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Abstract
In modern vehicles, autonomous features are highly sought after. However, the com-
plexity of the problem domain and the security aspects make the software expensive
to develop. Therefore, autonomous features are available only in the most exclusive
vehicles. If proper software engineering procedures can be applied in the domain of
autonomous driving, the cost of development can be reduced, increasing the number
of autonomous features on the market.

This thesis aims to research how systematic evaluation can be performed on a series
of software modules. The modules were developed as a proof of concept that it is
possible to achieve specific AD features using fewer sensors and cheaper hardware
than what currently is used in the automotive industry.

The development and testing are done working in an agile manner, following the
design science framework. All the separate software modules are systematically eval-
uated individually to confirm their viability and compared to similar algorithms to
decide which ones would be the best fit for the project. This is done mainly through
experimental studies in a controlled environment.

The results of the systematic evaluation show that the implemented methods for
parking space detection, pathfinding, path following, and parking algorithm are
viable and can accurately detect and locate a parking space. The pathfinding algo-
rithm can then generate a valid path to a desired starting position which the path
follower can use to relocate the platform to that position with adequate accuracy.
However, the choice of using BreezySLAM due to the constrained hardware proved
to be a problem because of a large amount of spatial drift in the coordinates.

Even though the specific testing methods used in this thesis are tailored to test the
specific types of algorithms used in the project, the general methodology of how the
tests were designed and the practice of utilising systematic evaluation throughout
the development of an artifact could potentially be generalised and utilised in any,
or most software engineering project.

Keywords: Systematic Evaluation, Design Science, Requirements Engineering, Im-
age processing, SLAM, Autonomous Platform, Pathfinding, Path Following
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1
Introduction

Some software engineering (SE) processes have been around since the 1960s and have
throughout the years radically changed the way software is developed [3]. These
processes were in 2004 compiled into an IEEE-standard called Software Engineer-
ing Body of Knowledge (SWEBOK) [4]. SWEBOK contains 15 distinct areas of
knowledge for an SE engineer to consider whilst in a project. These areas and
processes exist to counteract the fact that developing good and robust software is
hard. Before the development phase begins, the goals of the development must be
decided. This can be achieved by eliciting needs from stakeholders and to create
a rigorous requirements specification. When software is in the development phase,
many challenges erupt, such as managing quality characteristics and reducing tech-
nical debt. Traditionally, the software is to be tested after development, however
recently a more agile approach has become popular. Instead of testing when the
software is deemed to be done, the testing can be done throughout the development
process with the help of methodologies such as agile and continuous integration.
Using these methods, technical debt can be reduced, and code quality standards
can be improved [5]. Furthermore, systematically evaluating the decisions and code
sections throughout the process can improve the overall quality, code quality, and
help motivate the decisions made. However, every domain in which the development
process takes place is unique, and the software engineering procedures may impact
the end results differently between different domains.

Many of SWEBOK’s processes can be applied to the area of Autonomous Driving
(AD). AD is an area that is evolving and is estimated to evolve even more in the
coming years [6]. AD is generally conceived as vehicles driving without external
manipulation from the driver, however, it also entails the vehicle performing specific
functions autonomously. One such example is parking by itself. Parking is an issue
for a significant amount of people since they feel afraid of the parking manoeuvres [7].

Intelligent Parking Assist System (IPAS) was introduced in 1999 by Toyota and
was the first parking assist system on the market [8]. Since then, the feature has
evolved and it is now in every modern car. IPAS helps the driver park by using
cameras and sonar sensors to inform the driver when the vehicle is about to hit an
object. The system warns the user but does not control the vehicle in any way, nor
does it perform the parking itself. To achieve full autonomy, the vehicle will have
to perform the parking entirely on its own. Autonomous parking is also proposed
as part of a solution in order to achieve level four AD as proposed by Society of
Automotive Engineers (SAE) which is a global standards developing organization
for the automotive industry [9].

1



1. Introduction

1.1 Motivation
AD is, as stated before, an area that has been researched throughout the years with
many different methods and research questions. Suppé et al. [10] and Tripathi et
al. [11] tried to test a semi-autonomous valet service using an AD vehicle. Instead
of focusing on the implementation and systematic evaluation of the system, they
chose to focus on the human computer interaction and how people would respond to
such a system. Han et al. [12] focuses solely on optimizing the calculations needed
to process a 3D-LiDAR output for localization. Paromtchik et al. [13], Jiang et
al. [14] and Dhivya et al. [15] are all also trying to create an autonomous parking
algorithm by utilizing arrays of ultrasonic sensors to map their surroundings and
then manually drive the vehicle to an optimal starting position next to the parking
spot before initializing their parking algorithms.

It is estimated that technical debt costs, on average, 1 million dollars for each busi-
ness application [16]. The benefit of embracing SWEBOK’s areas of knowledge to
this unique domain is that the cost of developing and evaluating autonomous func-
tionality in cars hopefully can be made cheaper to further the acceleration of the
technology’s growth on the market. As can be seen in the papers above, there is
research on the subject of AD in general, but none of the papers has focused on the
utilization of established software engineering procedures and what benefits that
can produce. Neither have they aimed to create and evaluate a fully autonomous
parking system by conducting both parking space detection and the execution of
the parking itself on any type of constrained hardware. Instead they use a variety
of sensors, most commonly ultrasonic or radar sensors, and utilize sensor fusion to
achieve their results. This same pattern can be observed in other papers researched
as well.

The concept of systematic evaluation has been used in multiple research papers.
A study made by B.M Williamson et al. used systematic evaluation when testing
different configurations of arrays for an application based on Simultaneous Locali-
sation and Mapping (SLAM) [17]. The study utilized a camera-based SLAM with
multiple cameras. The systematic evaluation was used in a different context than
what this thesis intends to do, however their systematic evaluation still proved use-
ful. Through their systematic evaluation, they discovered several new interesting
features, such as specific singular cameras performed worse than others and that
there was little to no difference between a three-camera configuration and a four-
camera configuration. Another study made by Fan Zhang et al. utilized systematic
evaluation to evaluate their side-channel attack strategy [18]. They tested their en-
tire framework through a series of comparative experiments where they used four
metrics to measure the different configurations. They used systematic evaluation to
guarantee completeness. Once again, their context differs from that of this thesis,
however, the systematic evaluation helped them guarantee the completeness of their
project.

If systematic evaluation can be used to validate an implemented design for a SLAM-
based AD platform which only utilizes a 2D-LiDAR device and computationally
constrained hardware for performing autonomous parking, this software engineering
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1. Introduction

process can be applied to other AD features as well. By applying known software
engineering processes like these and systematically evaluating the features, the num-
ber of Electronic Control Units (ECUs) required would likely be lower or at least,
they could be made cheaper because of the lower computational power required.
This would likely result in a significantly cheaper product regarding hardware costs
as well. When manufacturers aim to construct high volumes of cars for the general
population cost is of most importance, which is why the premise of this thesis is
relevant. If the cost of sensors and ECUs can be lowered, the systems can be imple-
mented in cheaper cars and likely speed up the deployment of autonomous vehicles
in traffic which can improve both traffic safety and the environmental impact of the
transport sector [19].

1.1.1 Research Goal and Questions
The goal of this thesis is to research how systematic evaluation can be performed
on a series of software modules. The modules were developed as a proof of concept
that it is possible to achieve specific AD features, such as an autonomous parking
algorithm, using fewer sensors and cheaper hardware than what currently is used in
the automotive industry.
This is divided into two research questions:

1. How can a systematic evaluation be performed on pure software modules such
as BreezySLAM-based mapping and pathfinding algorithms on a constrained
processing unit?

2. How can a systematic evaluation be performed on software modules such as
path following and autonomous parking, which are designed and implemented
on a small-scale vehicular platform?

1.2 Scope
In this project, only one hardware configuration will be developed and tested on.
This is done due to the work being conducted at Infotiv AB and with their cur-
rent AD development platform, see Section 2.1.1 for details. Furthermore, only one
SLAM algorithm, BreezySLAM, will be tested, this is done because of two reasons.
Firstly, this is the algorithm that Infotiv aimed to examine and expected to be the
best fit for the scenario. Second, the major rework needed to test other SLAM
algorithms due to their differences in how they operate and their data outputs. Ide-
ally, multiple algorithms and hardware configurations would be tested and evaluated
against each other, but it is considered unfeasible in this project. By extension, only
algorithms that can reasonably be run on the project-specific hardware will be con-
sidered.

When performing systematic evaluation, it is desirable to perform as exhaustive
tests as possible. A high evaluation coverage can be difficult to achieve as there are
usually multiple possibilities and factors to test. Due to the complexity and time
needed to test this thesis will not test, for example, a high number of different maps
when evaluating path finding or test an extremely high number of frames when de-
tecting parking spaces. Furthermore, the systematic evaluations are not designed to
be statistically significant in terms of sample sizes or give a definitive answer on e.g.,

3



1. Introduction

what the best pathfinding algorithm in existence is, but instead give an indication if
they would be a good fit for this specific project. This is because the limited scope
of the project does not allow to conduct tests with big sample sizes. It is also not the
goal of the thesis to determine which algorithms are best in every case, but instead
systematically evaluate them to determine their viability within the project scope.

This thesis will not try to accomplish a method to implement a self-parking system
that would function well in the real world and no such dynamics that are present
in a real traffic scenario will be accounted for. The goal is, as previously stated, to
research how systematic evaluation can be performed on a series of software modules
that were developed as a proof of concept that it is possible to achieve specific AD
features, such as an autonomous parking algorithm, using fewer sensors and cheaper
hardware than what currently is used in the automotive industry. This could then
be applied in settings where the safety aspects are not as crucial or where the en-
vironment is static, e.g., an autonomous robot in a robotized warehouse. However,
the systematic evaluation does not demand the software modules to function in a
real-life setting.
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2
Background

In this chapter we will first describe the technical background to the project fol-
lowed by a series of sections describing all the underlying technologies, libraries and
algorithms that are utilized in the different software modules.

SWEBOK’s areas of knowledge is divided into multiple phases of a project devel-
opment timeline. The phases that will be mainly focused on in this thesis are the
software requirements, design, construction, testing and quality. These practices are
then used to facilitate an effective project with rigorous and systematic testing and
evaluation of the different software components.

In this thesis, these practices are applied to a subject of study within the AD area.
There are several different methods to create an autonomous vehicle and, in most
cases, they involve some sort of sensor fusion technology which uses a combination
of e.g., cameras, ultrasonic sensors etc. The approach taken in this thesis contains
no sensor fusion of any kind and only utilizes one type of sensor. The general idea
is to create a series of images of the environment using a 2D Light detection and
ranging (LiDAR) sensor [20], see Section 2.1.2, and process it using Open Computer
Vision (OpenCV) [21]. OpenCV is an open source image manipulation library which
will be used to help clean up the images, analyse them and identify parking spaces
using a feature detection algorithm called Speeded up robust features (SURF) in
combination with a brute force (BF) feature matching algorithm, see Section 2.1.4.
The identified parking space’s coordinates are then fed together with the vehicle’s
current coordinates to a pathfinding algorithm, see Section 2.1.6, that finds the
shortest path between the points without hitting any obstacles in the map. Using
a path following algorithm called Adaptive Pure Pursuit (APP) [22], see Section
2.1.7, the vehicle follows the generated path and relocates itself to a good starting
position for the parking manoeuvres to take place. The parking manoeuvres are
then executed using a custom parking algorithm.

2.1 Subject of study
The goal is to research how systematic evaluation can be performed on a series of
software modules. In the case of this thesis, the modules were not provided before-
hand, but were developed for this specific project. The artifact that was provided
from Infotiv was the Infotiv’s AD development platform to use as a basis for further
development. The modules to be systematically evaluated as the subject of study
were parking space detection, pathfinding, path following and parking algorithm.
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2. Background

2.1.1 Infotiv Embedded Platform
The Infotiv Embedded Platform, see Picture, was the platform used throughout the
project for implementation and testing of the software. The platform has three CAN-
buses, five ECUs and several sensors, including sonar, radar, and camera, although
these sensors was not used for this project but instead only a 2D RPLiDAR A2 was
used. The LiDAR system is detailed in Section 2.1.2. The ECUs are:

• Battery Management System (BMS) on an STM32 F1, which is a 32-bit ARM
Microcontroller developed by STMicroelectronics.

• Vehicle Control Unit (VCU) on a STM32 F1.
• Central Electronic Module (CEM) on a STM32 F1.
• Telematics Engineering Module (TEM) on a Raspberry pi 3b+.
• Advanced Driver Assistance System (ADAS) on a Raspberry Pi 4.

The platform is a four-wheels vehicle with four electric motors, one for each wheel,
and the steering is done through skid steer by individually controlling each wheel’s
rotation.

Figure 2.1: The Infotiv Embedded Platform.

2.1.2 LiDAR
LiDAR is an optical measuring instrument that utilizes a light pulse, commonly an
IR laser. By measuring the time it takes for the pulse to return to the sensor, it
determines the distance that pulse has travelled [23].

