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A Parametric Fitch-Style Modal Lambda Calculus

Axel Forsman

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

The necessity modality, denoted by [, where the focus lies, has been applied to model
staged computations, compartmental purity in functional languages, and more. So called
Fitch-style modal deduction, where modalities are eliminated by opening a subproof, and
introduced by shutting one, has been adapted for lambda calculi. Different modal logics
may be encoded via different open and shut rules. Prior work [1] has given normalization
proofs for four Fitch-style formulations of lambda calculi with different modalities, which
required repeating the proofs for each individual calculus. A parametric Fitch-style
modal lambda calculus generalizing the variants is presented, in order to avoid the
repetition and ease further extensions.

Keywords: Necessity, modality, parametric, Fitch, modal, lambda calculus, normaliza-
tion.
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1

Introduction

In this thesis we consider the so called necessity modality, and go on to give a parametric
modal lambda calculus in the Fitch-style which integrates the necessity modality.

To see the need for modalities in programming languages, it helps to start with under-
standing the usefulness of type systems. Broadly speaking, type systems are a means
of classifying expressions by the values they compute, in order to prove the absence of
unsatisfactory program behaviors [2]. If two expressions are known to produce strings
of characters, then trying to add them as if they were instead numbers can be statically
rejected—without the need to execute the program beforehand. It is clear that a type
system cannot be a one-to-one correspondence with the untyped language; that would
not make proving anything easier. Designing a type system will therefore always involve
trade-offs: Make it more liberal in the amount of programs that are admissible, and
reasoning and proving of meta-theoretic properties become harder; do the opposite and
there will be more correct programs that are impossible to type check. Thus a plethora
of type system concepts have been invented, e.g. union types, algebraic data types, type
classes, and polymorphism, to name a few.

Modalities in type theory are one such concept, where they act as unary type constructors
that impose some properties and restrictions, i.e. given some type they construct a new
type. The necessity modality, denoted by ‘[1’, also mandates the rule of necessitation:
It is possible to obtain a value of type 1A if a value of type A can be derived without
any assumptions. It has found use in modeling a number of different things.

In the context of type systems, what is meant by modeling some concept is constraining
a type in such a way that all values of that type have the set of properties that define the
concept. One example of this is the use of modalities for staged computations [3], which
is further elaborated upon in section 2.3. A staged computation is one that proceeds in
a sequence of stages, with the earlier stages generating code for each consecutive stage.
By introducing modalities to the type system, we are able to write functions of the type

A—-0OB—C0C)

that given a value a of type A will at run-time take the resulting function from B to C,
and specialize it depending on the concrete value of a. For example, were we to write



1. Introduction

multiplication as a function N — (N — N), then applying it to the number zero could
yield simply the constant function that always returns zero. Here, the ‘(] modality is
used to model uninterpreted code, and its properties ensure all computation concerned
with the argument a is carried out while generating the code for the next stage, else the
value a needs to be embedded in the code as a literal. This allows a compiler to safely
apply the transformation.

There have been different approaches to integrating the necessity modality into lambda
calculus, where we introduce new operators, box and unbox, to work with types involving
the [ type constructor. Fitch-style is one of them, inspired by the proof notation for
modal logic due to Fitch [4]. It has been shown that the resulting calculi have great
computational properties, qualifying them for adaptation into real-world programming
languages. Prior work by Valliappan, Ruch, and Tomé Cortinas [1] gave formulations of
four different Fitch-style modal lambda calculi, each corresponding to different modal
logics. They also implemented normalization for these calculi, an important meta-
theoretic property. Two of these formulations were proved correct by mechanizing them
in the proof assistant Agda [5].

However, there was a lot duplication between the two mechanizations which totaled over
five thousand lines of Agda code. This includes the formulation of the simply typed
lambda calculus foundation that was present in both. Furthermore, this repetition
would only continue to increase with each additional modal lambda calculus mechanized.
This in spite of the fact that for all four calculi in question only the rules surrounding
the unbox operator vary, while the box operator and everything else stay the same.

The contributions of this thesis are therefore:

o The design of a modal lambda calculus where the unbox operator is parametric, in
order to encompass all four modal lambda calculi of interest with a single calculus.
With the parameter unifying unbox as a starting point, remaining parameters are
identified in order to sufficiently define the calculus.

A normalization algorithm through the Normalization by Evaluation [6] technique;
e and a proof of its correctness.

The results have been mechanized! in Agda, providing a proof of their correctness; most
work has gone into writing these proofs. The Agda code uses relatively few abstractions,
making it more approachable for those from outside the field.

The parametric calculus is more amenable to language extensions; an extension only
has to be implemented and proved correct once for it to apply to all instantiated calculi.
Moreover, with all the commonalities of the four calculi extracted, it becomes easier to
talk about further generalization to other calculi with additional axioms, such as axiom
R. This is discussed in the conclusion.

! Available online at https://github.com/axelf4/pfm-lambda.


https://github.com/axelf4/pfm-lambda

1. Introduction

This thesis is structured as follows: chapter 2 contains an overview of the theory
underlying the work; and chapter 3 and chapter 4 present the main result of this thesis,
the parametric calculus and its accompanying normalization algorithm. In chapter 5 the
correctness of normalization is proved; and chapter 6 gives two concrete instantiations
of the parametric calculus. Finally chapter 7 concludes by discussing relations to prior
work and possible future work.
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Background

In this chapter we summarize the necessary background knowledge for understanding
the rest of the material.

