
Introduction

At the time of this writing the physics responsible for the superconductiv-
ity of copper oxide compound materials is still not understood and object
of very exciting research. Different theories have been proposed to explain
the reason of a so high critical temperature in such superconductors, but
none of them has been capable to fully predict the broad range of phe-
nomena related to this phase transition. The scientific community seems to
agree on one thing: the definition of the symmetry of the order parameter
in high-TC superconductors is the first fundamental prerequisite for a full
comprehension of the physics of these compounds.

The realization of junctions with Josephson properties has been respon-
sible for great improvements in understanding high-TC superconductors. We
will focus, among the different technologies capable of producing junctions
with high-TC compounds, especially on the so called grain boundary junc-
tions, realized by carefully engineering the grain boundary between two di-
versely oriented crystals of superconducting compound. Because of the high
anisotropy of the order parameter, it is possible to realize a weak-coupling
between the superconducting order parameter in the two electrodes, neces-
sary condition for the onset of the Josephson effect.

The realization of such junctions has allowed experiments [1, 2] which
determined, once for all, the presence of the d-wave symmetry as dominant
component of the order parameter in most copper-oxide based superconduc-
tors. In particular, experiments performed on grain boundary junctions re-
alized with YBa2Cu3O7−δ — i.e. the superconductor employed in this thesis
work — have given evidence of the presence of a s+ d-wave admixture[3] of
the superconducting order parameter. Anyway, according to theory[4] any
complex linear combination of d-wave and s-wave is possible and, therefore,
the presence of an imaginary s-wave component of the order parameter
should not to be excluded. Moreover, the existence of such component
would be very interesting for the realization of an artificial two level sys-
tem, based on the quantum dynamics of single Josephson junctions.
To better understand the physics of cuprate compound superconductors,
different experiments have been proposed and realized, all of them sharing
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the capability of mapping directly the superconducting order parameter in
the different directions of the momentum space. Within such framework, we
propose the realization of a Single Electron Transistor realized with high-TC

grain boundary junctions. This work tries to understand if two technologies
used to realize grain boundary junctions — YBCO/YSZ bicrystal technol-
ogy and YBCO/STO/MgO biepitaxial technology — are suitable for such
single-electronics application.

A Single Electron Transistor (SET) is constituted by a series of two
small Josephson junctions capacitively coupled to a gate electrode. The
physical principle which enables its operation is the Coulomb blockade of
tunneling, i.e. the impossibility of tunneling single electrons through the
junctions because of the effect of the Coulomb repulsion. For the Coulomb
blockade of tunneling to be effective, every tunnel junction has to comply
two fundamental constraints.

• The junction’s normal resistance RN — i.e. the resistance of the
junction measured at very high bias voltages — has to be higher than
25 kΩ, so that quantum fluctuations are ineffective in promoting tun-
neling events.

• For thermal fluctuations to be unsuccessful in fostering single electron
tunneling, the capacitance of each junction has to be smaller than
e2/2KBT . To give an idea of the order of magnitude, such capacitance
should be smaller than 1 fF for temperatures close to 1 K.

Understanding whether the realization of an SET is feasible or not in a given
technological platform means trying to understand if it is possible to realize
junctions which satisfy the above mentioned restrictions. To characterize
the normal resistance of the grain boundary Josephson junctions a simple
measurement of the current-voltage characteristic of the junction can be
used. On the other hand, measuring junction capacitances of the order of
1 fF is not straightforward.

In this work, the junction capacitance has been extracted from the mea-
surement of the current-voltage characteristics of Superconducting Quantum
Interference Devices(SQUID), acquired at different values of the external
magnetic field. A SQUID is constituted by two Josephson junctions con-
nected by two superconducting leads in a ring-like geometry. By applying
an external magnetic field it is possible to strongly modify the current-
voltage characteristic of the device and generate AC circulating currents
in the loop which, under certain circumstances, can interfere non linearly
with the LC resonator formed by the superconducting ring inductance and
the junction capacitances. At evenly spaced values of the magnetic flux
linked to the loop, such interaction can cause a current step to appear in
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the current voltage characteristic of the SQUID. The voltage at which such
step occurs is related to the product LC. By estimating the SQUID induc-
tance by separate means, it is possible to have an accurate measurement
of the capacitance of the junctions of the SQUID. Such capacitances can
further be used, together with the information of the normal resistance, to
understand the biggest cross-section of a junction which permits to realize
a Single Electron Transistor.

In the following chapters we will:

1. give a brief overview of the physics of superconductors, of the SETs
and of the SQUIDs, with a detailed description on possible interactions
between the SQUID and LC resonators (Chapter 1),

2. describe briefly the fabrication procedure and the measurement setup
used to realize and characterize SQUIDs and SET prototypes (Chapter
2),

3. summarize the most significant results of the SQUID characterization
together with the measurements of the SET prototypes, concluding
with a suggestion for a junction dimension suitable for high-TC single
electronics applications (Chapter 3).
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Chapter 1

Superconductivity and
Josephson Devices

The following chapter is meant to give an overview of the fundamentals of
superconductor electrodynamics and to discuss the basic elements of the
superconducting electronic devices. We will try to explain with some detail
how a single electron transistor can be used to measure directly the am-
plitude of the superconducting order parameter and, finally , we will treat
the SQUID and Single junction interactions with LC resonators — which
constitute the main tool for the junction capacitance analysis used in this
work.

1.1 Electrodynamics of Superconductors

In 1911, not long time after 4He was liquefied for the first time, H. Kamerling
Onnes observed an abrupt loss of resistance in Mercury. Such phenomenon,
called superconductivity, has been found in many metallic elements as well
as compounds at very low temperatures. It took more than fifty years for
the phenomenon to be explained from the theoretical point of view. Shortly
after the demonstration by Leon Cooper of the instability of the Fermi sea
under a weak attractive interaction, which could lead to the formation of a
bound state, in 1957 Bardeen Cooper and Shrieffer published their theory of
superconductivity. Before that, however, Heinz and Fritz London had pro-
posed a simple theory to describe the electrodynamics of a superconducting
metal
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1.1.1 London equations and Meissner Effect

According to the London theory, the current in a superconductor can be
modeled as the sum of a normal current JN, described by the Ohm’s law,
and a super-current JS, caused by paired-electrons — also known as Cooper-
pairs. The Cooper pairs behave as Bose particles and are described by a
macroscopic order parameter ψ, characterized by a well defined density nS

and phase θ:
ψ =

√
nS e

iθ, (1.1)

To describe the electrodynamics of such a Bose condensate, we recall that
the quantum-mechanical expectation value of the canonical momentum is
linked to the phase gradient of ψ through the equation:

p = ~∇θ

and that the mechanical momentum mvS, the canonical momentum p of
the Cooper-pairs and the vector potential A of the magnetic field are related
through the expression:

~∇θ = mvS + 2eA (1.2)

Expressing the supercurrent density JS in terms of the Cooper-pair velocity
vS,

JS = 2e nS vS

we can describe the electrodynamics of the super-current through the fun-
damental equation:

~∇θ = 2e {ΛJS + A} where Λ =
m

4e2 nS

(1.3)

The equation (1.3) describes the link between the phase, current and mag-
netic field and will be employed frequently to describe the behavior of the
Cooper-pair electrodynamics while discussing the superconducting devices.

To obtain the first London equation it’s enough to consider the Newton
equation for the collisionless fluid of Cooper-pairs under the action of the
electric field. Using the quantities defined in the fundamental relation (1.3),
we can express the first London equation as:

Λ
dJS

dt
= E (1.4)

The second London equation is obtained from (1.3), taking the rotor of both
members and recalling the definition of vector potential:

Λ ∇×JS + B = 0 (1.5)
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It is interesting to note how the current density behavior is affected directly
by the external magnetic field while the electric field influences only its time
variation.