LiDAR’s are used for many different applications in areas such as the construction
industry and topological mapping. The version of LiDAR that is commonly used
in the automotive industry is a 360-degree LiDAR that rotates at a constant rate
while pulsing the light to create a 360-degree image of the environment. There are
both 3D and 2D LiDAR’s currently available on the market where the 3D LiDAR
is what is commonly used for AD today. A 3D and 2D LiDAR both work by the
same principles, but a 3D LiDAR can generate a 3D image of its surroundings
while a 2D LiDAR is limited to only generating a 2D image. While the 3D LiDAR
does provide a clear performance advantage over the 2D ones, the increase in cost
and computational power required for calculations are vast. Therefore, this project
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2. Background

utilizes a 2D LiDAR model called RPLiDAR A2. The RPLiDAR A2 uses a 10Hz
rotational speed and provides a maximum of 18m measurement radius with a listed
measurement resolution of <1% of the distance between the LiDAR and the target
surface [24].

2.1.3 BreezySLAM
BreezySLAM is the SLAM algorithm of choice. It was advocated by the company
as they had an implementation integrated on the platform. BreezySLAM is an API
partly developed by Simon D. Levy and it was specifically designed for fast, efficient,
and easy handling of LiDAR data [25]. It utilizes Python C extensions for efficiency
and as a result, the algorithm can run with similar speed in Python as in C. Python
is generally seen as a slow language [26]. However, the speed of making a C call
using Python is not going to make a significant difference in this case. On 64-bit
platforms such as the Raspberry Pi used in this thesis, it also utilizes the NEON
extensions for ARMv7, which allows the processor to receive the data for a given
instruction from multiple registers in parallel, this further improves performance for
video and image handling [27].

This API is used to process the LiDAR data into a continuously updating 2D-map
of the platform’s surroundings. These maps can then be further processed and
analysed by other software, which are discussed in detail below.

2.1.4 OpenCV
Open Computer Vision (OpenCV) is an open source programming library designed
for computer vision [21]. It was developed by Intel and provides a cross platform
support for a huge variety of useful functions for computer vision such as feature
detection, motion tracking and various machine learning based image manipulation
functions. This library can be used to manipulate and detect features in the out-
put images from the BreezySLAM algorithm to detect parking spots, obstacles, and
other features.

Parking space detection can be performed in multiple ways. In this thesis, the
SLAM-map is modified to make it easier to work with and then key features are
detected and referenced to a pre-set image of a parking space. If enough features are
matched, the coordinates in the SLAM-map corresponding to that of the reference
image are classified as a parking space.

2.1.4.1 SLAM-map noise reduction

The original SLAM-map, as seen in Figure 2.2 is cluttered with noise from inaccu-
racies from the SLAM-algorithm as well as smaller objects that are not necessary
for the detection of the parking space. This noise makes the map hard to effectively
analyse so the original map is modified using several OpenCV functions to facilitate
the feature detection and feature matching.

7



2. Background

Figure 2.2: A caption of the unmodified SLAM-map.

The first step is to apply a threshold to the image. Thresholding in OpenCV is
done by converting the image to grayscale before analysing every pixel value. If
the value of the pixel is less than the threshold, the value is set to 0, resulting
in a white colour. Otherwise, the value is set to the maximum value of 255 result-
ing in a black colour. The result of the threshold operation can be seen in Figure 2.3.

Figure 2.3: The map after threshold has been applied.

The thresholded image is less noisy than the original image, however there are still
some irrelevant data in it. In the thresholded image, the parking space is clearly vis-
ible, and a human can easily distinguish the parking space from the noise. However,
when working with raw data, it is important to remove as much unimportant infor-
mation as possible without modifying key features. As can be seen in the picture,
there are still several smaller objects that, for a human being, clearly is not a parking
space, but a computer will have trouble distinguishing between them and the actual
parking space. To remove these small objects, physically represented by chair and
table legs, the OpenCV function dilation is used. The kernel is configured to di-
lute the image a certain distance. The result of the dilation can be seen in Figure 2.4.

Figure 2.4: The map after threshold and dilation has been applied.
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2. Background

The dilation facilitates the feature recognition process by further simplifying the
image. However, the dilation process can sometimes remove too much and distort
key features. For example, the left corner of the parking space is but a pixel wide in
the dilated image, which could pose issues when performing the feature detection.
In certain scenarios, the dilation may even make the parking space unrecognizable.
Because of this, erosion is used to restore the potential damage that the dilation
process has caused. Erosion works the same way as dilation, but in reverse. A
kernel is convoluted with the image and based on the kernels settings the image’s
black pixels are eroded. The result of the erosion process can be seen in Figure 2.5.

Figure 2.5: The map after threshold, dilation and erosion has been applied.

Comparing the map with just thresholding applied and the resulting map after
dilation and erosion it is a clear difference and the parking space can be easily dis-
tinguished from the rest of the image. However, even if the features are immediately
apparent to humans, there is no guarantee that computers can make the same dis-
tinction. For example, if humans were to count the number of corners in the eroded
image, they might come up with an answer around eight given that a corner is de-
fined as a place where two edges meet. A computer on the other hand may come
up with an entirely different answer, as technically, all separated pixels contain four
corners. To make it easier for the computer to identify key features that are not
pixeled corners, the image is blurred before the feature detection is performed. The
blurred image can be seen in Figure 2.6.

Figure 2.6: The map after threshold, dilation, erosion, and blur has been applied.
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2.1.5 Feature Detection and Feature Recognition
The parking space detection algorithm is built on BreezySLAM. The SLAM algo-
rithm uses the LiDAR readings to create a map, where coordinates and direction
of the vehicle can be retrieved. More computationally intensive implementations
of SLAM can accurately remember the previous map and can deduce, based on its
movement, where and how the object should look. BreezySLAM is a very lightweight
implementation of SLAM which makes it great for running on constrained hardware.
It does however have some drawbacks in that it is not as accurate as more compu-
tationally intensive versions of SLAM [28]. It works well enough to keep track of
coordinates, but it often forgets how objects looked in previous frames. When the
algorithm forgets how objects looks in previous frames, the merge of the previous
frame with the current one becomes skewed and objects can look distorted. A down-
side of this is that the objects often look distorted when the LiDAR views them from
slightly off angles.

Optimally, the parking space detection algorithm would only be run once; when the
user would want to identify a parking space based on the SLAM map previously gen-
erated. This would allow for a better, more computationally heavy feature detection
algorithm to be used. However, due to the limitations with the SLAM algorithm,
this cannot be done. If the image of the parking spot gets distorted whenever the
LiDAR is not perfectly aligned with the parking spot, the final image will have a
distorted image of the parking spot. This is because in the case of the platform
passing the parking spot, the LiDAR will continue moving away from the parking
spot after achieving the perfect frame. This issue is solved by having the parking
space detection algorithm run in real time. If a parking space is ever detected, the
coordinates of the parking space are saved. Whenever the user wants to find the
parking space, the coordinates for the parking space are already saved and can be
displayed immediately.

To detect a parking space in a larger map, a separate image of a standardized parking
space will be referenced to the map. The feature detection will be done using either
OpenCV’s Speeded Up Robust Features (SURF) function, Scale-Invariant Feature
Transform (SIFT) or Binary robust invariant scalable keypoints (BRISK). For space
detection, the algorithm is applied to both the reference image of a parking space
and the actual map. The algorithm will detect key features for both the images
separately. The key features are then passed to OpenCV’s Brute Force Matcher
(BF) which matches the key points from the two different images to each other.
The result from the BF are destinations (pixel values) where the keypoints from the
two images align as well as the transformation matrix that was used to achieve the
results. If enough correct key points are matched to each other, it can be concluded
that there is a parking space visible in the image.
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2.1.6 Pathfinding / Path generation
To reach the research goal, the autonomous vehicle needs to be able to design a valid
path through a map filled with obstacles. To achieve this, a pathfinding algorithm is
used. Pathfinding is a well explored field of science with several famous algorithms
such as Dijkstra’s algorithm for shortest path (Dijkstra’s). Although this algorithm
works well and is guaranteed to provide the shortest path, it can be computationally
intensive to do an exhaustive search in something a big as the LiDAR map images.
It is possible to downscale the images to a smaller size but then there is a chance
to lose crucial details in the image. However, its advantages of always returning the
shortest path does make it an interesting candidate to test.

Nowadays, many more algorithms have been developed with different strengths and
weaknesses. One of the most popular ones in use today is the A-star (A*) Algo-
rithm [29]. The A* Algorithm is an informed search algorithm, meaning that the
algorithm has knowledge of the maze and where its final goal is. The main difference
between it and Dijkstra’s algorithm is that A* uses a heuristic function that tries to
calculate which nodes are the most likely to be in the shortest path to the target.
This heuristic is often some sort of general distance measurement to the target, e.g.,
the straight line or the rectilinear distance to the target. This gives the algorithm a
way of knowing if it is moving in the right general direction and therefore hopefully,
does not have to search as many nodes as unguided algorithms, such as Dijkstra’s.

Another commonly used algorithm for pathfinding is Breadth-First-Search (BFS).
This algorithm takes a simpler approach to pathfinding. Instead of having a heuris-
tic function that guides it, it simply looks at all nodes in one layer before moving
down to the next layer. It then repeats the process until the goal is found and traces
back via the shortest path from end to start.

There are, as mentioned, numerous algorithms to choose from that aren’t described
in this thesis. The choice to focus on Dijkstra’s, A* and BFS was done after re-
searching many different alternatives and comparing their strengths and weaknesses
to try to find the best subset of algorithms that would most likely provide good
results in the scope of this project. In this thesis, all three algorithms mentioned
above were implemented in software and A* was implemented using two different
Heuristic functions for a total of four algorithms. These are then evaluated for per-
formance to determine which one is the best candidate for the autonomous parking
platform. Evaluation methods are described in Section 4.3.

The way that a pathfinding algorithm works within the context of an image is that
every pixel is considered a node in the graph. Each node has a distance of one to its
nearest neighbour and the pathfinder simply traverses the image pixel by pixel. Af-
ter the pathfinders have searched the image, the generated path contains every single
pixel on the path. Since a pixel on the map corresponds to a very small distance in
the actual environment, it is unnecessary to have such a high resolution for the path.
Therefore, the path is first deconstructed into a set of coordinates consisting of only
the start and end points and all the points where the angle of the path changes.
Because the path has no real curvatures and only consist of straight lines and 45- or
90-degree corners, no information or resolution is lost by doing this. This subset of
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the path is then injected with evenly spaced points on the map and any sharp an-
gles are rounded out to generate the final path that the vehicle should try to follow.

2.1.7 Path following
When the path is found and generated by the pathfinding algorithms, the vehicle
needs to be able to follow the given path. To achieve this, an algorithm called Adap-
tive Pure Pursuit (APP) was used. APP is a commonly used algorithm for path
following within the fields of robotics [22]. The specific version of the algorithm
used in this thesis was developed by Team Dawgma which is a team competing in
FIRST Robotics Competition [30]. There are several other methods than the one
that was chosen, such as Bakker et al. [31] which utilizes a robot with four wheels
that can all be turned separately, or Kapitanyuk et al.[32] which uses the path to
create a guiding vector field covering the entire map to control the robot. Although
not explicitly stated in the paper, it is most likely not a viable option to run on a
Raspberry Pi 4 due to its need to calculate a very high number of guiding vectors
to cover the map. The APP algorithm was chosen after researching a variety of
different path following algorithms due to its relative simplicity, good results and
how well it matched the situation at hand. It is not very computationally intensive
compared to many of the others and Team Dawgma’s implementation [22] already
uses the same type of skid steer drive the Infotiv Embedded Platform uses as well.

The APP controller is at its core simply directing the robot to travel from its current
location to a lookahead point located on the path in a predetermined distance called
the lookahead distance in an arc.

Figure 2.7: Locating the Lookahead point.

When the robot moves to a new location, the lookahead point will also move along
the path and the robot is in a constant pursuit of that lookahead point, hence
its name. The algorithm needs to know its current location, angle, and the path
waypoints, all of which can be provided by the RPLiDAR fitted to the Infotiv Au-
tonomous Platform. For each iteration of the algorithm it performs the following
steps:

• Find the closest point on the path to the robot.
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• Find the lookahead point on the path.
• Calculate an arc that intersects both its own position and the lookahead point.
• Calculate target left and right wheel speed.
• Utilize a proportional control loop to achieve target wheel speeds.

All these steps and the underlying math are described in detail in the technical paper
by Team Dawgma [22]. The APP algorithm was first implemented on a laptop and
simulated in software in conjunction with the pathfinding algorithm to be able to
test their combined functionality and performance before implementing them on the
platform.

2.2 Continuous Integration
Continuous integration (CI) is a practice that was introduced in 1991 by Grady
Booch [33]. Lately the practice has received much attention and praise within the
software community. CI requires that every time somebody commits any change,
the entire application is built, and a comprehensive set of automated tests is run
against it [34]. CI would assist the research by allowing for high levels of automation
when it comes to tests and deployment. This automation can lead to saved time
that can be better utilized elsewhere. Furthermore, CI can assist with code quality
checks to set a base code standard, which in the end allows for less implementation
specific deviations when it comes to systematically evaluate the implementations.

