2 Closed form loss with gaussian latents 17

2.4 Generative Adversarial Networks . 18
2.5 Anomaly detection . 18

2.5.1 GMM . 19
2.5.2 Discriminator . 19
2.5.3 Anomaly score by reconstruction error 20

3 Methodology 21
3.1 Data acquisition . 21

ix

Contents

3.1.1 Data subsets . 21
3.2 Preprocessing . 24

3.2.1 Head pose filtering . 24
3.2.2 Session outlier filtering . 25
3.2.3 Augmentations . 25

3.3 Deep Convolutional Variational Autoencoder (DCVAE) 26
3.4 ResNet Variational Autoencoder (ResVAE) 27
3.5 GANomaly . 28

3.5.1 GANomaly losses . 30
3.5.2 Anomaly detection . 31

3.6 Training parameters . 32
3.6.1 Training length . 32
3.6.2 Optimizer . 32
3.6.3 Data augmentation . 32
3.6.4 Loss weighting . 33

3.7 Evaluation . 33

4 Results 35
4.1 DCVAE . 35

4.1.1 Baseline training . 35
4.1.1.1 Loss outputs . 35
4.1.1.2 Latent space . 36

4.1.2 Training on filtered dataset 37
4.1.2.1 Loss outputs . 38
4.1.2.2 Latent space . 39

4.1.3 Training on filtered dataset and with augmentations 39
4.1.3.1 Latent space . 40

4.2 ResVAE . 40
4.2.1 Baseline training . 40

4.2.1.1 Loss outputs . 41
4.2.1.2 Latent space . 41

4.3 Sample image output from VAE models 42
4.4 GANomaly . 44

5 Discussion 47
5.1 Dataset . 47
5.2 Configuration . 48
5.3 Future work . 50

6 Conclusion 53

Bibliography 55

x

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

AE Autoencoder
ANN Artificial Neural Network
CNN Convolutional Neural Network
ELBO Evidence Lower Bound
FAS Face Anti-Spoofing
GAN Generative Adversarial Network
GMM Gaussian Mixture Model
IQR Interquartile Range
KL Kullback Liebler
ML Machine Learning
MCMC Markov Chain Monte Carlo
NIR Near Infra Red
PAD Presentation Attack Detection
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SGD Stochastic Gradient Descent
t-SNE t-distributed Stochastic Neighbor Embedding
UMAP Uniform Manifold Approximation and Projection
VAE Variational Autoencoder

xi

List of Figures

2.1 Generation (green) starts at the prior for the latent variables and
samples z ∼ pθ(z) then x ∼ pθ(x|z) to generate a new data point.
Inference (red) samples from x ∼ p(x) then z ∼ pθ(z|x) to infer latent
variables. 8

2.2 A visualization of the convolution operator in a convolutional layer.
First, a segment with the size of the receptive field is taken from the
input image. Then the segment is multiplied element-wise with the
kernel and a sum is taken over the resulting elements and a bias is
added to calculate the pixel value in the resulting output image. . . . 14

2.3 The structure of the variational autoencoder. The encoder approxi-
mates the posterior by generating means µ and variances σ2 for each
latent dimension. This makes every single z sampled from a unique
Gaussian distribution, making the z-space a mixture of Gaussian dis-
tributions. Further, the covariance matrix for z is diagonal meaning
each value of z is independently sampled. The decoder generates new
samples from the latent variables z. 15

2.4 Reparametrization of the stochastic calculation of z to allow for dif-
ferentiation with respect to φ of the objective f, a necessity for back-
propagation. The blue nodes are stochastic nodes that can not be
backpropagated through. 17

3.1 Samples from the training data. Due to privacy concerns we will not
include data from the subset ”Test, live only” directly. It is however
very similar to the training data since it is composed of live only images. 22

3.2 Samples from the subset ”Test, seen paper”. 23
3.3 Samples from the subset ”Test, unseen paper”. 23
3.4 Samples from the subset ”Test, seen mask”. 23
3.5 Samples from a single ID from the subset ”Test, unseen mask”. 24
3.6 The effect of all augmentations. (a) shows an unaugmented subset of

the data while (b) shows a different subset with augmentations. All
images from the same subject ID. 25

xiii

List of Figures

3.7 Layer structure of a residual block used in this paper. The output
from the connection, with two convolutional layers and a ReLU acti-
vation function, is added with the output from the skip connection,
that only contains one convolutional layer. The convolution at the
skip connection is done so the number of channels match when adding
the outputs. The skip connection allows for a shorter path during
backpropagation which mitigates the problem with vanishing gradients. 28

3.8 The GANomaly architecture. The input data is fed through through
the encoder E1 then the decoder D to generate latent variables and
a new generated image, comprising the generator. The generator is
primarily trained using the reconstruction loss Lrec. The generated
image is passed through a second encoder to observe what latent
features remain in the generated image, this is regulated through the
encoder loss Lenc. The discriminator is denoted g(d(.)) and is trained
through the adversarial loss Ladv that uses the last layer of the decoder
d, and skips the softmax layer g that produces the spoof probabilities. 29

4.1 The loss distribution for between 30 000 - 50 000 samples from each
subset. The mean and standard deviation of LKL of the unseen pa-
per subset is noticeably larger than the other subsets. For the other
subsets the distributions look very similar and there is a large overlap
between them. For Lrec the largest difference is in the seen paper sub-
set, but not a very substatial difference. The total loss incorporates
both of theses differences and the mean loss of the train and unseen
live subsets is the smallest. There is still a large overlap. 36

4.2 Precision-recall curves for various loss thresholds between live and
spoof. The LKL seems to perform the best for small threshold values
but quickly becomes no better than chance. Lrec and the combination
are slightly better than chance but only just. The data used is the
same used for the loss distributions and contain around 55% spoofs. . 36

4.4 Mixture of eight Gaussians. All GMM we tried looked very similar in
their ability to differentiate live from spoof, so there is no particular
reason why we chose eight modes. This figure is confirming what we
could see in the scatter plots, that there is some difference between
certain subsets in the latent space. The difference is not very large
however and no major separation can be found. 37

4.5 Training on the filtered dataset seems to improve the performance of
our model to separate the paper subsets. This could however be due
to the altered distribution of head-poses since only the training data
was filtered. 38

4.6 Training on the filtered dataset improved the performance to separate
the live and spoof category based on reconstructions. 39

4.9 We see similar results for the ResVAE that we do for DCVAE, even
though it was allowed to train for longer and with a smaller batch size. 41

xiv

List of Figures

4.11 Sample reconstructions from the live category from DCVAE. In two
images the subject has glasses but those are gone in the reconstruc-
tions. In one a hand is being reconstructed as an ear. An angry face
is being reconstructed to something that looks like a big smile. 42

4.12 Sample reconstructions from the seen paper subset from DCVAE.
Images similar in domain to the car interior are reconstructed the
best. When the domain changes to a light background the network
fails completely to reconstruct. 43

4.13 Sample reconstructions from the unseen paper subset from DCVAE.
The network somewhat fails at reconstructing and in some recon-
structions it looks like the subject is wearing glasses. 43

4.14 Samples reconstructions from the seen mask subset from ResVAE.
The input images looks like they have been taken from the inside of
a car and may be why the reconstructions are better than some of
the paper reconstructions. The reconstructions are more human-like
than the inputs and in some the subjects are wearing glasses. 43

4.15 Sample reconstructions from the unseen mask subset from ResVAE.
The reconstructions are not as good as the ones from the seen mask
subset, but features from live faces are being reconstructed in some
of the images. Some are also appearing to wear glasses. 44

4.16 Precision-Recall cuve for test seen paper and test seen mask datasets.
The paper spoofs have a higher precision for lower recall, indicating
the most obvious spoofs are paper ones. 45

4.17 The figures show input samples and reconstructed output for the mask
and paper datasets respectively. Labels and anomaly scores belong
to image 1-4. Spoofs have label 1. Some images are partly covered
due to privacy concerns. 46

4.18 The ROC curve for mask and paper datasets showing dissimilar shapes.
While they have similar EER and AUC, the paper dataset shows
higher TPR for low FPR, while the mask dataset has higher TPR for
higher FPR. 46

xv

List of Figures

xvi

1
Introduction

Ever since the beginning of computers, we have tried to make them learn on their
own. In the 1950s, Arthur Samuel popularized the term Machine Learning when he
developed a computer program for playing checkers. Machine Learning is a form of
Artificial Intelligence (AI) that enables computers to learn from observed data rather
than strict programming; The field has slowly progressed forward, ever limited by
the hardware of its time.

1.1 Background

The term Deep Learning refers to the stacking of multiple layers of neurons in
Artificial Neural Networks (ANN), which can progressively improve their ability
through training. ANNs generally require minimal domain-specific programming
and can learn complex and abstract patterns through highly non-linear models with
millions of parameters. The learning process of networks is either Supervised or
Unsupervised (or a combination), which are useful for different applications.

During training in a supervised setting the ANN has access to a target (correct
answer) and improvements to the network is done by comparing the network pre-
dictions to targets. Supervised learning is often a more simple task and can yield
high accuracy with simple models. A drawback is the amount of annotated data
required to train the model which can be expensive or impractical to obtain. A
critical weakness for supervised learning is the inability to generalize knowledge to
unseen domains. This makes supervised learning unsuitable for anomaly detection
because only anomalies represented in the training data will be detected.

Unsupervised learning attempts to cluster and find patterns in unlabeled data. Dur-
ing training the unsupervised methods exhibit self-organization that learns the in-
ternal domains of the data as probability densities, in contrast to supervised learning
which has access to corrections during training. [1]

Face detection networks have reached a performance level where they are conve-
nient for real-time authentication. Classical authentication such as regular pass-
words works because it requires an access key that only a verified user would know.
Biometric security such as face detection relies on the fact that the access key is

1

1. Introduction

very hard to imitate. This puts a high degree of trust in face detection systems to
correctly identify when someone is trying to impersonate the authorized user.

1.1.1 Anti-spoofing

Face Anti-spoofing (FAS) refers to preventing security breaches in face recognition
systems by detecting spoofs or Presentation Attacks (PAs), which means trying to
fool the program by imitating a face through a mask, makeup, pictures, or other
methods. As facial recognition systems become more popular for authentication, the
sophistication of PAs will increase, and with it need for better Presentation Attack
Detection (PAD).

As smart cars get more popular and more features are added the requirement for
certain safety features becomes desired by customers, and sometimes even required
by law. [2] One such feature is drowsiness and distraction detection, which makes
sure the driver is focused on driving. These features require robust facial recognition
software, which includes some accuracy that the recognized face is a face.

There are many ways of making sure faces are real. One prevalent design is to use
neural networks to recognize the faces and imitations of faces. Using an unsuper-
vised model, some performance on seen data is compromised for the hope of better
generalization to new domains of spoofs.

The unsupervised approach to anti-spoofing is essentially understanding and esti-
mating the distribution of bonafide face images. Once the true distribution of faces
approximated, a PA or spoof can be discerned by recognizing it as anomaly in the
bonafide distribution. In some sense this is an anomaly detection problem where
spoofs or PAs are the anomaly.

1.1.2 Smart Eye

Smart Eye is a company located in Gothenburg, Sweden. It was founded in 1999
and has since grown into a company with over 100 employees. Their focus is mainly
on developing driver monitoring systems for the automotive industry using artificial
intelligence.

Main features of Smart Eye’s software is the driver facial recognition and fake driver
detection modules. By creating a new unsupervised anti-spoofing network, the goal
is to supplement the current anti-spoofing solution for improved unseen domain
adaptation.

The particular dataset used to test models in this thesis is provided by Smart Eye
and captured using near-infrared cameras. The dataset contains images of live faces
and different classes of spoofs. Training of ANNs has been done on processing units
on Smart Eye servers.

2

1. Introduction

1.2 Problem description

This thesis is concerned with developing and evaluating methods for unsupervised
anomaly detection in images, more specifically to detect PAs from bonafide facial
images.

