Network Modelling of Cooling of
Hydro-Generators

A Thermal and Fluid Model

Master’s thesis in Applied Mechanics

MARC CABRE GIMENO

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

MASTER’S THESIS 2017:45

Network Modelling of Cooling of
Hydro-Generators

A Thermal and Fluid Model

MARC CABRE GIMENO

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Applied Mechanics
Division of Fluid Dynamics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Network Modelling of Cooling of Hydro-Generators
A Thermal and Fluid Model
MARC CABRE GIMENO

© MARC CABRE GIMENO, 2017.

Supervisors: Héakan Nilsson, Bercelay Niebles Atencio, Daniel Rundstrém (Voith
Hydro AB)
Examiner: Hakan Nilsson, Department of Applied Mechanics

Master’s Thesis 2017:45
Department of Applied Mechanics
Division of Fluid Dynamics
Chalmers University of Technology
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2017

v

Network Modelling of Cooling of Hydro-Generators
A Thermal and Fluid Model

MARC CABRE GIMENO

Department of Applied Mechanics

Chalmers University of Technology

Abstract

Air-cooling is the most common way of cooling large generators like those used in
hydropower. However, because these machines are quite complex and therefore, un-
derstanding the cooling of these machines is not easy. The details of the air flow
inside of the generator is still a field in which the academics are doing research and
developing more detailed and accurate CFD studies. The downside of these CFD
studies is that they often involve the use of more computational resources and time.
This lack of versatility of CFD studies makes its use impossible for daily small design
tests. In this area, the lumped parameter thermal models are the tools used to get
fast and good enough results that allow designers to test little modifications.

The present work consist of the development of a versatile lumped parameter model,
implemented in Matlab/Simulink, to study the cooling of hydro-generators from a
thermal and fluid perspective, contributing to future ventilation studies and re-
search. The model created is based on a 3D network modelling of a Voith Hydro
real generator, using lumped element strategy and is able to run transient simula-
tions in a very short amount of time. The model is validated with real thermal data
and is finally used to perform a parametric study of the outlets of the stator cooling
ducts of the modelled generator.

Keywords: Hydropower, Generator, Cooling, Ventilation, Lumped element, Ther-
mal network, Fluid network, Transient simulation, 3D network modelling, paramet-
ric study.

Acknowledgements

I would like to thank everyone that has contributed directly or indirectly in this
master thesis; professors, colleagues, friends and family. In particular, I would like to
thank my supervisors Hakan Nilsson and Bercelay Niebles Atencio for their support
and assistance. I would also like to show my acknowledgement to Daniel Rundstrom
and Voith Hydro for the data provided and the helpful assistance, especially in the
validation.

Marc Cabré Gimeno, Gothenburg, June 2017

vii

Contents

1 Introduction

1.1 Background
1.2 Partsofagenerator L
1.2.1 Rotor
1.2.2 Stator
1.2.3 Cooling system
1.3 The network model
1.4 Scope of the thesis L
2 Thermal network model
2.1 Basics of heat transfer L.
2.2 General conduction equationo
2.3 Nodal implementation
2.3.1 Thermal resistances
2.3.2 Heat balanceo 0
2.3.3 Heat generation 0oL
2.3.4 Boundary conditions

3 Ventilation model

3.1 Fluid dynamics basics Lo
3.2 Heat transfer coefficient calculation
3.3 Temperature increase in the channel

4 Model overview

5 Results
5.1 Validation
5.2 Effect of changing the outlet width
6 Conclusion
6.1 Validation
6.2 Effect of changing the outlet width
6.3 Possible future work
Bibliography

A Appendix

17
17
21
22

25

29
29
32

37
37
37
38

39

ix

Contents

Al inputgen.m I

A2 executemod.m 111

A3 netmod.m Vv

A4 netflowem XXXI
AL Tthtem XXXVI
A.6 linknodes.m XXXVII

1

Introduction

ver the lasts years, the efficient production of energy has become one of the
biggest challenges to become energetically sustainable. In order to reduce the
emissions of C'Oy and stop the global warming, the International Energy Agency
(IEA) [13] considers mandatory to stop increasing the usage of carbon based energy
sources. In its world energy outlook, the IEA recommends to absorb the future
demand of energy only by the use of renewable energy. In recent literature, the
improvement of efficiency in old facilities is considered as one of the future sources
of energy [7]. In this increasing of efficiency electric generators are crucial. Electric
generators are machines that are used to transform mechanical energy into elec-
trical energy. They are the main players in energy production present in nuclear,
hydropower, wind-power, coal and gas energy. Three main sources of energy losses
can be identified in the generator: electrical losses in the windings, magnetic losses
mainly, and mechanical losses. The electrical losses are produced in the windings of
the stator and rotor if they have. Electrical losses are produced by the resistance of
the conductor

g=R-I? (1.1)

being ¢ the losses, I the intensity of current and R the resistance of the conductor
that is affected by the temperature

increasing its electrical resistance when the temperature increases. The magnetic
losses are produced in the core and windings. On the other hand the mechani-
cal losses occur in all the components that have friction, as the bearings and by
the ventilation system. The losses generate heat, and the consequence is a rising
temperature which has a negative effect on the generator: deterioration of the elec-
trical insulation of the windings and an increase of the losses of the conductors (as
equations 1.1 and 1.2 show) leading to a lower efficiency. For these reasons, it is im-
portant to include an efficient cooling system when designing the generator ensuring
low temperatures and minimising the ventilation losses. As designing an electrical
generator implies extensive multidisciplinary teams it is important to apply fast and
easy to use tools for the design of the cooling system and to check the thermal be-
haviour in every step.

1. Introduction

1.1 Background

Hydropower plants extract the power of flowing water due to a height difference
from the water surface before and after the plants (with the usage of dams) or from
the flow speed (Run-of-the-river plants). It is a renewable energy even if some fa-
cilities can have a negative impact in the ecosystem but can be mitigate with effort
[10]. Nowadays, hydropower is responsible of 16% of the entire world electricity
production [8] and it is predicted to increase in the future. Its role to balance the
electric grid will be as well increased in the future. The balance is both in terms of
storage and frequency [9]. This means that the hydropower electric generators will
be working more in transient conditions than they were designed for.

The motivation to improve the performance of hydro-generators in Sweden is ex-
plained by the fact that hydropower represents 41.6% of the electricity production
in Sweden [1]. During the period between 2003 to 2012 the redesign of Swedish
hydro-generators has increased the hydropower production 5% [10].

As a main actor in charge to collect the energy as the electric generator is, that
nowadays can produce dozens of megawatts, they are a target for improvements.
The increase of its efficiency, the study of transient conditions and new upgrades
to old generators increase the interest in new thermal and ventilation studies and
research. Traditionally, thermal analysis can be classified in two big groups [6]:

e Analytical methods: The most common is the usage of lumped parameter
networks combining a flow network and a thermal network. It has the dis-
advantage of being long to built and to calibrate but have the advantages of
being fast to solve and easily modifiable.

o Numerical methods: Computational Fluid Dynamics (CFD) is the method
mostly known for ventilation numerical methods. CFD can provide really ac-
curate results and its a great tool for providing visual results that allow to the
user the possibility to understand the behaviour of the fluid flow. On the other
hand, with complex models CFD are very time and computational resources
consuming.

The present work explains and develops a model of a hydro-generator based on
lumped element network modelling. The main reason for using lumped parameter
thermal models is the complexity of the geometry that makes CFD much less com-
plex to modify and simulate than a network model. The lumped parameter thermal
models are the tools used to get fast and good enough results that allow to designers
to test modifications while designing. But in order to perform big validations it is
mandatory to run CFD studies and even prototypes validations.

1.2 Parts of a generator

This section introduces the main parts of the generator (rotor, stator and cooling
system) and some of the main geometrical parameters. Figure 1.3 is a sketch of a hy-

2

1. Introduction

Cooler

Figure 1.1: Sketch of a hydro-generator. Source:|[12]

drogenerator, the size of the main parts can be compared with the man represented.
In the centre of the figure is located the shaft that would be directly connected to the
turbine under the sketch (not represented in the picture). Supporting the shaft, in
yellow, are the bearings. In colour green is represented the rotor, directly attached
to the shaft. In red is drawn the stator parts that are supported by the frame, in
blue. Going further radially from the stator are located the coolers.

1.2.1 Rotor

As its name suggests, the rotor is the part of the generator that rotates thanks
to the power transferred from the turbine by the shaft (see Figure 1.1). With its
rotation a rotating magnetic field is created, responsible of inducing a current in the
stator windings (Faraday’s Law). This magnetic field can be produced by a current
passing inside the exciting windings or by permanent magnets. In the studied case
the rotor is conformed by exciting windings in a salient pole configuration, which is
one of the most typical configurations in hydro-generators.

1.2.2 Stator

The stator is the stationary part of an electrical machine. Figure 1.2 represents an
axial cut of an electrical generator. The left side is useful to visualise the relative
positions of the rotor, stator and airgap (in blue on both sides of the Figure). The
right side of the Figure 1.2 shows the elements of the stator: the windings (or coil),
in yellow, the core, in grey, the frame that supports the structure and the wedge,
in violet. The coil is the component where the current is induced thanks to the
rotating magnetic field. It is put up between two teeth, the yoke and the wedge,
this physical space is called slot. The modelled generator has 288 slots and two coils

1. Introduction

Stator Yoke

Airgap

Rotor Coil
Tooth
Wedge

Figure 1.2: Representation of an axial section of a electric generator, on the right
emphasis on the stator components

per slot. The core which includes tooth and yoke is made by stacked steel plates
reducing the core losses. Those plates are interrupted by cooling channels which
are created by separators placed between two plates (see Figure 1.3). The generator
modelled has 37 axial parallel channels for each slot. The double coil configuration
is separated by a separating wedge. Fach coil has 2 columns and 29 rows of parallel
rectangular wires made of copper wrapped in a thin layer of electrical insulation.
It is in the copper that the electric losses and the corresponding heat generation
occur, and from where the heat must be transferred. The coil is finally surrounded
by a tape made of mica (as electric insulation too) and impregnated in a thermal
conductor called round-packing that is in charge of filling the irregularities in the
contact between the coil and the core. Finally the wedge is the structural element
that keeps the windings inside the slot.

1.2.3 Cooling system

The cooling system is in charge of keeping the generator at a desired temperature.
Figure 1.3 shows the ventilation path of a similar generator than the modelled one.
The figure only represents half of the generator because it is a symmetric generator.
It is possible to notice the typical components of the ventilation system: a recircu-
lating system, a cooler and the ventilation channels. In this case, the re-circulation
is made by two axial fans formed by blades directly mounted on the shaft of the
generator. The fans introduce the air axially on the rotor and air-gap. The cooler
cools the air exchanging the heat with the secondary cooling system. The modelled
generator uses 8 coolers with a capacity of 5 m3/s. The ventilation channels or
stator ducts are the channels where the heat of the stator is transferred to the air.
Starting from the fans the path that follows the air is the following: the airflow is
introduced axially in to the generator by both axial sides of the machine, a part of
this airflow is deviated to cool the end-windings (22% for our case).Then the air that
follows the air gap cools the rotor and is introduced to the stator ducts changing
the air direction from axial to radial. Because of that change of direction and the

4

1. Introduction

- A _
" = Existing : J,J—
U B ; axial fans K
222 |
===
i Stator
ducts ™
cooler | B Bl Bl 7 *

-| New guide
vanes

il
nmr ne=

gt 47 .p Y
|_. P v, ...

Figure 1.3: Cross-section of a hydro-generator with the ventilation flow repre-
sented. Source: Voith Hydro AB

tangential velocity produced by the rotation of the rotor, the study of the airflow
in the generator is really complex. Finally all the air is collected behind the stator
and introduced into the cooler that extracts the heat. After the heat is evacuated
from the machine, the air restarts the whole process. It is a closed ventilation system.

1.3 The network model

The method chosen to model the generator is the lumped element model. A network
built with the lumped element model allows to simplify systems with difficult ge-
ometries to a network of discrete elements. As the network will be an approximation
of the reality the behaviour will be also approximated. The elements from a lumped
element method are easy to parameterize and the models can be easily adapted to
problems with similar conditions. In order to model the ventilation and thermal
behaviour of the generator two network models have to be combined:

e Thermal network model: Based on a lumped element model, where the
resistance is the thermal resistance between two nodes. Allows to calculate
the temperature on the nodes and the heat transfer between them.

¢ Fluid network model: Based on a lumped element model, where the re-
sistance is built with discrete flow resistances and pipe friction. Allows to
determine the volume flow in each possible flow path.

1. Introduction

An advantage of using the lumped element model is the similarity with the electric
model. Table 1.1 shows the equivalence of those two models with the well known
electrical model.

Lumped element model
Electrical model | Voltage Current Resistance
Thermal model | Temperature | Heat flow Thermal resistance
Fluid model Pressure Airflow rate | Flow resistance

Table 1.1: Lumped element model equivalence

1.4 Scope of the thesis

In the present work, the goal is to model a hydro generator using the two network
models described before (based on lumped elements). One model is used for the
thermal behaviour and a second one for the fluid behaviour. The thermal network
model uses basic concepts of heat transfer as the heat transfer modes or the concept
of thermal equilibrium. The fluid network model uses concept fluid dynamics as
conservation of mass-flow or pressure drop on pipes. With both models it is possible
to study the ventilation and cooling of hydro-generators from a thermal and fluid
point of view, contributing to future ventilation studies. One of the requirements of
this work is to develop a parametric model easy to modify. To achieve this require-
ment, the model is developed as a software tool, implemented in Matlab/Simulink.
The part of the generator modelled is a 3D sector of the stator around one of the
slots that accommodate the coils. The generator modelled is a real generator de-
signed by Voith Hydro AB, and in order to build the model real data from geometry
and losses is used. The model is validated using data from a heat run test provided
by the industrial partner. A heat run is an experimental method used to test gen-
erators applying real work conditions and acquiring all the thermal data possible.
It is usually run in a prototype generator that has some few modifications to place
sensors in components where it is impossible in a real generator. Finally, in order
to test the behaviour of the model, a parametric test is performed using the model.
The parametric test consists in variate the outlet of the ventilation channels and
determinate how it affects to the temperature of the modelled components.

2

Thermal network model

his chapter starts with a short description of the basics of heat transfer, defining

the heat transfer modes and the concept of heat balance. Then it is described

how to adapt this concepts it to a network model that uses the lumped element
method.