Although not strictly necessary to answer the research questions or reach the goal
in this thesis, it is a powerful tool and strategy that can be helpful throughout the
project. It is also very relevant for the field since many other companies and projects
within the field of SE have already implemented CI because of it is benefits. To im-
plement and follow CI, there are three prerequisites: version control, some form of
automated build and the agreement of the team. For version control, GitHub will
be used as that is what the company advocated. For CI there are loads of tools to
aid the process. Most known are Jenkins, Travis CI, and Bamboo. Bamboo is made
by Atlassian, the same company that is behind Bitbucket. Therefore, many of the
functions that are provided by Bamboo works best in collaboration with Bitbucket
[35]. Since the project intends to use GitHub, Bamboo might not be the best suit-
able software. Furthermore, Bamboo is not a free service. Because of these reasons,
Bamboo was not the software of choice for this project. Both Travis and Jenkins
however would be valid choices. Travis has easy integration with GitHub and is
free for open source projects [36]. Jenkins is arguably the most popular choice for
CI software on the market today [35]. It is free and completely open source with
support for a wide variety of languages and version control services.

When comparing the features of Travis CI and Jenkins, many similarities of fea-
tures occur. Travis CI supports more languages than Jenkins, however that is not
relevant for this project as all the code will be written in Python, which is a pro-
gramming language that Jenkins do support. Jenkins has more plugins than Travis,
while Travis supports cloud-based hosting which Jenkins does not. Travis also has
an arguably easier setup and interface than Jenkins. Weighing all the pros and cons
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of both these tools it is decided that Jenkins will be used in this project. The pros
of Travis CI such as support for more languages and cloud-based hosting does not
provide any value in this project. Because of this, and the fact that Jenkins is a
more used tool overall, which arguably implies more documentation and support
online, Jenkins was the platform that was utilized in this project.

The Jenkins server was setup on a local Ubuntu machine and was installed using the
Docker image provided by Jenkins. Jenkins allows for many plugins to be installed
and automatically run together with the build. The ones that were integrated in
this project GitHub branch source plugin, Violations plugin, and Cobertura. GitHub
branch source plugin allows to make a new project based on the repository struc-
ture. Violations supports integration with Pep8 and allows to create reports of code
standard followage with each build. All reports generated is shown in a graph with
each build to provide an overview of the improvement with each build. Cobertura
is used to create a code coverage report with each build, and in a similar way to
Violations, provide statistics of the changes between the builds. Jenkins throughout
the project helped with keeping all commits clean, following a set code standard
and providing reports for each build. Even though CI did not necessarily provide
any help with the systematic evaluation, it did help with developing the software in
a standardized way, removing one factor of deviation from the evaluation.

2.3 Code Quality Assurance
When systematically evaluating software artifacts, it is important to know that the
way the software was written does not influence the metrics collected in the other
tests such as e.g. path length or performance in any significant way. Great software
quality can help alleviate the strain of poorly written software artifacts. According
to SWEBOK there are two main notions included in the term software quality [37].
One being how well the software complies with the functional requirements of the
software. The other being how well the software complies with the non-functional
requirements such as maintainability and robustness.

To facilitate the process of evaluating software quality there are several software
tools available. Some alternatives include SonarQube, ReSharper and Black Duck.
SonarQube is a software that allows developers to visualize their code and analyse
their code quality by measures such as dependencies, code duplicates etc. ReSharper
gives a very similar set of tools compared to SonarQube but it requires a paid license
at $300/year, which is out of budget in this project. Black Duck is free to use and
has many good features, but it lacks features such as automatic visualization, which
provides a good overview of the code quality. For the purposes of analysing the
quality, SonarQube was the best fit and ultimately the one that was used.

Since there were multiple developers working on the project simultaneously, there
was an impending risk that the different code snippets will be written to different
standards. To counteract this, there are multiple Python code standards available
that tells the developer how to write the code. The most used one is called Pep8 and
there is software that checks the code for violations to Pep8. One way of facilitat-
ing the process is to integrate a program called Pycodestyle into Jenkins and have
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it check for Pep8 violations on every push to the version control software. Using
Pycodestyle can help increase the consistency of the software and make sure that it
is up to official coding standards.

The standard was followed by integrating Pycodestyle into Jenkins, causing it to
check that the code is up to standards every time the version control gets a new
commit. The first time that Pycodestyle was applied to the software more than 800
violations were detected. Some of them came from libraries and previously exist-
ing code, but many of the violations were caused by the developers. In the end of
the project, the amount of violations had been significantly decreased and the code
quality was higher.

Although these methods for code quality assurance is not providing answers to the
research questions, they are an important foundation for the project in the same
way that the requirement engineering and CI are. All these foundational methods
are used to have a stable and efficient project which provides good quality code,
measurable and quantifiable results in an efficient manner.
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3
Related Work

A literature study was performed where several databases, including ACM, IEEE
Xplore, Scopus, and Google Scholar, were searched for related works. For all of
them, the search query ““SLAM” AND “parking”” was used to find relevant work.
The query provides a lot of hits, but everything is not relevant for the purpose of
this thesis. Some of them were similar to each other, in which case one was chosen.
When considering papers as related works, only papers using some type of SLAM
and/or LiDAR was deemed relevant. This, aside from inlcuding LiDAR-SLAM and
2D-LiDARs included papers using 3D-Lidars, camera based SLAM and different
types of sensor fusion. Even though these specific technique combinations are not
directly applicable or usable for the purpose of this thesis, they were relevant in order
to understand and consider the limitations of the intended implementation. In cases
where the techniques and sensors used in the papers did not match the techniques
and sensors of this thesis, studies with environments that were deemed interesting
was chosen. Furthermore, where similar implementations were made, the hardware
used was considered in order to understand the restrictions of the intended hardware.

Several papers of interest were found. Some were using SLAM as a technique for
localization where GPS signals are absent, such as parking houses and garages [38].
Others using SLAM in conjunction with other techniques to both identify available
parking spots and autonomously park vehicles. The paper that was most similar
to what this thesis is going to encompass is a research paper done by Jie Song et
al. [39] released in the summer of 2019. The paper studied an automatic parking
system (APS) that used short range LiDAR data and simultaneous localization to
identify available parking slots. They compared the laser-based solution to ultra-
sonic based solutions and found that the laser-based solution achieved slightly better
performance than the ultrasonic based solution, however it still suffered from the
same main drawback in that it cannot detect parking spots unless other vehicles or
obstacles are adjacent since it cannot see the parking slot markings in the ground.
They developed an algorithm for parallel parking and tested their solution exper-
imentally with good results. They used a MicroAutoBox as their vehicle control
unit (VCU). The MicroAutoBox has a total of six processors, two NVIDIA Denver
2 Cores and four ARM Cortex-A57. [40]

Another interesting study made by Gyubeom Im et al. uses LiDAR together with
around view monitor (AVM) cameras to improve loop closing and achieve accurate
parking space detection [41]. They successfully created a SLAM implementation
that, after testing, proved better than other, previously existing, SLAM algorithms.
They identified the parking lines using the AVM camera in conjunction with the
LiDAR and achieved an accuracy of up to 98%.
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The first step of autonomously parking a vehicle is to identify the parking spot. The
course of action taken in this thesis is to use a series of OpenCV functions to modify
the map and detect potential parking spots. A common practice when identifying
objects in OpenCV is to use a combination of feature detection and feature matching
algorithms. The feature detection algorithms detect characteristics in two images,
and the feature matching algorithm tries to match the features of the different images
to each other. There are many different feature detection and feature recognition
algorithms available through OpenCV and what combination is optimal can be hard
to deduce. A study made by F.K.Noble [1] compared the algorithms individually and
in combination with each other. The paper identified that many different algorithms
and combinations existed and set out to answer the question “Which ones should
be used”. All algorithms were tested with the same benchmark image set of five
images of a face taken from different angles. The main code in the tests was written
using C++, which is a slight deviation from intentions of this thesis. However, since
OpenCV mostly uses C calls internally, the difference between using Python and
C++ should be minimal if the main computation comes from OpenCV functions.
The paper concluded that BRISK and BF was the optimal combination. However,
due to this thesis’s specific setting, the test results and the graphs, as seen in figures
3.1, 3.2, 3.3 and 3.4 generated from the paper is of more importance. The graphs
show a comparison between the different feature detection algorithms in terms of
features detected and the computation time. Even though the paper concluded
BRISK and BF to be the best combination, it can be seen in the graphs that other
algorithm combinations, more suitable for this project, achieves similar results.

Figure 3.1: Benchmark image vs. features detected. Graph from F.K.Noble [1]
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Figure 3.2: Benchmark image vs. time to detect features. Graph from F.K.Noble
[1]

Figure 3.3: Image pair vs. features matched. Graph from F.K.Noble [1]

Figure 3.4: Image pair vs. time to match features. Graph from F.K.Noble [1]
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4
Methodology

The methodology that was utilized throughout the project was divided into the
different work areas and software modules that were to be evaluated. In this chapter,
the general development methodologies are described followed by a separate section,
Section 4.3, that describes all the methodology utilized for testing and evaluation
of the developed modules.

4.1 Development methodology
The approach that was chosen for this project is the Design Science method [42].
This approach is inherently a problem-solving process and is a commonly used to
create innovations and define technical capabilities of a product. The methodology
can, according to Hevner et al., be divided into seven distinct guidelines which are
described in the table below [2].

Table 4.1: Table of guidelines [2].

# Guideline Description

1 Design as an Artifact
Design-science research must produce a viable
artifact in the form of a construct, a model,
a method, or an instantiation.

2 Problem Relevance
The objective of design-science research is to
develop technology-based solutions to important
and relevant business problems.

3 Design Evaluation
The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via
well-executed evaluation methods.

4 Research Contributions

Effective design-science research must provide
clear and verifiable contributions in the areas
of the design artifact, design foundations, and/or
design methodologies.

5 Research Rigor
Design-science research relies upon the application
of rigorous methods in both the construction and
evaluation of the design artifact.

6 Design as a Search Process
The search for an effective artifact requires
utilizing available means to reach desired ends while
satisfying laws in the problem environment.

7 Communication of Research
Design-science research must be presented effectively
both to technology-oriented as well as
management-oriented audiences.
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Although Hevner et al. advises against mandatory or rote use of these guidelines,
the goal is to follow them as closely as possible.
Wieringa further extends on the Design Science framework and divides it into two
parts called “Design” and “Investigation”. The design part consists of designing the
actual artifact to solve or improve on a problem within a given context. From this,
valuable knowledge about the context and artifact itself will be gained and trans-
ferred to the investigation. The investigation part is where the team aims to answer
the questions that might have risen during the development. From the investigation
one might get new knowledge or design problem which in turn are brought over to
the design part again. These two distinct parts of the framework are utilized in
parallel during the development and affect each other continuously.

The aim was to be able to systematically evaluate the software and the artifact and
the goal of the artifact was to be able to autonomously park itself using the limited
hardware that was available on the platform. To answer the research questions of the
thesis, several evaluation methodologies were needed. The first step was to come up
with different metrics that can accurately show if the prototype works as intended.
These metrics were decided upon through rigorous discussion with key stakeholders
and include variables such as consistency, accuracy, performance etc. These same
metrics were generally used on several of the software modules the project was di-
vided into.

After the metrics were decided, different tests were designed for each of the different
software modules and the final artifact to get a rigorous methodology on how to
gather these metrics in a reliable and efficient manner. These tests were designed
internally and in collaboration with key stakeholders at both Chalmers and Infotiv
and by looking at how other papers have tested similar algorithms or features.

4.2 Requirements specification
The goal of this thesis was to research how systematic evaluation can be performed
on a series of software modules. The modules were developed as a proof of concept
that it is possible to achieve specific AD features, such as an autonomous parking
algorithm, using fewer sensors and cheaper hardware than what currently is used
in the automotive industry. For this to be achievable, an artifact in the form of
a working AD-platform needs to be developed and the artifact needs to be able
to meet certain needs and perform in the scope of the thesis. Because of this,
clear requirements were needed as a baseline to be evaluated against. The process
of requirements engineering is a systematic approach to reduce the likelihood to
develop an incorrect solution to a problem [43]. This is where the foundation for the
artifact is laid out and it must be detailed enough so that everyone involved with
the project has a clear image of the system and how it is supposed to function.
The first thing to consider when compiling a set of requirements is to identify the
stakeholders of the project. The stakeholders are any person that has a stake in
the project. These stakeholders could be for example the company that funds the
project, the school, the people conducting the project etc. Identification of stake-
holders is important to specify from the start so that e.g., the elicitation then allows
as many stakeholders as possible to get their say. For this project, the stakehold-
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ers were identified by discussion within the team and plotting them in a quadrant
divided graph with Influence on the Y-axis and Interest on the X-axis, see Figure
4.1.

Figure 4.1: Identified stakeholders in the project.