The central task is to construct and train ANN models to learn the complex dis-
tribution of bonafide images by disentangling features of bonafide facial images.
The models will be challenged to predict whether a new image belongs to the seen
bonafide domain according to the disentangled representation.

The learning is done by forcing the model to compress and represent each facial
image with a lower-dimensional vector containing all information about the original
image, then reconstructing the image from that information. The hypothesis is
that by studying the compressed image representation and the reconstruction, some
anomaly score or other metric can be extracted to indicate domain affiliation.

How efficient can images be compressed using CNNs to still allow for adequate re-
construction?

Will the compressed vector have meaningful representations about the original image
which can be used to determine domain affiliation?

With what accuracy can spoofs be singled out by studying the reconstruction error
and compressed image vector?

1.2.1 Limitations
The competition for computational resources in a car is often high, even more so with
the emergence of smarter cars with more and more features available. Therefore,
any ANN models that run real-time inference have to be light, especially when such
an ANN is only a subfeature in a facial recognition system. Making a lightweight
network that could perform the anti-spoofing task was the first part of the project
scope. But to make a computationally efficient high accuracy model, a teacher-
student setup was required to condense the learned knowledge. This task was ulti-
mately abandoned due to time.

One other way to speed up inference without compromising model size is to use
quantization, which means restricting model weights and activation functions to
integers, or some small quantity that is not continuous like floating points. This is
something that was decided to be part of potential further research and thus was
not used in the final models.

All FAS experiments will be limited to a particular single channel (grayscale) dataset
provided by Smart Eye. The dataset has been cropped to center the face and
minimize the background in the images. The ANN model will therefore be limited
to categorizing PAs on similar datasets and is expected to have poor cross-domain

3

1. Introduction

generalization.

1.2.2 Outline of report
The report will be divided into 6 chapters. Chapter 2 will review central theoretical
concepts, establish a Bayesian framework for the models, and outline the fundamen-
tal structure of the ANN models used. The following chapters, Methodology, and
Results will describe modifications and parameters of the individual models and
their efficacy. The findings and results will be discussed in chapter 5 along with
candidate model architectures for future research. Chapter 6, Conclusion, will be a
summary of the project and report.

1.3 Related work
Face anti-spoofing is getting more attention as face recognition systems becomes
wide spread. Most research focuses on supervised and semi-supervised approaches,
and when unsupervised learning is used it is often supervised learning combined with
unsupervised domain adaptation. Contemporary research on deep face anti-spoofing
is summarized in a survey paper by Yu et al. [3].

The superior performance of supervised over unsupervised models has focused re-
search on supervised models. The unsupervised approaches used in prior research
has mainly used elements from autoencoders and GAN. A paper by Akcay et al. [4]
proposes a fully unsupervised anomaly detector in images using autoencoder design
patterns combined with a discriminator.

4

2
Theory

In this chapter we cover the main theory that is necessary to formulate the un-
supervised approach to Face Anti-spoofing. Firstly, the Bayesian Framework will
be introduced and the mathematical background of the models will be reviewed.
Thereafter, specific Deep Learning architectures such as Variational Autoencoders
(VAE) will be contextualized. Lastly, the classification process and associated math-
ematical theory will be detailed.

Most models in this thesis assume familiarity with how a posterior probability dis-
tribution is computed from a prior distribution and a likelihood function by using
Bayes’ theorem. The prior expresses ones beliefs before any data is observed and the
likelihood function describes the probability of observing data given some param-
eters. Readers whom wish to further acquaint themselves with Bayesian statistics
are referred to [5].

2.1 Probabilistic framework
In many machine learning tasks, we are interested in mathematically describing some
phenomena or processes and creating models to make future predictions. Probabilis-
tic models are used for understanding the process and to guide automated decision-
making. A probabilistic model either uses a conditional probability distribution
or a joint probability distribution to capture the uncertainty in the model. The
joint probability distributions are the most thorough and capture all higher-order
dependencies. [6]

Consider x as representing an observed random sample from a target process . The
true distribution preal(x) or just p(x) will be unknown, but can be approximated
with some model pθ(x) with parameters θ. The goal is to model pθ(x) such that:

x ∼ pθ(x). (2.1)

The model can be constructed to incorporate knowledge about the data distribution
that is known a priori while also adapting to new data. The process of learning in
machine learning is the iterative search for a value of the parameters θ such that the

5

2. Theory

probability distribution of the model pθ(x) better and better approximates that of
the true distribution p(x). The objective is to find a θ such that for any observed x:

pθ(x) ≈ p(x) (2.2)

2.1.1 Generative modelling
In statistical classification one either uses generative or discriminative modeling. The
formal definition is useful, but the dichotomy is inconsistent and falls apart under
scrutiny.[7] The discriminative models take a more direct, and arguably simpler
approach, to classify the data by emulating the conditional distribution P (y|x) for
each class label y. Thus, discriminative models have the sole objective of correctly
assigning labels to new observations, given previously seen data.

The generative model, in contrast, studies the joint distribution P (x, y) and at-
tempts to learn the underlying distributions of the data itself. The generative model
is therefore solving a more general problem than is necessary for the classification
task which brings higher bias and asymptotic errors [8]. However, knowledge of
the underlying distributions can be very valuable when understanding the process
which creates the data. Once the joint distribution is found, one can turn it into a
discriminator by using Bayes’ theorem to predict the possibility of label ŷ ∈ Y for
an unseen observation x̂.

Knowing the joint distribution also enables us to sample from it to generate new
data. The learned features and representations of the generative model can be more
interpretable and can also easier be generalized to data that arise from different
settings. [9] Further, the generative model can be used in an unsupervised manner
that the discriminative models by design can not.

The Variational Autoencoder (VAE) which will be introduced later, has been used to
learn representations of the data in an unsupervised manner by forcing it to perform
the inverse of the feature extraction process, namely to generate the data from the
representation. This seemingly redundant task helps disentangle meaningful lower-
dimensional representations and learn abstract features that make way for better
predictions downstream, especially on domains that are related but not explicitly
trained on. Since one of the main concerns of Face Anti-Spoofing is the handling
of new domains of spoofs, the unsupervised generative modeling is better suited to
tackle the problem.

2.1.2 Maximum likelihood
When some observed data points D are sampled from the true distribution p(x)
we would like our approximated distribution pθ(x) to have a high probability of
sampling those same data points. By maximizing the probability pθ(D) we are
maximizing the likelihood of samples D from the distribution pθ(x) with respect to
the parameters θ. The likelihood and the logarithm of the likelihood share optimal

6

2. Theory

parameters, so for practical reasons, we use the log-likelihood instead.

The maximum log-likelihood (ML) objective is often used for bayesian modeling and
can without loss of generality be converted to a minimization problem of the negative
log-likelihood with respect to the parameters θ.

− log pθ(D) = − log
∏
x∈D

pθ(x) =
∑
x∈D
− log pθ(x) (2.3)

Here we assume D = {xi}Ni=1 to be sampled from the same, unchanging distribution
and are said to be independently and identically distributed. Under this assumption,
the product of individual probabilities is converted to a sum under the logarithm,
which is more computationally tractable.

2.1.3 Latent variable models
Some large models have intermediate variables or representations of the input data
before the output is created. These hidden intermediate representations are some-
times called latent variables and are parts of the model that are inferred from the
input rather than observed. A common example of latent variables is the values of
hidden layers in a deep neural network.

Modeling p(x) for a high complexity distribution such high-resolution images can
be very challenging, especially when the number of observations is limited. By
introducing latent variables which transform the complex datapoints x to a lower-
dimensional space, denoted z, we attempt to explain the important features of x
using only z. By attempting to recreate x from the latent variables, z acts as a
bottleneck through which all the information has to be compressed.

The compressed representation of the data should in theory contain all the infor-
mation needed to reproduce the original data. This assumption stems from the
manifold hypothesis that high-dimensional data lie on a lower-dimensional manifold
embedded in the higher dimensional space. [10]

For some model with parameters θ we can now define the prior distribution of the
latent variables pθ(z) and the likelihood distribution pθ(x|z) that an input x will give
rise to a latent variable z. Further, the prior and the likelihood can be combined to
form the joint distribution

pθ(x, z) = pθ(x|z)pθ(z). (2.4)

Note that there are two kinds of parameters in this model, the latent variables z
and the parameters θ. In a Bayesian framework, the model parameters are the
parameters of the prior and posterior, which here are the latent variables z.

7

2. Theory

The parameters θ governs the relationship between input data x and the latent
variables z through the model pθ. But since these parameters are fixed under the
Bayesian calculations, they can be considered hyperparameters in the Bayesian for-
mulation. The hyperparameters θ will be shown to manifest as neural network
weights and are not to be confused with neural network hyperparameters such as
the learning rate.

The joint distribution is related to the sought after marginal distribution pθ(x) by
the integral:

pθ(x) =
∫
pθ(x, z)dz (2.5)

which lacks analytic solution and is typically intractable to compute for non-trivial
likelihood functions p(x|z) e.g neural networks with non linear hidden layers. [11]

Using Bayes rule we can also define the posterior distribution p(z|x) which expresses
the beliefs about the latent variables after observing a data point. The posterior is
related to the marginal, prior, and likelihood with:

pθ(z|x) = pθ(x, z)
pθ(x) . (2.6)

With the definitions in table 2.1 we can further formulate a Bayesian model with
a generative and an inference component. Generation is when we sample z from
the prior p(z) then relate them to observations x through the likelihood p(x|z).
Inference is conditioning on data x and infering latent variables from the posterior
p(z|x). The flowchart of this process is shown in figure 2.1.

pθ(x) pθ(z)

pθ(z|x)

pθ(x|z)

x ∼ p(x)
PriorMarginal

Inference

Generation

Figure 2.1: Generation (green) starts at the prior for the latent variables and
samples z ∼ pθ(z) then x ∼ pθ(x|z) to generate a new data point. Inference (red)
samples from x ∼ p(x) then z ∼ pθ(z|x) to infer latent variables.

To avoid having to compute the intractable integral for the marginal distribution in
2.5 we can leverage the divided structure of inference and generation. By arbitrarily

8

2. Theory

Table 2.1: Bayesian Statistics definitions.

Symbol Description
z Latent Variable
x Data
pθ(x) Marginal Distribution
pθ(z) Prior Distribution
pθ(z|x) Posterior Distribution
pθ(x|z) Likelihood Distribution

choosing the prior and likelihood as part of the model, we can reduce the problem to
an approximate inference of the posterior. There are different approximate inference
techniques, but the one considered in this thesis is variational inference.

2.1.4 Variational inference vs. MCMC
There are two main approaches to the approximate inference of the posterior; Markov
Chain Monte Carlo (MCMC) sampling, and variational inference.

MCMC has been dominant in Bayesian modeling with algorithms such as theMetropolis-
Hastings and the Gibbs sampler. In these algorithms, we construct an ergodic (recur-
rent) Markov chain with the posterior p(z|x) as the stationary distribution. We then
sample from the chain and approximate the posterior from the collected samples.

For complex models or very large datasets, MCMC algorithms can fail to converge
in a reasonable time which makes variational inference a good alternative. The
idea behind variational inference is to turn a sampling problem into an optimization
problem. First, a family of distributions is chosen for the density of the latent
variables, often a mixture of Gaussian is sufficient. Then we find a distribution from
that family which minimizes the Kullback-Leibler divergence to the exact posterior.

The complexity of the family of distributions used for the latent variables p(z) creates
a manageable scope for the optimization problem of approximating the posterior
p(z|x). The idea is to regularize the distribution of the latent variables such that
it is sufficiently malleable to approximate the true posterior well while still being
simple enough for efficient computation. In short, variational inference does not
guarantee reproducing (asymptotically) exact samples from the target density like
MCMC but tends to be faster due to the advantage of stochastic optimization. [12]

2.1.5 Kullback-Leibler divergence
To measure the similarity between two distributions we can use the Kullback-Leibler
divergence, DKL. It measures how one probability distribution q differs from a ref-
erence distribution p in terms of the information provided. The intuition is that
observing something probable yields low information, while the knowledge of a rare
event occurring yields high information. In some way, the DKL measures the ex-
pected surprise (Shannon information) from using q as a way to model p.