2.1 Basics of heat transfer

Heat is defined as the thermal energy that is transferred when there is a temperature
gradient. In the atomic scale the heat transfer is the transference of energy in form
of speed (or vibration) between particles. That transfer of speed varies the internal
energy of the molecules. The temperature is the macroscopic measure of the internal
energy. The heat transfer process ends when the difference of temperatures is zero.
This state is called thermal equilibrium. Heat transfer can occur in three different
modes:

e Conduction: Occurs in all mediums where there is a temperature gradient
and direct contact with the particles. The heat transfers from the more ener-
getic particles of the same medium to the less. The effects of conduction are
usually more significant in solids than in other mediums. The capability to
conduct heat of a material is called thermal conductivity. In the same medium,
the unidirectional conduction equation (Fourier law) is written

dT
q=—k el (2.1)
where
— ¢: Heat transferred [WW/m?|
— k: Conductivity of the medium, [W/mK]
— T'(z): Temperature distribution at the medium [K]
— x: Direction in the space [m)]

o Convection: Occurs between a solid and a fluid at a different temperature.
The fluid has to move with a relative speed with respect to the solid. If the
relative motion is produced by buoyancy effects its called natural convection
and if it is produced by mechanical forcing it is called forced convection. Con-
vection is described by

q = W(Tsotia — Tivia) (2.2)

7

2. Thermal network model

where:
— ¢: Heat transferred between soild and fluid [W/m?]
— h: Heat transfer coefficient [W/m?K]|
— T Temperatures of solid contact surface and the fluid [K]

o Thermal radiation: Emission of energy through electromagnetic waves oc-
curs at every surface at a temperature grater than 0 K. As in the other cases,
heat exchange is produced between surfaces at different temperatures

qi—j = EU(T;L - Tf)) (2.3)

where:

— ¢;—;: Heat transferred between surfaces i and j [W/m?]

— €: Emissivity of the surface

— 0: Stephan-Bolzmann constant [W/m?K*|

— T: Temperatures of the surfaces i and j [K]
In the present tool the radiation has not been considered in order to decrease
the complexity of the problem and due to its low impact in the global heat
transfer.

2.2 General conduction equation

The 2" Fourier’s law or general conduction equation describes the heat balance in
time in a medium. Heat balance is then the cause of the temperature variation in
the medium) L 8T
g
VT + 2 =—-— | 2.4
+ koot (24)

where:
o T: Temperature distribution at the medium [K]
« ¢: Heat generation [WW/m?]
o k: Thermal conductivity at the medium [W/mK]
o a = —*_: Diffusivity of the medium [K]

p Cp’
 t: Time [s]

2.3 Nodal implementation

As it was said before, one of the challenges is to develop a network model based on
the lumped element model as parametric as possible in order to be able to perform
changes on the geometry. For that reason, each node of the thermal network model
is conceived as a replicable set of blocks that applies the theory of heat transfer.

2.3.1 Thermal resistances

The network model is made by discretizing the geometry into nodes with defined
Az, Ay and Az. Those nodes (or elements) have assigned the physical properties
of density, conduction and specific heat that correspond to its material. Figure 2.1

8

2. Thermal network model

NOd elft :NO e MOd.er%ght

Al S
Nodgeoy
7 vos 7 I AZ
oo —

Figure 2.1: Node visualisation 3D with nodes names as they are used in the code

i J
k; kj
Al’i AfL‘j

Figure 2.2: Conduction in x-direction representation in 2D

is an example of a 3D network presented with the names that are assigned to the
neighbour nodes as they are in the code. For a 3D model each node will have 6
neighbours, two for each direction.

Any of the modes of heat transfer can occur between a node and its neighbours.
For that reason, in order to standardize all the relations between nodes, the heat
transfer modes are implemented in the thermal model as resistances. The heat
transfer between any node is
L1,

RZ] ’
where R;; is the nodal resistance between nodes i and j. For conduction and convec-
tion for a 3D nodal heat transfer (see Figure 2.2 and Figure 2.3, (z direction would
be orthogonal to x and y)), resistance is calculated. For conduction, the resistance
between two neighbour nodes in the x direction (as in Figure 2.2) is given by

i (2.5)

Axl- ij

Rij:2'ki~Ay-Az+2-kj-Ay~Az

(2.6)

where k; and k; are the thermal conductivity of each node (for that reason is always
preferable to make nodes that are all of the same material). Ay - Az is the contact

9

2. Thermal network model

i J
Ay ._/\/\/\/_.
ki h;
—
Al’i

Figure 2.3: Node convection in x direction representation in 2D

surface between the two nodes. For the convection mode the resistance between two
nodes in the x direction (represented in Figure 2.3) is

Ax; 1
2-ki-Ayi~Azi+hj-ij-Azj
where h; is the heat transfer coeficient of the fluid of the node j. Ay-Az is again the

contact surface between the two nodes. To consider other directions the distance
between nodes and the contact surface has to be modified to the appropriate.

2.3.2 Heat balance

It is possible to develop equation 2.4 for a differential volume to be applied to the
nodal network defining it as

/t IT — /t Heat Balance + Heat Generated (2.8)
0 0 p CpdV
or for a short time interval
2(15 g +gi- AV
AT = 2.9
p Cp AV (29)
or using Laplace transformation
6
g +gi- AV
T(s) = =4 2.10
(s) S Op AV 5 (2.10)

where 1/s is the integrator of Laplace that can easily be implemented in Simulink.
Figure 2.4 represents the implementation of one 3D node with its characteristics
sets of blocks (in Matlab/Simulink). The common Simulink elements are: the ‘gain’
block represented by a triangle, allows to multiply the the signal. The ’tag’ block
allows to connect blocks without a line, which would make the model more confuse.
The ’sum’ block represented by a circle sums or subtract two or more signals. Fi-
nally the Laplace integrator which is named with a ’7/s’. Two main regions can be
noticed in the figure:

o The heat transfer set of blocks, located on the left side, that corresponds to
the direct implementation of equation 2.5, where the two 'From’ tags are the
nodes temperature (the light blue one is the analysed node), the gain block is
1/R (where R is the thermal resistance between the two nodes extracted from
matrix Mr). Finally, the ’Goto’ tag coloured in orange is the heat transferred
between the two nodes.

10

2. Thermal network model

K- Q1 04 2to1 03 2194 2
04 2200408 22 04 2

Qi_o4

T1_05_2from1_04_2to1_05_2

Q1_04_2to1_04_22_04_2

ain 04 21Q00404_21_04_3
T1_04_3from1_04_2to1_04_3

Figure 2.4: Simulink model of one 3D node, in the left side are the heat transfer
blocks and in the right side the heat equilibrium ones

11

2. Thermal network model

Section

Figure 2.5: Generator periodicity

o The heat balance set of blocks, corresponds to the right side of the picture,
is the implementation of equation 2.10: We can observe 6 ’From’ tags that
are linked to heat transfer calculus where this node appears. In that case the
orange tags come from the ‘Goto’ tags that appear in the heat transfer set of
this node. The other two heat transfer are located in other nodes because they
have been calculated before in the code. It is important to notice that we can
only include a heat transfer between two nodes only once in the model. The
circle with the signs are sums or substractions depending on the provenance
of the heat transfer (it has to agree with the sign criterion established with
the equation 2.5). After this operation, the result is added to the generation
assigned to this node (green block), the gain that corresponds to the 1/p-Cp
and the laplace integrator are applied. The result (blue tag) is the temperature
of the node that Simulink will use for the next step of the simulation.

2.3.3 Heat generation

The heat generation is included as the losses. Which is one of the inputs of the
model. As they are divided in iron losses, coil losses, rotor losses and ventilation
losses, they are modelled in different ways. The ventilation losses and rotor losses
increase the inlet air temperature of the model. The coil and iron losses are included
in the nodes in a volume proportion, as

A‘/TLO €
Losses(node) = Total Voczume - Total Losses (2.11)

2.3.4 Boundary conditions

The boundary conditions of the thermal model are determined by two different
types: air boundary conditions for which the temperature of the node is determined
(see chapter 3) and periodic conditions, here described:

The generator, being a rotating machine with circumferential periodicity, can be
treated as a portion of a sector that is repeated (Figure 2.5). The boundaries of this
sector will be considered as periodic planes.

12

2. Thermal network model

Figure 2.6: Representation of a generator with several parallel ventilation channels
and a possible sector to model (in red).

The generator has 37 parallel ventilation rows and the study will be focused in only
one of them, so the analysed sector can be represented as in figure 2.6. This sector
will be the part of the generator modelled.

Figure 2.7 and 2.8 represent in a non-scaled discretization the studied sector. The
colour legend for both figures is: yellow for the coils, grey for the core, violet for
the wedges and blue for the air. Each horizontal line in Figure 2.8 represents the
axial plane that cuts the layers of Figure 2.7. In Figure 2.7, the representations
are the 3 axial layers that have to be at least used to perform the model: two (left
and right representations) for the coil, tooth and wedge interaction. The other one
(middle representation) is the interaction between coils and the air channels. Figure
2.8 represents the modelled sector as it is seen looking from the air gap through the
air channels. The core bars that cross the ventilation channels are the separators
and in the thermal network model are modelled as fins. In this representation it is
easy to perceive the wedge that supports the coils is interrupted in the ventilation
ducts to allow the air into.

Figure 2.9 is a representation of one of the separators with its neighbour channels.
Because of the geometry, the heat flow (represented with red arrows) is horizontally
symmetric. In heat transfer, the symmetry can be interpreted like an adiabatic
surface boundary condition. This fact can be understood in the following way:
if there is no temperature difference the heat exchanged is zero. That allows to
model the separators as adiabatic fins with half of the length of the separators. The
equations to model fins with an adiabatic end is given by

13

2. Thermal network model

1 2 3

Figure 2.7: Representation of 3 layers of 4x9 nodes. The layers are obtained doing
an axial cut of the stator. In Figure 2.8 are represented the cuts

Figure 2.8: Representation of the generator as it is seen from the air gap, blue
represents air, grey the iron, yellow the coil and violet for the wedges. Each axial
cut is represented in Figure 2.7

Figure 2.9: Representation of the heat flow in the separators, dashed line represents
the symmetry of the model

14

2. Thermal network model

B AT
qf - h(A0+€f Af) ’

(2.12)

where:
o AT: Temperature gradient between solid and fluid [K]
o h: Heat transfer coefficient [IW/m? - K|
« A,: Solid surface excluding fin contact area [m?]
» ¢;: Efficiency of the fin
o Aj: Extended fin surface (in contact with the fluid) [m?]
The efficiency of an adiabatic fin is calculated with the formula (see [2] or [5])

tanh(m - L)
= 7 2.13
ef o (2.13)
where
h-P
=4/ — 2.14
m)\’A) ()
where:

o L: Length of the fin (see Figure 2.9) [m]

o h: Heat transfer coefficient [IW/m? - K|

« A: Cross section of the fin [m?]

o A: Thermal conductivity of the fin [W/m - K]
« P: Cross perimeter of the fin [m]

15

2. Thermal network model

16

3

Ventilation model

his chapter introduces firstly the basics of fluid dynamics required to implement

the fluid network model. Then the correlations used to calculate the heat

transfer coefficient used to model the interaction fluid solid. Finally the air boundary

conditions are explained. In all the chapters is shown how it is implemented in the
ventilation network model.

3.1 Fluid dynamics basics

The fluid used for cooling system of the modeled generator is air. It is introduced
axially into the generator cooling firstly the rotor. Then it changes its direction
from axial to radial in order to enter into the different stator channels. Figure 3.2
shows the representation of the fluid network model used for the modelled generator.
Figure 3.1 represents an axial cut of the stator channels, in yellow is represented
the coil and the limits of the core are drawn in grey. Each set of stator channels
is composed by 5 channels that cool a single coil section. After the slot two of the
channels merge into one only channel.

A fluid network model is used to deduce the volume flow in each ventilation channel.
Every bend, section change and friction losse has to be modeled as a flow resistance
where a pressure drop is produced. As the channels are connected at the inlet and

at the outlet, the total pressure drop for every path has to be the same

AP, =AP, Vn, (3.1)

and the total volume flow has to be conserved
Vintet = ;v = Vouttet - (3.2)
The total pressure drop will be the sum of all the single flow resistances:
AP, =Y AP, (3.3)
1
and the pressure drop for each flow resistance is modelled like
AP, = LGl (3.4)
where:

17

3. Ventilation model

A
A,
ye
E

Figure 3.1: Representation of an axial cut of the ventilation channels.

— AP: Pressure drop at item i [Pa]
— (: Fluid resistance coefficient

— v: Air speed at item i [m?/s]

— p: Air density [kg/m?]

The fluid resistance coefficient has to be calculated using geometrical correlations
for discrete (or singular) resistances (like section changes, bends or manifolds) or
calculating the linear resistance due to friction in the channels. For the modeled
case, three main types are used following the procedure described in [3]:

18

o Inlet (i): It is considered a reduction of the airflow cross section used for the

entrance of all the ducts. The fluid resistance coefficient used as it is described
in [3] is

Sin \ 1
kzme:O.5-(1— m) . 3.5
. o 35
Friction (f): It is a linear resistance (depends on the length of the duct) char-
acterised by the friction between the air and the walls of the duct. As its
calculation depends on the airspeed the network has to be solved in a iterative
way. The fluid resistance coefficient from [3] used is

Al

k riction — "~ 3.6
frict D, (3.6)

where A is the friction coefficient calculated as
A= >\lam * Plam + >\sm * Psm + >\r *Pr o, (37)

3. Ventilation model

that is a probability calculation of laminar, smooth tubes and rough tube
conditions, that depends on the airspeed, multiplied by the friction of each

flow mode,
64
Nam = — 3.8
l 7o (3.8)
0.3164
Asm = , 3.9
Rei (39)
1
Ar = 5 (3.10)
(2-109(%))
where A = D% is the relative roughness of the duct (Dj is the hydraulic
diameter, see formula 3.20). The probabilities are dependent on the Reynolds
number,
Re — 2850
e = erf(————, 3.11
1 1
pt:§+§'prt ; (3.12)
1
Plam = 5 = Pt 5 (3.13)
Psm = (1 - prt) * Pt (314)
Dr = Prt " Dt (3.15)

« Outlet (0): Defined as an increase of the airflow cross section, it is used for the
exit of all the ducts and the merging of tubes. The fluid resistance coefficient
used is [3]

koutlet = (]- - g > . (316)
out

The network modeled in the netflow.m file (see A.4) is composed by 5 parallel
entrances of different cross section. The two inlets at the sides of the coils merge
into only one after it. A schematic representation of the system is the one represented
in figure 3.2, where the correlations used in each resistance are marked with i, f or
o. All the 4 ducts end in the outlet with different cross section than in the inlet.
For solving the network the netflowc.m function iterates the volume flow of each
channel until the difference of pressure drop between all channels is in an acceptable
range (modifying the ‘erra’ value. It is possible to change the precision of the results
and sometimes it is necessary to converge). The iteration is necessary because the
friction coefficient depends on the volume flow.

19

3. Ventilation model

AP

—
—

Figure 3.2: Representation of the fluid network model of the analysed generator, Q
represents the airflow, AP the pressure drop for all the channels and the resistances
are named with their type of resistance

20

3. Ventilation model

3.2 Heat transfer coefficient calculation

As defined in chapter 2 the heat transfer coefficient is responsible for defining how
well the heat is transferred between a solid and a fluid. In order to transfer this
heat, the fluid needs a relative velocity with respect the solid and the heat transfer
coefficient is very dependent of this relative velocity. While natural convection is
the phenomenon that occurs when the relative motion of the fluid is produced by
buoyancy forces due to differences of temperature in the fluid, the forced convection
is the one that occurs when the movement of the fluid is ’artificially’ induced (i.e:
produced by fans or pumps or even the relative speed of a car in a motorway).

The following lines describe the correlation used to calculate the heat transfer coef-
ficient in the model. It is important to notice than this value is referred to the mean
air temperature.

