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Göteborg 2012



Abstract

This thesis considers the solution of a large-scale optimization problem ob-
tained when fitting a large Bayesian Poisson model to data. The model is a
simplification of the one used by the online advertising optimization company
Admeta to successfully predict online ad performance. It is shown that the
problem can be solved using the L-BFGS algorithm, a low memory version of
the BFGS algorithm developed by Broyden, Fletcher, Goldfarb and Shanno.
In order to speed up the solution process further the objective function and
gradient computations are parallelized on the GPU, resulting in a factor 3
speed increase for the overall solution compared to the CPU implementation.
Finally, the solution quality is evaluated and compared to that obtained when
using Stochastic Gradient Descent (SGD). L-BFGS is found to obtain solu-
tions where the objective is about 0.05% lower than the solution found by
the SGD and does so more efficiently. However, if a lower degree of accuracy
is acceptable then the SGD is competitive.



Acknowledgements

First and foremost I’d like to thank my partner in crime Albin Lindbäck for
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been around. Anders Sjögren, my supervisor, also deserves a wad of cash,
had I had any. Examiner Michael Patriksson has my thanks for being so
thoroughly professional and honest.

I am thankful to all the other folks at Admeta as well, for being friendly
and for letting me occupy such a large swath of their limited office space and
breathing their warm and carbon-dioxide rich air. Finally, thanks to mom
and dad for telling me that writing a report is ”not so bad”; come to think
of it, I rather enjoyed it.



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Mathematical background 3
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Problem specification and analysis 6
3.1 The simplified model . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The objective function . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Gradient calculation . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Problem properties . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Nonlinear unconstrained optimization 15
4.1 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Descent methods . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Line searches . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Gradient/Steepest descent . . . . . . . . . . . . . . . . . . . . 18
4.5 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . 18
4.6 The Newton method . . . . . . . . . . . . . . . . . . . . . . . 18
4.7 Quasi-Newton methods . . . . . . . . . . . . . . . . . . . . . . 19

4.7.1 The Quasi-Newton equation . . . . . . . . . . . . . . . 19
4.7.2 BFGS update . . . . . . . . . . . . . . . . . . . . . . . 21
4.7.3 L-BFGS . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Method 26
5.1 Applying L-BFGS to the problem . . . . . . . . . . . . . . . . 26
5.2 Implementing SGD . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Parallelization of objective function and gradient . . . . . . . 27
5.4 Simulating observations . . . . . . . . . . . . . . . . . . . . . 29

6 Results 31
6.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Local convergence rate . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Investigating the model fit . . . . . . . . . . . . . . . . . . . . 34

i



6.4 Investigating the true Hessian . . . . . . . . . . . . . . . . . . 36

7 Discussion and future work 40

8 Conclusion 44

A Further optimization theory 48
A.1 Convergence rate . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



Glossary of Notation

Notation/Concept Short explanation Section
α Step length 4.3
ε A model effect 3.1
θ Model parameters Tab 1, Sec 3.1
θP :M , θM :P Matrices for interaction effects 3.1
θ(Xi) Parameters corresponding to covariate Xi 3.1
µi Expected number of clicks for observation i 3.1
Ψ(θj) Function returning hyperparameter of θj ’s effect 3.1
Ψξ Hyperparameter for parameters of effect ξ 3.1
ΨI Hyperparameter for interaction effects 6
ΨS Hyperparameter for simple effects 6
BFGS A quasi-Newton update 4.7.2
C The number of parameters in the simplified model 3.1
Cp The family of p-times continuously differentiable functions -
Convergence rate A way of measuring algorithm speed A.1
Covariate Variables in a statistical model 3.1, 2.3
CUDA Language for computational GPU programming -
CUDA-L-BFGS L-BFGS with parallel function/gradient calculation -
GAM Generalized Additive Model 2.3
GPU Graphical Processing Unit -
Hessian - Def 3
Hyperparameters Parameters of a prior distribution 2.2
Impression A showing of an ad on a website 3.1
Interaction effect - Def 8
Large-Real Set of real data from Admeta 6
Large-Simulated Simulated data set 6
L-BFGS Limited-memory BFGS 4.7.3
Likelihood function - 2.2
Link function g Function linking expectation to model parameters 2.3
MAP Maximum a-posteriori 2.2
mT The true model used for investigating fit 6.3
N Number of observations -
Observation Outcome and covariates of an impression 3.1

iii



Notation/Concept Short explanation Section
Prior distribution Belief of parameter distribution before seeing data 2.2
Posterior density Belief of parameter distribution after seeing data 2.2
rmse Root mean squared error 6.3
SGD Stochastic Gradient Descent 4.5
Simple effect - Def 7
Small-Real Set of real data from Admeta 6
wi Weight of observation i 5.4
x∗ The solution to an optimization problem 4
X Set of covariates for observations 1...N 3.1
Xi Covariate of observation i 3.1
Y Vector of clicks for observation 1...N 3.1
Yi Number of clicks for observation i 3.1

iv



1 Introduction

This master thesis deals with the development and evaluation of an algorithm
to fit Admeta’s statistical model to their historical data.

1.1 Context

Statistical models are seeing increased use in virtually every branch of science
and the humanities. Especially the availability of computing power and vast
amounts of data over the Internet has facilitated the increase and led to
more and more complex statistical models being used to model and make
predictions about phenomena all over the world [1].

Admeta does revenue optimization for publishers of on-line ads. Their
main tool for doing so is a statistical model containing a very large number
of parameters, in the order of hundreds of thousands. Using this model they
are able to make predictions about which ad material is likely to generate
the biggest revenue when a user enters a web-page.

However, in order to make predictions, the model must first be fit to
historical observations of user behaviour. If the model is simple, such as a
linear model with a small number of parameters, it may be fit using sim-
ple analytical calculations, but for complex models, with a large number of
parameters, more sophisticated methods are used. Model fitting can be for-
mulated and solved as a mathematical optimization problem, in this case, a
maximum a-posteriori problem. If the number of historical data points and
model parameters is very large the optimization problem can be very time
consuming to solve.

It is in Admeta’s interests to fit their model quickly and efficiently since
this will enable them to rerun the optimization often, for instance when new
observations arrive, and to add further effects to the model, making it more
accurate. Furthermore, a quicker optimization will also speed up evaluation
of new models on large amounts of data.

1.2 Background

There are many books and articles discussing statistical modeling, for in-
stance [2, 3]. The latter book discusses General Additive Models, which is
closely related to what Admeta uses, whereas the former is more elementary.
A lot of work has been invested in developing methods for fitting statistical
models. Stochastic Gradient Descent (SGD) has been shown to be successful
for large-scale machine learning problems and on-line learning [4]. Another
traditional method is the Gauss-Newton algorithm. L-BFGS has also been
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used in model fitting and can be found in for instance the statistical program-
ming language R. It may be, however, that it has seen more widespread use
in other areas [5, 6, 7]. For books in nonlinear and numerical optimization,
see [8, 9, 10, 11].

1.3 Purpose

The aims and goals of this thesis are:

• to formulate the optimization problem obtained when estimating the
parameters of the statistical model and investigate its properties.

• to compare and analyze the ability of several optimization algorithms
to solve a simplified version of Admeta’s problem and assess their suit-
ability to parallelization.

• to select/design and implement an algorithm that solves the parame-
ter optimization problem. The algorithm should be parallelizable and
ideally at least 10 times faster than the one currently used.

• to evaluate the quality of the solution obtained.

1.4 Scope

Admeta uses a large statistical model; however, this work has been done
using a simplified version of the model. Therefore, the number of parameters
are fewer. Hopefully this should not reduce the applicability of the result of
this thesis to Admeta’s actual model.

1.5 Thesis outline

Section 2 introduces some basic mathematical concepts and includes a brief
overview of statistical models. This can be useful when reading section 3,
which introduces Admeta’s statistical model and formulates the correspond-
ing optimization problem. Concepts in optimization are introduced in Section
4 and section 5 deals with the method used to solve the problem. Finally,
the results, followed by a discussion and conclusion are presented.
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2 Mathematical background

This section introduces some mathematical concepts used throughout the
thesis.

2.1 Basic concepts

Definition 1 (Positive definite). A matrix M ∈ Rn×n is positive definite if
for any vector v ∈ Rn \ {0},

vTMv > 0. (1)

It is positive semi-definite if vTMv ≥ 0 ∀v ∈ Rn. Furthermore, the inverse
of a positive definite matrix is also positive definite.

Positive definiteness is an important concept in linear algebra and is useful
in optimization in order to ensure convergence of certain algorithms.

Definition 2 (Convexity). A function f : Rn → R is said to be convex if for
any two points x1, x2 ∈ Rn and any t ∈ [0,1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

Intuitively a function f is convex if a line between any two points (x1, f(x1)),
(x2, f(x2)) lies above the graph of f(x) on the interval (x1, x2). Convexity has
important consequences for optimization as a local minimum is then equal
to a global minimum.

Definition 3 (Hessian). Let f : Rn → R be twice differentiable. Then the
Hessian, H(x) ∈ Rn×n, is a symmetric matrix defined as

H(x) = ∇2f(x),

so that element (i,j) is given by

∂2f(x)

∂xi∂xj

.

The Hessian contains information regarding the shape of a function and is
of importance in various optimization algorithms. For instance, the Newton
method utilizes the Hessian directly. Other methods, such as the Quasi-
Newton methods, use only Hessian approximations.
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Definition 4 (Optimization problem). Let f : Rn → R. The problem of
finding an x∗ such that f(x∗) ≤ f(x) for all x ∈ Rn is formulated as,

min f(x) (2)

s.t.x ∈ Rn. (3)

Optimization problems are found in all areas of science and are classified
into different types depending on the properties of f and the constraints on
x.

Theorem 5 (Sherman–Morrison formula). Let A ∈ Rn×n be invertible and
u,v ∈ Rn be arbitrary. If the rank one update (A+uvT ) of A is also invertible
it is given by

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

The Sherman–Morrison formula is a useful analytical tool for calculating
the inverse of a slightly modified matrix for which the inverse is known.

2.2 Bayesian statistics

Admeta’s simplified statistical model, looked at later in the thesis, is a
Bayesian model. Bayesian statistics differ from the more standard, frequen-
tists approach, in its interpretation of statistics. Whereas a frequentist would
view a parameter in a model or distribution as a constant, a Bayesian prac-
titioner would assign a prior belief of the parameter before seeing any data
and a posterior belief after seeing the data. These beliefs are represented
using probability densities, usually called the prior and posterior density, re-
spectively. The prior density of a parameter often has parameters of its own;
these parameters are called hyperparameters.

