The Integration of Design Thinking and Lean
Software Development from the Perspective of
Product Owners and Scrum Masters

Master of Science Thesis
in the Management and Economics of Innovation Programme

ULRICH FRYE
TINA INGE

Department of Technology Management and Economics
Division of Innovation Engineering and Management
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden, 2013

Report No. E 2013:089

MASTER’S THESIS E 2013:089

The Integration of Design Thinking and Lean Software
Development from the Perspective of Product Owners and
Scrum Masters

ULRICH FRYE

TINA INGE

Supervisor: INGO RAUTH

Examiner: MARIA ELMQUIST

Department of Technology Management and Economics
Division of Innovation Engineering and Management
CHALMERS UNIVERSITY OF TECHNOLOGY

Goteborg, Sweden 2013

The Integration of Design Thinking and Lean Software Development from the Perspective of
Product Owners and Scrum Masters

Ulrich Frye, Tina Inge

© Ulrich Frye, Tina Inge 2013

Master’s Thesis E 2013:089

Department of Technology Management and Economics
Division of Innovation Engineering and Management
Chalmers University of Technology

SE-412 96 Goteborg, Sweden

Telephone: + 46 (0)31-772 1000

Chalmers Reproservice

Goteborg, Sweden 2013

Abstract

Design Thinking as a managerial concept is being adopted by an increasing number of companies in
various industries to boost their output of innovative products and services in order to gain a
competitive edge on the market. This thesis presents an exploratory case study that was conducted
at the global enterprise software producer, Software Co, who introduced Design Thinking in their
software development organization in 2011. Since 2009, software development at Software Co has
routinely been carried out according to Lean Software Development and the Agile software
development method of Scrum.

The software development teams at Software Co are typically assembled in accordance with the
Scrum methodology and comprise two managers, an architect, and a number of developers. The two
managers have specific roles and responsibilities and are assigned the titles of Product Owner and
Scrum Master. The success of integrating Design Thinking with the existing approach to develop
software critically hinges on the managerial staff of these development teams. This qualitative study
explored how Product Owners and Scrum Masters perceive the integration of Design Thinking with
Lean Software Development and Scrum. Specific focus was placed on how Design Thinking practices
integrate with Lean Software Development principles and Scrum practices.

Theoretical misalignments were identified between Design Thinking practice elements, Lean
Software Development principles and Scrum practices. When investigated in practice, these
theoretical misalignments were not perceived very strongly by Product Owners and Scrum Masters.
Nonetheless, practical challenges were seen to arise from the integration of Design Thinking with
Lean Software Development and Scrum. By exploring theoretical disaccords in a practical setting, this
thesis serves as an early step towards the development of theory regarding the successful integration
of Design Thinking, Lean Software Development and Scrum.

Key words:

Design Thinking, Lean Software Development, Agile Software Development, Scrum, Product Owners,
Scrum Masters

Acknowledgements

This research was conducted with the support and guidance from several individuals to whom we are
truly appreciative. Our supervisor, Ingo Rauth, provided on-going guidance, critical feedback, and
encouragement throughout this thesis. Also, we would like to extend our gratitude to Software Co for
their collaboration and granting us access to conduct our interviews.

A special thank you goes to LPS and TH from Software Co. LPS provided early insights which formed
the foundation of this study, and established initial contacts with interviewees in India for which we
are extremely grateful. TH shared his experiences about Design Thinking at Software Co which greatly
enhanced our understanding of the study’s context, and we also acknowledge his efforts to connect
us with potential interviewees.

Last but not least, we are very thankful to the employees within the software development
organization at Software Co who gave their support to our thesis by taking time to
participate in our interviews.

Géteborg, 2013
Ulrich Frye
Tina Inge

Table of Contents

Y o 1] i =Tt RSP i
Yol g o) NV [=To F=d<T o V=T o TSP ii
R 1oL oo [¥ ot o o DTS U TP PP 3
I R O T 0o 4 1 ¢ I-] 4| V2P PP PPPTTPPPRPPPPPRt 3
0 A = 7= ol =4 o 11 [T R SRR SRTRRE 4
) S T VT o To] T P PSP PP PP PP PP PPPPPPPPPR 6
1.4 ReSEArCh QUESTION ..cccueiriiiiiiiiiiiit ettt ettt ettt ettt et er e e b e e b e e b e e beesbeesreesaeesane e 6
1.5 DeliMiItatiONS ...eevieieeiieieertie ettt s s e st r e e r e e 6
2 LIterature REVIEW ...ceiiiiiiiii ittt 6
2.1 DESIGN TRINKING «.evvriieeee et e e e e ettt e e e e s e s eab et e e e e e e seanstaaeeeeeeeessstenneaeeeennsenns 7
B A =Y o T I o110 T o =SSR 10
. T 1 411U 11
2.4 Lean SOftware DeVeIOPMENT......ccii ettt e e ree e e e e e s tae e e e abe e e e e atee e eeanes 13
2.5 Synthesis of Design Thinking, Lean Software Development, and Scrumccccecvveeeiciveeeennns 14
2.6 Theoretical FrameWOrK ..ot s 16
TN 1Y/ 114 Voo [o] [=4V 2 SRS 17
N N ST ol o 1Y o] o] e - o] o F PSP PR 17
A N T ol o I A 1 7= PSPPSR 17
3.3 Research Design: EXploratory Case STtUAYcoocciiveeeieieieiiiiieee e eecnree e e e eeiraeee e e e e e nnnranee s 18
I Y- V1 Yo L1 =TSR 19
3.5 ReSEArCh MEthods.....coueiiiiiiie e s s e e e 20
3.6 Data COllRCTION oot s s s s e as 20
I A O LU -1 L1 Y2 @ g (=] - ISP U U URPRNS 22
N Y 4 oYL g or= 1 I 2SI UL £ UUUPRN 23
o R =] o] (o] - o T VAP RPPPRO 24
4.2 Profile of Product Owner and SCrum Master.......ccccceveerierienienieeeeeee et 27
e B Y Col=T oY u o] o) il D USSR 30
4.4 Design Thinking vs. Lean Software Developmentccccvveeeiciiieeeiiiee et et e e evaee e 32
4.5 Challenges to Design ThinKiNG........ccouiiiiiii i e e e e nnreee e 42
LT Y o =1 £ PP 45
5.1 Lean Software Development, Scrum, and Design Thinkingcccccvveeiviieeiiiciee v 45
6 DiISCUSSION Of RESUILS ..euveeniieiieiieiieieerite sttt ettt st sttt ene e 50
6.1 BN USEIS ..ttt st e s s be e sre e sre e 51

7
8
9
10

6.2 VISUALIZATION oot s ne e nnees
Lo T Y o 1 o 1T [PPSR
CONCIUSION ittt ettt e bt e st e s bt e et e e e abe e e sabeesabe e e saseesateesareeeaneeesareesnneen seenn
Areas for FUther RESEAICTHoouviiiiii ettt ettt e s et e e
Yo 18 o= TP

Appendix: INTEIVIEW SUILEcciiiiiie ittt et e e et e e e eta e e e sertae e e sbaeeesentaeeeaans

1 Introduction

Companies in all industries around the world are under immense pressure to create innovative
products and services in order to be competitive in the market. The software industry is no exception
to this and some companies have taken to adopting alternative approaches to traditiona@uct
development with the goal to develop more desirable offers.(Softwdreicolisioneoftheleading
enterprise software vendors worldwide and in 2011 began to formally introduce Design Thinking (DT)
into their development organization. Although applied for over two years to the software
development context at Software Co, the understanding of DT and its addition to traditional
approaches to software development is still in its infant phase. Thus, Software Co was chosen as the
organization to study because it is an early adopter of DT in the software industry.

Hildenbrand and Meyer (2012) conducted a pilot case study to understand, primarily, the synergies
involved in intertwining DT with Lean Software Development (LSD) and the Scrum process framework
mostly from a process perspective. However, a gap in this research was identified as any
misalignments between the approaches from an individual Scrum team member’s perspective were
not studied. Given the influence a Product Owner (PO) and Scrum Master (SM) possess as leaders on
a Scrum team in software development companies, it is valuable to understand their perception of
how DT integrates with LSD and the Scrum process framework.

The main contribution of this thesis is to provide a theoretical and empirical analysis on how DT, LSD,
and the Scrum process framework align from the PO’s and SM’s perspective. This specific area might
be useful for researchers interested in the overall understanding of how DT can migrate from the
design industry into the software development industry, similar to how Lean and Agile migrated from
the manufacturing industry to the software development industry.

1.1 Case Company

Seftware Colisiaigloballleaderinenterpriselsoftwareidevelopment)and associated services with more
than 50,000 employees located in multiple countries. Software development takes place in their
development labs which are distributed in various countries globally. Their software products are
used by more than 200,000 customers around the world.

To create innovative products to serve their global customer base, Software Co has adopted DT. DT is
defined on Software Co’s website as a routine innovation methodology that enables the two halves
of the human brain to act in synergy, effectively combining its creative and analytical capabilities. In
terms of practical execution, the general DT approach as practiced at Software Co is shown in Figure
1 below. The approach illustrated below is highly iterative and allows returning to previous activities
or phases should the need be identified based on insights gained at any stage.

Ingo Rauth

Ingo Rauth

Ingo Rauth
I know it's nice to have "one of the leading there" but there aren't that many, and it doesn't matter to the results if it is a leading company or not. So write something like: Software Co develops enterprise software ///

Problem Definition Data Insights Ideas Low -Fi/High-Fi Blueprint
Project Plan Design Principles Concepts Prototypes

Figure 1: DT process

DT was rolled out at Software Co in three different waves. The first wave of DT projects started in
2011 at Software Co’s facilities in Germany, while the second wave of DT projects commenced in
2012 and primarily involved Software Co offices in Germany, India, and China. Finally, the third wave
of DT projects started at the end of 2012 and is ongoing.

1.2 Background

DT has risen as a management concept promising increased innovativeness through a user-centered
approach to innovation. DT has its origins in the design realm but has entered the management
realm and gained considerable acceptance as an approach to product development and problem
solving (Hassi & Laakso, 2011). Various companies in different industries have taken to using DT in
their product development practices to complement and enhance their existing approaches.

The concept of Lean Thinking originated in the automotive industry and described the production
management system at Toyota along with manufacturing techniques (Stone, 2012). It has since
penetrated into all areas of management and is primarily concerned with waste and value in
organizational operations, with the goal of minimizing the former and only retaining activities
contributing to the latter (Poppendieck & Cusumano, 2012; Stone, 2012).

Just as Lean Thinking, the term Agile also came from the manufacturing sector and refers to a
producer’s flexibility to respond to changes in an unstable environment and customer needs (DeVor,
Graves, & Mills, 1997; Poppendieck & Cusumano, 2012). The need for increased flexibility and
responsiveness to customer requests was subsequently identified in software development settings
and a group of developers created a manifesto based upon a number of agile principles that were
specifically adapted to software development (Beck et al., 2001; Highsmith, 2001). Within Agile
several methods have been created that aim at making the development process more responsive
and flexible (Wolbling et al., 2012).

One specific method of Agile is the process framework of Scrum. The Scrum process framework
prescribes the composition of development teams, events in the process, and tangible objects
(Schwaber & Sutherland, 2011). Two roles within the Scrum team are of particular interest: the SM
and the PO. Individuals filling these roles have specific managerial duties to carry out and principles
to adhere to; the primary responsibility of the PO is the functionality of the product and the value it
creates for all stakeholders, while the SM is concerned with the execution of the project and smooth
running of the process (Schwaber & Sutherland, 2011).

LSD and Scrum have been combined successfully within the software development industry and have
become common practice. DT has grown from the design discipline into the management disciple.

4

These approaches, as separate entities, have been implemented and documented from practitioners’
perspectives but there is little evidence of their detailed study in academic literature. There is even
less literature, from either a practitioner or academic perspective that focuses on understanding the
combination of DT, LSD, Scrum approaches in product development.

Approximately four years ago, Software Co introduced an approach to their software development
that is founded upon LSD principles, and is executed through the Scrum process framework and in
2011, Software Co started an initiative to roll out DT throughout its development organization.
Hildenbrand and Meyer (2012) investigated DT and LSD in combination on Scrum teams, but other
previous studies on the topic were not evident from a thorough literature search. In their book
chapter, Intertwining Lean and Design Thinking, Hildenbrand and Meyer (2012) take a holistic
perspective to understand if and how these approaches to software development can be combined
or whether DT is simply a substitute for LSD on a Scrum team. The authors concluded that these
approaches to software development can be intertwined, as opposed to DT becoming a substitute or
replacement and suggested a process showing how DT can be intertwined with LSD on a Scrum team.

While the work of Hildenbrand and Meyer (2012) is a valuable early contribution to gain
understanding towards the combination of DT and LSD on a Scrum team in software development
projects, there are aspects in the study that raise questions and warrant further investigation. The
book chapter in question describes the study of a single software development project within a
global enterprise software company. First, one single case is only a starting point in understanding if
the combination of DT and LSD on Scrum teams are indeed complementary approaches as they were
claimed to be. It is therefore questionable if the findings can be considered valid for any other, let
alone all, software development projects that utilize these approaches, both within their case
company and the wider industry. Second, the investigated case itself does not appear to be quite
representative of a real development project as it would generally be carried out within software
development companies, because the customer here was a sailing team sponsored by the developing
company itself, for a specific event. Naturally, that specific company had a great interest in the
success of the project: “Besides the classical support of a sponsor, SAP is particularly interested in
showcasing its technology...” (Hildenbrand & Meyer, 2012, p. 221). Since the project was a showcase,
it may be considered limited in its comparability to software development projects for industry
customers within the software industry at large.

Besides the limitations outlined above, Hildenbrand and Meyer (2012) mostly took a process
perspective of the combined approaches and the methods within. Whilst this angle is entirely
legitimate, it leaves room for expansion. Another interesting aspect for investigation concerns the
individuals that are working on the software development Scrum teams and their perception of the
combined approaches. In particular, team members with managerial duties and responsibilities for
the success of the projects and their understanding of the combined approaches appear to be
worthwhile studying because the success of the integration of DT hinges critically on those. As
outlined earlier, these individuals in question are POs and SMs.

Based upon working within the LSD and Scrum approach at Software Co, experienced SMs and POs
are likely to have acquired certain ways of working and gained experience according to the
underlying principles and practices of LSD and Scrum. These SMs and POs now have to further adapt

as Software Co is rolling out DT throughout their software development with the goal of creating
more desirable and innovative software products.

This thesis investigated the combination of LSD and DT on Scrum teams in software development
projects, as perceived by managerial staff composed of POs and SMs. Particular emphasis is put on
the alignment of underlying LSD principles and Scrum practices with the DT practice elements. Thus,
a case study was conducted within Software Co to initially explore the topic; the study and its
findings are described in the following chapters.

1.3 Purpose

The purpose of this thesis is to contribute to the academic understanding of the combination of LSD
and DT on Scrum teams. Given the limited research on the subject, this study primarily builds upon
the DT work by Hildenbrand and Meyer (2012). It contributes by investigating the integration of the
above approaches from the perspective of managerial staff on Scrum teams who are responsible for
the success of software development projects.

1.4 Research Question

Based on the current state of academic literature concerning LSD and DT a need has been identified
to further study the combination of these in a practical setting such as software development. This
need for understanding is particularly obvious when considering individuals who have significant
experience in managing software development projects according to LSD principles on Scrum teams,
and are responsible for the integration of DT into this existing approach. In order to explore the topic
and gain an initial understanding from the perspective of these individuals leading the LSD and DT
activities on Scrum teams at Software Co, the following research question is answered by this study:

How do the DT practice elements of end user empathy, visualization, and synthesis integrate
with LSD and the Agile method of Scrum from the perspective of Product Owners and Scrum
Masters?

1.5 Delimitations

This study investigated the use of DT on software development projects at Software Co. Thus, the
scope of the study was limited to only cover a single company; within the company, only the
software development organization was studied even though DT is being utilized in other parts of the
company as well. This was deemed appropriate because this thesis contributes to the general field of
innovation management, and DT in the software development organization at Software Co was
introduced to improve the innovativeness of their software products.

The development organization at Software Co is dispersed globally; for the reason of access
provided, this investigation only covered development labs in India and Germany. Cultural aspects,
both organizational and ethnical, were not considered in this research. The units of analysis were
individuals filling managerial roles on software development teams, other team members or staff
outside these teams were not considered.

2 Literature Review
This chapter introduces the literature and theories pertaining to this exploratory case study.
Overviews are provided about the history and current states of knowledge and practice about DT,

6

Lean Thinking, Agile, and LSD approaches as well as the Scrum process framework for software
development. The above approaches are utilized by Software Co in their software development
activities, with DT being the latest addition.

2.1 Design Thinking

Herbert A. Simon applied the notion of design as a way of thinking to the design realm in the 1960s,
more recently it has been applied to the management realm by both academics and practitioners
(Hassi & Laakso, 2011; Simon, 1969). Within the academic realm, DT in terms of how designers think
has been discussed and described for over thirty years (Johansson, Woodilla, & Cetinkaya, 2011).
However, the application of the way designers think to the management realm is fairly new but
growing in importance, partially due to the view that “design has become too important to be left to
designers” (Brown & Katz, 2011, p. 381).

Johansson-Skdldberg, Woodilla, and Cetinkaya (2013) argue there are the following two discourses
on DT: scholarly and management. The scholarly discourse refers to designerly thinking theory to
practice and is academically founded in the field of design whereas the management discourse
applies to design practices and competences outside of the design field (Johansson-Skdldberg et al.,
2013). This study focused on DT elements applied to management roles within the software
development industry. Therefore, only the management discourse on DT is discussed as the
designerly thinking discourse is outside the scope of this research. However, it is important to note
that there are discourses in the design realm that concentrates on the skills and abilities of designers,
for example (Simon, 1969), that could be used to further investigate but given the choice to focus on
the management realm this is also outside of the scope for this thesis.

2.1.1 Definitions

The term DT does not have a well-defined meaning but is used in a variety of ways and multiple
contexts. Moreover, the term is becoming increasingly ubiquitous (Kimbell, 2011). In general terms,
DT is thought of as having two main aspects: a user centric philosophy or approach to problem
solving (Brown, 2008; Dunne & Martin, 2006; Hassi & Laakso, 2011; Kimbell, 2011; Seidel & Fixson,
2012).

