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Abstract

Diffusion weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique
that can be used to measure, in vivo, the self-diffusion of water molecules in body tissues.
This reveals information about the microstructure of the underlying tissue. The simplest
approach to modelling the diffusion at each voxel, known as diffusion tensor imaging
(DTT), is as a Gaussian probability density function (PDF). The covariance matrix of this
PDF defines a second-order tensor. Whilst this model is adequate for modelling fascicles
with a single dominant orientation it is not suitable for more complex tissue architectures;
e.g. crossing fascicles. This has driven the development of more sophisticated models
such as high-order tensors (HOTs). The aim in fitting such models is to determine: (i)
the number fascicles and their orientations and (ii) to extract scalar measures, such as
fractional anisotropy (FA), to characterise the tissue microstructure. This knowledge is
used for two general types of applications: tractography (visualisation/identification of
neural fibre tracts) and the detection/characterisation of diseased tissue.

This thesis explores two non-Gaussian diffusion-modelling approaches. In particu-
lar the bi-Gaussian (multi-tensor model with two tensors) and the fourth-order tensor
are compared to conventional DTI. In the first part of the thesis synthetic data were
generated for a range of signal-to-noise (SNR) values to simulate, for a single voxel,
one fibre (for a variety of FA-values), and two crossing fibres (for six FA combinations
and a range of crossing angles). Each model was fitted to this data and the quality of
the fit evaluated in terms of the three measures: signal deviation, angle deviation and
tensor element deviation (in the latter case only when the model matched the struc-
ture). The results show that: (i) the fourth-order tensor model consistently has lower
signal deviation than the bi-Gaussian and second-order tensor models; (ii) for one fibre
both the second-order tensor and the fourth-order tensor models yield low angular devi-
ation, whilst the bi-Gaussian model does not (model-structure mismatch); (iii) for two
fibres the angular deviation decreases for both the bi-Gaussian model and the fourth
order model with increasing SNR and crossing angle; (iv) the tensor element deviation
decreases with increasing SNR.

In the second part of the thesis the concept of FA is explored. In the case of the
conventional second-order tensor a standard definition exists for computing a scalar mea-
sure of FA from the tensor. FA-definitions for the bi-Gaussian and fourth-order tensor
models are explored and compared, empirically (using both the synthetic data and real
brain DWI data), to the second-order definition. FA estimation for high-order tensors
involves the concept of Z-eigenvalue decomposition. The thesis presents an implemen-
tation that is more robust and accurate than the existing open-source implementation.
The experimental results for the synthetic data show that: (i) the FA-definition for the
second-order tensor in general yields FA-values close to true FA for one fibre and close
to the mean value of true FA for two fibres; (ii) the bi-Gaussian FA-definitions all tend
to overestimate the true FA for both one and two fibres; (iii) the fourth-order definitions
yield FA-values that correlate well with true FA for one fibre and for two fibres with a
small crossing angle, but decreases with increasing crossing angle. The results for the
real brain data show that FA-maps estimated with the bi-Gaussian model (fitted with



the Levenberg-Marquardt algorithm) yields many undefined values, but that FA-maps
estimated with the fourth-order tensor definitions correlate well with the maps estimated
with the second order tensor model.

Keywords: Fractional Anisotropy, bi-Gaussian diffusion model, fourth-order diffusion
tensor, Diffusion Tensor Imaging, Diffusion Weighted Imaging, Diffusion Weighted MRI
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Introduction

HE RESEARCH DESCRIBED in this thesis was undertaken in the MedTech West
centre located at Sahlgrenska University Hospital in Gothenburg, Sweden in
2013. It constitutes part of a larger research project concerned with the devel-
opment of diffusion imaging tools for the assessment of the visual pathways in

the human brain.
This chapter starts with a brief introduction to DWI, and then presents the aim and
objective of this thesis, the scope, and finally a description of the structure of this thesis.

1.1 Background

An understanding of how the human nervous system, particularly in the brain, is or-
ganized has been a long standing area of research. Historically only post mortem and
invasive analysis was possible, but now with diffusion weighted MRI (Magnetic Reso-
nance Imaging) (hereinafter denoted DWI) it is possible to visualise the white matter
tracts in vivo [1].

With region of interest (ROI) methods it is possible to separate and identify indi-
vidual tracts. The construction of a 3D-model of the white matter tracts was one of
the first applications of DWI. Comparisons of the tractography maps derived from DWI,
with structures identified using more invasive methods have shown that DWI is a reliable
method for relatively large and homogeneous structures such as the corpus callosum [1].

1.1.1 Diffusion Models

The easiest way to model the structure is with DTI (Diffusion Tensor Imaging) which
assumes that the diffusion (see section 2.1) PDF can be described with a second order
tensor. When a voxel contains crossing, kissing or other multiple fibre directions this
model is inappropriate because the second-order tensor describes only an ellipsoid of
diffusion with one principal direction. In DWI the resolution is low; one voxel in clinical
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DWT typically has a side of one or two millimetres. Since the likelihood that all fibres
within one voxel have the same alignment is low, a more complete model is desirable.

DTI utilises a second order tensor to describe the diffusion, and models the sig-
nal attenuation as a mono-exponential. However the observed attenuation in tissue is
not mono-exponential [2]. Nevertheless, modelling the signal with DTI is still a useful
technique and can provide information about the structure of the tissue, with the large
advantage of being relatively fast to compute.

Numerous other models have been proposed, including the bi-Gaussian model [2],
where the sum of two mono-exponentials model the signal; the multi-Gaussian, similar
to the bi-Gaussian but instead a sum of any number of mono-exponentials; DSI, diffu-
sion spectrum imaging; and the high order tensor model, where the conventional second
order tensor is replaced with a higher order tensor. These models seek to more accu-
rately describe the hindered diffusion of the water molecules, and thus to yield better
reconstructions of the underlying structure.

1.1.2 Scalars derived from DWI data

From the data acquired from a DWI-scan and then reconstructed with DTI, it is possible
to derive a scalar called FA (Fractional Anisotropy). This is often referred to as a
measure of structure or integrity (as discussed in [3]). The possibility to compute a scalar
that describes the fibre integrity or fibre structure of each voxel could help determine
the progress of diseases like MS (Multiple Sclerosis) or Alzheimer’s Disease that cause
demyelination of white matter fibres [4]. It is also proposed that FA-maps can provide
a method to demonstrate improvement of white matter integrity after tumour removal.

In those cases where the micro-structural integrity is of interest (demyelination, struc-
tural damage, etc.), the fibre directions are unimportant [3]. FA is used to help determine
a suitable starting point for tractography, because a high FA also is indicative of the
structure in the voxel. A high degree of structure is in this context a voxel with highly
aligned white matter fibres.

However it can also be argued that a voxel with two clearly distinguishable fascicles
is highly structured. Similarly a voxel containing three, four or more fascicles are highly
structured when compared with, for example, grey matter. It is clear that structure and
integrity are difficult terms to define. Therefore, clinical experts engaged in research in
DWTI have been consulted throughout this project, to gain an understanding of what it
is that they perceive FA to mean.

A standard definition of FA exists for DTI, but not for other reconstruction models.
In this thesis we evaluate the various definitions that have been proposed in the literature
for a select set of models as outlined in the Aims and Objectives. For models where it is
possible to generate multiple FA values, for example the multi-tensor models, the DWI
community is not in agreement about whether FA should be expressed as one or several
scalars. In this thesis we have adopted the convention that FA is a single scalar when
generating FA maps.



1.2. AIMS AND OBJECTIVES

1.2 Aims and Objectives

The first aim of this research was to compare the conventional Gaussian diffusion model
with two non-Gaussian diffusion models, the bi-Gaussian and the fourth-order tensor,
for single and crossing fibre architectures.

The second aim of this research was to explore the concept of FA and to evaluate
existing FA definitions for the three models chosen in the first aim.

To this end the research had the following objectives:

i) To generate synthetic data to simulate a single voxel, a single fibre (for three different
FA values), and two crossing fibres (for six FA combinations, and a range of crossing
angles).

ii) To fit each model to this data and evaluate the quality of the fit in terms of the
three measures: signal deviation, angle deviation and tensor element deviation.

iii) To review the physical meaning and significance of FA.

iv) To develop a robust and accurate implementation of the Z-eigenvalue decomposition
algorithm needed for the FA estimation for high order tensors.

v) To investigate and compare FA definitions for the bi-Gaussian and fourth-order
tensor models, empirically (using both the earlier synthetic data and real brain
DWI data), to the second-order definition.

1.3 Scope

The non-Gaussian diffusion models explored in this research were limited to the bi-
Gaussian and fourth-order tensor. The general problem of estimating the number of
fascicles and their relative fractions within a voxel was not considered in this thesis.

1.4 Structure of the Thesis

The remainder of the thesis is organised as follows:

Chapter 2 Briefly reviews the concept of diffusion, describes what DWI (Diffusion
Weighted Imaging) is and how it is used to measure diffusion, and presents the three
diffusion models explored in this thesis.

Chapter 3 Addresses objectives i) and ii) associated with the first aim of the thesis.
In particular it evaluates how well the three diffusion models perform in terms of signal
deviation, angle deviation and tensor element deviation. The framework used for synthe-
sising the signal is presented and how the quality measures are calculated is described.
The resulting measures are presented and the models compared.
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Chapter 4 Addresses objectives iii), iv) and v) associated with the second aim of the
thesis. In particular the concept of FA and what it means is discussed. The protocol for
synthesising signals with known FA for use in the experiments is described, as well as
how to estimate the FA values for the three different models. Z-eigenvalue decomposition
of high order tensors is discussed, and a new implementation is presented. Finally the
results of the FA value estimation experiments for the different models are presented
and compared.

Chapter 5 Summarises the thesis and the conclusions. Future work and improvements
are proposed.

Appendix The complete set of results are presented here, in three appendices. The
first with the results from model evaluation and the second from synthetic FA-estimations
and the third with real data FA-maps.



Diffusion Weighted Imaging

HIS CHAPTER BEGINS by describing diffusion, and the difference between iso-
tropic and anisotropic diffusion. Section 2.2 then describes diffusion weighted
imaging (DWI) which is an magnetic resonance imaging (MRI) technique for
measuring bulk diffusion in vivo. Section 2.3 describes conventional Gaussian

diffusion (the simplest model of diffusion). Finally Section 2.4 describes the two non-
Gaussian diffusion models explored in this thesis.

2.1 What is Diffusion, and what is DWI?

The term diffusion refers to the random, or Brownian, motion of particles or molecules
in a liquid or gas. DWI is an MRI technique that measures the self diffusion of water
molecules in body tissue, i.e. the random displacement of the molecules due to thermal
agitation. In an unrestricted volume, the diffusion of water is isotropic, the Brownian
motion is the same in all directions. However within structured tissue, like the brain
white matter, the diffusion is not isotropic, but depends on the direction. Anisotropic
diffusion is not restricted to brain white matter, but can be found in other biological
tissues also [5]. Herein though the focus is on white matter.

DWI can be used to perform tractography, that is to identify and visualise the white
matter fibre tracts via the main direction of diffusion in each voxel. DWI can also provide
information about the progress of a disease or condition, for example a brain tumour,
via both tractography and scalar measures (features) describing tissue structure.

2.2 How to Measure Diffusion with MRI

In DWI the signal derives from the signal attenuation due to diffusion or more precisely
the proton spins dephasing in a spatially varying magnetic gradient [5]. A scan is made
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without diffusion weighting (b = 0 1), providing a reference signal, Sg. Then DWI mea-
surements are executed with a diffusion sensitising gradient applied in several directions
(b #0). A model of diffusion is then fitted voxel-wise to this data. The model makes
it possible to quantitatively characterise the diffusion. The complexity of the model
together with sampling considerations determines the minimum number of gradient di-
rections. The b-value is determined by several factors including the desired resolution,
the apparatus and the scanning time.

DWTI is an MRI method where the applied magnetic field is not homogeneous as in
T;- and To-weighted images. Instead the pulsed magnetic field is linearly varied causing
the protons in the water to precess at different rates. A refocusing gradient pulse of the
same magnitude but opposite direction is applied, and those protons that have moved
will not be perfectly refocused, causing a detectable signal loss. This diffusion weighted
method was introduced by Stejskal and Tanner, who gave name to the Stejskal-Tanner-
equation:

é _ e—TE/Tge—'\/2G2§2(A—%)D (21)
So

describing the signal attenuation, where S is the signal with applied gradient G and Sy

without, ~ is the gyromagnetic ratio, § the duration of the pulses, A the time from the

first pulse to the refocusing pulse, Tr the echo time, T, the spin-spin relaxation time,

and D the diffusion-coefficient [5].

To simplify equation (2.1) it is convenient to set b = y2G*6* (A — g), this is called the
b-value. Additionally, if the term e 7#/72 is assumed to be constant over all gradients,
the Stejskal-Tanner equation is reduced to:

S —bD
= . 2.2
So ‘ (22)

In DWI, the conventional way to estimate the diffusion is to model the ADC (Ap-
parent Diffusion Coefficient) with a second order tensor according to

ADC = —log <S> . (2.3)
So

This has known disadvantages when the underlying structure does not have one main
direction of diffusion, but consists of several directed sources of diffusion. Many other
approaches have been proposed to address this problem. The bi-Gaussian model and the
fourth-order diffusion tensor are two such models. In this thesis they are compared to
the second order tensor used in conventional DTT (Diffusion Tensor Imaging) in terms of
signal error, angular error and tensor element error. The tensor element error only makes
sense when the structure and model matches, for example for DTI when modelling one
fibre, and bi-Gaussian when modelling two crossing fibres.

1p = ~2G262 (A — g) usually in s/m?. For further explanation of the b-value see the following

paragraphs and Section 2.2.1
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2.2.1 The b—value

As described previously, the term b-value was introduced in [6] to simplify the Stejskal-
Tanner equation, (2.1). This is somewhat misleadingly suggesting that the b-value is less
complex than it is. Commonly in literature the b-value is described as a constant value,
e.g. 1500 as used in this report, but b = y2G?42 (A — %) These constituent parameters
all have different impacts on the result.

The term e~T#/72 in equation (2.1) is often omitted since it generally is considered
to be constant over all gradients. Nevertheless it describes the signal’s exponential
dependency on Tg. Increasing Ty will decrease the signal amplitude, and significantly
decrease the SNR (Signal to Noise Ratio) for all measurements regardless of the b-value.
Considering only unit-norm gradients, bnominal = 7262 (A — g), the relationship between
Tg and b-value can be approximated according to

12bn0minal

TE ~
,)/2

(2.4)
Increasing the b-value, will also result in a larger minimal T and thus decrease the SNR
[7]. This is one of the important trade-off’s in DTI, a higher b-value is known to increase
the contrast between the DW (Diffusion Weighted) gradient directions, but forces Tx to
rise and SNR to drop.

If we instead not are considering unit-norm gradients, the b-value can be increased
without affecting the byominal. Since by = bnominalG% the desired gain can be obtained by
increasing the gradients to have norm greater than one.

2.3 Gaussian Diffusion

Before DWI became a widely-used imaging technique, it had been observed that in dif-
fusion MRI the echo intensity was dependant on the specimen’s orientation with respect
to the direction of the applied magnetic field gradient, characterised by the diagonal
elements of the effective self-diffusion tensor D°f. D is a 3 times 3 symmetric ma-
trix with six unique elements. In 1993, Basser, Mattiello and LeBihan in [6] proposed
that the off-diagonal elements of D must be taken into account to fully characterise
anisotropic diffusion. In other words, both the eigenvectors and eigenvalues are of impor-
tance; not only the eigenvalues. This provided a more general model than the previous,
where the diagonal elements non-equality only provided information about the isotropic
or anisotropic nature of the structure. An estimation of the fibre tracts orientations and
distributions in wvivo, i.e. tractography, was now possible.