The set formed by the Maxwell equations and the London equations
fully describe the electrodynamics of a superconductor. In particular this
set predicts the most striking feature of the superconductivity, know as the
Meissner effect1, i.e. the ability to expel the magnetic field from the bulk
of a superconductor.
Let’s consider, for simplicity, a superconductor extending in z > 0, with the
x-y plane as interface between metal and vacuum. Justified by symmetry
reasons, we can use as ansatz solution B = B(z). In quasi-static conditions
the solution of the set of Maxwell and London Equations will have the form
B = Bx̂ and, inside the superconductor, has to satisfy:

∂2
zB =

B

λ 2
L

, where λL =

√

Λ

µ0

(1.6)

Thereby, B(z) has to decay exponentially in z with characteristic length
λL. Therefore the superconductor minimizes its free energy by expelling
the magnetic field outside the bulk, permitting it to penetrate only for
some units of λL that, for this reason, is called London penetration depth.

1.1.2 Kinetic inductance

The fundamental relation (1.3) has a direct interpretation. We can create
a phase difference ∇θ across two points of a superconductor through the
application of a magnetic field, represented here by the vector potential A,
or by means of a current JS.

At zero external magnetic field, we can write the phase difference ∆θ
across the two electrodes as the sum of two contributions:

∆θ = (Lgeom + Lkin)I (1.7)

The first factor, i.e. the traditional geometric inductance Lgeom, is obtained
through the integration of the vector potential and is strongly affected by the
geometry of the circuit. The second factor Lkin, called kinetic inductance, is
a direct consequence of the collisionless behavior of the supercurrent and its
ability to act as a kinetic energy reservoir. From the first London equation
we can calculate the kinetic energy density Ekin of the Cooper-pairs as:

Ekin =

∫

E ·JS dt =
µ0

2
λ 2

L ‖JS‖2 (1.8)

1after Meissner and Ochsenfeld who discovered the magnetic field expulsion in 1933
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The kinetic inductance is proportional to the square of the London pene-
tration depth λL. In superconducting devices with dimensions smaller than
10 µm and λL ≈1 µm, the kinetic inductance can give non-negligible con-
tributions to the dynamics of a superconducting device.

1.2 Cuprate Superconductors

In 1986 Bednorz and Müller at IBM Zürich Research Labs discovered a ma-
terial, the La1.85Ca0.15CuO4, with an exceptionally high critical temperature
of 30 K. The TC was high enough to suggest that the established formalism
of BCS theory could not be used in a straightforward way to explain the
behavior of such material. Since then many materials with still higher TC

has been found, all of them sharing a perovskite-like structure containing
copper oxide planes. Shortly after the first high-TC superconductor discov-
ery, Wu and coworkers [5] introduced the YBa2Cu3O7−δ, frequently called
YBCO. With a TC of 93 K, this material has been the first compound with
a superconducting transition above the boiling point of liquid nitrogen. The
YBCO compound has been, and still is, subject of intense research, espe-
cially regarding the possibility of manufacturing cables and depositing thin
film for the fabrication of Josephson junctions and electronic applications.

YBCO thin films has been used for the realization of the devices this
thesis is focused on. In this section the crystal and electronic structure, as
well as the superconducting properties of this material will be discussed.

1.2.1 Crystal and electronic structure of YBCO

The crystal structure of YBCO can be obtained stacking three different
perovskite cells on top of each other. Copper occupies the vertices of every
cubic cell while oxygen occupies the mid-point on the edges of each cube.
The central perovskite cell contains an yttrium atom in the body centered
position, while the neighbor cells have barium in the same position.
Oxygen vacancies are present on the central plane of the yttrium-centered
cell, as well as in the edges directed along the a-axis. Such type of vacancy
is responsible for the orthorhombic symmetry of the cell and contributes
to the anisotropy in the electronic properties of the material. Copper is
found as doubly and triply ionized cations and is, together with the oxygen
cation O2−, the main source of mobile charge carriers due to the formation
of CuO2 planes and the CuO chains running in the b̂ direction. Yttrium
cation Y3+ and barium cation Ba2+ ensure the unit cell to be electrically
neutral. Optimally doped YBCO is obtained changing the concentration of
oxygen in the CuO chains.



1.2 Cuprate Superconductors 5

Figure 1.1: YBCO unitary cell structure. Copper oxide planes and chains are
highlighted respectively in yellow and blue

The unit cell is 11Å high and about 3.8Å wide in both a and b directions
because of rearrangement of the cell after the oxygen vacancy. Crystals
are usually grown at high temperature, where structures are tetragonal.
Therefore, at room temperature, the crystal develops stresses within the
a-b plane which cause onset of the so called twinning — i.e. the crystal
develops twin boundaries along the [110] which cause the CuO chains to
switch orientation from the b̂ to the â direction.
The atoms located outside the copper oxide chains and planes can be well
described as fully ionic, with electrons tightly bound to localized states
far from the Fermi Energy. These localized states will contribute to the
electrical properties only acting as charge reservoir for both n or p-type
doping of the Copper oxide planes and chains.

Therefore YBCO has small dispersion and poor conduction along c-
axis and, in untwinned crystals, a considerable anisotropy in the resistivity
along the a-b plane. Moreover, the carrier density is relatively low and is
the cause for Coulomb repulsion to be very effective in coupling electrons
in comparison with ordinary metals.

1.2.2 YBCO superconducting properties

The strong anisotropy in normal state electronic properties and crystal
structure constitute the base for very unusual properties of the material
in the superconducting state [6]. The behavior of the superconducting or-
der parameter in the c-axis direction is still not well understood. At the
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Figure 1.2: Comparison between BCS s-wave and d-wave order parameter.

time of this writing, some part of the scientific community believes in the
presence of a weak coupling between distinct CuO2 planes, forming intrinsic
Josephson junctions, while others believe in the existence of an imaginary
part of the order parameter with a fully developed gap, characterized by
a very small amplitude in the c-axis direction. However CuO2 planes are
unanimously considered to be, together with the CuO chains, the seed of
superconductivity in the compound. It is within the a-b planes that the
biggest differences with traditional BCS superconductivity appear. The
YBCO, like all cuprate superconductors, is characterized by d-wave sym-
metry of the order parameter, i.e. a four-lobed shape with sign change
under rotation of π/2:

∆(k) = ∆0k · (a − b) (1.9)

YBCO is characterized by a very short coherence length ξ — which is the
distance on which Cooper pairs maintain phase coherence2. This feature
makes YBCO extremely sensitive to both impurity concentrations and grain
boundaries, and has hindered the fabrication of good Josephson junctions
for long time because of the high sensitivity to the fabrication treatments.
The counterpart of the nanometer-sized coherence length is the very long
magnetic penetration depth λ, that ranges from 150 nm in the a-b planes
up to 1.3 µm3 and above along the c-axis [6].

2The short coherence length constrain is of fundamental nature since ξ ∼ ~vF

∆
3the value of λL along the c-axis depends strongly on the oxygen content of the

material.
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Material TC ∆/e λ ξ

Pb 7.19 K 1.36 mV 39 nm 83 nm
Nb 9.25 K 1.57 mV 44 nm 40 nm
Al 1.175 K 170 µV 16 nm 1.6 µm

YBa2Cu3O7−δ 93 K 15 mV
1.30 µm, c

150 nm, a-b
0.3 nm, c

1.5 nm, a-b

Table 1.1: Comparison between the superconducting properties of BCS type
superconductors and YBCO [6]

Because of the large value of the ratio ξ/λ, YBCO is very well described by
the London theory of superconductivity.

1.3 Quasi-particle tunneling

The following section is focused on showing how the traditional picture of
electron and hole tunneling changes when a superconductor is used to realize
a tunneling junction.

Let’s consider at first a tunnel junction, which is constituted by two
normal metal leads separated by a thin insulating barrier. The tunneling
process can be represented by the creation of a hole-excitation in one of the
leads, followed by the creation of an electron-excitation in the other one.
Under thermal equilibrium conditions the Fermi energy is equal in both
leads. When a finite voltage is applied to the junction, the equilibrium
condition is broken and it is possible to show that the current density J due
to the tunneling transitions from both the left to the right lead, and vice
versa, can be expressed as [7]:

J =
2πe

~

∫ ∞

−∞
|T |2 NR(ǫ− eV )NL(ǫ) [f(ǫ− eV ) − f(ǫ)] dǫ (1.10)

where

• T is the tunneling matrix element,

• NR(ǫ) and NL(ǫ) are the density of excitation states in the right and
left lead respectively,

• f(ǫ) is the Fermi distribution function, describing the average occu-
pation number for the electron excitations4,

• V is the applied voltage, and

4to describe an hole excitation 1 − f is used
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• ǫ is electron excitation energy.