Table 1 lists a selection of definitions given in literature for DT. However, it is important to note that
defining DT into a singular definition can be considered a futile effort because there are many
different discourses on design and it is inherently individualistic based on the designer as eloquently
stated by Johansson-Skoldberg et al. (2013, p. 14) “to talk about design and leaving the designer out
is like talking about music and leaving the musicians out.”

Table 1: Design Thinking Definitions

(Holloway, 2009, p. 51) A term used to describe how designers typically approach
problem solving
(Brown, 2008, p. 86) A discipline that uses the designer’s sensibility and methods to

match people’s needs with what is technologically feasible and
what a viable business strategy can convert into customer value

and market opportunity
(Dunne & Martin, 2006, Design thinking results from the nature of design work: a
pp. 512, 517) project-based workflow around “wicked” problems
(Owen, 2007, p. 17) The obverse complement to scientific thinking
(Hassi & Laakso, 2011, p. DT is a set of certain practices, cognitive approaches, and
53) mindsets
(Johansson-Skoldberg et A way of describing a designer’s methods that is integrated into
al., 2013, p. 124) an academic or practical management discourse.

2.1.2 Processes

As stated above, DT can be described in a general sense, rather than a singular specific definition, as
using a user centric approach to solve problems (Dunne & Martin, 2006). However, in both academia
and practice, there is attention given to understanding the specific process associated to DT but
similar to the definition there is not a singular universal process for DT but rather there seems to be
underlying commonalities or elements associated to these processes. While it is important to have a
general understanding of processes associated with DT, for this thesis the underlying commonalities
or elements of DT mentioned below are the main lens used in answering the research question.

2.1.3 Elements

Hassi and Laakso (2011) conducted an extensive DT literature study of 50 books or articles, of which
they used 31, to create a three dimensional framework for the different elements associated to DT.
This framework assigned three main DT categories that have related DT elements. These categories
are Practices, Cognitive Approach, and Mindset (Hassi & Laakso, 2011). This research will focus on
the practice category as opposed to the cognitive approach or mind set categories since this is the
most relevant category for answering the research question. This exploratory case study is concerned
with looking at how individuals work and the tangible approaches they use, as given in the practice
category, rather than different styles or ways of thinking given in either the cognitive or mindset
categories (Hassi & Laakso, 2011).

Moreover, as stated in the below literature section for LSD and Scrum, these two approaches to
software development focus more on the tangible ways of working, activities, and use of specific
artifacts. As a result, using the elements given in the below section for the DT practice category was a
comparable level of analysis.

2.1.4 Practices

DT practices can be described as “tangible approaches, ways of working, activities, and the use of
specific tools” (Hassi & Laakso, 2011, p. 55). There are five main elements that are considered by
Hassi and Laakso (2011) to be DT practices: human-centered approach, thinking by doing, visualizing,
synthesis, and collaborative work style. These are further elaborated on below.

8

1. Human-Centered

The human-centered approach puts people first by developing empathy for and understanding of the
customer and/or users. Observation and ethnography are the key methods used in developing the
emphatic understanding. DT is often referred to as customer, user or human-centric design as this is
one of the most prominent issues highlighted in DT literature (Hassi & Laakso, 2011).

2. Thinking by doing

Thinking by doing is a tangible and iterative approach that creates knowledge in a practical manner
by a rapid, systematic, and iterative process. Thinking by doing involves creating continuous
prototyping that helps in ideation. Prototypes are seen as a tool to help both develop and explore
ideas instead of being direct representations of the product (Hassi & Laakso, 2011).

3. Visualizing
Visualizing is how one expresses and makes sense of things in DT by using any media outside of

words and symbols. Visualizing allows a common understanding of ideas so that they can be
discussed and shared (Hassi & Laakso, 2011).

4. Synthesis
A divergent and convergent approach or sometimes referred to as synthesis involves coming to a

solution by broadening the scope and then narrowing it by using selection and synthesis. DT typically
starts using a divergent approach to allow for multiple alternatives or ideas to be considered instead
of taking the initially best idea. The divergent approach is not limited to the beginning but can be
used throughout DT. The convergent approach then allows for patterns and relationships to be
discovered (Hassi & Laakso, 2011).

5. Collaborative work style
Hassi and Laakso (2011) noted that virtually all DT authors place an emphasis having a collaborative

work style in DT. A collaborative work style involves having a wide range of stakeholders. Moreover,
collaborative thinking is by thinking outside of your own head by interacting with others (Hassi &
Laakso, 2011).

As stated above, DT has started to diffuse into the management discourse from the design world.
The basics of DT include empathy and understanding toward the user and a human-centered
philosophy. The elements of DT can be classified into three categories: practices, cognitive approach,
and mindset (Hassi & Laakso, 2011). These DT categories along with the related elements are
summarized in Table 2.

Table 2: DT Elements and Categories according to Hassi and Laakso (2011)

DT Category DT Elements

. Human-centered/Empathy

. Think by doing/Action based
Practices Visualizing

Diverging & Converging

. Collaboration

Holistic viewpoint
Cognitive approach | Integrative thinking
Abductive thinking
Future oriented
Mindset Explorative
Experimental

2.1.5 Summary

As explained above and illustrated in Table 2, this paper’s focus is on the DT elements in the practices
category as summarized in the extensive literature review conducted by Hassi and Laakso (2011).
This viewpoint will allow the study to have the tangible ways that POs and SMs work as the level of
analysis and to look at their perception of DT from a practice perspective, rather than make a
comparison of the associated DT processes or methods.

2.2 Lean Thinking

Lean Thinking has its origin in the automotive production industry in Japan. The term Lean was first
used in connection with production management practiced at Toyota and has continued to evolve
for several decades (Hines, Holwe, & Rich, 2004; Poppendieck & Cusumano, 2012; Stone, 2012). The
more specific term Lean Production originally described manufacturing techniques (Stone, 2012) and
was then expanded to describe “any efficient management practice that minimized waste, including
in product development” (Poppendieck & Cusumano, 2012, p. 26).

On the most basic level, Lean Thinking distinguishes between waste and value in an organization’s
operations. As defined by Womack and Jones (1996) in Stone (2012, p. 114), waste is “any human
activity which absorbs resources but creates no value” and value denotes “a capability provided to a
customer at the right time at an appropriate price, as defined in each case by the customer”.
Moreover, the most basic premise of Lean Thinking is to actively identify and eliminate waste from
the firm’s processes with the goal of only retaining activities that add value (Stone, 2012). All in all,
five basic principles of Lean Thinking were proposed by Womack and Jones (1996) and are listed by
Hague and James-Moore (2004, p. 3) as:

e Specify value: define value precisely from the perspective of the end customer in terms of a
specific product with specific capabilities offered at a specific price and time.

e [dentify the value stream and eliminate waste: identify the entire value stream for each
product or product family and eliminate waste.

e Make the value flow: make the remaining value creating steps flow.

e Let the customer pull the (value) process: design and provide what the customer wants only
when the customer wants it.

10

e Pursue perfection: strive for perfection by continually removing successive layers of waste as
they are uncovered.

Poppendieck and Cusumano (2012) elaborate further that Lean Thinking emphasizes foremost the
decrease in waste related to resources in terms of time and staff and at the same time promotes the
creation of value for the customer and the company through products. Additional benefits of Lean
Thinking are those associated with a “more flexible, iterative, lightweight development process” (p.
27). Furthermore, value is also increased by adding features or services that are valued by customers
but do not contribute to the internal waste, e.g. shortened delivery times (Hines et al., 2004).

2.3 Agile

Similar to Lean Thinking, Agile also has its origins in the manufacturing industry (Poppendieck &
Cusumano, 2012) and basically describes a producer’s ability to be flexible in order to be successful in
an environment of continuous change (DeVor et al., 1997). This need for the ability to respond to
changes was identified for and applied to a software development setting when seventeen software
experts drafted The agile software development manifesto (Highsmith, 2001), which was founded
upon twelve underlying principles.

2.3.1 Agile Software Development Principles
The agile software development manifesto was built on the following twelve principles (Beck et al.,
2001):

e “Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.”

e “Welcome changing requirements, even late in development. Agile processes harness change
for the customer's competitive advantage.”

o “Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale.”

e “Business people and developers must work together daily throughout the project.”

e “Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.”

e “The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.”

o “Working software is the primary measure of progress.”

e “Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.”

e “Continuous attention to technical excellence and good design enhances agility.”

o “Simplicity--the art of maximizing the amount of work not done--is essential.”

o “The best architectures, requirements, and designs emerge from self-organizing teams.”

e “Atregular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.”

2.3.2 Agile Software Development Methods

Within the overall agile software development approach, several specific methods such as Scrum and
Extreme Programming have emerged with the goal of making the software development process
more responsive and flexible (Wolbling et al., 2012). In the following section, Scrum is further

11

elaborated on because it is one of the most used agile methodologies in software development (del
Nuevo, Piattini, & Pino, 2011) and has managerial aspects attached to it (e.g. Pries & Quigley, 2011).
The Scrum method is utilized by Software Co in their development activities.

Scrum

Scrum is defined by its creators as “a process framework ... used to manage complex product
development” (Schwaber & Sutherland, 2011, p. 3), and has also been described as a method to
manage projects that is focused on immediate objectives and deliverables of involved people (Pries &
Quigley, 2011). As such, it is not a process or technique for building products but rather a
management framework to develop and sustain complex products such as software by employing an
iterative and incremental approach (Schwaber & Sutherland, 2011). Scrum is also not a complete
methodology since it does not include specific practices. Instead, it aims to optimize the process of
software development within the overall value stream (Poppendieck & Cusumano, 2012). The Scrum
process framework encompasses various events, roles of members in Scrum teams, and artifacts.

Scrum events are sprints, spring planning meetings, daily scrums, sprint reviews and sprint
retrospectives. The primary events are the sprints, which are blocks of time lasting four weeks or
less, in which programming takes place and aim to result in working software releases which can be
inspected and tested by end-users (Maylor, 2010; Schwaber & Sutherland, 2011). These releases are
typically presented at sprint reviews that follow each sprint and allow frequent customer feedback
on functionality, which in turn influences subsequent priorities (Rising & Janoff, 2000).

A Scrum team is typically cross-functional and comprised of the development team, the PO, and the
SM. The development team is self-organizing with members possessing the necessary skills to deliver
the final product. Recommended team size ranges between three and nine members, not counting
the PO and SM (Schwaber & Sutherland, 2011).

The PO is responsible and accountable for deciding what needs to be done, i.e. managing the product
backlog. By performing his/her duties, the PO’s main undertaking is to maximize the value of both
the product and the development team (Poppendieck & Cusumano, 2012; Schwaber & Sutherland,
2011). As such, in a larger organizational context, the PO can be seen as the link between the
development organization, the wider organization, and external entities. The SM’s role is to make the
process run as smoothly as possible and continuously improve it along the way by, for example
leading meetings and tracking progress.(Rising & Janoff, 2000). Specifically, the SM provides his/her
services to the PO, the development team and the organization at large (Schwaber & Sutherland,
2011).

Scrum artifacts serve to make the development process more transparent, make key information
visible and thus allow inspection and adaptation. The three types of artifacts are product backlog,
sprint backlog and increments. An artifact of key importance is the product backlog which is defined
as “an ordered list of everything that might be needed in the product and is the single source of
requirements for any changes to be made to the product” (Schwaber & Sutherland, 2011, p. 12). The
product backlog is continuously evolving and as such is never complete. It is the sole responsibility of
the PO to manage the product backlog, prioritize items in it and ensure they are addressed by the
team (Schwaber & Sutherland, 2011).

12

2.3.3 Summary of Lean Thinking and Agile

As stated above, both Lean Thinking and Agile have their origin in the manufacturing industries and
have subsequently made their way into different settings which include the software development
industry. The main premise of Lean Thinking is to make the value stream more efficient by
eliminating any processes that do not add value. The main idea behind Agile is for an organization to
be more responsive in continuously changing environments.

Simply put, both Lean Thinking and Agile put the customers and their satisfaction first but they do so
in different manners. While Lean Thinking emphasizes efficiency and planning, Agile builds upon
customization resulting from close customer contact and interaction. But as proven in practice, it is
possible to optimize Agile operations based on Lean Thinking, especially in the software development
industry where this combination has been practiced since the early 2000s. By operating in short and
iterative cycles that produce working software, users can be involved frequently to enable
identification of customer value and respond to updated requests (Wélbling et al., 2012).

2.4 Lean Software Development

In the early 2000s, Lean Thinking started to diffuse into areas outside of the manufacturing industry
such as logistics, military, construction and services. As a result, this delivered proof that in practice
Lean Thinking is applicable across various fields (Hines et al., 2004; Poppendieck, 2002). Although
Lean Thinking originally related to practices particular to the automotive manufacturing industry, it
could be transferred into other settings by viewing it as a set of principles or concepts rather than
specific practices (Poppendieck & Cusumano, 2012). Based on this view, Lean Thinking entered the
software development via Agile practices (Hildenbrand & Meyer, 2012), because there are many
similarities and analogies between their respective elements (Poppendieck & Cusumano, 2012).

By integrating Agile and Lean Thinking, seven principles for LSD were proposed in 2003 and have
since become popular in the software industry (Poppendieck & Cusumano, 2012). The seven
principles for LSD are (Poppendieck & Cusumano, 2012; Poppendieck.LCC, 2010):

1. Optimize the whole: LSD should be founded on a deep understanding of a job that customers
would like done and how this job might be mediated by software.

2. Eliminate waste: waste is anything that doesn’t either add customer value directly or add
knowledge about how to deliver that value more effectively.

3. Build quality in: continuously integrate small units of software into larger systems to avoid
finding defects in the final verification.

4. Learn constantly: development is all about creating knowledge and embedding that
knowledge in a product; delay irreversible decisions to the last responsible moment, based
on best available knowledge.

5. Deliver fast: think of software as a flow system where software is designed, developed, and
delivered in a steady flow of small changes based on deep understanding of what
stakeholders’ value.

6. Engage everyone: empowering people, encouraging teamwork, and moving decision-making
to the lowest possible level by composing multidisciplinary teams encompassing the
complete value stream.

7. Keep getting better: failure is a learning opportunity and should be used to challenge and
improve existing standards based on the scientific method.

13

These seven principles for LSD do not offer much in the sense of particular roles and responsibilities
of individuals. Instead, they focus on how to operate in an organizational setting of software
development, while the Agile method of Scrum gives clearly defined roles including the PO and SM.
To summarize, LSD focus is on practices, or how to operate in an organizational setting for software
development, again this makes the practice category for DT the appropriate category for
comparison.

2.5 Synthesis of Design Thinking, Lean Software Development, and Scrum
A visual representation of the above descriptions for the development of Lean Thinking and Agile
into the software development industry is shown in Figure 2. The context studied in this thesis
project is concerned with DT being integrated with LSD and Scrum.

To understand the integration of LSD, Scrum, and DT, the five DT practice elements as given by Hassi
and Laakso (2011) are compared below with the seven LSD principles and the Scrum practice of
writing backlogs and engaging customers. The comparison is done to identify any synergies and
discrepancies between those.

Manufacturing Industry Design Industry
Lean Thinking Agile

Agile Software Development

Figure 2: Context of study (shaded area investigated at Software Co)

DT has a clear human focus which is practiced by deeply empathizing with the user of the final
product. On the surface this aligns well with LSD and Scrum. The first principle of LSD, optimizing the
whole, requires a thorough understanding of what job the customer is trying to accomplish. As
stated, Scrum is an Agile method and is therefore build on the premise of being flexible and
responsive. This requires a good knowledge of what the customer values, which is to be gained
through frequent testing of working software releases by end users. However, a discrepancy exists in
that DT focuses on empathy to find latent needs while LSD’s and Scrum’s focus is on the customer
satisfaction. A second discrepancy is that when taken at face value, it seems that LSD and Scrum are
focused on the customer rather than the end user. Whilst no specific mention of end users is
apparent in LSD, Scrum does mention the end user for testing of software releases, but only for the
purpose of gaining customer feedback, judging customer satisfaction and adjust priorities for
subsequent development which are arguably very different notions than empathizing with humans
using a product or service. Nevertheless, owing to a lack of clear definition of the term customer, end
users may be included in it. However, the customer and user are rarely the same in the enterprise
software development industry and the customer may be unaware of what the actual user does
value. Therefore, a potential misalignment exists in that DT places emphasis on finding latent needs

14

of end users, while LSD and Scrum are focused on customer satisfaction and do not explicitly
mention end user empathy.

Collaboration in DT refers to working in multi-disciplinary teams to achieve the desired outcome. This
practice matches well with Scrum which calls for self-organizing teams composed of members that
bring all necessary skills to the project, and value is put on individuals and interactions. The LSD
principle of engaging everyone in the entire value stream to deliver the product is also quite easily
equated with the meaning of collaboration in DT, but could be interpreted as having a wider scope.

The DT practice element of visualizing facilitates easier communication, for example through
storyboards. On the contrary, Scrum calls for product backlogs as written lists of all requirements and
specifications for the product being developed. If DT precedes the actual software development
phase according to the Scrum framework, the generated storyboards could be considered a
precursor or foundation for the product backlogs. Even though the backlog may build on, or evolve
from a storyboard, the process of generating each is quite different. None of the LSD principles is in
agreement or in discrepancy with visualizing in DT.

DT is an action based approach, including the rapid creation of prototypes throughout the process.
Two of the goals of prototyping are to learn and fail quickly and cheaply. These two are in perfect
alignment with the LSD principles of delivering fast, learning constantly, and continuously getting
better by considering failure as a learning opportunity. Although it could be argued that failure is
waste and as such opposes the second principle of LSD, it reasons that early and cheap failure is still
less wasteful than later failures which are more costly. The Scrum methodology aims at producing
working software releases, which requires the action of programming. Thus, if working software is
analogous to prototypes, then Scrum is also an action based approach and this practice aligns well
with DT.

Perhaps the biggest conflict exists between DT and LSD when the DT practice of converging and
diverging is considered. It is most apparent during the ideation mode of DT, where the primary
objective is to create large amounts of ideas. A large amount of ideas implies by necessity that some,
if not most, of those ideas will be discarded. When thinking in Lean terms, discarding anything is a
waste and thus the ideation mode in DT violates the underlying fundamental premise of LSD —
eliminating waste. Moreover, it can be questioned to what extent the iterative DT practice of
converging and diverging ultimately adds value to any stakeholders. Converging and diverging may
occur to some extent during the execution in Scrum mode; however, here any changes usually
originate from external sources, i.e. the customers, while in DT the internal team itself is required to
converge and diverge on their own accord and based on their own research. The comparison of DT,
LSD, and Scrum discussed above are summarized in Table 3 for clarity.