2.3.1 DTI

In DTI the PDF (Probability Density Function) of the water molecules diffusion is
assumed to be Gaussian. The covariance matrix of this PDF is a second order tensor
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(2DT) D written
Dyy Dyy Dy
D=| D, D, D,. |- (2.5)
Dy, Dy, D,

The tensor is symmetric with 3 rows and 3 columns, and thus out of those nine elements
only six are unique. This covariance matrix describes the diffusion along and correlation
between orthogonal axes [5].
Using the Stejskal-Tanner equation the signal with gradient directions g (which is
included in b) is
S =8y -e PP (2.6)

where b : D is defined according to
b:D =b:(920Dzz + gyyDyy + 922Dz + 292yDay + 292Dz + 2¢,.Dy2) (2.7)

To determine D at least seven measurements must be performed where one usually is
with b = 0. The b = 0 signal is here denoted Sj.

Since DTT utilises a second order tensor to describe the diffusion, it cannot describe
more than one main direction (corresponding to the dominant eigenvalue/-vector pair).
For complex fibre structures such as crossing, kissing, branching, etc., this disadvantage
motivates the use of more complex models.

2.4 Non-Gaussian Diffusion

The first proof that the diffusion of water-molecules in the brain tissue is not Gaussian
was presented in the 1990s[1]. Two methods to model the non-Gaussian properties are
described here. The first method, the multi-Gaussian model, extends Equation (2.6) to
a sum of exponentials. This has been discussed and evaluated in [1], [2], [7]. The second
method, the high order diffusion tensor model, can model more complex inter-voxel fibre
structures [8]. This model extends the second order tensor to a fourth order tensor, and
can thus describe more complex structures.

2.4.1 Multi-Gaussian Diffusion

The bi-Gaussian model is an extension of the mono-exponential conventional second
order diffusion tensor. A second exponential term is added, thus the signal now is
described by

S = Sg(A; - e8P 1 A, . 708 D2), (2.8)

Here Ay and Ay are the fractions of occupancy, i.e. what proportion of the voxel’s
volume that is assigned to that tensor (fascicle). This can be extended to a multi-
Gaussian model, with any number of exponentials, each corresponding to one fascicle’s
direction.
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The simplification utilised in D'TT for the relationship between Sy and S, transforming
the non-linear problem to a linear problem cannot be used here. Estimating the two
tensors Dy and Dy in Equation (2.8) is more difficult than to estimate D in Equation
(2.6). Additionally, to estimate the scalars A; and Asg, it was demonstrated by [7] that
the signals must be acquired over a range of b—values to avoid an infinite number of
solutions.

2.4.2 High Order Diffusion Tensor

In 2002, high angular resolution diffusion imaging (HARDI) was proposed in [9], to de-
scribe non-Gaussian diffusion. Over a sphere N discrete gradient directions are sampled.
Without assuming the nature of the diffusion, the apparent diffusion coefficient is esti-
mated in all gradient directions. One of the methods proposed to analyse HARDI data
is with high order tensors (HOT’s).

An advantage of using the high order diffusion tensor is that the 2DT theory can be
generalised. The signal is modelled with Equation (2.6) but D is now a 3-dimensional
fourth order tensor, instead of a 3-dimensional second order tensor.



Empirical Evaluation of
Non-Gaussian Diffusion Models

HIS CHAPTER PRESENTS an empirical evaluation of the two selected non-Gaus-
sian diffusion models — the bi-Gaussian and the 4th-order tensor — and the
conventional 2nd-order tensor model used in DTI (Diffusion Tensor Imaging).
The aim of the evaluation was to investigate how well the two non-Gaussian

models describe single and crossing fibres compared to DTI. Several experiments are
presented that evaluate the performance of the three models in terms of signal devia-
tion, angle deviation and tensor element deviation. In the first section the framework
used to generate the synthetic data (with prescribed structure, properties, and noise) is
described. Section 3.2 describes how the three models were fitted to the synthetic data.
In the first section the framework used to generate the synthetic data (with prescribed
structure, properties, and noise) is described. Section 3.3 defines the three quality of
fit measures and the required adjustments depending on the fibre architecture/structure
and model. Section 3.4 presents the fitting results. A discussion of these results is then
presented in Section 3.5.

3.1 Evaluation Framework

The commonly used evaluation framework of [10] was used in this study. This framework
prescribes the steps involved in synthesising signals corresponding to different rotations
of a fascicle architecture in a single voxel (for different noise levels), model fitting, and
measurement of the goodness of fit. More specifically the framework comprises the
following steps:

(i) The structure to synthesise is defined, i.e. the number of fibres and their FA-values
(FA is short for fractional anisotropy).

10
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(ii) The gradient directions and b-value are defined.

(iii) The number of rotations N and Euler angles, noise levels N,, number of noise
realisations Ngryn and crossing angles N, are defined.

(iv) The tensor defined in step (i) is rotated with an angle defined in step (iii).

(v) The diffusion signal is simulated, for underlying structure with one fibre according
to the Stejskal-Tanner equation (2.1), or for two fibres according to Equation (2.8).

The tensors D is estimated with each model.

The measures of goodness of fit and derived scalar measures are calculated.

)
)
(viii) Steps (v) to (vii) are repeated for a total of Ngn Rician noise realisations.
) Steps (iv) to (viii) are repeated for a total of Ny different rotations.

)

The mean values and standard deviations for the goodness of fit measures and
scalar measures are calculated.

In this research the focus lies in how well the FA-maps correlate with the underlying
structure. Thus the FoO (Fraction of Occupancy) values have been assumed to be known
during the simulations and estimations, and were always set to 0.5 each, such that there
are two fascicles of the same fraction in each voxel.

3.1.1 Fascicle structures/architecture defined in this study

The fascicle structures/architecture used in this study were all defined in terms of the
number of crossing fibres (one or two) and their individual FA-values. Three different
FA-values were used: FApien = 0.94, FAcdium = 0.51 and FAj,, = 0.18. For one fibre
this resulted in three FA-structures: high, medium and low, and for two crossing fibres
in six: high-high, high-medium, high-low, medium-medium, medium-low and low-low.
The three different FA-values defined three diffusion tensors, one high, one medium

11



3.1. EVALUATION FRAMEWORK

and one low according to the following

17 0 0
Dpign=1_ 0 101 0 |-107* (3.1)
0 0 1
(3.2)
17 0 0
Doediwm = | 0 10 0 [-107* (3.3)
0 0 5
(3.4)
14 0 0
Diow=| 0 11 0 [-107" (3.5)
0 0 1

Their magnitudes are based on the largest diffusivity ! experimentally found along a
fibre [3]. Each was used as an initialisation tensor Djp;; to generate the synthetic signals
and were appropriately rotated to create the desired fibre-crossing structure. Due to
symmetry, it suffices to define the acute angle of intersection between two fascicles to be
from 0° to 90° in steps of 10°.

3.1.2 Gradient Directions

The gradient directions used in the study are the 81 evenly distributed directions defined
n [11]. This was chosen to assure that the tensor-element estimation is robust. For DTI
it was shown in [12] that at least 30 unique sampling directions are necessary to estimate
the six unique elements. For the fourth order tensor, as described in Section 3.2.3, we
have fifteen unique elements to estimate requiring a larger set of sampling directions.
The b-value was chosen to be 1500 s/mm? which is a value that can be found in the
clinical settings [7].

3.1.3 Noise

The noise in measured MRI (Magnetic Resonance Imaging) signals is commonly assumed
to be of Rician distribution [13]. Therefore we added Rician noise to the synthetically
generated signals for values of o € [0.02,0.14] in steps of 0.02, where o = 1/SNR. This
resulted in Ngn = 7 noise realisations with SNR € [7.1,50]. In [3] a lowest SNR for
practical use and a given b-value was suggested according to

3

SNRmin — m

(3.6)

' Diffusivity has unit m?/s and describes how fast the molecules diffuse

12



3.1. EVALUATION FRAMEWORK

where b is in mm?/s. With a b-value of 1500 mm? /s this means that in practical use the
SNR for that b-value should be larger than 14. Given that when we generate the synthetic
signal we can choose what SNR-range to use, it was chosen to cover this smallest value
with margin, thus covering a range from more noise than preferred to very little noise.
The Rician noise was generated and added to the noise-free signal S according to

Shoise = \/(S + n1)2 + (n2)2 (37)

where Speise is the noisy signal, n; = 0d; and § € [0,1] is a normally distributed pseudo-
random number. For each noise level the procedure was repeated Nrny = 25 times each
time for new 6. In this way seven noise level sets of synthetic signals were generated,
giving a total of 25 x 7 noise-realisations.

3.1.4 Procedure for creating rotations of the crossing fibre signals

Since the number of gradient directions is finite, the fibre orientation in relation to the
gradient directions has an impact on the signal intensity. For example, in the extreme
case with only one gradient direction applied, a fibre perpendicular to the gradient
direction generates a stronger signal than a parallel one would, see equation (2.6) and
(2.7). To limit the signal-dependence on the fibre-gradient-orientation relation, multiple
rotations of each crossing fibre signal were generated.

Each diffusion tensor D was rotated with a rotation matrix R to obtain D =
RD;,;:R", where R was defined by combining the three rotational matrices accord-
ing to equation (3.8), one for rotation about each axis, R;, R, and R.. The three
rotation matrices are shown in Equations (3.9) — (3.11) where «, 8 and ~ are the angles
to rotate around the x-, y- and z-axis respectively. D, is an initialisation tensor with
elements defined to achieve a desired FA-value, as described in Section 3.1.1.

R=R,R,R. (3.8)
1 0 0

Ry=| 0 cos(a) —sin(a) (3.9)
0 sin(a) cos(a)
cos(f) 0 sin(p)

R, = 0 1 0 (3.10)
—sin(B) 0 cos(B)
cos(y) —sin(y) 0

R: =] sin(y) cos(y) 0 (3.11)
0 0 1

The rotation procedure was performed in the same way for both one fibre and two
fibre synthetic signals. Rotations corresponding to the following intervals a € [0, 7/2],

13



3.2. FITTING THE MODELS

B € 10,7/2] and v € [0,27] were considered. For « and  the intervals were evenly
divided into three steps each and ~ for four. Thus the fibres were rotated a total amount
of 36 times.

3.2 Fitting the Models

The Gaussian diffusion model (DTI) and the two non-Gaussian models (the fourth order
tensor model and the bi-Gaussian model) were fitted to each synthetic signal in turn as
described below.

3.2.1 DTI (Second order tensor model)

The estimate of the tensor D, denoted ]j, was estimated using a linear least squares fit
of the diffusivity function d(g;) with respect to the six unique elements in D according

to v A 2
min {g (a(g) - d(an) } (3.12)

The relation between the diffusivity function and the logarithm of the signal is linear,
viz.

d(d) = f% log <§0) (3.13)

and the relation between the measured signal and estimated tensor is

AZ' = Soe_bgi]jg?. (3.14)

3.2.2 Bi-Gaussian Model

The bi-Gaussian model was fitted using non-linear least squares (Levenberg-Marquardt
algorithm) to obtain estimates for the two second order tensors D; and Dy according to

N A\ 2
i {; (S,- . SZ-) } (3.15)

where NV is the number of gradient directions. The relationship between the measured
signal and estimated tensors is given by

$; = 0.5¢ 031G | 5c-03D25] (3.16)

which cannot be expressed as a linear least squares problem as was the case for DTI.
To initialise the minimisation, three approaches were investigated:

1. Ranged random initialisation [9], where the initial guess is two second order tensors
of three dimensions, whose elements are of 10~% order of magnitude. The order of
magnitude is based on the free diffusion of water at 37° [7] [6].

14
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Figure 3.1: Angle deviation as a function of fibre crossing-angle for the bi-Gaussian tensor
estimation of different initialisation methods.
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Figure 3.2: Signal deviation as a function of fibre crossing-angle for the bi-Gaussian tensor
estimation of different initialisation methods.

2. A conventional 2nd-order tensor is estimated, which is used as the initial guess for
both bi-Gaussian tensors [14].

3. To avoid local minima, a conventional 2nd-order tensor is estimated and randomly
perturbed (a random number in the range [—1,1] x 10~* is added to each tensor
element) as initial guess. This is repeated twenty-five times (no improvement was
detected with more than 25 repetitions).

The angular deviation for the three initialisation methods is shown in Figure 3.1.
For angles lower than 50° the results are similar, but for larger angles the two random
initialisations are superior. With the DTI initialisation the optimisation step found
local minima for large crossing angles, which resulted in a larger angular deviation. The
signal deviation, see Figure 3.2, shows the same pattern. For low angles the methods’
deviations are similar, but for higher angles the DTT initialisation yields larger deviation.
The computation times for method 1 and 2 are significantly lower than for method 3.
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3.3. MEASURES OF GOODNESS-OF-FIT

3.2.3 Fourth Order Tensor Model

One method for indexing the elements of a (fourth order) tensor A is by four indices
i1,...14, one for each order, i,, € [1,2,3] for three dimensions. But the diffusion tensor has
an inherent symmetry by definition (similar to the symmetry in DTI) which makes the
fourth order, three dimensional tensor possible to represent with fifteen unique elements.
Each can be represented by a lower case letter with two indices, here ay; where k,l €
0,...,4 and effectively determine the number of 1’s and 2’s (and therefore also 3’s) for
Ailiyisis- One way to interpret the indices for A is to translate 1,2 and 3 to x,y and z
respectively.

Example The element A;123 of the supersymmetric tensor A can also be represented
by the element ao; in the fifteen element long vector a.

For the fourth order model the fitting introduced in [15] that ensures that the fourth
order tensor is PSD (Positive Semi-Definite) was used. The estimated signal was then
fitted, using non-linear least squares, to the Cartesian tensor orientation distribution
function (CT-ODF) according to

min {é <§0 — S)Q} (3.17)

and the estimated signal is defined according to
M
Si= [ " nntgs (7. g.b)ds (3.18)
S2 i

where B is the response function and the kernel is a fourth order tensor defined by A.
The author of [15] has developed an open source software package which was used to
perform the fourth order tensor fit.

3.3 Measures of Goodness-of-Fit

For each synthetic signal, the three models were fitted and three goodness-of-fit measures
calculated for each. The calculation of these measurements depends not only on the
underlying structure (represented by the synthetic signal), but also on the model used.
This section describes how the calculations of the measures were performed.

3.3.1 Signal Deviation

Signal deviation AS provides a measure of the percentage deviation between the mea-
sured signal S and the signal S estimated by the model; i.e.

N A
1 S, — S
AS‘N — S,

(2

(3.19)
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S was calculated according to Equation (3.14) for DTI, Equation (3.15) for the bi-
Gaussian model and Equation (3.18) for the fourth order tensor model.

3.3.2 Angle Deviation and Estimation of the Main Direction

The angle deviation measure A¢ gives the angular difference between the simulated
structure’s direction or directions and the estimated direction. In [16] a mean angle
error was used for validation of the results. Since DTI yields one main direction, bi-
Gaussian two and the fourth order tensor theoretically up to thirteen directions the
angular deviation was defined in three different ways.

The number of fibres were assumed to be known when estimating the angle deviation
for the fourth order tensor model; i.e. the problem of estimating how many crossing
fascicles are contained in a single synthetic signal was not considered in this thesis (as
noted in Section 3.1).

Angle Deviation for Single Fibre Simulations

When simulating one single fibre, the underlying structure can be described with one
clearly defined main direction ¢. For the simplest case, DTI, the angle deviation was
defined as the absolute difference in degrees between the estimated second order tensor’s
main direction and the simulated fibre’s direction. The eigenvector €.y corresponding
to the largest eigenvalue Apax is directed in the estimated fibre’s main direction 7 such
that énax = 7. The angle deviation for DTI was defined according to

A = )qs—({s‘. (3.20)
The angle between two vectors was determined according to
. ref
¢ — gb‘ = arccos <) 3.21
‘ N> (3:21)

where 7 is the ground truth main direction and equal to the main eigenvalue’s correspond-
ing eigenvector. Since arccos(z) € [0, 180] and the acute angle was sought, ¢ = 180 — ¢
if the resulting angle was larger than 90°.