9

2. Theory

Since information is inversely related to the probability of an event x, we choose to
model information of x with respect to some distribution p as − log p(x) = Ip(x).
The difference in information between the two distributions is, therefore:

∆I = Ip − Iq = − log p(x) + log q(x) = log
(
q(x)
p(x)

)
Thus, the expectation of the difference in information is the DKL:

DKL

(
q(x)||p(x)

)
= Eq[∆I] =

∫
q(x) log

(
q(x)
p(x)

)
dx (2.7)

DKL is asymmetric and is therefore called a divergence rather than a metric, and
by noting log x ≤ x− 1 we can show that the DKL is non-negative.

−DKL

(
q(x)||p(x)

)
=
∫
q(x) log

(
p(x)
q(x)

)
dx

≤
∫
q(x)

(
p(x)
q(x) − 1

)
dx =

∫
q(x)p(x)

q(x)dx−
∫
q(x)dx = 1− 1 = 0.

(2.8)

2.1.6 Evidence lower bound (ELBO)
When the prior pθ(z) and the likelihood pθ(x|z) are arbitrarily chosen, the posterior
pθ(z|x) is computed by an intractable integral. Therefore we further approximate
the posterior using approximate variational inference denoted qφ(z|x) with new pa-
rameters φ.

To express the end goal of maximizing the likelihood in terms of the approximate
posterior we use an alternative objective function that acts as a proxy to the ML-
objective; the evidence lower bound (from the ML objective integral being called
model evidence). Remember the ML objective (the marginal distribution) is not
dependent on the latent variables, so taking the expectation with respect to z does
not affect the expression. The true posterior given by the model (prior and likeli-
hood) under the data x is pθ(z|x) and approximated posterior is qφ(z|x) which will
be fitted to the true posterior using a neural network.

log pθ(x) = Ez∼qφ(z|x)[log pθ(x)]

= Ez∼qφ(z|x)

[
log pθ(x, z)

pθ(z|x)

]

= Ez∼qφ(z|x)

[
log pθ(x, z)

qφ(z|x)
qφ(z|x)
pθ(z|x)

]

= Ez∼qφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
︸ ︷︷ ︸

ELBO

+Ez∼qφ(z|x)

[
log qφ(z|x)

pθ(z|x)

]
︸ ︷︷ ︸

DKL

(2.9)

10

2. Theory

Here we have first used Bayes theorem to expand the marginal, then extended the
fraction with the approximate posterior. Note that the second term is by definition
the KL divergence of qφ with respect to pθ:

Ez∼qφ(z|x)

[
log qφ(z|x)

pθ(z|x)

]
= DKL(qφ(z|x)||pθ(z|x)) ≥ 0.

The first term in 2.9 is what we refer to as the ELBO:

Ez∼qφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
= Lθ,φ(x) (2.10)

By solving for the ELBO we get:

Lθ,φ(x) = log pθ(x)−DKL(qφ(z|x)||pθ(z|x)) (2.11)

From this, we can note that the maximization of ELBO achieves two things. It
improves the generative model in the sense that the marginal likelihood pθ(x) will
increase, and at the same time it will minimize the KL divergence between the
approximate posterior to the true posterior. [6]

Decomposing Lθ,φ(x) and applying Bayes theorem yields:

Lθ,φ(x) = Ez∼qφ(z|x)
[

log pθ(x, z)
]
− Ez∼qφ(z|x)

[
log qφ(z|x)

]
= Ez∼qφ(z|x)

[
log pθ(z)

]
+ Ez∼qφ(z|x)

[
log pθ(x|z)

]
− Ez∼qφ(z|x)

[
log qφ(z|x)

]
= Ez∼qφ(z|x)

[
log pθ(x|z)

]
− Ez∼qφ(z|x)

[
log qφ(z|x)

pθ(z)

]
= Ez∼qφ(z|x)

[
log pθ(x|z)

]
−DKL(qφ(z|x)||pθ(z))

(2.12)

which can be seen as two terms, one concerning the reconstruction likelihood pθ(x|z)
of the data and one as a regularizer on the approximate posterior (DKL). [13] The
next section will show that the ELBO allows for stochastic optimization with respect
to the model parameters.

2.2 Artificial Neural Networks
Differentiable feed-forward neural networks, or just networks, are a particularly flex-
ible and scalable function approximator. Deep learning is another name for neural
networks with multiple "hidden" layers, which have proven remarkable performance
on a wide variety of tasks, one of them being classification. [14]

11

2. Theory

ANNs will be used through this paper to model the processes described in figure
2.1. Even though the architectures of neural networks differ, they all have in com-
mon that they are optimized with respect to some main objective function, often
called the loss function. The loss we ideally would use is the ML-objective, but as
previously explained, proxies to the ML objective such as ELBO are more efficient,
stable, and produce the same results.

2.2.1 Stochastic gradient descent
Neural networks and their success relies on the fact that they are differentiable with
respect to the parameters θ. The reverse-mode automatic differentiation algorithm
proposed by Rumelhart et al. in 1988, most commonly known as backpropaga-
tion, allows efficient calculation of the value and gradient of the objective function
[15]. The gradients can be used to iteratively find local optima of the objective by
updating the parameters:

θt+1 = θt − η∇θL(θ) (2.13)

where L(θ) is an unbiased estimate of the objective (or loss) function and η is the
learning rate. The objective can for example be the minimization of the negative ML.
The learning rate can be dynamically chosen during experiments with optimization
methods such as Adam [16]. In general, the learning rate is high at the beginning
of training and decays as the improvements to the objective stagnate.

If we compute the gradients using a portionM of the dataset, it would be referred to
as a batch gradient descent. Using large batches yields smoother training at the cost
of computational complexity since the operation scales linearly with the batch size
N . A method known as stochastic gradient descent (SGD) uses randomly sampled
batches of size N from the total datapoints D, yielding unbiased (scaled) stochastic
gradients: [6]

1
ND
∇γLγ(D) ≈ 1

NM

∑
x∈M
∇γLγ(x). (2.14)

where Lγ is the loss (objective) function with parameters γ. The right-hand side
of equation 2.14 is an unbiased estimator of the desired gradients (over the whole
dataset) on the left-hand side. Since the noise introduced in the sampling ofM∈ D
is unbiased, we can use these gradients to repeatedly update the parameters in the
direction of the stochastic gradients and optimize the objective.

2.2.2 Activation functions
The output from a layer in an ANN is usually passed through what is called an
activation function. Without any activation functions, the mapping from one layer

12

2. Theory

to another is linear. If we add a nonlinear activation function to the output we
can capture non-linear behavior. Some examples of common non-linear activation
functions are the ReLU function

ReLU(x) =

x, for x ≥ 0
0, for x < 0

(2.15)

the sigmoid function

σ(x) = 1
1 + e−x

(2.16)

and tanh(x). There are many more non-linear activation functions and each has
its advantages and downsides. In some cases, it is not necessary with non-linear
activation functions, such as in the last output layer. Layers without activation are
called linear and simply become linear regression models.

2.2.3 Convolutional Neural Networks (CNN)

Regular ANN tends to struggle with the computational complexity of dealing with
image data. Images tend to be fairly high dimensional, with each pixel adding a
dimension. Dense layers in ANN connect every neuron with every neuron in the next
layer which for high dimensional data creates an even larger number of dimensions
for the weights between the layers. [17]

Usually when considering an image, one does not need to consider the image in its
entirety, but one usually refers to its local feature. The features can for example be
horizontal edges, vertical edges, dots, etc. The local features together construct the
image.

CNN tries to extract these features and condense the image data to different feature
maps. A convolutional layer is comprised of a kernel that is swept across the input
image and element-wise multiplied with segments, of the same size as the kernel,
of the image. This produces a value that is then stored in the output image. The
kernels and biases are the trainable parameters of the convolutional layer and each
kernel in a layer learns different features. It is common to pass the resulting output
through an activation function.

Hyperparameters set during the creation of the layers are the kernel stride, filter
size, and the number of filters. The stride is the step length the kernel uses to sweep
(and multiply) over the image. The filter size commonly referred to as the receptive
field size [17], describes how large of a portion of the input will have an impact on
the output. The number of filters is how many channels the output will have and
as described previously will learn different features of the input.

13

2. Theory

Input image

1 2 1
-3 0 1
1 -2 -2

Receptive field

1 2 1
-3 0 1
1 -2 -2

×

Kernel

0 0 0
1 1 1
0 0 0

Output pixel

-2

Figure 2.2: A visualization of the convolution operator in a convolutional layer.
First, a segment with the size of the receptive field is taken from the input image.
Then the segment is multiplied element-wise with the kernel and a sum is taken
over the resulting elements and a bias is added to calculate the pixel value in the
resulting output image.

Mathematically the convolution layer operator on an image can be described by

Vij = g
(P∑
p=1

Q∑
q=1

wpqxp+s(i−1),q+s(j−1) − θ
)

(2.17)

where Vij is the output image, g the activation function, wpq is the kernel, (P,Q)
the receptive field size, s is the stride size, and θ is the bias/threshold [18].

2.2.4 Pooling layers

In a convolutional layer, each pixel in the input influences several pixels in the
output due to the construction of the convolutional operator. It can be reasonable
to assume that some information in the output is redundant and that the dimensions
can be reduced without major information loss. This is the goal of pooling layers.

Pooling is done by sweeping a kernel over the input image and performing a pooling
operation on the whole perceptive field. The pooling operator not only mutates but
also reduces the dimension of the output. Some common pooling layers are max
pooling which reduces the receptive field to the maximum value of the field and
average pooling converts the receptive field to the receptive field average.

Pooling layers are similar to convolutional layers, but what distinguishes the pooling
layers are the dimensional reduction of the receptive field and the lack of trainable
parameters.

A pooling layer with stride s = 2 and receptive field size (2, 2) operating on an image
of size 128× 128 would produce an output of size 64× 64, effectively downsampling
the image and reducing the number of pixels by a factor of 4.

14

2. Theory

2.3 Variational Autoencoder
A variational autoencoder is a type of ANN that provides a probabilistic approach
for describing an observation in latent space and modeling the structure shown in
figure 2.1. The autoencoder is made up of two major parts, the encoder and the
decoder, responsible for inference and generation respectively. The encoder outputs
probability distribution for the latent variables z, while the decoder generates a new
data point from the latent variables.

Any distribution could be used to model the latent variables, but with quite simple
distributions such as a Gaussian distribution (making the latent space a mixture
of Gaussians), we can model arbitrarily complex marginal distributions. As will
be shown, using Gaussian priors for the latent variables enables analytical tricks
to provide more efficient optimization steps. By using Gaussian distributions, the
encoder generates means µ and variances σ2 from which the latent variable z is
drawn. This assumes that each z is independent of the previous z but also that each
value in z is independent of the others, much like Mean Field Theory.

Encoder Decoderz ∼ N (µ, σ2)x x̂

qφ(z|x) pθ(x|z)
Figure 2.3: The structure of the variational autoencoder. The encoder approx-
imates the posterior by generating means µ and variances σ2 for each latent di-
mension. This makes every single z sampled from a unique Gaussian distribution,
making the z-space a mixture of Gaussian distributions. Further, the covariance
matrix for z is diagonal meaning each value of z is independently sampled. The
decoder generates new samples from the latent variables z.