• Chalmers: Chalmers as an academic institution. Regarded as having a high
grade of influence over the project but low interest in this individual thesis.

• SE-Students: SE-students as a whole that might benefit from the work done
in this project. Regarded as having a low interest and low influence.

• Infotiv Management: The management at the company this project is con-
ducted at. Regarded as having a high influence and interest surrounding the
project.

• Examiner: The academic examiner from Chalmers. Regarded as having high
influence and interest surrounding the project.

• Supervisor: The academic supervisor from Chalmers. Regarded as having
influence and interest surrounding the project.

• Core Developers: The students conducting this project. Regarded as having
influence and interest surrounding the project.

• Infotiv Marketing: The marketing department at the company this project
is conducted at. Regarded as having a low influence but high interest in the
project.

• Other Developers: Other developers, primarily at Infotiv that can use this
project as a foundation for future projects. Regarded as having a low influence
but high interest in the project.

This stakeholder identification and classification was done to get a better under-
standing of what stakeholders’ needs to prioritize in the requirements.

Requirement elicitation was conducted to gather data on what the stakeholders in
the project felt was needed. This was done mainly through semi-structured inter-
views and brainstorming with stakeholders at Infotiv. Through this elicitation, an
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understanding for the problem at hand was built and the functional requirements
could then be written down. In this project, the requirement specification was made
as a set of user tasks, this was chosen because of their easy-to-follow nature and
their ease of mapping the requirements to things such as business goals.

Once all requirements were written, they had to be prioritized. This was done using
a 100-dollar test [44] with developers and a bubble sort ranking [45] with Infotiv
management. These scores were then combined and resulted in a final table of
the importance of the requirements. The prioritization is done both to get an un-
derstanding if some requirements are redundant or completely unwanted from the
stakeholders, but also, it helps with time management in case of deviations from
the original time plan. If a problem occurs and something takes more time than
expected, it is important to know what to focus the work on and if something can
be cut from the original plan of requirements.

The final part of the requirement specification is to validate the requirement. Val-
idation is the process of verifying that the requirements that are written satisfies
the stakeholders’ needs and requests. The validation process can be done either by
inspections, formal proofs, or tests. The methodology chosen for this project was
mainly inspection by perspective-based reading. This was chosen mainly because
there are quite a few key stakeholders and a compromise that satisfies all parties
needs to be the goal. So, by using perspective-based reading from both Chalmers’
and Infotiv’s point of view, these two main stakeholder perspectives could be evalu-
ated. The other method used was to discuss the requirements and the project with
both the supervisor from Chalmers and both developers and management from Info-
tiv. The resulting requirements document is appended to this document as Appendix
A.

4.3 Testing and Evaluation
In every scientific project and especially this one with regards to our Research Goals
and Questions it is important to have a planned structured methodology for testing
and evaluating the ideas that are being worked on.
Evaluation of many different technologies in many different phases were designed,
so each technology needed to be evaluated individually before being integrated into
a complete package. The different testing and evaluation phases and their methods
of testing are detailed one by one below.

4.3.1 Pathfinding
To answer Research Question 1, the different possible pathfinding algorithms needed
to be tested and evaluated. These algorithms were evaluated by testing a set of 10
different mazes and real LiDAR maps. These ten images were chosen as a sample of
scenarios, five of them was actual LiDAR images from different environments within
the office, five of them were of mazes. The reasoning behind these numbers were
mostly because of the limitation that the controlled environment, in this case Info-
tiv’s office spaces, does not contain very many unique rooms that could be used to
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create real LiDAR maps. It would also be time consuming to create a map represen-
tative of our controlled environment since the rooms would have to be emptied from
any objects to reduce unwanted noise in the map. Additionally, if one were to create
LiDAR maps in e.g., 20 different rooms of roughly the same shape and size, the
results would not really differ since the algorithms cannot see a difference between
one squared room and another. Optimally one would want to conduct experiments
with a much bigger sample size or even try to create a fully automated test scenario
where an almost exhaustive search is conducted through a maze generator that cre-
ates millions of mazes. Even though it would be theoretically possible to have e.g.,
five LiDAR maps and five million automatically generated mazes as a substitute,
it was unfeasible and would not yield much valuable insight because of the reasons
listed below:

• The project timeline did not allow to create an entirely automated maze gen-
erator and run it all the time.

• The pathfinding algorithm took a few seconds each to compute a path. To
run an almost exhaustive set of mazes on both algorithms would take days to
compute each time any change is done.

• Mazes are not necessarily the best depiction of reality. An algorithm could
perform very well in a very complex maze but much worse in an actual LiDAR
image. For this reason, both mazes and actual LiDAR maps were present
in the test. It shows both real-world expected performance but also some
worst-case environment data from the mazes.

• Given several images with roughly the same maze complexity, the algorithms
would perform similarly from run to run and most likely, no valuable insights
can be gathered from a few milliseconds’ differences.

The set of ten pictures was then fed to four different pathfinding algorithms: BFS,
A* with Euclidean distance as its heuristic function, A* with Manhattan distance
as its heuristic function, and Dijkstra’s.
These different algorithms were evaluated against each other and the following met-
rics were evaluated:

• Accuracy: Accuracy measured by generated path length. Dijkstra’s is math-
ematically guaranteed to provide shortest path and was used as baseline.

• Efficiency: Number of seconds it takes for the algorithms from start to finish.
These numbers are then compared to each other

• Convergence: Given a small variation in start or end positions on a given
map, does the generated path length differ much or does it remain stable?

• Robustness: How does the algorithms handle scenarios where there is no
valid path or where e.g., the only valid path goes through a 1-pixel wide
passage?

Setup:
• Ten different images of mazes and LiDAR maps, five each.
• Four different pathfinding algorithms are implemented (BFS, A* Euclidean,

A* Manhattan and Dijkstra’s).
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• All algorithms running on the same hardware with only the Operating System
running in the background

• For each image, a start and endpoint are manually chosen.
• All ten images are fed in serial to the pathfinding algorithms for a total of 10

runs per algorithm.
• From these runs, the time-to-compute and path length are gathered. The

data is then evaluated by comparing time-to-compute and path lengths to
each other.

To test for convergence, the test setup had to be slightly modified because variation
between runs on the same maps was desired. The tests were conducted with the
same basic setup as the test above, but with two key differences:

• All algorithms are run with the five LiDAR images ten times each. Every
run, the starting position was slightly altered by randomly generating a start
position that is +/-10 pixels from a centre in both X and Y directions. A total
of 50 runs per algorithm will be performed.

• All path lengths are then recorded and evaluated for standard deviation.

See the flow chart in Figure 4.2 for an overview of the exact testing procedures.

Figure 4.2: Flow-chart for the pathfinder tests

Note that in the testing for convergence, only the 5 LiDAR maps will be tested on.
This is because of the nature of a maze where a slight variation in position might lead
to a huge variation in path length even though the algorithms work perfectly and
generate the shortest possible path. In a LiDAR map, this is usually not the case
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since they are more open and any variation will be either due to the actual distance
between the start and end point being longer, or the algorithm not behaving as
expected.

4.3.2 Path Following
To answer Research Question 1, the path following algorithm also needed to be eval-
uated to verify its functionality and fit regarding the requirements of the artifact.
The path following algorithm was not evaluated against any other algorithms in this
thesis since no other algorithms were implemented due to time constraints. Due to
the reasons mentioned in Section 2.1.7, the APP was deemed to likely be the best
choice for this implementation.

To evaluate the path following, the algorithm was implemented first on a laptop
and a simple visualization window, see Figure 4.3, was used to track how the robot
followed the path. This was useful because otherwise it would be difficult to verify
that the algorithm did not e.g., cut corners or jump between parallel paths that
might occur in the path generation.

Figure 4.3: Visualization window for testing. Note that the robot size is exagger-
ated for visibility purposes.

The program was then fed four different paths generated by the pathfinding algo-
rithm which in turn was given actual LiDAR maps to create a realistic setting. The
algorithm then executed and the mean, minimum and maximum orthogonal dis-
tances to the path were collected and evaluated. If they were deemed as adequate
from the start, a few different lookahead distances were tested and compared in the
same manners as the algorithm itself to get the optimal performance for this specific
use case. What to consider adequate was determined by the resolution of the image.
If the pixel deviation corresponds to e.g., two centimetres in real life, it probably
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would not be an issue. However, if the deviation corresponds to 50 centimetres, it
would be an issue in many cases. Because of this, the accepted values were only
decided upon once a standard map quality was set.

4.3.3 OpenCV
To answer research question 1 and 2, the different algorithms that were used in
the OpenCV library had to be evaluated. All evaluation tests were run on the same
hardware that was used in the final product i.e., a Raspberry Pi 4 and an RPLiDAR
A2. Even though it would be theoretically possible to generate an infinite number of
unique frames to test the different values on it would not be feasible. The process-
ing power of the Raspberry Pi 4 is severely limited, so given a very large number of
frames, the processing time would be too large to fit within the scope of the project.
Due to this, the number of frames tested had to be limited. Seeing as the tests were
performed in a controlled environment while the platform was stationary, there is
only so many unique frames that could occur given that the environment is con-
trolled to a sufficient degree. Given the limited amounts of unique frames and the
time constraints linked to the one processing units, 50 frames for each configuration
were tested in real time with a LiDAR map. Once the best algorithm was decided,
another more extensive test was conducted where the optimal parameters for the
specific arguments of that algorithm were determined. All tests were run with a
thresholded map as argument and the platform placed 25 centimetres away from
the delimiting vehicles.

SURF, SIFT and BRISK are three feature detection algorithms. According to
F.K.Noble, BRISK in combination with BF is the optimal combination for max-
imizing features found and matched. However, SURF in combination with BF also
achieved great results and was therefore tested as well. Furthermore, the predeces-
sor of SURF, SIFT was also in the test as it could simulate the power of a more
computationally heavy algorithm. SURF is generally accepted as a better algorithm
than SIFT, but there are special cases where SIFT outperforms SURF, for example
when there is no blur and there is no rotation in the map.

The factors that were tested were feature detection algorithm, blur on map and
blur on reference image. The feature detection algorithm has three levels, SURF,
SIFT and BRISK. When the blur value is increased, the resulting image will be
more blurred. Because of this, even though the amount of levels is theoretically
infinite, the resulting image after a threshold was so blurred that the images are
indistinguishable from each other. Furthermore, the OpenCV function only takes
odd numbers as arguments, so (1, 3, 5) is valid, whereas (2, 4, 6) is not. This further
decreased the amount of levels that had to be tested.

A full factorial design was chosen since there are rather few factors with limited
levels. There are three different levels of blur for both cases where blur is applied,
on the map and on the reference parking space. The three different levels that were
used are 1, 5 and 9, where 1 means that the image is less blurred and 9 means
that it is significantly blurred. The reason not all odd numbers up until a specific
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point were tested is that this would drastically increase the amount of tests that
had to be made and would likely not have changed the outcome of which algorithm
is deemed most suitable. When the initial test generated sufficient results to deduce
the most optimal algorithm, another test was conducted to perfect the values of blur.

To mitigate differences in the tests, all tests were run in a controlled environment.
The controlled environment consisted of a room approximately three by three me-
tres wide. All objects not necessary for the experiment were removed or placed out
of sight for the LiDAR. The platform was placed 2.5 metres away from the parking
space, which was represented by three cardboard boxes of approximately 100 by
40cm. The boxes were tall enough to be in line of sight of the LiDAR.

A fractional factorial design could have been done if additional factors were to be
added, such as threshold, dilation, and erosion. However, these factors were omitted
as they were considered crucial for any matches to be discovered and their levels
did not affect the outcome significantly. Furthermore, omitting these factors helped
delimit the testing. To ensure as little change in the environment as possible, the
room in which the test was performed was locked down to prevent unnecessary
disturbance from people interfering with the LiDAR image. The platform was sta-
tionary throughout the tests and the platform was never rotated. This makes for a
fair testing environment.
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The results of the experiment will be evaluated using the following criteria:
• Quality: the number of correct features detected and matched.
• Efficacy: the time it takes to compute.
• Utility: how well the implementation works in our specific case.

4.3.4 Parking Algorithm
To answer Research Question 2 and verifying the parking algorithm in hardware,
the parking algorithm needs to be evaluated by placing the vehicle in a starting
position and having the platform autonomously park. The algorithm is tested for
the following metrics:

• Accuracy: What is the difference between the platform and the desired lo-
cation once the algorithm is finished?

• Angular accuracy: How many degrees misalignment does the platform have
in relation to parallel with the parking space once the algorithm is finished?

• Safety: Does the algorithm finish without the platform bumping into objects
that it should not?

• Efficiency: How much time passes from start to finish?

Example setup:
• Platform is placed in starting position, a set distance from the aligned vehicle.
• Algorithm decides optimal end coordinates and distance between end coordi-

nates and other vehicles.
• Timer starts before algorithms is started and stops when vehicle is parked.
• Algorithm is performed and throughout the parking process the platform is

visually observed to see if the platform bumps into any objects.
• Once the algorithm is performed, the deviation from the optimal coordinates

and the angular misalignment is measured.
• These tests will be run four times.