For the bi-Gaussian model, the two tensors both gave one estimated main direction
each, q§1 and ¢A2. The angle deviation was calculated according to

(3.22)

1g .
Ap=33"|o—d
=1

where the angular difference and directions were calculated in the same way as for DTI,
see Equation (3.21).

As previously mentioned, the estimation of the number of fibres was not within the
scope of this thesis. Thus so for the fourth order tensor model one main direction was
sought. This was, in the same way as for the conventional second order tensors, found

17



3.3. MEASURES OF GOODNESS-OF-FIT

by the maximum eigenvalue and it’s corresponding eigenvector. The generalisation of
eigenvalues and eigenvectors of two-dimensional matrices into symmetric matrices of even
order are called Z-eigenvalues and Z-eigenvectors and is described in Section 4.4. The
angle deviation was then calculated in the same way as for DTI, according to Equation
(3.20).

Angle Deviation for Simulations with two Crossing Fibres

When the underlying structure was two simulated crossing fibres with main directions
r1 and 19 the angle deviation for DTI was defined according to

2

A¢=%Z

i=1

i — é\ (3.23)

where |¢p— QAS\ was defined in the same way as for one simulated fibre, see Equation (3.21).

For the bi-Gaussian and fourth order tensor models the angle deviation for the two
estimated directions 7#; and 72 had to be be combined with the right ground truth
directions 71 and 5 which was achieved by minimising the sum of the possible differences
as follows

Ap = %min{’% —951‘ + ’¢2 — ol |1 —Q52) + ‘¢2—q§1)}, (3.24)

)

3.3.3 Tensor Element Deviation

The tensor element deviation AD was only calculated when the model and underlying
structure matched, i.e. when estimating one simulated fibre with DTT or two simulated
fibres with the bi-Gaussian model. It is defined according to

1 < .
AD==-%" ‘Di — D, (3.25)
n
=1

where n is the number of tensor components in the model.

18



3.4. RESULTS

3.4 Results

For all setups the three measures of quality were plotted as a function of SNR and in the
case of two fibres, the crossing angle as well. The complete set of figures can be found
in Appendix A. A representative selection of results is presented below.

3.4.1 Results for One Fibre-Structure

Angle Deviation, High FA, FA = 0.94
30 : : : :

T T
—e— DTl

—%*— Bi-Gaussian Model
—+— Fourth Order Model ||

N
o
T

n
o
T

o
T
I

Mean Angle Deviation in degrees
o o

5 10 15 20 25 30 35 40 45 50
SNR

Figure 3.3: Mean angle deviation, one fibre. Ground truth FA= 0.94. The bi-Gaussian
model’s large angle deviation is because the model approximates two tensors when the
underlying structure is composed of only one.

A summary of the number of times that the two non-Gaussian models yielded smaller
deviation than DTI, and that the fourth order tensor model yielded smaller deviation
than the bi-Gaussian is presented in Table 3.2 (note that the percentage was calculated
over all SNR-levels). This shows that the fourth order model yielded smaller angular
deviation than the bi-Gaussian for all FA-values, and compared to DTI the deviation
is smaller for the high FA-value but not medium and low. The bi-Gaussian model had
the largest deviation for all three FA-values. Figure 3.4 presents the angle deviations for
each component tensor of the bi-Gaussian model separately. For high and medium FA
the best fit-deviation is lower than 20° for all SNR-levels and lower than 10° for SNR
above 14. Compared to the results in Figure 3.3 this is low. So the bi-Gaussian model
seems to, in the case of medium or high FA-values, fit one of the two tensors well, but
the second one poorly.

In Figure 3.5 the mean signal deviation for the low FA-value and all models is shown
which indicates that all models give a similar deviation which decreases with increasing
SNR. In table 3.2 the models are compared, which shows that DTI gives the smallest
signal deviation in a majority of the estimations for one fibre simulations.

19



3.4. RESULTS

Table 3.1: The percentage of times the bi-Gaussian and the fourth order tensor models
had lower angle deviation than DTI, and that the fourth order model had smaller deviation
than the bi-Gaussian model (H = high FA, M = medium FA, and L = low FA).

H M L
Bi-Gaussian 1% | 2% | 13%
Fourth Order 68% | 41% | 26%

Fourth Order better than | 99% | 95% | 81%
bi-Gaussian

Table 3.2: The percentage of times the bi-Gaussian and the fourth order tensor models
had lower signal deviation than DTI, and that the fourth order model had smaller deviation
than the bi-Gaussian model (H = high FA, M = medium FA, and L = low FA).

H M L
Bi-Gaussian 23% | ™% | 20%
Fourth Order 11% | 4% | 19%

Fourth Order better than | 26% | 18% | 34%
bi-Gaussian

The tensor element deviation for DTT is shown in Figure 3.6. The magnitude of the
tensor element deviation is of the same order of magnitude as the ground truth tensor
elements, and the smallest deviation was obtained for low FA.
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Figure 3.4: Angle deviation for the two main directions of the two tensors estimated with
bi-Gaussian model, to the left the direction with lowest angle deviation, to the right the
largest deviation.
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Figure 3.6: Median tensor element deviation, one fibre, DTI. Ground truth FA ., = 0.18,
FAInedium =0.51 and FAhigh = 0.94.
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3.4.2 Results for Two Fibre-Structure
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Figure 3.7: Angle deviation as function of fibre crossing angle. Ground truth FA; = 0.94
and FA; = 0.94.

In Figure 3.7 a typical result for the angle deviation with DTT is shown. Note that
the deviation is computed as the average of the deviations of the direction estimated by
the model and the two ground truth directions (see Equation (3.23)). The deviation was
shown to increase almost linearly with increasing crossing angle, showing a precise but
not accurate behaviour 2. The estimated direction was close to the direction directly
in-between the two simulated fibre directions (see Figure 3.8). All simulated FA-values
showed the same trends but with decreasing mean-FA the dependence of SNR increased
(see Figure 3.9 where both ground truth FA-values are medium and low, FA; = 0.51
and FA; = 0.18).

The bi-Gaussian model (note that this is the model used to synthesise the signal)
performed best when both fibres had high FA and high crossing angle. When the crossing
angle is low, the structure approaches the behaviour of one fibre in which case the bi-
Gaussian model was shown to give high angular deviation (see Section 3.4.1). For the
structure of two high-FA fibres Figure 3.10 shows the angular deviation as a function of
the crossing angle.

For the fourth order tensor model, as described earlier, the number of fibres and their
fraction of occupancy were not estimated but assumed to be known. In the same manner
as for the bi-Gaussian model, when the angle decreases and approaches parallel fibres,
the structure cannot be distinguished from one fibre. So for parallel fibres the model

2Precision means that the standard deviation is small but says little about how accurate the result
is, while accuracy means that the mean value is a good estimate but nothing about the spread of the
results (the deviation).
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Figure 3.8: The dashed line represents the estimated direction with DTI when the under-
lying structure, represented by the two filled lines, is two crossing fibres
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Figure 3.9: DTI, angle deviation as function of fibre crossing angle. Ground truth FA; =
0.51 and FA; = 0.18.

and the structure does not match. As can be seen in Figure 3.11 the angle deviation
was small for crossing angles over 70° and large for smaller angles. For all simulations
the deviation was larger for smaller crossing angles and vice versa, but with decreasing
FA this change is less distinct.

A comparison between the angular deviations for all of the models is presented in
Table 3.3 where all crossing angles were taken into account. It can be seen that the
bi-Gaussian model only gave a majority of lower angular deviations when both fibres
had high FA-values, and the fourth order model never had the majority of lowest angu-
lar deviations. However, since these models do not estimate the number of fibres and
for low crossing angles this is a problem (as shown by the results in Section 3.4.1), the
same comparison was done but only for crossing angles larger than 60°. The results are
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Figure 3.10: Bi-Gaussian model, angle deviation as function of fibre crossing angle. Ground

truth FA; = 0.94 and FA; = 0.94.
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Figure 3.11: Angle deviation as function of fibre crossing angle for fourth order tensor
estimation. Ground truth FA; = 0.94 and FA; = 0.94.

presented in Table 3.4. For those angles the fourth order model gave lower angular devi-
ation for all FA-values, and the bi-Gaussian model as well except when both FA-values
are low. Additionally the fourth order model gave, in a majority of the measurements,
a lower angular deviation than the bi-Gaussian model.

Signal Deviation

For DTI the signal deviation decreased with increasing SNR, but as can be seen in Figure
3.12 crossing angle has a large impact. This is expected due to the model-structure
mismatch. The crossing angle had most impact when both fibres had high FA-value.
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Table 3.3: The percentage of times (over all SNR levels and crossing angles) the bi-Gaussian
and the fourth order tensor model had a lower angle deviation than DTI, and that the fourth
order model had a lower deviation than the bi-Gaussian model. LL, ML, etc. refers the
ground truth FA value, Low-Low, Mean-Low and so on.

LL ML | MM HL HM | HH
Bi-Gaussian 23% | 35% | 38% | 41% | 46% | 61%
Fourth Order 44% | 43% | 38% | 38 % | 42% | 32%

Fourth Order better than | 81% | 62% | 50% | 46% | 44% | 29%
bi-Gaussian

Table 3.4: The percentage of times (over all SNR levels and crossing angles larger than or
equal to 60°) the bi-Gaussian and the fourth order tensor model had a lower angle deviation
than DTI, and that the fourth order model had a lower deviation than the bi-Gaussian
model. LL, ML, etc. refers the ground truth FA value, Low-Low, Mean-Low and so on.

LL ML | MM | HL | HM | HH
Bi-Gaussian 33% | 63% | 70% | 73% | 80% | 97%
Fourth Order 72 % | 8% | 80% | 85% | 97% | 81%
Fourth Order better than | 81% | 77% | 73% | 66% | 72% | 55%

bi-Gaussian

When the SNR was high (how high depended on the FA-value, with higher FA the SNR-~
level was higher) the signal deviation increased with increasing crossing angle, but for
low SNR the relation was reversed (this can be seen in Figure 3.13 where the SNR limit
is 10).

The bi-Gaussian model and fourth order model performed similarly for all com-
binations of FA-values. The signal deviation decreased with increasing SNR, and for
high-high, high-medium and medium-medium FA-structures, i.e. when no fibre had low
FA-value, the signal deviation decreased with increasing crossing angle (see Figure 3.14).
When instead one fibre or more had low FA, the crossing angle did not have any effect
on the mean signal deviation (see Figure 3.15) and very little on the variance (see Figure
3.16). In Figure 3.15 and Figure 3.14 the bi-Gaussian model and fourth order model
are similar but at least one difference can be noticed, i.e. the bi-Gaussian model has for
SNR from 17 and above, a lower signal deviation.

In the same way as for the angle deviation the total differences were summarised,
and the bi-Gaussian and fourth order model were compared to DTI. The results for all
angles can be seen in Table 3.5, and as can be seen DTT gives the lowest signal deviation

26



3.4. RESULTS

DTI Signal Deviation ®=0
22 T T T T - — — ®=10

201

18

16

14

12

101

Mean Signal Deviation in %

Figure 3.12: Signal deviation for DTI. Ground truth FA; = 0.94 and FA; = 0.94.
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Figure 3.13: Signal deviation as function of fibre crossing angle for DTI. Ground truth
FAl = 0.94 and FA2 = 0.51.

in a majority of the cases, with exceptions for high-high and high-low FA-values. In the
last row it can be seen that the fourth order model had a lower signal deviation than
the bi-Gaussian model in a majority of the estimations.

For crossing angles larger than 60° see Table 3.6. Here we can see that in agreement
with the plots for cases when at least one fibre had low FA, the results for one or more
low FA-fibres in Table 3.6 and Table 3.5 are almost the same. For high-high structure,
both the bi-Gaussian model and the fourth order model give lower signal deviation, but
the high-medium structure still had lowest signal deviation with DTI. In both these
tables it can be seen that the bi-Gaussian model in a majority of the estimations had
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Figure 3.14: Ground truth FA; = 0.94 and FA; = 0.94.
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Figure 3.15: Ground truth FA; = 0.94 and FA, = 0.18.

lower deviation than the fourth order model.

Tensor Element Deviation

For the synthetic signal with two fibres, the only tensor element deviation that could be
calculated was when the model used was the bi-Gaussian. In all cases the tensor element
deviation’s order of magnitude was reasonable, i.e. smaller than the ground truth tensor
element. For all simulations except for the medium-medium FA-values, the deviation
decreased with increasing SNR, e.g. see Figure 3.17. Similarly to the signal deviation,
when one fibre had low FA-value, the deviation was not dependent on the crossing angle
(see Figure 3.18). For high-high and high-medium FA, the deviation decreased with
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Figure 3.16: Boxplots of mean of signal deviation for the bi-Gaussian and Fourth order
model. Parallel and perpendicular fibres. Ground truth FA; = 0.18 and FA; = 0.18.

Table 3.5: The percentage of times (over all SNR levels and crossing angles) the bi-Gaussian
and the fourth order tensor model had a lower signal deviation than DTI, and that the
fourth order model had a lower deviation than the bi-Gaussian model. LL, ML, etc. refers
the ground truth FA value, Low-Low, Mean-Low and so on.

LL ML | MM | HL | HM | HH
Bi-Gaussian 20% | 24% | 9.6% | 55% | 29% | 55%
Fourth Order 20% | 19% | 5.2% | 52% | 24% | 50%

Fourth Order lower than | 35% | 40% | 22% | 33% | 33% | 30%
bi-Gaussian

increasing crossing angle.

The Impact of SNR

For the synthetic data with FA; = FAs = 0.51, SNR’s impact on the angle deviation
depended on the simulated crossing angle (see Figure 3.19). For crossing angles above
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Table 3.6: The percentage of times (over all SNR levels and crossing angles larger than or
equal to 60°) the bi-Gaussian and the fourth order tensor model had a lower signal deviation
than DTI, and that the fourth order model had a lower deviation than the bi-Gaussian model.
LL, ML, etc. refers the ground truth FA value, Low-Low, Mean-Low and so on.

LL | ML | MM | HL | HM | HH
Bi-Gaussian 20% | 24% | 10% | 56% | 42% | 84%
Fourth Order 20% | 19% | 6.8% | 53% | 45% | 87%

Fourth Order better than | 35% | 41% | 24% | 34% | 41% | 33%
bi-Gaussian

70° the angle deviation decreases with increasing SNR, but for crossing angle lower than
60° the relationship is reversed. A similar behaviour occurred for FA; = FAs; = 0.18,
the low-low fibre configuration, where increasing the SNR increased the angle deviation
(see Figure 3.20).
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Figure 3.17: Bi-Gaussian model, tensor element deviation as function of fibre crossing
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Figure 3.18: Tensor element deviation for bi-Gaussian model estimation. Ground truth
FA; = 0.94 and FA; = 0.18. Bi-Gaussian model, tensor element deviation as function of
crossing angle. Ranged random initialisation.
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Figure 3.19: Angle deviation for fourth order tensor estimation. Ground truth FA; = 0.51
and FA, = 0.51.
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3.5 Discussion of Quality of Fit Results

The angular deviation plots show that both the bi-Gaussian model and the fourth order
model yielded more accurate direction estimates with increasing crossing angle. They
also show that for small crossing angles the direction estimate is inaccurate. As previ-
ously mentioned, the synthetic signal from two parallel fibres and one fibre cannot be
distinguished, and the fourth order model had as low angular deviation as DTI for one
fibre. This indicates that the fourth order model used here, needs to be complemented
with an estimation of the number of fibres, and preferably their fraction of occupancy
as well.

For one fibre, the model-structure mismatch for the bi-Gaussian model meant that
DTI generated lower deviation in both signal and angle. However the fourth order model
had the lowest angular deviation for the high FA-simulations.

The tensor element deviation could not be used to compare the different models, but
was useful in evaluating the different initialisation methods for the bi-Gaussian model.
It also makes sense in this case to compare relative values and not absolute, since some
tensor elements could be very small and others big.