The key instrument in Bayesian statistics is Bayes’ formula, which states
how a prior belief should change given new evidence:

Theorem 6 (Bayes’ formula). Let X, Y be two random variables, and fX,Y

be their joint distribution. Then,

fX(x | Y = y) =
fY (y | X = x)fX(x)

fY (y)
.

Here, fX(x | Y = y) is the posterior density of X, fX(x) is the prior den-
sity of X and fY (y | X = x) is the likelihood function, giving the probability
of the outcome y given the parameters X = x. Bayes’ formula will be used
later on in order to fit Admeta’s simplified model to data.

4



2.3 Statistical models

This section is not intended to give the reader a deep understanding of the
subject of statistical modeling or the subset of General Additive Models.
Rather, it is intended as a very brief overview, so that the reader can get
a slightly better understanding of how Admeta’s model works and how the
optimization problem is linked to it.

A statistical model is often an attempt to relate a response variable Y
to some predictive variables, henceforth called covariates, X. Usually it is
assumed that there is some unknown description of the relationship between
X and Y , and that Y deviates from this description by a random error ε. A
simple form of statistical model is the linear model,

Y = Xβ + ε, E[ε] = 0, (4)

where X is the covariate matrix and β is a vector of parameters of the model.
To denote row i of the covariate matrix X, Xi will be used. Note that here
X and the expectation µ = E[Y ] have a simple linear relation,

µ = E[Y ] = E[Xβ + ε] = Xβ.

Thus, µi = Xi1β1 +Xi2β2 + . . .+Xinβn.
A more advanced and powerful class of models are the generalized additive

models, henceforth shortened to GAM. In such models there is no longer a
linear relationship between µi and the covariates. The expectation µi is
instead linked to the covariates via a so called link function. Commonly used
link functions are the logarithm, log(µi) = Xiβ, the inverse, 1

µi
= Xiβ and

the logit, log( µi

1−µi
) = Xiβ. Often the choice of link function depends on the

distributional assumption on Y . In a GAM, Y is assumed to belong to some
distribution from the exponential family. If for instance Y ∼ Poisson(µ),
then the logarithm is commonly used as link, since this bears with it nice
properties. The general structure of a GAM, as found in [3], is:

g(µi) = Xiθ + f1(x
i
1) + f2(x

i
2) + f3(x

i
3, x

i
4) + ... , (5)

where g is the link function, xi
j ∈ R is the jth element in covariate row Xi, fj

are smooth functions of the covariates and θ are parameters for the strictly
parametric parts of the model.

Compared to a linear model, GAM allows the capture of much more
complex relations between predictors and response variables. However, the
flexibility of the model comes at a greater risk of overfitting. Overfitting
the model to known data might lead to poor predictions for new data. An
approach to counter overfitting is to use a Bayesian model (see Section 2.2).
In that case the prior distributions assigned to the parameters will act as
regulators, hopefully preventing overfitting.
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3 Problem specification and analysis

This section discusses a simplification of the model used by Admeta and
formulates the optimization problem to be solved. The problem is then an-
alyzed. For a short introduction to general additive models see Section 2.3.
During the entire Section 3, f will be used to denote various probability
densities. Note that the arguments to f clarify which probability density is
being referred to. Thus, for instance, f(θ) and f(Ψ) refer to two different
probability densities.

3.1 The simplified model

Admeta’s statistical model optimizes the revenue for on-line publishers. It
provides a link from the covariates (such as material, website, time of day),
via the model parameters, to an expected number of clicks for a material. The
simplified model is a GAM, or, more precisely, a Bayesian additive Poisson
model with log link.

Most readers will have been online and seen an online advertisement.
Often, they are similar to an ordinary newspaper advertisement, consisting
of a picture and some text, however, they may also play sound, animations
or video. An advertisement is given a unique id by Admeta, the so called
material id, which is used in the statistical model. The material id is thus
simply a name given by Admeta to some advertisement.

Visitors of websites will also have noticed that there are usually more than
one ad on a website and that these appear at different positions on the site.
These positions are known to Admeta as placements, and each placement,
on every website connected to Admeta, is given a unique name called the
placement-id.

The placement-id and material-id are just two of the various variables
that Admeta can take into account in order to model the performance of an
ad. Other factors might be the number of times the ad has been shown to a
visitor previously, called the frequency id, or which advertiser has designed
the ad, the so called advertiser id. If a site requests you to log in, other
variables, such as your sex or interests, can be used in the model.

Let an ad be shown on some website; such an event will be called an
impression. By Yi, denote the outcome, that is, the number of clicks the ad
received. The outcome of an impression, together with the covariates of that
impression, will be called an observation. In the simplified model there are
5 covariates: advertiser id (a), frequency id (r), material id (m), order id
(o) and placement id (p), where the letter in parenthesis is the short form.
The capital letter of the short form, for example A, will denote the set of
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all such covariates (in this example, A is the set of advertisers). The set
containing all five covariates of the ith observation will be denoted by Xi :=
{ai, ri,mi, oi, pi}. Such an Xi will be referred to as a complete covariate, and
a member of complete covariate i is subscripted by i. For example, ai refers
to the advertiser in complete covariate Xi. An actual complete covariate
might look something like X12341231 = {745, 12, 5444, 32, 52982}, since the
real world attributes, that is, covariates, used in the model are each given an
integer id.

The outcome, Yi, is assumed to follow the Poisson distribution:

Yi ∼ f(Yi | θ,Xi) =
µYi
i

Yi!
e−µi . (6)

Here, and in what follows, µi ≡ E[Yi] and θ denotes the set of all model
parameters. The parameters are the unknowns of the model and must be es-
timated, using previously collected observations in order to make predictions
of the future. In the simplified model there are seven effects, where each ef-
fect is an attempt to model, or take into account, some part of advertisement
performance.

An effect is a function mapping one or more covariates to a real num-
ber, using the model parameters. They correspond to the smooth functions
f found in Section 2.3, discussing generalized additive models. There are
two main type of effects in the simplified model: the simple effect and the
interaction effect.

Definition 7 (Simple effect). Let Z be some set of covariates and z ∈ Z.
Furthermore, let θξ ∈ R|Z| denote the set of parameters corresponding to the
specific effect ξ. A simple effect is a function, ξ : Z → θξ. Thus, a simple
effect takes elements of a covariate set, such as the set of materials, and maps
each element to a distinct parameter.

Advertiser- Frequency- Material- Order- and Placement effects are all
simple effects. The Intercept effect can also be considered a simple effect by
looking at it as a constant function that returns the same parameter regard-
less of the covariate it operates on. It represents the average performance of
an advertisement.

Definition 8 (Interaction effect). An interaction effect is a function taking
two covariates and returning a number representing whether these two co-
variates tend to work well together (a positive number) or counteract each
other (a negative number). Letting Z, W be any two covariate sets, z ∈ Z,
w ∈ W and K be a positive integer, then an interaction effect is defined as:

ξ : (z,w)→ R
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In the simplified model, the interaction effects consist of two matrices of pa-
rameters. Each matrix is of size K× | Z | and K× | W |, respectively,
so there is one column in the corresponding matrix for each element in the
corresponding covariate set. To obtain a real number describing the inter-
action between covariates z, w, the dot product is taken between a column
corresponding to z from the first matrix and a column corresponding to w
from the second.

The reason behind the arcane definition of the interaction effects, rather
than having just one, huge, matrix with a parameter for each of the possible
pairs z, w, is that such a matrix would be too large. Using two matrices is a
way of factoring the enormous matrix into something manageable. Although
the effect of factoring the full matrix in this way is somewhat unclear, it is
hoped that the factorization will capture the behaviour of the full matrix in
roughly the same way that the K eigenvectors associated with the K biggest
eigenvalues would.

The material-placement effect is an interaction effect between materials
and placements and consists of the two matrices, θM :P ∈ RK×|M | and θP :M ∈
RK×|P |. For the simplified model studied here, K = 10. The column of θP :M

corresponding to placement p ∈ P is denoted θP :M
p .

The names of effects and corresponding parameters are shown in Table 1.
For future reference, the set of all parameters in the model will be denoted
θ. The set of all parameters of a certain effect, ξ, is denoted θξ.

Table 1: Model effect names and the associated parameters. K is a constant
determining the size of the interaction effects.

Effect Parameters
Intercept effect θI ∈ R
Advertiser effect θA ∈ R|A|

Frequency effect θR ∈ R|R|

Material effect θM ∈ R|M |

Order effect θO ∈ R|O|

Placement effect θP ∈ R|P |

Material-placement effect θM :P ∈ RK×|M |, θP :M ∈ RK×|P |

The set of parameters corresponding to a complete covariate Xi is defined
as the set of parameters that are used when applying the model effects to
the covariates in Xi. The set is denoted by

θ(Xi) = {θI , θAai , θ
F
fi
, θMmi

, θOoi , θ
P
pi
,θM :P

mi
,θP :M

pi
}. (7)
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In the simplified model, the link between effects, parameters and the
expectation is the logarithm:

log µi =ξI(ai) + ξA(ai) + ξR(ri) + ξM(mi) + ξO(oi) + ξP (pi) + ξMP (mi, pi) =

θI + θAai + θRri + θMmi
+ θOoi + θPpi + (θM :P

mi
)T · θP :M

pi
. (8)

Here, ξx(), is one of the effects. The logarithm is chosen as link partly because
it is the canonical link function for the Poisson distribution, which means that
it simplifies calculations involving the model. A canonical link function also
bears with it other nice properties which can be read about in [3]. As can be
seen the model is such that logarithm of the expected value consists of the
sum of 6 simple effects and one interaction effect.

Since Admeta uses a Bayesian approach to the model all parameters are
given prior distributions. The prior assumption is that parameters within
each effect are normally distributed, with a different variance for each effect.
This assumption is made mainly out of convenience, the Normal distribution
has a simple analytical form and very light tails, meaning that extreme values
are unlikely. Thus letting ξ denote any effect,

θξj ∼ N (0,Ψξ) =
1√
2πΨξ

exp

(
−
(θξj )

2

2Ψξ

)
, (9)

where Ψξ is the variance of parameters corresponding to effect ξ. The vari-
ance Ψξ is the so called hyperparameter of the effect. As mentioned in Section
2.3, the hyperparameter can be adjusted, depending on how much the pa-
rameter values are believed to vary. Strong evidence (a lot of observations)
is needed in order for parameters to take values that are unlikely to the prior
distribution.