The Bayesian framework of Variational Autoencoders (VAE) assumes that the input
data x is sampled from an unknown probability distribution p(x). The goal is
to model the parameterized distribution pθ(x) using the encoder and decoder as
two connected but independently parameterized models. As mentioned, when the
posterior is approximated by variational inference to qφ(z|x) the overall problem
is converted into the autoencoder domain and parameterized on parameters in the
form of neural network weights θ and φ. The model parameters θ are all weights
concerning the generative encoder module and φ are the variational parameters of
the inference decoder module.

2.3.1 Reparametrization trick
The VAE seeks to maximize the ELBO Lθ,φ(x) objective that acts as a proxy for
the ML objective for reasons mentioned in previous sections. The computation of

15

2. Theory

joint optimization with respect to all parameters is an important attribute of the
ELBO and one that requires a small reformulation of the framework in the decoder.
Recall that for successful backpropagation the gradients for all parameters have to
be computed.

Generator parameters (decoder)

To compute the gradients with respect to the generator parameters θ, the argument
is quite straight forward.

∇θLθ,φ(x) = ∇θEz∼qφ(z|x)[log pθ(x, z)− log qφ(z|x)]
= Ez∼qφ(z|x)[∇θ log pθ(x, z)−∇θ log qφ(z|x)]
= Ez∼qφ(z|x)[∇θ log pθ(x, z)]

(2.18)

Here the definition of ELBO is taken from equation 2.10, then the gradient can be
moved inside the expectation since z ∼ qφ(z|x) is not dependent on θ, and for the
same reason the second term is removed. To estimate the expectation, samples are
drawn from z ∼ qφ(z|x) (mini-batch used in SGD) which are then used to compute
the approximate (unbiased) batch gradients.

Inference parameters (encoder)

Sampling unbiased estimates of the ELBO gradients w.r.t. the variational parame-
ters φ can not be done quite the same since:

∇φLθ,φ(x) = ∇φEz∼qφ(z|x)[log pθ(x, z)− log qφ(z|x)]
6= Ez∼qφ(z|x)[∇φ log pθ(x, z)−∇φ log qφ(z|x)]

(2.19)

The gradients can not be moved inside the expectation since z ∼ qφ(z|x) is depen-
dent on φ. We would need some alternative way of representing the encoder such
that it is differentiable.

By reformulating the stochastic process of inference of the latent variables using the
so-called reparametrization trick [19] the randomness is outsourced to a separate
variable ε independent from x and φ such that:

z = µφ + σφ � ε (2.20)

The backpropagation with respect to the variational parameters φ through the la-
tent variables can now be done due to z being deterministic with respect to x and
φ. In the illustration figure 2.4, the original formulation of the objective is depen-
dent on the random variable z which can not be differentiated with respect to φ
because of the probabilistic nature. The reparametrized form allows differentiation
of the objective to be done with respect to the now deterministic dependency on φ.

16

2. Theory

First introduced as "Stochastic Gradient Variational Bayes (SGVB) estimator." by
Kingma and Welling 2014 [11].

z

f

xφ

z

f

xφ ε

Original Reparameterized

∼ qφ(z|x) = µφ + σφ � ε

Backprop.

∇φf

Figure 2.4: Reparametrization of the stochastic calculation of z to allow for differ-
entiation with respect to φ of the objective f, a necessity for backpropagation. The
blue nodes are stochastic nodes that can not be backpropagated through.

2.3.2 Closed form loss with gaussian latents
The assumption that the latent variables and the posterior follow Gaussian distribu-
tions are valid and can still produce flexible model behavior as mentioned in previous
sections. A closed-form solution for the regularization term DKL(qφ(z|x)||pθ(z)) can
be found under this assumption.

∀z ∈ z p(z) = 1√
2πσ2

p

exp
(
− (x− µp)2

2σ2
p

)
(2.21)

∀z ∈ z qφ(z|x) = 1√
2πσ2

q

exp
(
− (x− µq)2

2σ2
q

)
(2.22)

where z is an element of z and µp and σp are the means and variances generated
by model p(z) for each element z in z, extends similarly to the the approximate
posterior qφ(z|x). By the definition of DKL and expanding using logarithmic laws:

∀z ∈ z −DKL(qφ(z|x)||p(z)) = 1√
2πσ2

q∫
exp

(
− (x− µq)2

2σ2
q

)(
− log

(σq
σp

)
− (x− µp)2

2σ2
p

+ (x− µq)2

2σ2
q

) (2.23)

17

2. Theory

which can be expressed as an expectation with respect to with respect to q:

∀z ∈ z −DKL(qφ(z|x)||p(z)) =

= Eq
[

log
(σq
σp

)
− (x− µp)2

2σ2
p

+ (x− µq)2

2σ2
q

]

= log
(σq
σp

)
− 1

2σ2
p

Eq
[
(x− µp)2

]
+ 1

2σ2
q

Eq
[
(x− µq)2

]
︸ ︷︷ ︸

σ2
q

= log
(σq
σp

)
− 1

2σ2
p

Eq
[
(x− µq + µq − µp)2

]
+ 1

2

(2.24)

which can be furthers simplified by rewriting the term in the expectation as a bino-
mial square of x− µq and µq − µp and using the definition of σ2

q .

∀z ∈ z −DKL(qφ(z|x)||p(z))

= log
(σq
σp

)
−
σ2
q + (µq − µp)2

2σ2
p

+ 1
2

when: σp = 1, µp = 0

=1
2
[
1 + log(σ2

q)− σ2
q − µ2

q

]
(2.25)

which is a closed expression for the Kullback-Leibler term used in ELBO. In practice
this analytical expression is used to speed up computations.

2.4 Generative Adversarial Networks
Generative Adversarial Networks were first proposed in 2014 [20] with the idea
of two agents competing against each other in an imitation game. The generator
produces novel images imitating some target dataset, while the discriminator tries
to distinguish which images are generated. The two models, the generator and the
discriminator are adversarial during training with incompatible goals, thus their
contest is a zero-sum game where the improvement of one comes at the expense of
the other.

The core idea is to use the discriminator classifications to train the generator and
thus avoiding the need for outside labels. Since the generator is only trained to
deceive the discriminator, the training can be done unsupervised.

2.5 Anomaly detection
When the data distribution is adequately approximated, some method or process
has to be applied to classify samples as bonafide or spoof.

18

2. Theory

There are two main areas where the spoof detection can be made, the first is looking
at the location in latent space, and the other is looking at the reconstruction of the
image. For example, the latent space can be gitted to a Gaussian mixture model
(GMM) or the reconstructed image can be analyzed in terms of reconstruction error
or by a discriminator network.

2.5.1 GMM

Every input image is given a coordinate (or vector) in the latent space, the combined
locations for these embeddings of all the live images can be used to model the latent
distribution of live images using a GMM model.

Mixture models are used to represent subpopulations within a larger population
using a mixture of probability densities. In this work, only mixtures of Gaussian
distributions are concerned, hence GMM.

The GMM algorithm only has access to the number of subpopulations and attempts
to find subpopulations with Gaussian shapes in the latent space, and through them
represent the whole population. As the number of subpopulations increases, GMMs
can model more and more complex distributions and at the limit, each observation
is its subpopulation.

For new observations, GMMs calculate the probability of the sample belonging to
each of the individual modeled subpopulations, and through those probabilities,
a spoof detector can be constructed. The spoof detector will have a confidence
measure relating to the ratio of the probabilities of each subpopulation.

In this work, GMMs will be used on the latent variables z in the hope that two (or
more) subpopulations will emerge containing bonafide samples in one and different
kinds of spoof attacks in the others.

2.5.2 Discriminator

A discriminator network is a classifier used in adversarial training that distinguishes
real from fake. A discriminator can be used in adversarial training where a generator
and discriminator compete against each in a zero-sum game. The generator creates
images resembling the target distribution and tries to fool the discriminator.

In an adversarial training setting, the goal of the discriminator is often just to train
the generator, and when training is complete, the discriminator is discarded and
the generator is the final product. The Generative Adversarial Network (GAN) is
a simple way of utilizing adversarial training. Though the discriminator primarily
is a tool to improve training, it could in theory be used as a spoof detector module
once training is done.

19

2. Theory

2.5.3 Anomaly score by reconstruction error
A very straightforward approach to classifying spoofs is to give each input image
an anomaly score depending on how well the image is reconstructed. A generator
network will be better at reconstructing images that are trained on, which in this
case is live images. When a spoof (anomalous) image is presented and reconstructed,
that reconstruction could be worse since the network is not trained for that task.
The `2 norm is used in this thesis for anomaly score based on reconstruction error.

20

3
Methodology

This chapter presents the details of the specific models used in the thesis, as well as
the preprocessing of the data. The details include the training procedure, hyperpa-
rameters and evaluation of the individual networks.

3.1 Data acquisition
The dataset used is collected by Smart Eye by recording subjects and objects in an
environment that simulates the inside of a car. All videos were filmed in the Near
Infra Red (NIR) spectrum of light, a spectrum invisible to humans, as to not disturb
the driver and to reduce the influence of daylight ambience. The video data was
sliced into image frames at different times and these images served as the input for
our networks.

One of our goals was to evaluate the potential of using different unsupervised meth-
ods for Presentation Attack Detection (PAD) of which the objective is to recognize
whether the subject in the recording is a real person. This essentially means the
network does not have access to the image label (live/spoof) during training and is
prompted to find intrinsic groupings in the data.

Another goal was to explore the possibility of only training the networks using live
data and use the spoofs exclusively for testing purposes. This is because there is
generally an abundance of data from live subjects and it is much easier to collect.
There are also multiple domains of spoofs, and creating spoof data from all possible
spoof domains is impossible, so having a network that can learn without seeing
spoofs is a definitive advantage. We also restricted ourselves to only use data from
a single camera as input to the networks. This would make an eventual commercial
product easier and cheaper to implement, and the inference less computationally
heavy.

3.1.1 Data subsets
The dataset contains grayscale images of size 128× 128 and auxiliary data such as
head rotation angles, live/spoof labels etc. The auxiliary data was used for filtering
the data into new datasets, but never used during training and inference. Further,

21

3. Methodology

the dataset is divided into subject IDs and each ID is divided into different recording
sessions. Each subject ID may or may not contain data from the two spoof categories
and the live category. mask and paper prints.

Taking our goal, to evaluate the potential of only training on live data, into account
we decided to create the follow subsets of the data.

• Training data: Contains subject IDs of which there are recordings of either
mask, paper prints or both.

• Test, live only: Contains subject IDs of which there are only live recordings.
Because of this there are no common IDs in this set and any other set.

• Test, seen paper: Contains subject IDs of which there are both recordings
of live and paper prints. All IDs in this set are also contained in the training
set.

• Test, unseen paper: Contains subject IDs, not contained in the training set,
of which there are recordings of paper prints.

• Test, seen mask: Similar to the seen paper set, but with recordings of masks.

• Test, unseen mask: Similar to the unseen paper set, but with recordings of
masks.

It is worth pointing out that none of the latex masks are made to look similar to
any of the live subjects and it can therefore be argued that the distinction between
seen mask and unseen mask is unnecessary since none portrays individuals in the
training data. The unseen mask dataset contains some images of mannequins with
masks, and for that reason the subset division was kept as provided.

Training & Test, live only sample

Figure 3.1: Samples from the training data. Due to privacy concerns we will not
include data from the subset ”Test, live only” directly. It is however very similar to
the training data since it is composed of live only images.

22

3. Methodology

Test, seen paper

Figure 3.2: Samples from the subset ”Test, seen paper”.

Test, unseen paper

Figure 3.3: Samples from the subset ”Test, unseen paper”.

Test, seen mask

Figure 3.4: Samples from the subset ”Test, seen mask”.

23

3. Methodology

Test, unseen mask

Figure 3.5: Samples from a single ID from the subset ”Test, unseen mask”.

3.2 Preprocessing

Some experiments, especially the first ones, used all the available image data. The
full dataset contains images of subjects from a variety of head pose rotations and
thus requires the model to capture a larger data distribution. The large variance may
make it harder for the network to learn the data distribution so later experiments
used a filtered dataset where head poses were limited to a certain angle range. Some
session outliers were also filtered out to stabilize the training.