The expression (1.10) is quite general and can be employed to describe the
tunneling both in normal metals and in superconductors. For normal metal
junction, the density of excited states NR and NL are well approximated
by a constant and, by integrating (1.10), a linear Ohm’s law dependence
of the current-voltage characteristic is obtained. When superconductors
are employed in the tunnel junction, a different density of quasi-particle
excitation states D(ǫ) has to be used. In BCS superconductors, such density
has an energy dependence similar to the one shown in figure 1.3 and is well
described by the equation:

D(ǫ) =

{ NF ǫ√
ǫ2−∆2

, |ǫ| > ∆

0 , |ǫ| < ∆
(1.11)

The equation 1.11 holds at temperatures close to 0 K, where the Fermi
distribution is well approximated by an Heaviside step function. Introducing
the density of states (1.11) in the expression (1.10) and proceeding with the
integration, a strongly non linear current voltage characteristics is obtained.
Such IV curve, shown in figure 1.3(b), is characterized by:

• a region of zero conductivity, for voltages smaller than Vth = 2∆/e —
as expected from the the gap in the density of states;

• an abrupt transition to values of conductivity typical of a normal
metal junction.

The picture we have given here, however, does not fully describe the current
voltage characteristic, since also the electrons which condense into the pair-
state can contribute to the current transport. This kind of current trans-
port, correctly predicted by B.D. Josephson, is described by the Josephson
relations and will be presented in the next section.

1.4 Josephson relations

Let us consider a tunnel junction made by two superconducting leads, sep-
arated by a thin insulating barrier. If any finite overlap exists between the
order parameter of the two electrodes in the potential barrier, Cooper-pairs
can tunnel from one lead to the other without an applied voltage difference.
Such effect, first predicted by B.D. Josephson [8] and experimentally ver-
ified for the first time by P.W. Anderson and J.M. Rowell [9], constitutes
the main building block of all superconducting electronics.
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Figure 1.3: Density of excited states of BCS superconductor (a) and current-
voltage characteristic for a superconducting tunnel junction (b). D(ǫ) is charac-
terized by a fully developed energy gap and Von-Howe singularities at the energy
gap ∆.

Figure 1.4: A superconducting tunnel junction. The order parameter of the two
electrodes overlap, allowing the onset of the Josephson effect.
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The time evolution of the Cooper-pair tunneling can be derived with the
approach used by R. Feynman[10]. By using the expression (1.1) to describe
the order parameter in both left and right lead and indicating with φ the
difference between the phases of the two leads,

φ = θR − θL

we can summarize the time evolution of the tunneling current J , flowing
through the Josephson junction, with the Josephson relations :

J = Jc sinφ (1.12)

dφ

dt
=

2e

~
V (1.13)

The first Josephson relation (1.12) predicts how the Cooper-pair tunneling
current is influenced by the phase difference across the junction. The second
Josephson relation (1.13) shows how the dynamics of such phase difference
is affected by an voltage applied to the junction.
The parameter Jc, called critical current density, depends on the coupling
matrix element K and on the densities of the Bose-condensate nR and nL

in the left and right lead, with:

Jc =
2eK

~

√
nRnL

Under the hypothesis of uniform current distribution, we can operate a
time integration of the current-voltage product and, using the Josephson
relations, it is possible to calculate the energy gain of the junction due to
the weak coupling 5:

EJ =

∫

Ic sinφ
~

2e

dφ

dt
dt = − ~

2e
Ic cosφ (1.14)

It is worth to point out that the behavior of a Josephson junction can be
mapped into the problem of a phase particle moving in a periodic potential,
called washboard potential. This very power full picture will be used further
on in the chapter.

The characteristic of a Josephson junction is very non linear and this
feature has made this device very interesting for electronics applications.
However, for small values of φ, the junction can be nicely described as a
simple lumped inductor, whose Josephson inductance LJ is given by:

LJ =
~

2eIc
(1.15)

5we have discarded constant terms of the potential
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Figure 1.5: Path for the integration of the equation1.16

1.4.1 Magnetic field effect on a single junction: Fraun-
hofer pattern

The Josephson relations do not take into account the effect of a magnetic
field linked to the junction. Nevertheless, the effect which the flux has on
the junction can be predicted by integrating the fundamental relation (1.3)
in a small circuit enclosing the junction, like the one shown in figure 1.5.
As a result, the phase drop will has a spatial dependence in the direction
normal to the magnetic field, described by the following equation:

∇φ =
2e

~
deff (n × B) (1.16)

where we have introduced the effective thickness of the junction with deff ≈
d+2λL. The phase variation across the junction plane will cause the Joseph-
son current density to interfere with its components having different coor-
dinate in the direction normal to the magnetic field.

In the simple case of a rectangular junction with a sinusoidal current
phase relation — where n is directed toward ẑ — immersed in a uniform
magnetic field B — directed toward x̂, as shown in figure (1.5) — it is
possible to show that the critical current Ic depends on the flux Φ linked to
the junction with:

Ic(φy) = Ic(0)

∣

∣

∣

∣

sinφy/2

φy/2

∣

∣

∣

∣

,where φy = 2π
Φ

Φ0

Where Φ is the total flux linked to the junction and Φ0 is the flux quantum,
defined as h

2e
. The critical current interference pattern has the same shape
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Figure 1.6: Critical current Fraunhofer pattern of a infinitely long junction. A
sketch of the current distribution at one flux quantum is shown on the left.

of the interference pattern from an infinitely long rectangular slit. With
a name borrowed from the rectangular slit diffraction pattern, the critical
current pattern of such junction is called Fraunhofer pattern.

1.4.2 Wide junction limit: the Sine-Gordon equation

In the derivation of the Josephson relations we assume no variation of the
phase within the plane of the junction. However, as far as the displacement
currents and the inductive behavior of the superconducting leads is consid-
ered, spatial variations of the phase within the junction plane play a major
role in the junction dynamics.
Forgetting for a moment about the Josephson effect, we incidentally notice
the close resemblance between tunnel junction structure and the one of a
wave-guide. Therefore, it is not surprising that the differential equations
describing the electromagnetic field in our system have the form of a wave
equation, where the Josephson currents act as a source of magnetic field.
We can express the wave-equation for the Josephson wave-guide in terms
of the phase φ(x, y) — function of the position (x, y) within the junction
plane — and obtain the so called Sine-Gordon equation[7]:

∇2
xyφ− 1

ν2
ph

∂2
t φ =

sinφ

λ2
J

(1.17)
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Figure 1.7: Lumped elements RCSJ model schematic of a Josephson junction.
The element represented with a cross stands for an ideal Josephson element. Its
characteristic is defined only by the critical current.

where the Josephson penetration depth λJ and the phase velocity νph are
defined by:















νph =
√

1

ǫµ
d

deff

λJ =
√

~/2e
Jcµ0 deff

If the time derivative term in equation (1.17) is neglected, the Sine-Gordon
equation can be used to describe the phase distribution over the junction
plane in the static case. Moreover, in the limit of small phase drops, the
sinusoidal term can be linearized. The solution to such new equation are
exponentially decaying with characteristic length λJ .
We can interpret this result if we notice that, recalling (1.16), a phase
variation is linked to the presence of a finite magnetic flux through the
junction. Therefore, the Josephson currents act by screening the external
and self-generated magnetic field like superconductors do. The phase drop
over a junction can be approximated with a scalar all over the junction
only if the smallest dimension of the junction is smaller than the Josephson
penetration depth. Our devices will operate within this is the limit.

1.5 The RCSJ model

Within the small junction limit, the behavior of a Josephson junction can be
fully described by a lumped elements model called Resistively Capacitively
Shunted Junction or RCSJ. Such model uses, as the name itself suggests,
a simple resistor R that describe the quasi-particle current and a lumped
capacitor C describing the displacement currents in the junction. Both
lumped elements shunt an ideal Josephson element, whose characteristic is
described by the Josephson relations (1.12,1.13).