The Nusselt number is defined as

(3.17)

where:
— Nu: Nusselt number
— Dy Hydraulic diameter [m]
— h: Heat transfer coefficient [IW/m? - K|
— k : Thermal conductivity [W/m - K]

The goal is to use a correlation to calculate the Nusselt number and finally deduce
the heat transfer coefficient. A widely used correlation for large Reynolds numbers
is the Gnielinski correlation [11]:

L. (Re —1000) - Pr

Nu = - 2 , (3.18)
1+12.7-(L)z - (Prs —1)
where:
— Nu: Nusselt number
— f: Friction factor
— Re: Reynolds number
— Pr : Prandl number
The Prandl number is calculated as
Cp -
Pr= pk e (3.19)

where:
— Pr : Prandl number
— Cp: Nusselt number
— w: Dynamic viscosity
— k: Thermal conductivity

21

3. Ventilation model

As the ducts modelled are not cylindrical it is mandatory to use the hydraulic
diameter formula to apply the correlations

4.8
Dh = —— 3.20
P ? ()
where:
— Dh : Hydraulic diameter
— S: Hydraulic section
— P: Wet perimeter
and the Reynolds number formula is
- Dh
Re=""" (3.21)
v

where:
— Re : Reynolds number
— v: Average air speed
— Dh: Hydraulic diameter

— v: Kinematic viscosity

3.3 Temperature increase in the channel

As the air nodes under study are successions of the same ventilation channel, the
temperature of an air node is calculated considering the power exchanged in the
previous nodes,

2

T = T; 3.22
N gt (3:22)

where:
— T :is the temperature of the node
— ¢;: is the heat transfered to the node i
— p: is the density of the fluid
— C'p: is the specific heat capacity
— @: The flow in the considered channel

Figure 3.3 shows how the formula is implemented in the model. The red "From’ blocks
are the heat exchanges that affect this air node. The orange ’'Gain’ is multiplied
by ¢p rho, the blue "From’ block is the temperature of the air node and the green
‘Goto’ tag is the temperature of the next node.

22

3. Ventilation model

Qu1_00_2to1_01_21_00_2

Figure 3.3: Temperature calculation for the air nodes

23

3. Ventilation model

24

4

Model overview

he tool is developed using MATLAB and Simulink, so it is necessary a basic

knowledge of it to fully understand this report and the code that can be found

in the Appendix. Sufficient documentation and examples are explained in [4], the
Matlab web-page.

The model is focused on obtaining the temperatures in the stator coil, where the
hottest point of the generator is located. For that reason the modelled part in the
thermal and fluid networks is only a 3D portion of the stator (see section 2.3.4) that
corresponds to the ventilation channel of a slot. Figure 4.1 represents the behaviour
of the different parts of the model as well as the dependence among them: the
outputs of the fluid network model are inputs for the thermal network model. The
fluid network calculates the airflow in each stator duct of the model. This airflow is
used to calculate the heat transfer coefficient in each channel and both parameters
are used by the generator thermal network. The losses of the generator are used
to generate heat in different nodes of the generator (core and coils nodes) and as a
preheating of the air.

Other inputs that have to be considered to run a simulation are:

e Simulation time: The simulation time can be defined in the executemod.m
file or directly in the Simulink interface. It is the time in seconds that the
model will take to simulate. The processing time of the model is directly

Generator thermal

Air flow per channel
network model

HTC channels

Fluid
Network Temperatures
. -Geometry —
Model Air temperature -Physical proprieties
Air flow Y prep

Losses

Figure 4.1: Model scheme representation

25

4. Model overview

proportional to the simulation time but usually never exceeds the order of
minutes. A typical value for a run to reach steady state conditions could be
around 10000 seconds with a computation time of more or less 30 seconds.

e Time step: Time step is the simulation time between two consecutive calcu-
lations in Simulink. Usually the automatic step time mode of Simulink can
be good enough for the simulation. It can be modified in the Simulink con-
figuration interface. As it happens with the simulation time, when modifying
the step time the computation time is affected, increasing when decreasing the
step time.

o Initial temperatures: The initial temperatures of the components have to
be determined for the integrator block (see figure 2.3) and are defined in the
script (in the model they are defined at 20°C).

» Mesh size: The mesh/element size is one of the main parameters to decide
before building a network model. This parameter can be modified in the
netmod.m file. The co parameter is the number of nodes horizontally that
will compose the coil, one more node per side will be built (for tooth or air
channel). The ro parameter is the number of nodes for the coil vertically two
more will be added too (for the wedge/yoke and air channels). Finally zo is
the parameter that will determine the number of axial layers, the minimum
and recommended value is 3.

o Initial air temperature: The temperature that the air has after the cool-
ers. The air temperature which the model finally works takes in to account
an increasing of the temperature due to the rotor losses, ventilation losses and
friction losses.

As introduction to the code, Figure 4.2 shows the hierarchy of the files that makes
the understanding of it easier. The structure of the code is one main script, the
netmod.m file (see A.3), that creates a Simulink parametric block model where the
thermal network is built. Before creating the thermal network model, the fluid con-
ditions are calculated executing the netflow.m (see A.4) file which runs a function
that solves the fluid model returning the airflow in each channel. The fluid model
is solved iterating the volume flow in each channel until the total pressure drop in
each path are equal. In each iteration the two channels around the coil have to be
solved too to get the pressure drop in this path. With the volume flow of each chan-
nel, the fhte.m (A.5) function calculates the heat transfer coefficient of each channel
using the correlations described in section 3.2. The netmod.m script also calls the
linknodes.m function that is in charge of returning the nodes that are in contact
with its input node to build the thermal network. The parameters and data used
in order to simulate and calibrate the model are provided by the industrial partner
and are based on a real hydro-generator, all this data is stored in the inputgen.m
file (see A.1), where all the others scripts/functions call them. The reason of having
them all in a only one script is to help the user to have a clearer perception of the
parameters he needs to run the simulation. The executemod.m file (see A.2) is a
script that calls the netmod.m file creating the model, execute it with a simulation
time, plots the main results on screen and saves them in a .csv file, it is useful to
run several simulations in a row automatically.

26

4. Model overview

executemod.m
netmod.m
’ inputgen.m ‘

| netflowem |
fhte.m
linknodes.m

Figure 4.2: Code hierarchy

27

4. Model overview

28

O

Results

5.1 Validation

n this first subsection, results of a simulation of the model are presented and will

be validated by comparing them with the data provided by Voith Hydro AB.

The data to be validated is the temperature of windings and core at steady state
with the machine at full power.

The simulation is performed with the generator starting at ambient temperature
(20°C) and with full load (all the losses from the beginning, modeled like a step
block). The total inlet airflow is the maximum allowed by the coolers, but the one
used as input in the model is only the part that corresponds to the section modeled,
which is the total minus the part that bypasses via the end-windings and divided
by the number of slots and the number of channels. The simulation time is set to
10000 seconds in order to reach the steady state. The steady state is defined in heat
transfer as the state when there is not change of temperature and heat transfer in
time. As it can be observed in Figure 5.2, Figure 5.3 and Figure 5.4, the tempera-
tures and the heat transfer are horizontal, showing that the model is very near to
steady state.

In Table 5.1 the results of the flow network and heat transfer coefficient calculation
are presented for the channels as they are numbered in Figure 5.1. The airflow and
heat transfer coefficients are lower in the channels around the coil as the entrances
are smaller and the airflow has to do an extra change of path arround the coil.

Once the thermal model is executed, a plot of temperature versus time is returned
by the simulation. As shown in Figure 5.2, the coil temperatures for the model are
between around 88°C and 92°C. In Figure 5.3 the average temperatures against time
for the elements are displayed and in Figure 5.4 the heat transfer extracted by the
air in the different spots. As the coil is the part of the generator with the higher

Channel number 1 2 3 4 5
Volume Flow [m3/s] 7.76E-4 | 2.5E-4 | 3.49E-4 | 7.76E-4 | 7.76E-4
Volume Flow rel [%] 26.5 8.6 11.9 26.5 26.5
Heat Transfer coefficient [W/m? - K] | 55.8 35.9 37.8 55.8 55.8

Pressure drop in stator ducts [Pa]

79.2

Table 5.1: Fluid network and heat transfer coefficient calculations results

29

5. Results

Figure 5.1: Ventilation channels numbered

loss density (for the modeled sector the coil receives 29.9W and the core 20.7W) and
it is not one of the best cooled (around 2W from the air ducts behind the coil) it
seems normal that the highest temperatures are located in the coil. The core is the
element that evacuates more heat (almost all the air-gap and all the heat from core
to channel that sum around 40W). From that fact we can conclude that the core is
helping to evacuate the heat from the coil thanks to its big surface in contact with
the air. On the other side, the wedges that are made with a material with very low
thermal conductivity, have temperatures that are similar to their neighbours and
evacuate a little amount of heat.

Table 5.2 shows a comparison between model and data provided by the industrial
partner!. The model shows a good performance against the data from the real gen-
erator being the differences minimal (less than 2% of relative error) at the coil and
little (less than 8% of relative error) at the core.

The higher error in the core could be due to different causes (or all at the same
time): The resistance modelled between the coil and the core could be too high,
the resistance between the core and the channels could be higher than in the real
generator (too optimistic heat transfer coefficient calculation, contact between core
and separators worse than expected...).

The difference between the radial temperature gradient in the core (Figure 5.2),
from +0.7K in the model to -0.8K in the industrial data could be explained by how
the losses are distributed. The losses in the model are distributed homogeneously in
the volume while in a real generator the magnetic losses are higher at those locations
where the magnetic field is stronger. As the magnetic field becomes weaker with

!The data provided was at different axial distances, here are shown the mean of these values as
the boundary conditions of the model homogenise its characteristics axially

30

5. Results

100

Temperature[°C]

10 1 1 1 1 1 1 1 1 1 |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time[s]

Figure 5.2: Temperature of the 48 coil nodes, where each line corresponds to the
thermal behaviour of each node. All the coil nodes temperature are between 88°C
and 92°C

31

5. Results

Model | Industrial data | Absolut error | Relative error
Max. coil temp. [°C] 01.8 91.9 0.1 0.1%
Mean coil temp. [°C] 86.8 88.3 1.5 1.7%
Centre tooth temp. [°C] 72 78.2 6.2 7.9%
Centre core temp. [°C] 72.7 7.4 4.7 6.1%
Mean core temp. [°C] 69.6 -
Mean wedge sep. temp. [°C] | 84.1 -
Mean wedge temp. [°C] 57.6 -

Table 5.2: Temperatures comparison between model and industrial data

Channel 1 | Channel 2+Channel 3 | Channel 4 | Channel 5
Normal 14 26 14 14
S1 4 56 4 4
S2 6 50 6 6
S3 8 44 8 8
S4 10 38 10 10
SH 12 32 12 12

Table 5.3: Set of width for the outlet of ventilation channels for a parametric study

the distance, it is reasonable to think that the major part of the core losses would
really be in the tooth, which explains the gradient obtained for the industrial data.
The gradient in the model is produced by the increasing of the temperature of the
air in the radial direction (this also occurs in the real generator).

5.2 Effect of changing the outlet width

One useful way to use the network model that has been described so far is by per-
forming parametric studies (i.e, the effect of changing certain parameters on the
heat transfer coefficient). In this case, one goal is to compare the temperatures
obtained in the different components with a variation in the width of the outlet of
the ventilation ducts. That modification varies the flow resistance in the channels
influencing the volume flow per channel and the heat transfer coefficient. As it was
seen before the coil is actually cooled by the core. A way of increasing the efficiency
of the cooling system could be to extract more heat directly from the coil. Table
5.3 presents the different widths of the channels (the total width has to be always
the initial: 68 mm). The simulations are made from the current model decreasing
the width of the 'tooth channels’ (numbers 1, 4 and 5) by 2 mm in each simulation
and increasing the width of the ’coil channels’ (numbers 2 and 3).

Table 5.4 shows the results of the different simulations for the main parameters. As
it was expected, decreasing the width of the tooth channels’ increases the volume
flow in the ’coil channels” and decreases it in the 'tooth channels’ (see Figure 5.5)
while increasing the total pressure drop (see Table 5.4). This airflow variation

32

5. Results

90

80

70

[e2]
o

50

Temperature[°C]

N
o

30

Temperature Coil

20 Temperature Core
Temperature Wedge Separator
Temperature Wedge
10]]]]]]]]] |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time[s]
Figure 5.3: Mean temperatures in different elements
40 -
20 - N
0
. -20
=
3
2 -40
g
T
[0}
T 60
-80 |
Heat transfered to airgap
Heat from coil to channel
-100 - Heat from core to channel
Heat from wedge to channel
Heat from wedge separator to channel
_1 20 L L L L L L L L L |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time([s]

Figure 5.4:

Heat transfer from different elements to air

33

5. Results

Normal S1 S2 S3 S4 SH
Volume Flow Chl [m?/s] 7.76E-4 | 3E-4 | 4.2E-4 | 5.4E-4 | 6.6E-4 | 7.72E-4
Volume Flow Ch2 [m?/s] 2.5E-4 | 9E-4 | 7TE-4 | 54E-4 | 3.9E-4 | 2.56E-4
Volume Flow Ch3 [m?/s] 3.49E-4 | 12E-4 | 9.7E-4 | 7.5E-4 | 5.4E-4 | 3.56E-4

HTC Chl [W/m? - K 95.8 13.9 26.7 37.5 47 55.4
HTC Ch2 [W/m? - K 35.9 138.6 | 113.7 | 88.7 63.3 37.2

Pressure drop ducts [Pal] 79.2 103 98 93 89 83.5
)
)

HTC Ch3 [W/m? - K] 37.8 136.5 | 1124 88.3 63.9 38.8
Mean coil temperature [°C] 86.8 93.5 | 89.6 88.1 87.5 87.4
Mean core temperature [°C] 69.6 783 | 735 714 70.4 69.8
Heat transferred air-gap [W] 24.1 203 | 26.2 24.9 24.3 24
Heat transferred from coil [W] 0.5 4.2 3.5 3 24 1.6

Heat transferred from core [W] | 25.9 17 20.7 22.6 23.8 24.8

Table 5.4: Behaviour comparison between different outlets width of the ventilation
channel configuration

affects the heat transfer coefficient of the channels in the same way, reducing it for
the 'tooth channels’ and increasing it on the ’coil channels’ (see Figure 5.6). The
heat transferred from the coil to the channels increases around 4W but the heat
transferred from the core to the channels decreases in almost 10W (see Figure 5.7).
The behaviour of the heat transfer explains the mean temperatures for the coil,
which rises almost 7 °C even if its better cooled, and the temperature of the core,
that increases almost 9 °C. The rise of the core temperature is the reason of the
increase of its heat transfer to the air-gap in 5W.