The ultimate goal of the model is to predict the outcome of future impres-
sions. To achieve this, the model is fit to existing observations. In Bayesian
terms, fitting a model amounts to finding the posterior distribution of the
parameters, f(θ | Y,X), given observations {Yi, Xi}Ni=1. Here Y = {Yi}Ni=1

and X = {Xi}Ni=1. Using Bayes formula (Thm 6),

f(θ | Y,X) =
f(Y | θ,X)f(θ | X)

f(Y | X)
∝ f(Y | θ,X)f(θ), (10)

where f(Y | X) is the probability of the observed outcome and is constant
with regard to θ. It is also assumed that

f(θ | X) = f(θ).
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This assumption follows from the fact that

f(θ | X) =
f(X | θ)
f(X)

f(θ) ≈ f(θ),

where the inequality is due to f(X), the distribution of complete covariates,

having a weak dependence on the parameters θ. Therefore, f(X|θ)
f(X)

≈ 1. By
assuming equality it is essentially assumed that the complete covariates are
independent of the parameters.

The first part of the right–hand side of eq. (10), f(Y | θ,X), is called the
likelihood function and is equivalent to the distribution of outcomes. The dis-
tribution of outcomes Y given θ and X is, as mentioned previously, assumed
to be Poisson distributed. The second part, f(θ), is the prior distribution of
the parameters. Both of the above distributions are known, so eq. (10) is of
practical value.

In eq. (10) one can clearly tell the structure of the posterior distribution.
The prior distribution, f(θ), is small for values that are a-priori unlikely,
meaning that the likelihood function, f(Y | θ,X), must be large for us to
believe in that value of θ after seeing data.

The posterior distribution can be utilized in many ways. One of its many
applications is for obtaining point estimates of the model parameters, θ. One
of the most common estimates is the maximum a-posteriori estimate (MAP).
It is simply the θ that maximizes the posterior distribution. That θ consists of
the most likely parameter values, and should therefore be suitable for future
predictions. To find the MAP estimate the following optimization problem
must be solved:

max
θ

f(θ | Y,X) ∝ f(Y | θ,X)f(θ). (11)

3.2 The objective function

In this section the objective function that is the topic of this thesis is derived.
Firstly, it is assumed that the outcomes of individual impressions are condi-
tionally independent. This means that knowing the outcome of some other
impression will not impact the probability of the outcome for the current
impression. Due to the independence, the distribution for outcomes factors
into,

f(Y | θ,X) = f(Y1, Y2, . . . , YN | θ,X1, . . . , XN) =
N∏
i=1

f(Yi | θ,Xi).

10



The prior on each parameter is an independent normal distribution. There-
fore, due to independence, we obtain,

f(θ) = f(θ1, . . . , θC) = f(θ1) . . . f(θC) =
C∏

s=1

f(θs).

Here, C = |θ|. Furthermore, the logarithm is strictly monotonically increas-
ing, so problem (11) can be reformulated as,

max
θ

N∏
i=1

f(Yi | θ,Xi)f(θ) = max
θ

N∑
i=1

log f(Yi | θ,Xi) +
C∑

s=1

log(f(θs)).

Due to the distributional assumption, eq. (6), on f(Yi | θ,Xi),

log (f(Yi | θ,Xi)) = log

(
µYi
i

Yi!
e−µi

)
= Yi log(µi)− µi − log(Yi!). (12)

The prior distribution on θ, eq. (9), means that the following expression for
log(f(θs)) is obtained:

log (f(θs)) = log

(
1√

2πΨ(θs)
exp(− θ2s

2Ψ(θs)
)

)
= − log(2π)

2
− log(Ψ(θs))

2
− θ2s
2Ψ(θs)

.

(13)
The optimization problem is thus to

minimize
θ

−
N∑
i=1

wi (Yi log(µi)− µi − log(Yi!))

+
C∑

s=1

(
log(2π)

2
+

log(Ψ(θs))

2
+

θ2s
2Ψ(θs)

)
(14)

subject to θ ∈ RC ,

where N is the number of observations, wi > 0 is a weight introduced due to
a weighted sampling of the observations, log(µi) is defined by eq. (8), Ψ(θs) is
a function selecting the right Ψ depending on the effect θs belongs to. Finally,
the right hand sides of eq. (12) and eq. (13) have been multiplied by −1 in
order to turn maximization into minimization and C = |θ|. The objective
function thus consists of two additive parts: a sum over all the observations,
and a second sum over all the parameters.
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3.3 Gradient calculation

The gradient of the objective function is needed in many optimization algo-
rithms. To calculate the gradient of the objective function, eq. (14), let ξ
be any effect and θξj be the jth parameter corresponding to that effect. As
before, µi is the expectation of observation i. The gradient is the vector of
all partial derivatives of the first order. One element is thus given by,

∂
∑N

i=1 log f(Yi | θ,Xi) +
∑C

s=1 log(f(θs))

∂θξj
. (15)

Due to the linearity of the differential operator the above expression can be
split into two parts, one concerning the observations and the second concern-
ing the prior distributions. Before moving on to the first of the two parts,
note that,

∂ log(µi)

∂θξj
=

∂ log(µi)

∂µi

∂µi

∂θξj
=

1

µi

∂µi

∂θξj
,

so that
∂µi

∂θξj
= µi

∂ log(µi)

∂θξj
.

Thus, for the first part,

∂ log(f(Yi | θ,Xi))

∂θξj
=

∂Yi log(µi)

∂θξj
− ∂µi

∂θξj
− ∂ log(Yi!)

∂θξj

=
∂ log(µi)

∂θξj
(Yi − µi) . (16)

From eq. (8),

∂ log(µi)

∂θξj
=


1, if ξ is a simple effect and θξj ∈ θ(Xi),

θM :P
mk , if θξj = θP :M

pk and θP :M
p ∈ θ(Xi),

θP :M
pk , if θξj = θM :P

mk and θM :P
m ∈ θ(Xi),

0, otherwise,

(17)

where θP :M
pk is the kth element in the K × 1 vector θP :M

p and θ(Xi) is defined
in eq. (7).

For the second part, the partial gradient contribution is:

∂
∑C

s=1 log(f(θ
ξ
j ))

∂θξj
= −

∂

(
log(2π)

2
+

log(Ψ(θξj ))

2
+

(θξj )
2

2Ψ(θξj )

)
∂θξj

= −
θξj

Ψ(θξj )
. (18)

12



Using equations (16), (17) and (18) each partial derivative, as defined in eq.
(15) can be calculated. Thus the full gradient of the objective function can
also be calculated using these expressions.

3.4 Problem properties

Several things are notable from an optimization point of view, when studying
the optimization problem (14). To begin with, the problem is smooth, that is,
it has derivatives of all orders. Furthermore, it is a nonlinear unconstrained
optimization problem. The prior contribution (13) to the objective function
is strictly positive and acts as a constraint that limits the parameters from
taking very extreme negative values. Moreover, as the following theorem
states, a model without interaction effects is convex.

Theorem 9. For the Admeta simplified model, Section 3.1, without the in-
teraction effects, the resulting optimization problem is convex.

Proof. Consider eq. (14) without the interaction effects. Applying eq. (8)
and moving the minus sign inside the summation yields the following form
for the objective function,

N∑
i=1

(
− Yi(θ

I + θAai + θFfi + θMmi
+ θOoi + θPpi)+

+ exp (θI + θAai + θFfi + θMmi
+ θOoi + θPpi) + log(Yi!)

)
wi+ (19)

+
C∑

s=1

(
log(2π)

2
+

log(Ψ(θs))

2
+

θ2s
2Ψ(θs)

)
.

Now Yi ≥ 0 and wi > 0 for i = 1 . . . N . The parameters occur only as linear
terms, in the exponential and the square, but the linear, exponential and
square functions are all convex and a sum of convex functions is also convex.
Hence the above expression is convex.

Unfortunately, the introduction of interaction parameters adds a term
θM :P
mi
· θP :M

pi
to all sums involving the parameters in eq. (19), making the

problem non-convex. This means that the Theorems 19, 20 and 22, for
convergence and convergence rate, derived in the forthcoming section, cannot
be expected to hold for our problem.

One final observation about the problem at hand is that for interaction
effect parameters, the origin acts as a saddle point. By inspection of equation
(17) and (18) it is evident that the gradient is 0 at the origin for those
parameters. Analytical calculation of the Hessian is very complicated and

13



therefore only the three contributions that are relevant (not equal to zero at
the origin) are stated below:

∂ log(f(Yi | θ,Xi))

∂θξj∂θ
ζ
l

=



−wiµi(1 + θM :P
mk θP :M

pk ) if θξj = θP :M
pk1
∈ θ(Xi),

θζl = θM :P
mk2
∈ θ(Xi)

and k1 = k2

−wiµi(1 + θP :M
pk θM :P

mk ) if θξj = θM :P
mk1
∈ θ(Xi),

θζl = θP :M
pk2
∈ θ(Xi)

and k1 = k2

(20)

∂ log (f(θ))

∂θξj∂θ
ζ
l

= − 1

Ψξ
if θξj = θζl , (21)

where θM :P
mk is the element at position k in the vector θM :P

m .
Studying equations (20) and (21) for θ at the origin one can tell that for

the interaction effect parameters the Hessian will be a diagonal matrix with
a band, K indexes from the diagonal on either side. Here K is the size of
the interaction effects. A matrix, such as would be obtained using only one
observation, and K = 3, is,

− 1
Ψξ 0 0 −wiµi 0 0
0 − 1

Ψξ 0 0 −wiµi 0
0 0 − 1

Ψξ 0 0 −wiµi

−wiµi 0 0 − 1
Ψξ 0 0

0 −wiµi 0 0 − 1
Ψξ 0

0 0 −wiµi 0 0 − 1
Ψξ

 . (22)

Such a matrix is generally indefinite, even for this case, where all the non-
zero elements are negative. Hence, the origin is a saddle point. This has the
implication that the origin should be avoided when selecting a starting point
for an optimization algorithm.
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4 Nonlinear unconstrained optimization

This section will discuss fundamental concepts in optimization used in the
thesis. Throughout the entire section f : Rn → R will denote a smooth
function and g ≡ ∇f . Unconstrained optimization deals with problems of
the type

minimize f(x)

s.t. x ∈ Rn, (23)

A solution to (23) is usually denoted x∗, with f(x∗) being the corresponding
minimum value. An unconstrained optimization problem is called nonlinear
when f is nonlinear.