The dynamic system which describes the junction can be obtained from
the Josephson relations and the Kirchoff current law, applied at the common
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circuital node:






dφ
dt

= 2e
~
V

dV
dt

= 1

C

[

I − V
R
− Ic sinφ

]

(1.18)

Incidentally, we notice that the non-linear system in (1.18) describes the
dynamics of a pendulum with inertia ~C

2e
, subject to a damping force pro-

portional to ~

2eR
, under the action of both an externally applied torque I and

the gravity torque Ic sinφ. This analogy can be very useful to understand
the voltage current characteristic of a Josephson junction. To capitalize
the analogy with the mechanical pendulum, it is worth renormalizing the
system with internal units of time, current and voltage.

Following Stewart [11], McCumber [12, 13] and Johnson [14], we can use
the LJ C resonance frequency, otherwise called plasma frequency ωJ , as an
embedded time unit while Ic and RIc can be used as can be used as the
unit of current and voltage. Starting from this set of units, it is possible
to introduce — together with the damping parameter βJ — the normalized
time τ , the normalized voltage η and the normalized bias current α:

ωJ =
√

2e
~

Ic

C

βJ = 1

ωJ

1

RC
α = I

Ic

τ = ωJ t η = V
RIc

= βJ
dφ
dτ

(1.19)

By using such quantities, the system (1.18) can be described by the following
second order differential equation6:

φ̈+ βJ φ̇+ sinφ = α. (1.20)

1.5.1 The small capacitance limit: RSJ model

The system (1.20) cannot be solved in closed form. However an analytical
solution for the current-voltage characteristic can be found in the small
capacitance limit βJ → ∞. In the frame of the mechanical analog, the
friction of the pendulum is so high that the effect of its inertia can almost
be neglected and, for every given value of the torque α, the pendulum will
reach promptly an equilibrium condition. In this limit we will talk about the
RSJ model, since only the resistor will shunt the ideal Josephson junction.
The equations of motion (1.19) can be written in the form:

βJ φ̇+ sinφ = α (1.21)

6Note that we have used the Newton notation to indicate the normalized time deriva-
tive ḟ = df

dτ
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Figure 1.8: Lumped elements model and a typical current-voltage characteristic
of a RCSJ model.

and solved by separation of variables. To obtain the current-voltage char-
acteristic predicted by the model, we can calculate how the average voltage
〈η〉 changes as a function of the bias current α, obtaining a very simple
relation:

〈η〉 = βJ 〈φ̇〉 =
√
α2 − 1 (1.22)

which, in physical units, can be written as:

V =















0 , I ≤ Ic

RIc

√

(

I
Ic

)2

− 1 , I > Ic

(1.23)

The Josephson junction does not develop any DC voltage whenever the
current, biasing the junction, is smaller than the critical current. When Ic
is exceeded, a non zero DC voltage develops across the junction, tracing an
hyperbolic curve that reaches the resistive linear behavior asymptoticly, as
shown in figure (1.8).

1.5.2 Energy analysis of the RCSJ model

The full equation (1.20) is strongly non linear and a complete solution can
only be obtained numerically. However we can still gain some insight by
using some energy arguments. In the following treatment the junction an-
gular velocity ω = φ̇ will be used instead of the voltage η. We can write the
energy balance of the junction in the normalized description by multiply-
ing (1.20) by ω and separating the parts that can be expressed as the time
derivative of an energy from the ones that cannot:

d

dt
E0 =

d

dt

{

ω2

2
− cosφ− αφ

}

= βJ ω
2 (1.24)
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Figure 1.9: Graphical representation of the tilted washboard potential in the
energy-conservative limit βJ = 0.

The total energy E0 is given by the sum of terms in the curly brackets, i.e.

• the charging energy term ω2/2 → V 2

2C
,

• the Josephson energy term − cosφ→ − ~

2e
Ic cosφ,

• the energy generated by the current-bias generator αφ→ IV .

The term βJω
2,on the right hand side of the equation, represents the power

dissipated through the resistor V 2/R and cannot be included in the conser-
vative term.
We have anticipated in section 1.4 that the behavior of the junction can
be mapped one-to-one to the dynamics of a phase particle of unitary mass
under the Josephson cosine potential. Because of the finite slope introduced
by the applied bias current α 6= 0, this picture is often indicated as tilted
washboard potential7.

When no bias-current is applied, the junction will describe damped os-
cillations until all the energy E0 is dissipated through the resistor. This
transient will affect the dynamics for some RC time constants: the smaller
the resistance R, the higher the power dissipated, the faster the equilibrium
will be reached.
After such transient the phase particle will be in one of the local minima of
washboard potential and the junction will be in the superconducting state.
The picture described up to now is true whenever the washboard potential
has a local minimum, i.e. for currents smaller than the critical one.
When the bias current goes beyond such threshold, no more local minima

7for small values of α the skewing action of the bias current energy term resembles
the tilting the Josephson potential energy
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Figure 1.10: Tilted washboard potential with dissipation βJ > 0. The phase
particle re-trapping can occur only for I < IR.

exist and the phase particle slides down the wiggled profile of the potential
— when this condition occurs, the junction is said to be in the running or
voltage state. Applying very high bias currents α ≫ 1, the phase particle
reaches a limit velocity, i.e. a voltage V ≈ I/R, determined by the damping
parameter βJ .
When the bias current is decreased back to values approaching the criti-

cal current, the phase particle will not be trapped into a local minimum of
the potential. The reason for such phenomenon has its roots in the finite
value of the kinetic energy of the phase particle, which should instead be
zero for the trapping to occur. In other words, the resistor has to dissi-
pate more energy than the bias-current generator can provide between two
maxima of the washboard potential. If we represent, as in figure 1.10, the
tilted washboard potential together with the total energy — whose value is
not constant due to the dissipation mechanism — the retrapping will occur
when the two curves intersect. The highest slope of the washboard poten-
tial at which the above mentioned intersection occurs is called retrapping
current αR and its value is given by:

αR =
4

π
βJ , or in physical units IR =

4Ic

πR

√

~Ic
2eC

(1.25)

The equation (1.25) reflects the picture we have described so far. With
smaller values of the resistance R it will be harder to trap the junction into
a local minima by ramping down the bias current. Therefore, the value of
the re-trapping current will be lower.
We incidentally notice that, using the values of both re-trapping current
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Figure 1.11: Hysteretic current-voltage characteristic predicted by the RCSJ
model.

and critical current, we can estimate the capacitance of the junction without
any need for time or frequency resolved measurements. An RCSJ current-
voltage characteristic resembles the one shown in figure (1.11).

1.6 DC SQUID

The Josephson interferometer, also called Direct-Coupled Superconducting
Quantum Interference Device or DC SQUID, is constituted by two Joseph-
son junctions, connected in parallel by two superconducting leads as shown
in figure 1.12.
In the following sections we will assume the SQUIDs to be constituted by
infinitely small Josephson junctions. This is a good approximation only for
magnetic fields that generate a flux through each junction whose value is
much smaller than a flux quantum.

1.6.1 A constrain on the Junction phase differences

For the order parameter to have any physical meaning, i.e. being a single
valued function, the line integral of the phase gradient in (1.3) has to be a
multiple of 2π in every closed circuit. This has to be also true for a path
like γ — shown in figure 1.12 — that passes through both the junctions
and gets buried into the bulk of the superconducting leads that connect
them. By integrating the fundamental relation (1.3) in such circuit and



1.6 DC SQUID 19

Figure 1.12: DC SQUID geometry (left) with its lumped elements model (right).

introducing the gouge-invariant phase difference8 ϕ, we obtain a relation
that acts locking the phase-drops on the two junctions:

ϕ1 − ϕ2 = 2π
Φ

Φ0

In other words, we can change the phase difference between the two junc-
tions by applying an external magnetic field, i.e. imposing an external flux
Φ. The total current It of the SQUID will be given by the sum of the
currents of the single junctions:

It = I1(ϕ1) + I2(ϕ2) (1.26)

There will be constructive interference when the currents have the same
sign and destructive interference when the two junctions generate currents
in opposite directions.
The critical current of the SQUID will be directly influenced by the inter-
ference of the junctions and its value will, in general, be found as a solution
of the following maximization problem:







Ic = max{ I1(ϕ1) + I2(ϕ2) }

ϕ2 − ϕ1 = 2π Φ

Φ0

(1.27)

Different contributions can add up to the magnetic flux Φ. We mainly
distinguish between

8The gouge invariant phase difference can be defined by a local relation ∇ϕ = ∇φ −
2e
~
A
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Figure 1.13: Graphic representation of the SQUID current by complex vector
representation of the current-phase relations.

