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Abstract 

Any automobile existing today constitutes of thousands of parts. Each part when under 

analysis can be characterized by different parameters. The numbers of parameters associated 

to each part depend on the complexity of that particular part e.g. body or the engine of the 

vehicle which needs millions of parameters to be clearly defined to be reproducibly 

manufactured. The engine can be build up by a system, which we can say is a black-box, 

which for instance can describe the gasoline consumption of the engine of a car. In practice it 

is impossible to work with an unknown system while investigating the optimization methods, 

therefore we assume that we have a quadratic function instead. 

 

In the optimization we fit the quadratic function with linear models of four different kinds. 

These are the gradient method, the design of experiments, the spherical method and the lean 

optimization method.  

 

Supersaturated design approach (which we did use in the spherical and the lean optimization 

method) is a way to make the number of experiments less than the number parameters of a 

system. The spherical method was the best one in the optimization of the functions. It gives 

the smallest standard deviation among these four methods. From the optimization of functions 

it was possible to see that the spherical method gives very good optimum values (close to 

zero). The methods are possible to be used for optimization but not for prediction. In the 

prediction we are removing some values and using some model-values instead of these values.  

The standard deviation of the original function value was better than the standard deviation of 

the difference of the four different optimization functions and the original function. 

  



 
 

 

Acknowledgements 

 

I would like to thank Sven Ahlinder, my supervisor from Volvo Technology Corporation, for 

helping me during this project.  I also would like to thank Ivar Gustafsson, my examiner from 

Department of Mathematical Sciences, Chalmers University of Technology, for his comments 

on my work. 

 

 



1 
 

Contents 

1 Introduction                         2 

 

2 Design matrix                                              4  

2.1 Line search method…………………………………………………….4 

2.2 Design matrix in the line search method…………………………….....4 

2.3 Experimental design…………………………………………………....7 

      2.3.1 Gradient matrix…………………………………………………...7 

      2.3.2 DoE (Design of Experiments)…………………………………….7 

      2.3.3 Lean optimization…………………………………………………8 

      2.3.4 Spherical optimization…………………………………………….9 

 

3   Prediction of corners    10 

      3.1 Idea……………………………………………………………………..10 

      3.2 Methods………………………………………………………………...11     

      3.3 Fit and prediction……………………………………………………….14       

 

4   Optimization of functions    21 

      4.1 Gradient method………………………………………………………..21 

      4.2 Design of Experiment…………………………………………………..22 

      4.3 Lean L………………………………………………………………….24 

      4.4 Spherical………………………………………………………………..26 

            4.5 Gradient, DoE, Lean and Sphere methods with the same positive semi definite           

             matrix………………………………………………………………………28 

 

      5   Conclusion     30 

 

      6   Discussion     31 



2 
 

1 Introduction 

 

Experiments are going to be performed on a black-box. These are experiments for calculating 
the optimum value (minimum) for a system. But these are expensive and time-consuming and 

should be very carefully planned. Our aim is to minimize the function describing the system. 
For simplicity we assume a quadratic function f(x)= xTATAx where A is a normally 

distributed random matrix. Observe that ATA is a positive semidefinite matrix since  

xTATAx0 for all vectors x. 

 

For a present x we are calculating different descent directions of the function f(x)= xTATAx 

and then using the line search method to calculate an x-vector, and a corresponding function 

value, which is smaller than the function value at the x-vector we started at. We did use four 

kinds of methods and we have one design matrix for each of these optimization methods. In 

this report besides the gradient method, we will also consider the Design of Experiments 

method, the lean optimization method and the spherical method.  

 

For calculating the descent direction we use different so called design matrices and one 

technique is called Design of Experiments (DoE.) 

 

The main goal of Design of Experiments, which is a very cost effective approach and is used 

in the early part of the problem before the screening of the system, is to plan a process in an 

optimal way with single or multiple underlying objectives [2]. In the Design of Experiments 

method we have a design matrix which represents a number of experiments to be performed. 

Each variable is represented by a column and each row represents one set of values for each 

variable. We call each row an experiment. When we have 2 –level case, we evaluate each 

variable only at its lowest and its highest value (in the matrix design it is represented by -1 

and +1). This will be explained in more details in section 2. 