2.1 Modal Natural Deduction

Modalities originate from modal logic. Here we consider the family of modal logics
derived from intuitionistic propositional logic extended with the unary connective O,
the inference rule necessitation, if A is provable without any premises then so is LA,
and different axioms surrounding [J [7]. For a formula ¢, the formula (¢ reads “It is
necessarily true that ¢,” that is, [J changes the mode of ¢. The most basic modal logic,
IK, comes from the aziom K (O(A D> B) D OA D OB). Axiom K together with aziom
T (HOA D A) gives IT; K and aziom 4 (OA D OOA) yield IK4; and K, T and 4 give 154.

Natural deduction is a proof system wherein reasoning is carried out using “natural”
inference rules. Fitch [8] introduced a notation for propositional natural deduction,
central to which is the idea of subordinate proof. For example, in order to prove “A
implies B,” A D B, a subordinate proof may be opened containing the new assumption
A, where one sets out to prove B. If successful, the subordinate proof can be shut by
introducing A D B in the original proof thereby discharging the assumption A.

This may be understood semantically using Kripke’s possible worlds interpretation [9],
[10], where each world has an assignment of truth-values to each proposition. Opening
a subproof means visiting a replica new world, with an increase in knowledge owing to
the new assumption, and shutting means returning.

To extend natural deduction to modal logic, Fitch added the notion of a strict subordinate
proof [4], see the example in Figure 2.1, indicated by a ‘[0’ to the left of the line delineating
the subproof. It is differentiated by not introducing a new hypothesis for the antecedent
of the implication. Additionally, strict subordinate proofs may access prior derived
formulas only of a certain shape from proofs to which they are subordinate. This is in
contrast to “ordinary” subordinate proofs wherein any previous formula from a outer
proof may be reiterated. This is how the mixing of formulas of different modes is
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1 O(A D B)

2 O OA

3 IG] ADB K-import, 1
4 A K-import, 2
5 B D-elim, 3, 4
6 LB K-export, 3-5
7 OAD OB D-intro, 2-6

s O(A D B) D (0AD>OB) D-intro, 1-7
Figure 2.1: Example of a modal natural deduction proof of the formula ((A D B) D

(A D OB). Note how a strict subordinate proof must be opened in order to facilitate
reasoning about that inside modalities.

prevented. Their usage is given in the following two rules for the logic K:

K-IMPORT K-EXPORT
U .
- %2
Do
2

With K-IMPORT we may import boxed formulas, but after we are done reasoning about
them we must re-box the result with K-EXPORT to make use of it.

2.2 Lambda Calculus

The Curry-Howard isomorphism [11] connects logic and lambda calculus, a bare-bones
model of computation consisting of only functions and function application. The
grammar of lambda calculus terms is evidently short:

t,si=ux variable access
| \x.t lambda abstraction
|t s function application

The isomorphism states that there is a correspondence between formulae and their
proofs in natural deduction, and types and programs of lambda calculus, respectively.
Take the formula A D A for instance, which says that “A implies A” Proving the

6



2. Background

formula is analogous to giving a program of the type A — A, for any type A, and one
such program is A\z.x, which implements the identity function.

Now, not all lambda calculus terms are meaningful, e.g. x ¥ when x is not a lambda
function. Types are one way of allowing evaluation to nevertheless be total, by restricting
it to only well-typed terms, I' =t : A, for some type A. The simply typed lambda calculus
(STLC) [12], in addition to some set of base types, has a single type constructor A — B
for the types of functions. Then, the typing relation I' -t : A is defined in terms of a
typing context I', which is an association of variables and their types, and is used i.a. in
the function typing rule: Az.y is a well-typed term of type A — B in context I, if y
has type B in the context I' extended with x : A.

The proof assistant Agda [5] is itself based on dependently typed lambda calculus.
“Dependently” meaning definitions of types may depend on values, allowing one to state
theorems about the results of functions.

Normalization by Fvaluation (NbE) is a technique for reducing lambda calculus terms
to their normal forms, which are not further reducible [6]. Instead of implementing the
normalization procedure “by hand,” you instead proceed by evaluating, before reifying
the resulting semantic value back into a term. If at any point computation is blocked
on a value known only at run time, e.g. on an argument when descending into the body
of a lambda abstraction, evaluation proceeds with a so called neutral value, containing
enough information about its origins to make reification possible.

Modal logic has been adapted for modal lambda calculi [4], where modalities are type
constructors that add some properties. In place of the K inference rules, K-EXPORT
and K-IMPORT, are two new operators box and unbox respectively. To keep track of
subordinate proofs in typing judgments a new structural connective @ is added to the
context when a [ is eliminated, and popped when the subproof is closed.

2.3 Example: Staged Computation

For the twofold purpose of exemplifying the previous section, and showing a practical
application of the theory, this section gives an account of the work by Davies and
Pfenning (3] on leveraging the modal logic S4 for staged computation.

Consider the problem of run-time code generation due to partial function application.
For example, prior to a series of matrix multiplication with the same matrix, the code for
the multiplication could be specialized at run-time once the matrix has been computed.
If it turns out to contain a lot of zeros then that may be exploited to reduce the amount
of computation needed. Detecting where this may be done automatically at compile
time is similar to binding-time analysis in partial evaluation [13]. Each subexpression
is annotated with its data dependencies to detect whether it may be computed in
an early stage after only some function arguments have been applied. However, in
practice, automatic choice of where to do run-time specialization may lead to slow-downs

7
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due to the non-negligible cost of code generation. An alternative is to mandate that
computation staging be explicitly expressed in the type system.