Figure 1.14: Critical current pattern of a SQUID in the negligible self-inductance
limit.

• external flux contributions Φx, generated by external magnetic fields,
and

• self flux contributions L Iloop, dependent on the current distribution
of the SQUID.

1.6.2 Negligible self-inductance case

We consider first the case of an interferometer with negligible self-inductance
L and sinusoidal current phase relation for both junctions9 Ii(ϕi) = Ii sinϕi.

9to thin the notation we have used the same symbol for the current phase relation
and the critical current; however, when referring to the current phase relation, we will
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Figure 1.15: Graphical representation of the definition of ξ(φ) and its distortion
effect on the current-phase relation.

Because of the sinusoidal dependence we can consider the two current-phase
relations as vectors in a complex plane, with length proportional to the
critical current and angle equal to the phase difference, as shown in figure
1.13. The total current will be given by the imaginary part of the vector
addition of the currents I1 and I2. Therefore, the critical current can be
identified in the modulus of such vector addition.

The L = 0 is a very special case since, for a fixed value of the external
flux Φ, the two current vectors have constant relative orientation, i.e. the
vector addition moves as a rigid body in the complex plane while changing
the total current It.
Exploiting this observation we can write the SQUID critical current as:

Ic =

√

(I1 + I2)
2 + 2 I1I2 cos

(

2π
Φ

Φ0

)

(1.28)

Ic will be a periodic function of the magnetic flux Φ, with period Φ0. The
maximum critical current is obtained when Φ is a multiple of the flux quan-
tum, so that the current of the two junctions add up in phase to Ic = I1+I2.
When instead Φ is equal to Φ0

2
(1 + 2n), with integer n, the two junctions

are in phase opposition and their current flow in opposite direction, con-
tributing to the critical current with |I1 − I2|.
The capability of resolving the small value of one flux quantum, makes a
SQUID the most sensitive device to the magnetic field.

1.6.3 Finite self-inductance case

When the effect of the self-inductance of the SQUID loop is included in Φ,
the problem becomes analytically intractable. The new flux contribution

explicitly write the phase dependence within brackets.
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can be written as:

Φself = L Iloop ,where Iloop =
1

2
[I1(ϕ1) − I2(ϕ2)] (1.29)

By applying an external flux, we change the configuration of currents that,
generating a magnetic field and therefore a finite flux, changes itself the
phase difference once more. If we come back to the representation of the
currents as vectors in the complex plane, the angle between the vectors
depends on the orientation of the vectors themselves. In principle, we should
find a self consistent solution for the current distributions at every value of
the magnetic flux.

A different approach has been used by T.A.Fulton [15, 16] by finding a
transformation of the phases φi that permits to map the finite inductance
problem into a negligible-inductance one, by employing a distorted current-
phase relation. To do this, two self-inductances L1 and L2 are defined and
put in series to the single junctions, so that the sum of them is equal to the
self-inductance of the SQUID loop:

L = L1 + L2 ⇒ Φself =
1

2
(L1 I1(ϕ1) − L2 I2(ϕ2)) (1.30)

When this is done a self-field including phase difference ξi can be found.
Its value is completely determined by ϕi through the inductance and the
undistorted current phase relation, with:

ξi(ϕi) = ϕi +
π

Φ0

Li Ii(ϕi) (1.31)

Using ξi instead of the ϕi, the phase constraint (1.6.1) can be expressed as
in the negligible inductance limit. The effect of the transformation φi → ξi
in the current phase relation Ii is to skew it with an angle proportional to
Li. Moreover, if the inductance exceeds a threshold value given by:

Lth
i =

Φ0

2π

dIi
dϕi

∣

∣

∣

∣

max

(1.32)

the distorted version of the current phase relation will be a multivalued
function.

When both L1 and L2 are lower than their threshold value Lth and the
current phase relations are continuous “well-behaved” functions, the critical
current pattern will be itself a continuous “well-behaved” function and its
maximum and minimum value will be still given by |I1 ± I2|. In qualitative
terms, the inductance will affect the critical current pattern by making it
look more triangle like, as in figure 1.16.
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Figure 1.16: Critical current interference pattern for a finite self-inductance case
below the inductance threshold Lth.

On the other hand, when Li goes above its threshold, the critical current
pattern resemble a saw-tooth function, still with periodicity Φ0 and max-
imum value I1 + I2. Nevertheless, the value of the difference cannot be
determined from the graph and curve fittings might be necessary to extrap-
olate more information.

1.7 High-TC junctions

We have previously mentioned that YBCO is characterized by a very small
coherence length. This has been a serious problem for the fabrication of
junctions in early experiments with high-TC superconductors because of
the vanishing coupling between the superconducting leads necessary for the
Josephson effect to take place. However different technologies, like bicrys-
tal or biepitaxial technology, have made possible to realize good quality
Josephson junction by exploiting some accurately engineered artificial grain
boundaries. A brief discussion about such junction will be given in chapter
2.

It’s worth to point out one more peculiarity of the high-TC junctions.
We have seen how the Josephson critical current Jc depends, in the BCS
s-wave case, on the product of the amplitude of the order parameter in the
two superconducting electrodes. Therefore, we should reasonably expect the
anisotropy of the order parameter to have a big influence on the Josephson
critical current, depending on the relative orientation of the crystal lattice
in the two leads. Sigrist and Rice [17] were the first to point out such
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dependence, suggesting the following expression for the critical current:

JC = J0 (∆L ·n)(∆R ·n) (1.33)

In 2002 Lombardi and coworkers [18] have published measurements of
the critical current of biepitaxial YBCO junctions, strongly supporting the
d-wave order symmetry and the Sigrist-Rice formula. Later on, in 2005,
Hilgenkamp and coworkers [3] have published data of the same kind, giving
a striking evidence of the different behavior of the critical current in ramp
edge junctions in twinned and untwinned YBCO ramp-edge junctions. In
particular, the existence of vanishing critical current at 43◦ from the direc-
tion of the maximum in untwinned YBCO crystals has provided a strong
indication of the existence of a small s-wave component superimposed on
the d-wave part.

1.8 Single Electron Transistor

The label transistor is used to identify a general three terminal device con-
stituted by a current channel that can be modulated by means of an applied
signal to a gate electrode. In a Single Electron Transistor the conductive
channel is constituted by the series of two tunnel junctions insisting on a
common electrode called island. The current modulation occurs because
of inhibition of single electron tunneling events into and out of the island
when no voltage is applied to the gate electrode. This phenomenon, called
Coulomb blockade of tunneling, can be suppressed whenever we induce in
the island a charge higher than a certain threshold.

For the conductivity modulation to occur, the charging energy Ec of
each junction, given by

Ec =
e2

2C
, (1.34)

has to be higher than the thermal fluctuations energy kBT . To satisfy this
constrain and fabricate a device that could operate at temperatures around
1 K, the junction capacitances have to be smaller than 1 fF.
Moreover the conductivity of the junction has to be small enough so that
quantum fluctuations will not wash away the blockade. This is because,
in an SET, the time uncertainty for any energy measurement is limited by
an RC time constant, where C is the capacitance of the junction while R
is the quasi-particle conductance. As a result, the energy-time uncertainty
principle acts as a constrain for our devices, imposing:

∆E ·∆t =
e2

2C
·RC > ~ ⇒ R >

2~

e2
≈ 25 kΩ (1.35)
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Figure 1.17: Sketchy representation of a grain-boundary Josephson junction.
Ideal and real — meandered — grain boundary are both represented.

Figure 1.18: Sketch of the structure of a normal-metal SET (a) with its lumped
elements model (b) and energy diagram (c). S, D and G stand respectively for
Source, Drain and Gate.