Table 3: Summary of DT, LSD, and Scrum

Agile
DT
LSD Scrum
End user empathy Customer satisfaction
Differences Visualizing N/A Writing requirements in backlogs
Synthesis Waste elimination N/A
S Action based
Similarities -
Collaboration

15

Hildenbrand and Meyer (2012) have investigated the combination of DT with LSD on Scrum teams
and have found a number of commonalities in fundamental values. As outlined above, these include
the collaboration of multi-disciplinary teams, value for both the business and customers, and their
iterative nature. Further, the authors argue that DT and LSD address “different challenges and
aspects in a development project lifecycle” (Hildenbrand & Meyer, 2012, p. 219). Quite correctly they
point out that LSD is concerned with execution aspects such as delivering high quality in a timely
fashion. DT on the other hand is focused on what to execute or deliver, i.e. ensuring that the product
is indeed of value to the customer.

A next logical step to build upon the study is to critically assess and investigate any challenges that
arise from the combination of DT and LSD on Scrum teams, particularly to the individuals, POs and
SMs, which are in charge of running these Scrum teams. Based on their experience in carrying out
these roles, they have attained certain practices and ways of working. With the introduction of DT in
addition to LSD on Scrum teams, these individuals are potentially facing challenges that originate
from the contradicting requirements as outlined above. While the elements may not be mutually
exclusive, there could nonetheless be difficulties in adapting to DT and integrating it with LSD on
Scrum teams.

2.6 Theoretical Framework

Following the investigation and analysis of the literature, the theoretical framework presented in
Figure 3 below has been developed. The focus of the framework lies with individuals rather than the
processes or approaches. The individuals of concern are those that take on the roles of SM and PO
according to the Scrum process framework. In the previous LSD only approach, they are referred to
as LSD manager. With the addition of DT to development projects, they should also adopt the
elements included in the DT manager role. The focus of this thesis was placed on the identified
misalignments; therefore, the overlapping elements of action based and collaboration were not
specifically addressed during the data collection.

DT MANAGER LSD MANAGER

Customer

" End user
empathy

satisfaction

Writing backlogs

Visualizing

Waste
elimination

\ Synthesis

Figure 3: Theoretical framework

Based on the above theoretical framework, the following study investigates the addition of DT to the
existing LSD approach on Scrum teams at Software Co from the perspective of POs and SMs. The

16

investigation is concerned with how these individuals perceive the addition of DT and its effect on
their way of working. Studied in detail are the theoretical misalignments between the following DT
practice elements and LSD principles and Scrum practices: (1) End User Empathy vs. Customer
Satisfaction (2) Visualizing vs. Writing Backlogs (3) Synthesis vs. Eliminating Waste

3 Methodology

This chapter aims to explain the design and methods used to answer the research question.
Moreover, the purpose of the method and sampling structure will be discussed. Also, a description is
provided on how data was collected and the validity and reliability of the gathered information is
discussed.

3.1 Research Approach

The first step in research is typically to decide between two types of reasoning, deductive and
inductive, that are then used to gain a better understanding of the relationship between theory and
research (Bryman & Bell, 2011; Saunders, Lewis, & Thornhill, 2007). Deductive reasoning starts with a
very broad spectrum of information and converges to a specific conclusion. Wilson defines deductive
reasoning as “developing a hypothesis (or hypotheses) based on existing theory, and then designing a
research strategy to test the hypothesis” (Wilson, 2010, p. 7). Inductive reasoning, on the other hand,
is the opposite of deductive reasoning in that the theory is generated out of the research (Bryman &
Bell, 2011). Inductive research can be thought of as a “bottom-up” approach to building knowledge;
the researcher is required to use observations and data to find patterns and regularities to develop a
tentative hypothesis that will lead to general conclusion or theory (Babbie, 2001).

This study used inductive reasoning since the main focus was on DT and its relationship with LSD
principles and the Scrum process framework, which is not yet widely covered in academic literature.
An advantage of using inductive reasoning in a research study that is exploring a new area is that it is
an iterative process that allows the flexibility to go back and forth between the research and theory
(Bryman & Bell, 2011). However, there is a risk that an inductive research approach may require time
beyond the planned scope of a study and lead away from a narrow and focused study and result in
general and broad results that are superficial (Bryman & Bell, 2011). The inductive approach, in
contrast to the deductive approach, has a high level of uncertainty since it requires the researcher to
generate theories and conclusions out of specific observations and data (Saunders et al., 2007).
These risks were mitigated by creating a schedule that included time for iterative work and
continuous assessments to insure that the research was not deviating far from the answering the
research question.

3.2 Research Strategy

A research strategy is described as the general orientation of the conduct of business research and
can be quantitative, qualitative or a mixture of both. Quantitative research focuses on quantification
and analysis of data and is more aligned to deductive reasoning, whereas qualitative research
focuses on words in order to generate theories and is more aligned to inductive reasoning (Bryman &
Bell, 2011). In order to answer the research question for this study, a qualitative strategy was used
because the purpose of the study was to contribute to the academic understanding of the
combination of LSD and DT on Scrum teams based on inductive reasoning.

17

3.2.1 Qualitative Research

Qualitative research is, for the most part, inductive with the aim of generating theory or meanings
from data collected in the field (Creswell, Hanson, Plano, & Morales, 2007). DT is a relatively new
area of study and this research study is focused on understanding how SMs and POs adapt to DT in a
specific department at a specific company at a specific point in time. Qualitative research, as
opposed to quantitative research, is more aligned to this focus since it takes a more interpretive and
naturalistic approach (Denzin & Lincoln, 2005). This makes qualitative research a suitable strategy for
this study since there is limited amount of theory to build a hypothesis that could be quantitatively
tested.

Qualitative research presents some risks, such as misunderstandings. It is critical in qualitative
research that the interviewers ensure they have the interviewees’ response instead of depending on
their own assumption (Britten, Jones, Murphy, & Stacy, 1995). This was addressed by having two
researchers with varied background listen to the interviews, followed by a discussion, and
transcription that was reviewed by both researchers.

3.3 Research Design: Exploratory Case Study

The research design selected for this investigation was an exploratory case study. A case study
research design allows detailed analysis of a single case. In general, a case can refer to either of a
single organization, location, person, or event (Bryman & Bell, 2011). Importantly, a case study
should be conducted within its real-life context (Yin, 2003). A succinct definition of a case study is
given by Dul and Hak (2008, p. 4): “A case study is a study in which (a) one case (single case study) or
a small number of cases (comparative case study) in their real life context are selected, and (b) scores
obtained from these cases are analyzed in a qualitative manner”. The qualitative manner here
implies that no statistical analysis is carried out, but it does not refer to the methods of data
collection or measurement (Dul & Hak, 2008).

The type of basic design for this case study is a single case (as opposed to multiple cases) with a
single unit of analysis (instead of multiple units). A valid rationale for selecting a single case is when
the researchers have access to a previously inaccessible situation which was the case with Software
Co; in this instance the case is revelatory and a single case is appropriate (Yin, 2003). Further, many
business researchers advocate using case study designs for exploratory research where there is a
limited amount of theory available and the context is important (Dul & Hak, 2008).

This study was theory oriented, which means that the objective was to contribute to theory
development, rather than to contribute to the knowledge of one or more specified practitioners.
Within theory oriented research, Dul and Hak (2008) distinguish between three types of activities:
exploration, theory-building, and theory-testing, which are to be carried out in sequence. Due to
time limitations, this study focused only on the initial activity of exploration, of both theory and
practice as illustrated in Figure 4.

18

Exploration of
Proposition available

practice for
(path taken)

i »| confirming relevance
Theory- Exploration of - .
) of proposition
oriented .| theory for
research - finding
propositions

Figure 4: Research design flowchart (adapted from Dul and Hak (2008)

In this thesis, both the theory and practice pertaining to the combination and integration of DT
elements and LSD principles were explored. The unit of analysis was individuals acting in certain roles
within the development organization at Software Co. In order to allow an initial understanding of the
topic, the exploratory case study design was selected because it allows a detailed investigation of the
topic and to answer the research question. Since the research question is about the perception of
individuals in relation to a specific topic, a case study is an appropriate research design as it allows a
thorough exploration of the issue. A single case study rather than comparative was chosen due to
having gained access to a single company, Software Co, early on in the project as well as resource
and time limitations. Moreover, Software Co provided a unique setting to investigate the integration
of DT, LSD and Scrum.

3.4 Sampling

In order to achieve the purpose and address the research question of this study, a purposive
sampling strategy was employed within the case. Purposive sampling refers to sampling that is not
carried out randomly but rather with the aim to sample participants that are relevant to the research
guestion, and is most commonly used in qualitative research (Bryman & Bell, 2011).

The population for the study’s sample was defined as follows: the units in the population had to be
experienced in carrying out the role of either SM or PO in the development organization at Software
Co. In addition, these individuals were required to have been involved in at least one project where
DT was used. This minimum criterion of a single DT project was not set to a higher number because
DT was introduced at Software Co development organization two years prior to this study. Since
most development projects have duration in excess of one year, the available pool of respondents
who have worked on more than one DT project would have been too small to reach a meaningful
sample size.

Once the population of the study was established, snowball sampling was conducted. This strategy
was used for two reasons. First, the extent of the entire population was unknown to the researchers,
and hence no accurate sampling frame could be determined. Second, initial access to the case was
provided by two individuals, who the subsequent sampling was contingent on. Thus, the sampling for
this study commenced with two initial contacts with which exploratory interviews were held; one of
these two interviewees provided a list of individuals within the population. Further on, interviewees
in the population provided further contacts.

19

3.5 Research Methods

Employing a qualitative strategy implies that the methods used for this study were mainly of a
qualitative nature. The one qualitative research method was the semi-structured interview; it is
explained along with a description of how they were conducted in the following subsections.

3.5.1 Semi-structured Interview

Semi-structured interviews are a widely utilized method in qualitative research. Since they cover
questions relating to specific topics, which are asked in a similar manner to all interviewees in the
sample, they provide reasonable comparability of responses. At the same time, the flexibility of semi-
structured interviews also allows for new aspects to be discussed as they emerge in the course of an
individual interview. Furthermore, emerging aspects can be carried over to subsequent interviews.
The emphasis of qualitative interviews in general is to capture the view of the interviewees relating
to the topic (Bryman & Bell, 2011).

In the case of this thesis, semi-structured interviews were given preference over unstructured
interviews because there was a fairly clear focus, thus allowing the researchers to address more
specific issues. Also, semi-structured interviews allow for new themes to emerge that may be
considered important by the interviewees. Thus, this method was chosen rather than structured
interviews because they were considered too rigid. Thirteen interviews were conducted over the
phone with interviewees located either in India or in Germany, while the researchers were based in
Sweden. An additional three respondents were interviewed in person during the researchers’ visit of
the Software Co development labs in India. Of a total of sixteen interviews, fourteen were conducted
with both researchers present, with usually one leading the interview and the other taking notes and
asking additional questions as they arose. Further, all interviews were recorded and transcribed
within 24 hours of the interview. The routine employed for interview transcriptions was that each
researcher transcribed one half of the interview and then cross-checked the transcription of the
other half in order to ensure the quality of the transcription. In three cases, one researcher
transcribed an entire interview which was subsequently checked by the other researcher.

3.6 Data Collection

As briefly mentioned above, the data collection for this study started with two exploratory interviews
with DT experts at Software Co, one in India and one in Germany. These exploratory interviews
served two purposes; one being to narrow the topic of the study and the second was to provide
some contextual information about the case in terms of the organization and its practices. These two
exploratory interviews were semi-structured, and the second one was founded on the first. While
these initial interviews mainly informed the researchers about the context and background of the
case, knowledge was also gained that contributed towards addressing the research question.
Therefore, some aspects of the exploratory interviews are also included in the results presented later
on in this thesis.

Following the exploratory interviews, a series of semi-structured interviews was conducted with POs
and SMs that matched the criteria for the study’s population. In total, fourteen of these interviews
were held with three respondents located in Germany and the other eleven in India. Moreover,
preliminary findings were presented to and discussed with a group of DT stakeholders at the
Software Co development labs in India. The outcome from the discussions served as a triangulation
means.

20

3.6.1 Interview Guide

Interview guides were used and complemented with ad hoc questions as needed for both the
exploratory and primary data collection interviews. By necessity, the guides for the exploratory
interviews differed considerably from those for the actual data collection because a different goal
was pursued in each phase. Even the interview guides for the two exploratory interviews were
similar only to a limited extent because the second largely evolved from the findings of the first
interview.

The interview guide for the primary data collection evolved somewhat after the first interview was
held, but no major changes were made. The final interview guide is included in the Appendix and is
representative for the majority of the primary data collection interviews, albeit exact phrasing and
the order of questions differed between interviews.

When designing the interview guides (for both phases), recommended guidelines regarding the order
of questions, type of questions and amount of questions were adhered to. With respect to the
creation of semi-structured interview guides, Bryman and Bell (2011) provide the following
recommendations, which were adopted by the researchers: logical flow in order of questions,
avoiding leading questions, language that is easily understood by the interviewees but not too
simple, questions were designed in a way that they can inform the research question without being
too specific. The guide was structured into five overall sections as follows:#

Introduction of the researchers and the study, assurance of anonymity
Factual questions about professional experience

Perceptual questions about DT

Perceptual questions about the role before and after the introduction of DT

uih W e

Concluding section with an opportunity for the interviewees to raise issues related to the
topics that were not covered during the interview

Each section was structured such that questions were arranged in decreasing order of importance,
flowed from more factual to more perceptual questions, and also progressed from open towards
specific questions. This structuring was done according to the perception of the researchers, which
may not necessarily reflect that of interviewees. Furthermore, compromises had to be made where
e.g. perceptual questions were deemed very important. In order to keep the interviews flexible, the
exact questions and their order varied to some extent between individual interviews; also,
spontaneous follow-up and probing questions were asked as they arose during a course of an
interview. The interview guide was reviewed and pre-tested with this thesis’ supervisor at the Center
for Business Innovation, Chalmers University of Technology.

3.6.2 Data Analysis

The collected data were coded and analyzed using the online software Dedoose (SocioCultural
Research Consultants, 2013). This particular software was chosen because it allowed real-time online
collaboration between the authors and was available free of charge for a limited time. All interview
transcripts were imported into the software and codes were applied to relevant excerpts. The first
top level code section “Profile & Perception of DT” contains responses that were used to build a
context and general understanding of the interviewees’ background and perception of DT. The codes
under the second top level code of “Differences between DT and LSD” specifically address the main
differences identified in the literature that constitute the theoretical framework, and responses

21

within these codes were used to address the research question. The third top level code “Challenges”
was used to identify responses that addressed practical challenges that were mentioned by the
respondents to arise from the integration of DT with LSD and Scrum. The code structure is presented
below.

¢ Profile & Perception of DT
» Definition
» Opinion
» Most important aspect
» Roles & responsibilities
+» Differences between DT and LSD (addresses research question)
» End user empathy vs. customer satisfaction
» Visualizing vs. backlogs
» Synthesis vs. waste elimination

7

** Integration Challenges

3.7 Quality Criteria

Quality criteria are of particular concern in quantitative research. Regarding qualitative research, no
clear consent appears to exist amongst researchers about the relevance or exact definition of
reliability (Bryman & Bell, 2011). Nonetheless, the main quality criteria pertaining to the conducted
study are discussed in the following subsections. In detail described are issues of the study’s
reliability and various types of validity.

3.7.1 Reliability

In a general sense, reliability in the context of a research study is referred to as whether its results
are repeatable. Reliability for qualitative studies can be considered to be either external or internal.
External reliability refers to the extent a study can be replicated and internal reliability is concerned
with the level of agreement amongst researchers within a team regarding their observations (Bryman
& Bell, 2011).

The researchers acknowledge that, due to the nature of the case study, the external reliability is very
low. Despite this awareness, there was little though that could be done to improve the external
reliability. This is owed to the transient nature of the social setting that was studied at a particular
point in time and the single case approach. A replication of the study with the same sample will likely
yield different results because the respondents will have made additional experiences regarding the
research topic which almost invariably change their perception. Nonetheless, the clear research
question and systematic approach should improve the external reliability as much as possible, given
the circumstances.

In addressing the internal reliability, the pair of researchers discussed immediately after each
interview the main points covered and impressions received. Documenting the main points of these
discussions ensured a common viewpoint of the outcome of each interview, especially for later
analysis.

3.7.2 Validity
Validity is concerned with the integrity of the outcome of research studies, and various types of
validity exist which should be addressed for any business research study.

22

Measurement/construct Validity

Measurement or construct validity is of primary concern for quantitative studies and refers to
whether correct operational measures were chosen for measuring a particular concept. Possible
ways to improve the construct validity are to utilize multiple sources of evidence (triangulation) and
have respondents review the research findings (Bryman & Bell, 2011). The researchers in this study
attempted both methods to improve the construct validity. However, due to the scope of access
granted to the case, no other information source than personal interviews could be secured.
Furthermore, owing to time restrictions both for the researchers and the respondents, validation by
the interviewees could not be secured before the finalization of the study.

Internal Validity

Internal validity refers to the validity of a found causal relationship in quantitative research, i.e.
whether an assumed independent variable causes change in the dependent variable (Bryman & Bell,
2011). Since this study was exploratory only and qualitative in nature, no dependencies between
variables were devised. Therefore, internal validity in this sense is of no concern for this thesis.

In particular for qualitative research, internal validity can be viewed as the level of agreement
between theoretical concepts and observations made. Internal validity viewed in this way can be
improved by prolonged exposure of the researchers amongst the subjects being studied (Bryman &
Bell, 2011). Whilst undoubtedly desirable, this exposure to increase internal validity was not feasible
due to the spatial separation of the researchers and the actual social setting of the study.

External Validity

The concept of external validity addresses the generalizability of the study outside its specific
context. External validity can typically be enhanced by using representative samples, which requires
careful sampling techniques. For qualitative research, the external validity is usually weak due to the
use of case studies and small samples (Bryman & Bell, 2011). This weakness applies equally to the
case study presented in this thesis because of the relatively small sample size, and its unique
contextual setting. But since the study is exploratory, the goal is not for the findings to be
generalizable but rather serve as a first step towards a more thorough investigation of the topic.
Further, in the view of the researchers, this study could serve as one part in a larger, comparative
case study for which the results would achieve a higher external validity.