3.2.1 Head pose filtering
Each observation has a head pose in three dimensions associated with it. These can
be though of as the head rotation from "side to side", "up and down", and "head
tilt". To limit the size of the training set and the target distribution, only faces with
a general "forward" facing direction were trained on. The angle ranged used were:

min angle axis max angle
-10◦ x 10◦
-10◦ y 10◦
-10◦ z 10◦

Table 3.1: Head position angle filtering in degrees. The x, y, z axes correspond to
"side to side", "up and down", and "tilt" respectively.

Head position filtering reduced the dataset of 5 928 000 images down to 596 000,
about 10% of the original. The the head position ranges were chosen to be small
while still maintaining a large dataset.

24

3. Methodology

3.2.2 Session outlier filtering
As described previously the data was divided into different recording sessions with
all images from a session originating from the same video. Some images might be
considered outliers in a session, for example, a frame where the lighting is signifi-
cantly different or a hand covers the face etc. And since the dataset is to large for
manual filtration it was decided that images with an mean pixel value outside of 1
IQR (Interquartile Range) were potential outliers, and was removed. The threshold
of 1 IQR is quite low, and presumably some seemingly normal images were removed.
But because of the abundancy of training data, uniformity of the dataset was valued
over size. IQR filtration accounted for a 7% reduction in dataset size down to 557
000 images.

3.2.3 Augmentations
Since the data was generated by slicing raw video data they are part of a sequence
and some images might be very similar to each other, especially if the subject has
not moved significantly between frames. This can make the dataset contain vir-
tual duplicates and be too uniform. Data augmentations combats this by adding
transformations such as rotation, reflections, scaling etc. to the data and increases
the variance. Augmentations were implemented in some experiments in the hope of
boosting performance.

(a) Unaugmented images (b) Augmented images

Figure 3.6: The effect of all augmentations. (a) shows an unaugmented subset of
the data while (b) shows a different subset with augmentations. All images from
the same subject ID.

One augmentation that was always performed was standard scaling, where we scale
the images to have a mean of µimage = 0.5, standard deviation of σimage = 0.25, and
the value range clipped to the range X ∈ [0, 1]. The reason for this augmentation
was to make training easier, since differences in lighting during the recording session

25

3. Methodology

won’t have as much of an impact on the augmented image. The range was set so
the network output range will be the same as the input range.

3.3 Deep Convolutional Variational Autoencoder
(DCVAE)

This network is a standard sequential convolutional network, except for the stochas-
tic latent interface between the encoder and the decoder. The number of filters are
growing towards the encoder/decoder interface, while the image size is shrinking.
Inspiration for these specific hyperparameters came from a previous project at Smart
Eye where it showed some success at image decoding.

Encoder Act. Output shape
Image input - 1× 128× 128
Conv 3× 3 ReLU 32× 128× 128
Conv 3× 3 ReLU 64× 128× 128
MaxPool - 64× 64× 64
Conv 3× 3 ReLU 128× 64× 64
MaxPool - 128× 32× 32
Conv 3× 3 ReLU 256× 32× 32
MaxPool - 256× 16× 16
Conv 3× 3 ReLU 512× 16× 16
MaxPool - 512× 8× 8

Fully connected - 1024× 1× 1
Sampling - 512× 1× 1

Decoder Act. Output shape
Latent input - 512× 1× 1
Reshape - 8× 8× 8

Upsampling - 8× 16× 16
Conv 3× 3 ReLU 512× 16× 16
Upsampling - 512× 32× 32
Conv 3× 3 ReLU 256× 32× 32
Upsampling - 256× 64× 64
Conv 3× 3 ReLU 128× 64× 64
Upsampling - 128× 128× 128
Conv 3× 3 ReLU 64× 128× 128
Conv 3× 3 ReLU 32× 128× 128
Conv 1× 1 Sigmoid 1× 128× 128

Table 3.2: Architecture of the net we chose to call ”Deep Convolutional Variational
Autoencoder”.

Evidence Lower Bound (ELBO) loss

The VAE models use the probability framework described in section 2.3 and the
goal during training is to maximize the ELBO. However, since the optimizer of the
networks use SGD we need to find an objective function to minimize. To do this,
just change the signs in the ELBO and define the ELBO loss as

LELBO = −Ez∼qφ(z|x)[log pθ(x|z)] +DKL(qφ(z|x)||pθ(z)) = Lrec + LKL, (3.1)

where Lrec = −Ez∼qφ(z|x)[log pθ(x|z)] and LKL = DKL(qφ(z|x)||pθ(z)).

Reconstruction loss

The term Lrec is called the reconstruction loss, since the more similar the output of
the VAE model is to the inpus, the lower the reconstruction loss. We can approxi-
mate the expected value in the term by taking the average over a sample

26

3. Methodology

Lrec = −Ez∼qφ(z|x)[log pθ(x|z)] ≈ − log pθ(x|z) (3.2)

It is then calculated by taking the binary cross entropy between the original image,
X, and the reconstructed image, X̂, and averaging over the entire image.

Lrec = 1
HW

H∑
i=1

W∑
j=1

BinaryCrossEntropy(Xij, X̂i,j), (3.3)

where H, W are the height and width of the image.

Kullback-Liebler loss

This term, LKL, is calculated as follows

LKL = −1
2

N∑
i=1

(1 + izlog σ2 + iz2
µ − exp(izlog σ2)). (3.4)

The terms izµ, izlog σ2 are the mean and log-variance of a latent sample in each
dimension and are outputs of the two layers prior to the latent output.

3.4 ResNet Variational Autoencoder (ResVAE)

We saw some indications from early experiments that more filters yielded better
reconstructions. One way to increase the number of filters is to use a deeper model
with more convolutional layers. However, by adding more layers one may encounter
a problem known as vanishing gradients [21], where the weight update from layers
closer to the input becomes small compared to the layers closer to the output. One
way to combat this is to use residual networks [22] that add skip connections between
layers. This effectively makes part of the network not as deep and can speed up the
learning.

However, since the number of channels generally differ between convolutional layers
used in our models, we add a convolutional layer at each skip connection to match the
number of channels before adding. Figure 3.7 shows the residual blocks (ResBlocks)
we used. This layout took inspiration from another thesis done at Smart Eye [23].

27

3. Methodology

ResBlock

Conv

ReLU

Conv

Conv

+

Figure 3.7: Layer structure of a residual block used in this paper. The output from
the connection, with two convolutional layers and a ReLU activation function, is
added with the output from the skip connection, that only contains one convolutional
layer. The convolution at the skip connection is done so the number of channels
match when adding the outputs. The skip connection allows for a shorter path
during backpropagation which mitigates the problem with vanishing gradients.

Encoder Act. Output shape
Image input - 1× 128× 128
Conv 3× 3 - 32× 128× 128

ResBlock 3× 3 - 64× 128× 128
AvgPool - 64× 64× 64

ResBlock 3× 3 - 128× 64× 64
AvgPool - 128× 32× 32

ResBlock 3× 3 - 256× 32× 32
AvgPool - 256× 16× 16

ResBlock 3× 3 - 512× 16× 16
AvgPool - 512× 8× 8

ResBlock 3× 3 - 512× 8× 8
AvgPool - 512× 4× 4

Fully connected - 1024× 1× 1
Sampling - 512× 1× 1

Decoder Act. Output shape
Latent input - 512× 1× 1
Reshape - 32× 4× 4

Upsampling - 32× 8× 8
ResBlock 3× 3 - 512× 8× 8
Upsampling - 512× 16× 16

ResBlock 3× 3 - 256× 16× 16
Upsampling - 256× 32× 32

ResBlock 3× 3 - 256× 32× 32
Upsampling - 128× 64× 64

ResBlock 3× 3 - 64× 64× 64
Upsampling - 64× 128× 128

ResBlock 3× 3 LReLU 32× 128× 128
Conv 1× 1 Sigmoid 1× 128× 128

Table 3.3: Architecture of the ResNet used. Notice that the last ResBlock uses
LeakyReLU output activation.

ELBO loss

This model is also a VAE and thus uses the same losses as the Deep Convolutional
Variational Autoencoder.

3.5 GANomaly
The architecture proposed by Akcay et al. [4] features a deep encoder-decoder struc-
ture coupled with a discriminator and adversarial training. The architecture includes

28

3. Methodology

a classic encoder-decoder to produce latent representations and image reconstruc-
tion, a second encoder is added after the decoder to produce representations of the
reconstructed images. A discriminator network is connected to the input image and
the reconstructed image in order to penalize bad reconstruction.

Like the name GANomaly might suggest, the approach does not follow a conven-
tional GAN architecture and is strongly influenced by the autoencoder pipeline. In
figure 3.8 a flowchart of the GANomaly architecture is shown containing an encoder-
decoder-encoder a discriminator adversary.

Prior work on adversarial autoencoders and GANs shows promising results in anomaly
detection problems.[24] By adding the second encoder module to the generator the
hope is to further improve the latent representation by imposing a loss on the latent
representation of the input to the generated input. The discriminator is trained
to output a probability measurement of an image authenticity and through an ad-
versarial loss the generator is further incentivized reconstruct better images. The
trained GANomaly network is hypothesized to have a noticeable difference in re-
construction proficiency between bonafide and spoof images through these added
modules.

E1(x) D(z) E2(x̂)

g(d((x))

x z x̂ ẑ

[0, 1]

Encoder Decoder Encoder

Discriminator

Lrec = ||x− x̂||1
Lenc = ||z − ẑ||2

Ladv = ||d(x)− d(x̂)||2

Figure 3.8: The GANomaly architecture. The input data is fed through through
the encoder E1 then the decoder D to generate latent variables and a new gener-
ated image, comprising the generator. The generator is primarily trained using the
reconstruction loss Lrec. The generated image is passed through a second encoder
to observe what latent features remain in the generated image, this is regulated
through the encoder loss Lenc. The discriminator is denoted g(d(.)) and is trained
through the adversarial loss Ladv that uses the last layer of the decoder d, and skips
the softmax layer g that produces the spoof probabilities.

29

3. Methodology

Encoder Act. Output shape
Image input - 1× 128× 128
Conv 4× 4 L-ReLU 128× 64× 64
Batch Norm. - 128× 64× 64
Conv 4× 4 L-ReLU 256× 32× 64
Batch Norm. - 256× 32× 64
Conv 4× 4 L-ReLU 512× 16× 16
Batch Norm. - 512× 16× 16
Conv 4× 4 L-ReLU 1024× 8× 8
Batch Norm. - 1024× 8× 8
Conv 4× 4 L-ReLU 2048× 4× 4
Batch Norm. - 2048× 4× 4

Conv 4× 4 (s:1) L-ReLU 512× 4× 4
Fully connected - 512× 1× 1

Decoder Act. Output shape
Latent input - 512× 1× 1

Deconv 4× 4 (s:1) ReLU 2048× 4× 4
Batch Norm. - 2048× 4× 4
Deconv 4× 4 ReLU 1024× 8× 8
Batch Norm. - 1024× 8× 8
Deconv 4× 4 ReLU 512× 16× 16
Batch Norm. - 512× 16× 16
Deconv 4× 4 ReLU 256× 32× 32
Batch Norm. - 256× 32× 32
Deconv 4× 4 ReLU 128× 64× 64
Batch Norm. - 128× 64× 64
Deconv 3× 3 Tanh 1× 128× 128

Table 3.4: The details of the GANomaly architecture used in this thesis, notice
the LeakyRELU and Tanh activation functions. The kernel size is 4 with a standard
stride (step length) of 2, this is what reduces image dimensions in each layers. It is
explicitly stated if the stride is changed to 1 for a particular layer. The discriminator
has the same configuration as the encoders with the exception of output dimension,
which is 1 for the discriminator.

3.5.1 GANomaly losses
The three loss functions used to optimize the GANomaly architecture are shown in
figure 3.8 and are all through different means concerned with improving reconstruc-
tion of the target distribution.