4.3.5 Final Product
To answer Research Question 2, the final artifact with all software modules imple-
mented in hardware needed to be evaluated against the requirements as well. To
evaluate and validate the finally integrated product, an experimental study in a
controlled environment was designed, but the tests were never completed. The issue
of the tests not being conducted is discussed in detail in section 6.2.4.
The finally integrated product was to be evaluated and validated by experimental
studies in a controlled environment. The controlled environment consisted of an
enclosed room with no tables or chairs and a single parking spot created by placing
wooden planks and/or boxes as outlines. The vehicle was then supposed to be driven
around the area once to let it map its surroundings. Once it detected the parking
space, it was to be placed at a fixed starting position and commanded to conduct
the parking manoeuvres necessary for reaching the space and parking autonomously.
The fixed starting position was to be done in order to have a baseline of performance
from test to test. From this test, metrics such as convergence, time-to-park, longitu-
dinal and latitudinal accuracy, angular misalignment and the time it took to locate

30



4. Methodology

the parking space could have been gathered, evaluated and compared to other stud-
ies or real-life test cases. All the data gathered from this experiment could then be
referenced to previous studies that tested similar technologies and a general opinion
could have been formed as to if the results were good. The experiment should then
have been rerun several times to get stronger data and to evaluate eventual outliers.

Example setup:
• Enclosed office room with approximately 15m2 floor area.
• All chairs, tables etc. removed.
• Vehicle allowed to drive one lap around the room to create map.
• When parking a parking space is detected, the time it took is noted and the

vehicle is moved to a fixed starting position.
• The vehicle is commanded to relocate itself to the desired position for the

parking manoeuvres to take place.
• The vehicle will without further input drive to the desired position and com-

mence parking manoeuvres to relocate itself to a desired end position.
• The time taken from park command until the entire parking procedure is

concluded will be noted down as time-to-park.
• The longitudinal and latitudinal accuracy will be measured manually by mea-

suring the distance from the wall parallel to it and the “car” in front and in
the back.

• The angular misalignment will be measured in relation to the wall to the side
as well, where optimal alignment would be considered a completely parallel
parking line.

• The same test will be conducted 5 times to get measurement for convergence
by looking at the mean and standard deviation of the data points

• To get data to compare ours to, other autonomous parking studies will be
analysed and the car will also be driven manually by 5 different people that
has little previous knowledge of how the vehicle behaves to get data on how a
human would perform in a similar situation. Every subject gets one trial run
and afterwards, the test will only be done once by each person to minimize
learning bias.
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5
Results

This chapter contains all results gathered from the systematic evaluation of both the
testing done on the software modules individually and the final product in hardware.
First, the results that are relevant to research question 1 are presented and in the
end, the results related to research questions 2 are presented.

5.1 Pathfinding
To answer research question 1, pathfinding was systematically evaluated. The first
test-run of the pathfinding algorithms were run using ten different images and four
different algorithms. The algorithms that were run for this test was A* with an Eu-
clidean distance heuristic, A* Euclidean in the table, A* with a Manhattan distance
heuristic, A* Manhattan in the table, Dijkstra’s algorithm, Dijkstra in the table,
and BFS. All tests were run on a laptop with a core i7 4500U CPU.

The ten different images were all a subsection or resized resolution version of the
three images below, e.g., by running one test with the image in figure 5.1 with 2000
by 2000 pixels and another test by resizing or cropping it to 500 by 500 pixels and
choosing different start- and end positions. The mazes were reused by choosing com-
pletely different start- and end-positions between tests to create different complexity
solutions and attempt to elicit different behaviour from the algorithms.

Figure 5.1: High resolution LiDAR image of Infotiv office spaces.
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Figure 5.2: Low resolution and complexity maze

Figure 5.3: High resolution and complexity maze

The data that were gathered during the experiment was the time it took to find
the path and the generated path length. Table 5.1 contains the time-to-compute
metrics for each of the algorithms and Table 5.2 contains all the generated path
lengths from the experiment.
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Table 5.1: Time to compute a valid path in seconds (smaller is better). Column 5
describes what image was used for the test. LIDAR meaning a real LiDAR map of
a room while MAZE indicates a Maze.

A* Euclidean A* Manhattan Dijkstra BFS Image
0.306 0.341 0.436 0.406 LIDAR1
0.371 0.337 0.547 0.491 LIDAR2
3.321 2.320 8.137 3.596 LIDAR3
4.848 4.267 6.421 4.194 LIDAR4
2.991 3.212 9.492 4.735 LIDAR5
1.483 1.622 4.246 2.887 MAZE1
5.851 4.061 5.387 3.379 MAZE2
18.104 27.009 19.980 10.501 MAZE3
2.023 4.081 3.140 1.826 MAZE4
1.101 1.351 1.983 1.107 MAZE5

Table 5.2: Generated Path length in pixels (smaller is better). Column 5 describes
what image was used for the test. LIDAR meaning a real LiDAR map of a room
while MAZE indicates a Maze.

A* Euclidean A* Manhattan Dijkstra BFS Image
79 75 75 75 LIDAR1
123 121 121 121 LIDAR2
529 529 521 521 LIDAR3
407 407 401 401 LIDAR4
344 342 331 331 LIDAR5
711 681 681 681 MAZE1
828 776 776 776 MAZE2
2219 1839 1834 1834 MAZE3
796 719 719 719 MAZE4
413 387 387 387 MAZE5

As the tables show, there is not any clear superiority that can be distinguished be-
tween the algorithms at hand. In some cases, the Euclidean A* is the quickest and
in others BFS etc. The only thing that is a trend throughout all the cases is that the
Euclidean A* consistently provides a longer path than the other algorithms. The
BFS and Dijkstra always provide the shortest path but especially Dijkstra does this
at a big performance penalty with an average of 64% longer time to compute than
BFS. BFS performed well overall but the only times it was the fastest alternative
was on a small LiDAR map with a short path and in a very complex maze.

Even though it is not possible to deem a clear winner for every situation from the
testing, the best fit for this project, judging from the data above, would be some
variation of A*, either with Euclidean or Manhattan Heuristic, this is mainly be-
cause due to the constrained hardware aspect of the project. Because of this, the
time it takes to compute the path is weighed much more heavily than if the path
generated is a few pixels longer. Even though a difference of e.g., 0.5 seconds would
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Figure 5.4: Graph of the results from Table 5.1

barely be noticeable for an end-user and would not make the project in any way
unfeasible, the computer that was used for these tests is almost ten times faster
than a Raspberry Pi 4 when it comes to processor performance and a five second
extra delay to compute a path would most certainly be noticeable.

To get the data needed to test the convergence metric, a test was conducted where
each algorithm was run ten times with slightly altered start and end positions. This
was done by defining the same start and end positions as in the tests above but with
a random generated variation of ± 10 pixels in X- and Y-directions for both the start
and end points. Given the rather small sample size of these tests there is a high
margin of error, but again, doing a more exhaustive search would be unfeasible due
to the time it would take to compute. Furthermore, this test is not meant to show
the exact convergence numbers for each algorithm or give a definitive answer on
what the best pathfinding algorithm in existence is, but instead give an indication
if they would be a good fit for this specific project. The data gathered from the test
can be seen in Table 5.3

Table 5.3: Standard Deviation given a random generated start and end point
within ± 10-pixel zone. Only conducted on the same five LiDAR images used in the
previous test.

A* Euclidean A* Manhattan Dijkstra BFS
7.86 11.87 8.16 9.41
13.35 5.73 8.24 9.08
7.21 6.41 9.74 9.62
7.34 11.44 7.33 9.88
20.91 11.04 9.62 7.5

By looking at the data for Dijkstra’s algorithm, which is mathematically proven to
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always provide the shortest path, it is possible to deduct that a standard deviation
of around 10 pixels is to be expected due to the paths generated having a variation
in length due to the randomly generated start and end positions. All numbers in the
test seem to align well with that assumption and converges well. The only exception
to this is the A* with a Euclidean heuristic function. Especially in the last test these
path lengths fluctuated wildly and varied between 323 and 377 pixels, which is too
long of a distance to be explained by the variation induced in the test. Because of
this, that specific test was run several times to verify the result, but similar results
emerged every time.

The robustness of the algorithms is all equal. If no valid path is possible, they return
an array with the length of zero and terminate so that they can be initiated again
at a later stage. All algorithms also always accept a one-pixel wide gap as a valid
path due to the algorithms only looking at their closest neighbours for information
. This issue could be resolved by checking more neighbours at every stage, but it
would be much more computationally intensive and this thesis therefore decided to
handle that issue by adding more erosion to the pictures instead to eliminate any
gaps smaller than the vehicle’s width.

Given that A* Euclidean and A* Manhattan both provided similar performance and
the high deviation that A* Euclidean showed, A* Manhattan was chosen as the best
fit for the project.

5.2 Path following
To answer research question 1, path following was systematically evaluated. The
evaluation for the path follower was conducted by giving the algorithms four differ-
ent paths generated in a real LiDAR image by the A* pathfinding algorithm with
Manhattan distance as a heuristic function. During the run, every time the algo-
rithm updated the loop by calculating the nearest neighbouring point on the path,
the orthogonal distance to that point was calculated and recorded. For each run,
the minimum, maximum and average recorded distance during the entire run was
recorded and compiled in Table 5.4 below.

Table 5.4: Minimum, maximum, and average orthogonal distances to desired path
measured in pixels.

Min Max Average
0.0 2.90 0.66
0.0 1.48 0.55
0.0 1.98 0.57
0.0 1.63 0.52

In the LiDAR image chosen for this evaluation, every pixel corresponds to a square
roughly two centimetres wide. All tests were run with a lookahead distance of seven
pixels or roughly 14 cm. The maximum measured deviation from the path was
5.8 cm and the average deviation was between 1-1.3 cm. The reason behind the
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minimum distance being zero pixels in every test is because the test does not dif-
ferentiate between distance to the left and to the right of the path, i.e., there’s no
positive or negative distance and any distance from the path is considered positive.
The minimum distance was still considered valuable data to highlight that there’s
no constant offsets from the path throughout the test. This was deemed as a good
result and a new test was therefore conducted to try to find the best lookahead
distance.

In theory, a smaller lookahead distance leads to more aggressive behaviour of the
controller and can cause oscillations around the path while a larger lookahead dis-
tance gives a smoother behaviour but at the cost of precision around corners and
curves where it might cut the corner. Because of these reasons, it is important to
find an optimal middle ground where the algorithm is precise but does not display
overly aggressive behaviour. The different lookahead distances were tested on a sin-
gle path to eliminate the path as a source of variance. The tests were first conducted
with lookahead distances with an increment of five pixels, roughly corresponding to
ten centimetres. The results can be seen in Table 5.5 below.

Table 5.5: Maximum and average orthogonal distances, measured in pixels, with
different lookahead distances in five-pixel increments.

Lookahead Dist. Max Average
2 17.21 3.66
7 1.59 0.59
13 2.88 0.95
18 4.41 1.29

As can be seen in the table above, the performance gets worse at the very low end
and shows the best performance around seven pixels, or 14cm, lookahead distance
and the performance gets gradually worse once the distance is increased further.
Another test was therefore conducted with smaller granularity where the lookahead
distance was increased in increments of one pixel or two centimetres. The results
can be seen in Table 5.6 below.

Table 5.6: Maximum and average orthogonal distances, measured in pixels, with
different lookahead distances in one-pixel increments.

Lookahead Dist. Max Average
3 1.02 0.43
4 1.15 0.45
5 1.31 0.49
6 1.47 0.54
7 1.59 0.59
8 1.72 0.65
9 1.96 0.70
10 2.17 0.76
11 2.35 0.82
12 2.53 0.88
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As shown in the table above, the best performance is achieved at a lookahead dis-
tance of three pixels. However, at this distance, visual inspection of the simulated
robot showed some oscillations back and forth and a lookahead distance of five pixels
provides a much smoother driving experience while still having a precision of less
than one centimetre.

5.3 OpenCV (Computer Vision API)
To answer research questions 1 and 2, parking space detection was systematically
evaluated. A full factorial design experiment was conducted to find the optimal
parameters for blurring as well as deducing if SURF, SIFT or BRISK would be
most optimal algorithm for using together with constrained hardware. SIFT has
previously been deemed an unlikely competitor against SURF and BRISK as SIFT
performs worse when rotation and blur is introduced. The results of the experiment
can be seen in Table 5.7.
The test results were evaluated using three criteria:

• Quality: the number of correct features detected/matched
• Efficacy: the time it takes to compute
• Utility: how well does the implementation work for us in our specific case

Based on the test, it was concluded that SURF was the most suitable algorithm
for this specific scenario. SIFT scored fewer matches than SURF, giving it a lower
score in the metric quality. Furthermore, the data implies that SIFT has an aver-
age computation time of a factor three larger than SURF. This gives SIFT a bad
score when it comes to the efficacy metric. The combination of a poor quality and
efficacy score makes SIFT a inappropriate algorithm choice. Furthermore, with the
efficacy being so poor, it is simply not feasible to have a computation time of al-
most two seconds in a real time application. The overall utility score is therefore also
low as SIFT is not a viable choice for real time applications on constrained hardware.