 

We have also studied the prediction ability of the methods. We have 30000 corners of a 15 

dimensional cube from which 17 corners are selected. In the prediction you are extracting the 

predicted response from some corners. We did estimate the standard deviation of y= xTATAx 

(original spread) and the difference of the four different optimization functions and the 

original function. We are predicting the function value of the corners. We are using and 

comparing four methods, the gradient, the DoE, the lean and the spherical method as 

mentioned before. In the prediction the corners are tested by its prediction ability.  
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We are checking the difference between function value and prediction: We are using the 

original function y=xTATAx. Here x are all the corners. The other function we have to 

calculate with linear approximation. We will get the difference between these two function 

values in order to calculate the standard deviation.  

  



4 
 

2 Design matrix 

2.1 Line search method 

Assume that we have calculated an approximation to the gradient of the function f(x)=xTATAx 

at a point x0. How this is done is explained in section 2.2. Line search means that we are 

minimizing the function along the search direction which is opposite the gradient direction. 

 

Since we have a quadratic model function f(x)=xTATAx, line search is quite simple. We may 

compute the minimum value of f(x) along a search direction by taking three equidistant points 
in this direction and compute the f-values in these points. By these values the quadratic 

function is uniquely determined and it is an easy matter to compute the minimum. 
 

 
 

 

 

2.2 Design matrix in the line search method 

 

The design matrix is used to approximate the gradient of the function. The following 

MATLAB-algorithm will be used to define a linear system, the solution of which gives the 

approximate gradient: G=D+ones(m,1)*x0. Here G is the matrix of the linear system and D is 

a design matrix, see 2.3. At the very beginning x0 is a vector for initialization, but this vector 

will be updated with new x0 at the end of the line search method.  
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Here follows the principle for the procedure of approximating the gradient in two dimensions 

for m=3 and x0=(x1,x2). 

 

For the design matrix D=          0 we get G=     x1+    x2 

       0         x1         x2+  

                x1+   x2+  

 

And we solve the following system to get an approximation of the gradient:   
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Observe that we have added a first column of ones to the matrix G and the dot character is 

a notation for a value that we do not need in the solution. The system is equivalent to 

 

32211

22211

12211

)()(

)(

)(

fgxgx

fgxgx

fgxgx













 

where f1, f2 and f3 are the function values at the points (x1+δ, x2), (x1, x2+ δ) and  

(x1+δ, x2+ δ) respectrively. The unique solution to this system is 

 





)(

)(

2
2

1
1

ff
g

ff
g







 

 



6 
 

Here   + x1g1+x2g2=f 

is the function value at the point (x1, x2). It becomes clear that 
   

1g

   
2g
     is the divided 

difference approximation to the gradient of f at the point (x1, x2). 

 

The different design matrices D in section 2.3 sometimes result in an overdetermined system 

of equations and sometimes in an underdetermined system. In case of an overdetermined 

system we use least squares and in case of an underdetermined system we use the 

pseudoinverse. The pseudoinverse is based on the singular value decomposition of the matrix, 

see [1]. 

 

For instance, in the lean and spherical method we are using the pseudoinverse since the 

system of equations appearing are underdetermined. The line search method is done in same 

fashion for all considered designs. 

 

The optimization methods (gradient, DoE, lean optimization and spherical method) are done 

with and without permutations [3]. By permutation we mean that we are permuting the 

columns with each other. When the permutation in the columns is done we will get new 

experiments. 
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2.3 Experimental designs 

2.3.1 Gradient matrix  

In this case the design matrix takes the form: 

DG= 

 

 

In our experimental design we have 15 columns and 16 rows which means that we have an 

over determined system. The step size is 001.0  (as shows in the diagonal). The 

columns are independent.  

 

2.3.2 DoE (Design of Experiment) 

 

Here the design matrix takes the form: DE= 
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In this our data is all spread on the corners of the cube. In DoE method cubes are being used 

with two level centrum point, consisting of upper level (+1) and lower level (-1). The last row, 

which consists of only zeros, means that you are in the centrum point of the cube, so you do 

not have any upper nor lower level. The row which consists of only ones means that you have 

upper level in all the corners of the cube. 