The insight due to [3] is that run-time code generation demands a quoted source
expression, and quotation has been studied in modal logic, with intuitionistic S4 being
the logic that models staged computation. We get the following interpretations of modal
concepts

e Values of type [JA are code to be executed in future stage, and compiled to
generators for code of type A.

o The rule of necessitation, i.e. we have box E : [JA if £ : A in the empty context,
says we may quote any closed expression.

e Axiom T, I' F A — A, is evaluation. Specifically, the unbox constructor on
values of type LJA will do evaluation, and for values of types [J---[JA it can be
used to splice the quoted expressions into a larger ones, so called quasiquotation.

e Axiom 4, I' + A — [OA, is requotation, producing code that generates the
original code.

o In general, we do not have I' = A — [JA, since to quote a function its source code
would need to be retrieved which is not possible for arbitrary functions. However,
for example integers may be quoted to obtain integer literals, and similarly for
Booleans, strings etc.

For a function A — OB, the modal type guarantees all computation concerning an
argument a : A is done while generating code for a value of type B. Otherwise, to access
a in the generated code, it must be manually quoted and inserted into the code. In
other words, the argument a exists only in the function body that generates the code,
and is not automatically kept around with the generated code.

As an example, multiplication with run-time specialization may be written in this
framework as

mult : N — O(N — N)
mult = An : N.ifn =0
then box (Am. 0)
else box (Am. m + unbox (mult (n — 1)) m)

Now multiplication by zero becomes a constant function
mult 0 —*box (A_.0)
and for other values, the entire mult function is inlined

mult 2 —*box (Az.z + (Ay.y + (A2.0) y) x)
=box (Ax.x + (x +0))
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2.4 Previous Work

There are at present two main variants of lambda calculi formulations for the necessity
modality.

The first variant is the dual-context style proposed by Davies and Pfenning [3] and
Pfenning and Wong [14], where two contexts, W; I', are used to keep track of assumptions.
The context ¥ holds the assumptions that are “necessarily true,” while I' maintains the
true assumptions. The introduction and elimination rules are

U,-Ft: A U I'Ft:04 WVz:ATkFs:S
U:I'Fbox t:0A U:I'Fletbhox x =t in s: S

The elimination rule destructures (1A, letting its content temporarily be necessarily true
in s. Reducing it done by applying a substitution:

letbox x =t in s: S ~ s[z — ]

The second variant is Kripke- or Fitch style [3], [7], which models Kripke’s possible worlds
semantics [9]. The worlds are connected via a modal accessibility relation, A < T', which
should be construed as saying “the contents of boxed values from the world A may be
accessed in the future world I',” as will become apparent upon seeing the corresponding
[J-elimination rule. Imposing different properties on the relation yields different modal
logics [10]. For example, a reflexive modal accessibility relation corresponds to logic T,
a transitive relation, to logic 4, etc.

Kripke style, presented by Davies and Pfenning [3] and Pfenning and Wong [14],
represents the previously accessed worlds as a stack of contexts, T = ry;...;I,, as
opposed to Fitch style. The [J introduction and elimination rules look like

TiFt: A THt:04 \&]:n
['Fbox t:0A f;&l—unboxnt:A

where ]5\ is the number of local contexts in the stack A. The elimination rule takes
an integer n called the modal offset, encoding how far back into the past to travel to
access t of type [JA. Adjusting the allowed values of n gives different modal accessibility
relations, and ergo different modal logics.

Hu and Pientka [15] have given a normalization by evaluation proof for Kripke style
modal lambda calculi.

Fitch style, on the other hand, its name stemming from Fitch-style natural deduction,
comes from Borghuis [4] and Clouston [7]. It differs from Kripke style in that instead of
a context stack, a flat list is used, with local contexts delimited by a special ‘@& symbol.
The introduction and elimination rules are shown below in chapter 3.
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A1k /U-ELiv Arr/U-ELiv

Dkt:0A Ger CHEGOA o
& T Funboxy, t: A [, " F unboxy, t: A
Aik4/U-ELim A1sq/L-ELim

'¢:0A et:0A
& '+ unboxy,,t: A I, T" F unboxy, t: A

Figure 2.2: [J-elimination rules for the modal lambda calculi Aix, Arr, Aika and Agq [7].

Valliappan, Ruch, and Tomé Cortinas [1] implemented normalization for the four modal
lambda calculi Ak, Air, Aka, Asa. As they note, for the four calculi only the [J-
elimination rules differ, see figure 2.2. In this thesis, we use that concept to formulate a
single parametric calculus generalizing these four calculi, with a [J-elimination rule that
is parametric over the concrete modal accessibility relation in question.

10
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The Calculus App\

In this chapter we give the specification of the simply typed modal lambda calculus
Aprv, which is the main result of this thesis. The calculus is parameterized by the
binary relation A <1I" on contexts, subject to requirements that will be given below.

Types are constructed out of an uninterpreted base type ¢:
Type A,B:=1]|A— B|OA

The base type ¢ does not stipulate any introduction- nor elimination rules, there simply
has to be some base type, or else function- and box types would be unrepresentable.
Contexts are snoc-lists of types and locks:

Context T:=-|T,A|T,&@

The intrinsically typed syntax of the language is given in figure 3.1. De Bruijn indices
are used to make a-conversion implicit: Instead of variable names, an index at each
variable occurrence indicates the nesting depth relative to its corresponding binder, for

example
| m - |
Az (Ay.y (Az.2)) (Aw.z w) <= A. (A0 (A.0)) (A.10)
S
VAR —-INTRO —-ELIM
a::\F'| ﬂ%f" I'NA+-t: B 't:A— B I'kFs: A
T AT Fz:A TFXM:A— B TFts:B
U-INTRO U-Ermm
rart: A AFt:A Al
'+ boxt:OA I' - unboxt: A

Figure 3.1: The set of intrinsically typed terms of Appy. The modal accessibility relation
A < T is a parameter of the calculus.