The value of signal deviation as a quality measure is debatable. All models minimise
with respect to the signal, and for SNR of 10 and above, they all result in the same
range of deviation. When providing a value of how well your model performs, when the
underlying structure is unknown, this measure is often the only available one, since you
then do not know the ground truth directions of the fibre bundles, or the tensor element
values, etc.

The angle deviation is more informative. It provides information about how well
the model actually reconstructs/estimates directions, and which is used (important in
tractography). To do a more complete analysis of the fourth order model, estimation of
the number of fibres should also be taken into consideration, as well as a larger variety
of medium FA-values. Not only could the explicit FA values be within a range from e.g.
[0.3,0.7] but several different eigenvalue-relations that all generate the same FA could
be used, to evaluate how that relation affects the resulting directions.

The effect of noise should also be considered. It was shown in the simulations that
crossing fibres with medium and low FA-values can generate a larger angular deviation
with increasing SNR. In practice this could lead to the detection of false fibre tracts in
tractography.
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FA - A Measure of Structure

HIS CHAPTER EXPLORES the concept of fractional anisotropy (FA). Its meaning
and significance from the perspective of diffusion weighted imaging are dis-
cussed in Section 4.1 and Section 4.1.2. Section 4.2 describes how signals with
known FA were generated for the purpose of empirically evaluating FA esti-

mation with the conventional second order tensor model (DTI), the bi-Gaussian model,
and the fourth-order tensor model. Section 4.3 describes how FA is estimated for these
three models. Section 4.4 presents the Z-eigenvalue decomposition method needed to
estimate FA using the fourth-order tensor model, as well as a new implementation of the
method developed by the author. Section 4.5 presents the results of the FA estimation
experiments for the different models. Finally Section 4.6 discusses these results, draws
conclusions, and offers suggestions for improved FA estimation.

4.1 What is FA?

Fractional anisotropy, FA, is a scalar that for each voxel provides information about
how anisotropic the diffusion within that voxel is. This scalar can then be interpreted
in terms of fibre-integrity or structure. A standard definition of FA exists for DTI.
Generalisations have been proposed for the bi-Gaussian and fourth order model, but
there has not been a general method accepted throughout the DWI (Diffusion Weighted
Imaging)-community.

FA-maps can be used as a tool to find regions of interest; for example to locate
the area in which a tractography should be started (the seed points). In that case the
correlation between high FA and white matter-fibres is utilised. It can also be used
to determine progression of a disease like MS (Multiple Sclerosis); the condition causes
demyelination of the fibres which in turn decreases the FA-values which as shown in [17].
In the same way it could be used to confirm that a treatment has the desired effect, that
the white matter integrity is improved which is indicated by increased FA-values.
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That FA does not consistently represent fibre integrity is known. In [3] it is pointed
out that the decrease of FA in white matter-areas with crossing fibres is natural. In this
section five FA-definitions for the non-Gaussian models are evaluated, including how the
FA-value is altered with crossing fibres.

4.1.1 Properties of FA

There are two properties of FA that must be fulfilled. FA ultimately is a measure of
the anisotropy of diffusion within the voxel, which means two things. Firstly, that if the
diffusion is isotropic, i.e. the Brownian motion is independent of direction, FA should
be very low, preferably zero. Secondly, if the diffusion has one dominant direction,
effectively if all white matter fibres are aligned, FA should be high, preferably one, since
this is the most anisotropic environment.

The first case, with isotropic diffusion, can also be regarded as the case where the
white matter fibres are oriented in all (infinite) directions within the voxel. FA can
take values in the range of [0, 1], so between the two extreme cases from one to infinite
directions when the structure decreases, the FA-value must in some way decrease with
increasing number of directions.

4.1.2 What to expect from FA

FA is a scalar invariant; i.e. it is rotationally and translationally invariant. In order to
evaluate whether a certain method gives a good FA value or not, a ’'good FA-value’ must
be defined. FA-values have two main applications, in tractography and in progression
of a disease. For the tractography application the main issue is to distinguish between
structured and unstructured tissue, such that the structured tissue has an FA-value that
is sufficiently higher than the FA-value for unstructured tissue. In the disease progression
application, the change over time is of interest. The FA-values from one session to
another must make it possible to highlight the areas where the degree of myelination
has changed since the last scan(s). So all increases or decreases of the FA-value are of
importance.

In order to specify the desired behaviour of FA, discussions have been held with
Dr. Ylva Lilja MD and PhD-student at Sahlgrenska University Hospital, and with
Mohammad Alipoor Lic. and PhD-student at Chalmers University of Technology. Y.
Lilja’s research is within preoperative imaging of the optic nerves before neurosurgery
with the aim to improve the knowledge of the anatomy and function of nerve tracts
in the brain as a tool to aid in risk assessment before surgery. M. Alipoor research
is within signal processing, he is involved in a project related to DWI analysis, with
the aim to develop new and effective methods for tractography and the analysis of
fascicles in the brain. Examples of their work include [18] and [10]. It was during
these discussions concluded that FA should give information about the fibre integrity;
e.g. about the demyelination of the white matter fibres. Even if the voxel of interest
contains several crossing fibres, the FA should be able to provide information of the
fibre integrity. However, when the number of fibre-direction increases and approaches
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infinity, the FA-values should decrease. In a voxel with an infinite number of direction
the FA should approach zero. From one fibre-direction to infinite fibre-directions the FA
should decrease from one to zero. Whether this change should be linear, exponential, or
something else is an open question.

4.2 Generating Signals to Estimate FA from

For the synthetic signal the same synthetic signal and structure as described in Section
3.1 was used.

The real data was obtained at Sahlgrenska University Hospital, with one b = 0
acquisition, and a single-shell ! with b = 800 s/mm? and 32 gradient directions. An
experimentally determined threshold of 20 % of maximum Sy was set to remove the voxels
outside the brain. To find an informative and known structure, a region of interest-mask
was drawn by a physician to locate a volume containing the optic chiasm 2. The slice
that contained the selected voxels was then processed.

4.3 Calculating FA

Prior to the FA-estimations the three models were fitted to the signal as described in
Section 3.2. An additional method, not previously described, was also used to fit the
fourth order model to the signal, described in Section 4.3.3. The FA definitions for the
three models are described in Section 4.3.1, 4.3.2 and 4.3.3.

4.3.1 FA for DTI

FA values for DTI were computed using the standard definition based on the eigenvalues
of the estimated tensor, viz.

1 ()\1 — )\2)2 + ()\1 — )\2)2 + ()\2 - )\3)2
FA=,/=
2 A+ A3+ A\

(4.1)

where )\; is the ith eigenvector’s eigenvalue. By definition FA € [0,1], where 0 reflects an
isotropic voxel and 1 a highly anisotropic voxel.

4.3.2 FA for the Bi-Gaussian Model

For the bi-Gaussian model two second order tensors Dy and Ds were estimated, from
which two FA-values FA; and FAs, one for each tensor, were calculated according to
Equation (4.1). These two values were combined in the following three ways to obtain
a single FA value: FApean = mean (FA;,FAg), FA . = max (FA;,FAy) and FAy, =
min (FAl,FAQ)

!The number of shells is determined by how many different b-values are used, often referred to as
single-shell acquisition for one b-value and multi-shell acquisitions for more than one b-value.

2The optic chiasm is the area in the brain where the optic nerves, whom stretches from the eyes to
the chiasm, partially cross each other and on the other side of the chiasm becomes the optic tracts.
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4.3.3 FA for the Fourth Order Model

For the fourth order model the concept of Z-eigenvalue decomposition was used to define
FA. Two methods were used to find the fourth order tensor, the first method is described
in Section 3.2.3. The second method fits the fourth order tensor to the ADC (Apparent
Diffusion Coefficient, see Equation (2.3))-profile with the diffusivity function

d(g) =log (S%)

(4.2)
= =030 i1 (995969 Dijra) -

This is essentially a generalisation of the method used to fit the tensor in DTI. The
fourth order tensor was fitted to the ADC with least squares fit

min {i (dg) - d(gn)z} (4.3)

i=1

where N is the number of gradient directions [13].

For the fourth order model, the conventional eigenvalue-decomposition cannot be
used to obtain eigenvalues from which to define FA. Eigenvalues and eigenvectors are de-
fined only for square matrices. However a generalisation, called Z-eigenvalue-decomposition
was introduced in [13] for symmetric tensors of even order. This decomposition is dis-
cussed in more detail in Section 4.4. The resulting Z-eigenvalues \;are the basis of two
FA definitions found in the literature for the fourth order model.

The first definition, introduced in [13], is

v o Ai = Amean 2
v—1 Dlim1 A

where Apean = %Z;’:l Ai. The second definition, introduced in [18] is

)\max
FAya = . (4.5)

VAmean

Both definitions range from 0 to 1.

4.4 Z-Eigenvalue Decomposition

In this section the author’s implementation of the Z-eigenvalue decomposition method
is described. This implementation is based on previous implementations described in
Section 4.4.2. The definitions and theory in this section are drawn from [19] and [13].
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4.4.1 Theory of Z-eigenvalues

An mth order n-dimensional tensor A;, ;. is supersymmetricif A;, ;. = Aperm{ihwim}
for all permutations of iy,...,iy,. A can be described by an mth order polynomial f(x)
as follows

f(z) =Ax™

n
s 21177lm:1 A/Llw"yzmxll “ .. ZL‘zm

where x can be regarded as an mth order n-dimensional tensor of rank one. If the
polynomial f(z) is positive semi-definite (PSD), then A is said to be PSD.
The real solutions x and A of

(4.6)

{ Axr =Xz (4.7)

2Ty =1

are called the Z-eigenvectors and Z-eigenvalues respectively. If and only if all Z-eigen-
values of A are positive, A is PSD. If a second order tensor is symmetric, then it has only
real eigenvalues with real eigenvectors. However this is not true for higher order super-
symmetric tensors. Therefore it is important to emphasise that it is the real solutions
that are Z-eigenvalues and Z-eigenvectors (the complete set, including complex solutions
are denoted H-eigenvalues and H-eigenvectors).

The symmetric hyper-determinant det (A) of the super-symmetric tensor A is defined
with an irreducible polynomial in A;, ;. which vanishes when x € C™ and x # 0 such
that f(z) = 0and V f(z) = 0. If m = 2 this coincides with the conventional determinant.

An extension of the Kronecker delta is defined according to

1, ifip=..=1
iy yooryim = . fm (4.8)
0, otherwise

An mth order n-dimensional tensor is called the mth unit tensor if its elements are
i1, im fOr i1,...,%, = 1 and is denoted I. Additionally, det (I) = 1 to specify sign and
size of the symmetric hyper-determinant.

If m is even, the Z-eigenvalues of A are the real solutions A to

$(\) = det (A — AL). (4.9)

¢ is called the characteristic polynomial of A. The number of Z-eigenvalues is strictly
less than m? —m + 1.

Finding the Eigenvalues

In this section, the method suggested in [13] for finding the Z-eigenvalues and Z-eigenvectors
is summarised.

38



4.4. Z-EIGENVALUE DECOMPOSITION

The Z-eigenvalues and eigenvectors are found by finding the real solutions to the

equation system
(4 4—i

. i A
E g idi;xy 156%333 v =4z
i=1 j=0
4 4—i

o ig—1 A—iej
jdijaial agy = 4)\xo
3 -
4 3—4
oD (i jdyaiahey T = ddas

i=0 j=0
o3+ 23 + 23 =1

Here d;; denotes the 15 unique elements of a fourth order super-symmetric tensor D.
The solutions can be divided into four cases described below, that are solved sepa-
rately, and contribute to the set of eigenvalues.

Case 1: The elements in the eigenvector x2 = x3 = 0 which correspond to d3; =
d3o =0 and thus 1 = £1, A = dyp.

Case 2: The elements in the eigenvector x1 = w3 = 0 which correspond to dy 3 =
dop3 = 0 and thus xo = £1, A =dp4.

Case 3: If 3 = 0, and x1,x2 # 0 then by eliminating A (4.10) is simplified into the
equation system

Siyidia ™l = 30 (4= i) dia it

(4.11)
Yiodig—itt =0
where t = x1/x9. If the two equations have common solutions ¢, then z; = 1t+t2,
+ —
T = \/14%’ z3 =0 and \ = d(Z).
Case 4: If z3 # 0 then the resulting equation system is
4 A=i s i1yl — 4 3= g i Y dot Ty
>ic1 Zj:OZ guT vl = Y ijo( i—J)diju™ v (4.12)

Yoo St ddiutvi Tt = ST ST (4 — i — ) dyjuieit

if A is eliminated and u = z1/x3 and v = xo/x3. After solving this for u and v the
eigenvector and eigenvalues are z1 = u/V1+u?+v2, 22 = v/V1+u?+v?, x3 =
+1/vV1 4 u? +v? and A = d(7).

These four cases cover all possible combinations. In some implementations there
have been suggestions that additional combinations of Z in Case 3 is necessary (e.g.,
x1,23 # 0 and o = 0), but those are actually covered in Case 4 which include all
combinations when x3 # 0.
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Table 4.1: The relation between the fifteen elements in the vector T and their relation
to the fourth order symmetric tensor A used in the implementation of the Z-eigenvalues
decomposition from [11]

T(1) | 1- Assss T(9) | 4- Aoz
T(2) | 4-Agsszs || T(10) | 6- Aqqss
T(3) | 6-Assss || T(11) | 12 Aqias
T() | 4-Asges || T(12) | 6- Ao
T(5) | 1-Agsss || T(13) | 4 A
T@®) | 4- Az || T(14) | 4- Ape
T(7) | 12+ Aass || T(15) | 1 Apiny
T(8) | 12 Ay

4.4.2 Previous Software Implementations

Two implementations were available, the first one can be found in [11]. This implemen-
tations finds the set of eigenvalues and eigenvectors in three different cases. First, the
vector T that contains the fifteen unique fourth order tensor elements is transformed
into a symmetric fourth order tensor A according to Table 4.1. The factor corresponds
to the multiplicity of the specific element.

Then a fourth order tensor A is calculated element-wise according to

A=A A (4.13)

In the implementation A = I where I is the identity matrix which means that A = A.

The eigenvalues are then calculated in three different steps described below. The
equations are presented in terms of the vector of the fifteen unique elements to facilitate
comparison with the two other implementations.

Step 1. If T14 = T13 =0 then \ = T15 and T = (1 0 0)
Step 2: For t solve the equation system

— 3Tt + (T15 — §T12) - 34
+3(T1y —Ty) -2+ (AT —T5) -t +1Tg = 0 (4.14)
iT6~t3+%T11't2+%T8~t+%T4 =

The real solutions t; gives the eigenvectors 9 and eigenvalues \; according to #(¥) =
(ti 0 0)/’% where Vi = \/t% +1and \ = T5 - (ti/'yi)4
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Step 3: For two variables, u and v equation system

p
—iTlg : u4 — %TH . ’LL3 -V + (T15) — %TIO) . u3 — %Tg . u2 . U2+

+(%T14 — %T7> . u2 -V + (%Tlg — %T(;) . ’U,2 — %Tg U 1}2—

%T4~u~v3+%T12~u-v2+(%T11—%Tg)-u-v—i—
(%Tlo—Tl)'U—l—iTg~’U3+%T8-U2+'%T7'U+%T6 = 0

—iTlg cud v+ iTM cud — %TH cu? v+ (%Tlg — %Tlo) cu? v+

%Tll"U,2—iTg'U,"U‘g—i—(%Tg—%Tﬂ'U'U2+(%T8—

%Tg)‘u-v—l—iT7'u+%T4'UQ—iT4‘U4+(T5—%Tg)-US—
3Ty -2+ (AT3—T1) v+ 1Ty = 0

(4.15)

is solved with MATLAB’s solver ’solve’ and the eigenvectors and eigenvalues are calculated
according to z( = (w; v 1)/B; where B = \/u? + v + 1 and

A= Zg’:l 2?21 22:1 Z::nzl Az’jkm ’ w(z)(l)x(])(l)x(k)(l)x(m)(l)

This implementation works in most cases, but is sometimes slow. For

T = [1.4751 0.7276 — 3.9916 — 0.0061 12.4934 — 2.7988 — 7.1486 17.7676
—3.6968 5.2683 0.0099 18.6609 — 4.3874 19.5485 5.9023]

this takes almost half an hour to solve, but with the later implementation a few sec-
onds. Additionally, if T consists of only zeros and ones this returns a set of com-
plex solutions with a larger set of eigenvalues than the right amount, e.g. if T =
1101000000100 0 Q0] it returns a set of five complex eigenvectors (where
the complex part is small but present) instead of three.