This section will present several algorithms, so for the entire section a
superscript k on a variable is taken to mean the kth iterate of that variable.
A negative superscript −k, on a matrix, will be the inverse of the kth iterate of
that matrix. Unless stated explicitly all norms are taken to be the standard
2-norm.

4.1 Optimality conditions

Optimality conditions are used to construct solution algorithms for optimiza-
tion problems, and suitable termination criteria for these. They specify the
conditions that must hold in order for a point to be minimal, and thus be
a solution to problem (23). The theorems stated in this section can also be
found in any book on continuous optimization, such as [8, 9].

Theorem 10 (Necessary conditions). Let x∗ be a local minimum of f : Rn →
R, where f ∈ C1. Then,

∇f(x∗) = 0n.

Furthermore, if f ∈ C2 then,

∇2f(x∗) is positive semi definite.

Theorem 11 (Sufficient conditions). Let f : Rn → R and f ∈ C2. A point
satisfying

∇f(x∗) = 0n and ∇2f(x∗) is positive definite,

is a strict local minimum of f .
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4.2 Descent methods

Consider again problem (23). The most common approach to solving such a
problem is to find a direction, dk ∈ Rn, such that

f(xk + αkdk) < f(xk), (24)

for all αk > 0 sufficiently small. Such a direction dk is called a descent
direction and the basic idea of descent methods is that by continuously de-
creasing the function value one eventually ends up in a minimum. To find
an αk, such that a large decrease in function value is obtained, a line search
is performed along the direction of dk. Rather than trying to find αk such
that f(xk +αkdk) is minimized an αk yielding a sufficient decrease is usually
accepted, since minimizing f(xk+αkdk) is too expensive. The whole process
of finding descent directions is then repeated until the optimality conditions
are fulfilled. The general algorithm outline is found in Algorithm 1.

Algorithm 1 A brief outline of a descent method.

1: Choose some starting point x0 ∈ Rn.
2: loop
3: Check optimality conditions, break loop if fulfilled.
4: Calculate a descent direction dk.
5: Calculate step length αk > 0 through line search.
6: xk+1 = xk + αkdk.
7: k ← k + 1.
8: end loop

4.3 Line searches

Line searches are used to stabilize optimization algorithms, as it is often the
case that using step length αk = 1, results in divergence or slow convergence.
The formal problem is to

min
α≥0

h(α) = f(xk + αdk), (25)

where α is the step length, dk the search direction and xk the current position.
Solving (25) exactly is usually avoided in practice, and is not required for
convergence. Instead α is chosen so as to satisfy certain conditions.

Definition 12 (Armijo criterion). Let m1 > 0. The Armijo criterion accepts
a step length α if

h(α) ≤ h(0) +m1αh
′(0).
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Figure 1: The figure is an illustration of the Armijo criterion (Def. 12) and the
Wolfe criterion (Def. 13). The red, bottom bar, and green bar above it signify
accepted values of the step length α for the Armijo and Wolfe rule, respectively.

The Armijo condition is easy to implement and is suitable for use when
the gradient is expensive to evaluate. See Figure 1 for a graphical illustration
of the Armijo criterion.

Definition 13 (Wolfe criterion). Let m1,m2 > 0. The Wolfe criterion clas-
sifies a step length α as too short, too long, or acceptable according to:

if h(α) ≤ h(0) +m1αh
′(0) and h′(α) ≥ h′(0)m2 then α is acceptable;

if h(α) ≤ h(0) +m1αh
′(0) and h′(α) < h′(0)m2 then α is too small;

if h(α) > h(0) +m1αh
′(0) then α is too large.

Note that the last condition is equivalent to the Armijo criterion.

The Wolfe criterion is theoretically sounder than that of Armijo. For
instance, there is no constraint preventing a step length accepted by the
Armijo criterion from being very small. If the gradient is very expensive
to calculate, one might consider not using the Wolfe criterion, for all other
purposes it is standard. Figure 1 illustrates the Armijo and Wolfe conditions
graphically.
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4.4 Gradient/Steepest descent

Gradient/Steepest descent is a descent method where dk = −gk, where gk ≡
∇f(xk). It is a descent method by the definition of gk. Gradient descent is
known to suffer from slow convergence both in theory and practice [8, 10, 11].

4.5 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is used for minimization problems where
the objective function can be written as a sum of independent functions,
f =

∑N
j=1 fj. The sum may for instance be over a set of data points where

fj is then the function evaluated for data point j. Evaluating the whole
sum during every iteration of the optimization algorithm can be costly, so
instead, typically, the fj are shuffled and for each iteration dk = −gkl , where
gkl = ∇fl(xk) and l ∈ {1 . . . N}. Usually, a fixed number of passes over all the
fj are done and in expectation dk will behave like the full gradient. Bottou [4]
has achieved good practical and theoretical results using SGD for large-scale
machine learning problems. An outline of the algorithm employed later on
in the thesis is presented in Algorithm 2.

Algorithm 2 A general outline of the SGD algorithm.

1: B ← number of passes over data.
2: Set starting step length α0.
3: N ← number of data points.
4: k = 0
5: for i = 1→ B do
6: Update αi according to some rule.
7: Shuffle the fj:s.
8: for j = 1→ N do
9: dk = −gkj
10: xk+1 = xk + αidk

11: k = k + 1
12: end for
13: end for

4.6 The Newton method

The key idea of the Newton method is to use second order information about
the function to be minimized, in form of the Hessian. The step direction dk

is calculated as
Gkdk = −gk, (26)
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where Gk ≡ ∇2f(xk). The Newton algorithm is known to converge very
quickly for well posed problems: if f is twice continuously differentiable and
the Hessian is positive definite then the speed is Q-quadratic, see appendix
A.1 [10]. For a quadratic problem, for which the second order approximation
is exact, Newton’s method converges in one step. Nevertheless, there are
some major flaws inherent in the algorithm:

1. Computing the Hessian can be very difficult and solving equation (26)
takes O(n3) operations.

2. The descent property is guaranteed only if the Hessian is positive defi-
nite (see Theorem 17).

4.7 Quasi-Newton methods

Quasi-Newton methods is a class of descent algorithms for unconstrained
optimization. They are inspired by the Newton method, but eliminate a lot
of its drawbacks. The general Quasi-Newton method calculates dk by

Bkdk = −gk. (27)

In this case, Bk ∈ Rn×n is some approximation of the Hessian matrix, Gk. In
what follows the Quasi-Newton equation, which Bk adheres to, is introduced
and motivated. Later on the most common way of constructingBk, the BFGS
update, will be discussed. The BFGS update, along with most other updates,
is such that Bk+1 can be constructed from Bk. Even more convenient is the
possibility of constructing B−(k+1) directly, as then, the step of solving for
dk, in eq. (27), is reduced to a matrix-vector multiplication. Throughout this
section and its subsections, yk ≡ gk+1 − gk and sk ≡ xk+1 − xk.

4.7.1 The Quasi-Newton equation

A second order approximation of f(x) at xk is

f(x) ≈ f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)T∇2f(xk)(x− xk). (28)

Differentiating (28) with regards to x gives

∇f(x) ≈ ∇f(xk) +∇2f(xk)(x− xk).

Letting x = xk+1 yields

∇f(xk+1)−∇f(xk) ≈ ∇2f(xk)(xk+1 − xk)⇔ yk ≈ Gksk, (29)
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where yk ≡ ∇f(xk+1) − ∇f(xk), sk ≡ xk+1 − xk and Gk ≡ ∇2f(xk). By
exchanging Gk with Bk and the approximate equality with strict equality we
obtain the Quasi-Newton and dual Quasi-Newton equations.

Definition 14 (Quasi-Newton equation). The Quasi-Newton equation is

B−kyk = sk. (30)

Definition 15 (Dual Quasi-Newton equation). The dual Quasi-Newton equa-
tion is

yk = Bksk. (31)

Clearly the Quasi-Newton and dual Quasi-Newton equations are equiv-
alent; separate definitions are done purely for notational convenience. All
Quasi-Newton methods require the Hessian approximation Bk to satisfy eq.
(31). There are two main motivations for this. Firstly, note the resemblance
of eq. (31) to the mean value theorem. For a function, h(x), of a single
variable, the mean value of h′′ between xk and xk+1, denoted Gm, satisfies
yk = GMsk. The Quasi-Newton equation thus forces Bk to have the same
effect as GM on subspaces of dimension 1. Secondly, the Quasi-Newton equa-
tion ensures that the approximation of f obtained by replacing ∇2f(xk) in
eq. (28) by Bk is exact at at least one point and the resulting approximation
of the gradient is correct at two points. Theorem 16 states this formally.

Theorem 16. Any Hessian approximation Bk satisfying the Quasi-Newton
equation (31) defines an approximation,

mk(x) = f(xk) + (x− xk)Tgk +
1

2
(x− xk)TBk(x− xk),

to f satisfying mk(xk) = f(xk), ∇mk(xk) = gk and ∇mk(xk+1) = gk+1,
where gk+1 ≡ ∇f(xk+1).

Proof. The first two claims follow trivially. To prove the third statement
consider

∇mk(xk+1) = gk +Bk(xk+1 − xk) = gk +Bksk.

Using eq. (31) the above becomes

∇mk(xk+1) = gk + yk = gk + gk+1 − gk = gk+1.

Theorem 17. Assume that gk 6= 0, then a positive definite Bk guarantees
that dk, as obtained from eq. (27), is a descent direction.
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Proof. First note that the inverse of a positive definite matrix is also positive
definite. Then,

dk = −B−kgk ⇒ gkdk = −gkB−kgk < 0,

by the definition of a positive definite matrix (see Def. 1).

A property useful for error checking Quasi-Newton implementations is
the curvature condition. By multiplying the Quasi-Newton equation (31) by
sk one obtains,

(sk)Tyk = (sk)TBksk.

If ever (sk)Tyk < 0, then there is something wrong with the implementation,
since Bk ought to be positive definite.