According to F.K.Noble [1], BRISK in combination with BF was the best combina-
tion when wanting to maximize the features detected and matched. BRISK scored
very poor in the quality metric as it had an average matches of around 0.25. Its
average computation time is not much slower than the rest, however, it is worse than
SURF with a factor of around 2.5. BRISK therefore scores an average on the efficacy
metric. Overall, BRISK in its current implementation is probably not suitable for
use in a real time application with constrained hardware, providing a low score on
the utility metric.

SURF scored the highest number of average matches of all the algorithms indepen-
dent of the values of blur, with few exceptions. This gives SURF a clear advantage
in terms of the quality metric. Furthermore, SURF was the fastest of all the al-
gorithms, scoring an average computation time of around 0.3 seconds. Having an
algorithm that can perform real time computations is of great importance as this
allows for more frames with potential parking spots to be analysed. Using SURF
would allow for the algorithm to run at approximately 3Hz which is sufficient.

39



5. Results

It is concluded that SURF is the most suitable algorithm for the specific setting at
hand. To further determine what parameters of blur is optimal for SURF, another
full factorial design was performed. The test uses the same base premise as the
previous one, that is a thresholded map as argument and the platform placed 25
centimetres from the delimiting vehicle. The number of frames tested was changed
from 50 to 200 to gather more distinct data. The number of levels tested was in-
creased from (1,5,9) to (1,3,5,7,9,11). The results of the factorial design can be seen
in Table 5.8

Seeing as all the configurations have similar execution time, this parameter will
not be taken into consideration. Furthermore, SURF has not had a single false
positive, neither in this test nor the previous one, so it is deemed robust. With
these parameters excluded, the two factors that decides is average matches and
max matches. There are several configurations that performs well, namely (5,1),
(3,3), (5,3) and (5,5). All these configurations have an average matches over 8.3.
While (5,3) showed the best result for max matches, (5,1) showed a higher average
result. While max matches is good, the average amount of matches is slightly more
important as the algorithm will be run in real time. Because of this, the most
optimal configuration is deemed to be (5,1) as it has 9.95 average matches and a
max match of 12.

Figure 5.5: The result of the parking space detection algorithm.

The load on the processor of the Raspberry Pi 4 is around 70% with SURF and the
implemented parking algorithm running where three out of four cores are used, see
figure 5.6. The load was measured using the Linux command “top”, which allows
to monitor resource usage [46]. Once all the processes was started, including the
SLAM algorithm, SURF and the parking algorithm, the load was measured. An
example of how the result of the parking space detection algorithm can look can be
seen in figure 5.5

5.4 Parking Algorithm
To answer research question 2, the parking algorithm should have been systemat-
ically evaluated. The test for the parking algorithm would have been conducted
by placing the platform at a predetermined starting position close to the parking
spot. The parking algorithm is then started and can execute on its own. After its
completion, the data for accuracy, angular accuracy, safety, and efficiency were to
be recorded, the same test is run four times.
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Table 5.7: Data from the full factorial design experiment.
Full Factorial Design, n = 50

Algorithm Blur Map Blur Parking
Spot

AVG Matches Max Matches Average
Time(Sec)

True Positives False Positives

SURF 1 1 6.22 9 0.3 9 0
SURF 5 1 7.7 10 0.3 10 0
SURF 9 1 3.4 7 0.29 7 0
SURF 1 5 6.72 10 0.31 10 0
SURF 5 5 7.32 12 0.31 12 0
SURF 9 5 4.3 9 0.3 9 0
SURF 1 9 5.2 8 0.31 8 0
SURF 5 9 5.92 9 0.3 9 0
SURF 9 9 3.88 7 0.3 7 0
SIFT 1 1 2.5 5 1.87 6 0
SIFT 5 1 2.5 6 1.85 6 0
SIFT 9 1 2.76 5 1.95 5 0
SIFT 1 5 3.56 7 1.87 7 0
SIFT 5 5 4.88 6 1.87 6 0
SIFT 9 5 4.12 6 1.88 6 0
SIFT 1 9 3.34 5 1.88 5 0
SIFT 5 9 4.82 7 1.95 7 0
SIFT 9 9 6.4 9 1.88 9 0
BRISK 1 1 0.28 2 0.8 1 1
BRISK 5 1 0.35 3 0.81 0 3
BRISK 9 1 0.26 2 0.81 0 2
BRISK 1 5 0.33 2 0.81 1 1
BRISK 5 5 0.38 3 0.8 1 2
BRISK 9 5 0.24 2 0.81 0 2
BRISK 1 9 0.24 2 0.81 0 2
BRISK 5 9 0.22 2 0.81 0 2
BRISK 9 9 0.25 2 0.8 0 2

Table 5.8: Data from the full factorial design experiment.
Full Factorial Design, n = 200

Algorithm Blur Map Blur Parking
Spot

AVG Matches Max Matches Average
Time(Sec)

True Positives False Positives

SURF 1 1 6.52 10 0.31 10 0
SURF 3 1 7.67 11 0.30 11 0
SURF 5 1 9.95 12 0.30 12 0
SURF 7 1 6.70 11 0.31 11 0
SURF 9 1 3.68 8 0.30 8 0
SURF 11 1 2.03 8 0.29 8 0
SURF 1 3 7.06 10 0.31 10 0
SURF 3 3 8.30 11 0.31 11 0
SURF 5 3 9.39 14 0.32 14 0
SURF 7 3 7.09 10 0.31 10 0
SURF 9 3 4.88 10 0.31 10 0
SURF 11 3 3.19 8 0.32 8 0
SURF 1 5 7.08 12 0.33 12 0
SURF 3 5 7.81 11 0.33 11 0
SURF 5 5 8.38 12 0.34 12 0
SURF 7 5 7.59 12 0.34 12 0
SURF 9 5 3.50 8 0.34 8 0
SURF 11 5 3.67 8 0.33 8 0
SURF 1 7 6.27 10 0.34 10 0
SURF 3 7 5.42 9 0.33 9 0
SURF 5 7 6.48 10 0.35 10 0
SURF 7 7 5.80 10 0.35 10 0
SURF 9 7 2.70 7 0.35 7 0
SURF 11 7 3.20 6 0.35 6 0
SURF 1 9 5.30 8 0.35 8 0
SURF 3 9 6.12 10 0.34 10 0
SURF 5 9 6.30 9 0.36 9 0
SURF 7 9 5.60 8 0.37 8 0
SURF 9 9 3.45 8 0.35 8 0
SURF 11 9 4.00 7 0.36 7 0
SURF 1 11 5.70 8 0.36 8 0
SURF 3 11 5.70 8 0.36 8 0
SURF 5 11 6.57 10 0.31 10 0
SURF 7 11 6.50 10 0.33 10 0
SURF 9 11 5.03 8 0.34 8 0
SURF 11 11 5.67 9 0.32 9 0
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Figure 5.6: Load of the processor

These tests could not be completed due to one main reason. An issue with the
BreezySLAM algorithm causing problems for the parking and the path following
algorithms when running in hardware. These issues were severe enough for the few
tests successfully conducted to not yield any valuable results to draw conclusions
from.
This issues are discussed in detail in Section 6.2.4

5.5 The Final product
To answer research question 2, the final product should have been systematically
evaluated. The test for the final product was designed to test the performance of all
modules working as a unit on hardware. The test was designed as an experimental
study in a controlled environment consisting of an enclosed and empty room con-
taining only a single parking spot. The vehicle was then supposed to drive around
the room once and map its surroundings and when a parking spot was detected, it
was supposed to do everything from locating the parking spot to parking itself fully
autonomously.

Due to the same issues discussed in Section 5.4 above, this test could not be con-
ducted properly either. The issues that caused this are also discussed in detail in
Section 6.2.4.
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This thesis aimed at systematically evaluating AD software modules specific to au-
tonomous parking while following known software engineering principles. According
to some software models such as the waterfall model, it is advised to test and evaluate
the software after the development is done. This could result in increased technical
debt and many unnecessary development iterations. Working with known software
engineering processes and procedures can increase code quality and reduce develop-
ment cost. If cost can be reduced in both regards to the development and the hard-
ware required for its operation, AD features can be integrated into cheaper vehicles
and ultimately make driving safer and more environmentally friendly. Throughout
the thesis, the development methodology framework design science has been used
while following the concepts of SWEBOK.

6.1 Development Methodology
The methodology framework that was used throughout this project was the frame-
work of design science [2, 42]. In this section this framework’s realization and its
impact on the project will be discussed.

After working with the framework of design science throughout the project, we ob-
served that it has had a positive impact in almost every regard. It was a straightfor-
ward framework to work with since nothing felt forced and most things mentioned in
the framework were natural to conduct in any design- or evaluation-based project.
For example, working in two distinct cyclical phases, design and investigation, is
something that comes naturally when working with design and evaluation since one
always starts by investigating the issue at hand, then tries possible solutions and
therefore encountering new problems to bring back to investigation.

Guidelines such as communication of research was a major issue that was encoun-
tered throughout the project. It had to be managed so that both the business
aspects from Infotiv’s side and the research aspects Chalmers were conducted in a
way that made both stakeholders satisfied. Therefore, time was spent on finding
ways of producing something of value for both the company and the SE research
community at large. To have this guideline in the back of the mind that perhaps the
communication with different parties had to be modified to fit that specific context
was helpful.
The method of Design Science was an effective and good framework to work with
since it has many benefits and few, if any, guidelines and items that feel unnecessary
and that did not have a purpose in the project.

43



6. Discussion

6.2 Results
In this section, all the results are discussed in the same order as they were presented
in Chapter 5. In each section, the methods for coming up with the systematic eval-
uation procedures are discussed first to help answer the research questions followed
by a discussion surrounding the actual results of these procedures.

6.2.1 Pathfinding
To evaluate pathfinding algorithms, the initial plan was to find the the fastest al-
gorithm by looking at, e.g., Big-O analyses [47], for different pathfinders. In theory
this shows with certainty which the fastest algorithm is. This however proved to
be an unfeasible method since different pathfinders can be better suited for some
scenarios but not others. Because of this, a method was needed to evaluate different
pathfinders for the specific needs of this project.

First, different metrics that were deemed important for this project were deducted.
From these metrics, test cases were designed so that they specifically gave results
for these metrics. The tests were also designed in a way that tried to eliminate other
factors that could influence the results, e.g., by doing them on the same hardware,
and the algorithms were developed within the project to make sure that code errors
did not influence them. By conducting these tests, the information needed to draw
conclusions for this project was successfully gathered and the testing was deemed
to answer for the needs of the project.

In the pathfinding results, a clear winner is not apparent. Every pathfinding algo-
rithm has its own set of benefits and drawbacks, this is something that was clear
even before the project started by reading up on different possible solutions. The
ones that were tested in this project were the algorithms that were most used for
similar applications. Even though the margins were, in many cases, modest and all
the algorithms could probably have been viable for the task at hand, the A* algo-
rithm with Manhattan distance as a heuristic function prevailed with significantly
lower time-to-compute and adequate path lengths in our specific scenario and was
therefore chosen. But if one were to apply these pathfinding results to something
different than this specific use case, e.g., a different environment or pathfinding
in video games, the tests done would probably show a different result. This does
not mean that the tests are not accurate or valid for this project, but pathfinding
algorithms do perform differently given different scenarios and there is no perfect
answer for what algorithm is best for every use case. The pathfinders worked as
intended and provided valid paths with low variance in the results and did so with
performance good enough to be run on our specific hardware setting.

6.2.2 Path following
For the evaluation of path following algorithms, only one algorithm was implemented
and evaluated. Because of their higher complexity than, e.g., pathfinders, the scope
of the project did not allow to implement multiple algorithms to test against each
other. Different pathfinding algorithms were researched to find an algorithm that fit
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this project, this process is described in Section 2.1.7. From that research, Adaptive
Pure Pursuit was chosen as a likely best candidate to be evaluated. The metrics that
the were desired to gather for the path following was decided upon by discussion
together with the technical supervisor at Infotiv. The tests were yet again designed
to accurately measure the metrics without other influencing factors.

The path following algorithm was tested successfully in software and performed well
with an average deviation of around one centimetre. The lowest average deviation
was measured with a lookahead distance of three pixels (six cm). However, with
a lookahead distance this short, visual inspection showed that the algorithm was
aggressive and constantly adjusted its path to match the curve. This is good if the
path has many tight corners or if the path is jagged, but when it comes to more
straight paths with less curves, this behaviour could cause a higher deviation. But
more importantly, in a scenario that includes real hardware, this could cause small
deviations in e.g., the motor response to be exaggerated and the driving experience
to become unpleasant. Because of this, a lookahead distance of five pixels (ten cm)
was deemed as the best fit for the project.