The second implementation (by the first author, Alipoor, of [18]) available utilises
the case-based method described in Section 4.4.1 using MATLAB’s solve function for
both Case & and Case 4. During simulations it occasionally crashed and it was observed
that in Case 4 solve utilises back-substitution which can cause division by zero.

4.4.3 The Improved Implementation of Z-eigenvalues Decomposition

This uses the cases described in Section 4.4.1 and is based on the implementation by
Alipoor. The method to find the solutions to Case 1-3 was essentially kept, but sub-
cases giving repeated solutions were isolated and removed. One additional step was
implemented, confirming that the found solutions solved the original problem in Equation
(4.10).

To avoid the back substitution in Case 4 the computer algebra system MuPAD — which
is included in MATLAB’s Symbolic Math Toolbox — is called directly instead of via solve.
Since all real solutions to (4.12) are requested the MuPAD-function numeric: :polysysroots
is used. This returns a numerical approximation of both real and complex solutions and
to isolate the real solution a tolerance of 10712 is set. All complex solutions with an
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4.5. RESULTS OF FA-ESTIMATIONS

imaginary part larger than the tolerance are removed, and if the imaginary part is smaller
the solution is considered to be real.

After removing the repeated solutions and verified that they all are solutions to
the original problem (4.10), the eigenvalues and eigenvectors are ordered with largest
eigenvalue first.

4.5 Results of FA-estimations

Here a representative selection of the FA-estimation-results is presented. The complete
set of results can be found in Appendix B.

4.5.1 Results for one Fibre FA-Estimations

DTI FA
1 . .
0of _— i
0.8 |
—*— Low FA=0.18
0.7 Medium FA = 0.51 |
[0) — HighFA=0.94
= o6} ]
= 0
i
<C 0.5 4
w
0.4f |
0.3F i
0.2 4
01 L L L L L L L L
5 10 15 20 25 30 35 40 45 50
SNR

Figure 4.1: FA estimated with DTI, ground truth FA: FAj,, = 0.18, FA,.q = 0.51 and
FApign = 0.94.

In one fibre simulations the results of FA for DTI are presented in Figure 4.1, where
when ground truth FA is high, the estimated FA-value was accurate. For the two lower
FA-values, the estimates were more sensitive to noise, and the signal from the low ground
truth FA-value was overestimated for SNR below 20. For the lowest SNR-level the low
FA-value was estimated to be higher than the medium FA-value.

The three FA-values generated from the bi-Gaussian model were for low and medium
FA overestimated, but all three were close to ground truth for the high FA-value. The
most accurate result was acquired from FA i, (see Figure 4.2). For FA,i, the medium
FA-value was consistently higher than the ground truth FA-value, and the high-FA-value
was slightly underestimated.

Both definitions for the fourth order model overestimated the medium and slightly
underestimated the low. Qi’s definition was close to ground truth for the high FA-value.
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Figure 4.2: Minimum of FA’s estimated with bi-Gaussian model, ground truth FA: FA,,, =
0.18, FA,cq = 0.51 and FAyen = 0.94.

In Figure 4.3 the results from FAq; are plotted.
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Figure 4.3: FA-values estimated with Qi’s FA-definition for the fourth order model, ground
truth FA: FAjow = 0.18, FAjneq = 0.51 and FAp;, = 0.94.
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4.5.2 Results for two Fibre FA-Estimations

Consistently for all models, was that when one fibre had low FA-value, there was a
very low dependence on crossing angle, e.g. see Figure B.21, B.23, and many others in
Appendix B.

DTI

For DTI, when no ground truth tensor had low FA, the estimated FA decreased with
increasing crossing angle. The higher the ground truth FA-values were, the more the
estimated FA decreased with increasing crossing angle. This behaviour can be seen in
Figure 4.4 where both synthetic fibres had high FA-value.

DTI FA

0.51

SNR =50
—SNR=25
—8SNR=17
0.3F —8NR=13
—SNR =10
0.2f SNR=8
—SNR=7

FA-value

0.4r

0.1

0 10 20 30 40 50 60 70 80 90
Crossing Angle

Figure 4.4: Synthetic signal, two fibres with FA; = FAy = 0.94, DTI FA-estimation.

Bi-Gaussian model

The three bi-Gaussian FA-definitions were insensitive to the crossing angle. Excluding
the high-high structure, when comparing the estimated FA-value to the mean of the
ground truth FA-values both FA .« and FA .., were overestimated. In Figure 4.5 the
FA ean of high-low and medium-medium-structure is plotted and the resulting FA values
are all higher than the mean of the ground truth FA-values.

Fourth Order Model

Figure 4.6 show a typical result of the fourth order FA-estimations. When the crossing
angle increases from 50° to 70° the estimated FA-value decreases rapidly. This behaviour
was noted in all simulations when no fibre had low ground truth FA-value. In this rapid
FA-estimation drop, the relation between SNR and FA changed. For crossing angles
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Figure 4.5: Bi-Gaussian model, synthetic signal, two fibres with FA; = 0.94 FA; = 0.51.

lower than 50° the FA-value increased with increasing SNR, but for angles higher than
70° the FA-value decreased with increasing SNR. If we compare DTI and the fourth
order model, both methods’ FA-values decrease with increasing SNR, FAq; lowest value
is approximately the same as the lowest DTI, and FApra is lower than DTI.
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= FA> = 0.94. FA’s estimated with MA’s
FA-definition for the fourth order model.

(b) Synthetic signal, two fibres with FA;
= FAs; = 0.94. FA’s estimated with Qi’s
FA-definition for the fourth order model. .

Figure 4.6: Fourth order tensor model, synthetic signal, two fibres with FA; = FA; = 0.94.
It was also observed that for perpendicular fibres the fourth order estimated FA-

values was lower for the high-high fibre configuration than for high-medium. Compare
Figure 4.6 and Figure 4.7.
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Figure 4.7: Fourth order tensor model, synthetic signal, two fibres with FA; = 0.94 and
FA, = 0.51.
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4.5. RESULTS OF FA-ESTIMATIONS

4.5.3 Results of Real Data FA-Estimations

In Figure 4.8 the conventional FA-map is shown. The non-Gaussian FA-maps were
compared to this, given that no ground truth FA-values is available for real data.

Figure 4.8: The conventional FA from DTI.

For the bi-Gaussian model (see Figure 4.9), in many voxels an FA-value could not be
estimated since neither of the estimated tensors was PSD. For these voxels the FA-value
was set to zero, which turns out black in the image. This problem was not as significant
for the synthetic signal, since many estimates and noise realisations for each structure
was performed, and the non-PSD tensors could simply be ignored. However, if that
artefact is put aside, the map is brighter than Figure 4.8 and has less contrast (ignoring
black voxels).

The fourth order model was fitted to the signal in two different ways. The first
method described in Section 3.2.3, used for model evaluation of the fourth order tensor
model in Chapter 3, yielded the FA-map shown in Figure 4.10. The contrast is much
lower than in Figure 4.8. The second method, described in Section 4.3.3, yielded an
FA-map with higher contrast (see Figure 4.11). The areas with high anisotropy (the
bright areas) in this map, corresponds well with the DTI-FA-map. However the fourth
order FA-map has fewer high anisotropic areas. Remember from the synthetic signal
FA-maps for the fourth order model, that when the crossing angle increased to above
70° the FA-value rapidly decreased.
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Figure 4.9: The mean FA of the two FA from bi-Gaussian model.

Figure 4.10: The Qi definition of FA from HOT, filtered with Gaussian window of 4 voxel
size, fitted to the CT-ODF.
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Figure 4.11: The Qi definition of FA from HOT, filtered with Gaussian window of 4 voxel
size, fitted to the ADC-profile.
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4.6. CONCLUSIONS, DISCUSSION AND IMPROVEMENT OF
FA-ESTIMATIONS

4.6 Conclusions, Discussion and Improvement of
FA-estimations

The first and easiest conclusion to draw from these experiments is that the FA-estima-
tions for the three models give different results. FA computed from DTI, as previously
mentioned, decreases with increasing crossing angle. It is well known that the conven-
tional FA measure is lower in complex structures such as fibre crossings [20]. The three
FA-definitions for the bi-Gaussian model are all invariant to the crossing angle. If this
could be utilised the FA-value would not decrease in a complex area. However, since the
bi-Gaussian FA-definitions consistently overestimates low anisotropy areas it is difficult
to know if the FA-value reflects the ground truth or if it overestimates it. Consequently
the bi-Gaussian FA-estimates are less informative than DTT FA-values. One possible
improvement is to include a PSD-constraint in the model-fit used for the bi-Gaussian
model. This would eliminate the negative eigenvalues and at the very least, remove the
black voxels from the real data FA-maps. Furthermore, since the negative eigenvalues
from the synthetic data simply are ignored and the mean values are calculated out of
those estimated eigenvalues that are positive, the resulting FA-maps could be rather dif-
ferent from those presented above. The effect of a PSD constraint would be interesting
to evaluate and could be a continuation of the results presented here.

The two FA-estimates derived from the fourth order tensor model were both ap-
proximately invariant to the crossing angle below 50° and above 70° and exhibit rapid
decrease in-between those two angles. The real data FA-maps for the fourth order model
have fewer areas of bright areas, indicating less information than in the DTI FA-maps.
One possible reason for this is that for DTI only six parameters were estimated, com-
pared to 13 parameters for the fourth order model. The relation between number of
measurements and parameters to estimate is for DTT larger than five, for the fourth
order tensor model the relation is smaller than three. For future improvements it would
be interesting to see if a larger number of gradient directions would improve the fourth
order FA-maps and if they would provide more (but still accurate information) than the
DTI FA-map.

In discussions with dr. Ylva Lilja MD and PhD-student and Mohammad Alipoor,
Lic. and PhD-student (see Section 4.1.2 for a presentation of their research) during the
this research it was concluded that, clinically speaking, the desired behaviour is that
an increased crossing angle naturally decreases the FA-value. The distinction between
white matter-integrity and fibre-structure is key here. If the characteristic of interest is
integrity, then the increase of crossing angle, probably should not decrease the integrity-
value because whether or not the white matter fibres are crossing or not does not decrease
their integrity. If instead the characteristic of interest is fibre structure, then increased
crossing angle (and an increase of directions) is consistent with loss of structure and the
measure should decrease. This was highlighted in [3].

For future work, the inclusion of a fraction of occupancy estimation for both the
bi-Gaussian model and the fourth order model should be explored. For the bi-Gaussian
model this requires multi-shell signal acquisition, but in a synthetic environment that
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FA-ESTIMATIONS

is just a matter of more simulation time. This could then lead to a more sophisticated
FA-measure where the fraction between the fibres (Fraction of Occupancy — FoO) could
be included as a weight to their respective eigenvalues. For the fourth order model,
the current normalising factor v (see Equation (4.4) and Equation (4.5)) give the same
weight to all eigenvalues. If the FoO’s of these eigenvalues were known many small
eigenvalues with low FoO would have less impact on the resulting FA value.

The concept of a scalar measure that provides information about the underlying
structure is good, but what exactly it should reflect is still an open question. Nevertheless
this does not preclude the possibility of generalising the definition of FA for DTI to non-
Gaussian models. However if such a measure has good accuracy and can differentiate
between integrity and structure, white and grey matter, it would be superior to FA from
DTI.
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Summary and Conclusions

N THIS CHAPTER the thesis and the work presented in it is summarised in Section
5.1. The major contributions and findings are presented in Section 5.2 and the
conclusions in Section 5.3, and finally opportunities for further research in Section
5.5.

5.1 Thesis Summary

Chapter 1 Introduces DWI (Diffusion Weighted Imaging) and DTI (Diffusion Tensor
Imaging), and how it can be used to image the brain neural tracts in vivo. The more
complex models than DTT are introduced. The scalar FA (Fractional Anisotropy) derived
from DWI data is described, and that it can be used as a tool to determine the progress
of diseases like MS (Multiple Sclerosis) and Alzheimer’s Disease, or to demonstrate the
improvement of white matter integrity after tumour removal. The chapter also states
the two major aims of the thesis:

The first aim was to compare the conventional Gaussian diffusion model with two
non-Gaussian diffusion models, the bi-Gaussian and the fourth-order tensor, for single
and crossing fibre architectures.

The second aim was to explore the concept of FA and to evaluate existing FA definitions
for the three models chosen in the first aim.

and its objectives:

i) To generate synthetic data to simulate a single voxel, a single fibre (for three different
FA values), and two crossing fibres (for six FA combinations, and a range of crossing
angles).

ii) To fit each model to this data and evaluate the quality of the fit in terms of the
three measures: signal deviation, angle deviation and tensor element deviation.
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5.2. KEY CONTRIBUTIONS AND FINDINGS

iii) To review the physical meaning and significance of FA.

iv) To develop a robust and accurate implementation of the Z-eigenvalue decomposition
algorithm needed for the FA estimation for high order tensors.

v) To investigate and compare FA definitions for the bi-Gaussian and fourth-order
tensor models, empirically (using both the earlier synthetic data and real brain
DWI data), to the second-order definition.

Chapter 2 Reviews the concept of diffusion, what DWI is and how it can be used to
measure diffusion. The three diffusion models explored in the thesis are presented.

Chapter 3 Addresses objectives i) and ii) associated with the first aim of the thesis.
The framework used for synthesising the signal is presented. It evaluates how well the
three models perform in terms of signal deviation, angle deviation and tensor element
deviation and how these quality measures are calculated is described. The resulting
measures are presented and the models compared.

Chapter 4 Addresses objectives iii), iv) and v) associated with the second aim of the
thesis. In particular the concept of FA and what FA means is discussed. The protocol
for synthesising signals with known FA is described as well as how to estimate the FA
values for the three different models. Z-eigenvalue decomposition of high order tensors is
discussed and a new implementation presented. The results of the FA value estimations
for the three models are presented and compared.

5.2 Key Contributions and Findings

e The fourth-order tensor model is found to consistently have lower signal deviation
than the bi-Gaussian and second-order tensor models, however not necessarily
lower angular deviation.

e When estimating the direction of one fibre with the bi-Gaussian model, the model
generates one direction that fits well with the underlying structure and one that
does not.

e The experimental results for the synthetic data show that the FA-definition for the
second-order tensor in general yields FA-values close to true FA for one fibre and
close to the mean value of true FA for two fibres. The bi-Gaussian FA-definitions
all tend to overestimate the true FA for both one and two fibres. The fourth-order
definitions yield FA-values that correlate well with true FA for one fibre and for
two fibres with a small crossing angle, but decreases with increasing crossing angle.
In the real data experiments the DTI-FA maps are more detailed than both the
bi-Gaussian and the fourth order model maps.
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5.3. CONCLUSIONS

e The thesis presents an implementation of the Z-eigenvalue decomposition that is
more robust and more accurate compared to the existing open-source implemen-
tation.

5.3 Conclusions

This thesis explored how the two non-Gaussian models, the bi-Gaussian and the fourth
order model, compared to DTI, estimate the structure that forms the signal in DWIL.
This was evaluated in Section 3.4 in terms of three measures: signal deviation, angle
deviation and tensor element deviation.

It was observed that all three models perform well in terms of signal deviation, but
despite this the angle deviation can be large. This indicates that if only signal deviation
is used as a measure of quality when evaluating a model, the model may describe fibre-
directions that align poorly with the true direction.