Reconstruction loss

The classical loss function used by autoencoders is the reconstruction loss Lrec.
It aims to simply penalize the difference between the input image and the image
reconstructed from the latent variables. There is a debate on whether linear or
quadratic penalty is to be preferred in image processing with `1 or `2 norms, though
some studies show less blurry reconstruction using the `1-norm which will be used
here. [25]

Lrec = ||x−D(E1(x))||1 = ||x− x̂||1 (3.5)

The loss is taken and averaged over a whole batch where x is the input and x̂ is the
reconstructed image by the generator.

Encoder loss

The purpose of the second encoder and the loss function connected to the latent
variables is improve the latent variable embedding. The encoder loss is defined as
the `2 distance between the latent vectors of the input and the generated image.

30

3. Methodology

Lenc = ||E1(x)− E2(D(E1(x)))||2 = ||z− ẑ||2 (3.6)

This loss will enforce the capacity of the generator to reconstruct images with the
same contextual features (latent representation) as the original image. The distance
in feature space between the input and generated images will be minimized for the
target distribution only and will not extend to anomalous samples. [4]

Adversarial loss

The discriminator module in figure 3.8 takes an image x and outputs a probability
that the image is generated. The discriminator can be further divided into two
functions:

• d: outputs the representation of the input x from the last layer in the discrim-
inator

• g: softmax layer to convert the last layer into a probability

where the full discriminator Disc(x) = g(d(x)) ∈ [0, 1].

The adversarial loss measures the `2 distance in the latent space of the last layer
the discriminator d(x) between the input and the reconstruction. This is in contrast
to the common approach of using the cross-entropy loss of the discriminator output
g(d(x)) as adversarial loss.

Ladv = ||d(x)− d(x̂)||2 (3.7)

The total loss function is achieved by adding the losses with weighting:

L = wrecLrec + wencLenc + wadvLadv. (3.8)

3.5.2 Anomaly detection
During testing, GANomaly can classify spoofs according to their reconstruction
error. The anomaly detector calculates the average reconstruction error using `2
norms and ranks them from highest to lowest. Note that the reconstruction error
used in training uses the `1 norm and not `2 on which it is evaluated. The two norms
share optima (where the images are equal) with the difference that the `2 norm has
stronger outlier penalty.

The spoof threshold can be adjusted to the desired number of spoofs to produce
precision-recall curves or other desired metrics. A global spoof threshold for maxi-
mum accuracy can in theory be found, but such a threshold will depend strongly on
the nature of the test sets and the spoof ratio. No global threshold will be sought

31

3. Methodology

for evaluation of this architecture, instead metrics will be presented for varying
thresholds.

3.6 Training parameters

We tried a range of different training parameters to try and improve learning and
to generate better reconstructions. The parameters varied between experiments, so
detailed information about parameters the reader is referred to the result section
for that experiment. This section contains explanations of the parameters that were
varied.

3.6.1 Training length

After some initial experiments with each model tried to train them for different
number of epochs. The parameters that decides how long an epoch is are the batch
size and batches per epoch. Since we had a large dataset with high similarity between
images the batch size and batches per epoch were set such that each epoch contained
roughly 10% of the total images.

3.6.2 Optimizer

We decided to use the Adam optimizer [16] for the stochastic gradient descent.
Some of the first experiments used a constant learning rate for the optimizer, but
later experiments took inspiration from a previous thesis project at Smart Eye [23]
and used a constant learning rate for the first half of the training, while later switch-
ing to a linearly decaying learning rate, that started at the constant rate and ended
at close to zero.

3.6.3 Data augmentation

As mentioned previously, we always used augmentations in the form of standard
scaling. Later experiments also used additional augmentations to get the network
to hopefully generalize better. Table 3.5 shows the full set of augmentations and
their frequencies. Specific experiments augmentations will be listed in the Results
section.

32

3. Methodology

Full augmentation set
Augmentation Frequency
Standard scaling 1.0
Random brightness 1.0
Random Gaussian noise 0.47
Random contrast 0.17
Random cutout 0.51
Random rotation 0.3
Random translation 0.3
Random zoom 0.3
Right left flip 0.5

Table 3.5: Full set of augmentations used in the experiments and their frequency
when used.

3.6.4 Loss weighting
The losses determines how the networks will learn. As an example, for the VAE
networks, the Lrec puts emphasis on the ability to reconstruct the original image,
while the LKL determines the behaviour of the latent representation. It is possible
to weigh each loss differently in order to stimulate the desired behaviour. A higher
weight on the Lrec makes the reconstructions better while a higher weight on the
LKL makes the network better at generalizing. In general a balance between these
two terms must be struck for the network to be good at both generalizing and to
produce a faithful reconstruction. [26]

We mainly used the same weights for the Lrec and LKL while training the VAE
networks. If we used different weights it will be stated in the results section for that
experiment.

For the GANomaly achitecture, no sweep over loss weighting was done for improved
performance. Both the adversarial and encoder losses were weighted with unity and
the reconstruction loss was varied.

3.7 Evaluation
Model evaluation was done by examining at the latent space and the error of the
reconstructed images for signals that separated the live class from the spoof classes.
The models themselves does not explicitly output live or spoof label as that would
require a global threshold for the boundary between the live and spoof domains,
and such a task requires further analysis and is itself quite a substantial problem.
Instead, metrics are presented for a varying threshold.

For the VAE models we looked at the the latent output for each subset of the
full dataset. Scatter plots were created of the first principal components to see
separation in latent space. More intricate algorithms such as UMAP [27] was also

33

3. Methodology

used in the hope of finding more highly correlated shapes in latent space. UMAP is
a deterministic dimension reduction algorithm to unravel high dimensional spaces
for clustering formations, it is similar to the stochastic t-SNE [28].

Gaussian mixture models were used on the latent output of the training data to see
if they could detect a clustering. A number of mixtures {1, 2, 4, 8, 16, 32, 64, 128}
were tried to fit the data, which subsequently were used to measure log-likelihoods
of the different datasets for possible separation.

The GANomaly architecture used anomaly scores calculated from the `2 norm of the
reconstructed images for signals of anomalous images which were unrecognized by
the generator (and thus reconstructed worse). The anomaly scores were used to clas-
sify spoofs, and Precision-Recall curves were shown for varying thresholds. Receiver
Operating Characteristics were also created as complements to the Precision-Recall
curves, despite claims that ROC-curves are less informative in evaluating binary
classifiers on imbalanced data. According to Saito and Rehmsmeier, ROC curves
can be visually deceptive, and wrong conclusions can be reached about the classifi-
cation reliability. [29]

Further the loss distribution of the Lrec, LKL, LELBO losses was analyzed to see if
a difference between live and spoof datasets could be found.

34

4
Results

This chapter highlights the selected model configurations and their performance.
Evaluations of the results and samples of reconstructed images will be shown along
with analysis of desired model attributes.

4.1 DCVAE

4.1.1 Baseline training
This experiment can be considered to be our first iteration where an as simple as
possible set of hyperparameters were used. No filtering or augmentations were used
on the data during training.

Augmentation
Standardization

Table 4.1: The only augmentation
used was standardization of the input.

Hyperparameter Value
batches per epoch 10 000
epochs 15
batch size 64
LKL weight wKL 1.0
Lrec weight wrec 1.0
Learning rate 0.0001
Adam optimizer β1 0.9
Adam optimizer β2 0.99

Table 4.2: Hyperparameters used for
this experiment. The parameters were
chosen to make the training as simple as
possible while still allowing the model to
learn efficiently.

4.1.1.1 Loss outputs

Some form of separation signal can be seen for some of the spoof subsets in the loss
outputs. The signal is however small and the distributions overlap between subsets
to a high degree.

35

4. Results

Loss distributions

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

50

100

150

200
KL

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

9000

10000

11000

rec

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

9000

10000

11000

KL + rec

Figure 4.1: The loss distribution for between 30 000 - 50 000 samples from each
subset. The mean and standard deviation of LKL of the unseen paper subset is
noticeably larger than the other subsets. For the other subsets the distributions
look very similar and there is a large overlap between them. For Lrec the largest
difference is in the seen paper subset, but not a very substatial difference. The total
loss incorporates both of theses differences and the mean loss of the train and unseen
live subsets is the smallest. There is still a large overlap.

Precision-recall with loss discriminator, live vs spoof

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

KL

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
rec

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
KL + rec

Figure 4.2: Precision-recall curves for various loss thresholds between live and
spoof. The LKL seems to perform the best for small threshold values but quickly
becomes no better than chance. Lrec and the combination are slightly better than
chance but only just. The data used is the same used for the loss distributions and
contain around 55% spoofs.

4.1.1.2 Latent space

In the latent space one can also see indications that the subsets do not disentangle
much at all. Certain parts of the subsets appears to separate a bit from the rest of

36

4. Results

the data, but again there seems to be quite a lot of overlap of the subsets.

First two Principal Components of
latent space

5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6 Train
Unseen live
Seen paper
Unseen paper
Seen mask
Unseen mask

(a) First two Principal components of
the latent space. No separation can be
seen but there seems to be a slight differ-
ence in the distributions between some
of the subsets.

UMAP on latent space

0 2 4 6 8

3

2

1

0

1

2

3

4

5 Train
Unseen live
Seen paper
Unseen paper
Seen mask
Unseen mask

(b) The UMAP confirms what is seen
from the Principal Component scatter
plot. However, the UMAP takes all di-
mensions into account when performing
dimension reduction and there seems to
be parts of subsets that creates clusters.

8 Modes GMM on Latent Space

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

1600

1400

1200

1000

800

600

400

200

0

lo
g

lik

Figure 4.4: Mixture of eight Gaussians. All GMM we tried looked very similar
in their ability to differentiate live from spoof, so there is no particular reason why
we chose eight modes. This figure is confirming what we could see in the scatter
plots, that there is some difference between certain subsets in the latent space. The
difference is not very large however and no major separation can be found.

4.1.2 Training on filtered dataset

In this experiment we tried to see if the model could more effectively learn if it
trained on the filtered dataset with less outliers.

37

4. Results

Augmentation
Standard scaling

Table 4.3: The only augmentation
used was standard scaling of the inputs.

Hyperparameter Value
batch per epoch 3 000
epochs 20
batch size 64
LKL weight wKL 1.0
Lrec weight wrec 1.0
Learning rate 0.0001
Adam optimizer β1 0.9
Adam optimizer β2 0.99

Table 4.4: Hyperparamters used dur-
ing training for the experiment with the
filtered dataset.

4.1.2.1 Loss outputs

Again a signal can be seen for some of the subsets and it appears to be stronger
than the regular training. This is probably due to the fact that the filtered dataset
only filters the live category and makes the differences between the live and spoof
data more apparent.

Loss distributions

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

100

150

200

KL

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

9000

10000

11000
rec

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

9000

10000

11000
KL + rec

Figure 4.5: Training on the filtered dataset seems to improve the performance of
our model to separate the paper subsets. This could however be due to the altered
distribution of head-poses since only the training data was filtered.

38

4. Results

Precision-recall with loss discriminator, live vs spoof

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

KL

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
rec

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
KL + rec

Figure 4.6: Training on the filtered dataset improved the performance to separate
the live and spoof category based on reconstructions.

4.1.2.2 Latent space

In the latent space we can see a larger separation but still some overlap. Worth to
note again is that the filtration of the data was only done on the training data and
not on the spoof categories so the larger separation should be due to the training
process.

First two Principal Components of
latent space

5.0 2.5 0.0 2.5 5.0 7.5

4

2

0

2

4

6

8 Train
Unseen live
Seen paper
Unseen paper
Seen mask
Unseen mask

(a) This time we can see a greater sepa-
ration from the first two Principal Com-
ponents for some of the subsets. There
is still a large overlap.