11



3. The Calculus Appy

g
r— T
m 7/
/ // /
A LN T

O.l

Figure 3.2: Intuition for the contexts involved in the rewind operation. We identify
an OPE I' C I, or substitution SubI' I, as a map o on terms from the context I' to
IV. Then, given a modal accessibility relation m : A <<I', A being some past world,
rewind m o yields ¢’ and m’ for some context A’.

In order to present the equational theory we define OPE:s and substitutions.

An order-preserving embedding (OPE) is a binary relation I' C A on contexts signifying
I' can be weakened, i.e. add more assumptions, to obtain A. It is defined inductively as

rcA rCcA rcA
base:- C- weak:I'CAA lift: TJACA A liftg: T, &C A &

We define a operation wk: ' C A —-T'Ft: A — Ak t: A that given an OPE weakens
a term. Only the case of weakening an unbox term is unlike the STLC counterpart:

wk w (unbox ¢t m) == unbox (wk w' t) m' where m', w" = rewindc m w
where we require the calculus parameter
rewindc : (m: " <al) = (w: T CA) - IA A <A XT C A

that given a modal accessibility relation m truncates the contexts I' and A in w, see
figure 3.2, in order to remove as many locks from both as there are in m. That is to say,
it transports w from the future world I" to instead act on the past world I".

For substitutions—and later environments—we note that both can be seen as replacement
lists of items for each type in a context. Thus we choose to define them as concrete
instances of a type Rply,! parametric over some function F : Type — Context — Set
and defined inductively as

o:RplzT’A z:FAA o:Rplp,T'A m:A<A
:Rplp- A o,z : Rplp (T, A) A locko m : Rply (T, @) A’

This helps unify some of the calculus parameters, and avoids having some parameters
depend on e.g. the definition of terms which in turn depends on other parameters.
Substitutions may then be defined as Sub := Rpl, with F AT' =T F A.

! Abbreviation of Replacement, which was chosen as an arbitrary continuation of the sequence of
synonyms starting with: Renaming, substitution, ...

12



3. The Calculus Appy

‘ NAFt:B TFks: A ABFt:A m:A«l
[ equivalence: - -
(A1) s ~ subst (ids,s) t unbox (boxt) m ~ subst (lock ids m) t
S THt:A— B THt:0A
1 eAmvatenee N (wk (weak idc) t) (var zero) t ~ box (unbox t <g)

Figure 3.3: Equational theory of Apgy;. The rules for lambda abstraction are as for STLC.
In the A-B-conversion rule, a singleton substitution, idy, s, is applied to ¢, replacing the
zeroth variable with s and decrementing all other de Bruijn indices.

With the exception of the lock constructor the definition of Rpl is as for substitutions in
STLC. Adding the alternate constructor liftg : RplT' A — Rpl (T, &) (A, &) to STLC
substitutions would allow them to represent local substitutions in any of the “worlds”
delimited by locks in the context. Instead, lock with an argument m : A < A’ (as used
in [1]) makes it possible to unify substitutions and modal transformations, where locks
are removed and added from contexts as permitted by (<), and which are needed to
describe the effect of unboxing.

With this choice of lock we make use of the parameter
<g: V. <T@

in order to be able to define the identity substitution id, : VI'. SubI' I'.

As for wk in the case of OPE:s, we define subst : RpIll’ A - T'Ft: A— AFt: A,
using the parameter

rewind: (m :T" <) — (o : RplT' A) — JA A" 9 A x RplT” A’

The equational theory of Apgy is given in figure 3.3, where reflexivity, symmetry,
transitivity and congruence rules, which ensure that (~) is an equivalence relation, have
been omitted. The notation ¢ ~ s says that the terms ¢ and s are equal up to the
conversion.

3.1 Summary of Calculus Parameters

Because calculus parameters have been introduced on a per-need basis, this section
collects all parameters thus far. These are sufficient for stating the syntax, and the
semantics in chapter 4; however, chapter 5 introduces a further set of parameters,
restricting the calculi that may be instantiated enough such that it is possible to prove
correctness.

o A modal accessibility relation A <1 I" between contexts is required;

13



3. The Calculus Appy

o and a context obtained by appending a new empty local context to some context
I' should be related to I':
<a:T'< (T, @)

e OPE:s can be rewound according to a modal accessibility relation:

rewindc : (m:I"<T) = (w: T CA) = IFA A <A XTI C A’

o and similarly for Rpl:s such as substitutions:

rewind: (m:T"<T) — (o : RplT" A) — FA" A" < A x RplT” A’

14



4

Normalization Algorithm

We provide a Normalization by Evaluation algorithm based on a possible worlds model
for the parametric calculus in chapter 3. Normal and neutral forms are defined mutually
as:

z:Nel z:Nf(I'A) B z:Nf (T, @) A
nex:NfI'v absz:NfI' (A — B) boxz:NfI' (OA)
x:Ael z:Ne['(A—B) y:NfI'A 2:NeA(OA) m:A<T
varx : Nel' A xy:Nel B unboxz m : Nel A

The normal forms are S-normal—no S-reductions are possible—and n-long—all variables
are maximally applied and unboxed, as the ne constructor only permits neutral values
of the base type.