The fourth order model performs well when the simulated crossing angle is larger
than 70°. However decreasing the angle from 70° the angle deviation increases rapidly.
The large angle deviation for low crossing angles can to some extent be explained by
the limitation that the number of fibres is not estimated. This can be seen in the one
fibre simulations where the fourth order model estimates the fibre direction well. For one
fibre simulations DTT and the fourth order model performed very similar with respect
to describing the main direction.

The bi-Gaussian model experiences the same trends as the fourth order model. Larger
crossing angles results in lower angle deviation. This can also be related to the fact that
the number of fibres is not estimated. Given that two tensors always were estimated when
using the bi-Gaussian model, two directions were always estimated even for the single
fibre simulations. It was observed that one of these tensors described the direction well,
but the other did not. If the model included an estimation of the fraction of occupancy
for the two Gaussians the tensor with a large angular deviation would possibly have had
a much smaller weight than the tensor with the good angular fit.

For all models the angular deviation increased when the FA decreased. When the
fibre direction was less prominent the angle-deviation increased.

In the second part, three FA-definitions for the bi-Gaussian model and two for the
fourth order model were compared to the conventional FA-estimate developed for DTI.
The results (see Section 4.5) show that the three FA-estimates for the bi-Gaussian model
were all more independent of the crossing angle than for the fourth order model and DTT.
But, to the bi-Gaussian model’s disadvantage, the FA-value were consistently overesti-
mated both for single fibre and crossing fibre simulations.

For the fourth order model the estimated FA-value decreased rapidly when the cross-
ing angle increased from 50° to 70°. This behaviour was most prominent for higher
FA-values. For perpendicular fibres, the high-high FA-simulation resulted in a lower
estimated FA-value than the high-medium FA-simulation.
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5.4 Limitations

The real data was obtained at Sahlgrenska University Hospital, with a single b = 0 ac-
quisition, and a single-shell acquisition with b = 800 s/mm? using 32 gradient directions.
Single-shell image acquisitions sets a limit in the model describing the diffusion to one
exponential. To estimate the fraction of occupancy (FoO) constants A; and As in Equa-
tion (2.8) of the exponential terms, more than one b-value must be used (i.e. multi-shell
acquisitions) [7]. Consequently the FoO of the bi-Gaussian model was assumed to be
known.

The bi-Gaussian model was fitted using non-linear least squares (Levenberg-Marquardt
algorithm) to obtain estimates for the two second order tensors Dy and Dy according
to Equation 3.15. There is no requirement on the solution that the tensors are PSD
(Positive Semi Definite). The FA-estimations of the non-PSD tensors are set to zero,
which explains the many black voxels in the real data FA-estimations (see Figure 4.9 in
Section 4.5.3 and Figure C.2 — C.4 in Appendix C).

For the fourth order model, the method used to estimate the direction of diffusion
did not include an estimation of how many directions are present in each voxel. Instead
the number of main directions was assumed to be known.

5.5 Further Research

For the real data FA-maps the non-PSD tensors contributed to the large number of voxels
where an FA-value could not be calculated. For future work both a PSD constraint and
an estimation of number of fibres as well as fraction of occupancy for those fibres is
suggested to be included.

For further development of the bi-Gaussian model, estimations of the constants (the
fraction of occupancy) A; and A, in Equation 2.8 should be included. In order to achieve
this more than one b-value must be used (i.e. multi-shell acquisitions) [7].

A larger set of gradient-directions during real data image acquisition could provide a
better comparison between the FA-maps generated from DTI and the two FA-definitions
(used in this thesis) for the fourth order tensor. In this thesis for the real data analysis,
32 gradient directions was used. This gave 32 equations to estimate 6 unknowns for DTT,
and the same number of equations but 15 unknowns for the fourth order model. This
could be a reason to why the FA-map generated from DTI provided more detail than
the FA-map generated from the fourth order model.

If the performance of the fourth order model is further investigated in terms of angle
deviation, an estimation of number of fibres should be included. As for now artefacts
occur when the synthetic fibre directions almost coincide.
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Plots of Quality Measures

A.1 One Fibre Structure

A.1.1 Angle Deviation

Angle Deviation, High FA, FA = 0.94
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Figure A.1: Description: Mean angle deviation, one fibre. Ground truth FA= 0.94.

Comment: Both fourth order and DTI have low angle deviation. The bi-Gaussian model’s
large angle deviation is due to model-structure-mismatch.
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A.1. ONE FIBRE STRUCTURE

Angle Deviation, Medium FA, FA = 0.51
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Figure A.2: Description: Mean angle deviation, one fibre. Ground truth FA= 0.51.
Comment: Both fourth order and DTT have low angle deviation. The bi-Gaussian model’s
large angle deviation is due to model-structure-mismatch.
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Figure A.3: Description: Mean angle deviation, one fibre. Ground truth FA= 0.18.

Comment: For the fourth order model and DTI the mean angle deviation decreases with
increased SNR. With FA= 0.18, which is the mean FA for grey matter, this is expected.
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A.1. ONE FIBRE STRUCTURE

A.1.2 Signal Deviation

Signal Deviation, High FA, FA = 0.94
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Figure A.4: Description: Mean signal deviation, one fibre. Ground truth FA= 0.94.
Comment: For all models signal deviation decreases with increasing SNR, DTT has lowest
signal deviation.

Signal Deviation, Medium FA, FA = 0.51
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Figure A.5: Description: Mean signal deviation, one fibre. Ground truth FA= 0.51.
Comment: For all methods signal deviation decreases with increased SNR, DTT has lowest
signal deviation. Same trend as in Figure A .4
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A.1. ONE FIBRE STRUCTURE

Signal Deviation, Low FA, FA = 0.18
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Figure A.6: Description: Mean signal deviation, one fibre. Ground truth FA= 0.18.

Comment: For all methods signal deviation decreases with increased SNR, DTT has lowest
signal deviation.
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A.1. ONE FIBRE STRUCTURE

A.1.3 Tensor Element Deviation
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Figure A.7: Description: Median tensor element deviation, one fibre, DTI. Ground truth
FAlow = 018, FAmedium = 0.51 and FAhigh = 0.94.

Comment: The magnitude of the deviation is the same order of magnitude as a typical
tensor element (that is 17 - 10~* in simulations), and decreases with increasing SNR.
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A.2 Two Fibre Structure

A.2.1 Angle Deviation
High-High FA Fibre Structure
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(a) Description: Angle deviation as func- (b) Description: Angle deviation as func-
tion of fibre crossing angle. tion of SNR.

Figure A.8: Description: Angle deviation for DTI. Ground truth FA; = 0.94 and FA, =
0.94.

Comment: SNR has little impact on the result, somewhat more for crossing angle below
10°. Crossing angle has large impact on the angle deviation, which is expected due to the
mismatch between the model and the underlying structure when two tensors are estimated
with one.
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(a) Description: Bi-Gaussian model, (b) Description: Bi-Gaussian model,
ranged random initialisation, angle devia- ranged random initialisation, angle devia-
tion as function of fibre crossing angle. tion as function of SNR.

Figure A.9: Description: Bi-Gaussian model, random initialisation, angle deviation for
bi-Gaussian model estimation. Ground truth FA; = 0.94 and FA; = 0.94.

Comment: Both crossing angle and SNR have large impact on the angular error. With
increasing crossing angle and SNR the angle deviation decreases.
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Fourth Order, Angle Deviation
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(a) Description: Fourth order model, an- (b) Description: Fourth order model, an-
gle deviation as function of fibre crossing gle deviation as function of SNR.
angle.

Figure A.10: Description: Angle deviation as function of fibre crossing angle for fourth
order tensor estimation. Ground truth FA; = 0.94 and FA; = 0.94.

Comment: SNR has little impact overall, but most for angles higher than 70°, when the
angular error is small. For angles below 70° the angle deviation is large.
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High-Medium FA Fibre Structure
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(b) Description: Angle deviation as func-
tion of SNR.

(a) Description: Angle deviation as func-
tion of fibre crossing angle.

Figure A.11: Description: Angle deviation for DTI. Ground truth FA; = 0.94 and
FA; = 0.51.

Comment: SNR has little impact on the deviation, most for crossing angle below 10°.
Crossing angle has large impact on the angle deviation, which is expected due to the mis-
match between the model and the underlying structure.
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(a) Description: Bi-Gaussian model,
ranged random initialisation, angle devia-
tion as function of fibre crossing angle.

SNR

(b) Description: Bi-Gaussian model,
ranged random initialisation, angle devia-
tion as function of SNR.

Figure A.12: Description: Bi-Gaussian model, ranged random initialisation. Ground
truth FA; = 0.94 and FA, = 0.51.

Comment: Both crossing angle and SNR have large impact on the angular error. For SNR
above 25 the angle deviation decreases with increasing crossing angle.
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Fourth Order, Angle Deviation

Fourth Order, Angle Deviation

~
[

——SNR =50

IS
S
T

©
&
T

(%]
[
o
= 8’
S °
© € 30[
H 5
o = 251
° kS
> >
g & 20
c ° T, | ——®=40
[} D 151 A
] s K*\ —— =50
= < 1ol T =60
3 - - —HF—P=70
=S T | —*—®=80 —_—
©=90
0 . . . . . . . . o . . . . " " . .
0 10 20 30 40 50 60 70 80 90 5 10 15 20 25 30 35 40 45 50
Angle SNR

(a) Description: Fourth order model, an- (b) Description: Fourth order model, an-
gle deviation as function of fibre crossing gle deviation as function of SNR.
angle.

Figure A.13: Description: Fourth order model, angle deviation as function of fibre
crossing angle for fourth order tensor estimation. Ground truth FA; = 0.94 and FA; = 0.51.
Comment: SNR has little impact overall, but largest for angles higher than 70°, where the
angular error is small. The angle deviation increases with decreasing crossing angle. When
crossing angle is lower than 60° the angle deviation decreases with decreasing SNR, above
60° the relation is reversed.
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High-Low FA Fibre Structure

DTI, Angle Deviation
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(a) Description: DTI, angle deviation as (b) Description: DTI, angle deviation as
function of fibre crossing angle. function of SNR.

Figure A.14: Description: Angle deviation for DTI. Ground truth FA; = 0.94 and
FA; =0.18.

Comment: SNR has little impact on the result, but more than for high-high FA fibre
structure, compare with Figure A.8a. Crossing angle has large impact on the angle deviation,
which is expected due to the mismatch between the model and the underlying structure when
two tensors are estimated with one. The angle deviation increases with increasing crossing
angle.
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(a) Description: Bi-Gaussian model, (b) Description: Bi-Gaussian model,
ranged random initialisation, angle devia- ranged random initialisation, angle devia-
tion as function of fibre crossing angle. tion as function of SNR.

Figure A.15: Description: Ranged random initialisation, angle deviation for the bi-
Gaussian model. Ground truth FA; = 0.94 and FA, = 0.18.

Comment: Angle deviation decreases with increasing SNR, crossing angle has little impact
but for SNR above 10 the angle deviation increases with increasing crossing angle.

68



A.2. TWO FIBRE STRUCTURE

Fourth Order, Angle Deviation
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(a) Description: Fourth order model, an- (b) Description: Fourth order model, an-
gle deviation as function of fibre crossing gle deviation as function of SNR.
angle.

Figure A.16: Description: Angle deviation for fourth order tensor estimation. Ground
truth FA; = 0.94 and FA, = 0.18.
Comment: Angle deviation decreases with increasing SNR and crossing angle.

69



A.2. TWO FIBRE STRUCTURE

Medium-Medium FA Fibre Structure

a
S

DTI, Angle Deviation

o
=3

IS
o
IS
o
T

@ W A
S & o
@ W A
S & S
T T T

n
o

N
=]
N
=]
T

Mean Angle Deviation
&
/

o

Mean Angle Deviation in degrees
> S
’

)
T

Angle SNR

(a) Description: DTI, angle deviation as (b) Description: DTI, angle deviation as
function of fibre crossing angle. function of SNR.

Figure A.17: Description: Angle deviation for DTI. Ground truth FA; = 0.51 and
FA, = 0.51.

Comment: SNR has little impact on the result, somewhat more for crossing angle below
10°. With increased crossing angle the angle deviation increases almost linearly, the high
dependence on crossing angle is expected due to the model-structure mismatch.
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(a) Description: Bi-Gaussian model, ran- (b) Description: Bi-Gaussian model, ran-
dom initialisation, angle deviation as func- dom initialisation, angle deviation as func-
tion of fibre crossing angle. tion of SNR.

Figure A.18: Description: Random initialisation, angle deviation for bi-Gaussian model
estimation. Ground truth FA; = 0.51 and FA; = 0.51.
Comment: Angle deviation decreases with increasing SNR.
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Fourth Order, Angle Deviation
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(a) Description: Fourth order model, an-
gle deviation as function of fibre crossing
angle.
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(b) Description: Fourth order model, an-
gle deviation as function of SNR.

Figure A.19: Description: Angle deviation as function of fibre crossing angle for fourth
order tensor estimation. Ground truth FA; = 0.51 and FA, = 0.51.

Comment: Angle deviation decreases with increasing crossing angle. For crossing angles
larger than 70° increasing the SNR will decrease the angle deviation, but for crossing angles

lower than 60° the relationship is reversed.
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Medium-Low FA Fibre Structure
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(a) Description: DTI, angle deviation as
function of fibre crossing angle.
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(b) Description: DTI, angle deviation as
function of SNR.

Figure A.20: Description: Angle deviation for DTI. Ground truth FA; = 0.51 and

FA, = 0.18.
Comment:

With increasing crossing angle the angle deviation increases almost linearly,

a high dependence is expected due to the structure-model mismatch. The angle deviation

increases with decreasing SNR.
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(a) Description: Bi-Gaussian model, ran-
dom initialisation, angle deviation as func-
tion of fibre crossing angle.
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(b) Description: Bi-Gaussian model, ran-
dom initialisation, angle deviation as func-
tion of SNR.

Figure A.21: Description: Random initialisation, angle deviation for bi-Gaussian model
estimation. Ground truth FA; = 0.51 and FA; = 0.18.

Comment: Angle deviation is large for all SNR’s and crossing angles, but decreases with
with increasing SNR for crossing angles below 70°.
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Fourth Order, Angle Deviation
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(a) Description: Fourth order model, an- (b) Description: Fourth order model, an-
gle deviation as function of fibre crossing gle deviation as function of SNR.
angle.

Figure A.22: Description: Angle deviation as function of fibre crossing angle for fourth
order tensor estimation. Ground truth FA; = 0.51 and FA, = 0.18.

Comment: SNR has little impact overall, however most for angles larger than 70°, where
the angular error is small. For angles lower than 70° the angular resolution with this model
is poor.
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Low-Low FA Fibre Structure
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(a) Description: Angle deviation as func-
tion of fibre crossing angle.
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(b) Description: Angle deviation as func-
tion of SNR.

Figure A.23: Description: Angle deviation for DTI. Ground truth FA; = 0.18 and

FA, = 0.18.
Comment:

SNR has little impact on the result, somewhat more for crossing angle below

10°. Crossing angle has large impact on the angle deviation, which is expected due to the
mismatch between the model and the underlying structure when two tensors are estimated

with one.
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(a) Description: Bi-Gaussian model,
ranged random initialisation, angle devia-
tion as function of fibre crossing angle.
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(b) Description: Bi-Gaussian model,
ranged random initialisation, angle devia-
tion as function of SNR.

Figure A.24: Description: Ranged random initialisation, angle deviation for bi-Gaussian
model estimation. Ground truth FA; = 0.18 and FA, = 0.18.
Comment: Angle deviation increases with increasing SNR and decreasing crossing angle.

74



A.2. TWO FIBRE STRUCTURE

Fourth Order, Angle Deviation
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(a) Description: Fourth order model, an-
gle deviation as function of fibre crossing
angle.
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(b) Description: Fourth order model, an-
gle deviation as function of SNR.

Figure A.25: Description: Angle deviation as function of fibre crossing angle for fourth
order tensor estimation. Ground truth FA; = 0.18 and FA, = 0.18.
Comment: Angle deviation decreases with increasing SNR and crossing angle.
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A.2.2 Signal Deviation
High-High FA Fibre Structure
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(a) Description: DTI, signal deviation as

function of fibre crossing angle.
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(b) Description: DTI signal deviation as

function of SNR.