 

DoE is involved in making set of experiments. It is used in many industrial sectors e.g. in the 

development and in the optimization of manufacturing process. It is also used in the 

laboratory pilot plot and full scale production. 

 

The main advantage of DoE is full organized approach with which it deals with simple and 

tricky problems. We will use classical DoE, which is used for estimating the unknown 

parameter in linear regression model.  

 

 

2.3.3 Lean optimization 

Here the design matrix takes the form:: 

DL= 

 

 

In the lean optimization we are dealing with a number of experiments very less than the 

number of the variables.  In the lean method we will consider the AG design, [2]. We used 

two different kinds of matrices. The first one is the lean-matrix, given above. The other one is 

the spherical matrix, see 2.3.4. 

 

In the design matrix DL above the data is well spread on the corners of the cube. It is a 

supersaturated design where 1 indicates the higher level and -1 indicates the lower level of the 

cube. In this method we have less number of rows then columns. In this case you can solve 

the equation system for calculating the gradient by using the pseudoinverse. 
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2.3.4 Spherical optimization 

 

Here the design matrix takes the form: DS= 

 

 

  

This design is called spherical design, there are as many dimensions as the number of 

variables. Moreover there are as many rows as the number of experiments. All the data are 

spread out and we are maximizing the minimal distance of the data. Spherical design means 

that the distance is the same between all the data in the system, the data is well-spread. This 

means that all data is well spread on the sphere with equal distance from the origin.  
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3               Prediction of corners 

3.1       Idea    

We did test the model prediction by considering a 15 dimensional cube with 215 (around 

30 000) corners out of which we did extract the predicted response from some corners. By 

this we mean that we are checking the prediction of the function values of the corners. We 

did also check the standard deviation of the original function y= xTATAx (original spread) 

and the difference of the four different optimization functions and the original function. 

By this we mean that we are simply calculating the standard deviation of the difference 

generated by the four methods and the original function and also the deviation of only the 

original function. 

 

We have 30000 corners from which 17 corners are selected. In DoE we did work with 

different methods that are classical Design of Experiments, Partial least square method [4] 

and variable selection. Partial least square method (PLS) is a regression which works to 

connect the information in two blocks of variables, X and Y in each other. 

 

In its simple form a linear model shows the linear relationship between the dependent 

variable (Y) and a set of predicted variables (X). 

                        

   are the independent variables. From equation,    is the registered regression coefficient 

and bi (where, i = 1, 2, ...p) are the regression coefficient computed from the data [5]. Here 

   is the last predicted variable and p is the dimension of the space. 

 

Note that the original function value, y= xTATAx, is calculated in different way and it is 

not same as big y. The big y is used for calculating the function value of the four different 

optimization functions. Moreover the small x:s are same as the big X:s because we are 

using same x-values in the calculations of both the original function value and the function 

value of the four optimization functions. 

 

Note that the x-coordinates (   , …,   ) will be given. Calculations of the gradient, g0, 

can be done for each element step by step. Therefore it is possible to say that g0 

corresponds to b (        ) and conclude that there is a linear relationship between y and 

x (y= g0 x). This is explained by a simple example in section 2.2. Note that x corresponds 

to the big x:s while y corresponds to big y. The other y-value which we can get from the 

original function, y= xTATAx, is different and is used for computing g0. 



11 
 

 

In the prediction of the corners we did consider two things. One is histograms and other is 

the standard deviation. While dealing with the corners we are working with the fit of the 

model and on the prediction. 

 

Here we use standard measures from statistics, denoted    and   , see [5] 

   is the predictive measure corresponding to the measure of fit. By fit here we mean how 

well a mathematical function will fit to a series of data points.    is the percent variation 

of the response explained by the model ( prediction).    varies between 0 and 1. If we 

have 1 then it means that we have perfect fit. Otherwise if we have 0 then it means that we 

do not have any model. A    larger than zero indicates that the model is significant and 

predictive. 