6.2.3 Parking space detection
For the evaluation of the parking space detection’s performance, tests were con-
ducted to determine which algorithm to use and what parameters yielded the best
results. In the algorithm there are several factors with multiple levels. The most
important factor is the only one that was rigorously tested where the others were
deemed crucial and therefore omitted from testing. The amount of blur added to
the different images impacted the number of features and ultimately the number of
features matched greatly.

The experiments that were conducted aimed to achieve two goals. The first being
to decide which feature detection algorithm was most suitable for being used in
real time using constrained hardware. Once the best algorithm was decided more
rigorous test would decide the optimal parameters for that specific algorithm. The
metrics that were chosen, quality, efficacy and utility were used to determine how
suitable the different algorithms and configurations were. Quality was derived as
the number of correct matches are important. If the number of matches is too low,
the algorithm would not be as certain that the parking space is located where it says
it is. The threshold for what the algorithm classifies as an identified parking space
could be lowered, but that would increase the possibility of a misclassified parking
space. Efficacy was derived as the computational time of the algorithm is of great
importance. In a system that must run in real time, the computation time of the
algorithm is a deciding factor that could eliminate an algorithm as a viable option.
Utility was derived as there could be cases where two algorithms or configurations
could be tied. For example, a situation where one argument configuration had a
slightly higher number of average matches and another one had a slightly higher
number of maximum matches could occur. In this case a delimiter must exist. Util-
ity would be used as the deciding factor in a situation where the data showed two
configurations that were similar in performance and a human decision had to be
made.
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All experiments were conducted in a controlled environment with as little external
disturbances as possible. The platform was placed in a concealed room that no one
had access to, and all moving objects were removed. Furthermore, all objects that
were unnecessary for the detection to be made and could be moved, were removed.
In this sterile environment the platform was placed in a static location a set distance
from the parking space and the platform was not moved throughout the course of
the experiments. All frames that were fed into the algorithm were gathered in real
time from the platform.

The parking space detection algorithm had to be severely limited in the earlier stages
of the project. The algorithm could not run only once due to the limitations with
BreezySLAM but had to be run continuously and scanning in real time. Because
of this, the computational time of the parking space detection algorithm had to be
in focus. Algorithms such as SIFT had little to no chance of competing with more
lightweight algorithms due to this limitation. For the parking space detection algo-
rithm, the choice of using SURF for feature detection and BF for feature matching
was made. The reasoning behind what algorithms were chosen for evaluation is
largely based on the study made by F.K.Noble [1]. There is a possibility that there
are algorithms and combinations of algorithms more suited for this specific applica-
tion. However, the limited nature of the project requires that certain delimitations
be made.

F.K.Noble argued that BRISK in combination with BF yielded the best results.
However, based on our experiments, BRISK was not a suitable choice. Not only
did SURF outperform BRISK in terms of identified features, but it was also signifi-
cantly faster. Furthermore, the features that BRISK managed to identify, and that
BF later matched resulted in many false positives. This does not necessarily have
to be a result of BRISKs shortcomings but could be that BF just performed poorly
with the specific features that BRISK identified. BRISKs poor ability to identify
features could also be due to it not being implemented correctly. The algorithm has
many different arguments, and to optimize its ability to identify features a set of
separate experiments would have to be conducted. The parameters with which the
algorithm is initialized should however not affect the computation time which would
still be too large to work in this scenario, making it a poor candidate. BRISK could
also just not work well with the simple images that are used in this project. Even
though BRISK might not be viable for this project, F.K.Nobles research makes it
interesting to investigate further. Maybe BRISK, given the correct arguments and
slightly more powerful hardware could heavily outshine the competitors. This could
be something to investigate in future works.

SIFT identified more features than BRISK and had, like SURF, no false positives.
The algorithms computation time is however longer than what can be considered
acceptable in this project. With an average computation time ranging between 1.85
and 1.95 seconds per identification, it was quickly deemed unsuitable for use in a
real time application.
Once SURF was deemed the most suitable for this specific application, a series
of more in-depth experiments were conducted to establish the optimal parameters.
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The experiments did not only help decide the most optimal parameters, but also
revealed some interesting facts. Firstly, when using SURF, there were never even
a single false positive, indicating that it works well with BF. Secondly, the average
computation time did not deviate much. This was not unexpected, but it is good to
know that independent of the configuration, the time will not be severely affected.
Lastly, there seems to be no clear pattern in the amount of blur on both the images
and the number of matches. A limit with the test performed is that it was done in
a controlled environment. The vehicle was static, and the parking space looked the
same for each configuration tested. In a real-life scenario, this would rarely be the
case, perhaps making it harder to have the optimal configuration in every situation.

The amounts of features matched using SURF and BF is, in comparison to the
example on OpenCV’s website, still rather low. In those examples, they match
features on a cereal box, with features from an image containing that same cereal
box, positioned on a table with several other items. The amount of features they
managed to extract from both the images and the matches they get is larger than
what we managed. This could be because the images of the parking space and
the map contains comparatively few features. The example images contain plenty
colours and much information around the object detected which could be a cause for
the fact that more features are detected. One way to perhaps increase the number
of features detected is to introduce some white noise to the images, causing them to
not be identical anymore. This could make the feature matching algorithm detect
more features as the image would no longer only contain the colour values 0 and
255. Furthermore, it could perhaps make the feature matching algorithm match
more features or be more secure on the features that it does match. However, there
is also the risk that white noise could create features that previously did not exist,
thereby causing it to make more false positive matches. Introducing white noise
would once again require a great deal of configuration as to make the algorithms
work optimally. Unless the feature matching algorithm is configured correctly, there
is a high chance that it will either not match any features or match way too many
features. Once again, another set of rigorous tests would need to be performed to
make a sensible judgment.

6.2.4 Issues with hardware platform testing
When testing the systems on the hardware platform, severe issues were discovered.
Firstly, after just a few preliminary tests to test basic functionality, the hardware
platform started to display different technical issues. This was something that it
had done intermittently throughout the project. This took a lot of time as the issues
had to be fixed, and we did not have much previous experience with the platform
or its issues.

Second, during the brief tests we conducted, the platform did not act as expected.
This was caused by the coordinates calculated by BreezySLAM not being correct.
According to the coordinates from BreezySLAM, everything was working as intended
and the car’s positioning was close to what the algorithms tried to achieve. However,
the platform was, in reality, not located where the algorithm claimed it to be. There
was in fact a big difference in what the BreezySLAM claimed and the real position-
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ing. This problem did not seem to be caused by the algorithms that were developed
in the project but by BreezySLAM. BreezySLAM was simply not accurate enough
to calculate a good enough depiction of its surroundings to let it position itself in
space while driving. This caused major spatial drift when driving the vehicle and
was verified to be the cause of our issues by a couple of different methods. First, the
platform was positioned at a fix position in the room marked as coordinates (0,0).
The platform was then manually driven 50 cm straight forward and then reversed
back to its original position. By doing this small and simple manoeuvre, the coor-
dinates could drift as much as 50 pixels in any or both X- and Y-directions in an
image that was just 500x500 pixels. We tried to mitigate the issue by trying to see
if there was a pattern to the drift that could simply be offset by another function,
but the data seemed random. Second, to eliminate the possibility of the LiDAR
hardware causing the issue, another more advanced SLAM algorithm called Google
Cartographer [48] was implemented using the LiDAR from the platform and a more
powerful laptop as computational unit. By doing the same experiments of driving
the vehicle straight forward and back again, we could conclude that no such drift
was present in that algorithm.

Unfortunately, implementing Google Cartographer was not in the scope of this thesis
because of it being much more computationally intensive and therefore not viable to
run on the platform. Furthermore, the way that Cartographer provides its output
data such as coordinates, angle in space and images are extremely different from
how BreezySLAM works and a complete rebuild of the entire code base would have
been required to integrate it into the project.

Because of these issues, the project could not provide accurate or meaningful results
for the parking algorithm or final product tests.

6.3 Threats to Validity
In this section, threats to validity will be discussed. The different type of threats
are separated in several different subsections. Conclusion validity is the reasoning
surrounding the relationship between treatment and outcome, i.e., can we draw
reasonable and correct conclusions for our outcome from our treatment construction.
Internal validity also concerns the relation between treatment and outcome, but
instead focuses on if something outside of our control could have caused the effect
seen in the results. Construct validity concerns if the construction of the study
actually measures what it is intended to measure. External validity concerns how
the findings of the study can be generalised or if the cause-effect relationship is
context-dependent.

6.3.1 Conclusion Validity
Some tests were designed to not always have a high degree of statistical power, i.e.,
with a p < 0.05, in terms of sample size. This was done primarily because of time
limitations where large enough sample sizes for e.g., the pathfinding algorithm’s con-
vergence would be unfeasible to test. In this thesis, this was by design and a choice
made because of the fact that this thesis goal was not to determine with absolute
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certainty the best algorithms in their respective fields, but instead use the tests for
development purposes and highlight how one can conduct a systematic evaluation
in a project like this. Because of this, some of the findings regarding specific algo-
rithms’ performance might not be accurately generalised and should not be used at
face value for a project developing a similar artefact.

6.3.2 Internal Validity
The biggest threat to internal validity is the lack of accuracy in the chosen SLAM
algorithm. Because of this, the validation of the other components’ performance was
not possible to conduct properly. Because SLAM is such an integral part of every
algorithm, the real-world performance could only be guessed from how the platform
acted since it did not have correct coordinates. The algorithms that could be vali-
dated in software were however validated properly and the issue was confirmed to be
caused by BreezySLAM and not anything else, so the algorithms should therefore
function properly given more accurate SLAM data.

6.3.3 Construct Validity
To safeguard against construct validity threats, it is important to make sure that the
metrics you are gathering data on are actually the correct metrics for the situation
at hand. This was achieved mainly through a rigorous requirements engineering
procedure to gather and specify the various metrics that were relevant. The pro-
cedures for how the requirements elicitation and specification were conducted was
from lector Eric Knauss’s course on the subject [49]. The requirements specification
created could then be used to verify that the different metrics that were decided
upon were actually the correct ones for the project.

Due to the issues presented in 6.2.4 the final product was never tested or evaluated.
Because of this, no data was gathered for the final product and the metrics can not
be evaluated. However, seeing as all the previous tests on the individual components
were successful and their metrics were deemed suitable, the metrics and design of the
systematic evaluation for the final product should in theory still be valid, although
further experiments would be needed to validate the functionality and validity of
the individual parts as a complete unit in the future.

6.3.4 External Validity
Most of the tests were run in a controlled environment with constrained hardware
or purely in software, which poses threats to external validity. As the platform is
unique with other software running concurrently, the exact environment of the study
could be hard to replicate. Furthermore, not all factors that could have affected the
outcome of some of the experiments were tested. For example, when conducting
the experiments for the parking space detection algorithm, the threshold factor was
deemed crucial to identify a significant number of features at all, and tests without
it were therefore omitted as a factor. However this could, given a larger time span
of the project, be tested more rigorously.
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The outcome of the thesis may vary based on the environment where the vehicle is
placed. If the parking algorithm is used in a controlled environment that is empty
except for the two vehicles delimiting the parking slot, the algorithms should be able
to perform adequately. However, in a real-life traffic situation with several objects
of different shapes and sizes, and a constantly changing landscape, it will perhaps
not work as intended. This is due to all calculations not being done in real time due
to the computational limitations on the hardware and the 2D LiDAR’s inability to
see objects that are not located on the same height as itself. Because the vehicle
will not be able to do all calculations for everything in real time, some things must
be precalculated before doing its operations, for example the path generation for
the path to the parking space. It will not be able to change its path while following
it, e.g., if the parking space becomes occupied or if a pedestrian suddenly decides
to stand in its way. Although this could be mitigated by using some other types of
sensors while driving, e.g., ultrasonic sensors, to be able to interrupt its manoeuvres
and recalculate a path, it was not in the scope of this study due to hardware limi-
tations and time constraints.

6.3.5 Lessons Learned
The project in general has been successful, but some things could have been per-
formed better. From the setbacks experienced, a few key lessons can be learned.
The biggest problem throughout the project was that BreezySLAM did not perform
as expected. The choice of using BreezySLAM was based on the fact that the com-
pany already had an implementation running on their platform and that it probably
was lightweight enough to run on the constrained hardware. However, the imple-
mentation had never formally been evaluated nor verified. The lesson learned here
is to always early in a project secure any assumptions in the time plan by verifying
prerequsities, and to later on use a good test suite that can empirically verify fit and
functionality to minimize the risk for delays. Issues could then have been detected
earlier and mitigated to some extent if more rigorous tests were performed on SLAM
in the earlier stages to prove that the assumptions that were made was correct. If
the issue with the spatial drift was discovered earlier, alternative SLAM algorithms
could have been researched. Even if no other SLAM algorithm that could be run on
hardware that constrained could be found, the project could have been redesigned
at an earlier stage.