34

5. Results

-4

12 210 : : : :
Channels 1,4 and 5

11 Channel 2 T
Channel 3

10 B

Volume flow [m 3/s]

2 1 1 1 1
2 4 6 8 10 12

Width of channels 1, 4 and 5 [mm]

Figure 5.5: Airflow in the ventilation channels while varying the width of the
channels outlet

1 40 T T T T
Channels 1,4 and 5
Channel 2
_ 120 Channel 3 T
X
N
100 B

Heat transfer coefficient [W/m

0 1 1 1 1
2 4 6 8 10 12

Width of channels 1, 4 and 5 [mm]

Figure 5.6: Heat transfer coefficient in the ventilation channels while varying the
width of the channels outlet

35

5. Results

30 T T T T
25 7
20 7
S Heat transferred air-gap
= 15 Heat trasferred from coil 8
:(IJ:) Heat transferred from core
10 7
5L J

O 1 1 1 1
2 4 6 8 10 12

Width of channels 1, 4 and 5 [mm]

Figure 5.7: Heat transfer from different elements to air while varying the width of
the channels outlet

(o0}
o
T
1

Temperature [°C]
(o]
o

N
o

70

65 1 1 1 1
2 4 6 8 10 12

Width of channels 1, 4 and 5 [mm]

Figure 5.8: Mean temperatures of coil and core while varying the width of the
channels outlet

36

O

Conclusion

A s the thermal study of ventilation of generators and hydro-generator in partic-
ular is still a field of study in continuous development, the conception, cali-
bration and performance of any tool for analysis should be considered carefully. In
this Master thesis a model has been developed using a network of lumped elements
validated against a real generator designed by Voith Hydro AB.

6.1 Validation

From the results presented in section 5.1, the model of the generator is validated (the
relative errors are considered acceptable as the model is a simplification). Several
calibration and validations against different load conditions and geometries would
be recommended to assure a great performance of the model and a further under-
standing on how each parameter affects the whole model.

On the other hand, the validation performed confirms the utility and the accuracy
of a simplified method like the network modelling for complex cases of studies as in
the case of an electric generator. Executing the script to build a whole new model
takes few minutes and a simulation to steady states less than one, confirming the
versatility and simplicity that were the main goals of the model.

6.2 Effect of changing the outlet width

Modifying the outlet width of the ventilation ducts modifies the behaviour of the air
in the ducts and then the heat transfer in the stator. A parametric study like the
performed in this master thesis is the perfect example of the usefulness of an analytic
method as the lumped element network. While designing a generator, the designer
could want to test if increasing the volume flow in the ducts around the coil would
help it cool better. As the system is complex, there is not an apparent solution
and a simulation has to be done. Network models allow the user to simulate the
system in few minutes and extract conclusions for his guessing. In the studied case,
increasing the width of the outlet of the ’coil ducts’ increases the coil temperature,
being the behaviour of the cooling system worse.

37

6. Conclusion

6.3 Possible future work

As the only part of the generator implemented is a slot of the stator it would be
interesting to model/implement the following parts:

38

Rotor: Perform a thermal network of an equivalent section of the rotor.

Full fluid network: Extend the current fluid network to the whole generator
(axially) including all the packages of the generator (all the axial channel
possibilities that has the fluid) as well as the geometry of the rotor, the fans,
the returning channels and the coolers.

Cooling system: Implement the thermal calculation of the primary and sec-
ondary cooling system, being able to calculate the temperatures of the cool
air at different load conditions.

Interface: It would be interesting to implement more friendly visual interface
to watch the results because right now it is necessary to check the number or
position of a concrete node in the model in order to know its temperature.
Further validations: As it was said in section 6.1, to achieve the full potential
of the model, further validations would be recommended.

Bibliography

[1] International Energy Agency, Sweden: FElectricity and Heat report for 2014.
https://www.iea.org/statistics/statisticssearch/report/?year=2014%&
country=SWEDEN&product=ElectricityandHeat

[2] Incropera, De Witt, Bergmann, Lavine. (2006) Fundamentals of Heat and Mass

Transfer. 6" Edition

LE. Idelchik. (1966) Handbook of Hydraulic Resistance. 15" Edition

Mathworks: MATLAB webpage

https://se.mathworks.com

Bonals, L.A. (2013) Termotecnia. 15" Edition (In Catalan)

[6] Boglietti, A. et al. Evolution and Modern Approaches for Thermal Analysis of
Electrical Machines. leee Transactions on Industrial electronics, Vol. 56, No. 3,
(March 2009). DOI: 10.1109/TIE.2008.2011622

[7] Chu, S. and Majumdar,A. Opportunities and challenges for a sustainable energy
future, Nature 488, p.294-303 (16 August 2012) DOI:10.1038/naturel1475
https://www.nature.com/nature/journal/v488/n7411/pdf/naturel11475.
pdf

[8] Moller, H. Hydropower Continues Steady Growth, Earth Policy Inst. (June 14,
2012), http://www.earth-policy.org

[9] International Energy Agency, Technology Road-map: Hydropower, (2012)
http://www.iea.org/publications/freepublications/publication/2012_
Hydropower_Roadmap.pdf

[10] Rudberg, P.M. et al. Mitigating the Adverse Effects of Hydropower Projects: A
Comparative Review of River Restoration and Hydropower Regulation in Sweden
and the United States, Georgetown International Environmental Law Review,
27(2), 251-274. (2015) https://www.sei-international.org/publications?
pid=2750

[11] Gnielinski, V. New Equations for Heat and Mass Transfer in Turbulent Pipe
and Channel Flow, Int. Chemical Engineering, 16 (1976), pp. 359-368

[12] Swedish Hydropower webpage:
http://www.elforsk.se/SVC/Forskningsprojekt/Elektromekanik/

[13] International Energy Agency, World Energy Outlook 2011
http://www.worldenergyoutlook.org/

NES

o

39

https://www.iea.org/statistics/statisticssearch/report/?year=2014&country=SWEDEN&product=ElectricityandHeat
https://www.iea.org/statistics/statisticssearch/report/?year=2014&country=SWEDEN&product=ElectricityandHeat
https://se.mathworks.com
https://www.nature.com/nature/journal/v488/n7411/pdf/nature11475.pdf
https://www.nature.com/nature/journal/v488/n7411/pdf/nature11475.pdf
http://www.earth-policy.org
http://www.iea.org/publications/freepublications/publication/2012_Hydropower_Roadmap.pdf
http://www.iea.org/publications/freepublications/publication/2012_Hydropower_Roadmap.pdf
https://www.sei-international.org/publications?pid=2750
https://www.sei-international.org/publications?pid=2750
http://www.elforsk.se/SVC/Forskningsprojekt/Elektromekanik/
http://www.worldenergyoutlook.org/

Bibliography

40

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

A

Appendix

A.1 inputgen.m

%INPUTS FOR THE GENERATOR THERMAL MODEL

%Geometry [IS units]

%Stator

Q=288; %Number of slots

Dsi=7.096; %Stator core inner diameter [m]
lbr=2.250; %Stator core length [m]

In=2.065; %Active Stator core length [m]
lcoil=lbr; %Coil total length [m]

hs=0.178; %Nominal slot depth [m]
bs=29E—3; %Nominal slot width [m)]
hsstr=38E—3; %Finger plate height [m]
wsstr=20E—3; %Finger plate width [m)]
hpa=2E—3; %Bare copper wire height [m]
bpa=10E—3; %Bare copper wire width [m]
rpa=0.8E-3; %Bare copper radius [m]

cr=29; %Number of height parallel wires
cec=2; %Number of width parallel wires
ns=2; %Number of conductors per slot
tmlh=9E—3; %Separator between coils height [m]
ACu=1128.1E—6; %Copper area in stator bar [m™ 2]
weci=0.1E-3; %Column insulation width [m]
wmica=2E—3; %Micalastic width [m]

ww=0.1E—3; %Wire insulation width [m]
weses=0.1E—3; %Coil shield corona shielding [m]
weep=0.1E-3; %Conductive cured paste width [m]
wsl=0.1E—3; %Slot liner width [m]
tcore=>54.3E-3; %Core thicknes [m]

tc=1E-3; %Contact thicknes core [m]
ncp=>s; %Parallel channels

npp=38; %Number of parallel packages

ho=bE—3; %Height channel [m)]

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

A. Appendix

Ro=3.953; %Outer radius core [m]

Ri=3.548,; %Inner radius core [m]

hwedge=16.2E—3; %Height wedge [m]

wtooth=48.2E-3; %Width tooth [m] (Chord at the edge)

ws=2E—3; %Width spacers

Qpsd=0.78; %Percentatge of the air going to the
stator ducts

Sws=12.4E—6; %Surface in the tooth for wedge slot

Stf=(((32420.3)%15.3%2) /12) x1E—6; %Surface frame in iron
(total)

hi=tcore+ho; %Height air inlet

wi=[11.4E-3 5E-3,7TE—-3,11.4E-3,11.4E-3]; %Channel
entrance width

wo=[14E—-3,26E—3,14E—3,14E-3]; %Channel outlet
width

%Physical properties [IS units]

rCu=0.017241E-6; %Volume resistivity for copper [ohm.
m~ 2 /m]|

kCu=401; %Thermal conductivity copper [W/m.K]

kmica=0.27; %Thermal conductivity mica [W/m.K]

kins=0.5;

kcol=0.5;

kcep=5;

cpCu=385; %Specific heat copper [J/kg.K]

rhoCu=8960; %Density copper |[kg/m” 3]

kCoilr=((hpa+2+ww) * cr *kCuxkins) /((hpa*crxkins)+ (2%wws* cr*kCu)
); %Equivalent radial conductivity coil (serie)

kCoiltg =(((bpa+2sww)*cc+(cc—1)xwei)*kCuxkinsxkcol) /((bpasccx
kinsskcol)+(2s«wwxccxkCusxkcol) +((cc—1)xwecixkCuxkins)); %
Equivalent tangential conductivity coil (serie)

%Air coditions

rhoAir=1; %Density air [kg/m~3] @80C
cpAir=1.09E3; %Specific heat air [J/kg.K]
kair=0.02; %Conductivity air [W/m.K]
%Core

ksteel =37; %Conductivity steel [W/m.K]

kCorea=(ksteelxkair*(tcore+tc))/(ksteelxtc+kairstcore);
%Equivalent axial conductivity

IT

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

© o] ~ (=)

10

11

12

13

14

15

16

A. Appendix

cpsteel =466; %Specific heat steel [J/kg.K]
rhosteel =7800; %Density steel [kg/m™ 3]
%Wedge

kwedge=0.5; %Conductivity wedge [W/m.K]
cpwedge=1400; %Specific heat wedge [J/kg.K]
rhowedge=1900; %Density wedge [kg/m™ 3]

%Thermal loses

v1=207TE3; %Ventilation losses [W]
i1=(295+37)%1E3; %lIron losses [W]

swl=222E3; %Stator winding losses [W]
rwl=418E3; %Rotor winding losses [W]
11=18E3; %Additional load losses [W]
ewl=(239+129)x1E3; %Endwinding losses [W]

%Heat exchangers

Tout=26.2; %Outlet temperature air [C]

Qat=5%8; %Air flow total [m~3/s]

Tin=21.2; %Inlet temperature air [C](From
Daniel heat test)

Cap=220E3; %Nominal capacity [W]

A.2 executemod.m

%Loads

netmod52 ; %Loads variables from
input__gen and makes network

set_ param (nmodel , "StopTime’, 7100000 ")

sim (nmodel) ; %Simulates the simulink
model

Y T%Plots

%scz=get (0, ScreenSize ") ;

figure;

hold on

grid on

xlabel ("Time[s]| ")

ylabel ("Heat transfer [W]7)

%title ("Stator heat transfer against time’)

ITT

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

A. Appendix

plot (heat.time , heat.data);
print —depsc Heattransfer3

figure;

hold on;

grid on;

plot (tempcoil.time , tempcoil .data);
%title (" Temperatures Coil against time’)
xlabel ("Time[s]| ")

ylabel (" Temperature| C |7)

print —depsc Tempcoil3

figure;

hold on;

grid on;

plot (meantemp . time , meantemp . data) ;

%title ("Mean temperatures against time’)

xlabel ("Time[s] ")

ylabel (' Temperature| C |)

legend (’Temperature Coil’, Temperature Core’,’Temperature
Wedge Separator’,’Temperature Wedge’)

legend (’Location’,’SouthEast ")

print —depsc Tempmean3

figure;

hold on;

grid on;

plot (heatairgap .time , heatairgap .data, heatcoil.time 6 heatcoil.
data , heatcore.time , heatcore.data 6 heatwedge.time , heatwedge
.data ,heatwedgesep .time , heatwedgesep.data);

%title (’Mean temperatures against time’)

xlabel ("Time[s]| ")

ylabel ("Heat transfer [W]”)

legend ("Heat transfered to airgap’, Heat from coil to
channel ’, "Heat from core to channel’, Heat from wedge to
channel ’ | "Heat from wedge separator to channel’)

legend (’Location’, ’SouthEast ")

print —depsc Heatall3

warning (' off >, '"MATLAB: csvwrite : AddSheet) ;
filename="tempout.csv ’;

Heat=[heat .time , heat.data];

Temp=|meantemp . time , meantemp . data | ;
csvwrite (filename ,Temp) ;

IV

10

11

12

13

14

15

16

17

18

19

20

21

22

A. Appendix

A.3 netmod.m

%Each node has two codifications the geometrical one with
x v _z and another

%with only one number ## to identify the thermal resistances
and proprieties.

input_ gen %Generator
geometry file

Ti=20; %Initial
conditions [C]

co=2; Y%Number of
columns —> MODIFY

ro=9; Y%Number of
rows —> MODIFY (better odd)

z0=3; Y%Number of =z
layers —> MODIFY (better odd)

zch=uint8 (zo0/2); %z layer
where are situated the channels (middle)

rsc=uint8(ro/2); %y layer
where are situated the coil separators (middle)

nmodel="model51 " ; YName of the
simulink name

Mr=zeros ((co+2)x(ro+2)*zo0) ; YMr —>
Thermal resistances matrix and Heat generator on the diag

rho=zeros ((co+2)*(ro+2)*zo,1); %Density
matrix

cp=zeros ((co+2)x(ro+2)*z0,1) ; %Specific
heat matrix

losses=swl; %Thermal
coil losses [W]

ilosses=il; %Iron loses
[W]

airnodes={}; %Nodes that
belong to an airchannel, add more if needed

coilnodes={}; %Nodes that
belong to the coil , add more if needed

wedgenodes={}; %Nodes that
belong to the wedge, add more if needed

ironnodes={}; %Nodes that
belong to the core, add more if needed

simnodes={}; %Edges, add
more if necessary

wsep={}; %Nodes that

belong to the coil separator

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

A. Appendix

qairgap={}; %Heat
tranfer to the airgap (modified by the script)

cd=zeros ((co+2)x(ro+2)*z0,3) ; %Matrix to
code nodes number/name

Qc=(Qat*Qpsd) / ((npp—1)*Q) ; %Airflow on
the whole model

Qpc=netflowf (Qc,Ro,Ri,hs, hi,wi,ho,wo); %Airflow per
channel

Qpecl=Qpc (1)+Qpc(2)+Qpc(5) /2; %Total
airflow on left channels

Qper=Qpc (3)+Qpc (4)+Qpc(5) /2; %Total

airflow on right channels

htce=fhtec (Qpe) ;

airTin=Tin+((vl+ewl) /(QatxcpAirkrhoAir))+((rwl+11) /(Qat*Qpsd
xcpAirxrhoAir)); %Air inlet temperature [C] (Temp at
airgap)

htcag=20;