4.7.2 BFGS update

The BFGS update, eq. (32), is a rank 2 update developed by Broyden [12],
Fletcher [13], Goldfarb [14] and Shanno [15] independently. It has a number
of good properties that can be read about in the aforementioned articles or
[10, 11]. One of the most important is that the successive updates of B−k

stay positive definite, so that the method always generates descent directions.
The BFGS update is given by

B−(k+1) =

(
I − sk(yk)T

(sk)Tyk

)
B−k

(
I − sk(yk)T

(sk)Tyk

)
+

sk(sk)T

(sk)Tyk
. (32)

Theorem 18. The BFGS update eq. (32) is a rank two update satisfying the
Quasi-Newton equation (30).

Proof. A rank two update of Bk can be expressed as

Bk+1 = Bk + auuT + bvvT , (33)

where u,v ∈ Rn and a and b are scalars to be chosen so that Bk satisfies the
Quasi-Newton equation (30). Applying (33) to eq. (31) yields,

Bk+1sk = Bksk + auuT sk + bvvT sk = yk.

To satisfy the above equality choose

u = yk, v = Bksk ⇒ Bksk + ayk(yk)T sk + bBksk(Bksk)T sk = yk

and let

a =
1

(yk)T sk
, b =

−1
(sk)TBksk

.
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It is simple to verify that these choices lead to the desired equality. To obtain
B−(k+1) apply the Sherman–Morrison formula (Thm. 5) twice to

Bk+1 = Bk +
yk(yk)T

(yk)T sk
− Bksk(Bksk)T

(sk)TBksk
.

Long calculations finally lead to

B−(k+1) =

(
I − sk(yk)T

(sk)Tyk

)
B−k

(
I − sk(yk)T

(sk)Tyk

)
+

sk(sk)T

(sk)Tyk
.

The BFGS update is considered the best Quasi-Newton update [10, 11]
and there are numerous results for local and global convergence as well as
rate of local convergence. For proofs of the next two theorems we refer to
[10]. The third theorem has been adapted from a proof for a similar update
which can also be found in [10].

Theorem 19 (Local convergence rate). Assume that the BFGS algorithm
with Wolfe’s line search converges to x∗ in a neighbourhood of f which is
strictly convex and has a Lipschitzian Hessian. Then the convergence rate is
Q-super-linear, see Def. 24.

Theorem 20 (Global convergence). Assume that f is twice continuously
differentiable and that f is uniformly convex, i.e, ∃m,M > 0 such that for
all x ∈ L(x) = {x | f(x) < f(x0)}, which is convex, it applies that

m‖u‖2 ≤ uT∇2f(x)u ≤M‖u‖2, ∀u ∈ Rn.

Then using a Wolfe line search (Def. 13) the sequence {xk} generated by the
the BFGS algorithm converges to the minimizer x∗ of f .

Theorem 21. If (sk)Tyk > 0 and B−k is positive definite then the BFGS
update B−(k+1) is also positive definite.

Proof. Let v ∈ Rn, v 6= ∅ and assume B−k is positive definite. Then,

vTB−(k+1)v =

(
vT − vT

sk(yk)T

(sk)Tyk

)
B−k

(
v − sk(yk)T

(sk)Tyk
v

)
+ vT

sk(sk)T

(sk)Tyk
v =

=

(
vT − vT

sk(yk)T

(sk)Tyk

)
B−k

(
v − sk(yk)T

(sk)Tyk
v

)
+

(skvT )2

(sk)Tyk
.
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Now the second term is strictly greater than zero as long as skvT 6= 0. Since
B−k is positive definite the first term is also strictly greater than zero, as
long as,

vT − vT
sk(yk)T

(sk)Tyk
= vT − vT sk

(sk)Tyk
(yk)T 6= 0. (34)

In particular, condition (34) holds when, vT sk = 0. Hence B−(k+1) is positive
definite.

In connection to Theorem 21 it is of interest to discuss when one can
expect (sk)Tyk > 0 to hold. Generally (sk)Tyk = skgk+1− skgk and skgk < 0,
since skgk = αkdkgk < 0 due to dk being a descent direction. If using an exact
line search then skgk+1 = 0, since α was chosen as to minimize f along dk.
An exact line search is not a requirement for (sk)Tyk > 0 to hold however.
The Wolfe criterion also ensures that (sk)Tyk > 0 [11]. Using the Armijo
criterion however, there are no guarantees.

4.7.3 L-BFGS

Even though the Quasi-Newton method removes the need to solve the system
of equations Gkdk = −gk it still requires the storage of B−k, which is an n×n
matrix. For large n this can be quite intractable. The limited memory BFGS
update, L-BFGS, solves this problem by storing only a fixed number, m, of
the latest yk:s and sk:s, where yk, sk are defined as previously. Using these, an
approximation of the BFGS-update is constructed and only O(mn) space and
operations are needed. L-BFGS was first introduced in [16] and is discussed
further in [10, 11, 17, 18]. It is one of the most successful algorithms for large
scale optimization [11].

The BFGS update formula is restated here for ease of reference:

B−(k+1) =

(
I − sk(yk)T

(sk)Tyk

)
B−k

(
I − sk(yk)T

(sk)Tyk

)
+

sk(sk)T

(sk)Tyk
.

To simplify slightly set ρk ≡ 1
(sk)T yk

and V k ≡
(
I − ρksk(yk)T

)
. The BFGS
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formula can now be applied recursively,

B−(k+1) = (V k)TB−k
k V k + ρks

k(sk)T

= (V k)T
(
(V k−1)TB

−(k−1)
k V k−1 + ρk−1sk−1(sk−1)T

)
V k + ρksk(sk)T

= (V k)T (V k−1)TB−(k−1)V k−1V k + (V k)Tρk−1sk−1(sk−1)TV k + ρksk(sk)T

= ... (35)

= (V k)T · · · (V k−m+1)TB
−(k−m+1)
0 (V k−m+1 · · ·V k)

+ ρk−m+1(V k)T · · · (V k−m+2)T sk−m+1(sk−m+1)T (V k−m+2 · · ·V k)

+ ρk−m+2(V k)T · · · (V k−m+3)T sk−m+2(sk−m+2)T (V k−m+3 · · ·V k)

+ . . .

+ ρksk(sk)T .

By performing only m levels of recursion and replacing B−(k−m+1) by some
initial positive definite B−k

0 the L-BFGS update is obtained. Here, B−k
0 , is

the positive definite inverse Hessian approximation used in the kth itera-
tion to calculate B−(k+1). Note that by selecting m very large the L-BFGS
is equivalent to the original BFGS-update. To calculate dk = −B−kgk in
practice there is an efficient two loop formula, see Algorithm 3.

Algorithm 3 The two-loop formula for calculating dk = −B−kgk.

1: d := gk

2: for i := k → k −m+ 1 do
3: ai := ρi(si)Td
4: d := d− aiy

i

5: end for
6: d := B−k

0 d
7: for i := k −m+ 1→ k do
8: b := ρi(yi)Td
9: d := d+ si(ai − b)
10: end for
11: return −d

To verify Algorithm 3, note first, from observing eq. (35), that

V igk = (I − ρiyi(si)T )gk = gk − ρiyi(si)Tgk.

Also note that

ak−j = ρk−j(sk−j)TV k−jV k−j+1 · · ·V kgk,
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for each j > 1, so that q at line 6 in Algorithm 3 is equal to

B−k
0 (V k−m+1 · · ·V k)gk.

At line 9 in Algorithm 3 another of the terms in (35) is added for each
iteration. The full details are left for the reader to work out. The complete
L-BFGS algorithm outline is stated in Algorithm 4.

Algorithm 4 The L-BFGS algorithm in pseudo-code.

k = 0
Set a starting point x0 ∈ Rn.
Set an initial positive definite inverse Hessian B−k

0 ∈ Rn×n.
Set m, the number of sk:s, yk:s to store.
repeat

Compute gk.
Compute dk = −B−kgk using Algorithm 3.
Do a line search to obtain step length αk.
xk+1 = xk + αdk.
k ← k + 1

until convergence criteria fulfilled.

Table 2: The number of operations per iteration and the amount of memory
required for the Newton method and its derivatives.

Algorithm Operations Memory
Newton O(n3) O(n3)
BFGS O(n2) O(n2)
L-BFGS O(mn) O(mn)

Naturally, since L-BFGS is an approximation of the BFGS update, its
theoretical convergence properties are not as good. However, Table 2, giving
the number of operations per iteration, is clearly in favour of L-BFGS, and
the important property of maintaining positive definiteness still applies, as
long as B−k

0 is positive definite.

Theorem 22. Let f be twice continuously differentiable and uniformly con-
vex (as defined in Theorem 20). Assume that the sequence {xk} generated
by L-BFGS converges to the unique minimizer x∗ of f . Then the rate of
convergence is at least R-linear, see Def 26.

Proof. The interested reader is referred to [10].
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5 Method

This section presents how the problem of fitting the simplified model to data
is solved using L-BFGS and SGD.

5.1 Applying L-BFGS to the problem

L-BFGS was implemented using C++ according to Algorithm 4. The statis-
tical model, providing objective function and gradient evaluation, was also
implemented in C++. Read [19] for further details on how that was done.
It was decided to use a backtracking line-search using the Armijo criteria
(Def 12) for the L-BFGS routine, since evaluating the gradient was the single
most time-consuming operation of the algorithm. The initial step length α0

was set to 1 and reduced by 1/2 each time the step was rejected. Even when
other types of line searches are used α0 = 1 is often tried first, the reason
being that the original Newton method converges in one step for quadratic
functions using that step length.

As a convergence criteria

∆θ = ‖θk+1 − θk‖ < ε, (36)

was used, where ε is some small positive number. During evaluations per-
formed for this thesis, ε = 0.0001 was used. The preference for eq. (36), over
some bound on the value of ‖gk‖, was due to the former criteria fluctuating
slightly less, although it was observed that ‖gk‖ → 0.

L-BFGS, Algorithm 4, also requires the specification of an initial inverse
Hessian approximation, B−1

0 . This is an important choice since it affects the
algorithm convergence. Due to a lack of a simple way of approximating the
true inverse Hessian, a scaled identity matrix suggested by [10] was used:

B−k
0 =

(sk)Tyk

‖yk‖2
· I, (37)

where I is the identity matrix. A schematic motivation for eq. (37) is that

1
(sk)T yk

‖yk‖2
=

(yk)Tyk

(sk)Tyk
,

where the last equality can be interpreted as a very rough, scalar, approxi-
mation of the Hessian. If yk changes a lot and sk but a little then the Hessian
in some sense is large, and if the opposite event occurs the Hessian might be
considered small.