 

 

 

              
        

  
 

       
          

  
 

 

 

Prediction Residual Sum of Squares, PRESS, is a measure of how well the model will 

predict the responses for new experimental conditions. SS means sum of squares of Y 

corrected for the mean. SSresid is often referred to as a measure of unexplained variation—

the amount of variation in Y that cannot be attributed to the linear relationship between X 

(independent variables) and Y (dependent variable). 

 

3.2 Methods 

 

The DoE method uses partial least square, PLS, and variable selection. In variable 

selection we are selecting the random relevant features of the model, by removing the 

irrelevant data work and keeping the relevant data that helps in improvement of the 

performance of the model. 
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The work carried out by classical DoE in MODDE (Modeling and Design), a windows 

program for the generation and evaluation of statistical experimental designs, checking the 

system fit and the senses of the prediction of the system.  

 

 

 

 Figure 1: illustrating the fit and the prediction of the system. Here we did use PLS in DoE. 

 

You are considering a linear fit to your design. If the area to the left, which shows the fit, is 

fulfilled, then we have perfect fit. If the area to the right, which shows the prediction, is 

fulfilled, then we have perfect prediction. 

 

   (to the left) shows us the fit of the system, which is perfect.    (to the right) shows us the 

prediction of the system, which is negative. This implies that the system does not have any 

sense for the prediction. 
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Figure 2: shows that there is good fit of the model (which consists of the function values of 

the 17 corners) because it seems to be linear. But we do not have any sense of prediction, 

which can be seen from figure 1. Here we did use the PLS method. 

 

Now consider the work carried out by the partial least square method in SIMCA (Soft 

Independent Modeling of Class Analogy), a classification method. 

 

 

Figure 3: illustrating the fit and the prediction of system by PLS in DoE 

 

In figure 3    (to the left) shows us the system fit which is perfect and   (to the right) shows 

the prediction. The system has some prediction ability. The fit is the difference between the 

measured values and the model-values.  
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Figure 4: shows slightly worse fit than before because the model is not linear. Here we have 

the prediction ability (which is not good because only a very small area is filled), which can 

be seen from figure 3. We did use the PLS method.  

 

3.3 Fit and prediction 

 

 

 

Figure 5: In our test we have 17 observations. Here the method we did use is called the 

ANOVA-method. 
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ANOVA table stands for the analysis of variance. It is a statistical technique. In the ANOVA-

table from figure 5 we are calculating the mean square (MS) with this formula: MS=SS/df. 

Here the probability is 10.3 percent. The ANOVA table [6] is significant if the P-value is 

bigger than alpha level of significance (reject if alpha is bigger than 0.103). If we assume that 

the significance level is 0.95, then it means that this table is not significant, therefore we 

should reject this model, which means that we cannot use the ANOVA table for prediction. 

 

In the ANOVA-table (figure 5) R2 shows the fit of the model. This varies between 0 and 1. It 

is used in model validation. In our case this value corresponds to 0.999. The goodness of fit is 

shown as an R2-value. A value of R2=1.0 indicates a perfect fit, whereas R2=0.0 indicates 

that the regression model might be unsuitable for this type of data. 

 

Q2 is the prediction variation which calculates the prediction power of the model. It estimates 

the goodness of the prediction. 

 

 

 

Figure 6: interval value of the coefficient from classical DoE.            are significantly 

different from 0. As we can see from the figure those whiskers are not crossing the line. If 

the whiskers, the interval of the value of the coefficients, are separated from zero, then it 

means that these are good because they are not crossing the line (x-axis). 
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Figure 7: Interval value of coefficient from PLS. We can see from the figure that 3, 9, 14 are 

significantly different from 0. We have improvement in 7. If we compare with figure 6 we can 

realize that this coefficient this time was separated from zero. PLS seems to be better than 

classical DoE. 

 

In the histograms it is possible to distinguish how many times of each number (of the 

difference between the function value generated by respective method and the original 

function value) we can find (by looking at the x-axis). 
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Figure 8: DoE histogram plot of the difference between the function value generated by the 

DoE method and the original function value, which we get from y= xTATAx.