Ptc=0;

Pti=0;

%Subsistems
new_ system (nmodel) ; %Creates the
new Simulink system
add_block ("simulink /Sources/Step ", strcat (nmodel, "/ Loses ") ,’
After ’ ;num2str(losses), position ,[105,145,135,175]);
%Loses Coil
add_block ("simulink /Sources/Step’ strcat (nmodel, ’/Loseslron
), After’ ,num2str(ilosses), position ,[105,275,135,305]);
%Loses Iron
add_block ("simulink /Sources/Constant *,strcat (nmodel, ’/
AirinletT "), "Value’ jnum2str(airTin), position’
(105,210,135 ,240]) ; %Inlet air temp
add__block ("simulink /Ports & Subsystems/Subsystem ', strcat (
nmodel , " /Network "), "position ”,[205,125,305,425]) ;
delete_line(strcat (nmodel, ' /Network ™), 'Inl /17 "Outl/1");
set__param (strcat (nmodel, ' /Network/Inl "), "position’
,[—1005,-37,-975,—23]);
set_param (strcat (nmodel, " /Network/Outl”), position’
[—525,63,-495,77]) ;
add_block ("simulink /Ports & Subsystems/Inl’ strcat (nmodel, '/
Network/In27) | "position ' ,[—850,200,—820,214]) ;
add_block ("simulink /Ports & Subsystems/Inl’ strcat (nmodel, '/
Network/In3 "), "position | [—=1205,200,—1175,214]);add_line(
nmodel , "Loses /17, "Network /1) ;
add__line (nmodel, "AirinletT /17, "Network /2 ") ;
add_line (nmodel, "Loseslron /1", "Network/3");

Y

VI

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

A. Appendix

add_block ('simulink /Ports & Subsystems/Outl’ strcat (nmodel, ’
/Network /Out2”) | "position ’,[—1420,450,—1400,464]) ;

add_block ("simulink /Signal Routing/Mux’,strcat (nmodel, "/
Network /muxout2’) , inputs’,’1’, position’
,[—1480,400,—1475,550]) ;

add_line(strcat (nmodel, ’/Network ") | "muxout2/1","Out2/1");

add__block ("simulink /Signal Routing/Mux’,strcat (nmodel, "/
Network /muxoutl’) , "inputs’,’1’, "position’
[~540,0,-535,140]);

add_line(strcat (nmodel, " /Network ") | "muxoutl /1", "Outl/17);

add_block ("simulink /Sinks/To Workspace’ strcat (nmodel, "/
tempcoil ’) , ’variablename’ |, ’tempcoil), "position’
,[360,135,420,165]) ;

add_block ("simulink /Sinks/To Workspace ', strcat (nmodel, "/heat
"), 'variablename ’, "heat ', 'position’ ,[715,185,775,215]);

add__line (nmodel , 'Network /1", "tempcoil /17);

add_block ('simulink /Ports & Subsystems/Outl’,strcat (nmodel, ’
/Network /Out3”) | "position’[—420,550,—400,564]) ;

add_block ("simulink /Ports & Subsystems/Outl’ strcat (nmodel, ’
/Network /Outd) | "position ”,[—420,650,—400,664]) ;

add_block ("simulink /Ports & Subsystems/Outl’ strcat (nmodel, ’
/Network /Outb), "position ’,[—420,750,—400,764]) ;

add__block ('simulink /Signal Routing/Mux’,strcat (nmodel, '/
Network /muxout3’) , inputs’,’1’, position’
[—480,500, —475,600]) ;

add_block ("simulink /Signal Routing/Mux’ strcat (nmodel, "/
Network /muxout4) , "inputs’,’1’, ’position’
,[—480,600,—475,700]) ;

add_block ("simulink /Signal Routing/Mux’,strcat (nmodel, "/
Network /muxout5’) , inputs’,’1’, position’
,[—480,700,—-475,800]);

add_line(strcat (nmodel, ’/Network "), "muxout3 /1", Out3/17);

add_line(strcat (nmodel, ' /Network ") , "muxoutd /17, "Outd/1");

add_line(strcat (nmodel, ' /Network "), "muxout5/1 ", Out5/1")

add_block ("simulink /Sinks/To Workspace’,strcat (nmodel, "/
tempcore '), ’variablename’, "tempcore’, ' position’
,[360,235,420,265]) ;

add_block ("simulink /Sinks/To Workspace ' ,strcat (nmodel, '/
tempwedge), 'variablename ’ | "tempwedge ', 'position’
(360,285,420 ,315]) ;

add_block ("simulink /Sinks/To Workspace’,strcat (nmodel, "/
tempwsep '), "variablename’ | ’tempwsep ', 'position’
,[360,335,420,365]) ;

add__line (nmodel , "Network /3", "tempcore /1 7);

add__line (nmodel, "Network /4", "tempwedge /1 ") ;

add_line (nmodel, "Network /5", "tempwsep /1 ") ;

Y

VII

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

A. Appendix

add_block ("dspstat3 /Mean’ strcat (nmodel,’/tmcoil "), position
*1535,120,590,160]) ;

add_block ("dspstat3/Mean’ ,strcat (nmodel, ' /tmcore), position
*,[535,180,590,220]) ;

add_block ("dspstat3/Mean’ ,strcat (nmodel, /tmwedge)~
position ,[535,240,590,280]) ;

add_block ("dspstat3 /Mean’ strcat (nmodel,’/tmwsep), position
" ,1535,300,590,340]) ;

add_line (nmodel, "Network /1", "tmcoil /17);

add_line (nmodel, "Network /37, "tmcore/17);

add_line (nmodel, "Network /47, "tmwedge /1 ") ;

add__line (nmodel , "Network /57 "tmwsep /1 ") ;

add_block ('simulink/Signal Routing/Mux’,strcat (nmodel, '/
muxmean), inputs’, 47 "position ,[675,201,680,239]);

add line(nmodel, "tmcoil /17, "muxmean/1 ") ;

add_line (nmodel, "tmcore /1" 'muxmean/2 ") ;

add_line (nmodel, "tmwedge /1", "muxmean/3 ") ;

add__line (nmodel, "tmwsep /1", "'muxmean/4 ") ;

add_block ("simulink /Sinks/To Workspace’,strcat (nmodel, "/
meantemp '), "variablename ’ | 'meantemp’, ’position’
715,204,775 ,234]) ;

add_line (nmodel , "'muxmean/1 ", 'meantemp/1 ") ;

add__block ("simulink /Signal Routing/Goto’, char(strcat (nmodel
, ' /Network’,’ /T’ ’airgap ’)), GotoTag’,strcat (’'T’, airgap’
), ‘position’,[=775,180,—-750,196]);

add_line(strcat (nmodel, ' /Network "), In2/1" strcat (T~
airgap’, /17));

add__block ("simulink /Ports & Subsystems/Outl’ strcat (nmodel, "’
/Network /Out6), "position’,[—1420,950,—1400,964]) ;

add_block ("simulink /Signal Routing/Mux’,strcat (nmodel, "/
Network /muxout6 '), "position ’,[—1480,900,—1475,1050]) ;

add_line(strcat (nmodel, " /Network "), 'muxout6/1 ", "Out6/1 ") ;

add__block ("simulink /Ports & Subsystems/Outl’ strcat (nmodel, "’
/Network /Out7”), "position’,[—1420,750,—1400,764]) ;

add_block ("simulink /Signal Routing/Mux’,strcat (nmodel, "/
Network /muxout7’),inputs’,’1’, ’position
,[—1480,700,—1475,850]) ;

add_line(strcat (nmodel, '/Network "), "muxout7 /1", Out7/1");

add_block ("simulink /Ports & Subsystems/Outl’ strcat (nmodel, ’
/Network /Out8") , "position’,[—1420,850,—1400,864]) ;

add_block ("simulink /Signal Routing/Mux’, strcat (nmodel, "/
Network /muxout8’) , "inputs’,’1’, ’position’
,[—1480,800,—1475,950]) ;

add_line(strcat (nmodel, '/ Network ") , "muxout8 /1", Out8/1");

add_block ("simulink /Ports & Subsystems/Outl’ strcat (nmodel, ’
/Network /Out9 "), "position " ,[—1420,1050,—1400,1064]) ;

Y

VIII

98

99

100

101

102

103

104

105

106

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

A. Appendix

add_block ("simulink /Signal Routing/Mux’,strcat (nmodel, '/

Network /muxout9’), "inputs’

,[—1480,1000,—1475,1150]) ;

add_line(strcat (nmodel, '/ Network "), "'muxout9 /1", Out9/1");
Routing /Mux’ ,strcat (nmodel , "/
757, position ,[600,0,605,60]) ;

add_block ("simulink /Signal

muxheat ’) , "inputs
add_line (nmodel, 'Network /2" |
add_line (nmodel, "Network /6",
add_line (nmodel, "Network /7",
add_line (nmodel, 'Network /8",
add_line (nmodel, 'Network /9",
add_line (nmodel, 'muxheat /1",

"muxheat /1

"muxheat /2’
"muxheat /3"’
‘muxheat /4’
"muxheat /5’

"heat /17);

9)) L4)
,’ 17, position

7)’

add_block (’simulink /Math Operations/Sum’
, /Sum’,’27)), Inputs’,’+’, position’
simulink /Math Operations/Sum’

add_ block ("’

, 7 /Sum’,’6")), Inputs’,’+’, position
add__block (’simulink /Math Operations/Sum’
,/Sum’ [’77)), 'Inputs’,’+’, position’
add_block (’simulink /Math Operations/Sum’

, char(strcat (nmodel
,[500,190,510,200]) ;
, char(strcat (nmodel
" ,[500,360,510,370]) ;
, char(strcat (nmodel
,[500,420,510,430]) ;
, char(strcat (nmodel

, /Sum’,’8")), Inputs’,’+’, position
simulink /Math Operations/Sum’
, 'position

add_ block ("’

, 7 /Sum’ [’97)), "Inputs’, '+’

add_line (nmodel, "Network /2",
add_line (nmodel, "Network /67,
add_line (nmodel, "Network /7",
add_line (nmodel, 'Network /8",
add_line (nmodel, 'Network /9",
add__block ("simulink /Sinks /To

heatcoil 7)), ’variablename ’,

,[560,190,620,220]) ;

"Sum2/1°
"Sum6/1°’
"Sum7/1°
"Sum8/1°
"Sum9/17);

Workspace

"heatcoil

Y
Y
Y

Y

— — N

",strcat (nmodel, "/
", ’position’

add_block ("simulink /Sinks/To Workspace’,strcat (nmodel, "/

heatairgap ’), 'variablename’, "heatairgap ’, position

,[560,360,620,390]) :

?

add_block ("simulink /Sinks/To Workspace’ ,strcat (nmodel, '/

heatcore’),’variablename ’ |

,[560,410,620,440]) ;

"heatcore’

, position’

add_block ("simulink /Sinks/To Workspace’ ,strcat (nmodel, "/

heatwedgesep '), ’variablename’, "heatwedgesep ’, 'position’

,[560,460,620,490]) ;

add_block ("simulink /Sinks/To Workspace’,strcat (nmodel, "/
heatwedge '), ’variablename’, "heatwedge’, "position’

.[560,510,620,540]) ;
add_line (nmodel, "Sum2/1 ",
add__line (nmodel , "Sum6G/1 ",
add__line (nmodel, "Sum7/1 ",
add__line (nmodel, "Sum8/1 ",

"heatcoil /17);
"heatairgap /1) ;
"heatcore/17);
"heatwedgesep/17);

", [500,480,510,490]) ;
, char(strcat (nmodel
. [500,540,510,550]) ;

IX

126

127

128

129

130

131

132

133

134

135

136

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

157

158

159

160

161

162

163

164

165

166

167

A. Appendix

add_line (nmodel , "Sum9/1 ",

xn=bs/co;

node

in

yn=hs/ro;
zn=lbr /npp/zo;

linknode={"0",

cach direction

707",07’?05’701’701};

lco=length (num?2str(co+2)) ;
Iro=length (num2str(ro+2));

nodes

lzo=length (num2str(zo+1)) ;

cx=0;
c=0;
agi=0;
ani=0;

for z = 0:zo0+1

for

j =
for

0:(ro+2)

i = 0:(co+2)
nodeco (1:1co)="0";
nodero (1:1ro)="0";
nodezo (1:1z0)="0";
le=length (num2str (i
Ir=length (num?2str (j
lz=length (num2str (
nodeco (end—lc+1:end

)
)
)
)
)
)

if z=zch
zn=ho ;
else
zn=lbr /npp/zo;
end
if j==0
yn=hwedge ;
elseif j=ro+1
yn=Ro—Ri—hs;
elseif j==rsc
yn=tmlh ;
else

=(hs—tmlh—hwedge) /(ro—1);

end
if or(i==0,i==co+1)

"heatwedge /1) ;

numa2str
nodero (end—Ir+1:end)=num?2str
nodezo (end—lz+1:end)=num?2str
node=strcat (nodeco,’ ' noder

Y%size

of

a

%to code

,nodezo) ;

170

171

172

173

174

175

176

177

178

179

180

181

182

184

185

186

187

188

189

190

191

192

199

200

201

202

203

204

205

A. Appendix

xn=wtooth /2;
else
xn=bs/co;
end
if or(or(z==0,z==z0+1),0r (i==co+2,j=r0+2))
simnodes=[simnodes ,node | ;
elseif and(or(or(j==0,i==0),o0r(j=ro+1,i==co+1))
,z==zch) %Creates the list of air nodes
airnodes=[airnodes ,node];
nd=str2double(strsplit (node, ” "))
nnd=nd (1)+1+(co+2)*nd (2) +((co+2)*
(3));
cp(nnd,1)=cpAir;
rho(nnd,1)=rhoAir;
elseif and(j==rsc ,and(i~=0,i~=co+1));
wsep=|wsep , node |;
nd=str2double(strsplit (node,’” "))
nnd=nd (1)+1+(co+2)*nd (2) +((co+2) *
(3)):
cp(nnd,1)=cpwedge;
rho (nnd,1)=rhowedgexxn*yns*zn;

&ro—|—2))*(nd

&ro+2))*(nd

elseif and(and(j>0,j<(ro+1)),and(i>0,i<(co+1)))
%Creates the list of coil nodes
coilnodes=[coilnodes ,node|;
nd=str2double(strsplit (node,’” "))
nnd=nd (1)+1+(co+2)*nd (2) +((co+2)*
(3));
rho(nnd,1)=rhoCu*xnkyn%zn;
cp(nnd,1)=cpCu;
elseif and(and(j==0,and(i>0,i<(co+1))),z~=zch)
wedgenodes=[wedgenodes ,node];
nd=str2double(strsplit (node,’” "))
nnd=nd (1)+1+(co+2)*nd (2) +((co+2) *
(3));
cp(nnd,1)=cpwedge;
rho (nnd,1)=rhowedge*xn*yns*zn;

&ro—|—2))*(nd

&ro+2))*(nd

else
ironnodes=[ironnodes ,node |;
nd=str2double (strsplit (node,’” "));
nnd=nd (1)+1+(co+2)*nd (2) +((co+2)*(ro+2)) *(nd