UMAP on latent space

5 0 5 10 15
6

4

2

0

2

4

6

8

10 Train
Unseen live
Seen paper
Unseen paper
Seen mask
Unseen mask

(b) The UMAP confirms what we see
from the Principal Components scatter
plot. The live category subsets are still
entangled with the spoof subsets since
we can not see them.

4.1.3 Training on filtered dataset and with augmentations
This experiment looked to see if using the reduced image set together with augmen-
tations to see if it had an impact on the performance.

39

4. Results

Augmentation
Standard scaling

Random brightness
Random Gaussian noise

Random contrast
Random cutout

Random Rotation
Random translation

Random zoom
Right left flip

Table 4.5: This experiment used the
full set of augmentations.

Hyperparameter Value
batch per epoch 3 000
epochs 20
batch size 32
LKL weight wKL 1.0
Lrec weight wrec 1.0
Learning rate 0.0001, decaying
Adam optimizer β1 0.5
Adam optimizer β2 0.999

Table 4.6: Hyperparameters used in
this experiment.

4.1.3.1 Latent space

The augmentations did not increase the separation in the loss outputs and the
latent space. The UMAP scatter plot has however formed a circular shape. This is
probably just an artifact of the UMAP algorithm.

First two Principal Components of
latent space

5 0 5
8

6

4

2

0

2

4

6

8 Train
Unseen live
Seen paper
Unseen paper
Seen mask
Unseen mask

(a) Training with the augmentations
did not seem to improve any separation,
it looks very similar to the previous fig-
ures.

UMAP on latent space

0 2 4 6
4

3

2

1

0

1

2
Train
Unseen live
Seen paper
Unseen paper
Seen mask
Unseen mask

(b) The UMAP looks different in shape
from the previous ones, indicating that
there might be a different distribution in
the latent space. There still is no visible
separation.

4.2 ResVAE

4.2.1 Baseline training
The residual net was trained on the filtered dataset to see how effective the training
could be done. The network was also allowed to train for longer since the network
was more complex, with residual blocks where DCVAE had only convolutional layers.
A decaying learning rate was also used to see if the model would converge good set
of weights.

40

4. Results

Augmentation
Standard scaling

Random brightness
Random Gaussian noise

Random contrast
Random cutout
Random rotation

Random translation
Random zoom
Right left flip

Table 4.7: The only augmentation
used was standardization of the input.

Hyperparameter Value
batches per epoch 3 000
epochs 40
batch size 12
LKL weight wKL 1.0
Lrec weight wrec 1.0
Learning rate 0.00005, decaying
Adam optimizer β1 0.5
Adam optimizer β2 0.999

Table 4.8: Hyperparameters used for
this experiment.

4.2.1.1 Loss outputs

The ResVAE did not perform better than the DCVAE on the task of anti-spoofing.
The model was more complex since every convolutional layer from DCVAE is at large
replaced by residual blocks consisting of three extra convolutional layers, and the
maximum depth of the network thus is around two times larger, while the minimum
depth is around as large as DCVAE.

Loss distributions

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

100

200

KL

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

9000

10000

11000

rec

Tr
ai

n

Un
se

en
 li

ve

Se
en

 p
ap

er

Un
se

en
 p

ap
er

Se
en

 m
as

k

Un
se

en
 m

as
k

9000

10000

11000

KL + rec

Figure 4.9: We see similar results for the ResVAE that we do for DCVAE, even
though it was allowed to train for longer and with a smaller batch size.

4.2.1.2 Latent space

The latent space separation is very similar as the latent space from DCVAE.

41

4. Results

First two Principal Components of
latent space

5 0 5
6

4

2

0

2

4

6 Train
Unseen live
Seen paper
Unseen paper
Seen mask
Unseen mask

(a) The latent space for ResVAE ap-
pears to be highly entangled.

UMAP on latent space

6 8 10 12
1

2

3

4

5

6

7
Train
Unseen live
Seen paper
Unseen paper
Seen mask
Unseen mask

(b) The UMAP of the latent space for
ResVAE seems to confirm the entangle-
ment. Parts of subsets look like they are
separating however.

4.3 Sample image output from VAE models

The actual image output, i.e. the reconstructions, from the VAE models can be
of interest for determining their performance. A bad reconstruction can possibly
indicate whether or not the input is sampled from the training distribution and is
from the live category. The image output from all VAE models are similar and
this section will contain sample output from each subset from different experiments.
Which experiment will be mentioned together with the image. We chose images
from experiments that shows some interesting behaviours for the model.

Live
Original Reconstruction

Figure 4.11: Sample reconstructions from the live category from DCVAE. In two
images the subject has glasses but those are gone in the reconstructions. In one
a hand is being reconstructed as an ear. An angry face is being reconstructed to
something that looks like a big smile.

42

4. Results

Seen paper
Original Reconstruction

Figure 4.12: Sample reconstructions from the seen paper subset from DCVAE.
Images similar in domain to the car interior are reconstructed the best. When the
domain changes to a light background the network fails completely to reconstruct.

Unseen paper
Original Reconstruction

Figure 4.13: Sample reconstructions from the unseen paper subset from DCVAE.
The network somewhat fails at reconstructing and in some reconstructions it looks
like the subject is wearing glasses.

Seen mask
Original Reconstruction

Figure 4.14: Samples reconstructions from the seen mask subset from ResVAE.
The input images looks like they have been taken from the inside of a car and may
be why the reconstructions are better than some of the paper reconstructions. The
reconstructions are more human-like than the inputs and in some the subjects are
wearing glasses.

43

4. Results

Unseen mask
Original Reconstruction

Figure 4.15: Sample reconstructions from the unseen mask subset from ResVAE.
The reconstructions are not as good as the ones from the seen mask subset, but
features from live faces are being reconstructed in some of the images. Some are
also appearing to wear glasses.

4.4 GANomaly
The GANomaly architecture detailed in section 3.5 produced arguably the most
promising results of all the tested models. The results are shown in terms of a
Precision-Recall curve as well as a Receiver Operating Characteristic (ROC) with
corresponding area under curve (AUC).

Different hyperparameters were tested for the GANomaly achitecture but no com-
plete sweep over all parameters were performed. An exhaustive search for the best
hyperparameters combined with training and testing for each configuration was not
feasible in terms of resources and time. Instead, the final hyperparameters were
found by varying one while keeping the others fixed. The relevant hyperparameters
for GANomaly is presented in table 4.9.

Hyperparameter Value
Learning rate 0.00002
batch per epoch 1500
epochs 50
batch size 16
Encoder loss weight wenc 1
Adversarial loss weight wadv 1
Reconstruction loss weight wrec 50
Adam optimizer β1 0.5
Adam optimizer β2 0.99

Table 4.9: Displaying the final hyperparameters for the GANomaly architecture
which produced the best results.

Figure 4.16 shows a Precision-Recall curve of the test seen paper and test seen
mask datasets of the GANomaly model from the best performing epoch. For a high

44

4. Results

threshold (low recall) we note a very high precision showing that the model is able
to find the most obvious spoofs in the dataset. The threshold is lowered until all
samples are categorized as spoofs, leading to a recall value of 1 and precision equal
to the spoof ratio of the test set.

Figure 4.16: Precision-Recall cuve for test seen paper and test seen mask datasets.
The paper spoofs have a higher precision for lower recall, indicating the most obvious
spoofs are paper ones.

Figure 4.17a and 4.17b shows a sample output from the model, displaying four in-
put images (left) and four reconstructed images (right). Spoofs have label 1 while
bonafide samples have label 0 and anomaly scores are given to each of the recon-
structed images.

The spoofs can be seen to have marginally worse reconstruction and the higher
anomaly scores. Some bonafide images with high anomaly scores can be explained
by unique features such as the ski-mask in image 2 in 4.17b.

Some behaviour of the model, such as the removal of glasses in image 1 in 4.17a
suggest input images are projected onto the learned distribution of faces without
glasses. This might give false signals in the anomaly score and affect performance.

45

4. Results

Sample output - mask

(a) Output samples from the test seen
mask dataset. Image 2 and 3 are spoofs
and have a higher anomaly score.

Sample output - paper

(b) Output samples from the test seen
paper dataset. Image 2 shows a quite
high anomaly score which might be due
to the ski-mask.

Figure 4.17: The figures show input samples and reconstructed output for the
mask and paper datasets respectively. Labels and anomaly scores belong to image
1-4. Spoofs have label 1. Some images are partly covered due to privacy concerns.

Figure 4.18 displays the AUC of the ROC curve as the discriminative threshold is
varied. The two datasets containing masks and paper spoofs are displayed. The
overall precision and therefore a higher AUC is found for the paper spoof images.

Figure 4.18: The ROC curve for mask and paper datasets showing dissimilar
shapes. While they have similar EER and AUC, the paper dataset shows higher
TPR for low FPR, while the mask dataset has higher TPR for higher FPR.

46

5
Discussion

In this chapter we discuss the performance of the individual configurations as well
as the dataset and potential additions or changes.

5.1 Dataset
The dataset we had access to at Smart Eye was large in terms of the number of
images available, but we do believe after having been working with this project,
that the dataset is not extensive enough for the task of training a robust face anti-
spoofing model unsupervised. This is common in general for the face anti-spoofing
task, most often data from the spoof domains is lacking. There are many more
spoof domains that we did not have access to, make-up spoofs for example. The
models we focused on only used spoof data for evaluation so it had no implication
on the training. There is an abundance of RGB face datasets from the live domain
in existence that could be converted to grayscale and used to extend the live domain
for training. The Smart Eye dataset also contained many similar images that were
taken from the same sequence where the subject did not move much between the
images, which could cause certain images to have a large impact on learning and
make the dataset much larger than it has to be. The dataset also mainly consisted
of caucasian faces and we believe that more diversity would make the dataset more
robust and increase models real world performance.

Another potential weakness of the dataset is that the live category contains images
where faces are partly obscured by hands, coffee mugs, etc. We say potential weak-
ness since in most cases a human can still tell if it is a live person or a spoof behind
the obscured, but it can be difficult to tell which person. If the network does not
recognize obscured face images as at least anomalous then it could be a potential
way to fool the models. We never fully explored this topic and believe it is something
future research must take into account.

In an attempt to make the input images to the networks more suitable for learning,
the dataset for some experiments was filtered from outliers and faces not look-
ing toward the camera. The filtration based on head-pose can be seen as a quite
large restriction since we effectively reduced the live domain that the models see.
Our thought behind doing head-pose filtration was that if it worked it would be a

47

5. Discussion

good proof of concept for further investigation while producing results with a less
time-consuming training phase. We did see a signal that the models found some dif-
ferences between the live and spoof categories. A better filtration technique might
have been to remove images that are too similar according to some suitable metric,
which would also reduce the amount of training data, while not restricting the live
domain.

Included in the dataset is auxiliary information such as the presence of glasses,
beards, hats, etc. This information could have been used explicitly to better train
the latent space. Since the latent space represents the features of an input image,
there should be one or more latent variables concerned with the glasses or facial
hair. Training with auxiliary information could impact latent embedding positively.

5.2 Configuration

The original hypothesis was to use the latent space as a spoof indicator. During the
project we realized that the networks generally learned to project spoofs onto regions
in latent space associated with real faces. This made it so that spoof images were
reconstructed more like real faces, with sometimes the spoof features being totally
removed. This probably stems from the fact that the network is trained to recreate
live images and will therefore project anything onto the live domain. This makes
using the latent space not enough for spoof classification, instead the reconstruction
of spoofs will have a higher median error since the image is projected on the live face
domain. This is the reason the later models and the best performance is associated
with anomaly detection on reconstruction error rather than latent domain analysis.

In some reconstructed images, especially for the GANomaly architecture, some alias-
ing could be seen for spoof images reconstruction. We did not observe this behaviour
for any standard live images, however some anomalous sections, such as when a hand
is covering the face, some alias could be present. We believe this aliasing comes from
the network not having seen similar structures before, and is confused on how to
embed and reconstruct it. This aliasing might not affect the reconstruction error
significantly, but is still an interesting artifact we observed for the spoof domain.