Figure 9: gradient histogram plot of the difference between the function value generated by 

the gradient method and the original function value. 

 

From the figure 8 and figure 9 we can see that we have more narrow spread in the second 

histogram, gradient method, which means that this method is better than DoE according to the 

histograms. This is also possible to realize by looking at the standard deviations (the gradient 

method has smaller deviation than DoE).  
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Figure 10: Lean L histogram plot of the difference between the function value generated by 

the lean method and the original function value. 
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Figure 11: Lean S (spherical matrix) histogram plot of the difference between the function 

value generated by the spherical method and the original function value. 

 

If the standard deviation for any of these methods are less than the standard deviation for the 

original spread, than it means that the actual method is better than a guess. Otherwise if the 

original spread is better (the standard deviation is less than the deviation of the optimization 

methods), than it is better to guess what the mean value is (which we can say is zero).  
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Figure 12: Original spread histogram plot showing the distribution of the original function 

y=xTAx.  

 

functions Standard deviation 

Original spread 14,8589 

Gradient 15,0027 

Design of Experiment 20,3617 

Lean S 14,9129 

Lean L 17,5651 

 

Table 1: illustrating the different standard deviations corresponding to the original function 

y=xTATAx (original spread) and the difference of the four different optimization functions and 

the original function. If we look at the standard deviations from this table, it is possible to see 

that the lowest deviation comes from the original spread. This implies that it is better to guess 

what the mean value is of how many times the original function value does exist. 
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4 Optimization of functions 

4.1 Gradient method 

 

Figure 13: Plot of the gradient method with and without permutation. 

 

In these graphs we are using different matrices ATA for defining the function 

f(x)=xTATAx, that is what we mean with different cases. In figure 13 we present the result 

for the gradient method. We are doing the graphs for the other three optimization methods 

in same fashion. From figure 13 it is possible to distinguish that case 2 and case 3 gives 

the best optimum value, which should be as close to zero as possible. Note that in the 

gradient method it does not matter if the elements in the columns are permuted or not, that 

is why we have only one figure illustrating this optimization method. 

 

As we can see from this figure all the lines are starting from different positions, which 

means that we are using different matrices for each of the five cases as mentioned before. 

In all the optimization methods we did totally around 60 experiments. For instance in the 

gradient method in figure 13 we are taking three steps. Each step corresponds to 19 

experiments (number of rows in the design matrix), so totally there will be 57 

experiments.  

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

number of experiments

fu
n
c
ti
o
n
 v

a
lu

e

Permutation and no permutation

 

 

Case 1

Case 2

Case 3

Case 4

Case 5



22 
 

4.2 Design of Experiment 

 

Figure 14: Plot of the Design of Experiment method with permutation (we are changing the 

positions of columns with each other to make search in new direction) 

 

In the figure 14 it is obvious that case 5 is the best one because it gives us the lowest 

minimum value. Also case 2 and case 3 seems to be quite good. If we compare this 

optimization method with the first one, the gradient method, we can see that more lines in the 

previous figure are below the value 10, which implies that the gradient method seems to give 

us better optimum values than Design of experiments according to the graphs illustrating the 

optimization of the functions.  

 

Furthermore we will see that these graphs are better than the following graphs from figure 15, 

which are not permuted. We are using random permutation.  
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Figure 15: Plot of the Design of Experiment method without permutation. 

 

These lines are not permuted, and from the figure we can see that all these lines, except case 

2, are higher than the graphs from figure 14.   
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4.3 Lean L 

 

Figure 16: Plot of the Lean method with permutation. 

 

In the lean optimization we can see that only one line is below 10, case 3. The other lines are 

close to each other and higher than 10.   
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Figure 17: Plot of the Lean method without permutation. 

 

Also in this optimization method we can see that permutation is improving the result. If 

we compare this figure with figure 16, which was permuted, we will see that this figure is 

worse than that one because all the lines seems to be higher. As you can see we have 

better result with the permutation because the lines are decreasing in that case. 
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4.4  Spherical 

 

Figure 18: Plot of the spherical method with permutation. 