(3));
cp(nnd,1l)=cpsteel;
rho(nnd,l)=rhosteel*xnxyn+zn;
end

XI

A. Appendix

209 end

210 end

211 end

212

213 for z = 1:zo

214 for j = 0:(1"0—1—1)

215 for 1 = OZ(CO—‘rl)

216 nodeco (1:1lco)="0";

217 nodero (1:1ro)="0";

218 nodezo (1:1z0)="0";

219

220 nodecoi (1:1co)="0";

221 noderoi (1:1ro)="0";

222 nodezoi(1l:1zo0)="0";

223

224 lc=length (num2str(i));

225 Ir=length (num2str(j));

226 lz=length (num2str(z)) ;

227

228 nodeco (end—lc+1:end)=num2str (i) ;

229 nodero (end—Ir +1:end)=num2str(j);

230 nodezo (end—lz+1:end)=num?2str(z) ;

231 node=strcat (nodeco,’ ' nodero,’ ’,nodezo);

232

233 nd=str2double (strsplit (node,’ "));

234 nnd=nd (1)+14+(co+2)*nd (2)+((co+2)*(ro+2))*(nd(3))

235

236 cx=cx+1;

237 cd(ex,1)=(i4+1)+((co+2)xj)+((co+2)*(ro+2))*z;

%For node identification open

cd var

238 Cd(CX,Q):i;

239 cd(cx,3)=j;

240 Cd(CX,4):Z;

241 if z zch

242 ZIl:hO;

243 else

244 zn=lbr /npp/zo;

245 end

246 if j::

247 yn=hwedge ;

248 elseif j==ro+l1

249 yn=Ro—Ri—hs;

250 elseif j==rsc

251 yn:tmlh;

XII

252

253

254

255

256

257

258

259

260

261

262

263

264

266

267

268

269

270

271

272

273

274

275

A. Appendix

else
yn=(hs—tmlh—hwedge) /(ro—1);
end
if or(i==0,i==co+1)
xn=wtooth /2;
else
xn=bs /co;
end
cd(cx,b)=xn;
cd(cx,6)=yn;
cd(ex,7)=zn;
if not(ismember(node,airnodes))
linknode=linknodes (node) ;
if ismember(node, coilnodes)
%Generation
@Coil volnode/totalvol
Mr(nnd , nnd)=(xn*yn*zn) /(ACuxnsx*lcoil
Q) ;
Ptc=Ptc+(Mr(nnd,nnd)*losses) ;
add_block ("simulink /Math Operations/
Gain’, strcat (nmodel,’/Network/
Gen’ jnode) , Gain ' strcat ("Mr(",
num?2str (nnd) ,’,’ ,num2str(nnd) , ")’
), 'position ",[—940,—55+15%c
,—915,—35+15%c]) ;
add_line(strcat (nmodel, ’/Network ")’
Inl/17 ,strcat('Gen’ ,node, /1"));
add_block ("simulink /Signal Routing/
Goto’ ,strcat (nmodel, " /Network/
hgen ' ,node), GotoTag’ ,strcat (’
hgen’ ,node), 'position’
,[—910,—55415%c,—880,—35+15x%c|) ;
add_line(strcat (nmodel,’/Network ") |
strcat ('Gen’ ,node, /1) strcat (’
hgen '’ ,node, "/17));
elseif ismember(node,ironnodes)
%Generation @Iron
volnode/totalvol
Mr(nnd , nnd) =(xn*xyn*zn) /(1n«((pi () *(
Ro™2—Ri™2)) —((hs*bs+Sws*2+Stf) xQ)
)
Pti=Pti+(Mr(nnd,nnd)=*ilosses);
add_block ("simulink /Math Operations/
Gain ', strcat (nmodel, '/ Network/
Gen’,node), "Gain’,strcat ("Mr(",
num2str (nnd), .’ ,num2str(nnd), ")’

XIIT

276

277

278

281

282

283

284

285

286

287

288

289

290

291

292

293

294

297

298

299

300

301

302

303

304

305

306

307

308

309

A. Appendix

XIV

), 'position’ [—=1150,200+15%c
,—1120,2154+15x*c]) ;
add_line(strcat (nmodel, " /Network ") |’
In3/17 strcat ('Gen’ ,node, " /17));
add_block ("simulink /Signal Routing/
Goto’ ,strcat (nmodel , " /Network/
hgen’ node), GotoTag ,strcat (’
hgen’ ,node), 'position’
[—1115,200+15%c, —1085,215+15%c])

add_line(strcat (nmodel,’/Network "),
strcat ('Gen’ ,node, /1) strcat (’
hgen’ node, " /17));
end
c=c+1;

I

if ismember (node, coilnodes)
Rx=xn/(2+kCoiltg*ynx*zn)
Ry=yn/(2xkCoilr*xn*zn) ;
Rz=zn /(2+kCuxyns*xn) ;
nod=1;
noda=2;

elseif ismember(node,wedgenodes)
Rx=xn/(2xkwedge*yn*zn) ;
Ry=yn/(2xkwedge*xn*zn) ;
Rz=zn /(2xkwedge*xyns*xn) ;
nod=>5;
noda=9;

elseif ismember(node,wsep)
Rx=xn/(2xkwedgexyn*zn) ;
Ry=yn /(2xkwedgexxnkzn) ;
Rz=zn /(2+xkwedgexyn*xn)
nod=4;
noda=S;

elseif ismember(node,ironnodes)
Rx=xn/(2x ksteelxyn%zn) ;
Ry=yn/(2x ksteel*xnx*zn);
Rz=zn /(2xkCoreaxyn*xn) ;
nod=3;
noda="7;

I

end

for x=1:6 %2D 4 directions ,
for 3D 6 directions
if and(linknode{x}~="X", not (ismember
(node, airnodes)))

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

A. Appendix

if not(ismember(strcat (nmodel, '/
Network ’, " /Gain’,linknode (x) ,
node) ,find system (strcat (
nmodel , ' /Network "), "Type "’
Block 7)))
if not(ismember(linknode(x),
simnodes)) ;
if not(linknode{x}=="
airgap)
ndx=str2double (
strsplit (strjoin (
linknode(x)),)
) ;
nndx=ndx (1)+14+(co+2)
#ndx (2) +((co+2) *(
ro+2))*(ndx(3));
if ndx(3)==zch
zn=ho ;
else
zn=lbr /npp/zo;
end
if ndx(2)==
yn=hwedge ;
elseif ndx(2)==ro+l
yn=Ro—Ri—hs;
elseif ndx(2)==rsc
yn=tmlh ;
else
yn=(hs—tmlh—
hwedge) /(1o
—1);

end
if or(ndx(1)==0,ndx
(1)=co+1)
xn=wtooth /2;
else
xn=bs/co;
end
end
if ismember (linknode (x),
ironnodes)
if or(x==3,x==4)

%Built the thermal

resistance for
cach node

XV

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

A. Appendix

XVI

Mr(nnd , nndx)=Ry+
yn/(2xksteel x
Xn*zn) ;
Mr(nndx , nnd)=Ry+
yn/(2xksteel x
Xn*zn) ;
elseif or(x==1,x==2)
Mr(nnd , nndx)=Rx+
xn/(2xksteelx
yn*zn) ;
Mr(nndx , nnd)=Rx+
xn/(2xksteel x
yn*zn) ;
elseif or(x==5x==06)
Mr(nnd , nndx)=Rz+
zn [(2xkCoreax
yn*xn) ;
Mr(nndx , nnd)=Rz+
zn /(2xkCoreax
yn*xn) ;
end
elseif ismember(linknode
(x),coilnodes)
if or(x==3x==4)
Mr(nnd , nndx)=Ry+
yn/(kCoilr*xn
kzn*2) ;
Mr(nndx , nnd)=Ry+
yn/(kCoilr*xn
kzn*2) ;
elseif or(x==1,x==2)
Mr(nnd , nndx)=Rx+
xn/(kCoiltgx
ynkzn*2) ;
Mr(nndx , nnd)=Rx+
xn/(kCoiltgx
yn*znx2) ;
elseif or(x==5,x==06)
Mr(nnd , nndx)=Rz+
zn [(kCuxyn*xn
*2) ;
Mr(nndx , nnd)=Rz+
zn / (kCusynsxn
*2) ;
end
elseif ismember(linknode

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

A. Appendix

(x) ,wedgenodes)
if or(x==3x==4)
Mr(nnd , nndx)=Ry+
yn/(kwedge*xn
*zZN%2) ;
Mr(nndx , nnd)=Ry+
yn /(kwedgexxn
kzn*2) ;
elseif or(x==1,x==2)
Mr(nnd , nndx)=Rx+
xn /(kwedgexyn
kzn*2) ;
Mr(nndx , nnd)=Rx+
xn /(kwedgexyn
kxzn*2) ;
elseif or(x==5,x==0)
Mr(nnd , nndx)=Rz+
zn [(kwedgesyn
kxXn*2) ;
Mr(nndx , nnd)=Rz+
zn / (kwedgexyn
kXN *2) ;
end
elseif ismember(linknode
(x),wsep)
if or(x==3x==4)
Mr(nnd , nndx)=Ry+
yn /(kwedge*xn
kzn*2) ;
Mr(nndx , nnd)=Ry+
yn/(kwedges*xn
*zZn *2) ;
elseif or(x==1,x==2)
Mr(nnd , nndx)=Rx+
xn /(kwedgexyn
xzn*2) ;
Mr(nndx , nnd)=Rx+
xn /(kwedgexyn
kzn*2) ;
elseif or(x==b5x==06)
Mr(nnd , nndx)=Rz+
zn / (kwedgexyn
kxXn*2) ;
Mr(nndx , nnd)=Rz+
zn [(kwedge*yn
kxXn*2) ;

XVII

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

A. Appendix

XVIII

end
elseif ismember(linknode
(x),airnodes)
ani=ani—+1;
if x==3
Mr(nnd , nndx)=Ry
+1/(htee (2)
Xnkzn) ;
Mr(nndx , nnd)=Ry
+1/(htcc (2)*
Xn*zn) ;
elseif x==
Mr(nnd , nndx)=Ry
+1/(htcc (3) =
Xn*zn) ;
Mr(nndx , nnd)=Ry
+1/(htecc (3)*
Xn*zn) ;
elseif x==1
Mr(nnd , nndx)=Rx
+1/(htece (3) =
ynzn) ;
Mr(nndx , nnd)=Rx
+1/(htcc (3)x
yn*zn) ;
elseif x==
Mr(nnd , nndx)=Rx
+1/(htece (2)
yn*zn) ;
Mr(nndx , nnd)=Rx
+1/(htcc (2)*
ynzn) ;
elseif or(x==5,x==6)
if ismember (node,
ironnodes)
m=sqrt ((htcc
(4)*(2*ws
+25yn)) /(
ksteel x(
wsxyn))) ;
ef=(tanh (mx(
ho/2)) / (m
*(ho/2)))

9

%Fin

397

398

399

400

401

402

403

404

A. Appendix

efficiency
separators

)
Re=3E-2;

%Contact
resistance
for
steel
fins
typical
value
efRe=1/(1/ef
+htcce (4)
%(ho/2)x
ynxRe/(ws
*yn)) ;
Mr(nnd , nndx)
=Rz+1/(
htce (4)
*((xn
—2.5%wWs) *
yn+((ho
/2)*yn)
x2.5xefRec
));
Mr(nndx ,nnd)
=Rz+1/(
htce (4)
((xn
—2.5%wWs) *
yn+((ho
/2)5yn)
x2.5xefRe

));
else
Mr(nnd , nndx)
=Rz+1/(
htce (4) *(
Xn*yn)) ;
Mr(nndx ,nnd)
=Rz+1/(
htece (4) *(
xtyn))
end

XIX

405

406

407

408

409

410

411

412

A. Appendix

XX

end
add_block ("simulink /
Signal Routing/
From ™, char(strcat
(nmodel , ' /Network’
,/Qa’ ;node,
linknode(x))),’
GotoTag ", char (
strcat ('Q)7 ,node,
linknode(x))) .’
position’
,[—1550,300+25xani
,—1520,316425*%ani
DE
conea=get_ param (
strcat (nmodel, "/
Network /muxout ’ ,
num?2str (noda)) ,’
PortConnectivity ”)
bcona=conea . SrcBlock;
if bcona~=-1
inp=str2double (
get_ param (
strcat (nmodel ,
" /Network /
muxout
num?2str (noda))
, inputs’));
set__param (strcat (
nmodel , ’/
Network /muxout
", num2str (noda
)), "inputs ',
num2str (inp+1)
) ;
add_line(strcat (
nmodel , "/
Network ") ,char
(strcat ('Qa’,
node , linknode (
x), /1)) ,char
(strcat ('
muxout
num?2str (noda) ,
/7, num?2str (

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

A. Appendix

inp+1))));
else
add_line(strcat (
nmodel , "/
Network) ,char
(strcat ('Qa’,
node , linknode (
x), /17)),char
(strcat ('
muxout
num?2str (noda)
/7 num?2str (1

))) s

)
end

elseif stremp(linknode{x
}, Tairgap)
agi=agi+1;
if x==3
Mr(nnd,1)=Ry+1/(
htcagxxnzn) ;
Mr(1,nnd)=Ry+1/(
htcag*xnxzn) ;
elseif x==4
Mr(nnd,1)=Ry+1/(
htcagxnxzn) ;
Mr(1,nnd)=Ry+1/(
htcagxxnxzn) ;
elseif x==1
Mr(nnd,1)=Rx+1/(
htcagxynszn) ;
Mr (1 ,nnd)=Rx+1/(
htcagsynszn) ;
elseif x==2
Mr(nnd,1)=Rx+1/(
htcagxynxzn) ;
Mr (1 ,nnd)=Rx+1/(
htcagsynszn) ;
elseif or(x==5x==06)
Mr(nnd,1)=Rz+1/(
htcag*(xn*yn)
) ;
Mr(1,nnd)=Rz+1/(
htcag*(xnxyn)
) ;

end

XXI

435

436

437

438

439

440

441

442

443

444

A. Appendix

XXII

set__param (strcat (
nmodel , ' /Network /
muxout6 '), "inputs’
,num2str(agi));

add__block ("simulink/
Signal Routing/
From’, char(strcat
(nmodel , " /Network’
,/Qa’ ;node,
linknode(x))),’
GotoTag ', char (
strcat ('Q)7 ,node,
linknode(x))),’
position’
[—1550,900+25%agi
,—1520,916425xagi
1)

add_line(strcat (
nmodel , ' /Network ")
,char (strcat ('Qa’,
node , linknode (x) ,’
/17)) ,char(strcat (
‘muxout6/’ ,num2str
(agi))));

qairgap=[qairgap ,node
I

end

if or(and(ismember (node,
coilnodes) ,not(
ismember (linknode (x) ,
coilnodes))) ,and(
ismember (linknode (x) ,
coilnodes) ,not (
ismember (node ,
coilnodes))))
if or(x==3,x==4)
Mr(nnd , nndx)=Mr(
nnd , nndx)+
wmica /(kmicax
xn#*zn)+weep / (
kcepxxnxzn) ;
Mr(nndx , nnd)=Mr(
nndx , nnd)+
wmica / (kmicax
xn#*zn)+weep / (