Ecological Validity

The ecological validity of a research study is concerned with the applicability of its findings to
people’s everyday reality. Ecological validity is typically compromised by researchers interfering with
their respondents’ natural environment or routines (Bryman & Bell, 2011). We cannot accurately
assess to what extent the interviews carried out for this study have affected the natural settings the
interviewees normally work in, since we do not know what they are. However, since the interviews
were exclusively concerned with past experiences and the respondents were guaranteed anonymity,
we believe that the ecological validity has not been negatively affected by our research design and
methods.

4 Empirical Results
The empirical results presented here are the summarized findings from two exploratory interviews
and eleven semi-structured interviews with POs and SMs. The exploratory interviews are presented

23

separately because each covered slightly different topics, and the second interview built on the
findings from the first. The remainder of the chapter is presented according to the structured
analysis and coding structure presented in Section 3.6.2 and includes aggregated findings from the
sample of POs and SMs.

4.1 Exploratory

An initial exploratory interview was conducted with a DT expert from Software Co’s consulting
organization. This expert has worked as both a DT coach and facilitator at Software Co and is a key
person in the implementation of DT at the Software Co development labs in India. This first
exploratory interview was conducted to gain an overview of DT activities at Software Co and to build
a general foundation of knowledge on the topic. A second exploratory interview was held with
another DT expert who is currently building up a DT team at Software Co which will be providing DT
consultancy services to customer organizations. This second interview was conducted to further
explore the topics and issues that had emerged from the first interview and to narrow the focus of
the research, which was deemed too broad after the first interview.

4.1.1 First Exploratory Interview

The DT expert first confirmed that the DT projects included in the roll-out waves are carried out in
the development organization of Software Co only by stating very clearly that “the projects are from
the development organization”, whereas “I come from a different organization, the consulting
organization”. As a result, the focus of the research was narrowed to include only the development
organization at Software Co and specifically focus on Wave 2 DT projects that were conducted in
either India or Germany.

The interviewee then elaborated on the team structure for DT projects that were run at the Software
Co development labs in India. The teams are typically composed of six to seven members with
varying roles. The roles were then explained as being: Developers, Interaction Designers, Architect,
SM, and PO. In the words of the interviewee the teams are assembled as follows: “the way they
assemble the teams now is, they have some developers, some architects, some user interaction
designers, SM, which is coming from the lean method, and then they have the PO and sometimes they
may use some people in development also. Normally that’s how they assemble the teams.” The
interviewee then explained that the SM and the PO typically take on managerial roles on the
development team: “the SM is what the project manager is called at Software Co and the PO is the
product manager.” Based on this insight that the managers of development teams at Software Co are
termed SM and PO, the scope of the research was limited to concern individuals working in these
roles.

Furthermore, the interviewee described how during these waves Software Co has both “traditional
projects” and DT projects that are worked on simultaneously by development staff members; “they
have their day job and responsibilities and duties. DT is an additional task given to them, and
therefore they are trying to do both.” It was then explained that the traditional projects are
requirement based and run according to the LSD approach: “traditional software development
projects are requirement based. There are some requirements coming from the customers, which are
then taken as specifications by some people somewhere at Software Co and those specifications come
to India and here the developers and architects work together and write the code in the Lean
method.” DT on the other hand was stated as being a very different approach to run a project, “DT is

24

completely experimental. We know the topic but we don’t know the requirements so they have to go
explore and go and meet the users do the research with the users.” This comparison and the stated
differences confirmed that the proposed topic of this study, the combination of LSD and DT, was
relevant and worthwhile investigating.

Overall, this first exploratory interview introduced how DT projects are run at Software Co and
helped to narrow the focus of the research. The findings are summarized below.

1. This interviewee was able to provide direct access to development team managers who were
involved in Wave 2 DT projects at the Software Co development labs in India. These projects
had been running for about one year and hence there would be ample data to be gathered;
moreover, since the projects were just started in the beginning of 2012 they were still
relevant and fresh in the memory of prospective individuals in the study’s population.

2. These projects were primarily conducted in India and Germany and thus the data collection
would be limited to these two locations.

3. The most important learning was that the software development teams at Software Co are
composed according to the Scrum method with POs and SMs as the team managers. This
helped to further develop the specific manger role as this thesis’ perspective.

4. There is a distinct difference between DT projects and traditional projects at Software Co.
The traditional projects are run according to the LSD approach, which are considered very
different than the Wave 2 projects that use DT. This was interesting since POs and SMs are
required to work simultaneously on both types of project. Therefore, it was decided that this
research would investigate the difference between LSD and DT approaches from the
perspective of POs and SMs.

4.1.2 Second Exploratory Interview

The second exploratory interview was conducted with a DT expert at Software Co who works on
diffusing DT at Software Co into areas outside of software development. This individual gave
credence to how DT is being used at Software Co in areas outside of software development by stating
“Software Co has a lot of different design thinkers within it, globally. And we have a DT initiative
coming from the sales force tribe, we’re getting it from teams who are developing custom software
for our customers and it’s not only for product development which the central initiative was set up to
do.” Since, as described by this expert on the matter, DT can be used differently in a multiple of
different settings, it was very important for this research to focus on a single department in order to
generate a specific contribution. Since the combination of LSD and DT was considered to be of most
interest, the product development department was selected as the focus for this thesis.

The interviewee then explained the distinction between Lean and Agile at Software Co, as well as
mentioning that most projects are run according to these approaches rather than DT. When asked
whether most, if not all projects at Software Co are run according to Lean, Agile and Scrum principles,
the response was: “That’s true. | was afraid you would say that all projects are run according to DT
principles — and that would not be true.” The interviewee explained the distinction between Lean and
Agile as “you have to make a difference between Agile, which is, we use Scrum as an Agile
methodology, and Lean. Lean has much more of the component of how people work together and
trust on teams and not just on upper/middle management.” Furthermore, the respondent clarified
that DT is not seen as a replacement to Lean and Agile, but should be more seen as an addition, “../

25

would be very cautious not to promote DT as something completely new and different, so that people
don’t go oh my god we’ve got to throw out everything we just learned and now start new, but there
are a lot of similarities that you can use.”

The interviewee proceeded to hypothesize that it might be more challenging for POs than SMs to
adapt to DT. Underlying this hypothesis is that POs have historically been responsible for the product
and have a harder time taking a step back to mentor or facilitate the DT process that involves a
shared team responsibility for the product. In arguing for SMs being more equipped to run a DT
project the interviewee made the comment that “SMs are less partial. They can be more, they can |
think facilitate; it is the classic problem of being a facilitator and participate at the same time. SMs
tend to monitor and support the process rather than feel responsible for products that are
happening.” These comments helped to emphasize the importance on understanding the role of POs
and SMs on DT projects. There was a clear indication that the roles given from the background in LSD
had an effect on how DT projects are managed by the individuals filling these roles.

An interesting aspect concerning Wave 2 projects was brought forward by this interviewee that in
stating that they were conducted in both India and Germany. The DT expert referred to a classical
problem in which “we have people in Germany that feel responsible for the product and then in India
we have a very, very large, pure development organization. Just because of time and cost it is hard to
create projects that involve everyone.” This impact of having an offshore development team in India
working on DT projects where the different stakeholders are in another country was seen as a
significant issue in the implementation of DT. However, given the scope and access for this research
these issues of cultural differences, although potentially significant, were not considered the focus of
this study. However, in terms of waste elimination and customer involvement, the spatial separation
issue was explored in a logistical context.

Finally, this DT expert brought up two probable challenges for Scrum team managers concerning DT
and its combination with LSD and Scrum by saying that “POs have a very clear idea in their head of
what they expect and what they would like the solution to be; part of DT is to involve more people
with different backgrounds in that definition phase and because you have a PO who is used to have
the responsibility for defining the product it is very hard for him or her to go back to the team and
stay open minded and involve everyone openly. | think that is on one hand a real problem. | think the
other problem that we have is that Agile and Scrum is there to optimize how fast we produce
something with quality.” While the first part of this statement directly addressed challenges for POs,
the latter part about the optimization was interpreted to be more applicable to SMs because they
are concerned with efficiency and execution. Therefore, this statement substantiated the research
direction to study the combination of LSD and DT from the perspective of both POs and SMs since
the potential challenges identified in the literature review to them was confirmed by this
interviewee.

4.1.3 Summary of Exploratory Interviews

These two exploratory interviews helped to narrow the focus of this research to focus on DT from the
perspective of POs and SMs. Both POs and SMs were hypothesized by the two respondents to face
challenges related to the implementation of DT. Moreover, it was learned that the projects at
Software Co used to be primarily based on LSD principles and the Agile method Scrum, and that with
the introduction of DT there was an addition rather than replacement effect. Finally, the idea

26

emerged that having a spatial separation between customers, end users, and DT teams could be
problematic. Although there may be a cultural aspect associated to the spatial separation the cultural
aspect, cultural difference was decided to be outside of the scope of this study.

The following sections present the empirical findings that were gathered from interviewing both SMs
and POs concerning the integration of DT with LSD and Scrum. These interviews were motivated by
the outcome of the two exploratory interviews and the literature review.

4.2 Profile of Product Owner and Scrum Master

In each semi-structured interview that was held with both POs and SMs, information was collected to
gain a better understanding of their roles and responsibilities for software development projects at
Software Co.

4.2.1 Roles and Responsibilities

In general, a Scrum team at Software Co was described as comprising five overall roles: PO, SM,
Architect, Quality, and Developers. An interviewee stated that “...we have these three or | think
overall five roles inside a Scrum team. One is the SM, the other is the PO, third being the Architect,
there is also a person involved on the quality side, that is the fourth role, and of course the regular
developers. So every team in Software Co, every Scrum team in Software Co will have these five
roles.” However, another interviewee stated that on a Scrum team the “PO, Ul designer, and
Architect they are the key people.” This interviewee identified a new role, Ul designer, which could be
considered to be outside the five previously mentioned Scrum team roles, showing that there is to a
degree some ambiguity and flexibility on the roles within a Scrum team at Software Co. However, all
interviewees included both a PO and SM when describing a Scrum team and these roles are the focus
of the data collection.

Scrum Master

The main responsibility of a SM on LSD projects at Software Co concerns the daily execution of the
project. One interviewee plainly described this role by stating “Execution is my responsibility as a
SM”, while another interviewee echoed this thought by stating that for a SM “....the focus is more or
less on the execution part, meeting the deliverables, getting it validated with the customers at the
end.” This same thought was stated again by describing the role of SM as “the role is to deliver,
execute, and meet all the timelines, the processes within Software Co, and also validation with
customers at the end.”

In terms of the backlog, which contains the requirements for the project, the SMs’ responsibility
involves executing the backlog by delivering the requirements within in a certain time frame, usually
a sprint. However, the SM does not have much, if any, involvement in gathering the requirements or
creating the backlog. A SM stated this by saying “For me, | just know there is a backlog and | have to
get it delivered from the team by this date.” Therefore, the SMs’ responsibilities include delivering
the requirements in the backlog but not defining or gathering them. Additionally, the SM is
responsible for validating these requirements and resulting software releases with the customer at
the end of a sprint, but this responsibility does not include questioning if these requirements are the
right requirements for the project.

27

Overall, the role of SM on LSD projects is best described as being a process gate keeper for the
project. An interviewee concisely stated this by saying, “The SM role is basically like a process gate
keeper trying to ensure everything is place, and there is smooth functioning of the team.”

At its core, the role and associated responsibilities of a SM for software development projects at
Software Co does not seem to change drastically with the introduction of DT. However, there were
still some notable changes in the SM role. These changes were generally seen in the beginning of a
project with less of an impact in the later implementation or execution phases. This is because with
the introduction of DT, the overall structure of the Scrum team shifted by becoming less hierarchal
and more democratic in nature. The shift to a more democratic team is described by an interviewee
as, “..with DT, all of us did the customer interviews, all of us understood the problem, we were all at
the same level when all the problems had been identified.” Another interviewee supported this
perception by stating: “All the roles are the same here (DT). You just go to the customer or the end
user and collect the requirements, then come back where you all sit together, brainstorm, do the
ideation phase, come up with the design yourself and then implement it. So you’ll be on the same
page, the entire team will be on the same page.” This idea that introducing DT changed the overall
structure of the Scrum team from a team with individual siloed responsibilities to a more democratic
team without specific roles was a common theme given by all interviewees.

This change to a more flat team structure without defined roles impacted the role of SM by widening
his or her responsibilities to include jobs outside of execution and delivery. An interviewee illustrated
this change by stating “but with DT | think it has changed. You are part of the team, you are already
doing it, you are collecting the requirements yourself by observing them (end users), you are
validating it with them as a SM also, and you meet the end users.” Another interviewee emphasized
this statement by saying “as a SM, | just know there is a backlog and | had to get it delivered from the
team by this date. That is all that used to matter to me (before DT), but now | know in length and
breadth the entire backlog and its background.” It is clear from these quotes that SMs’
responsibilities did not so much change but instead were widened by participating in defining the
problem statement, by being involved in the collecting of requirements, as well the ideation in the
beginning phases of the software development project.

Product Owner

The main duty of a PO on LSD projects was described as being responsible for the overall content and
product in the project. This high level responsibility was described by an interviewee as “our (PO)
role, as we understand, is that we are overall responsible for the product, so you have a lot of
problems, you need to live up to a certain time, you need to deliver a certain scope, you need to take
care of your budget, you need to convince customers to buy it.” Another interviewee emphasized this
statement by saying “/ (PO) am not a line manager. At Software Co we have a separation, so people
are content responsible and other people are people responsible... | am responsible for the content for
the team.”

It terms of the backlog and requirements, the PO in LSD projects is solely responsible for working
with both the internal and external stakeholders to create the backlog and define the requirements
but does not have a daily execution responsibility of the backlog like the SM. An interviewee stated
this by saying: “A PO is responsible for making the backlog items for the product — for the
development, and to clarify the requirements and all this stuff. But generally the PO is not really

28

responsible for the day to day execution.” This backlog responsibility is described in another way by
an interviewee as: “So I am also responsible for defining the so called backlog; so | am defining what
needs to be done, and needs to be controlled, what happens after its done, if what the team is doing
fits to a customer need, and being overall responsible for the product — that is my role.” Overall, the
leadership of a PO on a Scrum team can be defined in terms of their responsibility of defining the
requirements, creating the backlog, and passing this on to the members of the Scrum team. An
interviewee supported this statement by saying “leadership, from say the PO, is in terms of having
the functional knowledge and giving the requirements.”

The PO, overall, has a high level responsibility by having ownership of the product and content, or
essentially the functional knowledge for the entire LSD project. It is the PO’s responsibility to create
and define the backlog that will be then given to the Scrum team to execute and deliver in the
sprints. The PO in a LSD project at Software Co was the sole person that worked with internal and
external stakeholders including customers to define the problem statement and what requirements
are needed, but this sole responsibility shifted with the introduction of DT.

This shift in responsibly with the introduction of DT appeared to be impact the PO role the most by
on software development projects. The PO’s core responsibility for the overall product and content
did not change but due to the previously mentioned shift in the Scrum teams’ structure, the PO role
was impacted since responsibilities such as gathering requirements changed from being their sole
responsibility to a shared responsibility with the introduction of DT. Both POs and SMs interviewed
acknowledged this shift by stating: “..if someone’s role is impacted the most | would image it is the
PO” and “it is a fundamental difference because in the earlier projects (LSD) I, the PO, was the single
point of contact.....but here the entire team is equally responsible for getting the requirements.”
Another interviewee stated that the PO could be the bottleneck in LSD software development project
because they were the single contact for the Scrum team to clarify the requirements, but this
changed in DT since “everybody is at the same level, there isn’t this knowledge gap.”

Moreover, the responsibility of working with external stakeholders such as customers or end users to
determine the requirements for the backlog in LSD projects in terms of the Scrum team rested solely
with POs. With the introduction of DT interaction with external stakeholders became a shared Scrum
team responsibility. An interviewee stated that, “with DT, all of us did the customer interviews, all of
us understood the problem, we were all at the same level when all the problems had been identified.
So there was no necessity for the PO to explain the problem statement and requirements and get the
buy-in from the development team, it was already there.” Another interviewee stated: “But what has
changed is that the ones who participate in DT as a team, all the people who are part of the team,
they more or less understand the requirements or what needs to be built into the solution. It’s
because everybody was involved in the customer interviews and so on, so they really understand what
the customer is looking for. Previously this was only known to the PO.” Since this was one of the core
responsibilities that belonged to the PO in LSD projects in terms of the Scrum team, an interviewee
even described the effect of this shift in responsibility to mean that “everybody is more or less, |
would like to put it, say in a small way a PO because we understand the requirements ourselves.”

Summary of Roles and Responsibilities
In summary, the role of the SMs did not change significantly with the introduction of DT, but some
differences were noted as shown in Table 4. In LSD only, the SMs were concerned only with the

29

project execution, delivery of backlog items and validation of software releases with customers. With
the addition of DT, the SMs’ duties expanded to also include involvement in problem definition,
ideation and requirement collection.

Prior to DT, POs were the only team members who had an overall view of the software that was
being developed. As such, POs were responsible for defining the problem statement and creating the
product backlog based on requirements they had previously gathered from customers. Furthermore,
POs were in charge of being the communication link between the Scrum team and other
stakeholders. The role of POs shifted somewhat with the introduction of DT; subsequently, the entire
team was involved in collecting the requirements from end users and defining the problem
statement. Hence, some of the POs’ responsibilities were distributed to the entire team.

Adding DT to LSD projects altered the Scrum teams in such a way that the structure was less
hierarchical and decisions were consequently made in a more democratic fashion. In LSD only
projects, each team member had clearly assigned duties and tasks to complete but in DT this had
changed to a flatter structure without specific roles, at least during the duration of the DT phase.

Table 4: Summary of roles and responsibilities

Scrum Master Product Owner
LSD LSD & DT LSD LSD & DT
Problem definition Communication link | Increase in
Ideation between interaction with
stakeholders and entire Scrum team
Scrum team and stakeholders
Requirement Sole ownership for Still owns product
collection overall product on but more input on
Daily project execution Scrum team decisions from
Scrum team
Delivery of backlog items Defining problem Increase in sharing of
statement responsibility
Validation of software with customers Creating backlog Increase in sharing of
responsibility

4.3 Perception of DT

In addition to the interviewees profile information, data was gathered concerning the POs’ and SMs’
opinion of DT and what they considered the most important aspect of DT on software development
projects.