After extensive testing,m, the number of function and gradient differences
(sk:s, yk:s) kept in the L-BFGS, was set to 30.
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5.2 Implementing SGD

As a mode of reference Admeta’s implementation of SGD was ported to C++.
It is, however, not immediately clear how to apply SGD to problem (14). The
optimization problem (14) consists of two sums, where the first sum over all
the observations, eq. (12), fits naturally into the SGD framework. Each
observation can be treated as defining an independent function for which the
gradient can be calculated. This gradient is thus a vector with C =| θ |
elements, of which only the few positions corresponding to the parameters in
θ(Xi), are non–zero. The sum over the parameters however, eq. (13), does
not fit the framework. The problem here is that there is no inherent way of
splitting eq. (13), or its gradient eq. (18), across all the observations.

To solve that difficulty eq. (13) is distributed across the iterations by
using the weights wi. The idea behind this is that a fraction of (13), cor-
responding to the relative importance of the current observation, is applied
at each iteration. After looping through all the observations once, (13) will
have been applied exactly once for each parameter, but smeared across the
observations.

To achieve this, the total weight of every parameter is calculated before
commencing the algorithm. Let W ξ

j , be the total weight of some parameter

θξj . By total weight is meant the sum of the weights of all observations

that satisfy θξj ∈ θ(Xi). During a step of the SGD, where θξj ∈ θ(Xi), the
current value of the prior gradient contribution, eq. (18), is calculated and
the fraction wi/W

ξ
j of it, where wi is the weight of the current observation,

is applied to θξj .

The actual implementation of SGD follows the pseudo-code stated in
algorithm 2 closely; however, there are a few unspecified parameters in that
code. Those are the number of passes to make over the data, as well as
a starting value and updating scheme for the step length. The initial step
length α0 was set depending on the problem at hand and a new step length,
equal to a third of the former step length, was calculated whenever another
quarter of the total number of passes over the data had completed.

5.3 Parallelization of objective function and gradient

Parallel computing in mathematical optimization has attracted a lot of atten-
tion since the early nineties [20, 21, 22, 23]. Lately a lot of interest has been
given to the possibility of utilizing the massively parallel processors fitted in
the graphic processing unit (GPU) [24]. The GPU is also what will be used
for parallelization in this thesis.
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When discussing parallelism it is unavoidable to first touch upon the
subject of what processor architecture is used to achieve parallelism, since
this limits which algorithms that are applicable. The two most common
architectures are SIMD and MIMD, acronyms for Single Instruction Multiple
Data and Multiple Instruction Multiple Data [25]. Modern GPUs use SIMD
type processors, which means that they are very capable of receiving a large
amount of independent data points and performing the same computation on
each data point. Doing many different calculations simultaneously, however,
is inefficient.

The three main ways of parallelizing an optimization algorithm are:

1. Parallelize the function/gradient evaluation,

2. parallelize the algorithm in itself and

3. parallelize the linear algebra (if there is any).

When it comes to parallelizing the algorithm itself, a few different ap-
proaches are discussed in [20, 23]. A problem is that a lot of classical opti-
mization methods, such as L-BFGS, are very sequential in nature. Usually,
the next iterate depends heavily on the previous iteration, so that paralleliza-
tion requires the development of a completely new algorithm. Strategies, such
as probing the neighbourhood of an iterate at multiple locations in parallel
to approximate the Hessian, or performing parallel line-searches, have been
tried, see for instance [26]. The usefulness of these methods, however, de-
pend a lot on the specific problem at hand and many are also better suited
to MIMD type parallelism. Parallelism has found greater success in, for ex-
ample, genetic algorithms and various direct searches, usually applied when
the function landscape is very complex, yet contains fewer variables than in
this project [27, 28].

In order to speed up the run time of L-BFGS in this thesis the function
and gradient evaluation were parallelized. For the objective function, eq. (14),
this is quite readily done since each partial sum is independent of the others.
Therefore, the most basic idea of partitioning the sum over all observations
across the available processors and then adding the resulting partial sums
together works well. The sum over parameters can be treated in a similar
way. Although conceptually quite simple, actually implementing the above
ideas on the GPU, using the CUDA programming language, is demanding.
For a full treatment on how it was done see [19].

When parallelizing the gradient evaluation the approach of splitting the
sum across all available processors, as in the function evaluation, is natural.
This naive idea turns out to work badly, as for the gradient, different obser-
vations may affect the same parameter. This leads to write conflicts, which
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cost a lot of time. Measures were therefore needed to reduce such conflicts.
Once again, confer [19] for full details.

5.4 Simulating observations

In order to make the results reproducible to others, it was decided to con-
struct data through simulations. The simulation goals are:

• That the result is somewhat representative of Admeta’s data,

• that it is straight forward to implement and repeat.

The basic idea for simulating data, which in this case is equivalent to ob-
servations, is to first construct a true model, mT , describing the distribution
of the number of clicks an impression gets. Secondly, complete covariates, Xi

are constructed, for which the number of clicks, Yi, can be calculated using
mT . Depending on the number of clicks, a weight wi can be assigned and the
observation is thus complete.

To create mT a set of parameters, θ, corresponding to the model effects, is
sampled from the prior distribution of each parameter, in this case aN (0,Ψξ)
distribution, where Ψξ is the hyperparameter corresponding to effect ξ.

The complete covariates, X, are subsequently generated using a uniform
distribution. In effect this means that for instance any of the available ma-
terials are equally likely to occur in the complete covariate Xi.

The last step is to generate the number of clicks, Yi, each complete co-
variate, Xi, obtained. Since Yi ∼ Pois(µi), the Poisson distribution, with
parameter µi, can be sampled in order to obtain the clicks associated with
Xi. This completes the observation (Yi, Xi). However, in order to reduce the
data to store on disk and process, Admeta samples incoming impressions,
throwing away those with 0 clicks with probability 1− 1/w, where typically
w = 100. Impressions with clicks are very rare, contain a lot of information,
and are therefore always kept. The sampling increases the concentration of
clicks in the remaining data. To take this into account the Pois(µi) distri-
bution can be modified slightly.

To be more precise, let p(k) be the probability of an impression getting
k clicks as defined by the original Poisson distribution, and let α = 1 −
(1 − 1

w
)p(0) be the approximate relative size of the set of observations after

sampling. Let p(k > 0) be the probability of at least 1 click and p′(k > 0)
be the corresponding probability after sampling, that is, p′(), denotes the
pdf of modified Poisson distribution. Due to the total set size decreasing by
approximately α, but the number of observations with more than 0 clicks

29



remaining constant, it follows that

p′(k > 0) ≈ p(k > 0)/α. (38)

Equation (38) follows from that the proportion of observations with more
than 0 clicks has increased by 1/α and that probabilities can seen as propor-
tions of the total sample. Finally, the probability of an impression having 0
clicks after sampling is given by,

p′(0) ≈ p(0)
1

wα
. (39)

The above statement follows from the requirement that the total probabil-
ity must be equal to 1. A sketch of the final data simulation algorithm is
presented in Algorithm 5.

Algorithm 5 Generation of simulated data.

N ← number of observations to generate.
C ← number of different covariates.
w ← sampling weight.
for i = 1→ N do

Generate complete covariate Xi by sampling from U(0,C) five times.
end for
Generate true model mT by sampling from N (0,Ψ).
for i = 1→ N do

Calculate µi by using mT and Xi.
Use eq. (38) and (39) to sample Yi from modified Pois(µi).
if Yi > 0 then

wi = 1.
else

wi = w.
end if

end for
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6 Results

Three algorithms: L-BFGS, CUDA-L-BFGS and SGD, were tried and tested
on problem (14), where CUDA-L-BFGS is identical to L-BFGS, except that
it utilizes parallelized gradient and function evaluation. Both real and simu-
lated observation sets were used in the tests, where the properties of the sets
used are stated in Table 3.

Table 3: The observation sets used in testing. The Large-Simulated set was
designed in order to test the performance of the algorithm for a larger number of
parameters. The Small-Real set was used exclusively for Hessian investigations.

Test name #Observations #Parameters

Large-Real 13619739 32587
Small-Real 470243 18986
Large-Simulated 10000000 250000

Apart from the observation sets used, the outcome also depends on the
values of the hyperparameters used. Those values will be stated in con-
nection to graphs and tables. During the entire section hyperparameters
corresponding to simple effects will be denoted by ΨS and hyperparameters
of interaction effects by ΨI . A final remark to be made is that the initial step
length, α, used in the SGD, was set to 0.01 for the Large-Simulated data set
and 0.001 for the Large-Real data set.

6.1 Performance evaluation

Figure 2a shows the progression of the three algorithms for the Large-Real
data set, where ΨS = 1 for simple effects and ΨI = 0.2 for interaction effects.
As can be seen the CUDA-L-BFGS performs the best, taking roughly 5000
seconds to converge, slightly less than a third of the time L-BFGS takes. The
SGD was terminated after 160 passes of the data, taking 16000 seconds, with
a final function value 0.045% higher than the two L-BFGS methods.

Figure 2b shows the result from running the three algorithms on the
Large-Simulated data set. As can be seen, the speed up when using CUDA-
L-BFGS over L-BFGS, on the Large-Simulated data set, is only about 2,
compared to 3, when running on the Large-Real data set.

To investigate the effect of hyperparameters on the convergence speed,
tests were run, using smaller hyperparameter values. This sped up conver-
gence significantly, as can be seen in Table 4, which summarizes the results
of the timing tests done.
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data set with ΨS = 0.1, ΨI = 0.02.

Figure 2: Plots of algorithm progression versus time. The y-axis shows log(fk −
f∗), where f∗ is taken to be the lowest function value found.

When looking at Table 4, note that function values are not directly com-
parable for results obtained on the same data set but using different hy-
perparameters as the hyperparameters affect the objective function value.
The discrepancy in the number of iterations between L-BFGS and CUDA-L-
BFGS, when run on the same problem, are due to numerical differences.

The objective function values found by CUDA-L-BFGS are about 0.045%
lower than those found by the SGD on average. Comparing run speed,
CUDA-L-BFGS reaches the lowest function value found by the SGD in about
4 minutes for the simulated data, this corresponds to a speed up of 75. How-
ever, CUDA-L-BFGS is only about 4 times quicker than the SGD if you
compare the the total running times of the two algorithms.