445

446

447

448

449

450

452

453

454

A. Appendix

kcepxxnxzn) ;
elseif or(x==1,x==2)
Mr(nnd , nndx)=Mr(
nnd , nndx)+
wmica /(kmicax
yn*zn)+weep / (
kcep*ynszn) ;
Mr(nndx , nnd)=Mr(
nndx ,nnd)+
wmica /(kmicax
yn*zn)+weep / (
kcep*ynszn) ;
elseif or(x==b5x==06)
Mr(nnd , nndx)=Mr(
nnd , nndx)+
wmica / (kmicax
xnxyn)+weep / (
kcepsxnxyn) ;
Mr(nndx , nnd)=Mr(
nndx , nnd)+
wmica /(kmicax
xnxyn)+weep / (
kcep*xnxyn) ;
end
end
add_block ("simulink/
Signal Routing/From’,
char(strcat (nmodel, '/
Network ", /T /node, ’
from’ ;node, "to
linknode(x))), GotoTag
“,strcat (T node) ,’
position’ [50+420x*(]
—1),50+80%(x—1)+500x(i
—1)+2500%(z—1)
,80+420%(j—1),70+80x(x
—1)+500%(i —1)+2500%(z
-D1);
add_ block ("simulink /
Signal Routing/From’,
char(strcat (nmodel, '/
Network ", /T /linknode
(x), from’ node, to’,
linknode(x))), GotoTag
",char(strcat (T,
linknode(x))),’

XXIII

A. Appendix

455

456

457

458

XXIV

position’ [50+420x*(]
—1),90+80x%(x—1)+500x(i
—1)+2500%(z—1)
,80+420%(j—1),1104+80x%(
x—1)4+500%(i —1)+2500% (7
-1

add_ block ("simulink /Math
Operations/Sum’, char(
strcat (nmodel, "/
Network "’ /Sum’ ;node,
linknode(x))), Inputs’
, 4+, position’
[1004+420%(j —1)
,70+80%(x—1)+500%(i—1)
+2500%(z—1) ,120+420% (]
—1),90+80%(x—1)+500x(i
—1)+2500%(z—1)]) ;

add_block ("simulink /Math
Operations/Gain’, char
(strcat (nmodel, "/
Network ', ’/Gain’ ,node,
linknode(x))), Gain’,
char(strcat ('1/Mr(",
num?2str(nnd) , ", ",
num2str (nndx), ") ")),
position ’|[1354+420%(]
—1),65+80%(x—1)+500x(i
—1)+2500%(z—1)
165+420%(j —1),95+80%(
x—1)+500%(i —1)+2500%(z
1))

add_ block ("simulink/
Signal Routing/Goto’,
char (strcat (nmodel, "/
Network’,’ /Q’ ,node,
linknode(x))), GotoTag
",char(strcat (’Q’ ,node
,linknode(x))),’
position ’ [1854+420%(]
—1),67+80%(x—1)+500%(i
—1)+2500%(z—1)
1220+420%(j —1),93+80x(
x—1)+500% (i —1)+2500%(z
-1)1);

add_line(strcat (nmodel, "/
Network ") ;char (strcat (

459

460

461

462

463

464

465

466

A. Appendix

""" ,node, "from ' ,node, ’
to’,linknode (x), /1))
, char(strcat (Sum’,
node , linknode (x), " /1")
));

add_line(strcat (nmodel, "/
Network ") ,char(strcat (
T ,linknode (x), "from’
,node, "to ' linknode (x)
, " /17)), char(strcat(’
Sum’ ,node , linknode (x) ,

/27)));

add_line(strcat (nmodel
, ' /Network ") , char (
strcat ('Sum’ ,node,
linknode(x), " /17)),
char (strcat ('Gain ",
node , linknode (x), " /1")
)

add_line(strcat (nmodel, "/
Network ") jchar (strcat (
"Gain’ ;node, linknode (x
), /17)), char(strcat(
Q)7 ,node , linknode (x) ,’
1))

end
end
end
end

ht=intersect (find_system (nmodel) ,{strcat (
nmodel , ' /Network /(" ;node , char (linknode
(1))),strcat (nmodel, " /Network /Q" ,char (
linknode (1)) ,node) ,strcat (nmodel, "/
Network /Q)" ;node, char (linknode (2))),
strcat (nmodel, ' /Network /Q)" , char (
linknode (2)) ,node) ,strcat (nmodel, "/
Network /()" ;node, char (linknode (3))),
strcat (nmodel, " /Network /Q", char (
linknode (3)) ,node) ,strcat (nmodel, "/
Network /)" ;node, char (linknode (4))),
strcat (nmodel, ' /Network /Q)" , char (
linknode (4)) ,node) ,strcat (nmodel, "/
Network /)" ;node , char (linknode (5))),
strcat (nmodel, ' /Network /Q)" , char (

XXV

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

A. Appendix

XXVI

linknode (5)) ,node) ,strcat (nmodel, "/
Network /Q" ,node , char(linknode (6))),
strcat (nmodel, ' /Network /", char (
linknode (6)) ,node) });

b=length (ht) ;

sig="";
for n = 1:b
tr=char (ht(n));
tr=tr (end —2%(lro+lco+lzo)—3:end) ;
add_block ("simulink /Signal Routing/
From’, strcat (nmodel,’/Network | '/
Q" ,node, "to’ ,tr), GotoTag’ ,strcat (
‘Q7,tr), "position’[[2404420%(j—1)
,50450%(n—1)+500%(i —1)+2500%(z—1)
,2804+420%(j—1),704+50%(n—1)4+500x%(i
—1)+2500%(z—1)]) ;
if tr(l:length(node))==node %o
Heat transfer sign criterion
sig=strcat (sig, —);
else
sig=strcat (sig, +7);
end
end
add_block ('simulink /Math Operations/Sum’,
strcat (nmodel, ' /Network ", " /Sum’ ,node

'h’), Inputs’,sig, ' position’
,[300+420%(j—1),1204500%(i —1)4+2500%(z
—1),320+420%(j —1),140+500% (i —1)+2500%(
2-1)])
for m = 1:b
tr=char (ht(m)) ;
tr=tr (end —2%(lro+lco+lzo) —3:end) ;
add_line(strcat (nmodel, ’/Network ") |
strcat ('Q)7 ,node, "to’ tr, " /17),
strcat ('Sum’ ,node, "h’, "/ jnum2str(

m))) ;

end

add__block ("simulink /Signal Routing/From’,
strcat (nmodel, " /Network /hgenin ’ node) ,
"GotoTag ' ,strcat ("hgen ' ,node) ,’
position " ,[275+420%(j—1),240+500%(i—1)
+2500%(z—1),3204+420%(j —1),260+500% (i
—1)+2500%(z—1)]) ;

add_block ('simulink /Math Operations/Sum’,

strcat (nmodel, ' /Network ", " /Sum’ ,node ,

488

489

490

491

492

493

494

495

496

497

498

A. Appendix

"th’), Inputs’, ’++’, position’
[315+420%(j—1),180+500% (i —1)+2500%(z
—1),3354420%(j —1),2004500% (i —1)+2500%(
2—1)]) ;

add_line(strcat (nmodel, " /Network ") strcat
(’Sum’ jnode, 'h’ "/17) strcat ('Sum’,
node, 'th’,7/17));

add_line(strcat (nmodel, ' /Network ") ;strcat
("hgenin ' node, "/17) ,strcat ('Sum’ ,node
Cth,/20);

add_block (’simulink /Math Operations/Gain’
,strcat (nmodel, " /Network /cap ' ;node) ,’
Gain’,strcat ('1/(rho(’ ,num2str(nnd) ,’
1) 7 Txep (7 num2str(nnd) , 7 1))),
position ,[3504420%(j—1),180+500%(i—1)
+2500%(z—1),3704+420%(j —1),200+500% (i
—1)+2500%(z—1)]) ;

add_line(strcat (nmodel, ’/Network ') strcat
('Sum’ ,node, "th/1") ,strcat(cap’ ,node,
1))

add_block ('simulink /Continuous/Integrator
",strcat (nmodel, " /Network/int ' node) ,’
InitialCondition ', ’Ti’, position’
[3804+420%(j—1),180+500%(i —1)+2500%(z
—1),400+420%(j —1),200+500% (i —1)+2500%(
2—1)]) ;

add_line(strcat (nmodel, " /Network ") strcat
("cap’,node,’/17) strcat(int’ ,node,’
/1))

add_block ('simulink /Signal Routing/Goto’,

strcat (nmodel, " /Network ", 7 /T 'node, 'n

"), 'GotoTag’ ,strcat (T’ ,node),’
position ’,[4104420%(j—1),180+500%(i—1)
£2500%(2—1),4304420%(j —1),2004+500% (i
—1)+2500%(z—1)]) ;

add line(strcat (nmodel, ’/Network '), strcat
("int ' node,’/17),strcat (T ,node, 'n’,
/1))

add__block ("simulink /Signal Routing/From’,

strcat (nmodel, " /Network ", /To’ /node,

n'), GotoTag’ ,strcat (T’ ,node),’
position ,[—=690,04+25%c,—660,16+25x%c]) ;

cone=get_param(strcat (nmodel, ' /Network/
muxout ' ;num2str(nod)) ,’
PortConnectivity ") ;

bcone=cone . SrcBlock;

XXVII

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

A. Appendix

if bcone~=-1
inp=str2double (get param(strcat (
nmodel , ' /Network /muxout ’ ,num2str (
nod)), ‘inputs’));
set__param (strcat (nmodel, ' /Network/
muxout ', num2str(nod)), "inputs
num?2str (inp+1)) ;
add_line(strcat (nmodel, " /Network ") |
char(strcat ('To’ ;node, 'n’, /1)),
char(strcat ('muxout’ ,num2str(nod) ,
"/ num?2str (inp+1)))) ;
else
add_line(strcat (nmodel, " /Network ") |
char(strcat ('To’ ,node, 'n’", /1)),
char (strcat ('muxout’ ,num2str(nod),
"/ num?2str (1)))) ;
end
end
end
end
end
sicag (1:length (qairgap))="+";

add__block ('simulink /Math Operations/Sum’, strcat (nmodel, "/
Network’,’ /Sum’, "airgap ’,’a’), 'Inputs’,sicag, 'position’
,[554200%(—1),—620,754+200%(—1),—600]) ;
for n = 1:length (qairgap)
add__block ("simulink /Signal Routing/From’, strcat
(nmodel , ’/Network ", " /Qu’ ,qairgap{n}, "airgap)
, GotoTag’,strcat (’'Q’,qairgap{n}, "airgap ') ,’
position ",[-5+200%(—1),—635+30%(n—1)
,254+200%(—1),—6154+30%(n—1)]) ;
add_line(strcat (nmodel,’/Network ") strcat ('Qu’,
qairgap{n}, airgap’, /1) strcat('Sum’,’
airgap ', ’a’, /" ,num2str(n)));
end
add_block ("simulink /Math Operations/Gain’, char(strcat (
nmodel , ' /Network " /Gain ' | "airgap ")), Gain’ char(strcat (’
1/(rhoAirscpAirxQc)’)), position ’ [854+200x(—1)
,—625,1104200%(—1) , —595]) ;
add_block ("simulink /Math Operations/Sum’, char(strcat (nmodel
, ' /Network’,’ /Sum’, *airgaps’)), Inputs’, ’++’, position’
,[1104200%(—1),—640,130+200%(—1) ,—620]) ;
add__block ("simulink /Signal Routing/From’, char(strcat (nmodel
, " /Network’,’ /Tu’, ’airgap ’)), GotoTag’ ,strcat (T’ airgap
"), ‘position ,[504+200%(—1),—685,804+200%(—1),—665]);

XXVIII

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

A. Appendix

add_line(strcat (nmodel, ’/Network ") ,char(strcat("Tu’, "airgap’
"/17)), char(strcat('Sum’, airgaps’, /17)));
add line(strcat(nmodel, "/Network ") ,char(strcat(‘Sum’, "airgap
,Ja’,7/17)), char(strcat(Gain’', "airgap ', /1’)))
add hne(strcat (nmodel , " /Network ") ,char(strcat(Gain’,’
airgap’,’/17)), char(strcat(’Sum’, airgaps’,’ /2’)))
add_ block (’simulink/Signal Routing /Goto’, char(strcat (nmodel
, ' /Network ", " /Tun’ ;airnodes{2})), GotoTag ,char(strcat (T
,airnodes{2})), "position ,[1504+200%(—1)
,—680,185+200%(—1) , —660]) ;
add_line(strcat (nmodel, ’/Network ") char(strcat (Sum’,’
airgaps’,’/17)), char(strcat(Tun’,airnodes{2},’/17)));
add_block ('simulink /Signal Routing/Goto’, char(strcat (nmodel
, ' /Network ", " /Tun’ jairnodes {3})), GotoTag’ ,char(strcat (T
,airnodes{3})), position ,[1504+200%(—1)
,—640,185+200%(—1),—620]) ;
add_line(strcat (nmodel,’/Network ") char(strcat (Sum’,’
airgaps ', ’/17)), char(strcat(Tun’ ,airnodes{3}, /17)));

for ani=1:length (airnodes)
airn=airnodes{ani };
nair=strsplit (airn,’);
if not(and(str2double(nair{2})= (r0+1) and (str2double (
nair{1})>0,str2double (nair{1})<(co+1))))
alink=linknodes (airn);
qair=intersect (find_system (nmodel
Network /Q" jairn , char (alink (1))
Network /7 ,char (alink (1)) ,airn
Network /Q)" ,airn , char(alink (2))
Network /Q",char(alink (2)),airn),strcat (nmodel,
Network /Q)" jairn , char(alink (3))),strcat (nmodel,

) ,{strcat (nmodel, '/
)
)
)
;
Network /Q)" ,char (alink (3)) ,airn) ,strcat (nmodel,
)
)
)
)
)
)

strcat (nmodel ,
strcat (nmodel ,
strcat (nmodel ,

Network /()" jairn ,char(alink (4))) ,strcat (nmodel,
Network /)7, char (alink (4)) ,airn),strcat (nmodel,
Network /Q" ,airn , char(alink (5))),strcat (nmodel,
Network /Q)" ,char (alink (5)) ,airn) ,strcat (nmodel,
Network /Q)" jairn , char(alink (6))),strcat (nmodel,
Network /Q)7 jchar (alink (6)) ,airn) });

sic (1l:length (qair))="+";

add__block ("simulink /Math Operations/Sum’, strcat (

e U W N N N NN
o T T T T T T T T T T

nmodel , ' /Network ™, /Sum’ jairn, 'a’), Inputs’ sic,’
position " ,[55+200%(ani—1),—620,75+200%(ani—1)

for n = 1:length(qair)
atr=char (qair(n));