4.3.1 Definition of Design Thinking

Interviewees defined their understanding of DT by emphasizing two characteristics: (1) user centric
and (2) problem finding. The user-centric characteristic of DT was repeatedly mentioned by
interviewees by statements such as “DT is a technique wherein you look at a problem from the
perspective of the end user” and “DT is a very user centric approach and it also gives a lot of
importance on building quick prototypes and getting it validated, so there is sufficient time to
understand the user’s perspective and trying to build something for the users and get it validated
from them, so if | have to put it in one word it is a very user centric and prototype driven approach.”

30

The second prominent characteristic that interviewees mentioned when asked to define DT was its
focus on understanding or finding what problem was to be solved rather than execution or actually
solving the problem. For example, one interviewee stated that “LSD is more for execution and DT is
more for solution perspective where you have to come up with an idea and come up with the solution
for it.” While another stated that, “Lean is something which is more into execution, how you are
doing things, how to do it... ... DT is more of learning what to do.” Yet another interviewee eloquently
described DT as “a structured art wherein you creatively try to find out what to develop.” Overall,
these were the two main characteristics user-centric and problem finding that emerged when asked
to define DT.

4.3.2 Opinion on Design Thinking

When first asked, all interviewees quickly responded with a favorable opinion of DT but this was not
given without later mentioning limitations and challenges associated to the approach. The generally
positive opinion about DT revolved around comments that pointed out how DT (1) helps to solve the
right problems, (2) increases innovativeness, and (3) decreases stress in particular for POs through
improved communication, understanding and responsibility sharing.

In terms of having a positive opinion because DT helps to solve the right problems, interviewees
made comments such as “/ love this technique because it ensures you are solving the problem that
the end users want you to solve, and not solving it the way you think should be solved” and “DT and
Lean complement each other. Lean focuses on doing the things right and DT focuses on doing the
right things.” Interviewees that had positive opinions due to the increase in innovativeness made
comments like “I feel it is very good. It helps us innovate better and it’s a win-win situation, both to
the development and the customers.” Another interviewee stated they had a positive opinion of DT
because it helped to decrease their stress and related pressures by saying “I think it makes my life a
little bit easier. First of all there is lots of knowledge, lots of talking, lots of customer contacts, and lots
of exposure to the real business world. And | think these are the gains of DT for me a PO and this was
not there so much before.” Another interviewee highlighted this opinion by stating that DT not only
decreased the stress on the team but increased the productivity: “DT with the right mix of creativity
and work this was almost like a stress buster, we never thought we were working for some many
hours, and that | think leads to a high productivity | feel because the team is motivated and full of
enthusiasm there.” A further contribution of DT to make the PO’s job easier arose from improved
communication and understanding, and being able to share the responsibility around defining the
problem statements and collecting the requirements. One interviewee stated that “...what becomes
a lot easier is definitely the fact that people are clear of the requirements. And once people are clear
of the requirements, then a lot of pressure is taken off you (PO) and you can focus on the next steps
and the next....so that definitely helps because then the pressured is reduced a lot on the PO.”

Limitations

As mentioned above, although the overall opinion of DT was favorable, many interviewees set firm
limitations on the use of DT. The limitations included that DT must be done in the right way, should
not be considered the solution for all problems, and should be used for abstract rather than
mundane problems. The first limitation mentioned is that the DT must be done in the right way.
Interviewees made statements such as “/ think it’s a really good approach and it always works if it is
followed the right way, irrespective of the domain it is applied in” and “l would say it is very helpful if
you use it in the right way but you really need to find the right structure for that.” Another limitation

31

to the generally positive opinions about DT was that DT is good, but it is not for everything.
Interviewees stated that “DT is very helpful but it is not the answer for all questions that we have in
the software industry.” Moreover, interviewees’ opinion of DT is good when it is used in a context
where there are abstract rather than mundane problems. For example, one interviewee said that “DT
is really nice when nobody knows what to do, what the problem actually is.” While another
interviewee stated very plainly that, “it is very important or very helpful, especially if you have
abstract problems.” The respondents’ opinion of DT was by and large positive, but limitations of the
suitability of the approach were also pointed out.

4.3.3 Most Important Aspect of Design Thinking

Interviewees were asked to state what they considered to be the most important aspect of DT in
relation to their role. The overwhelming response to this question was the focus on the end users.
Interviewees clearly stated this by saying, “I think the most important feature of DT is that you put
the end user in the picture and then you start looking at the whole process from his perspective.”
Also, “it was validation also by the customer and end users; that is the main important thing here.
Because usually when we also visit customers in other areas or in other methodologies, we visit the
customers and not the end users. Here it is mainly focusing on the end users and validating with
them”, and “for me this is important, the 360 view.” It is clear that both POs and SMs at Software Co
perceived the interaction and contact with the end user to be the central aspect of DT.

4.4 Design Thinking vs. Lean Software Development
Before presenting the specific data that relate directly to the theoretical framework given in
Section 2.6, higher level data trends that emerged during the interviews are presented below.

One interesting observation made by the interviewees was the more direct and hence faster flow of
information between the customer and developers on the Scrum team after the introduction of DT.
In the LSD projects, communication was stated to pass through three or four instances between the
developers and customers, but since DT required the direct interaction of involved persons, a direct
link was established to facilitate an accelerated information exchange. This improvement was clearly
expressed by one interviewee as: “the turnaround time was not very good (in LSD), whereas in DT |
write an email directly to the business user and get an answer or a document explaining the business
process; so it’s kind of faster”. It appears that the shift towards user empathy, which necessitates
direct contact between Scrum team members and end users, has created the additional benefit of
having queries answered directly and faster than in LSD projects. Overall, the focus on end user
empathy in DT generated a beneficial side effect in the form of shortening the response time for
queries by the Scrum team.

Related to the above data concerning direct contact with end users, was a clear pattern of positive
response regarding the commitment of Scrum team members to the DT project. Since the entire
Scrum team is involved in gathering requirements from the end user, all team members have a clear
understanding and buy in very early in the process, rather than having to be convinced of the
benefits of their work. This view was expressed as: “there is an immediate buy-in from the PO and the
development team, they already know that this is exactly the problem which the customer faces and
we have to solve this. So the buy-in is better and immediate in the case of DT. It is some more work
compared to the traditional approach (LSD) but it is more effective.” Another interviewee described it
as: “since | have been involved from day one when this particular topic evolved and | have interacted,

32

I know the background, | know the entire backlog, so for me it is easy to understand what is going on
and it really gives me good confidence.” From the perspective of both SMs and POs, the benefits of
having a committed Scrum team at an early stage outweigh the drawback of more resources and
time needed for gaining empathy with the end user.

Another difference between the LSD and DT approaches that emerged in the data was in terms of
the point in the project lifecycle where customer feedback is received. Customer focus was
considered important both in LSD and DT by interviewees, but the point of time to consult customers
differed. In LSD, this occurred after each sprint with useable software releases but in DT feedback
was received before any actual software development occurred: “We also have customer focus in
LSD, in the way that we prioritize the backlog, in the way that we do continuous improvement, in the
way that we have a useable software after every sprint, and then go to the customer, come back, and
things like that. So the focus is the same, but building a low cost prototype for early customer
validation is something which is different here.” It thus becomes evident that the timing of customer
involvement and feedback has been shifted forward with the introduction of DT into LSD projects.

From a high level view, the data indicates that with the introduction of DT there is a stronger focus
on the end user and the entire Scrum team is actively involved in this empathizing.

In summary, the perceived improvements with the addition of DT to a LSD project are an improved
response time for queries to and from customers and users, earlier and stronger commitment from
all Scrum team members, and earlier feedback from customers. An overall negative aspect of the
addition of DT to a LSD project that emerged from the interviews was that DT requires more time
and resources to gain initial understanding; however, this disadvantage was considered tolerable
when compared to the benefits.

4.4.1 End User Empathy vs. Customer Satisfaction

It becomes clear from the previous section that the focus on end user empathy in DT has profound
effects, even on aspects that on the surface seem unrelated. In this section, the interviewees’
responses that are more specific to the end user empathy in DT are presented and contrasted with
the LSD principle of customer satisfaction.

Terminology

One particular finding that emerged relates to the terminology of end user and customer. Some of
the respondents referred to customers initially, but after follow-up questions prompted by the
interviewer, revised their statements and conceded that it was actually end users they referred to.
Some statements illustrate the difficulties in expressing the differences: “In LSD you are kind of, you
are talking to customers in a different way. In DT it’s kind of similar but it’s a more formalized
approach | would say.” Another interviewee said “but the most important thing | am seeing out of DT
is the focus on costumer” and stated within the same answer, seconds later: “So with DT now we are
trying to put more focus on the end user.”

On the contrary, a number of other respondents were very clear on and stressed the distinction
between end users and customers, such as the following responses: “There is really a big difference
between customer and end users” and, “it is very important to separate between the customer, and
by customers | mean the project leads and architects, and really the end users.”

33

Another respondent seemed very clear on the focus of DT, but somewhat confused about the
definition of customer in LSD, as was expressed as: “I think in LSD it’s customer as the customer. |
think we also have some end users probably, and some might not be the end users. But here with DT
it is strictly end users.”

In essence, the clarity in terminology and meaning appeared to be slightly differing from person to
person but after probing by the interviewer the result was quite definite in that for DT, end user
refers to the actual people using the final product. Whereas the term customer as used in the LSD
approach, can include any person that is representing the organization who may purchase or use the
final product.

Contact Persons

After clarifying the initial difficulties in terminology regarding end user and customer, the focus
during the interviews was placed on the differences between the end user in DT and customer in
LSD, and whether any difficulties arose from these.

In the DT approach, the targeted contact person is much more specified in DT as expressed by one
respondent: “More or less the same people. But what happens is that in LSD you don’t mind talking to
the IT guys of a customer. But in DT you try to access end users, so there are some differences.” A
second interviewee provided a very similar response by saying “earlier we used to basically talk to
the business users or the IT head or the person responsible for the product development department
and things like that. But now we’re trying to reach out to, say one level down, which is the end users
who are actually using the software.” It is clear from these responses that in DT the contact person is
specifically the end user.

Very little of the identified theoretical misalignment given in Section 2.6 was actually perceived by
the interviewed POs and SMs. Rather, being in contact with end users was an addition to talking to
the “usual customers” in LSD: “DT basically focuses more on the end user but | don’t see a real conflict
between LSD and DT in that sense. You basically focus on the end user, but at the end of the day you
also have to discuss with the other stakeholders, like the IT guys at the company and maybe others,
like management people as well.” Along these lines, there was some adjustment to be made in terms
of the contact person but no conflict arose out of the elementary differences between DT and LSD.
As mentioned, communicating with the end user is seen more as an additional step to gain additional
and different insights.

One interviewee mentioned the surprise of end users when they were being interviewed by Scrum
team members trying to collect information. Because these end users are not accustomed to talk to
developers of software they are using, their reaction was described as: “Why are you asking me these
questions? You are from Software Co you need to know what | need...” Again, this does not relate to
any adjustment the PO or SM has to make but is originating externally from the end user being
unfamiliar with DT. Although this issue was only expressed explicitly by one interviewee, it is closely
related to the larger problem of gaining access to the end user, which is presented later on.

End User Contact before Design Thinking

A number of respondents stated that it was part of their previous way of working to be in contact
with specific end users, rather than just unspecified customer staff. In a way, they claimed, they were
doing DT before its formal introduction at Software Co. As two interviewees independently

34

expressed quite bluntly, “for me this is more like common sense, so | thought I’'ve been doing DT all
the time”, and “I think the whole process is not new to me because since many years we have been
looking at what the end users are doing, so DT was not new to me.” However, the approach is much
more formalized with the introduction of DT to LSD projects and seems to simplify matters for at
least one PO: “I think with DT it becomes a lot easier because now it is structured.”

Even though several interviewees, POs in particular, stated that they had been in contact with end
users during development projects run according to the LSD approach, they appreciate the structure
the DT approach provides to the activity. Regardless of the efforts to get in touch with end users
were made in LSD or DT approaches, the most pronounced problem faced by all respondents was to
gain access to the actual end users which is presented in the next section.

Access to End Users

There was common agreement of all interviewees that getting access to the end users was the most
difficult part to achieve in DT (also in LSD, if end users were consulted previously). Although the
problem of access was not entirely new to some of them, it was stated to be more pronounced in DT.
Whereas previously, gaining access to any customer representative was not easy, getting access to
very specific staff amplified the issue. This is reflected in the following statements: “Getting access to
end users is the challenging part, so DT is definitely more challenging.” Also, “it is not easy to get the
right people on the table at the customer, the customer’s IT department usually blocks that because
they would first like to understand if what you would like to discuss with end users is something
relevant for them or not. So you usually need one meeting to convince the IT; then, if you are strong
enough you can access the end user. You never go directly to the end user.” Another interviewee
stated that “all these end users have daily work and they do not really have a lot of time. Especially
the people in the business area need to do their daily business, and then to discuss with a guy from
Software Co how to do the best thing — it is really tough to get these kinds of end users.” This type of
statement was encountered again and again throughout the interviewing process, and some
respondents even contacted friends in their personal network to gain access: “Whatever customers
we have met is through our personal contacts, so a friend of mine is working in a company so we had
to approach him, that person, to get an interview with their end users”.

While this problem of access is not directly related to the theoretical misalignment of DT and LSD, it
is a practical challenge that originates from the misalignment. It highlights a very common, practical
issue that is being faced by both POs and SMs on Scrum teams at Software Co.

Benefit of End User Contact over Customer Contact

The widespread difficulty of getting end user access could logically prompt the question of what the
actual benefit is of talking with end users compared to the usual customer representatives.
Interviewees, in general, considered the end user contact more beneficial because the outcome is
products that are more desirable and ultimately provide more value to both the customer and end
users by addressing actual user pain points. Most interviewees could not yet judge the success of
their DT efforts in terms of monetary measures; however, their general positive perception was
based on the early and continuous feedback received from both end users and other customer
representatives.

This view was expressed in a number of statements such as: “The other positive that is quite obvious
is that because you are talking to end users, you are re-validating with the end users, this ensures

35

that what you are developing is at the end what the customers wants, so that benefit is definitely
there”, or “they give me feedback on what | have done and what | need to do, then | think I’'m on the
right track.” Regarding the actual customer problems as opposed to the customers’ perceived
problems, the end user pain points need to be understood: “It is very important to have this end user
empathy also ingrained into the process somehow, so we don’t lose the actual requirement, or the
actual pain point”, and “understanding the customer’s pain point is most important. Because that is
how you prove to yourself that you are always on the right track. And that is the next very important
thing, always validating, building early prototypes, showing and visualizing, to end users.” Also,
getting to the pain point requires an altered approach: “not asking him what does he want, but
rather asking him what does he do with the business process and trying to evolve from there into
what is it that would address his pain point. So the major difference is not asking the end user what
does he want, because then you get a wish list, but rather trying to observe and gain the insights”.

An additional perceived benefit of being in contact with end users is the improved communication
and associated reduced information loss, because previously “at the end of the day what we would
deliver was maybe just some 70% of what the customer required, because there was various
information filtering at various levels.” While the filtering occurred at both sides of the table, the end
user contact certainly reduced such problems as expressed in “don’t always trust what the IT people
tell you, go to the end user, and observe what they are doing. Don’t always trust that the IT people
tell you what the end users are doing.”

Team Empathizing Remotely or in Person

Another difference noted in DT compared to the previous LSD approach was that the end user
empathy and understanding should be gained in person by the actual Scrum development team.
Previously, it could be a Software Co representative collecting information and passing it to the
development team; alternatively, some interviewees collected information from end users, but
remotely and in a non-structured manner. Both strategies have shortcomings which were, at least to
some extent, stated by interviewees to be eliminated by DT.

The first issue of an Software Co representative external to the Scrum team collecting information is
information loss on the Software Co side rather than the customer side. An interviewee described
this loss in LSD as “in the earlier development model (LSD), there is a solution management team or
somebody somewhere who would go and interact with the end user, do some market research and let
the PO or somebody know that this is a requirement and this is what needs to be done, and then the
PO would start drilling down on those topics ... But with DT the team goes and talks to people directly
and tries to understand their concerns , tries to observe how they are doing things, what is it they are
lacking or missing. This direct interaction and observation helps everyone understand the process,
and everyone is on the same page when we come back, and we don’t have to start all over again
when we try to create backlogs and realize these backlogs into solutions.” The outcome of the co-
located empathizing by the DT team appears twofold; as mentioned previously, no information is lost
in the transmission and the team buy-in is positively affected, as is also reflected by this statement:
“But now every single person knows what the benefits the customer is going to get out of what he or
she is developing. So that is a very big, very nice advantage of going out and observing the end
users.”

36

One interviewee, who was in contact with end users before the formal DT introduction, mentioned
that “the biggest difference is the emphasis of doing this in person. So either face to face, or at least
have a video connect and have this discussion, which brings a lot of human angle to it, therefore we
can see the end users and know: is he happy, is he not happy.” In a few cases interviewees reported
to have had no other option than to gain end user insights remotely, despite trying to follow a formal
DT approach. This was an outcome of spatial separation from the end users and travel budget
restrictions. In these cases, DT was seen as being far less effective: “we lost the empathy when we did
it remotely. We have to actually see them, talk to them. They were different when we met them in
person than on the phone. They had a lot of things to discuss and to show when we were in person, it
was good. We were able to observe them which we weren’t before.” On the other hand, another PO
stated the necessity of this approach as “you don’t have the travel budget, you need to make a few
web sessions or calls, and so you need to have a kind of pragmatic approach.” |deally all end user
research is done in person, but in reality it may not be feasible.

These accounts highlight the importance of doing the end user research in person and that it is being
done by the Scrum team, the persons who will create the product for the users. On the other hand,
some downsides and desired prerequisites were stated for the Scrum team travelling to the
customer such as: “The entire team can go and talk to customers but my only concern would be, the
people who are going to customer interviews should be knowledgeable. At least they should go with
some basic knowledge of the industry or line of business of the customer they are talking to.” The
need for having a deep knowledge of the customer was pragmatically dealt with as: “It is very
important that we have a stable team going to the customer, it makes no sense to always mix the
team that goes to the customer”, because “we tried this out in different ways but we stepped back
because it was too confusing that always different people go to different customers.” From these
statements it is evident that this particular respondent had established an empathy sub-team within
the DT team.