As done in [1], we choose contexts for worlds, OPE:s for the intuitionistic accessibility
relation between worlds, and (<) for the modal accessibility relation. (The intuitionistic
accessibility relation should be thought of as relating two worlds w; and ws if ws has as
much or more knowledge than wy; for worlds as contexts this means all assumptions in
wy should be present in wy too.) Then we interpret types in the model as

[tlr =NfT e
[A— B]r =VA.I' CA — [A]a — [B]a (4.1)
[CA]r =VI", ATCTI' > T"aA — [A]a
and contexts as environments, i.e. lists of semantic values, using Rpl,
We have monotonicity for semantic values and environments, i.e. we have wk, : A C
A" — [A]a — [A]A and wkpr : A T A" — [I]a = [I]A-

The definitions of evaluation, reification and reflection are given in figure 4.1. Variable
lookup is as for STLC; the VAR rule does not permit access across lock delimiters in
the context, thus the lookup function just has to read the variable value from its place
in the local environment. The normalization function may then be given as

15



4. Normalization Algorithm

Evaluation [—]:T'Ft¢:A—= VA [I'a — [A]a

[x] ~ = lookup x in 7

[A.t] v = Aw a. [t] (wkpw v, a)

[t s] ~ = [t] v idc ([s] )

[boxt] v = Aw m. [t] (lock (wkgw v) m)

[unbox ¢ m] ~ = [t] 7' idc m" where m’, " = rewind m ~
Reification [ [A]r — Nf T' 4

Ja =a

7P = abs ({7 (a (weak idc) (17 (var zero))))
1"a = box (1 (a idc <a))

Reflection 1*: Ne I' A — [A]p

™ =ntw

1HA7E o = w a. 18 ((wkne w ) (17 @)

4 = Aw m. 17 (unbox (Wkye w ) m)

Figure 4.1: Evaluation, reification and reflection definitions.

Definition 1 (Normalization by Evaluation). Given a term I' - ¢ : A, normalization
yields a normal form Nf I" A,

nft =" ([¢] id.)

where id, is the identity environment, which associates each variable z in I' with a value
given by 71 var x.

The algorithm can be summarized as follows: Evaluation proceeds as for an interpreter,
except closures take an extra OPE argument which allows conjuring fresh variables
under binders when reifying functions. Then the resulting semantic value is reified back
to its normal form. When reifying a box or function, evaluation resumes with the boxed
term, or the closure applied to a neutral form corresponding to the argument type,
respectively.

Here the possible worlds inspired interpretation of [JA has been chosen, instead of the
syntax-directed approach of

[BAlr = [Alra

one reason being that the unbox case of evaluation then would require being able to
apply the equivalent of a lock id m substitution on semantic values, in addition to
weakening, whereas currently no such thing is needed, as the m instead goes directly in
unbox when reflecting.

16



O

Correctness

Soundness and completeness of normalization have been proved with respect to possible
worlds, which together show that the syntax in chapter 3, and the semantics in chapter 4
are “in agreement”.

First off, we define the composition of two Rpl:s, which, while not appearing in the
normalization algorithm, is used in the proof of its correctness.

Definition 2 (Composition of Rpl:s). For ¢ : RplpI' A and 6 : Rplo A Z, F not
necessarily equaling GG, their composition o o : Rpl, I' = is given by

‘00 ="
(0,a) 06 = (0049),applyd a
locko m o d :=lock (0 0d’) m' where m',§ = rewind m 6

where the definition is generic over a function apply : VAT A. RploI' A - F AT —
G A A. E.g. for composition of substitutions with substitutions apply will be subst.

As the source context I' of o 0§ is the same as for o, composition will preserve the
inductive shape of ¢, but differ i.a. in the (—, —) constructor contents where ¢ is apply:ed.

Next, we introduce the following additional calculus parameters, with which correctness
has been proved:

e Rewinding lock ¢ m with a modal accessibility relation I" </ T, & should work as
expected, i.e. give back m and o:

rewind-<g : Ym, o. rewind <ig (locko m) = m, o
and the same for rewindc on liftg.
e The operation rewind distributes over composition:
rewindPres-o : (m : A<4T) — (o7 : RpIT' ITV) — (09 : RplT’ )
— let m/, o] = rewind m o, (5.1)

m”, o, = rewind m’ oy
: : — " / /
in rewindm (o1 0 09) =m”, 0} o g

and likewise for rewindc.

17



5. Correctness

o rewind should preserve identity:
rewindPresld : (m : A <T') — rewind m id = m, id

and likewise for rewindc.
The parameter rewindPresld further only has to hold for values of F' for which
Rplz-weakening with the identity OPE is the identity function, i.e.

kaPIF ’Ldg O =0

for all o : Rplp I' A.

o rewind should commute with weakening and substitution composition:

rewind Wk :(m:A<T) = (o:RpIT'TY) = (w: TV CT7)
— let m/, 0/ = rewind m o
m”, w' = rewindc m’' w
in rewind m (wkw o) =m", wkw' o'
rewind Trim :(m:A<D) = (w: T CTY) = (0: RplI" T7)
— let m/, w' = rewindc m w
m”, o’ = rewind m’' o
in rewind m (trimw o) =m”, trimw' o’

where wk : A C A" = SubT' A = SubT' A’ and trim : T C TV — SubT' A —
SubI" A is substitution and weakening composition and vice versa, respectively.

These enable proving of the necessary weakening and substitution laws, such as asso-
ciativity of composition, and the fact that subst with the identity substitution is the
identity function. Indeed, most show up in the goals when proving the unbox cases of
the laws.

The reader is reminded that the full details of any proof are available in the provided
Agda code.

5.1 Soundness

Soundness states that a term is convertible to its normal form.
Theorem 1 (Soundness). IfI't: A, thent ~ "nft".