XXIX

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

A. Appendix

XXX

atr=atr (end—2x(lro+lco+lzo) —3:end) ;

add_block ("simulink /Signal Routing/From’, strcat
(nmodel, " /Network ", " /Qu’ ,airn , "to ' jatr),’
GotoTag ' ,strcat ('Q" ,atr), position ;[=54+200x*(
ani—1),—635+30%(n—1),25+200%(ani —1),—6154+30%(
n—1)1]);

add_line(strcat (nmodel,’/Network ") strcat ('Qu’,
airn , 'to’,atr,’/17) strcat('Sum’ jairn,’a’,’/’
,num2str(n))) ;

end

if str2double(nair (2))<=(co+2)/2
Qch="Qpcl ";

else
Qch="Qpcr " ;

end

add_block ("simulink /Math Operations/Gain’, char(
strcat (nmodel, ' /Network |’ /Gain’ ;num2str(ani))),’
Gain’,char(strcat (' 1/(rhoAirsxcpAirsx’ ,Qch,’) "))’
position ,[854+200*(ani—1),—625,110+200%(ani—1)

add_block ("simulink /Math Operations/Sum’, char(
strcat (nmodel, " /Network ", " /Sum’ ;num2str(ani))),’
Inputs’, "+, "position’ ;[1104200*(ani—1)
,—640,130+200%(ani—1), —620]) ;

add_block ("simulink /Signal Routing/From’, char(
strcat (nmodel, " /Network ", /Tu’ ;airn)), GotoTag ",
strcat (T ,airn), position [[50+200x(ani—1)
,—685,804200%(ani —1), —665]) ;

add_line(strcat (nmodel, " /Network ") ,char(strcat ('Tu’,
airn, "/17)), char(strcat(Sum’ ,num2str(ani),’ /1)
));

add_line(strcat (nmodel,’/Network ") char(strcat (Sum’
,airn , 'a’ 7 /17)), char(strcat (' Gain’ ,num2str(ani)
/)))

add line(strcat (nmodel, '/Network "), char(strcat (' Gain
“,num2str(ani),’/17)), char(strcat('Sumn’ , num2str(
ani), " /27)));

nodeup=alink {3};

nexta=nodeup;

snair=strsplit (nexta,’ 7);

if and(and(str2double(nair{1})~=(0),str2double (nair
{1})~=(co+1)) ,str2double (nair {2})==0)

if and(str2double(nair{1})>0,str2double (nair{1})
<co)
snair{l}=num2str(0);
elseif str2double(nair{1})==(co)

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

10

11

12

A. Appendix

snair{l}=num2str(co+1);

end

snair{2}=nair {2};

elseif str2double(nair{2})==(ro+1)

if str2double(nair{1})==
snair{l}=num2str (1) ;

elseif str2double(nair{1})==(co+1)
snair{l}=num?2str(co);

end
snair{2}=nair {2};
end
nexta=strcat (snair (1), ’,snair(2),’ ’,snair(3));

add_block ('simulink /Signal Routing/Goto’, char(
strcat (nmodel, " /Network ", /Tun’ jnexta)), GotoTag’
,char (strcat (I ,nexta)), position ,[1504+200%(ani
—1),—640,1854+200%(ani—1),—620]) ;
add_line(strcat (nmodel,’/Network ") char(strcat (' Sum’
,num?2str(ani),’/17)), char(strcat(Tun’, nexta, /I
1))
sic="";
end
end
open_ system (nmodel) ;

A.4 netflowc.m

function Q=netflowf(Qt,Ro,Ri,hs, hi,wi,ho,wo)

lg=Ro—Ri; %Generator
lenght

li=hs; %Coil height

1=[lg,lg—1i ,lg,lg];

rho=1; %Air density

visc=1.5E-5; %Air
viscosity

Qo=[Qt/4,Qt/4,Qt/4,Qt /4]; %First Q to
calc.

Qi=[Qo(1) ,Qo(2) /2,Qo0(2)/2,Q0(3) ,Qo(4)];

Si=hi*wi; %Surface
inlet

Yowo=[14E—3,26E—3,14E—3,14E—3];

Yowo=[1TE—3,17TE—-3,17TE-3 ,17TE—3];

Ywo=[(34/3)x1E—-3,34E—3,(34/3)«1E—3,(34/3) *1E—3];

Yowo=[20E—3,8E—3,20E—3,20E—3];

So=hox*wo; %Surface
channels outlet

Sci=hoxwi;

XXXI

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

A. Appendix

wm=[(wi(1)4wo(1))/2,wo(2) ,(wi(4)+wo(3))/2,(w

/2]; %middle section
Sm=wms ho ;
Pm=2.xwm+2.xho;
Pci=2.xwi+2.xho;

perimeter
vi=Qi./ Si;
vin=Qo. /Sm;;
ki=0.5%(1—(Sci./Si)).7(3/4);

inlet resistance
Dheci=4.%(Si./Pci);

diameter
Dhm=4.%(Sm. /Pm) ;
Rem=vm. *Dhm. / visc;

number

%Friction coefficient calculation kfm
lambdalam=64./Rem;
lambdasm=0.3164./(Rem.”(1/4));
rou=1E—6;

roum=rou . /Dhm;

lambdar=1./(2.xlog (3.7./roum))."2;
prt=erf ((Rem—2850)./(sqrt (2)*600));
pt=0.5+0.5.%xprt;

plam=1-pt ;

psm=(1—prt).*pt;

pr=prt.*pt;

i(5)+wo(4))

%Wet

%Sharp edges

Y%Hidraulic

%Reynolds

lambda=lambdalam . x plam+lambdasm . * psm+lambdar . * pr;

kfm=lambda.x 1 ./Dhm;

Reci=vi.xDhci./ visc;

number
%Friction coefficient calculation kfm
lambdalamci=64./Reci;
lambdasmci=0.3164./(Reci.”(1/4));
rouci=1E—6;
roumci=rouci./Dheci;
lambdarci=1./(2.xlog (3.7./roumci)).” 2;
prtci=erf ((Reci—2850)./(sqrt (2)=600));
ptci=0.54+0.5.xprtci;
plamci=l-ptci;
psmci=(1—prtci).xptci;
prci=prtci.*xptcei;

%Reynolds

lambdaci=lambdalamci.* plamci+lambdasmci.* psmci+lambdarci

.k prei;

XXXII

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

A. Appendix

kfci=lambdaci.* li./Dhci;

koci=[0,(1—(Sci(2)/S0(2)))7(0.5),(1—(Sci(3)/So(2)))
~(0.5) ,0,0];

ko=(1—(So./(wo.xhi)))."(0.5); %Sharp edges
outlet resistance

%Airflow first iteration

i=1;

n=1;
Q2=[1,Qo(end,2) /2,Qo(end,2) /2,1 ,1];
APm=1./2.%((Q2./Sci).”2+(ki+kfci+koci).xrho);

prec=2000; %Precision

erra=APm(2) /prec; %Admisible
error

ec=1/prec*20; %lteration

multiplier

while abs(APm(n,2)—-APm(n,3))
if abs(APm(n, 2)—APm(Il 3)
AQ=sqrt (abs (APm(n,2)

if (APm(n 2)— (;3

>=(erra*10)

)>=(errax10)
—APm(n,3))/rho)*Sci(2)xec;
))>(errax10)

Q2(2)=Q2(2)-A
Q2(3)=Q (3)+AQ,
elseif (APm(n,1)-APm(n,k))<=(erra=10)
Q2(2)=Q2(2)+AQ;
Q2(3)=Q2(3)-AQ;
end
else
Q2(2)=02(2) ;
02(3)=Q2(3) -
end
vei=Q2./ Sci;

Reci=vci.xDhei./ visc;

lambdalamci=64./Reci;
lambdasmci=0.3164./(Reci.”(1/4));

prtci=erf ((Reci—2850)./(sqrt (2)=600));
ptci=0.54+0.5.xprtci;

plamci=l-ptci;

psmci=(l—prtci).*ptci;

prci=prtci.*xptei;

lambdaci=lambdalamci.* plamci+lambdasmci.* psmci+

XXXIIT

97

98

99

100

101

102

103

104

105

A. Appendix

lambdarci.* prci;
kfci=lambdaci.x 1i./Dheci;
n=n+1;
APm(n,:) =1./2.%((Q2./Sci)."2+(kit+kfci+koci).xrho);
Q2(4:5)=1;
Q2(1)=1;
end

ki=[ki(1),ki(2),ki(4),ki(5)];

AP=1./2%((Qo./So).7 2+ (ki+kfm+ko) .xrho) ;

AP(2)=API>n(end,2)+1./2*((Q0(2)./So(2)).A2—|—(kfm(2)+ko(2))
.xrho) ;

cont =[];

=1

while or(or(abs(AP(j,1)—AP(j,2))>erra ,abs(AP(j,1)—AP(j
,3))>erra) ,abs (AP(j,1)—AP(j,4))>erra)
for k=2:4

if abs(AP(j,1)—-AP(j,k))>erra
AQ=sqrt (abs (AP(j ,1)—AP(j,k))/rho)*So(1)x*ec;
if (AP(1)-AP(j , k))>erra
Qo(1)=Qo(1)-AQ;
Qo (k) =Qo (1) +AQ;
elself (AP(j,1)-AP(j k))<=erra
Qo(1)=Qo(1)+AQ;
@oll)=(k)-A
else
Qo(1)=Qo (k) ;
end
n=1;
Q2=[1,Q0(2) /2,Qo(2) /2 ,1,1];
vei=Q2./ Sci;

Reci=vci.xDheci./ visc;

lambdalamci=64./Reci;

lambdasmci=0.3164./(Reci.”(1/4));

prtci=erf ((Reci—2850)./(sqrt(2)600));

ptci=0.54+0.5.xprtci;

plamci=l-ptci;

psmci=(1—prtci).xpteci;

prci=prtci.*xptcei;

lambdaci=lambdalamci.* plamci+lambdasmeci.* psmci+
lambdarci.x prci;

kfci=lambdaci.* 1i./Dhci;

ki=0.5%(1—(Sci./Si)).7(3/4); %
Sharp edges inlet resistance

APm(n,:)=1./2.%((Q2./Sci)." 24+ (ki+kfcit+koci).xrho
) ;

XXXIV

137

138

139

140

141

142

143

144

145

146

147

149

150

152

153

154

155

157

158

159

160

161

162

164

165

166

167

168

169

170

171

172

173

174

175

A. Appendix

Q2(4:5)=1;
Q2(1) =
prec=800; %
Precision
erra=APm(end,2) /prec;
%Admisible error
ec=1/prec*10; %
Iteration multiplier
while abs(APm(n,2)-APm(n,3))>=(errax10)
if abs(APm(n,2)-APm(n,3))>=(errax10)
AQ=sqrt (abs (APm(n,2)—APm(n,3))/rho)*Sci
(2)xec;
if (APm(n 2) APm(n 3))>(erra*10)
Q2(2)=Q2(2
Q2(3)=Q2(
elself (APm(n
Q2(2)=Q2(
Q2(3)=Q2(

)—A
SIS
,1)=APm(n,k))<=(errax10)
2)+A ;
3)—A

end
else

Q2(2)-Q2(2) ;

Q2(3)=Q2(3);
end

vei=Q2./ Sci;
Reci=vci.xDhei./ visc;
lambdalamci=64./Reci;
lambdasmci=0.3164./(Reci.”(1/4));
prtci=erf ((Reci —2850)./(sqrt (2)x600));
ptci=0.54+0.5.xprtci;
plamci=l-ptci;
psmci=(l—prtci).xptci;
prci=prtci.xptci;
lambdaci=lambdalameci.* plamci+lambdasmeci.
psmci+lambdarci.x preci;
kfci=lambdaci.x li./Dhci;
n=n-+1;
APm(n,:) =1./2.%((Q2./Sci).” 2+ (ki+kfci+koci)
krho) ;
Q2(4:5) =1,
Q2(1) =
end
=i+
vo=Qo./So;
Reo=vo.*Dhm./ visc;
lambdalam=64./Reo;
lambdasm=0.3164./(Reo.”(1/4));

XXXV

177

178

179

180

181

182

183

184

185

186

© oo ~ (=2} ot - w [} =

10

11

12

13

14

15

16

17

18

19

20

A. Appendix

prt=erf ((Reo—2850)./(sqrt (2)*600));
pt=0.5+0.5.xprt;

plam=1—pt ;

psm=(l—prt).*pt;

pr=prt.xpt;

lambda=lambdalam . * plam+lambdasm . * psm+lambdar . pr

kfm=lambda .« 1. /Dhm;

ki=[ki(1),ki(2),ki(4),ki(5)];

AP(j ,:)=1./2%((Qo./So)." 24 (ki+kfm+ko) .xrho) ;

AP(j,2)=APm(end,2)+1./2%((Qo(2)./So(2)).72+4(kfm
(2)+ko(2)).xrho);

1 cont (i,:)=[AQ,Qo,sum(Qo) |;
i/:i—i-k;
end
Q=[Qo(1),Q2(2) ,Q2(3) ,Qo(3) ,Qo(4)];
AP(end ,:)

end

A.5 fhtc.m

function hte=fhtc (Qc)
YHTC channels

ho=5E—3; %Height channel
wi=[11.4E-3 5E-3,7TE—-3,11.4E-3,11.4E-3]; %Channel width

Sm=wi.*ho;
Pm=2.xwi+2.xho;

ve=Qc. /Sm; %Airspeed per

channel

visc=2E—5;

cp=1008;

k=0.029;

Dh=4.%Sm. /Pm;

Pr=cp.x visc./k;

Re=vc.xDh./ visc;

f=0.184.«Re.”(—1/5);

Nu=((f./8).%x(Re—1000).xPr)./(1+12.7«(f./8).7(1/2) .%(Pr
T (2/3)=1));

htc=Nu.xk./Dh;

end

XXXVI

> w N =

© oo ~ =] w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

A. Appendix

A.6

linknodes.m

%linknode
function linkn=linknodes (node)

linkn={"X", X", X' X' X' X'}

end

for

end

x=1:3
Inode=strsplit (node, ")
I=length (strjoin (Inode (x
xpn(1l:1)="0";
xmn(1:1)="0";
a=str2double (Inode (x)) ;
xp=num?2str(a+1);
Ip=length (xp);
xm=num2str (a—1);
Im=length (xm) ;
if and(a—1<0,x~=2)
nodem="X";
elseif and(a—1<0,x==2)
nodem="airgap ’;
else
xmn (end—Im+1:end)=xm;
Inode (x)=cellstr (xmn) ;
nodem=strjoin (Inode , (" 7));

;));

end

xpn(end—Ip+1:end)=xp;

Inode (x)=cellstr (xpn) ;
nodep=strjoin (lnode ,(" "));

linkn (2%x—1:2%x)=[cellstr (nodep) , cellstr (nodem) |;

xpn="0";
xmn="0";

XXXVII

	Introduction
	Background
	Parts of a generator
	Rotor
	Stator
	Cooling system

	The network model
	Scope of the thesis

	Thermal network model
	Basics of heat transfer
	General conduction equation
	Nodal implementation
	Thermal resistances
	Heat balance
	Heat generation
	Boundary conditions

	Ventilation model
	Fluid dynamics basics
	Heat transfer coefficient calculation
	Temperature increase in the channel

	Model overview
	Results
	Validation
	Effect of changing the outlet width

	Conclusion
	Validation
	Effect of changing the outlet width
	Possible future work

	Bibliography
	Appendix
	inputgen.m
	executemod.m
	netmod.m
	netflowc.m
	fhtc.m
	linknodes.m