Which End Users and How Many?

Another theme that emerged during the interviews within the topic of end user empathy revolved
around questions of which are the right end users to talk to, how many are needed and how much
time should be spent on it. These issues are rather practically oriented as opposed to having
theoretical relevance in perspective of the framework for this thesis; nonetheless, they were
considered important by the respondents.

The impact of whether the researched end users are actually the right ones was most profoundly
expressed by this statement: “a huge question where you can you can fail with DT is: do you really
talk with the right end users? And this is really tricky, so this is one thing where DT is a problem.” This
shows that the risk here is, of course, that a great product is being built but for users who may not be
associated to customers who buy it, hence it carries commercial repercussions.

Related to the quality of end users researched is the quantity, i.e. how many should be researched in
order to get good enough insights to build a good product. One interviewee suggested that
establishing certain guidelines such as: “you should have some criteria in place for DT, minimum of
this many interviews, this many customers and so on — there should be a minimum criterion. Once we
do that and we have good enough interviews and good enough insights, then it gets easier. But if you
couldn’t get that many appointments with end users, then my personal feeling is that you shouldn’t

37

go forward.” This can be very much regarded as a statement concerning the confidence in the
gathered data from a quantitative viewpoint which parallels the previous paragraph in terms of
confidence in the quality of end user data.

The consideration of how many interviews or observations are sufficient has to be practically
balanced with budget and time restrictions, a point touched upon before. Of course the respondents
were aware of the increased time required to communicate externally: “perhaps you have more
contact with customers and end users. So to manage that is perhaps not new, but you spend more
time on it.” Realizing this requires adjustments in planning projects, such as “you need to manage it,
you cannot always make a department trip with the full team to a customer. If you interview two
people, you cannot go there with five people. You have to balance it. And you can also not go to
twenty or fifty customers; you don’t have the travel budget.” It appears that the need to find the right
compromise between quantity and quality of end users researched, and the way to do it, is there and
has been recognized. However, a final solution does not seem to be in place as yet.

4.4.2 Visualizing vs. Writing Backlog
This section presents the findings that relate to the topic of visualizing in DT in comparison to the LSD
practice of writing out requirements in product backlogs.

The common pattern that emerged from the interviews was that the DT practice element of
visualizing is not in conflict with writing requirements and product backlogs in LSD. Differences are
perceived nonetheless, but in a positive way that facilitates the creation of better products: “this is a
big difference to the old world where we were always writing this huge specification, word
documents with hundreds of pages. With this new process you are working more with prototypes,
power points, more with paper mock ups, so this mock up style is much, much more important than
the specification.” This view was shared by many respondents: “/ think actually visualizing the
problem and then trying to see what we want to do, where we want to reach by the process of
visualization is more important than just listing backlog items.” An additional benefit was seen in that
visualizing facilitates communication: “Building storyboards and prototypes can help the message to
come across and drive the ideas with executives.”

Much rather than being misaligned, the visualizing in DT was seen as a precursor to backlogs, just as
DT is usually preceding actual software development at Software Co, which is still executed in the
usual LSD mode, as the following statement illustrates: “we have made better experience when you
are in a research phase with DT than in a development phase. So this is because you change many
things then, new things come in, this creative phase fits much better if it’s only for the research phase.
DT is very questionable when the development phase has started; | am against that — that is not
working”. The visualized findings are then translated into written requirements, which are still
necessary for the development in LSD mode: “the PO has the responsibility to map all this
unstructured information we have in the form of diagrams, maps, and designs into structured
requirements. It has made my work easier, because as you go through the journey the process is more
or less clear in your mind of what is expected and was it not, so just putting this down in form of a
document is not extremely difficult.”

Realizing that the visualizing can effectively precede writing of requirements in backlogs creates a
shared view of its benefits. Moreover, the backlogs were stated to have in some cases evolved from
the visual artifacts: “we made a very rough prototype of what the problem is and where we want to

38

go to. It was still not a solution. But from all this then, we designed the backlogs and there are no
more missing building blocks.” The complementarities were even expressed directly: “they
complement each other”.

The potential disaccord between DT and LSD that originated from the DT practice elements of
visualizing and writing product backlogs was not perceived by the interviewees as a significant
misalignment. Much more, the addition of visualization to their work was seen as a benefit that helps
problem identification, facilitates communication, and makes the creating of backlogs easier.

4.4.3 Synthesis vs. Waste Elimination

The third theoretical misalignment between DT and LSD concerned the DT practice element of
synthesizing. This DT element is in theoretical conflict with the underlying LSD principle of waste
elimination. Owing to the centrality of waste elimination in LSD, this identified discrepancy was
confirmed by most interviewees in general. However, wastefulness was perceived not only in the
synthesis DT element, but also in other aspects. A few interesting statements that do not relate to a
specific aspect of DT are: “DT is a good approach, but it involves a lot of waste. In LSD you are told to
eliminate waste. So you try to be as efficient as possible.” “Our experience is that DT is less efficient
and less effective.”

However, these views were not shared by all respondents, some of which had come to the
conclusion that some waste is required to achieve the goals of DT, as was reflected by the following
statements: “LSD brought in some efficiency and some speed to product development but still the
products where not innovative. So the desirability was still not taken care of and probably that is the
element that DT will bring into the whole process.” “Things are very different; LSD is for efficiency as
compared to DT stands for innovation. If you try to enforce efficiency in a process many times you
might not get innovative outputs.” “There will be some product waste which will be generated by DT,
but this is not actually a waste; this is a waste that is required.” The majority of respondents
acknowledged some inherent waste in DT, but at the same time conceded that it was necessary in
order to get a higher quality output.

Furthermore, some statements expressed a view that waste production in DT was too strong a
terminology and preferred to rephrase it a bit more moderately such as: “at some point you do feel
that whether a particular step is necessary or not necessary, but | don’t know if we should call it
waste”, and “l wouldn’t call it waste. But yes, it definitely takes some efforts.”

Presented below are some individual themes within the topic of waste elimination that emerged
during the interviews.

Necessary Waste

As briefly touched upon above, a number of respondents had the perception that DT does generate
some waste, but considered this waste necessary to create better offers for their customers or end
users. For example, one interviewee stated: “We have more ideas; we try to discuss and brainstorm,
and meet again with customers. Yes, this really takes a long time, but | think in the end we build a
better product.” “You have to be very patient, that’s what | found out, but if you are patient and you
do it in a proper way the returns are also good.” Also, “at the end DT does ensure that what you are
developing is something that will solve a user problem.”

39

Not only was the point mentioned of increasing the quality of the output, but another aspect
discussed was that some waste earlier in the process might reduce the waste at later stages. Because
if it is ensured that the right thing is being developed, there will be less adjustments or re-work later
on. “Definitely, it takes more time and | think that is the radicalness of the DT approach and we need
to factor in that more time is being spent on that. But | think that in turn it might end up giving you
better ideas that could be beneficial in later phases of development. We might actually come up with
ideas that take less time and we can complete in less time.”

Another statement returned to the previous point of team commitment and satisfaction; since
everybody is involved from the start, the increased motivation actually increases the execution
efficiency: “It requires a little more of time, but then | feel it is more effective. It is not just one
person’s brainchild but everybody would have put their mind into trying to realize this particular
requirement. So in that way, time wise, it is more time consuming but at the end of the day everybody
is satisfied with that we have come up with a very good proposal.”

In the end it appears to come down to the requirement of finding the right balance, i.e. how much
waste is tolerable for the greater goal. As one respondent summarized, “/ think that you need to
balance it. | am open to spend some waste and spend some time for generating some ideas, but from
my experience it is not always the best if you expect it from the group sitting in a room together and
doing post-its.” The second part of this last statement leads seamlessly on to the next two themes,
which revolve around time being wasted in discussions among teams with too many, and unsuitable
participants.

Team Discussions

Ideation in DT involves converging and diverging as repeatedly mentioned previously, which is
typically performed in a group setting and members holding active discussions. These discussions
were perceived to not always be as fruitful and efficient as desired, as is reflected by the following
statements: “A lot of discussions are happening which is good in some way but you spend a lot of
time in doing that.” “The entire team needs to be there and discuss for long and all those things. So
sometimes it feels like (laughs) there is a lot of waste of time.” Not all interviewees took it with as
much humor though, but rather had already thought of ways to improve the perceived flaw: “This is
a big disadvantage from my perspective. This was one of my main proposals to make DT more
efficient: to prepare such DT sessions, not putting the people one full day together in one room and
think something is working out. It is even better to have two or three hours of DT session and all
people come prepared by having some own time for their ideas and bring it on the table and then
working together. That is how meetings are efficient, you should work together, you should exchange,
you should discuss that is out of the question. But for me this is somehow missing from our current
DT. We only write things on post it and this is always an inefficient way.”

The discussions are considered necessary but as practiced so far, were considered too unstructured
to yield good results in reasonable time. Related to the time taken on discussions is the next theme
of team composition and size, i.e. which people should be involved and how many of them.

Team Size and Composition
The theme presented here is concerned with how many people and what roles should be on a DT
Scrum team. Having large teams around ten members was considered too many for reaching

40

agreement. Moreover, having people with insufficient experience or unsuitable personalities was
seen as being detrimental to the outcome and efficiency.

The main points about Scrum team sizes in terms of DT were expressed as: “It was very difficult to
come to a point because of so many different people sitting in a room. It would be easier and much
faster in a classical approach where you have two or three main contributors who do research and
then do storytelling to the others. In a bigger team you need more investment and | didn’t make the
experience that this was better.” “The biggest difference or challenge is to integrate the full team and
working in prototypes and so on but very often | had the feeling it was not efficient or effective in
relation to what we find out.”

Concerning the roles and personalities, the following emerged: “PO, Ul designer and Architect are the
key people. | never ever attend any meeting where the quality people, the knowledge management or
the translators or whoever made any significant contribution to the project. | think this is the main
misunderstanding that you should involve all of these roles in a DT project. For me this is a major
misunderstanding, these people are not that creative to generate or create a new project. | made the
experience that on three teams that there was zero, no contribution and for them it was more or less
boring and a waste of time and at the end they stepped out.” Also, “to put a full team of ten or so
together is too much waste because not all of them contribute in the same manner. Not everyone is
feeling that creative to contribute and that leads to frustration and that is blocking the team.” These
statements indicate some form of frustration with the composition of the team, and that having
unsuitable participants actually inhibits the productivity and creativity of other team members.

Ideas not Technically Feasible

One of the aspects of DT is to generate ideas that push existing boundaries with the aim to find more
radical solutions. Owing to this encouraged creativity, several interviewees mentioned that ideas had
to be abandoned because they were technically not (yet) feasible, and hence had to be deemed
waste generated in the process. “The challenge is that you might come up with different ideas, and
when you go and implement them you might face a lot of issues and then you basically have spent a
lot of time coming up with your ideas but you can’t execute them.” The previous statement referred
to the challenge of realizing early when an idea may not be pursuable at the time and not to spend
more time on it than necessary. The next statement equates straight to the aspect of waste
elimination, rather than describing a challenge: “waste elimination came into picture during the
ideation where we had some wild ideas. We imagined many things out of the box and when we
wanted to prototype them, we could not do everything because of our own constraints in knowledge,
time, landscape, licensing, system issues, etc. There we thought maybe we shouldn’t have invested
too much on thinking on things like cloud, mobile, and all those things.”

Design Thinking Eliminates Waste

The last and somewhat unexpected theme that emerged was that DT actually eliminates waste in
some aspects, rather than create it, as was deduced from the literature analysis. A pattern became
apparent where interviewees deemed DT and LSD to be a perfect fit because the early use of DT
eliminates the need for re-work in later stages and avoids unnecessary work by doing the right thing
from the start.

One interviewee stated the following: “I would say it is a perfect fit. By showing prototypes to the end
user in very short iterations you don’t have to write this huge specification so | would say it fits really

41

well but you need to bring it in the right order.” Another statement reiterated the correct order of
activities intertwined with the topic of having the right personnel on DT teams: “It is good if you can
start with the DT before you bring the developer in place because this is also how you start to
structure your product.”

The benefits of being able to answer any question early and exclude undesired product features
based on the outcomes of DT were also mentioned: “It is also good to know early that this feature
doesn’t add any value”, leading to the following benefit: “AiImost all the questions were answered by
customers or we were able to validate our proposals and we knew we were on the right track when
we started developing after the first two or three months delay. And hopefully we are able to make
up for the delay in the following months where everybody was clear of the requirements and
everybody is just ready to go. So | think it kind of balances out in the entire development cycle.”
Specific mention of the elimination of rework occurred as follows: “This is a very important point to
note, that the re-work was less and sometimes in LSD the re-work is there. This is what we have
experienced that we get the requirements through a channel and sometimes when the product finally
reaches the customer and the customer sees it, there is of course some kind of re-work that is
required in the earlier model which we didn’t experience here.”

The view that developers do not add value to the DT activities was certainly not shared by all
interviewees; in fact, this aspect was appreciated by a number of interviewees as exemplified by this
statement: “Each of us became an expert on the topic but previously this was not there, there would
be information lost at each level, until it comes down finally to the developer so the developer has the
task of tracking back again when there is a gap that he has identified, which was a waste of time.”

4.5 Challenges to Design Thinking

Finally, data was collected on the challenges associated with the introduction of DT. Interviewees
listed four main challenges to DT at Software Co for software development projects. These four
challenges included: (1) End user involvement (2) Convergence (3) Success Measures (4) Adaptation
of POs to DT.

Overall, the end user involvement generated by far the most comments in terms of challenges for
the interviewees in terms of integrating DT into software development projects. The challenges
related to end users revolved around access to end users and observation techniques. Convergence
and synthesis of data collected from the end users and customers was also mentioned by the
interviewees as a major challenge. The latter two challenges were not as prevalent but still
mentioned as significant obstacles to DT in software development projects at Software Co.

Access to end users or customers, as well as getting useful information, was seen as a major problem
for Scrum teams using DT. In a general sense, just getting the access to these end users was seen as a
major issue. An interviewee stated that “getting access to end users is the challenging part, and then
getting some meaningful insights out of them is certainly challenging, so DT is definitely more
challenging. But as I said, if you do it in a proper way, the returns are also good” and “to have access
to experts or even then normal users, who are using something in a day to day environment was a bit
of a challenge.” To deepen this problem of getting access to end users, another interviewee
mentioned that the global nature of Software Co and the common issue of being located in different
parts of the world, away from the end users, is a major issue when using DT: “for DT to really work,
you are always expected to meet the real end user who will use our software. And this, not only in

42

Software Co but in any company, is really very difficult, because Software Co is producing software for
different varieties of industries and a lot of users. For example, our software is used in North America
or even in Europe. And for me it is impossible to meet one of those guys so that’s the other, not
drawback, but | would say challenge, because DT expects you to do this — it is not always possible.”
The interviewee mentioned that using phone or video to solve this problem is more of a band aid
solution to this problem because “when you do it over video sometimes the person is not 100%
engaged in the discussion” and “we lost the empathy if we do it remote.” This issue was brought up
by another interviewee stating “we have budget restriction and travel is not possible so we end up
interviewing customers over the phone for DT which is totally not acceptable because you have to see
what they are doing and try to understand their process. Such budget restrictions, if it is there then |
don’t think DT is going to be effective.” Another interviewee mentioned the added stress this
challenge brings by stating “since we have direct customer contact and we have to talk to them,
sometimes we have to wait and since we are India and most our customers are in Europe and the US,
we did not have travel budgets to meet them directly sometimes, so we had remote calls at all times
being in India and so these are all for me a little bit stressful.” Obviously, given the common issue of
having the producer of software work in offshore countries from the end users presents a large
obstacle for DT since at its core it involves observation of the end user to build empathy.

A further two issues associated to the end user and DT were, first, ensuring that the team was
interacting with the right end user and, second, being able to scale these observations into a solution
that is applicable to several Software Co customers and that does not just solve problems specific to
a single customer. As one interviewee stated, “a huge question where you can you can fail with DT is
do you really talk with the right end users and this is really tricky so this is one thing where DT is a
problem.” This thought was then extended to include the importance of talking to multiple end users.
Given the need for Software Co to market their products on a large scale, “it is very important that
you get a lot of end users, and end users from different companies because you need to extract from
all the inputs that you get, you need to extract all the aspects and come to a kind of product and if
you don’t really have the right end users, or the wrong type of end users, then you do it right for this
end user but you are not successful in the market because this is a very specific end user that has a
very specific process that does not fit to other customers for your target market.” While another
interviewee stated the same thought by saying “so one drawback that is there is that when you talk
to different end users, each one has a different idea. And at some point of time, because we are a
global company and we have to do things which are very generic, you will have to bring this one level
higher to generalize this process. And when you start generalizing it, this is the time when you would
need to discuss with more end users, to see if what you are generalizing is something that others will
like as well, not just the 10, 15, 20, 25 end users you have discussed this with. So if we can overcome
that challenge, I think then yes, of course we will build a lot better product.”

Once access to the right end users are gained and useful insights are gathered, the next major
challenge seen to DT was both the ability and time required to converge this data into a useful
problem statement. For example, interviewees highlight the challenge in converging the data by
stating “you get a lot of data and then to come up with an execution plan based on that data requires
a lot of synthesis which is a challenge, like that is something that we encountered” and “I think the
challenge would be that if | am talking to ten or so customers, if | have ten different views of the
problem statement, then how would | decide” and “it was definitely difficult to get a very clear
convergence of all the observations” and “I think it is the synthesis phase in the DT which is very

43

grueling.” Even beyond the challenge of converging large quantities of data generated from DT,
interviewees found it a challenge to meet the time requirements due to the prolonged synthesis
phase. As one interviewee stated, “to come back do the development and finish it within the time
lines that was the major challenge” and “the challenge is that you might come up with different
ideas, and when you go and implement that, you might face a lot of issues and then basically you
have spent a lot of time coming up with your ideas but you can’t execute them.”