The proof is an extension of the corresponding proof for STLC [16], and established by
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5. Correctness

a Kripke logical relation [17] between terms and semantic values:

t7B = (w:TCA) =Va: AFAa:[Ala.a~a
— app (wkwt)a~twa
to = (w:TCT') = (m:I"<9A) — unbox (wkwt) m~twm
It is logical in the sense that terms and semantic values of box/function types are related
iff the results from unboxing/applying both to related terms and values, are related;
“Kripke” means that we may first extend the context with a weakening. Notice how
the definition of the logical relation has the same shape as that of semantic values,
see equation (4.1). We will prove for each inductive step of normalization that (~) is

maintained; just as nf always returns a normal form through reification, after reification
we will get a (~) out of ().

We extend (=) to a relation (~) between substitutions and environments elementwise
related by (=), and show that the interpretations of a term in related substitutions and
environments are related, the so called fundamental theorem of the logical relation:

Lemma 2 (Fundamental theorem). Ift : I' = A, 0 : Sub I' A, 6 : Env I' A and
0~y 0, then subst ot ~ [t] 0.

Proof. By induction on t. For the case of t = box s, it needs to be shown that for all
w:ACA m: AN <z,

unbox (box (wk (liftg w) (subst (lock o <) s))) =~ [s] (lock (wk w &) m)
The induction hypothesis gives
subst (lock (wkw o) m) s ~ [s] (lock (wkw §) m)
which we compose with a conversion proof on the left

O-8 (wk (liftg w) (subst (lock o <g) s)) m
:unbox (box (wk (liftg w) (subst (lock o <g) s)))
~ subst (lock id m) (wk (liftg w) (subst (lock o <ig) s))

Here the term on the right side of (~) does not immediately match up with the left side of
(~) in the IH, however one can show that they are in fact equal using rewind-/rewindc-<ig
and substitution laws.

For the t = unbox s m case, it suffices to rewind the proof of o ~, d by m to get
rewind m o ~ex rewind m o

and apply the IH on it and s. [

19



5. Correctness

Similarly, we show that reification and reflection also respect (~):
Lemma 3. Reification and reflection respect (~):
a. Ift : T A t:[Alr andt ~t thent ~"| 1"
b. Ift : Nel' A then "t ~1t.
Proof. By induction on A. (Only the (JA case of (a) is shown here, with the rest left to

the formalization.) The proof of ¢ ~  says unboxing of ¢ and # respects (~). Choosing
w = idc and m = <lg and applying the IH on the result yields

unbox (wk idc t) <ig ~ " (t idc <ig)”
where wk idc t =t. Combining this with the [J-n conversion rule for ¢, i.e.
t ~ box (unbox t <ig)

using transitivity and congruence under box of the conversion relation gives the goal. [

The fundamental theorem, using #d; and id, for substitution and environment, may then
be combined with the reification lemma to conclude the soundness proof.

One detail remains, however. Depending on how (=) is defined it may not be possible
to rewind it. We know only how to rewind OPE:s and Rpl:s, not arbitrary data types,
without taking more rewind functions as parameters. Thus we let (~) = Rpl,_z
where

A~AAT =3t :T+HAi: [Alp.t~1

is triplet of a term, a semantic value, and a proof that the two are related. The
substitution may be recouped by mapping the Rpl with a function that picks the ¢ out
of each A~ A, likewise for the environment. For the proof of the unbox case of the
fundamental theorem, an additional calculus parameter is needed:

+ Rewind should commute with mapg,,:

rewindCommMap :V(f : VA, I.F AT - G AT'),m,o : Rplp I' A.
m1 (rewind m o) = m (rewind m (map f o))

A map f (g (rewind m o)) = my (rewind m (map f o))

where m; and 75 is the first and second projections of the product type.

The parameter rewindCommMap enables us to get the rewound substitution/environ-
ment from a rewound proof of o ~, d. It should be noted that we expect the equivalence
to hold a priori, since a rewind instantiation cannot observe the contents of the paramet-
ric Rpl, which is the only thing mapg, modifies, as explained in “Theorems for free!”
[18]. We still need to take it as a parameter, however, in order to convince Agda.
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5. Correctness

5.2 Completeness

For two convertible terms, completeness expresses that normalization maps them to the
same normal form.

Theorem 4 (Completeness). Ift ~t', then nft = nft'.

The standard technique for proving completeness of STLC [16], [19] uses a so called
presheaf model, where terms are interpreted as natural transformations between semantic
contexts and semantic types. Concretely, what needs to be changed in order to ensure
our possible worlds model is also a presheaf model, is to add naturality conditions to
the interpretation of types. Recall the interpretation of box types from equation (4.1):

[CA]r =VI", ATCTI' > T"<aA — [A]a

We constrain each box value a : [HA]r (and similarly for function values), to fulfill for
alw:TCIV. m:TV<aAand w' : A C A,

a(wow")m' = wk; w' (& wm) where m’, w" = rewindc m w'
i.e. semantic boxes should commute with weakenings. This allows us to prove naturality
for evaluation, reification and reflection.

For proving completeness, since normalization is evaluation followed by reification, it
suffices to show the following lemma:

Lemma 5 (Evaluation is sound w.r.t. conversion). Given two terms I' F¢,t' : A such
that t ~ t' and an environment v : Env I' A, we have

(17 =11

The proof is by induction on ¢t ~ t’. The [O-n equivalence case—where t’ is equal to
box (unbox ¢ <ig)—follows from naturality of evaluation and rewind-<ig. (Though, since
box types are interpreted as functions of a weakening and modal accessibility relation,
we must first postulate function extensionality in order to only have to show pointwise
equality.)