Figure A.26: Description: Signal deviation for DTI. Ground truth FA; = 0.94 and

FA; =0.94.

Comment: Model-structure mismatch, two fibres are estimated with one second order
tensor. The signal deviation decreases with increasing SNR. For SNR above 10 the signal

deviation increases with increasing crossing angle.
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(a) Description:

Bi-Gaussian model,

ranged random initialisation, signal devia-

tion as function of fibre crossing angle.
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(b) Description:
ranged random initialisation, signal devia-
tion as function of SNR.

Bi-Gaussian model,

Figure A.27: Description: Random initialisation, signal deviation for bi-Gaussian model

estimation. Ground truth FA; = 0.94 and FA; = 0.94.

Comment: Model and structure match. The signal deviation decreases with increasing

SNR.
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Fourth Order Signal Deviation Fourth Order Signal Deviation
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(a) Description: Fourth order model, sig- (b) Description: Fourth order model, sig-
nal deviation as function of fibre crossing nal deviation as function of SNR.
angle.

Figure A.28: Description: Signal deviation for HOT estimation. Ground truth FA; =
0.94 and FA; = 0.94.
Comment: Signal deviation decreases with increasing SNR.
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High-Medium FA Fibre Structure

DTI Signal Deviation — SNR=50 DTI Signal Deviation

30 T T

N
o

N

a
T

Mean Signal Deviation in %
>
| ‘ /
| /
|
Mean Signal Deviation in %
@

3
|
|
|

|

|

|
5

o
T
L

o

0 10 20 30 40 50 60 70 80 90 5 10 15 20 25 30 35 40 45 50
Angle SNR

(a) Description: Signal deviation as func- (b) Description: Signal deviation as func-
tion of fibre crossing angle. tion of SNR.

Figure A.29: Description: Signal deviation for DTI. Ground truth FA; = 0.94 and
FA; = 0.51.

Comment: Model-structure mismatch. Signal deviation decreases with increasing SNR.
For SNR above 13 signal deviation increases with increasing crossing angle, and for SNR
below 13 the signal deviation decreases with increasing crossing angle.
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(a) Description: Bi-Gaussian model, (b) Description: Bi-Gaussian model,
ranged random initialisation, signal devia- ranged random initialisation, signal devia-
tion as function of fibre crossing angle. tion as function of SNR.

Figure A.30: Description: Random initialisation, signal deviation for bi-Gaussian model
estimation. Ground truth FA; = 0.94 and FA; = 0.51.

Comment: Signal deviation decreases with increasing SNR, and when SNR is above 17
decreases with increasing crossing angle.
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Fourth Order Signal Deviation SNR =50
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(a) Description: Fourth order model, sig-
nal deviation as function of fibre crossing
angle.
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(b) Description: Fourth order model, sig-
nal deviation as function of SNR.

Figure A.31: Description: Signal deviation for fourth order tensor estimation. Ground

truth FA; = 0.94 and FA, = 0.51.

Comment: Signal deviation decreases with increasing SNR, and when SNR is above 17

decreases with increasing crossing angle.
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High-Low FA Fibre Structure
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(a) Description: DTI, signal deviation as
function of fibre crossing angle.
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(b) Description: DTI, signal deviation as
function of SNR.

Figure A.32: Description: Signal deviation for DTI. Ground truth FA; = 0.94 and
FA; =0.18.
Comment: Signal deviation decreases with increasing SNR, but is close to independent on
crossing angle. Similar result as presented in Figure A.33 and Figure A.34.
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Figure A.33: Description: Random initialisation, signal deviation for bi-Gaussian model

estimation. Ground truth FA; = 0.94 and FA, = 0.18.

Comment: Signal deviation decreases with increasing SNR, but independent of crossing
angle. Similar result as presented in Figure A.32 and Figure A.34.
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Fourth Order Signal Deviation
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(a) Description: Fourth order model, sig-

nal deviation as function of fibre crossing

angle.
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(b) Description: Fourth order model, sig-

nal deviation as function of SNR.

Figure A.34: Description: Signal deviation for fourth order tensor estimation. Ground

truth FA; = 0.94 and FA, = 0.18.
Comment:

Signal deviation decreases with increasing SNR, but is close to independent

on crossing angle. Similar result as presented in Figure A.32 and Figure A.33.
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Medium-Medium FA Fibre Structure
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(a) Description: DTI, signal deviation as
function of fibre crossing angle.
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(b) Description: DTI, signal deviation as
function of SNR.

Figure A.35: Description: Signal deviation for DTI. Ground truth FA; = 0.51 and

FA; = 0.51.

Comment: Signal deviation decreases with increasing SNR and for SNR below 13 with
increasing crossing angle. Similar result as presented in Figure A.36 and Figure A.37.
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(a) Description: Bi-Gaussian model,
ranged random initialisation, signal devia-
tion as function of fibre crossing angle.
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(b) Description: Bi-Gaussian model,

ranged random initialisation, signal devia-
tion as function of SNR.

Figure A.36: Description: Random initialisation, signal deviation for bi-Gaussian model
estimation. Ground truth FA; = 0.51 and FA; = 0.51.

Comment: Signal deviation decreases with increasing SNR and for SNR below 13 with
increasing crossing angle. Similar result as presented in Figure A.35 and Figure A.37.
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(a) Description: Fourth order model, sig-
nal deviation as function of fibre crossing
angle.
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(b) Description: Fourth order model, sig-
nal deviation as function of SNR.

Figure A.37: Description: Signal deviation for fourth order tensor estimation. Ground

truth FA; = 0.51 and FA, = 0.51.

Comment: Signal deviation decreases with increasing SNR and for SNR below 13 with
increasing crossing angle. Similar result as presented in Figure A.35 and Figure A.36.
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A.2.

TWO FIBRE STRUCTURE

Medium-Low FA Fibre Structure
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(a) Description: DTI, signal deviation as
function of fibre crossing angle.
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(b) Description: DTI, signal deviation as
function of SNR.

Figure A.38: Description: Signal deviation for DTI. Ground truth FA; = 0.51 and

FA, = 0.18.

Comment: Signal deviation decreases with increasing SNR and is close to independent of
crossing angle. Similar results as presented in Figure A.39 and Figure A.40.
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(a) Description: Bi-Gaussian model, sig-
nal deviation as function of fibre crossing

angle.
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(b) Description: Bi-Gaussian model, sig-
nal deviation as function of SNR.

Figure A.39: Description: Random initialisation, signal deviation for bi-Gaussian model
estimation. Ground truth FA; = 0.51 and FA; = 0.18.
Comment: Signal deviation decreases with increasing SNR and is close to independent of
crossing angle. Similar results as presented in Figure A.38 and Figure A.40.
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(a) Description: Fourth order model, sig-
nal deviation as function of fibre crossing
angle.
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(b) Description: Fourth order model, sig-
nal deviation as function of SNR.

Figure A.40: Description: Signal deviation for fourth order tensor estimation. Ground

truth FA; = 0.51 and FA; = 0.18.

Comment:

Signal deviation decreases with increasing SNR and is close to indepen-

dent of crossing angle. Similar results as presented in Figure A.38 and Figure A.39.
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Low-Low FA Fibre Structure

Signal Deviation
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(b) Description:
function of SNR.

(a) Description: DTI, signal deviation as DTI, signal deviation as

function of fibre crossing angle.

Figure A.41: Description: Signal deviation for DTI. Ground truth FA; = 0.18 and
FA; = 0.18.

Comment: Signal deviation decreases with increasing SNR and is close to independent of
crossing angle. Similar results as presented in Figure A.42 and Figure A.43.
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(a) Description: Bi-Gaussian model, sig-
nal deviation as function of fibre crossing

SNR

(b) Description: Bi-Gaussian model, sig-
nal deviation as function of SNR.

angle.

Figure A.42: Description: Signal deviation for bi-Gaussian model estimation. Ground
truth FA; = 0.18 and FA, = 0.18.

Comment: Signal deviation decreases with increasing SNR and is close to independent of
crossing angle. Similar results as presented in Figure A.41 and Figure A.43.
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(a) Description: Fourth order model, sig- (b) Description: Signal deviation as func-
nal deviation as function of fibre crossing tion of SNR.
angle.

Figure A.43: Description: Signal deviation for fourth order tensor estimation. Ground
truth FA; = 0.18 and FA; = 0.18.

Comment: Signal deviation decreases with increasing SNR and is close to independent of
crossing angle. Similar results as presented in Figure A.41 and Figure A.42.

87



A.2. TWO FIBRE STRUCTURE

A.2.3 Tensor Element Deviation

High-High FA Fibre Structure
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(a) Description: Bi-Gaussian model, ten- (b) Description: Bi-Gaussian model, ten-
sor element deviation as function of fibre sor element deviation as function of SNR.
crossing angle. Ranged random initialisa- Ranged random initialisation. High-high
tion. High-high FA fibre structure. FA fibre structure.

Figure A.44: Description: Tensor element deviation for bi-Gaussian model estimation.
Ground truth FA; = 0.94 and FA; = 0.94.

Comment: A typical tensor element is of order 10~%, the tensor element deviation decreases
with increasing SNR and crossing angle.
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High-Medium FA Fibre Structure
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(a) Description: Bi-Gaussian model, ten-
sor element deviation as function of fibre
crossing angle. Ranged random initialisa-
tion. High-medium FA fibre structure.
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(b) Description: Bi-Gaussian model,
tensor element deviation as function of
SNR. Ranged random initialisation. High-
medium FA fibre structure.

Figure A.45: Description: Tensor element deviation for bi-Gaussian model estimation.

Ground truth FA; = 0.94 and FA; = 0.51.
Comment:

A typical tensor element is of order 10~%, the tensor element deviation de-

creases with increasing crossing angle and SNR.
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High-Low FA Fibre Structure
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(a) Description: Bi-Gaussian model, ten- (b) Description: Bi-Gaussian model, ten-
sor element deviation as function of fibre sor element deviation as function of SNR.
crossing angle. Ranged random initialisa- Ranged random initialisation. High-low FA
tion. High-low FA fibre structure. fibre structure.

Figure A.46: Description: Tensor element deviation for bi-Gaussian model estimation.
Ground truth FA; = 0.94 and FA, = 0.18.

Comment: A typical tensor element is of order 10~%, the tensor element deviation decreases
with increasing SNR and is close to independent of crossing angle.
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Medium-Medium FA Fibre Structure
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(a) Description: Bi-Gaussian model, ten- (b) Description: Bi-Gaussian model, ten-
sor element deviation as function of fibre sor element deviation as function of SNR.
crossing angle. Ranged random initialisa- Ranged random initialisation. Medium-
tion. Medium-medium FA fibre structure. = medium FA fibre structure.

Figure A.47: Description: Tensor element deviation for bi-Gaussian model estimation.
Ground truth FA; = 0.51 and FA; = 0.51.

Comment: A typical tensor element is of order 10~*.For crossing angles larger than 50°
the tensor element deviation decreases with increasing SNR.

91



A.2. TWO FIBRE STRUCTURE

Medium-Low FA Fibre Structure
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(a) Description: Bi-Gaussian model, ten-
sor element deviation as function of fibre
crossing angle. Ranged random initialisa-
tion. Medium-low FA fibre structure.
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(b) Description: Bi-Gaussian model, ten-
sor element deviation as function of SNR.
Ranged random initialisation. Medium-low
FA fibre structure.

Figure A.48: Description: Tensor element deviation for bi-Gaussian model estimation.
Ground truth FA; = 0.51 and FA; = 0.18.

Comment: A typical tensor element is of order 10™4, the tensor element deviation decreases
with increasing SNR.
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Low-Low FA Fibre Structure
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(a) Description: Bi-Gaussian model, ten-
sor element deviation as function of fibre
crossing angle. Ranged random initialisa-
tion. Low-low FA fibre structure.
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(b) Description: Bi-Gaussian model, ten-
sor element deviation as function of SNR.
Ranged random initialisation. Low-low FA
fibre structure.

Figure A.49: Description: Tensor element deviation for bi-Gaussian model estimation.

Ground truth FA; = 0.18 and FA; = 0.18.
Comment: A typical tensor element is of order 10™4, the tensor element deviation decreases

with increasing crossing angle.
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Plots of FA-values

B.1 One Fibre Structure
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Figure B.1: Description: FA estimated with DTI, ground truth FA: FAj,, = 0.18,
FAmcd =0.51 and FAhigh = 0.94.

Comment: Model and structure match, estimated FA approaches ground truth FA with
increasing SNR.
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B.1.

Minimum of Bi-Gaussian Model
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(a) Description: Minimum of FA’s es-
timated with bi-Gaussian model, ground
truth FA: FA,w, = 0.18, FA,,e.q = 0.51 and
FApigh = 0.94.

Comment: High FA-estimation is
more underestimated with increased SNR,
medium FA-estimation consistently overes-
timates, and low FA-estimation approaches
ground truth FA with increased SNR.

Maximum of Bi-Gaussian Model
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(b) Description: Maximum of FA’s es-
timated with bi-Gaussian model, ground
truth FA: FA ., = 0.18, FA,eq = 0.51 and
FApigh = 0.94.

Comment: High FA-estimation ap-
proaches ground truth FA with increased
SNR, medium and low FA-estimation con-
sistently overestimates, low FA-estimation
decreases with increasing SNR.

Figure B.2: Description: FA’s estimated with bi-Gaussian model, ground truth FA:
FAlow = 0.18, FAmed =0.51 and FAhigh = 0.94.
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Figure B.3: Description: Mean of FA’s estimated with bi-Gaussian model, ground truth
FA: FAlow = 0.18, FAmed =0.51 and FAhigh = 0.94.

Comment:

High FA-estimation approaches ground truth FA with increased SNR, medium

and low FA-estimation consistently overestimates, low FA-estimation decreases with increas-

ing SNR.
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B.1.

Fourth order model, MA-definition FA
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(a) Description: FA’s estimated with
MA’s FA-definition for the fourth order ten-
sor model, ground truth FA: FA ., = 0.18,
FAmed = 0.51 and FAhigh = 0.94.

Comment: High FA-estimation con-
sistently underestimates, medium FA-
estimation consistently overestimates, low
FA-estimation consistently underestimates.

Fourth order model, Qi-definition FA
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(b) Description: FA’s estimated with Qi’s
FA-definition for the fourth order model,
ground truth FA: FAy,, = 0.18, FA,,cq =
0.51 and FApjgn = 0.94.

Comment: High FA-estimation ap-
proaches ground truth FA with increased
SNR, medium FA-estimation consistently
overestimates, low FA-estimation underes-
timates for SNR above 8 and decreases with
increasing SNR.

Figure B.4: Description: FA’s estimated with Qi’s and MA’s FA-definitions for the

fourth order tensor model.
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B.2. TWO FIBRE STRUCTURE

B.2 Two Fibre Structure

B.2.1 High-High FA Fibre Structure

DTI FA
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Figure B.5: Description: Synthetic signal, two fibres with FA; = FA; = 0.94, DTI FA-
estimation.

Comment: For parallel fibres the estimated FA is close to the mean of the two ground
truth FA-values, for increasing crossing angle the estimated FA decreases.
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Bi-Gaussian Model, min FA
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(a) Description: Synthetic signal, two fi-
bres with FA; = FAy = 0.94. Minimum
of FA’s estimated with bi-Gaussian model.
Ranged random initialisation.

Comment: With increasing SNR, the
FA decreases with decreasing crossing an-
gle for angles below 50°. Close to mean of
ground truth FA-values, but slightly under-
estimated.

Bi-Gaussian Model, max FA
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(b) Description: Synthetic signal, two fi-
bres with FA; = FA; = 0.94. Maximum
of FA’s estimated with bi-Gaussian model.
Ranged random initialisation.

Comment: The estimated FA is inde-
pendent of the crossing angle and close to
mean of ground truth FA but slightly over-
estimated.