A third challenge for DT from the perspective of POs and SMs was seen to be how to define if the
resources spent on DT result in any additional value. As an interviewee said, “so more or less that
everybody can say that we got some new insights... ... and later, when you build the software and it
goes out, there is no traceability.” Since there is a big push concerning DT at Software Co there was a
feeling that everyone claims success but there is no way to trace this success. This lack of traceability
is tied to the next challenge that DT is good but it is not a fix-all solution. An interviewee tied this
challenge to the fact that there is a heavy push behind DT at Software Co: “since DT is so much in the
limelight, everybody wants to be a part of it. So even without considering whether my project or
process is fit for a DT project, people embark on the journey and then later run into issues.” The same
issue is stated again by an interviewee as “DT js good, it can fix a lot of problems, but it is not a
solution for everything, which somehow seems to be the interpretation, or misinterpretation, at least
for the time being.” Another interviewee proposed that criteria should be in place for using DT to
prevent projects from moving forward that are not really suitable for DT by stating: “you should have
some criteria in place for DT, minimum of this many interviews, this many customers and so on. Once
we do that and we have good enough interviews and good enough insights, then it gets easier. That’s
what | mean to say. But | mean for somebody that couldn’t get that many appointments with end
users and all those things, then my personal feeling is that you shouldn’t go forward.”

Finally, a challenge specifically concerning the adaptation of POs to DT was mentioned by
interviewees. The PO role, as stated above, encounters the most change when DT is used on a
software development project. As one interviewee stated, “/ know that the POs feel that the DT
people are invading their territory. They have been functional experts, who knew everything about
the product and whose opinion counted the most, but now everybody seems to be an expert and
everyone is claiming that | meet with this customer and that customer and this is how we should do it
and so on. So | don’t think it is so simple for the PO. | think if adapted promptly, it can make their life
much easier. Otherwise it can mess it up, they might be completely demotivated after it and they
might question is “why do they still exist in the team because everyone is sort of a PO.” It is clear that
this challenge is very much dependent on each PO and how they adapt to DT. But it was,
nevertheless, mentioned through the interviews. Another interviewee stated as much by saying “a
lot of different people who always question if you are doing this, what is the role of the PO? And
sometimes people asking such a question are POs themselves and sometimes other roles, so in
general it is not just a perspective, at least to start with. Everybody gets this feeling. Later, this might
get stronger or it might go away, depending on how the project runs and is handled, but to start with
everybody has that question. Even | had the same question.” The data clearly shows that the
challenge in adapting to DT is most prevalent for POs, but this is a challenge for some and not all.

Of the four perceived challenges related to the introduction of DT to development projects at
Software Co, two are directly related to the theoretical misalignments between DT, LSD, and Scrum.
These challenges are associated with the DT practice elements end user empathy and synthesis. The

44

remaining two challenges do not appear to be linked to the identified misalignments, but do carry
practical implications for Software Co.

5 Analysis

The following analysis compares the empirical data with the theoretical framework to answer the
research question, How do the DT practice elements of end user empathy, visualization, and synthesis
integrate with LSD and the Agile method of Scrum from the perspective of Product Owners and Scrum
Masters?

5.1 Lean Software Development, Scrum, and Design Thinking
In the following section, the empirical results concerning the integration of LSD, Scrum, and DT
presented in Section 4.4 are analyzed using the theoretical framework presented in Figure 3.

The main topics that will be further analyzed below include the three DT practice elements given in
the literature section that include (1) end user empathy, (2) visualization, and (3) synthesis. These DT
practice elements will be compared to LSD and the Agile of method of Scrum to better understand
their integration from the perspective of POs and SMs.

5.1.1 End User Empathy

Comparing the theoretical framework to the empirical data concerning end user empathy, several
themes emerged. These will be analyzed in detail in the following sections: (1) Terminology of End
User and Customer (2) Purpose of Contact - Empathy versus Satisfaction (3) Access.

Terminology

One pattern that emerged from the empirical data concerning LSD was the importance of customer
satisfaction. However, the empirical data showed that when speaking about LSD there is not a firm
definition for the term customer. LSD literature does emphasize the word customer based on the
first principle of LSD: “founded on a deep understanding of a job that customers would like done”
(Poppendieck & Cusumano, 2012, p. 28). However, the question remains as to whom to develop a
deep understanding for as a result of the vagueness behind the terminology used in LSD literature.
This vagueness or lack of specific definition concerning the term customer in literature (Hildenbrand
& Meyer, 2012) was reflected in the empirical data in that the interviewees conceded that in terms
of LSD the customer could be any contact person at the purchasing organization, whether it be for
example an end user or IT manager.

On the contrary, the empirical data showed a solid trend concerning the terminology of end user in
DT, with all respondents stating the focus of DT was exclusively the end user, i.e. the person using
the actual product. Hence, for DT the prominence and specificity given to the end user in DT theory
(Hassi & Laakso, 2011) was confirmed by the empirical data in the case studied. Overall, it was seen
that the terminology concerning end user and customer was ambiguous concerning LSD projects but
specific in DT.

Empathy vs. Satisfaction

As mentioned above, the terminology surrounding end user is explicit both in the empirical and
theoretical data concerning DT. On the contrary, the terminology surrounding customers in LSD is
vague both in the empirical and theoretical data.

45

Since the term customer given in both in LSD literature and the results is unspecific, it could include
end users. The Agile method of Scrum, on the other hand, does suggest the involvement of end users
specifically in software development for testing of software releases which in turn results in
customer feedback (Maylor, 2010; Rising & Janoff, 2000; Schwaber & Sutherland, 2011). However,
this implies that development activities have taken place and produced working software before end
users are consulted. This shows that the focus in LSD and Scrum is more on satisfaction than on
initially emphasizing to understand the latent need as shown in DT.

The results show that a key difference in DT projects at Software Co is the timing and purpose of
involving the end user or customer. This became evident by the account given where in one DT
project the end users were surprised to be asked questions and visited by Software Co developers
prior to being shown any software which they could test. The developers were not interested in just
validating working software but gaining empathy. As a result it is clear that there is a difference both
in the literature and practice concerning the DT practice elements of empathy and the emphasis on
validation of working software or customer satisfaction given in both LSD and Scrum.

However, this distinction between DT and LSD/Scrum was not entirely clear in the results. At least
half of the POs stated they actively sought contact with end users to understand their latent needs
before DT was formally practiced in the development organization of Software Co. In a way they
conclude, quite correctly, that they already practiced this element of DT, even before they were
trained in it. In a sense, these POs had modified and expanded upon the practices of LSD and Scrum
on their own behalf. Rather than gaining customer satisfaction or validation by gathering customer or
end user input after working software had been developed as recommended by e.g. the Scrum Guide
(Schwaber & Sutherland, 2011), they had altered both the timing and purpose of end user
involvement to the pre-development phase to better understand the end users latent needs —in
essence, they were empathizing as summarized by Hassi and Laakso (2011). For these particular
individuals, the early end user contact was not new and hence from their perspective little
adjustment was necessary with the addition of DT. However, the formal introduction of DT and being
trained in it provided confirmation on their practice of involving end users early on to discover their
latent needs rather than just at the end of sprints to validate working software. Furthermore, they
were appreciative of the structure and legitimacy DT added to their approach of managing software
development projects.

Across the entire sample a unified view was communicated that being in contact with end users to
gain empathy provided benefits compared to the previous approach. In the previous approach,
customers would provide a list of requirements, i.e. request features to be included in software
releases in line with the Agile software development principles (Beck et al., 2001), which underlie the
Scrum methodology. By seeking early and continuous end user feedback, the DT approach was
considered to provide and build confidence in that what the Scrum teams did was indeed the right
thing for the end users. Highlighted in the data and literature was the importance that empathizing
has to be done in the right way to have the optimum effect: rather than asking for customer wishes,
their actual work and goals have to be understood, which has a central position in DT theory and
practice, as was identified in the comprehensive literature review by (Hassi & Laakso, 2011).

DT'’s practice element of empathizing with the end users, as opposed to satisfying customers, was
perceived to result in better and more desirable end products, thereby ultimately increasing the

46

value for the customer — both the organization and individual users. Therefore, this aspect of user
empathy in DT seems complementary to the LSD approach, rather than being in disaccord. Since LSD
and Scrum are built around customer satisfaction and only practicing activities that add customer
value (Poppendieck & Cusumano, 2012), empathizing with end users was seen to be a beneficial
extension but not replacement for customer satisfaction.

Access

Although, as analyzed above, the empirical data shows that DT’s practice element of end user
empathy integrates fairly well with the customer satisfaction in LSD, the issue concerning access was
seen as a hindrance to the alignment of end user empathy and customer satisfaction.

As mentioned above, one of the biggest perceived challenges in the introduction of DT to software
development projects at Software Co was gaining access to end users. This issue is practical in nature
but could be considered an outcome of the difference between end user and customer terminology
previously mentioned. Prior to the introduction of DT, gaining customer access was not seen as that
great of difficulty because it was not specific on whom the contact should be. Rather, it could include
various roles outside of the end user which were part of well-established contact networks.

The first issue in gaining access to end users is that they are busy with their usual work within their
own company and no allowance is made for talking to software developers from an outside
organization. End users typically have internal contact persons, typically someone from the internal
IT department, whose duties include communications with software vendors. Also, an existing
network may provide for contact with e.g. the IT department at the customer organization, but end
users are not typically part of the existing networks and hence getting access to these requires an
extra step by contacting the usual contact person first, who may then, if convinced of the benefit,
establish the connection to the end users. The statement given by one interviewee, “you never go
directly to the end user” summarizes the difficulties encountered succinctly.

The challenge of gaining access to end users is seen as an integration issue and supports the
theoretical framework in showing that there is a misalignment between customer satisfaction and
end user empathy because of the inherent difference in end users and customers. Because the end
user is clearly specified in DT, there is no alternative person for gathering data from. Management
staff, who supervise end users, were sufficient for serving as customers in LSD, but are not
appropriate in DT. Because the wrong person would be empathized with, the result could potentially
be a less desirable end product. This problem may however reduce over time; with the DT approach
maturing, POs and SMs should be able to build up networks among end users, and end users will
become accustomed to being involved in pre-development activities for enterprise software
development. As a result, the perceived and actual difficulties in getting access to the end users
could reduce in severity.

In summary, the introduction of DT and the specification that POs and SMs should gain end user
empathy (Hassi & Laakso, 2011), has made their work somewhat more complex compared to before.
The looser term customer in the previous LSD and Scrum approach (Poppendieck & Cusumano, 2012;
Schwaber & Sutherland, 2011) allowed more flexibility in whom to talk to. Logically, if a larger pool of
subjects is available, the probability for success is higher. Moreover, easier access is granted from
persons at the customer organization whose job it is to interact with software vendors.

47

5.1.2 Visualizing

The centrality of writing requirements in product backlogs given by the Scrum process framework
(Schwaber & Sutherland, 2011) was identified as a misalignment to the DT practice element of
visualizing, which promotes using anything except for written words and symbols (Hassi & Laakso,
2011). At first, this theoretical misalignment does appear to exist in practice at Software Co.
However, this misalignment was perceived as a positive rather than negative influence in the way the
POs and SMs carry out their work. In fact, visualizing was in general considered more important
because it facilitates communication and problem definition, which are the main benefits of
visualizing that Hassi and Laakso (2011) identified.

By specifically integrating DT into existing LSD and Scrum practices, visualizing was perceived as a
complement rather than a replacement to writing product backlogs in Scrum. The interviewees
reflected that visualizing helps them to know what exactly needs to go into the written backlog, and
thereby it eliminates wrong things being written into the backlogs. Furthermore, a problem is
defined in a more comprehendible manner from visualizing that was said to be easier translated into
written items in the backlogs. A unanimous opinion existed about the order of the two practices; in
order to be beneficial visualizing has to precede not replacement backlog writing, which
subsequently is followed by development execution.

Visualization, as opposed to the written backlog, involved the entire Scrum team. In LSD projects, the
written backlog was created and owned by a singular person as prescribed by the Scrum Guide
(Schwaber & Sutherland, 2011), whereas in DT visualizing is conducted by the entire Scrum team.
POs in LSD projects had, in most cases, the sole ownership of the backlog and would dispense the
knowledge to the team as needed. However, interviewees noted that when using visualization
practices, there was a shift due to the entire Scrum team’s involvement. The entire Scrum team was
said to be on the same page as a result of visualizing and had the full scope in terms of the problem
to be solved.

The theoretically identified potential misalignment between the DT practice element of visualizing
and the Scrum practice of writing product backlogs was clearly rejected by the interviewees. Rather
than being in conflict, these two complement each other well if performed in the order of visualizing
followed by backlog writing.

5.1.3 Synthesis

In this section, the findings relating to the DT practice element of synthesis and the LSD principle of
waste elimination are analyzed within individuals themes that emerged during the interviews. The
individual themes include: Necessary waste, Scrum team discussions, Scrum team size and
composition, ideas not technically feasible, and DT eliminates waste.

Overall, there was no unified view among the POs and SMs, i.e. responses included both
confirmation that DT is wasteful and rejection of the proposition. Where interviewees considered DT
being wasteful, it was not only due to the practice of synthesis, but a variety of aspects which are
analyzed in detail below. Even though a number of respondents did not think DT creates waste
overall, they conceded that some waste was produced but was inherent in the approach and
necessary when viewing the bigger picture of gaining the right solution.

48

Necessary Waste

In general, POs and SM agreed that DT generates waste, but overall this was considered tolerable
and in fact required to achieve the greater goal of building products that are innovative and of higher
quality, essentially providing more value to the customer. When looking at this aspect from a pure
LSD perspective, it becomes a matter of a trade-off between waste and value and finding the right
balance between those. Waste as a LSD principle is defined as “anything that doesn’t either add
customer value or add knowledge about how to deliver that value more effectively” (Poppendieck &
Cusumano, 2012, p. 28). The results of this case study show that the interviewees were happy to
generate waste in DT as long as the customer value increased. The timing of waste was also
commented on; since DT at Software Co is typically done in the early phase of a development project,
and therefore any waste associated with DT is created early as well. That being the case, it was
perceived as easier to rectify issues earlier rather than later, and thus waste was considered to be
better early in DT than later in the execution. Yet, this goes contrary to literature that states in DT
diverging should be utilized not only at the beginning, but throughout (Hassi & Laakso, 2011). A
softer aspect that was perceived to a limited extent was that DT activities require more time but pay
off positively later because the team is more motivated which in turn increases execution efficiency.
However, it is important to note the empirical data shows that tracking the connection between
waste generated by DT and customer value is a difficult process and frequently overstated due to the
importance given to DT at Software Co.

Scrum Team Discussions

The primary source of waste in DT was considered to be wasted time due to extended discussions
among the development team during the synthesis phase. This point was strongly felt by the
respondents and is strongly tied to the DT practice element of synthesizing. Because the entire Scrum
team is usually involved to select and synthesize findings (Hassi & Laakso, 2011), it takes significant
time which was considered wasteful by the respondents. Because this theme was perceived as
problematic, a number of interviewees had come up with suggestions to improve this aspect, such as
providing more structure rather than very open discussions.

Interestingly, the theoretically identified main source of potential waste in DT’s synthesis practice
was ideas that were generated but later on discarded. The empirical results suggest, however, that
the excessive amount of time required to achieve convergence among the team was seen as the
primary source of waste.

Ideas not Technically Feasible

As mentioned, the ideas that are generated during the synthesis phase and later discarded are,
according to the theoretical framework, the main origin of waste in DT. Although this was not
perceived as the primary source of waste in DT, it was mentioned during the interviews. Some
respondents stated that the ideas that were generated were very broad in scope, as is encouraged in
DT (Hassi & Laakso, 2011). However, after spending some time with developing the ideas it became
evident that, for example, consideration toward the readiness of the technology was not given and
hence the ideas had to be abandoned. Since DT allows for, and indeed encourages wild ideation,
there is a risk that a track is pursued that does not lead anywhere due to them Scrum team not being
able to implement the idea. This is a violation of the underlying LSD principle of waste elimination as
defined by Poppendieck and Cusumano (2012).

49

The difficulty for POs and SMs working with DT is then to realize as early as possible that an idea is
not feasible, be it for technical or other reasons. Perhaps some technical validation could take place
concurrent with prototype validation with users to avoid spending too much effort on ideas that
have low success chances.

Scrum Team Size and Composition

This theme emerged only partially in the data but, nonetheless, a pattern was observable. None of
the literature reviewed gives recommendations about the size of teams for DT, but the point is
discussed regardless since there was an observable pattern in the data. The Scrum Guide (Schwaber
& Sutherland, 2011) suggests team sizes between three and nine members; at Software Co, the team
sizes seem to be towards the upper end of this suggestion and beyond. The large team size was seen
to contribute to the large amount of time taken to come to an agreement, contributing to the theme
discussed above. From this perspective, team sizes at the lower end of the range for recommended
Scrum team sizes, were perceived to perhaps align better with DT’s practice element of synthesis.

Another aspect mentioned was the appropriate roles on a DT team, both in terms of experience and
personalities. Issues were described that related to these aspects in that some people did not
contribute meaningfully to the DT activities and in the worst cases were even perceived to block the
creativity of other team members. However, this theme is outside of the scope of the study since it is
more related to the DT categories of cognitive approach and mindset as per Hassi and Laakso (2011).

Design Thinking Eliminates Waste

Perhaps the most striking pattern in the data was DT association with eliminating waste, rather than
creating it. While the waste discussed above is created on a smaller scale in individual steps of DT, a
view of an entire software development may actually reveal that DT, if done properly, might reduce
waste in a larger sense. In fact, DT was stated to be a perfect fit with LSD in this context. By creating a
little waste early in the process, pursuing the wrong track for longer is avoided and hence any
correction is less costly if detect earlier. This observation also reiterates the importance of taking a
sequential approach, i.e. DT followed by LSD and Scrum approaches.

In addition to the opportunity to detect wrong paths early on, DT was stated to eliminate
unnecessary product features being developed. Previously it occurred occasionally that certain
software features were included in a product but turned out to be unnecessary or not desired by
customers, thus essentially being waste. Moreover, the early use of DT was mentioned to minimize
the need for re-work of software releases by seeking early user feedback before actual development.
Unnecessary features were found to be one of the main causes of waste in software development
(Poppendieck & Cusumano, 2012), and it appears that DT has the potential to at least reduce this
type of waste in the software development industry, if done at the right point in time.

6 Discussion of Results

The foregoing analysis showed that the three theoretical misalignments between DT practice
elements, LSD principles, and Scrum practices were perceived by PO and SM to be only partially
misaligned. These partial misalighments did create challenges for PO and SM. These findings are
discussed in the following section.