26 Superconductivity and Josephson Devices

The behavior of a SET changes substantially whether normal conductor
or superconducting island and leads are used. After the discussion of the
behavior of an all normal-conducting SET, we will generalize the picture
to a superconducting SET and explain how a such device can give direct
information of the order parameter symmetry in a d-wave Coulomb blockade
electrometer.

1.8.1 A normal-metal SET

We will consider first a normal metal SET where no voltage is applied
between source and drain. If we discard constant energy terms [7], the
energy of an SET can be expressed as:

E =
(CgVg + ne)2

C1 + C2 + Cg

(1.36)

where we have indicate with Ci the capacitances of the junctions, with ne
the charge present in the island and with CgVg the charge induced in the
island by a voltage Vg applied to the gate electrode.

Because of the integer number of electrons n that can be contained in
the island, the SET energy is characterized by a set of parabolas, centered
at voltages multiple of e/Cg. The device will try constantly to minimize its
energy by sitting on the bottom of one of the parabolas: we will identify
this state with n̂.
When sweeping the gate voltage, the energy of the SET follows the parabola
at n̂ up to a degeneracy point, where the parabola at n̂+ 1 is crossed. For
higher voltages higher than the crossing point e

Cg
(n̂+1/2), it is energetically

favorable to abandon n̂ and switch to the next parabola and ,when this
occurs, a single electron can tunnel into the island.
The remarkable fact is that, since no energy barrier hinder this process, at
the degeneracy point a current can be generated with any vanishingly small
voltage. We will obtain a steady current in the bias circuit whenever the
gate capacitor induces in the island a charge multiple of e.

For other values of the gate voltage a current can still be created by a
series of single electron tunneling processes. Nevertheless the processes will
have to overcome an energy barrier ∆Ej that depends both on the voltage
drop across the tunneling junction we want to tunnel through, and on the
charge induced on the island by the gate electrode.

Indicating with ± the transition in the tunneling processes n → n ± 1
occurring in the junction j, we can express the energy barrier ∆Ej as:

∆E±
j =

e2

CΣ

{[

1

2
±

(

n− CGVG

e

)]

± CjVDS

e

}

(1.37)
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Figure 1.19: Single electron tunneling in a BCS-superconductor SET.

The rate Γj at which such tunneling process occur across the junction j
strongly depend on the energy barrier ∆Ej of the junction:

Γj =
1

e2Rj

(

∆Ej

exp{∆Ej/kBT} − 1

)

(1.38)

For negative values of ∆Ej it is possible to obtain finite tunneling rates and
a finite current IDS, passing through the transistor, can be generated as a
sequence of the tunneling processes into the island Γ1 and out from it Γ2.

What is really important for our experiment is the periodicity of the
SET current, for small VDS voltages, while sweeping the gate voltage VG.
Depending whether we have a normal-metal or superconducting SET, the
periodicity will be a multiple of a single electron or a Cooper-pair charge
times Cg.

1.8.2 A BCS-Superconductor SET

Let’s consider a superconducting SET being in one of the parabolas defined
by (1.36) with an even number of electrons neven in the island. At temper-
atures lower than TC , all electrons can pair up and the whole charge in the
island will consist exclusively of Cooper-pairs. Again, by sweeping the gate
voltage, we can trace up the parabolic branch to the next parabola whose
minimum is at neven + 1. At this point we expect a tunneling to occur but,
due to lack of availability of a “partner” quasi-particle excitation, pairing
into Cooper pair cannot take place.
For this reason, the minimum of the set of parabolas with odd island charge
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has to be lifted by an amount equal to the energy gap ∆. In particular,
if the charging energy e2/CΣ is small, it can happen that the even-charge
parabolas cross each other at a degeneracy point at an energy lower than
∆. In this case Cooper-pair can tunnel and the periodicity of the current
at low VDS will be doubled. Experiments on BCS type SET have shown
the evidence of such period doubling with decreasing temperatures or at
magnetic fields high enough to make the metal normal-conducting.

1.8.3 The high-TC challenge

The realization of an all high-TC SET would make possible to investigate the
presence of a possible imaginary s-wave part overlapped to the dominant
d-wave order parameter. To reveal such component, we would exploit the
periodicity doubling of the SET current, measured at low bias voltage.

Quite recently [19] quantum behavior of the phase has been observed
in YBCO junctions at temperatures close to 20 mK, despite the belief that
the quasi-particle excitations present in nodal directions of the d-wave could
cause the loss of phase coherence within the Josephson junction. The direct
detection of a fully developed s-wave gap in the quasi-particle excitation
spectrum could support such observation, encouraging the efforts for the
realization of a purely d-wave phase qubit and the application of high-TC

superconductors in the field of quantum computing.

As we have mentioned beforehand in this chapter, very fundamental
physics considerations limit the operation of a Coulomb blockade electrom-
eter to temperatures lower than e2

2 KBCΣ
for SET with junction resistance

higher of the Von Klitzing resistance. The high resistance constraint, very
difficult to achieve in traditional high-TC junctions, can be satisfied in sub-
micrometer sized grain boundary junctions with high mis-orientation angle
of the neighbor crystals 10. We will introduce these junctions in chapter 2.
Moreover very small capacitances — preferably less than 1 fF — are then
needed for an SET to be operative.

These junctions are very difficult to realize since local loss of supercon-
ductivity of the film can occur because of oxygen out diffusion. Moreover
coupling between the substrate and the superconducting film plays a big
role in determining the junction capacitance [20][21] and a careful selection
of the substrate material has to be done. In particular, traditional per-
ovskite substrates, such as strontium titanate, seem to work badly due to
the paramount value of the dielectric constant which ranges from 100 at

10This is due to the fact that whenever tunneling in the c-axis direction comes into play,
the overlap of the order parameter in the two sides of the junction decreases considerably,
enhancing the junction resistance.
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Figure 1.20: SQUID with injection lines (left) and lumped elements model of
the system (right).

200 K to values higher than 1000 at 4 K and below. This contribution to
the junction capacitance imposes an even more stringent requirement on
the junction size, which becomes too small to be realized.
Moreover, even if such a SET could be build, its characteristics should be
measured by very sensitive RF techniques[22], that would be strongly dis-
turbed by the high dielectric losses of traditional perovskite materials.

In this thesis we have investigated the possibility to fabricate an all
high-TC single electron transistor with YBCO grain boundary Josephson
junctions. For the substrate material we have selected YSZ bicrystals be-
cause of the low value of dielectric constant at both room and cryogenic
temperature, because of the low dielectric losses at radio frequency and,
finally, because of the good quality of the artificial grain boundaries obtain-
able in these materials.
To make an estimation of the capacitance of these junctions, we have studied
the current-voltage characteristics of Josephson interferometers fabricated
on the same chip.

1.9 SQUID resonances

In previous section we have explained the importance of fabricating grain
boundary junctions with small capacitance. Measuring of so small capac-
itances are generally quite complicated. Estimations based on (1.25) and
on the measurement of the hysteresis of the the junction is not always ac-
curate. The junction can in fact switch to the running state at currents
lower than the critical one, because of thermal fluctuations, impairing the
accuracy of the capacitance estimation. Moreover we might be interested
on the behavior of the capacitance at high frequencies rather than its DC
value.
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An accurate method of measuring the junction capacitance involves the
measurement of the resonant frequency of the LC resonator composed by a
SQUID loop self inductance and by the junction capacitances. The inter-
action of the Josephson AC currents with the LC resonator causes a series
of current steps to appear in the DC current-voltage characteristic of the
SQUID. In the following paragraph we will explain how the measurement of
a current voltage characteristic can be used to estimate with high accuracy
the capacitance of the junctions of a SQUID.

To model our SQUIDS we can use a lumped-elements model shown in fig-
ure 1.20. RCSJ models are used to describe the two junctions while lumped
inductances model the SQUID self-inductance. The gate-current Ig enables
us to measure the current-voltage characteristic of the SQUID. The control
current Ij is responsible for generating the phase difference between the two
junctions. The following treatment will assume perfect symmetry for both
branches of the interferometer. However, the main results can be general-
ized also for asymmetrical critical currents, a case which is very frequent in
high-TC devices due to the lack of precise control over the meandering of
the grain boundary.