 

The most important result which we can see from this figure is that all the lines are more 

close to zero. Especially case 3, which we can see decreases to 0.1, seems to be very good. 

But also the other lines are better if we compare with the previous three methods, they are 

all around 1. Therefore we can say that the spheric method is the best method among these 

four optimization methods. 
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Figure 19: Plot of the spherical method without permutation. 

 

From this figure we can see that all the lines, except case 4, are lower than 1. Case 1 is 

going to 0.1, which means that this one is best among all these five lines. 

 

Moreover, from these results, it is not possible to see if permutation is improving the 

result very much. But still we can say that it is not bad to use permutation when doing 

these optimization methods. 
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4.5 Gradient, DoE, Lean and Sphere methods with the same positive semi 

definite matrix 

 

 

 

Figure 20: Plot of the four optimization methods (with permutation) with the same positive 

semi definite matrix. 

 

From figure 20 we can see that the spheric method gives the best result. The gradient method 

and the DoE method seem to give similar results while the lean method is worse than the 

other methods in this logarithmic plot.  

  

0 10 20 30 40 50 60
10

-1

10
0

10
1

10
2

10
3

number of experiments

fu
n
c
ti
o
n
 v

a
lu

e

Permutation

 

 

Gradient

Doe

Lean(L)

Lean(S)



29 
 

 

 

Figure 21: Plot of the four optimization methods (without permutation) with the same positive 

semi definite matrix. 

 

If we are doing these four optimization methods without permutation it is easier to distinguish 

that the spherical method is much better, the optimum values goes down to 0.1 which is very 

close to zero. This result agrees with what we said about the spherical method when we 

looked at the four optimization methods separately and did a comparison between them.  

 

Moreover from this figure we can see that the gradient method and DoE method also in this 

case seems to give better function values than the lean method. 
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5 Conclusion 

 

We did calculate the standard deviation of the difference between prediction and the correct 

value. According to the histograms gradient method is better than the DoE method, it gives 

better prediction ability. The standard deviation from the original spread gives the smallest 

value, which means that it is better to guess what the mean value is of the number of the 

function value. 

 

From MODDE we could see that the classical DoE has almost perfect fit, which means that 

the fit goes from zero to one, but does not have any sense for prediction. From SIMCA we 

could observe that the partial least square method also has perfect fit and some prediction 

ability as well. 

 

Moreover we can also conclude that the ANOVA-table of the DoE model is not statistically 

significant, which means that the p-value is less than the significance level. It is probably not 

good for prediction. 

 

We did fit the quadratic function to the linear model but it did not work for the prediction of 

corners.  

 

When we did investigate the interval value of the coefficient from DoE respective PLS, we 

could see that same three whiskers are separated from zero in both methods and that we have 

improvement in one of the whiskers for PLS. 

 

As can be seen from figure 19 the spherical method did improve the result and we got good 

optimum value, while the other methods did gave us bad values which was far from zero. For 

a comparison, see figures 20 and 21. 

 

Permutations, which did not work for the gradient method, are necessary to make search in 

new direction. In the spherical method, to permute columns means that we are searching in 5 

new directions. 
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6 Discussion 

 

In this report we did see that it is not possible to use the optimization methods for the 

prediction of corners when we did fit the quadratic function to the linear model. But we got 

very good optimum value which was very close to zero when we did use the spherical 

method. That means that it is good to use spherical method in further investigation of 

optimization methods. Our goal was to reach the minimum value zero, which we almost did 

with the spherical method. 
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%linesearchgradient 
  
  

clear all 
clc 

load G   %download the G matrix 
load A 
n=15;            

x0=ones(4,n); 
X=[0 0 1; 1 1 1; 4 2 1];    %polynomial p(t)=at^2+bt+c 

fend=zeros(1,4); 
fend(1)=x0(s,:)*A'*A*x0(s,:)'; 
gg=[]; 

for s=1:3 
        %G(:,:,s+1)=G(:,:,1)+ones(16,1)*x0(s,:); 