It appeared that the GANomaly model performed the best during our attempts at
FAS. It seemed to indicate anomalies for things that not directly are spoofs, for
example a hand covering a face, head covering ski masks etc. This is something we
still see as a somewhat desired result in some instances. A hand obscuring a face
should be marked as a spoof, otherwise this would be a vulnerability and could be
exploited to bypass the anti-spoofing.

The GANomaly architecture does not use stochastic sampling in the latent layer,
and is therefore not a Variational autoencoder. Therefore we did not make any in
depth analysis of the latent space of that model. There are still possibilities that
the latent domain of the GANomaly architecture is as useful as the VAE, but the
theory as to the representation of the latent domain is not covered in the theory

48

5. Discussion

chapter and was thus omitted from the report.

We do however believe there is more exploration that can be done with the autoen-
coder models. There can be much more optimization done in terms of which layer
configuration to use to best extract the desired facial features. We did some trials
with simpler models with less filters for each convolution but generally it we got
better reconstructions with more filters. We got inspiration for our current autoen-
coder architecture from an existing GAN generation at Smart Eye that had success
at doing high resolution reconstructions. It should still be possible to get good re-
sults from a simpler architecture. The reconstructions of the training data was of
a lower quality than we had hoped for and there are several reasons suspect causes
this. One is the batch size during training. We never experimented much with it,
but a smaller batch size is something we think could improve the networks ability to
learn facial features. Looking at papers where facial reconstruction was done with
a high resolution [23][30] they were done with a lower batch size for high resolution
images. Another reason we believe that our reconstructions was of a lower quality
is the learning rate, or rather, the learning rate together with the magnitude of our
losses. The values we got was of order 10 - 10 000 which is much higher than what
one usually see when using standard losses such as Mean Squared Error. The large
losses is not caused by any fault in the model, but is an artifact from how they are
calculated. A lower learning rate could increase the models learning performance.
The autoencoder models are also less computationally complex than the GANomaly
model since less internal networks are involved during training.

Recurrent Network for sequence handling

The dataset images are generated from videos, and are therefore part of sequences.
When we as humans look at the dataset to determine spoofs, it can be quite hard for
us only using a single picture, but with the use of the whole sequence, and how the
image changes during the sequence we can make a much better prediction. In light
of this, it would be useful for the model to have access to the sequence information
as well, something the current model does not.

Using the sequence in the form of a Recurrent Neural Network (RNN) was something
we discussed due to the huge possible upsides. In the end we determined it to be
outside the scope of the project because of the major challenges of implementing a
recurrent network for this purpose.

The main problems of RNNs stems from the inherent problems of the memory state
when the network is starting inference on a new sequence. There are other difficulties
such as what should happen if the continuous feed of images stops or becomes to
low quality (driver outside frame etc.) or how much computational resources needs
to be provided to a RNN for continuous spoof analysis.

49

5. Discussion

5.3 Future work
Anecdotal evidence at Smart Eye suggests a partition of input images based on the
regions of the face could improve performance. By having a separate preprocessing
module that extracts the eyes, nose and mouth (and other) regions of the face, the
inference for each region can be run separately for more stable results. Using this
method a separate network for each region (or the same network with region label
attached) can be used to analyze the features of each region. A spoof might have
a very live-like mouth and nose but eyes that anomalous, something that might be
easier for a partitioned model to recognize. This not experimented on but could be
explored in future research.

One thing we noticed during training of the models was the emphasis put on the
backgrounds and periphery. Objects in the periphery, such as steering wheels were
usually reconstructed with a high fidelity and if the background was light up, as
opposed to the dark background in the training images, the reconstructions would
usually completely fail. To make the networks focus more on the facial features one
might want to adopt facial crop masks for the inputs, where the backgrounds are
removed from images and only facial information is present. Another method is to
use an open source RGB dataset with various backgrounds to make the model learn
that the backgrounds can vary and may not be all telling if the images are live or
spoof. Or maybe a combination of both. This is something that has to be evaluated
further.

As mentioned before, one could make use of auxiliary information from the dataset
in for example Conditional Variational Autoencoders (CVAE), which inserts label
information into the latent space [31]. This is something we never explored but
could be interesting for future research. We also mentioned that the two terms in
the ELBO loss could be weighted to get different behaviours for the VAE model [26],
which we never explored to any depth either. These two VAE models do we think
are worth more research for future projects in unsupervised face anti-spoofing.

Perceptual loss
The reconstruction loss used to train the network is based on a pixel-wise calculations
of deviation between input and output and might not always be representative of
how well the image is reconstructed. Imagine the network recreating the input image
perfectly, but shifted 5 pixels over. To a human, that reconstruction would be close
to perfect, but to the reconstruction loss could indicate a poor reconstruction.

The pixel-wise losses potentially penalizes the network in such a way that it can
not disentangle the high dimensional correlations good enough. The network might
then not be incentivized enough to guess, and instead plays it safe and returns a
blurry image, all please the reconstruction loss’ hard regularization.

Using perceptual or contextual losses is a way to circumvent this problem. The-
sis losses does not work on a pixel-wise basis and instead tries to find structural

50

5. Discussion

similarities in the input and output images that better represent a humans per-
ceived reconstruction performance. These losses are more complex and can come
in the form of separate networks to determine feature differences, or as statistical
algorithms such as SSIM.

During the project, perceptual losses were experimented with in the hope of reducing
reconstruction blur and improve overall performance. However, we did not manage
to fully implement a perceptual loss network that could improve performance using
a perceptual loss, so it was intentionally omitted from the thesis.

51

5. Discussion

52

6
Conclusion

The experiments in this thesis explore the possibilities of using variational autoen-
coder and adversarial training to solve the unsupervised face anti-spoofing problem,
that is to distinguish live images from presentation attacks. The models utilized a
latent space to embed input images into a latent space and then reconstruct them,
the reconstruction performance and the latent space embedding were used to classify
spoofs.

The thesis proposes three different architectures to solve the unsupervised anti-
spoofing problem, with the best results generated by an encoder-decoder network
connected to a discriminator for adversarial training. The hypothesis of latent space
separation between live and spoof domains was investigated thoroughly, but ulti-
mately unable to sole perform adequate spoof classification. An overarching trend
was the reconstruction error signals being the more indicative cue for spoof recog-
nition compared to that of the latent space.

Altogether, the thesis concludes that unsupervised anomaly detection using encoder-
decoder neural networks is a viable approach to classifying live images from spoofs.
The challenges come in the form of creating comprehensive datasets to fully learn
the distribution of real faces, and the entanglement of the spoof domains to the live
domain. Further research and testing are required to find a comprehensive spoof
threshold and exclude over-fitting to used datasets.

This primary investigation shows that the models show promise but are not ready
to be implemented in production devices. With some additions and more rigorous
training, the models should be able to assist as anti-spoofing software.

53

6. Conclusion

54

Bibliography

[1] Geoffrey Hinton and Terrence J. Sejnowski. Unsupervised Learning: Founda-
tions of Neural Computation. The MIT Press, 05 1999.

[2] Road safety: Commission welcomes agreement on new eu rules to help save
lives.

[3] Zitong Yu, Student Member, Yunxiao Qin, Xiaobai Li, Chenxu Zhao, Zhen
Lei, Senior Member, and Guoying Zhao. Deep learning for face anti-spoofing:
A survey.

[4] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Ganomaly:
Semi-supervised anomaly detection via adversarial training.

[5] J. M. Bernardo and Adrian F. M. Smith. Bayesian theory. page 586.

[6] Diederik P. Kingma and Max Welling. An introduction to variational autoen-
coders. Foundations and Trends in Machine Learning, 12:307–392, 6 2019.

[7] The generative-discriminative fallacy.

[8] Arindam Banerjee. An analysis of logistic models: Exponential family con-
nections and online performance. Proceedings of the 7th SIAM International
Conference on Data Mining, pages 204–215, 2007.

[9] Jianwen Xie. Generative modeling and unsupervised learning in computer vi-
sion. 2016.

[10] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the man-
ifold hypothesis.

[11] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

[12] David M Blei, Alp Kucukelbir, and Jon D Mcauliffe. Variational inference: A
review for statisticians. 2018.

[13] Stephen Odaibo. Tutorial: Deriving the standard variational autoencoder (vae)
loss function. 7 2019.

55

Bibliography

[14] Deep learning - ian goodfellow, yoshua bengio, aaron courville - google böcker.

[15] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature 1986 323:6088, 323:533–
536, 1986.

[16] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic op-
timization. 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, 12 2014.

[17] Keiron O’shea and Ryan Nash. An introduction to convolutional neural net-
works.

[18] Bernhard Mehlig. Machine learning with neural networks. 2021.

[19] The reparameterization trick in variational autoencoders | baeldung on com-
puter science.

[20] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets.

[21] Hong Hui Tan and King Hann Lim. Vanishing gradient mitigation with deep
learning neural network optimization. 2019 7th International Conference on
Smart Computing and Communications, ICSCC 2019, 6 2019.

[22] Mohammad Sadegh Ebrahimi and Hossein Karkeh Abadi. Study of residual net-
works for image recognition. Lecture Notes in Networks and Systems, 284:754–
763, 2021.

[23] Jonathan Bergqvist. Multimodal image-to-image translation for driver monitor-
ing system development synthesizing diverse human faces in the near-infrared
domain using conditional generative adversarial networks master’s thesis in
complex adaptive systems.

[24] Houssam Zenati, Chuan-Sheng Foo, Bruno Lecouat, Gaurav Manek, and Vi-
jay Ramaseshan Chandrasekhar. Efficient gan-based anomaly detection *. 2019.

[25] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image
restoration with neural networks.

[26] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, Alexander Lerchner, and Google Deep-
mind. β-vae: Learning basic visual concepts with a constrained variational
framework.

[27] Leland Mcinnes, John Healy, and James Melville. Umap: Uniform manifold
approximation and projection for dimension reduction. 2020.

56

Bibliography

[28] Laurens Van Der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605, 2008.

[29] Takaya Saito. The precision-recall plot is more informative than the roc plot
when evaluating binary classifiers on imbalanced datasets. 2015.

[30] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive grow-
ing of gans for improved quality, stability, and variation, 2017.

[31] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured out-
put representation using deep conditional generative models. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

57

Bibliography

58

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	List of Figures
	Introduction
	Background
	Anti-spoofing
	Smart Eye

	Problem description
	Limitations
	Outline of report

	Related work

	Theory
	Probabilistic framework
	Generative modelling
	Maximum likelihood
	Latent variable models
	Variational inference vs. MCMC
	Kullback-Leibler divergence
	Evidence lower bound (ELBO)

	Artificial Neural Networks
	Stochastic gradient descent
	Activation functions
	Convolutional Neural Networks (CNN)
	Pooling layers

	Variational Autoencoder
	Reparametrization trick
	Closed form loss with gaussian latents

	Generative Adversarial Networks
	Anomaly detection
	GMM
	Discriminator
	Anomaly score by reconstruction error

	Methodology
	Data acquisition
	Data subsets

	Preprocessing
	Head pose filtering
	Session outlier filtering
	Augmentations

	Deep Convolutional Variational Autoencoder (DCVAE)
	ResNet Variational Autoencoder (ResVAE)
	GANomaly
	GANomaly losses
	Anomaly detection

	Training parameters
	Training length
	Optimizer
	Data augmentation
	Loss weighting

	Evaluation

	Results
	DCVAE
	Baseline training
	Loss outputs
	Latent space

	Training on filtered dataset
	Loss outputs
	Latent space

	Training on filtered dataset and with augmentations
	Latent space

	ResVAE
	Baseline training
	Loss outputs
	Latent space

	Sample image output from VAE models
	GANomaly

	Discussion
	Dataset
	Configuration
	Future work

	Conclusion
	Bibliography