Following D.B. Tuckerman and J.H. Magerlein [23], we can express the
Kirchoff equations for the two nodes 1 and 2 of the circuit in Figure 1.20, and
express all quantities in terms of the nodal phases ϕ1 and ϕ2. By expressing
the equations by a new set of variables ϕs and ϕd, obtained through the
following linear combination of the nodal phases,

ϕs =
1

2
[ϕ1 + ϕ2] , ϕd =

1

2
[ϕ1 − ϕ2] (1.39)

its possible to separate the effect of the two current generators and to isolate
the inductance contribution in only one of the equations, i.e. the one in ϕd:







Cϕ̈s + 1

R
ϕ̇s + Ic

2e
~

cosϕd sinϕs = 2e
~

Ig

2

Cϕ̈d + 1

R
ϕ̇d + 2

L
ϕd + Ic

2e
~

cosϕs sinϕd = 2e
~
Ij

(1.40)

The equation in ϕs resembles very much the classic RCSJ model and there-
fore cannot be attributed to model the steps in current we are interested
in. Because of the energy limit imposed by the LC resonator, it is reason-
able to assume that ϕd cannot go into any running state and, therefore,
will describe some kind of harmonic oscillation. When the ϕs hits the ϕd

oscillation frequency, the product of harmonic functions in ϕs and ϕd give
a DC contribution and, consequently, a current step. However, when the
oscillation frequency match the LC resonator one, the peak in current will
be maximized.
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The considerations above are synthesized in the following ansatz :

ϕs = mωt+ α+
π

2
m , ϕd = δ sinωt+ β +

π

2
m (1.41)

By solving the system (1.40) with the ansatz above and separating the DC
component from the sinωt and cosωt AC components, it is possible to
obtain a set of self consistent equations for the ansatz parameters.

The model predicts that, at a voltage ~

2e
2mω

R
, some portion of the the

gate current Ig will be drained through the Josephson junction, while the re-
maining part will go through the resistor. Such Josephson DC contribution,
called excess current Ix,

Ix =
~

2e

ωδ2

2mR

depends on the average power of the phase oscillation δ2

2
— result obtained

by Zappe and Landmann in [24] — whose values have to satisfy the self-
consistent relations:























Ij = ~

2e
β
L

+ IcJm sinα cos β

~

2e
δ
L

(ω2CL− 1) = Ic [Jm+1(δ) − Jm−1(δ)] sinα sin β

~

2e
ωδ
R

= Ic [Jm+1(δ) + Jm−1(δ)] cosα sin β

(1.42)

When the voltage is fixed at multiples of the LC resonant voltage, the
equations are satisfied for α = 0 and the excess current Ix has a maximum
for Ij = Φ0

4L
when m is odd and at Ij = 0 when m is even. In other words,

current steps occur at even and odd multiples of resonant voltage ~ωLC

2e
.

The even resonances follow the behavior of the critical current interference
pattern while the odd resonances give have a maximum current when the
critical current pattern has its minimum.

This feature is a fingerprint of this resonator-SQUID interaction and can
be used to estimate the frequency of the LC resonant frequency. Since we
can measure roughly half of the inductance of the SQUID loop from the
periodicity of the critical current pattern, we can infer the inductance L of
the SQUID and, therefore, estimate the junction capacitance C with high
accuracy at high frequencies through a DC measurement.

1.10 External LC resonance

In the previous section we have seen that the interaction of the a couple of
Josephson junctions with the LC resonator, formed by the tunnel-junction
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Figure 1.21: Representation of the results predicted by Tuckermann and Mager-
lin in [23].

capacitances and by the superconducting SQUID ring, can give rise to steps
in the critical current when the phase difference ϕd hits the frequency of
the the LC resonator. However, this is not the only phenomenon that can
generate steps in the current-voltage characteristic. Excess current steps
can also occur when a single junction is connected to the current generator
through a series LC resonator, as shown in Figure 1.22 . To simplify the
circuit and capture the essence of such interaction, we will consider a simple
RSJ model to describe the junction behavior.

The circuit dynamics can be described by a set of three differential equa-

Figure 1.22: Lumped elements model of a stray capacitive coupling which can
give rise to steps in the IV curve.
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tions composed by

• the second Josephson relation (1.13),

• the Kirchoff Current law at the ground node, and

• the Kirchoff voltage law evaluated around the mesh.

Indicating with VJ the voltage across the junction, with ϕ the junction
phase difference and with VC the voltage across the capacitor, we can write
the set of equations as:























dϕ
dt

= 2e
~
VJ

dVC

dt
= 1

C

[

Ig − Ic sinϕ− 1

R
VJ

]

dVJ

dt
= R

L

[

VJ − VC − IcL cosϕ 2e
~
VJ

]

(1.43)

where Ic, R, L and C are respectively the junction critical current, the
lumped resistance of the junction and the inductor and capacitor describing
the resonator.

As in the dynamic system (1.40), the third equation contains the product
between the Josephson current and the voltage VJ . Such term can give rise
to a frequency mixing effect and, eventually, can be responsible for the
generation of a DC current step.

For values of the bias current Ib higher than the junction critical current,
a finite voltage VJ = ~

2e
ω will develop across the junction and, consequently,

the ideal Josephson junction will contribute with a current composed by a
comb of harmonics at frequencies multiple of ω.
Noticing that the series LC resonator behaves as a short circuit for voltages
close to its resonance, we would not be surprised if some interaction occurs
in the neighborhood of ωLC = (LC)−

1
2 . To obtain an approximate solution

for the current-voltage characteristic in such region, we can think about
using an approach similar to the one of Tuckerman and Magerlein in [23].
Setting the following ansatz for the phase time dependence:

ϕ = ϕ0 + ωt+ ν sin(ωt+ ς) (1.44)

and using it to solve the circuit, we obtain a self-consistent equation which
can be solved for the DC and AC components at the frequency ω:























Ix = Ig − ~ω
2eR

= −IcJ1(ν) sin(ϕ0 − ς)

~ω
2eR

ν + Ic [J0(ν) + J2(ν)] sin(ϕ0 − ς) = 0

~ω2C
2e

ν = Ic(1 − LCω2) [J0(ν) − J2(ν)] cos(ϕ0 − ς)

(1.45)



34 Superconductivity and Josephson Devices

Such set of equations is very similar to the one of Tuckerman and Magerlein,
shown in the previous section.

From the first equation we obtain the excess current Ix, whose amplitude
describes the current peak we are interested in. By using a Bessel function
equality, used also in the previous section, we can express Ix as a function of
the the power of the phase harmonic term ν2

2
, very general result obtained

by Zappe and Landmann [24].
The second and third equations can be rewritten as:

[

2eIc
~ω

]2

=

[

1

R

ν

J0(ν) + J2(ν)

]2

+

[

ωC

1 − LCω2

ν

J0(ν) − J2(ν)

]2

(1.46)

tan(ϕ0 − ς) = −
[

J0(ν) − J2(ν)

J0(ν) + J2(ν)

]

1 − LCω2

ωRC
(1.47)

Equation (1.46) can be solved approximately by noticing that the second
term on the right hand side diverges when ω gets close to resonance. By
using the asymptotic approximation:

ω = ωLC + δω → ω2 ≈ 1

LC

[

1 + 2
δω

ωLC

]

and approximating the Bessel functions with their values in zero, we obtain
an expression for the phase oscillation:

ν ≈ 4eLIc
~

δω

ωLC

(1.48)

and for the tangent of the difference between the phase references ϕ0 and ς:

tan(ϕ0 − ς) ≈ 2

√
LC

RC

δω

ωLC

(1.49)

Equation (1.49) has a direct interpretation, since the LC resonator con-
tributes to shift the phase difference ϕ0−ς by π when crossing the resonance.
This phenomenon is general to any resonator and, in our system, manifests
itself by switching the sign of the DC current contribution when passing
through the voltage VLC .