6.2 Local convergence rate

In order to calculate the rate of convergence for the test runs in Figure 2,
it was assumed that x∗ = xK , where xK are the parameters of the CUDA-
L-BFGS at convergence. According to Theorem 22 one can expect L-BFGS
to have an R-linear convergence rate, however, the conditions posed by that
theorem are not fulfilled by this problem. Nevertheless, using Definition 26,
note that the rate of convergence, r, can be found by taking the logarithm,

log(‖θk − θ∗‖) ≤ log(Crk) = log(C) + k log(r).
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Table 4: Results and parameters used in the tests performed. Note that the L-
BFGS and CUDA-L-BFGS results differ slightly due to numerical differences. For
the SGD, iterations denote the number of steps taken by the algorithm.

data set algorithm ΨS ΨI time (s) f iterations
Large-Real SGD 1 0.2 16670 2719921.133 2.2 · 109
Large-Real L-BFGS 1 0.2 16408 2719073.251 9190
Large-Real CUDA-L-BFGS 1 0.2 5138 2719073.247 8780
Large-Real CUDA-L-BFGS 0.01 0.002 116 2696394.081 199
Large-Real CUDA-L-BFGS 0.1 0.02 1773 2699893.189 3019
Large-Simulated CUDA-L-BFGS 0.1 0.02 5917 8011632.151 4720
Large-Simulated L-BFGS 0.1 0.02 11017 8011632.153 4208
Large-Simulated SGD 0.1 0.02 18842 8016445.668 1.2 · 109
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Figure 3: Plot of log(‖θk − θ∗‖) versus iterations during a run of L-BFGS on the
Large-Real data set using ΨS = 1 and ΨI = 0.2.

Using the above formula Figure 3 was obtained. Figure 3 uses the Large-Real
data set, with ΨS = 1 and ΨI = 0.2. As can be seen the graph is roughly
linear except near the end, and from the marked values the slope can be
calculated to be −0.0042. The convergence rate is thus r = 0.9958, which is
interpreted as the approximate factor that the function value decreases by at
each iteration. The sharp dip towards the end of figure 3 is due to the final
iterates, xk, being very close to xK .

The same calculations were also done on the same set but using smaller
hyperparameters, namely ΨS = 0.1 and ΨI = 0.02. The convergence rate
was then found to be r = 0.9989, slower than the convergence rate for larger
hyperparameters.
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6.3 Investigating the model fit

The simulated data is useful, as the true model mT behind it is available.
Hence it is possible to compare various properties of the solution to the true
model.

What interests Admeta, is mainly the accuracy of the predicted expected
number of clicks µi. To investigate this property, the rmse (root mean square
error) was calculated, where

rmse =
‖µT − µ‖√

N
. (40)

Here, µT , is the vector of true expected values, µ, is the vector of fitted
expected values and, N , is the number of observations.

The rmse was calculated for a few values of the hyperparameters and
the results are presented in Table 5. As can be observed the lowest rmse is
achieved by the SGD. The CUDA-L-BFGS, however, is not far behind. It
achieves almost the same rmse score in a lot less time.

The rmse scores obtained using large hyperparameters are bad, as are
those using very small hyperparameters. One last thing to note in Table 5 is
that the hyperparameters can probably be tuned in a bit more. Terminating
CUDA-L-BFGS after 1000 iterations, corresponding to changing the conver-
gence criterion to 0.07 instead of 0.0001, achieves as good a fit, or slightly
better, than letting the algorithm run to convergence. Ideally, with the right
hyperparameter values, a lower function value should also yield a better fit.

Table 5: Run times, iteration count and rmse of various tests.

data set algorithm ΨS ΨI time (s) iterations rmse
Large-Simulated L-BFGS 1 0.2 129 50 0.0964
Large-Simulated CUDA-L-BFGS 1 0.2 27503 22000 0.1461
Large-Simulated SGD 0.1 0.02 18842 1.2 · 109 0.0298
Large-Simulated CUDA-L-BFGS 0.1 0.02 5917 4720 0.0302
Large-Simulated CUDA-L-BFGS 0.01 0.002 95 80 0.0762
Large-Simulated CUDA-L-BFGS 0.1 0.02 243 200 0.0412
Large-Simulated CUDA-L-BFGS 0.1 0.02 1250 1000 0.0301
Large-Simulated CUDA-L-BFGS 0.1 0.02 2495 2000 0.0302

Plots of fitted expected values, µ, against the true expected values, µT ,
can be studied in Figure 4. In Figure 4b the fit is clearly the poorest. Figure
4a also suggests that the fit is poor, seeing as though there are several points
where the fitted expected values are small compared to the real values. Fur-
thermore, the SGD (Figure 4d), seems to be achieving a good fit, which is
almost identical to that achieved by the CUDA-L-BFGS in Figure 4c.
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(a) Hyperparameters ΨS = 1 and ΨI =
0.2. Terminated after 50 iterations.
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(b) Hyperparameters ΨS = 1 and ΨI =
0.2. Terminated after 22000 iterations.
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(c) Hyperparameters ΨS = 0.1 and
ΨI = 0.02. Test run until convergence,
4720 iterations.
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(d) Hyperparameters ΨS = 0.1, ΨI =
0.02. Test run with SGD, 1200 passes
over data.

Figure 4: Plots of µ against µT on a log log scale. The figures were generated using
the Large-Simulated test set. Interestingly enough, Figure 4a, showing CUDA-L-
BFGS running for only 50 iterations, achieves a better fit than CUDA-L-BFGS
running for 22000 iterations, shown in Figure 4b. Note also the similarity of the
plots obtained using CUDA-L-BFGS and SGD, Figure 4c and Figure 4d, respec-
tively.
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Other aspects of the model fit which are of interest is the convergence
of the actual parameter values. Figure 5 shows how 20 randomly sampled
parameter values converge toward their final value. The Large-Real data set
is used, with the L-BFGS algorithm and hyperparameters ΨS = 1, ΨI = 0.2.
As can be seen, some values quickly stabilize, whereas others take a long
time.

Figure 6 shows a random subset of the calculated and true parameter sets
plotted against each other. Worth noting is that in Figure 6a there is a clear
trend toward the absolute value of the parameters being too large. In Figure
6b on the other hand, where smaller hyperparameters are used, the trend has
disappeared.

6.4 Investigating the true Hessian

The approximate inverse Hessian B−1
0 plays a crucial role in the L-BFGS

algorithm. At every iteration it is used as a base for the final inverse Hessian
approximation. A better base, means a better end result. The B−1

0 currently
in use is a simple scaled identity matrix. As a first step of improving that
base it was decided to study the actual Hessian of eq. (14).

Figure 7 shows a heatmap of the logarithm of the absolute values of the
Hessian for the Small-Real data set. The logarithm was applied in order
to even out the large variations in the matrix. The Hessian was calculated
numerically after 70 iterations of L-BFGS had run, and the original matrix
consisted of 18,986 × 18,986 elements. Handling and plotting such a huge
matrix is very cumbersome, so a reduction of the matrix dimensions was
performed. A new matrix was formed by summing up the absolute value of
elements in 22 × 22 squares in the original matrix, forming a local average,
and using this as a corresponding element in the new matrix. The resulting
picture is thus a 863× 863 approximation of the original Hessian.

There are a few things to note in Figure 7. Firstly, as can be seen the
diagonal has a high amplitude throughout. This is not surprising seeing as
the diagonal gets contributions from every parameter in every observation.
The empty squares along the diagonal, marked by A, B and C, correspond
to the intervals of different model effects. Thus there are seven such empty
squares in total, although four of them are small and hard to see. The
elements inside the squares are all zero, since each observation contains only
one of each covariate. Hence there can be no contribution to a Hessian
position corresponding to for instance two different materials. The three
easily visible squares correspond to the most numerous parameters, namely
material effect parameters (A), placement effect parameters (B) and material-
placement interaction parameters (C).
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(a) Hyperparameters ΨI = 1 and ΨS = 0.2. The parameter con-
verging to −8 is the intercept parameter.
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(b) Hyperparameters ΨI = 0.1 and ΨS = 0.02.

Figure 5: Two plots of the evolution of parameter values against iteration count,
for two different runs of CUDA-L-BFGS on the Large-Real data set. Figure 5b is
centered closer around zero and uses smaller hyperparameters, but the behaviour
of the two plots seem to be roughly similar over all.
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(a) Hyperparameters ΨS = 1 and ΨI = 0.2.
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(b) Hyperparameters ΨS = 0.1 and ΨI = 0.02.

Figure 6: Parameters returned by CUDA-L-BFGS are plotted against the true
parameters of mT . The data set used is Large-Simulated, with different hyperpa-
rameters. As can be seen in Figure 6a there appears to be a trend in the calculated
parameter values of being slightly to large in absolute value, whereas for Figure
6b, the trend in the calculated data seems to have disappeared. If anything the
absolute of the calculated values are somewhat small. The two plots concern the
same parameters, but the lower plot also includes the intercept parameter, which
explains the different zoom.
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Figure 7: A heat map of the Hessian for test set Small-Real. As can be seen, the
diagonal has large values. Along the diagonal are square regions (marked A, B, C)
with elements equal to zero. These correspond to the different model effects.
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7 Discussion and future work

From Figure 2 and Table 4, it is apparent that CUDA-L-BFGS performs
better than SGD for the problem studied in this thesis. The SGD has a hard
time reaching the same low function values found by the L-BFGS. This is
not surprising, considering that the SGD uses such a harsh approximation of
the gradient. The L-BFGS steadily, though rather slowly, converges toward
some local minimum.

The best function value found for the Large-Real data set by CUDA-L-
BFGS at convergence, is 0.03% lower than the best value found by the SGD;
for the Large-Simulated set the corresponding difference is 0.06%. However,
as can be seen from Table 5, the lower function value does not seem to have
much of an effect on the model’s predictive power. This may be due to the use
of incorrect hyperparameters. The striking similarity of Figure 4c and Figure
4d also suggests that the difference between the fit obtained by the CUDA-
L-BFGS and the SGD is not great. Over all, the performance differences
between the two algorithms were not as great as had been expected, given
Admeta’s previous experience with SGD.

The strength of the SGD is its relatively constant run time; it scales
well with the number of observations and parameters. The biggest drawback
is its lack of a line search. Although this lack does make single iterations
exceptionally quick, it also implies that the algorithm has difficulties reaching
the smallest function values, as seen in Figure 2.