For [J-8 equivalence it needs to be shown that
[t] (lock (wks idc ~') m') = [subst (lock ids m) t] ~

where m/,y = rewind m . We accomplish this using the fact that evaluating a
substituted term is the same as evaluating the raw term in a modified environment, as
summarized in the following lemma:

Lemma 6 (Action of evaluation on substituted terms). IfI'F¢: A, o0 :Sub I' A and
~v:Env A Z, then

[subst o t] v = [t] ([e] )

21



5. Correctness

Here the fact that composition between Rpl:s of different types is defined, see definition 2,
comes into play, where we let apply := Ay t.[[t] v be evaluation in order to compose
substitutions and environments, and interpret [o] v as 0 o . After applying the lemma
it remains to show

[t] (lock (wks idc ~') m") = [t] (lock (ids o ~") m')

which follows from wk, idc v = = ids 0 7.
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Concrete Instantiations

In this chapter we give instantiations of Appy for the two concrete modal lambda calculi
highlighted in [1]. It is worth mentioning that the two resulting calculi are correct by
construction, due to the correctness proof of the parametric calculus in chapter 5.

6.1 Intuitionistic K

To obtain Ajx we let the modal accessibility relation, A <, I', be as in Figure 6.1, i.e.
' is an extension of A, & to the right without adding locks. The <ig parameter is given
by the base case, base, of the relation.

The implementations of rewindc and rewind by pattern-matching are both straightfor-
ward:

rewindc m (weak w) :=snocm/,w’ where m’,w' = rewindc m w
rewindc (snocm) (liftw)  =snocm’,w’ where m’,w' = rewindc m w
rewindc base (liftg w) = base,w
and
rewind base (lockom') =m',o (6.1)
rewind (snoc m) (o, ) = rewind m o '

where the each inductive step pops one snoc layer from the modal accessibility relation,
and OPE or Rpl respectively, in tandem until reaching the base case. The exception
is the weak OPE constructor which is skipped past. In the inductive cases of rewindc,
the returned m’ is built up with snoc, such that for an OPE I' C A, m/ will relate the
target context A and its rewound parallel; for rewind that information is entirely in the
lock constructor instead.

m:A<l>\IKF

base : I' <y,. ', @
e snocm : A <y, I', A

Figure 6.1: Modal accessibility relation for Aik.
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6. Concrete Instantiations

All the remaining parameters are trivial—it suffices to case split on the possible con-
structors of (<), ) and the OPE or Rpl, until Agda confirms the parameter holds
definitionally in the base cases, applying the induction hypothesis elsewhere—with the
exception of rewindPresld where we need an additional lemma:

Lemma 7. If o : RplT' IV such that wkgp idc 0 = o, then for allm : A <, T’
rewind m (drop o) = snocm’, o’ where m', o’ = rewind m o

where drop = wkgy (weak idc) weakens o by appending an additional assumption to
the target context I".

Proof. The \ix modal accessibility relation m, viewed as a context extension from A
to T, starts with a @ (see the base constructor). The function drop only affects the
part of o pertaining to that right of the lock, which will be removed by the rewind
operation. [

6.2 Intuitionistic S4

For Ais4, the modal accessibility relation, which has to be reflexive and transitive [10], is
succinctly defined as A < T' == 3=, (I' = A, Z), i.e. the existence of a context extension
from A to I', as done by Valliappan, Ruch, and Tomé Cortinas [1], except it makes
rewindPresld impossible to implement without modifications. The reason for this is
that the argument made in section 6.1 for the rewindPresld parameter of Ak, does not
apply here as the (<) in question does not necessarily start with a @. Instead, their
formalization adds an additional conversion rule for A\ig4 that we omit

SHIFT-unbox
AFt:OA e:Z2 AzZ<«l

unbox ¢ (e om) ~ unbox (wk (toc €) t) m

—_
—
—

and requires substitution with the identity substitution to only preserve terms up to
conversion, and likewise for the right identity of substitution composition.

The (<y,) definition used in this development, see Figure 6.2, is therefore both an
opportunity to try an alternative approach, and, in at least one aspect, simpler, due to
rewindPresld only having to be shown once, instead of being duplicated for both subst
and substitution composition. It can either be explicitly reflexive (the refl constructor),
or any context extension that starts with a @ (the ext constructor). With ext alone it
would not be reflexive which, recall, is a defining factor of IS4, thereby the addition of
refl.

The implementations of rewindc- and rewind are similar to their A\jx counterparts, with
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6. Concrete Instantiations

e:Ext (A& 7T
exte: A<y, I

refl : I' <y, T

e:Ext ' A e: Ext ' A

nil : Ext I' T’
snoc e: Ext T' (A, A) snocg e : Ext T' (A, &)

Figure 6.2: Modal accessibility relation for A\;g4. The datatype Ext I" A is a constructive
proof of the existence of a context extension from I' to A.

the addition of a ext (snocg _ ) case that needs to be handled, i.e. for rewind:

rewind (ext (snocg m)) (lock o my)
= transq m' ma, 0’ where m', o' = rewind (ext m) o
where trans, is (<y,) composition. Here, compared to the base case ext nil, which is
the same as for A\ in Equation 6.1, which see, rewinding needs to recurse on ¢ from the
lock constructor, as the modal accessibility relation spans multiple @:s. This gives two
modal accessibility relations, m’ and ms, that need to be combined, and complicates

subsequent proofs of the parameters rewindPres-o and rewind Wk quite a bit, which
need a lemma:

Lemma 8 (The rewind operation distributes over (<,,,) composition). If my : I' <T”,
mo : IV I, o : Rpl I A and
mb, o’ == rewind my o

m, o":= rewind m; o’

then

rewind (transq my mo) o = transg my my, o

For instance, in the ext (snocg ) case of rewindPres-o (recall its definition in Equa-
tion 5.1):
rewindPres- o (ext (snocg m)) (lock o1 mg) g9 =7

it needs to be shown that

transg (my X) (m (rewind mq 03)), 9 X

L (rewind (transq (my (rewind (ext m) o1)) ma) o2)