Another key lesson learned is to have an even more detailed plan on exactly what
data should be gathered from each experiment. The way that the experiments were
performed was rarely changed as they were planned to a great extent. However, some
of these had to be run multiple times as some key data was missing. Furthermore,
automating experiments and data collection should be done to the greatest extent
possible. The first time some of the experiments were run they were performed
manually, and the data collected manually inserted into spreadsheets. However,
after having to re-run a few experiments, they were automated. Not only did this
make it easier to re-run the experiments, but the base code for these could be reused
for other experiments, making it easier to setup new tests.
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The goal of this thesis was to research how systematic evaluation can be performed
on a series of software modules developed as a proof of concept that it is possible
to achieve specific AD features, such as an autonomous parking algorithm, using
fewer sensors and cheaper hardware than what currently is used in the automotive
industry.

In this thesis, several methods of evaluation for testing, both in software and in
hardware, has been presented. The methods presented in this thesis cannot be con-
cluded to be the optimal tests to conduct in every scenario, but instead, it can guide
future research on how to come up with testing methodologies and act as general
guidelines. However, given the same type of algorithms to test the tests proved suit-
able and provided the data needed to make decisions on the best fitting algorithms
and technologies.

The tests were mostly successful and provided the results that were needed to an-
swer the two research questions. However while testing in hardware, one specific
component, BreezySLAM, was not accurate enough to evaluate and verify the per-
formance of the product as a whole. This was because of the spatial drift caused by
BreezySLAM’s lack of ability to correctly position itself within space as discussed in
Section 6.2.4. The issue was verified to be caused by BreezySLAM by both testing
it individually with simple experimental tests and by implementing a more com-
putationally intensive SLAM algorithm in the form of Google Cartographer, which
proved more accurate. However, its implementation and integration with the other
software components was outside the scope of the project.
For future projects, the first thing to consider would be to use another SLAM al-
gorithm, preferably e.g., Google Cartographer, that gave better results in terms of
both map- and positioning accuracy during the quick testing done in this thesis.
This would require the scoping to be a bit different and allow for more advanced
hardware for running the SLAM algorithm at a viable speed.
This increase in compute performance would also allow for further testing surround-
ing BRISK, SURF and SIFT feature recognition to verify if BRISK is better than
the others if calculation speed is not as crucial or hardware significantly increased.

For the implementations to work in a real-world scenario, some sort of handling of
dynamics in the environment would also be needed. In the work done here, if an
object is placed in front of the platform e.g., after a valid path has been calculated
to the goal, the platform takes no new information into consideration while it is
driving there, which would not be feasible in a real-world environment.
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Appendix A 
 

Requirement specification for  
Autonomous Parking Platform 
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A. High-level demands 
This chapter explains the high-level requirements, giving a understanding about the project’s goal and and overview 
of the functions of the system. 
 
A1. Flows 
 
 The chart below is the desired logical flow of the parking algorithm. 

 



 
 

 
Steps in execution Related tasks and 

subtasks 
1.     Users should be able to manually drive the vehicle. C6, E1.1 

2. The vehicle autonomously detects parking spaces in real time. C1, C2, D1.2, D1.3, 
E1.1 

3. The vehicle calculates and follows a path to the parking space C3, C4, C6, E1.2 

4. After reaching the desired start position, the vehicle shall 
autonomously park itself. 

C5, C6, C7, D1.4 

 
 
A2. Business goals 
 
 
Goals for the new system Solution vision Related tasks Deadline 
1. Efficient and easy to use for 

the user 
The entire parking procedure 
should include a maximum of 
TWO manual steps for the user 
(e.g., accept a detected parking 
spot and commence parking 
algorithm) 

C5, C7, C8, E1, E2, 
E3, E4 

2020-06-20 

2. The platform should be as 
easy as possible to adapt to 
other domains, e.g., a 
warehouse robot or 
something similar. 

Make the software as modular 
as possible, it should be easy to 
change e.g., the parking space 
detection to detection of another 
object instead. 

C1, C2, C3, C4, C6, 
D1, D4 

2020-06-20 

3. Low cost of implementation The system should use only a 
2D-LiDAR and constrained 
hardware (such as a Raspberry 
Pi 4) 

C6, D2, D3 2020-06-20 

 

 
 
 
 
 
 
 
 
 
 
 



 
A3. Requirements prioritization 
 
The table below shows the order in which requirements should be prioritized. The priority score is a combined score 
from two tests:  
 
Test 1: The 100-dollar test , from a developer viewpoint.  1

Test 2: The ranking test(bubble sort) , from an Infotiv management viewpoint. 2

 
The rank goes from high priority (1) to low priority (10). 
 
 

Rank Requirement Priority score  
Test 1 score 
(developer) 

Test 2 score (Business 
Manager) 

1 C2 0,83 0,77 0,95 

2 C1 0,74 0,57 0,9 

3 C3 0,73 1 0,45 

4 C4 0,71 0,57 0,85 

5 C6 0,69 0,57 0,8 

6 D1 0,66 0,57 0,75 

7 C5 0,64 0,57 0,7 

8 E1 0,61 0,57 0,65 

9 C7 0,45 0,66 0,25 

10 C8 0,33 0.57 0,1 

 
 

 
 
 
 
 

1 “Managing software requirements; a unified approach,” Scitech BookNews, vol.24, no.1, 03 2000, copyright -    Copyright 
BookNews, Inc. Mar 2000; Last updated - 2010-06-06. [Online]. 
2 Karlsson, C. Wohlin and B. Regnell, “An evaluation of methods for prioritizing software requirements,” Information and  Software 
Technology, vol. 39, no. 14-15, pp. 939–947, 1998. 



B. Stakeholders 
To get an overview of the stakeholders in this project and their relationships between Interest and Influence, see the 
stakeholder diagram below. For an explanation of what the different stakeholders infer, see the list below. 

 
● Core Developers are the owners of the project, in this case Nils Gangby and David Johansson 

 
● Infotiv Management refers to the management at Infotiv AB where the project is conducted. 

 
● Examiner refers to the examiner of the project from the Software Engineering division at Chalmers 

 
● Supervisor refers to our supervisor for the project which guides us with academic and technical know-how 

throughout the project 
 

● Chalmers refers to Chalmers University of Technology as an institution. 
 

● SE-Students refers to other Software Engineering students that might take an interest in the work done in 
this project. 
 

● Infotiv Marketing refers to the marketing division at Infotiv AB which may or may not sell this as a product if 
deemed a success. 
 

● Other Developers refers to the other developers at Infotiv AB who might gain knowledge from the project 
that they can apply in other projects in the future. 

 
 
 
 
 
 



C. Tasks to support 
 
The autonomous platform shall implement some of the following tasks based on the prioritization. Each task is 
executed from start to finish with possible subtasks. Subtasks are marked with another number after the main task 
number, e.g., C1.2. 
 
The example solutions should be used as guidelines, they can be used as-is or changed if needed. 
 
 
C1. Generate a SLAM map 
 
This task allows the vehicle to generate a graphical SLAM map of its environment so that further image processing 
can be applied to it. 
 
User: Vehicle 
Start: The vehicle starts driving around the area. 
End: When the vehicle has created an image of the generated SLAM map. 
 
Subtasks and variants: Example solutions: Code: 
1. Receive raw data from BreezySLAM  C1.1 
2.     Generate an Image from the data that can be 

used for image processing 
 C1.2 

 
C2. Detect a parking space 
 
This task allows the vehicle to detect and locate the coordinates for a valid parking space in real time. 
 
User: Vehicle 
Start: The vehicle has been driven around the area long enough to create an OK SLAM map of the area. 
End: When the vehicle has detected and located the coordinates for a parking space 
 
Subtasks and variants: Example solutions: Code: 
1.     Receive an image of the SLAM map generated 

in BreezySLAM  
 C2.1 

2.     Apply image processing algorithms if needed to 
clean up the map. 

 C2.2 

3.     Detect a parking space Utilize Feature recognition algorithms 
to match the features in the SLAM 
map to a reference image of a 
parking space 

C2.3 

4.     Calculate the detected parking space’s 
coordinates in the SLAM map. 

 Calculate the translational matrix 
between the coordinate system of the 
reference image and the SLAM map. 

C2.4 

5.    Calculate a desired position for the vehicle to 
navigate to 

Use the same translational matrix as 
above to translate a marker on the 
reference image to the SLAM map.  

C2.5 

 

 
 

C3. Generate a path to reach parking space 
 
This task allows the vehicle to generate a path to reach the parking space and its desired starting position. 
 
User: Vehicle 



Start: The vehicle has been given the coordinates to a parking space and its desired starting position 
End: When the vehicle has generated a path that it can follow to reach said starting position 
 
Subtasks and variants: Example solutions: Code: 
1.     Receive the SLAM map and desired start & end 

positions 
 C3.1 

2.     Generate a valid path between those two points 
without collisions. 

Use a pathfinding algorithm C3.2 

 
 
C4. Follow the path to the parking space 
 
This task allows the vehicle to follow a given path to reach the parking space and its desired starting position. 
 
User: Vehicle 
Start: The vehicle has been given a generated path to a parking space and its desired starting position 
End: When the vehicle has relocated itself to the parking space via said path. 
 
Subtasks and variants: Example solutions: Code: 
1.     Receive the SLAM map and a generated path  C4.1 

2.     Follow given path with acceptable levels of 
deviation 

Use a path following algorithm C4.2 

 
 
C5. Parking algorithm 
 
This task allows the vehicle to generate a path to park itself in the parking space 
 
User: Vehicle 
Start: The vehicle is located at a desired starting position to commence parking. 
End: When the vehicle has relocated itself to its final parked position 
 
Subtasks and variants: Example solutions: Code: 
1.     Receive the SLAM map and its current position  C5.1 

2.     Generate a path that ultimately takes it to a 
parked position 

Use the same pathfinding algorithm 
as in B4 but with several waypoints 

C5.2 

3.     Follow given path and conduct parking 
maneuvers 

Use the same path finding algorithm 
as in B4 

C5.3 

 
 
C6. The software can control the Infotiv Embedded Platform 
 
This task allows the Software to control the hardware on the Infotiv Embedded Platform (IEP) 
 
User: Software 
Start: The software has generated paths and/or commands that the hardware should execute 
End: When the entire parking procedure is completed 
 



Subtasks and variants: Example solutions: Code: 
1.     Receive commands from the tasks above.  C6.1 

2.     Apply those commands to the vehicle so it can 
drive. 

E.g., Use necessary PID controllers. C6.2 

 
 
C7. Accept proposed parking spot 
 
This task allows driver to accept a proposed parking spot so that the vehicle knows it should park there 
 
User: Driver 
Start: When a parking spot has been detected by the vehicle 
End: When the user has accepted the parking spot 
 
Subtasks and variants: Example solutions: Code: 
1.     Driver receives a notification that a parking spot 

has been detected 
Provide text in terminal or have some 
GUI (GUI not demanded) 

C7.1 

2.     Give the user an option to accept the parking 
spot 

Either let the user type “yes” in a 
terminal or click a button depending if 
GUI is existant 

C7.2 

 
C8. Data feedback 
 
This task allows driver to accept a proposed parking spot so that the vehicle knows it should park there 
 
User: Vehicle 
Start: When the program launches 
End: When the program shuts down 
 
Subtasks and variants: Example solutions: Code: 
1.    If wanted, the user should be able to extract data 

from the column. 
Should be able to extract Current 
position, current speed, goal position 
etc. 

C8.1 

 
 
 
 
 
 
 
D. Technical IT architecture 
This chapter presents the compatibility requirements in regards to the Infotiv Embedded Platform (IEP) 
 



 
D1. New hardware and software 
 
Platform requirements: Example solutions: Code: 
1. The software should be written mainly in Python  D1.1 
2. The software has to be able to run on a 

Raspberry Pi 4 
Make every component of the 
software as lightweight as possible 

D1.2 

3. The software must only use a RPLiDAR-A2 as 
sensory equipment 

 D1.3 

4.     The software should be compatible with IEP’s 
underlying communication protocols 

Use ZeroMQ for handling of data D1.4 

 
E. Usability and design 
 
The following requirements are for the user experience of the platform 
 
E1. Usability 
 
Platform requirements: Example solutions: Code: 
1. The vehicle should require no manual input to 

detect a parking space 
The vehicle can autonomously detect 
and locate a valid parking space. 

E1.1 

2. The driver should not need to relocate the 
vehicle next to the parking space manually 

The vehicle should relocate itself to a 
desired starting position to 
commence parking. 

E1.2 

3. The driver should get a notification only when a 
parking space is detected and located 

Notify either via Command line or a 
GUI. 

E1.3 

4.     The notification requires as little manual labour 
as possible to accept 

It can be accepted in one command 
or one click (If there’s any GUI). 

E1.4 

 
 
 
 
 
 
 
 
 
 
 
 

Tracability Analysis 
 
Tracability between Tasks and Business goals 
 

Tasks A2.1 A2.2 A2.3 



C1                 X  

C2                 X  

C3                 X  

C4                 X  

C5               X   

C6                 X               X 

C7               X   

C8               X   

D1.1                X  

D1.2                  X 

D1.3                 X 

D1.4               X  

E1.1              X   

E1.2              X   

E1.3              X   

E1.4              X   
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