50

6.1 End Users

The specific terminology of end users in DT leaves little room for deviation and as such was
welcomed because it provides clear guidance on who to talk to at the customer organization. But
rather than be a replacement for the loosely defined term of customers in LSD and Scrum, end users
are seen as additional people that contact must be sought with because the decisions at the
customer organization are still to be made by the previous contacts (e.g. management or IT head).
Despite this misalignment in terms of terminology between DT, LSD, and Scrum, no real practical
conflict was perceived to emanate from it. From this point of view, the theoretical misalighment does
not impede the practical integration of the three approaches.

The focus on empathizing with the end users in DT was seen as helping the development teams to
create more desirable and innovative products, which ultimately would lead to customer satisfaction
as focused on in LSD and Scrum. By improving the end users’ work experience through well designed
and functioning software, those users should by simple logic be more productive. Higher productivity
in turn satisfies supervisors and managers in the customer organization; following this chain of
reasoning, DT increases customer satisfaction which originates from empathizing with end users.

Specific practical challenges were evident which originate from DT’s emphasis on customer empathy.
These include development teams being required to empathize with end users remotely due to
spatial separation and budget restrictions, considerations of which and how many end users to
empathize with in order to be able to develop scalable offers and getting access to end users in the
first place. The reviewed literature does not offer much guidance on how to overcome these
challenges and thus they will need to be dealt with pragmatically over time. Time however, given the
competitive nature of the software industry, is scarce and a resolution of these issues is to be sought
sooner rather than later. On the other hand, these challenges (and benefits) of end user empathy
would also apply to other settings and industries, i.e. when it is integrated with product or service
development approaches other than LSD and Scrum. Perhaps a look towards organizations who have
adopted DT in other industries could provide some valuable advice.

6.2 Visualization

The DT practice element of visualizing was perceived as well aligned with LSD and Scrum, contingent
on DT being done before any backlogs are being written. Visualizing helps POs to get a clear picture
of what the actual problem is and how to solve it, and it is only logical that writing out the technical
solution is much easier when that clear vision is there. Owing to the entire team’s involvement in the
visualizing practice, communication is improved within the development teams. No challenges were
identified that are the direct outcome of the DT practice element of visualizing and therefore it
appears a perfect complement to writing backlogs, without any hurdles to their integration.

6.3 Synthesis

The DT practice element of synthesizing was perceived to have the potential to contribute to overall
waste elimination in a software development project. The extent of improvement is (at this stage)
unknown and its assessment is closely linked to establishing some success measures and KPIs which
should be in place, but are currently lacking at Software Co.

Nevertheless, interviewees perceived that DT does create some waste in certain parts and the entire
picture may not be very obvious in the daily business and hence any wastefulness may be felt quite

51

strongly. Also, the bigger picture and overall waste reduction can only be judged when the project
has been completed, which was not the case for all DT projects the interviewees had been involved
in. Perhaps, certain aspects of DT can be fine-tuned in the future in order to further reduce the
perceived waste creation associated to DT, such as smaller DT team sizes.

A practical challenge that is the direct outcome of the DT practice element of synthesizing is the
convergence of gathered data. POs stated that given the nature of DT the amount of data collected
increased dramatically and it was difficult to decide the correct path to follow. In other words, how
should the PO decide which end user observations were valid and scalable. Given the increase in
team size, PO and SM felt perceived this to be a challenge since it is difficult to involve all team
members equally when converging data.

As mentioned in the Data Collection, PO and SM perceived four challenges: (1) End user involvement
(2) Convergence (3) Success Measures (4) Adaptation of POs to DT. The first two perceived
challenges, as described above, are showed to be direct results of the theoretical misalignment
between DT practice elements, LSD principles, and Scrum practices. The perceived challenge of end
user involvement is directly related to the theoretical misalignment between end user empathy vs.
customer satisfaction. The perceived challenge of convergence is directly related to misalignment of
synthesis vs. waste elimination. However, the perceive challenges of success measures adaptation of
POs to DT are indirectly related to the theoretical misalignments in that they are influenced by but
not a direct result of the theoretical misalignments.

7 Conclusion

In order to answer the research question, How do the DT practice elements of end user empathy,
visualization, and synthesis integrate with LSD and the Agile method of Scrum from the perspective of
Product Owners and Scrum Masters?, the theoretical framework presented in Section 2.6 was used
to analyze the collected empirical data.

The DT practice elements of end user empathy, visualizing, and synthesis stated in the literature
review by Hassi and Laakso (2011) were identified to be in theoretical misalignment with the LSD
principles and Scrum practices of customer focus, writing backlogs and waste elimination,
respectively. This thesis investigated these theoretical misalignments in practice by studying the
integration of DT with LSD and Scrum at Software Co. The conclusions concerning the integration of
these DT practice elements on LSD and Scrum projects from the perspective of POs and SMs can be
stated as:

1. The notions of end user empathy and customer satisfaction were perceived to be neither
clearly aligned nor contradicting. The DT practice element of empathizing was seen as
contributing to the development of better products, which in turn increases customer
satisfaction; therefore, end user empathy positively effects customer satisfaction. The
specific DT terminology regarding end users negates the ambiguity of the term customer in
LSD and Scrum, and thus increases clarity. On the other hand, end user contact is an addition
to the usual customer contact and creates practical challenges in terms of access, logistics,
budgets, and quality and quantity of end user data.

52

2. The theoretical discrepancy between visualizing in DT and the Scrum practice of writing
backlogs was clearly rejected. These practices were perceived to align well, provided that
visualizing from DT precedes Scrum practice of writing backlogs in LSD projects. Visualizing
was seen as more important because it improves communication and facilitates both
problem definition and backlog writing. Rather than being in conflict, visualizing and backlog
writing complement each other.

3. Neither misalignment nor alignment could be clearly concluded concerning DT manager’s
focus on synthesis and LSD manager’s focus on waste elimination. Noteworthy is that DT
aspects other than synthesis were perceived as wasteful. Sources of waste in DT were
considered to be long discussions as an effect of large team size, sub-optimal composition of
teams, and generation of technically unfeasible ideas. When viewed overall, DT was
accredited with the potential to reduce overall waste on software development projects by
reducing the amount or necessary re-work and eliminating unnecessary software features.

The above conclusions relating to the theoretical misalignments between DT practice elements and
LSD, and Scrum principles and practices provide initial insights into how POs and SMs perceive the
integration of DT with LSD and Scrum. These initial insights contribute to the development of new
theory regarding the successful integration of DT, LSD, and Scrum by clearly showing that the
theoretical misalignments are not perceived very strongly in practice by POs and SMs. By critically
studying the integration from the perspective of individuals that are central to its success, this study
complements previous research on the topic conducted by Hildenbrand and Meyer (2012) who
explored the integration from a process perspective. Aside from the specific findings listed above, a
number of areas for future research have emerged from conducting this exploratory case study.
These are briefly described in the following section.

8 Areas for Further Research

DT is a relatively new approach to areas outside of design, and has yet to be extensively studied
within the management realm, particular within software development settings. The relative
newness of DT combined with the investigative nature of this exploratory case study leaves
significant room for discussion and expansion and some topics are suggested below.

Areas for Further Research

Product Owner e Shiftin a PO’s role and responsibilities with the introduction of DT
e Shift is viewed favorably or critically depending on the individual PO

e Experience of the PO, individual personality, and/or cultural background
might affect how the PO views this shift

Success e Correlation of DT activities to market success

Measures e PO and SM role in communicating the correlation of DT to market success
to motivate the Scrum team

“Right way” e DTis good if done the “Right way”

e What is meant by the “Right way” for DT

Synergies e Study the practice elements, Action Based and Collaboration, that showed
a theoretical alignment

DT Categories e Study other the two other categories in Hassi and Laakso (2011) DT

literature review: Mindset and Cognitive approach.

53

9 Sources
Babbie, E. (2001). The practice of social research (9 ed.): Wadsworth/Thomson Learning.

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M., ... Thomas, D.
(2001). Principles behind the Agile Manifesto. Retrieved 21 February, 2012,
from http://www.agilemanifesto.org/principles.html

Britten, N., Jones, R., Murphy, E., & Stacy, R. (1995). Qualitative research methods in general practice
and primary care. Fam Pract, 12(1), 104-114.

Brown, T. (2008). Design thinking. Harvard Business Review, 86(6), 84.

Brown, T., & Katz, B. (2011). Change by Design. Journal of Product Innovation Management, 28(3),
381-383. doi: 10.1111/j.1540-5885.2011.00806.x

Bryman, A., & Bell, E. (2011). Business Research Methods (3 ed.). Oxford: Oxford University Press.

Creswell, J. W., Hanson, W. E., Plano, V. L. C., & Morales, A. (2007). Qualitative Research Designs
Selection and Implementation. The Counseling Psychologist, 35(2), 236-264.

del Nuevo, E., Piattini, M., & Pino, F. J. (2011, 15-18 Aug. 2011). Scrum-based Methodology for
Distributed Software Development. Paper presented at the 6th IEEE International Conference
on Global Software Engineering (ICGSE).

Denzin, N. K., & Lincoln, Y. S. (2005). The Sage handbook of qualitative research: Sage Publications,
Incorporated.

DeVor, R., Graves, R., & Mills, J. J. (1997). Agile manufacturing research: Accomplishments and
opportunities. IIE Transactions, 29(10), 813-823.

Dul, J., & Hak, T. (2008). Case Study Methodology in Business Research (1 ed.). Oxford: Elsevier.

Dunne, D., & Martin, R. (2006). Design Thinking and How It Will Change Management Education: An
Interview and Discussion. Academy of Management Learning & Education, 5(4), 512-523.

Haque, B., & James-Moore, M. (2004). Applying lean thinking to new product introduction. Journal of
Engineering Design, 15(1), 1-31. doi: 10.1080/0954482031000150125

Hassi, L., & Laakso, M. (2011). Making sense of design thinking. In T.-M. Karjalainen, Koria, M. &
Salimaki, M. (Ed.), IDBM papers vol 1 (pp. 50-62): Helsinki: International Desgin Business
Management Program, Aalto University.

Highsmith, J. (2001). History - The Agile Manifesto. Retrieved 21 February, 2012,
from http://www.agilemanifesto.org/history.html

Hildenbrand, T., & Meyer, J. (2012). Intertwining Lean and Design Thinking: Software Product
Development from Empathy to Shipment. In A. Maedche, A. Botzenhardt & L. Neer (Eds.),
Software for People (pp. 217-237). Berlin Heidelberg: Springer.

54

http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/history.html

Hines, P., Holwe, M., & Rich, N. (2004). Learning to evolve: A review of contemporary lean thinking.
International Journal of Operations & Production Management, 24(9/10), 994-1011.

Holloway, M. (2009). How tangible is your strategy? How design thinking can turn your strategy into
reality. Journal of Business Strategy, 30(2/3), 50-56.

Johansson-Skoldberg, U., Woodilla, J., & Cetinkaya, M. (2013). Design Thinking: Past, Present and
Possible Futures. Creativity and Innovation Management, 22(2), 121-146. doi:
10.1111/caim.12023

Johansson, U., Woodilla, J., & Cetinkaya, M. (2011). The Emperor’s new cloth or the magic wand? The
past, present and future of Design Thinking. . Paper presented at the 1st Cambridge
Academic Design Management Cconference.

Kimbell, L. (2011). Rethinking Design Thinking: Part |. Design and Culture, 3(3), 285-306. doi:
10.2752/175470811X13071166525216

Maylor, H. (2010). Project management (4 ed.). Harlow: Financial Times Prentice Hall.

Owen, C. (2007). Design thinking: Notes on its nature and use. Design Research Quarterly, 2(1), 16-
27.

Poppendieck, M. (2002). Principles of Lean Thinking.

Poppendieck, M., & Cusumano, M. A. (2012). Lean Software Development: A Tutorial. Software, IEEE,
29(5), 26-32. doi: 10.1109/MS.2012.107

Poppendieck.LCC. (2010). Lean Software Development. Retrieved 21 February, 2012,
from http://www.poppendieck.com/

Pries, K. H., & Quigley, J. M. (2011). Using Agile's Scrum in embedded software development.
Embedded Systems Design, 24(9).

Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. Software,
IEEE, 17(4), 26-32. doi: 10.1109/52.854065

Saunders, M., Lewis, P., & Thornhill, A. (2007). Research Methods for Business Students (4 ed.):
Prentice Hall.

Schwaber, K., & Sutherland, J. (2011). The Scrum Guide.

Seidel, V., & Fixson, S. (2012). Adopting'Design Thinking'in Novice Multidisciplinary Teams: The
Application and Limits of Design Methods and Reflexive Practices. Journal of Product
Innovation Management, 30(6).

Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA.

SocioCultural Research Consultants. (2013). Dedoose. Retrieved 12 May, 2012, www.dedoose.com

Stone, K. B. (2012). Four decades of lean: a systematic literature review. International Journal of Lean
Six Sigma, 3(2), 112-132. doi: 10.1108/20401461211243702

55

http://www.poppendieck.com/
http://www.dedoose.com/

Wilson, J. (2010). Essentials of Business Research: A Guide to Doing Your Research Project: SAGE
Publications.

Wolbling, A., Kramer, K., Buss, C., Dribbisch, K., LoBue, P., & Taherivand, A. (2012). Design Thinking:
An Innovative Concept for Developing User-Centered Software. In A. Maedche, A.
Botzenhardt & L. Neer (Eds.), Software for People (pp. 121-136). Berlin Heidelberg: Springer.

Womack, J. P., & Jones, D. T. (1996). Lean Thinking: Banish Waste and Create Wealth in your
Corporation. New York: The Free Press.

Yin, R. K. (2003). Case Study Research: Design and Methods (3 ed. Vol. 5). Thousand Oaks, CA: SAGE
Publications.

56

10 Appendix: Interview guide

This interview guide is representative for the interviews with POs and SMs. It should be noted though
that the exact phrasing of questions as well as their order differed between interviews. Also,
additional follow-up questions were typically asked during the course of an interview.

Introduction
Is it okay to record the interview?
Introduction of the researchers.

Ensured anonymity and confidentiality.

Experience & Background

What is your title and role at Software Co?

How long have you worked in this role?

How many development projects have you worked on?

How many involved in DT?

Design Thinking
What is your definition/understanding of DT?
What is your opinion about DT?

How did you react to the idea of potentially doing DT projects?

LSD and Scrum combined with DT

With the introduction of DT in development projects, have projects changed compared to having
only a LSD approach? How?

Is it correct that one main difference is having requirements vs getting requirements?
What is the most important aspect when carrying out the SM/PO role in a LSD project?

Is it different in DT? If so, how?
Are there any particular challenges when carrying out the SM/PO role in a LSD project?

Is it different in DT? If so, how?

57

Of the following LSD and Scrum elements, which is the most important for you?

e Customer focus
e Listing requirements in product backlogs
e Waste elimination

e Having defined success measures
Do they conflict with the following DT elements?

e End user empathy (vs customer focus)

e Visualizing (vs listing requirements in backlogs)

e Synthesis: converging/diverging (vs waste elimination)

e No clear success measure (vs defined success measures)

Has your role and responsibilities changed when using DT on development projects?
If so, how?
Did you have to adjust your way of working when using DT on development projects?

If so, how?

Conclusion

Given your role as PO/SM, is there anything else you would like to add about working with DT, LSD
and Scrum approaches?

Do you have any criticism on DT or what could be done better?

58

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Case Company
	1.2 Background
	1.3 Purpose
	1.4 Research Question
	1.5 Delimitations

	2 Literature Review
	2.1 Design Thinking
	2.1.1 Definitions
	2.1.2 Processes
	2.1.3 Elements
	2.1.4 Practices
	2.1.5 Summary

	2.2 Lean Thinking
	2.3 Agile
	2.3.1 Agile Software Development Principles
	2.3.2 Agile Software Development Methods
	Scrum

	2.3.3 Summary of Lean Thinking and Agile

	2.4 Lean Software Development
	2.5 Synthesis of Design Thinking, Lean Software Development, and Scrum
	2.6 Theoretical Framework

	3 Methodology
	3.1 Research Approach
	3.2 Research Strategy
	3.2.1 Qualitative Research

	3.3 Research Design: Exploratory Case Study
	3.4 Sampling
	3.5 Research Methods
	3.5.1 Semi-structured Interview

	3.6 Data Collection
	3.6.1 Interview Guide
	3.6.2 Data Analysis

	3.7 Quality Criteria
	3.7.1 Reliability
	3.7.2 Validity
	Measurement/construct Validity
	Internal Validity
	External Validity
	Ecological Validity

	4 Empirical Results
	4.1 Exploratory
	4.1.1 First Exploratory Interview
	4.1.2 Second Exploratory Interview
	4.1.3 Summary of Exploratory Interviews

	4.2 Profile of Product Owner and Scrum Master
	4.2.1 Roles and Responsibilities
	Scrum Master
	Product Owner
	Summary of Roles and Responsibilities

	4.3 Perception of DT
	4.3.1 Definition of Design Thinking
	4.3.2 Opinion on Design Thinking
	Limitations

	4.3.3 Most Important Aspect of Design Thinking

	4.4 Design Thinking vs. Lean Software Development
	4.4.1 End User Empathy vs. Customer Satisfaction
	Terminology
	Contact Persons
	End User Contact before Design Thinking
	Access to End Users
	Benefit of End User Contact over Customer Contact
	Team Empathizing Remotely or in Person
	Which End Users and How Many?

	4.4.2 Visualizing vs. Writing Backlog
	4.4.3 Synthesis vs. Waste Elimination
	Necessary Waste
	Team Discussions
	Team Size and Composition
	Ideas not Technically Feasible
	Design Thinking Eliminates Waste

	4.5 Challenges to Design Thinking

	5 Analysis
	5.1 Lean Software Development, Scrum, and Design Thinking
	5.1.1 End User Empathy
	Terminology
	Empathy vs. Satisfaction
	Access

	5.1.2 Visualizing
	5.1.3 Synthesis
	Necessary Waste
	Scrum Team Discussions
	Ideas not Technically Feasible
	Scrum Team Size and Composition
	Design Thinking Eliminates Waste

	6 Discussion of Results
	6.1 End Users
	6.2 Visualization
	6.3 Synthesis

	7 Conclusion
	8 Areas for Further Research
	9 Sources
	10 Appendix: Interview guide