Figure B.6: Description: Synthetic signal, two fibres with FA; = FA; = 0.94, minimum
and maximum of FA’s estimated with the bi-Gaussian model.

Bi-Gaussian Model, mean FA

0.8
0.7r
@ 061
=
©
T 05¢ SNR =50
< —SNR=2
L 04t S 5
—SNR=17
0.3} —SNR=13
—SNR=10
0.2r SNR =8
—SNR=7
0.1
O 1 1 1 1 1 1 1 1 J
0 10 20 30 40 50 60 70 80 90

Crossing Angle

Figure B.7: Description: Synthetic signal,

two fibres with FA; = FA; = 0.94. Mean of

FA’s estimated with the bi-Gaussian model. Ranged random initialisation.

Comment:

The estimated FA is independent of the crossing angle and close to the mean

of ground truth FA’s, with the best result for the highest SNR.
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MA-definition HOT FA
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(a) Description: Synthetic signal, two fi-
bres with FA; = FA, = 0.94. FA’s es-
timated with MA’s FA-definition for the
fourth order model.

Comment: With crossing angle increas-
ing from 50° to 70°, FA decreases, below
50° the estimated FA is lower than ground
truth mean FA, and for crossing angle above

70° much lower.

Qi-definition HOT FA

FA-value

SNR =
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——SNR=
—— SNR=
SNR =

SNR =
——SNR=

Angle of separation
(b) Description: Synthetic signal, two fi-
bres with FA; = FAs = 0.94. FA’s esti-
mated with Qi’s FA-definition for the fourth
order model.

Comment: With crossing angle increas-
ing from 50° to 80°, FA decreases, below
50° the estimated FA-values is close to the
mean ground truth-FA, and above 80° it is

lower than ground truth-FA.

Figure B.8: Description: Fourth order tensor model, synthetic signal, two fibres with

FA; = FA; = 0.94.
Comment:
ground truth FA.
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B.2.2 High-Medium FA Fibre Structure
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Figure B.9: Description: Synthetic signal, two fibres with FA; = 0.94 and FA; = 0.51,

DTI FA-estimation.
Comment:

Estimated FA decreases with increasing crossing angle and increases with

increasing SNR. Estimated FA is close to the mean of ground truth FA.
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Bi-Gaussian Model, min FA
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Crossing Angle

(a) Description: Synthetic signal, two fi-
bres with FA; = 0.94 and FA; = 0.51. Min-
imum of FA’s estimated with bi-Gaussian
model. Ranged random initialisation.
Comment: With increasing crossing an-
gle and SNR above 13 FA decreases. Com-
pared to minimum of ground truth FA, es-
timated FA is overestimated.

Bi-Gaussian Model, max FA

—— SNR =50
—SNR=25
——SNR=17
—SNR=13
——SNR=10

SNR =8
—SNR=7

0 1‘0 2‘0 3‘0 46 5‘0 éO 7‘0 8‘0 96
Crossing Angle

(b) Description: Synthetic signal, two
fibres with FA; 0.94 and FA,
0.51. Maximum of FA’s estimated with bi-
Gaussian model. Ranged random initialisa-
tion.

Comment: Estimated FA is close to con-
stant at maximum of ground truth maxi-

mum FA.

Figure B.10: Description: Synthetic signal, two fibres with FA; = 0.94 and FAs = 0.51,
minimum and maximum of FA’s estimated with the bi-Gaussian model.

Bi-Gaussian Model, mean FA
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Figure B.11: Description: Synthetic signal, two fibres with FA; = 0.94 and FA, = 0.51.
Mean of FA’s estimated with the bi-Gaussian model. Ranged random initialisation.

Comment:

Crossing angle has little impact on FA, with increasing SNR FA decreases.

Estimated FA is consistently higher than mean ground truth FA.
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MA-definition HOT FA

1

09k

08

07

06F

05F

FA-value

o4r SNR =50
——SNR=25
03 ——SNR=17
———SNR=13
02 ——SNR=10
SNR=8
o1k ——SNR=7

Angle of separation
(a) Description: Synthetic signal, two fi-
bres with FA; = 0.94 and FA, = 0.51 FA’s
estimated with MA’s FA-definition for the
fourth order model.

Comment: For crossing angles above 70°
and SNR above 13 FA decreases with in-
creasing crossing angle and SNR. Below 70°
and SNR 13 FA instead increases with in-
creasing SNR.

Qi-definition HOT FA

FA-value
o o
b
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(b) Description: Synthetic signal, two fi-
bres with FA; = 0.94 and FA; = 0.51. FA’s
estimated with Qi’s FA-definition for the
fourth order model.

Comment: For crossing angle above 60°
estimated FA decreases with increasing

crossing angle.

Figure B.12: Description: Fourth order tensor model, synthetic signal, two fibres with
FA; = 0.94 and FA, = 0.51.
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B.2.3 High-Low FA Fibre Structure

DTI FA
.
0.9+
0.8f
0.7} == =
© 0.6
=)
S
T 05r ——SNR =50
< ——SNR=25
[y L
04 ——SNR=17
0.3+ —SNR=13
——SNR=10
0.2t SNR =8
——SNR=7
01f
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90

Crossing Angle

Figure B.13: Description: Synthetic signal, two fibres with FA; = 0.94 and FA; = 0.18,
DTT FA-estimation.

Comment: Estimated FA decreases slightly with increasing crossing angle. Compared to
mean of ground truth FA, FA is consistently overestimated.
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Bi-Gaussian Model, min FA
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(a) Description: Synthetic signal, two fi-
bres with FA; = 0.94 and FA; = 0.18. Min-
imum of FA’s estimated with bi-Gaussian
model. Ranged random initialisation.
Comment: Estimated FA decreases with
increasing SNR.

Bi-Gaussian Model, max FA
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(b) Description: Synthetic signal, two
fibres with FA; 0.94 and FA,
0.18. Maximum of FA’s estimated with bi-
Gaussian model. Ranged random initialisa-
tion.

Comment: Estimated FA is constant
close to maximum ground truth FA for all
crossing angles and SNR.

Figure B.14: Description: Synthetic signal, two fibres with FA; = 0.94 and FAs = 0.18,
minimum and maximum of FA’s estimated with the bi-Gaussian model.

Bi-Gaussian Model, mean FA
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Figure B.15: Description: Synthetic signal, two fibres with FA; = 0.94 and FA, = 0.18.
Mean of FA’s estimated with the bi-Gaussian model. Ranged random initialisation.

Comment:

For SNR 50 and 25 estimated FA is lower than for the other SNR. Compared

to mean of ground truth FA, estimated FA is consistently overestimated.
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B.2. TWO FIBRE STRUCTURE

MA-definition HOT FA

FA-value
°

Angle of separation
(a) Description: Synthetic signal, two fi-
bres with FA; = 0.94 and FA; = 0.18. FA’s
estimated with MA’s FA-definition for the
fourth order model.

Comment: Compared to mean of ground
truth FA, the estimated FA is consistently

underestimated.

Qi-definition HOT FA

FA-value
°
&

Angle of separation
(b) Description: Synthetic signal, two fi-
bres with FA; = 0.94 and FA; = 0.18. FA’s
estimated with Qi’s FA-definition for the
fourth order model.

Comment: Estimated FA decreases some
for increasing crossing angle and SNR, and
is close to mean of ground truth FA.

Figure B.16: Description: Fourth order tensor model, synthetic signal, two fibres with

FA1 =0.94 and FA2 = 0.18.
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B.2. TWO FIBRE STRUCTURE

B.2.4 Medium-Medium FA Fibre Structure
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Figure B.17: Description: Synthetic signal, two fibres with FA; = FA, = 0.51, DTI

FA-estimation.
Comment: Estimated FA decreases with decreasing SNR, for high SNR decreases with

increasing crossing angle, a little lower than ground truth mean FA.
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B.2. TWO FIBRE STRUCTURE

Bi-Gaussian Model, min FA
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(a) Description: Synthetic signal, two fi-
bres with FA; = FA, = 0.51 . Minimum
of FA’s estimated with bi-Gaussian model.
Ranged random initialisation.

Comment: Estimated FA is consistently
higher than both ground truth FA-values.

Bi-Gaussian Model, max FA
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(b) Description: Synthetic signal, two fi-
bres with FA; = FA, = 0.51 . Maximum
of FA’s estimated with bi-Gaussian model.
Ranged random initialisation.

Comment: Estimated FA decreases with
increasing SNR, but is consistently much

higher than ground truth FA for both fi-
bres.

Figure B.18: Description: Synthetic signal, two fibres with FA; = FA5 = 0.51, minimum
and maximum of FA’s estimated with the bi-Gaussian model. Ranged random intialisation.

Bi-Gaussian Model, mean FA
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Figure B.19: Description: Synthetic signal, two fibres with FA; = FA; = 0.51. Mean of
FA’s estimated with the bi-Gaussian model. Ranged random initialisation.
Comment: Estimated FA is consistently higher than both ground truth FA-values
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B.2. TWO FIBRE STRUCTURE

MA-definition HODT FA

FA-value

Angle of separation
(a) Description: Synthetic signal, two fi-
bres with FA; = FA; = 0.51 FA’s estimated
with MA’s FA-definition for the fourth or-
der model.

Comment: For crossing angles below
70° estimated FA increases with increas-
ing SNR, for crossing angle above 80° es-
timated FA increases with decreasing SNR
and is lower than mean of ground truth FA.
For small crossing angles and high SNR es-
timated FA is high compared to mean of
ground truth FA.

Qi-definition HOT FA

FA-value
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(b) Description: Synthetic signal, two fi-
bres with FA; = FA; = 0.51 FA’s estimated
with Qi’s FA-definition for the fourth order
model.

Comment: For crossing angles below
70° estimated FA increases with increas-
ing SNR, for crossing angle above 80° esti-
mated FA increases with decreasing SNR.
Estimated FA is consistently higher than
mean of ground truth FA.

Figure B.20: Description: Fourth order tensor model, synthetic signal, two fibres with

FA; = FA; = 0.51.
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B.2. TWO FIBRE STRUCTURE

B.2.5 Medium-Low FA Fibre Structure
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Figure B.21: Description: Synthetic signal, two fibres with FA; = 0.51 and FA; = 0.18,
DTT FA-estimation.

Comment: Estimated FA decreases with increasing SNR.
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B.2. TWO FIBRE STRUCTURE

Bi-Gaussian Model, min FA
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(a) Description: Synthetic signal, two fi-
bres with FA; = 0.51 and FA; = 0.18. Min-
imum of FA’s estimated with bi-Gaussian
model. Ranged random initialisation.
Comment: Estimated FA decreases with
increasing SNR and is consistently higher
than mean of ground truth FA.

Bi-Gaussian Model, max FA

——SNR=50
04l ——SNR=25
——SNR=17
03 ——SNR=13
——SNR=10

SNR=8
——SNR=7

FA-value
o
o

0 1‘0 2‘0 3‘0 4‘0 5‘0 Sb 7‘0 8‘0 9‘0
Crossing Angle

(b) Description: Synthetic signal, two fi-
bres with FA; = 0.51 and FA; = 0.18. Min-
imum of FA’s estimated with bi-Gaussian
model. Ranged random initialisation.
Comment: FEstimated FA decreases with
increasing SNR and is consistently higher
than mean of ground truth FA.

Figure B.22: Description: Synthetic signal, two fibres with FA; = 0.51 and FA; = 0.18,
minimum and maximum of FA’s estimated with the bi-Gaussian model. Ranged random

intialisation.

Bi-Gaussian Model, mean FA
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Figure B.23: Description: Synthetic signal, two fibres with FA; = 0.51 and FA; = 0.18.
Mean of FA’s estimated with the bi-Gaussian model. Ranged random initialisation.

Comment:
mean of ground truth FA.

Estimated FA decreases with increasing SNR and is consistently higher than
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B.2. TWO FIBRE STRUCTURE

MA-definition HODT FA
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(a) Description: Synthetic signal, two fi-
bres with FA; = 0.51 and FA; = 0.18. FA’s
estimated with MA’s FA-definition for the
fourth order model.

Comment: Estimated FA increases with

increasing SNR.

Qi-definition HODT FA
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(b) Description: Synthetic signal, two fi-
bres with FA; = 0.51 and FA; = 0.18. FA’s
estimated with Qi’s FA-definition for the
fourth order model.

Comment: Estimated FA is close to
mean of ground truth FA for all crossing
angles and SNR.

Figure B.24: Description: Ground truth FA’s are FA; = 0.51 and FA; = 0.18.
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B.2. TWO FIBRE STRUCTURE

B.2.6 Low-Low FA Fibre Structure
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Figure B.25: Description: Synthetic signal, two fibres with FA; = FA, = 0.18, DTI
FA-estimation.

Comment: Estimated FA decreases with increasing SNR, the highest SNR is close to mean
ground truth FA, the lower the SNR the more overestimated FA is.
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B.2. TWO FIBRE STRUCTURE

Bi-Gaussian Model, min FA
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(a) Description: Synthetic signal, two fi-
bres with FA; = FA, = 0.18. Minimum
of FA’s estimated with bi-Gaussian model.
Ranged random initialisation.

Comment: Estimated FA decreases with
increasing SNR.

Bi-Gaussian Model, max FA
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(b) Description: Synthetic signal, two fi-
bres with FA; = FA, = 0.18. Maximum
of FA’s estimated with bi-Gaussian model.
Ranged random initialisation.

Comment: Estimated FA decreases with
increasing SNR and is consistently much

higher than both ground truth FA-values.

Figure B.26: Description: Synthetic signal, two fibres with FA; = FA5 = 0.18, minimum
and maximum of FA’s estimated with the bi-Gaussian model. Ranged random intialisation.

Bi-Gaussian Model, mean FA
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Figure B.27: Description: Synthetic signal, two fibres with FA; = FA; = 0.18. Mean of
FA’s estimated with the bi-Gaussian model. Ranged random initialisation.

Comment: Estimated FA decreases with increasing SNR and is consistently higher than
both ground truth FA-values.
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B.2. TWO FIBRE STRUCTURE

MA-definition HODT FA
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(a) Description: Synthetic signal, two fi-
bres with FA; = FA; = 0.18. FA’s es-
timated with MA’s FA-definition for the
fourth order model.

Comment: Estimated FA is lower than
both ground truth FA-values for all crossing

angles and SNR.

Qi-definition HODT FA
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(b) Description: Synthetic signal, two fi-
bres with FA; = FAy = 0.18. FA’s esti-
mated with Qi’s FA-definition for the fourth
order model.

Comment: Estimated FA decreases with

increasing SNR.

Figure B.28: Description: Ground truth FA’s are FA; = FA; = 0.18.
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FA Maps from Real DWI-Data

Figure C.1: Description: The conventional FA from DTI. Real DWI-data.
Description: Compared to the real data results from the bi-Gaussian model, see Figures
C.2, C.3 and C.4, and the HOT model, see Figures C.5 and C.6, this reveals more information
about the brain structure.
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Figure C.2: Description: The minimum FA of the two FA-values from bi-Gaussian
model.

Comment: Many voxels are black, indicating that one of the estimated tensors are not
PSD resulting in that the lowest FA-value is zero.

Figure C.3: Description: The maximum FA of the two FA-values from bi-Gaussian
model.

Comment: Fewer black voxels than compared to Figure C.2, but much brighter than
Figure C.1. Difficult to see structures.
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Figure C.4: Description: The mean FA of the two FA from bi-Gaussian model.
Comment: Fewer black voxels than compared to Figure C.2, but difficult to see structures.
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Figure C.5: Description: The MA definition of FA from HOT, filtered with Gaussian

window of 4 voxel size.
Comment: Compared with Figure C.1 fewer structures are visible, but more structures

than in Figure C.4.
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Figure C.6: Description: The Qi definition of FA from HOT, filtered with Gaussian
window of 4 voxel size.

Comment: Compared to Figure C.1 fewer structures are visible, but more structures than
in Figure C.4. Compare with Figure C.5.
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