        G(:,:,s+1)=G(:,randperm(15),1)+ones(16,1)*x0(s,:);    % 
        %G(:,:,s+1)=G(:,randperm(15),s+1) 
        diag(G(:,:,s+1)*A'*A*G(:,:,s+1)');%grad 

        gg(:,s)=diag(G(:,:,s+1)*A'*A*G(:,:,s+1)');%grad 
       % sg(:,s)=pinv([ones(size(S(:,:,s+1),1),1),S(:,:,s+1)])*gg(:,s); %ascent direction  

       sg(:,s)=[ones(size(G(:,:,s+1),1),1),G(:,:,s+1)]\gg(:,s); 
        s0=-sg(2:end,s);    %descent direction 
  

    u=x0(s,:)+s0'*0; %move in the gradient direction 
    v=x0(s,:)+s0'*1; %distance from x0(s,:), use coefficients 

    w=x0(s,:)+s0'*2; 
     
    fu=u*A'*A*u'; %calculate corresponding function value          

    fv=v*A'*A*v'; 
    fw=w*A'*A*w'; 
    b(:,s)=[fu fv fw]';              %three initial functions 

   
    k123=X\b(:,s);                  %coefficients, a, b and c 

     
    t(s)=-k123(2)./(2*k123(1)); %formula: t=-b/(2*a) 
   x0(s+1,:)= x0(s,:) + t(s) * s0';                  

  fend(s+1)=x0(s+1,:)*A'*A*x0(s+1,:)';% 
end 

  
semilogy([0 19 38 57], fend,'-*') 
  

legend('gradient (G)') 
fend 
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%gradient DoE 
  

%linesearchgradient 
  

%x0(s,:)=ones(1,15); 
clear all 
clc 

load F   %download the G matrix 
load A 

n=15;            
x0=ones(4,n); 
X=[0 0 1; 1 1 1; 4 2 1];    %polynomial p(t)=at^2+bt+c 

fend=zeros(1,4); 
fend(1)=x0(s,:)*A'*A*x0(s,:)'; 

gg=[]; 
for s=1:3 
        F(:,:,s+1)=F(:,randperm(15),1)+ones(17,1)*x0(s,:);    % 

        %F(:,:,s+1)=F(:,:,1)+ones(17,1)*x0(s,:);    % 
        %F(:,:,s+1)=F(:,randperm(15),s+1) 

        diag(F(:,:,s+1)*A'*A*F(:,:,s+1)');%grad 
        gg(:,s)=diag(F(:,:,s+1)*A'*A*F(:,:,s+1)');%grad 
       % sg(:,s)=pinv([ones(size(S(:,:,s+1),1),1),S(:,:,s+1)])*gg(:,s); %ascent direction  

       sg(:,s)=[ones(size(F(:,:,s+1),1),1),F(:,:,s+1)]\gg(:,s); 
        s0=-sg(2:end,s);    %descent direction 

  
    u=x0(s,:)+s0'*0; %move in the gradient direction 
    v=x0(s,:)+s0'*1; %distance from x0(s,:), use coefficients 

    w=x0(s,:)+s0'*2; 
     

    fu=u*A'*A*u'; %calculate corresponding function value          
    fv=v*A'*A*v'; 
    fw=w*A'*A*w'; 

    b(:,s)=[fu fv fw]';              %three initial functions 
   

    k123=X\b(:,s);                  %coefficients, a, b and c 
     
    t(s)=-k123(2)./(2*k123(1)); %formula: t=-b/(2*a) 

   x0(s+1,:)= x0(s,:) + t(s) * s0';                  
  fend(s+1)=x0(s+1,:)*A'*A*x0(s+1,:)';% 

end 
plot([0 20 40 60], fend) 
legend('DoE (F)') 

fend 
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%lean (L) 
  

%x0(s,:)=ones(1,15); 
clear all 

%clc 
load L   %download the G matrix 
load A5 

n=15;            
x0=ones(4,n); 

X=[0 0 1; 1 1 1; 4 2 1];    %polynomial p(t)=at^2+bt+c 
fend=zeros(1,4); 
s=1; 

fend(1)=x0(s,:)*A'*A*x0(s,:)'; 
gg=[]; 

for s=1:7 
        L(:,:,s+1)=L(:,:,1)+ones(5,1)*x0(s,:);    % 
        %L(:,:,s+1)=L(:,randperm(15),1)+ones(5,1)*x0(s,:);    % 