, Mo (rewind (extm) o) o my (rewind (transq (m (rewind (ext m) o1)) ma) 02)

where X := rewind (ext m) (o1 o my (rewind mq 03)). Applying the induction hypothesis
on X yields the new left-hand side

trans, (m1 (rewind (my (rewind (ext m) o1)) (me (rewind mq 03)))) (m1 (rewind my o9))

, Mo (rewind (ext m) o) o my (rewind (my (rewind (ext m) o1)) (7 (rewind msy 09)))
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6. Concrete Instantiations

Here, applying Theorem 8 with m; = m; (rewind (ext m) 1), mg := mg and o = oy,
in order to move trans, into the rewind call and merge the two rewind:s right of (o),
gives the right-hand side.

Note that all A\ig4 parameters have been proven in Agdal, except for rewindPresld which
thus far only has a proof on paper, due to insufficient time.

!See the add-is4 branch in the Git repository.
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Conclusion

We have given a parametric Fitch-style modal lambda calculus and shown how to
instantiate the calculi \jx and Ajg4. This was done by making the relation between
the contexts involved in the unbox operation a parameter, and proceeding to attempt
to prove the usual syntactic lemmas needed to prove correctness of NbE for lambda
calculi, adding additional calculus parameters when stuck. Ultimately, the objective of
formulating a parametric calculus can be considered to have been met.

An avenue that was initially explored, was requiring (<1) to be a context extension,
as it is in both instantiations given in chapter 6, and thereby reduce the amount of
work needed when instantiating. Instead more of the syntactic lemmas would able to
be proved directly in the parametric calculus. For example, it could be done in such
a way that the <g, rewind-<g and rewindc-<\g parameters become implicit. This was
abandoned, however, as the convenience did not outweigh the perceived loss of generality.

The parallel between lambda abstractions and boxes, where similar to how lambdas are
applied by supplying an argument value, boxes can be seen as instead being applied with
a modal accessibility relation, helped when doing the correctness proofs. Frequently,
this symmetry meant cases concerning box and unbox could be somewhat inferred from
looking at the equivalent STLC proofs. Therefore the main difficulties were proving
the substitution laws while simultaneously formulating the parameters, and choosing a
representation of (2~ ) such that it could be rewound.

The Kripke-style calculus and its normalization by evaluation algorithm by Hu and
Pientka [15], are undoubtedly similar to the topic of this thesis. Indeed, the differences
between Fitch- and Kripke-style calculi are purely syntactical. Still, the previous lack
of generality of Fitch-style calculi has been quoted [20] as an apparent disadvantage
of Fitch-style compared to Kripke-style; the results in this thesis show that this is
not altogether the case. It is worth mentioning that the Fitch-style is closer to the
categorical semantics given by Clouston [7]. One has to concede, however, that the
Kripke-style formulation is simpler: The modal accessibility relation is represented as a
single integral modal offset, instead of a proof witness that is carried around of how the
past and future contexts are related.

This raises the question of whether the Fitch-style accessibility relation being more

27



7. Conclusion

general can be meaningful in some way. One possible setback of the way things have been
done in this thesis, is that the calculus parameter <ig imposes too strict a requirement on
the accessibility relation (<1). For example, a version of A\jg4 where A < T if removing all
&:s that occur in ' gives A—effectively used in [21]—is not an instance of the parametric
calculus, instead one would have to also allow e.g. the removal of any number of locks.
That said, the current inclusion of <ig does arise naturally from the need for identity
substitutions.

The formalization in chapter 3 made use of the parametric construct Rpl, in order to
cut down on repetition. Allais, Chapman, McBride, et al. [22] demonstrated how the
concept can be taken further. Their result is similar in that renamings, substitutions
and semantic environments may be represented uniformly, however they go beyond
that by implementing a generic term traversal that may be instantiated to obtain
renaming and substituting of terms and normalization by evaluation, i.a. Specially
useful is how this allows for succinctly proving fusion lemmas, e.g. that substitution
followed by renaming can be subsumed by a single substitution. Compared to Rpl,
their definition of generalized substitutions uses a function space instead of a datatype,
i.e. substitutions are instances of ' 3 A — A F A, however this poses problems once
modalities are introduced. With a datatype, interactions with context locks are limited
by what the lock constructor allows. With functions we are always able to give a proof
of I@>A— Ak Aforany A, as I',@ > A is uninhabited since no variables exist to
the right of the lock. This is problematic when using renamings as context morphisms,
since lock weakening is not in general allowed in modal lambda calculi.

A potential for future work is to investigate whether to replace OPE:s with renamings,
i.e. substitutions where the replacement terms are variables. Not only would this remove
some rewindc /rewind repetition in the parameters, but it would also be a step toward
being able to add the R aziom (A — OA). Valliappan and Ruch [23] showed that the
condition

on R; and R,,, the intuitionistic and modal accessibility relation, respectively, is sufficient
for ensuring axiom R is satisfied in the model (with the IR VAR rule and corresponding
OPE definition). Unlike with OPE:s as given here, the condition holds when picking
renamings for the intuitionistic accessibility relation, since renamings encapsulate lock
weakenings through the lock constructor.

Finally, another thing that was planned in case extra time presented itself by the end of
the project, was implementing supplementary language extensions, such as Booleans,
and/or pattern matching. Any extension that does not interact with the modal fragment
should not pose difficulty, and it would have been nice to exercise this. Unfortunately,
there was not enough time for this.
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