It is unclear exactly what boosts to the model performance are obtained
by finding a lower function value. As mentioned in the previous paragraph
the findings in this thesis suggest that the boost is small. Nevertheless, it
might be that, for instance, parameters that have few observations associated
with them, and therefore a small impact on the function value, are better
fit using CUDA-L-BFGS. This aspect can be critical for Admeta, as it is
important for them to quickly be able to make correct performance estimates
for new advertisements. These naturally have few observations associated
with them. In the simulated data, used for testing the properties of fitted
models, observations were distributed evenly amongst the parameters, hence
the above effect cannot be properly detected by the rmse score stated here.

It is possible that a better approach for evaluating rmse scores would
have been to do so on a separate test data set, as is standard in statistical
analysis. In such an approach a specific data set is used for fitting the data
(the training set) and another data set (the test set) used for evaluating fit.
Usually, such an approach is taken in order to reduce the effect of overfitting.
If the model is overfitted to the training set, then it will do bad predictions
for the test set. It is possible that the small differences in rmse seen here
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between the SGD and CUDA-L-BFGS is due to them both being overfitted
on the training data. Nonetheless, since the main aim of this thesis was not
to investigate the model performance in general, the approach of using a
training and test set was not applied.

If it is the case that CUDA-L-BFGS overfits data, a way of reducing this
could be to include the rmse as a termination criteria. However, there is no
way of calculating the rmse for real data, so this convergence criteria is not
useful in practice. A more realistic approach at making sure that a better
function value actually yields a better fit, is to make use of a multi-objective
optimization, where apart from maximizing the MAP, some measure of the
fit is also optimized. A solution which strikes a good balance between the
two objectives can then be selected. However, such an approach requires
the definition of some measure of convergence applicable also to real data.
Furthermore, the optimization becomes more complicated.

The simplest way of making sure that good function values also corre-
spond to good fits, is to adjust the model hyperparameters. That way, the
optimization algorithm can focus on one thing and the model on one thing.

Selecting a good initial step length for the SGD and adjusting it ac-
cordingly is very problem dependent. Perhaps if the step length had been
reduced further, the SGD would have been able to reach the same solution as
the L-BFGS. Admeta needs to solve a number of optimization problems that
are constantly changing, so finding an optimal SGD step length is difficult.
On the other hand, m, the number of previous gradient and function values
stored in the L-BFGS, is quite easy to decide upon. A value such as m = 10
works reasonably well for most problems. This is another advantage L-BFGS
has over SGD.

Looking at Figure 2, both the SGD and L-BFGS experience rapid con-
vergence during the first 100-200 iterations. Naturally this depends a lot on
the starting position, but, the slow convergence thereafter (r ≈ 0.996), as
seen in section 6.2, suggests that the objective function is quite flat around
the minimum.

This observation corresponds well to the results obtained for tests with
smaller hyperparameters (see Table 4). Lower hyperparameter values corre-
spond to an increased regularization of the parameter values. In a way, this
is equivalent to the optimization problem, eq. (14), becoming less flat around
the minimum since the prior contribution, θ2/Ψ, is increased as Ψ is reduced.
This yields quicker convergence.

As seen in Figure 4, Table 5 and Figure 6, the predictive power of the
model also depends heavily on the hyperparameter values. Using ΨS = 1,
ΨI = 0.2, caused a very bad fit of the model, which meant that the predic-
tions were actually better when CUDA-L-BFGS was terminated after only
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50 iterations compared to when letting it converge (after 22000 iterations).
Lower hyperparameters, ΨS = 0.1 and ΨI = 0.02, not only yielded faster
convergence of CUDA-L-BFGS, but also resulted in a lot better predictions.
Reducing the hyperparameters even more makes the model too rigid, decreas-
ing the predictive capabilities, but reducing convergence time to 2 minutes.

The choice of hyperparameters is thus critical both for the performance
of prediction and the speed of convergence. From the results obtained in this
thesis, it seems that using slightly too small hyperparameters is preferable to
using too large. At least the rigid model obtained with small hyperparameters
is made up for by quick convergence speed of CUDA-L-BFGS.

From Figure 2, one can deduce that CUDA-L-BFGS is about 3 times
faster than L-BFGS on real data, but only 2 times as fast on simulated
data. This difference is due mainly to the Large-Real data set having about
10 times as many material and placement effect parameters as the other
effect parameters combined, and that the distribution of covariates is far
from uniform. In the Large-Real data set some covariates occur a lot more
frequently than others. Therefore, the sorting done of the observation set, to
speed up the parallelized gradient and function evaluation, has much greater
effect in increasing cache hits for the Large-Real data set. This is in contrast
to the Large-Simulated data set, where the different types of covariates occur
in equal numbers.

One way of improving the performance of the L-BFGS is to improve the
starting inverse Hessian approximation B−1

0 used in every iteration. The
method is called preconditioning and Veerse et al [5] and Lianjun [29] have
both applied it to great effect. Most commonly, the preconditioner is some
approximation of the actual inverse Hessian.

Studying Figure 7 of the Hessian, does not immediately bring to mind
any good methods for approximating the inverse. The Hessian, although
quite sparse, is dense in some parts. Lianjun in [29] uses a Cholesky decom-
position, which requires the calculation of the Hessian every iteration. This,
however, would be far too time consuming to consider for this problem. Fur-
thermore, for problems with a lot of parameters, such as Large-Simulated,
the Hessian consists of tens of billions of parameters. Handling such large
matrices is difficult. Therefore, the most promising way of obtaining a better
preconditioner, lies in constructing some heuristic approximation algorithm.
Such a heuristic might start with diagonal matrices, but must, to truly be
successful, probably go beyond that. Constructing such a preconditioner will
require further studies of the Hessian and its inverse.

Future work directed toward improving the speed of the algorithm could
focus on either implementing a preconditioner, as discussed in the previous
paragraph, or in parallelizing the linear algebra involved. As the number of
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parameters grows, multiplying and adding parameter vectors take up more
of the algorithm time. One way of reducing this time is to utilize the GPU
also for this purpose.

Another area, relevant to Admeta, is to investigate how to best handle
small changes in the observation set, since Admeta receives new observations
continuously. Can previously stored function and gradient values be utilized
for quicker convergence?

Admeta are happy with the results of this thesis. They have found that
the L-BFGS is easier to use than the SGD, yet there are still several things
to investigate. One such thing, regarding Figure 5, is to do research on which
parameters take a long time to stabilize. Related to this is the question of how
much of a difference the lower function value obtained by CUDA-L-BFGS,
compared to the SGD, does for prediction.

43



8 Conclusion

This thesis has shown that the MAP problem obtained from a large-scale
Bayesian Poisson model with log link is smooth, unconstrained and can be
solved using L-BFGS. By evaluating the objective function and gradient on
the GPU a parallel algorithm, CUDA-L-BFGS, was obtained. Due to the
iterative nature of most Large-Scale optimization algorithms this was found
to be the most suitable way of parallelizing the algorithm. CUDA-L-BFGS
was shown to perform about 3 times quicker than the ordinary L-BFGS
implementation on real industry data.

Comparing the performance of L-BFGS to SGD is in some sense ill defined
as they converge to different values. L-BFGS performs better, achieving a
mean reduction of 0.05% in function value compared to the SGD, for the
two data sets. Time-wise the CUDA-L-BFGS also has an edge, but if only
an approximate solution is desired then the SGD can be said to perform
similarly. The thesis goal of achieving a convergence speed ten times quicker
than the SGD has been met (see Figure 2). CUDA-L-BFGS finds a solution,
with a function value equal to the final function value found by the SGD, in
approximately 1

75
th of the time it takes the SGD to find the solution.

L-BFGS finds a better solution than the SGD, in the sense that the objec-
tive function value is lower, however, the predicted expected values are very
similar, slightly favouring the SGD. The quality of the predictions depend
heavily on the hyperparameter values and it is likely that the optimal hyper-
parameters were not used. It was found that, for the reduced model used in
the thesis, the hyperparameters ΨS = 0.1 and ΨI = 0.02, worked reasonably
well. An rmse of 0.0302 was obtained using CUDA-L-BFGS in conjunction
with these hyperparameters, compared with 0.0298 for the SGD. This implies
that the expected values obtained using SGD deviated slightly less from the
true expected values than the ones obtained using CUDA-L-BFGS.

Based on the above conclusions I recommend that Admeta henceforth use
the L-BFGS algorithm to fit their model to data. However, future research
must also be done in order to find proper hyperparameters of the various
effects. Only then will the speed improvement, and better optimization, also
yield a better performing model.
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A Further optimization theory

A.1 Convergence rate

One way of ranking algorithms is through theoretical measures of convergence
rate. There are several ways of defining convergence rate for an optimization
algorithm. The route taken in most mathematical texts is the path of local
convergence analysis, which concerns the behaviour of the algorithm close to
a solution. Another possibility is to consider the number of operations needed
until convergence, or the number of function and gradient calls required.

To quantify the rate of convergence in local convergence analysis ‖x−x∗‖
or |f(x)−f(x∗)| is compared to known sequences. For instance an algorithm
satisfying

‖xk − x∗‖ < qβk, (41)

for some β ∈ (0,1) and q > 0 is said to converge at Q-linear speed. The dis-
tance to the solution is reduced by β at each step. If, on the other hand, iter-
ates xk of an algorithm satisfy (41) for any β > 0, then it is said to converge
superlinearly. In practice, alternative characterisations are used to classify
different modes of convergence. They are stated below for Q-convergence
(quotient-convergence) along with a definition of R-linear convergence speed
for reference.

Definition 23 (Characterisation of Q-linear convergence rate). An algorithm
converges Q-linearly if

lim
k→∞

sup
‖xk+1 − x∗‖
‖xk − x∗‖

= β, (42)

for some β ∈ (0,1).

Definition 24 (Characterisation of Q-super-linear convergence rate). An
algorithm converges Q-super-linearly if

lim
k→∞

sup
‖xk+1 − x∗‖
‖xk − x∗‖

= 0. (43)

Definition 25 (Characterisation of Q-quadratic convergence rate). An al-
gorithm converges Q-quadratically if

lim
k→∞

sup
‖xk+1 − x∗‖
‖xk − x∗‖2

= β, (44)

for some β ∈ (0,1). A Q-quadratic convergence is roughly equivalent to the
number of correct digits being doubled at every iteration.
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Definition 26 (Characterisation of R-linear convergence rate). An algorithm
converges R-linearly if there exists a sequence of nonnegative scalars qk such
that,

‖xk − x∗‖ ≤ qk ∀k, (45)

where qk converges Q-linearly to 0. Hence qk < Crk, where C is some con-
stant. Note that R-linear convergence is weaker than Q-linear convergence.
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