        %L(:,:,s+1)=L(:,randperm(15),s+1) 
        diag(L(:,:,s+1)*A'*A*L(:,:,s+1)');%grad 

        gg(:,s)=diag(L(:,:,s+1)*A'*A*L(:,:,s+1)');%grad 
        sg(:,s)=pinv([ones(size(L(:,:,s+1),1),1),L(:,:,s+1)])*gg(:,s); %ascent direction  
        

        s0=-sg(2:end,s);    %descent direction 
  

    u=x0(s,:)+s0'*0; %move in the gradient direction 
    v=x0(s,:)+s0'*1; %distance from x0(s,:), use coefficients 
    w=x0(s,:)+s0'*2; 

     
    fu=u*A'*A*u'; %calculate corresponding function value          

    fv=v*A'*A*v'; 
    fw=w*A'*A*w'; 
    b(:,s)=[fu fv fw]';              %three initial functions 

   
    k123=X\b(:,s);                  %coefficients, a, b and c 

     
    t(s)=-k123(2)./(2*k123(1)); %formula: t=-b/(2*a) 
   x0(s+1,:)= x0(s,:) + t(s) * s0';                  

  fend(s+1)=x0(s+1,:)*A'*A*x0(s+1,:)';% 
end 

plot([0 8 16 24 32 40 48 56], fend) 
legend('lean (L)') 
fend 
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clear all, clc 
%n=3; 

%n=15; 
n=15; 

%function [y0,y] =conjugate_DoE(n) 
%clc, clear all 
%n=3; 

%for s=1:100 
load('A.mat'); 

  
  
load('M.mat') 

xcord=M; 
 k=1; 

 index=15; 
x0=zeros(1,n); 
%A=randn(n); 

%AA(:,:,s)=A; 
  

  
% initalization 
y0=x0*A*x0'; 

  
     

    for i=1:n 
         
        x(k,:)=x0; 

        x(k,i)=x(k,i)+1; 
        y(k,i)=x(k,:)*A*x(k,:)'; 

        g0(k,i)=(y(k,i)-y0)/(x(k,i)-x0(i));   %first element in the gradient 
  
    end 

         
    

     
    
  

ygrad=g0*xcord'; 
  

  
    x0=zeros(1,index); 
    %DoE in this case F=17*15 

     
    %x0=zeros(1,n); 

   % x0=zeros(1,index); 
    %A=AA(:,:,s); 
    y0=x0*A*x0'; 

  
    %F=[-1 -1 1; 1 -1 -1; -1 1 -1; 1 1 1]; 

    F=importdata('data_DoE.csv '); 



37 
 

  
    %y=[]; 

    
    y=[]; 

     
    for i=1:17 
         

        x(i,:)=x0;                  %vector with 1 row and n columns 
            x(i,:)=x(i,:)+F(i,:);       %above vector + the first row in experimental design 

  
        %x(k,:)=x(k,:)+1; 
       % y(k,i)=x(k,:)*A*x(k,:)'; 

        y(i)=x(i,:)*A*x(i,:)'; 
         %  y(i)=x(i,:)*F*x(i,:)'; 

        %y=diag(x*A*x');            %obs! not necessery 
         
        %y=diag(y(k)); 

        %g0(k,i)=(y(k,i)-y0)/(x(k,i)-x0(i));   %first element in the gradient 
        %g0=A.\y; 

        %g0=A\y'; 
%        K=k+1; 
    end 

    ysave=y; 
        %g0=(y-mean(y)) 

         %size(y) 
         %y=y'; 
         y=y-y0; 

         y=y'; 
         

         g0(k,:)=(F(1:16,:)\y(1:16))'; 
          
yDoE=g0*xcord'; 

%A=load('A.mat') 
  

for z=1:32768 
    yfunc(z)=(xcord(z,:))*A*((xcord(z,:))'); 
end 

close all 
 hist((yDoE-yfunc)) 

 figure 
hist((ygrad-yfunc)) 
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