It is worth to point out that:

• the voltage width of the current-peak depends inversely on the quality
factor of the resonator RC√

LC
;



1.10 External LC resonance 35

Figure 1.23: Close-up of a current step of a generated by the interaction between
a Josephson junction with a series LC resonator (a). Excess current contribution
(b) and phase reference difference ϕ0 − ς when crossing the resonance voltage —
the resonator contributes with a phase shift of π.

• the amplitude of the a.c. voltage term, and therefore the step height,
is proportional to the critical current of the junction. Therefore, a
suppression of the critical current by an applied magnetic field will
cause the suppression of the excess current Ix, i.e. the current steps
caused by the interaction between the single junctions and the LC res-
onator will have the same variation with magnetic field of the critical
current pattern of the junction.

The analysis of the magnetic field dependence of the excess current steps
can be used to assess whether its generating process is the internal SQUID-
LC resonance or the stray capacitance effect discussed now. The SQUID
resonances of odd order are in fact maximized when every other excess-
current generating process is minimized.
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Chapter 2

Device fabrication

2.1 Grain boundary Josephson junctions

After the discovery of the first high-TC superconductors, it was soon re-
alized the difficultly in realizing applications based on these materials[25].
The very short coherence length of the order parameter, of the order of one
nanometer, seemed to preclude the realization of high-quality Josephson
junctions. To unveil the basic properties of cuprate superconductor inter-
faces the bicrystal technology was invented. Such technology permitted
to engineer well defined grain boundaries which, under certain conditions,
proved to have Josephson properties.

2.1.1 Bicrystal technology

As the name suggests, the bicrystal technology is based on “gluing” together
two single crystals to form a single sample. The two crystals are carefully
cut along the desired directions, brought in contact along the freshly cut
surfaces and annealed below the melting point under an high applied pres-
sure in ultra-high vacuum conditions. As an example we show in Figure 2.1
a TEM micrograph where the grain boundary between the two YSZ crys-
tals is clearly visible. In high-TC applications, such sample is further diced,
polished along a desired direction and used as substrate to epitaxially grow
an high-TC superconductor thin film.
The surface orientation of the substrate acts as a “template” for the ori-
entation of the deposited superconducting film. Because of the different
orientations of the crystal in the two halves of the substrate, the artificial
grain boundary present in the substrate is reproduced into the film. The
bicrystal technology has historically been the first technique to study grain
boundary properties of cuprate superconductors, permitting to discover that
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Figure 2.1: HRTEM micrograph of a YSZ bicrystal. Courtesy of Evgeny
Stepantsov.

large-angle boundaries form excellent Josephson junctions.
Grain boundaries are usually classified according to the displacement and
the rotation of the abutting crystals, as shown schematically in Figure 2.2.
In particular it is customary to distinguish between the tilt and twist com-
ponents of the misorientation. Tilt refers to a rotation around an axis lying
within the plane of the grain boundary. Twist refers instead to a rotation of
the crystal grains around the normal to the grain boundary plane. In Fig-
ure 2.2 examples of [001]-tilt, [100]-tilt boundary and [100]-twist boundary
junctions are shown.

In this work YBCO films deposited on YSZ bicrystals have been used to
realize superconducting devices. Such YBCO bicrystal, sketched in Figure
2.2(d), is characterized by 12◦ [100]-tilt in both abutting crystals while the
[001]-tilt rotation has been selected to be 0◦ and 45◦ in the two halves. A
150 nm YBCO thin film has been deposited by pulsed laser deposition, i.e.
by ablating a YBCO sintered powder target using an externally modulated
KrF excimer laser. The sample is further covered with a 25 Å thick layer of
gold, deposited by magnetron sputtering. The gold layer helps to preserve
the YBCO superconducting properties, obstructing the oxygen out diffu-
sion. The parameters used for the YBCO film deposition are similar to the
ones shown in Appendix, in Table C.1.

2.1.2 Biepitaxial deposition

A strong limitation of the bicrystal technology for electronics application
comes from the fact that all devices have to be aligned along the artificial
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Figure 2.2: Schematic diagram showing the crystallography of (a) a [001]-tilt
boundary, (b) a [100]-tilt boundary, and (c) a [100]-twist boundary. A represen-
tation of the YSZ bicrystal used in this work is shown in (d) by representing the
order parameter orientation.

grain boundary line. However, such limitation can be overcome by employ-
ing the biepitaxial technology.

In the biepitaxial technology single crystal substrates are used and a thin
film of a suitable material, called seeding layer, is epitaxially grown on top of
its surface. The seeding layer is further patterned by argon ion milling, with
an amorphous carbon (a-C) mask on top. After removing the carbon mask
, such sample is used as a substrate for the epitaxial deposition of a high-TC

superconductor thin film. The film will have different crystal orientations
depending on whether the deposition occurs in the seeding layer region or
on the bare substrate. In this way an artificial grain boundary is located at
a position corresponding to the edge of the seeding layer. A cross-section of
a biepitaxial junction like the one used in this work is shown in Figure 2.4.

To fabricate a biepitaxial sample, an series of fabrication steps has to
be done. We will further refer to Figure 2.3 when mentioning each step
number:

• STO seeding layer deposition (1-2): a thin strontium titanate
film is grown uniformly by ablating a sintered powder target using an
externally modulated KrF excimer laser.

• Amorphous carbon mask preparation (3-8): We will give a more
detailed description of such steps when talking about the device fab-
rication and YBCO patterning, in section 2.4.4.

• Seeding layer patterning (9): the STO layer is milled with a Kauff-
man broad argon ion beam source, with a procedure similar to the one
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Figure 2.3: Steps of fabrication nedded to realize a biepitaxial sample.
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Figure 2.4: HRTEM micrograph of a biepitaxial YBCO junction with STO
seeding layer on a MgO substrate. We are extremely grateful to Henrik Pettersson
and the Microscopy and Microanalysis group at the Applied Physics Laboratory,
Chalmers University of Technology, for providing us with the image.
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Figure 2.5: HRTEM of a biepitaxial YBCO film fabricated on a STO pure [110]
substrate [26]. The presence of intrinsic 90◦ tilt grain boundaries between the
(103) and (1̄03) domains is evident.

used to pattern the devices in the YBCO film.

• Sample plasma cleaning (10): a 30 min oxygen plasma cleaning
procedure has been used to remove the carbon mask without affecting
the other materials.

• YBCO pulsed laser deposition (11):the film has been deposited
by pulsed laser deposition, ablating a YBCO sintered powder target
using an externally modulated KrF excimer laser.

• Protective cap-gold deposition (12): a 25 Å thick layer of gold is
deposited by magnetron sputtering.

The parameters used in the fabrication procedure are summarized in Ap-
pendix C, in Table C.2 and C.1.

As shown in Figure 2.4, the YBCO film grows in the [103] direction, i.e.
with the c-axis tilted by 45◦ respect to the substrate surface normal, when-
ever having a (110) STO surface underneath. Nevertheless, the growth of
the YBCO film on the (110) oriented MgO substrate surface occurs along
the [001], with the c-axis aligned with the normal to the substrate. More-
over, the YBCO â and b̂ directions are rotated by 45◦ respect to the [100]
and [110] direction of the MgO, to better accommodate the high lattice
mismatch.

It’s worth to point out that YBCO can grow with two competing crys-
tallographic orientations when deposited on a perfectly [110] oriented STO
surface. YBCO can in fact grow in the (103) direction or along the (1̄03)
one, switching the c-axis orientation and developing undesired grain bound-
aries that would impair the characteristic of the Josephson junctions. Such
growth mode gives, as result, a film structure similar to the one shown
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Material ∆a
a

∆b
b

∆c
c

ǫ tan δ

SrTiO3 +2.0 +0.7 +0.1 227 6 × 10−2 100 K,300 GHz
MgO −9.0 −6.7 −7.4 9.65 5 × 10−4 100 K,300 GHz

(Y)ZrO3 +3.6 6.3 5.8 25 8 × 10−3 100 K,300 GHz

Table 2.1: Dielectric properties of STO, MgO and YSZ and lattice mismatch
∆ai/ai for with YBCO unit cell at different crytal orientations [27].

in Figure 2.5. To select only one direction its custom to use vicinal sub-
strates, characterized by a slightly misaligned surface orientation. In this
work we have used substrates with 6◦ vicinal angle, i.e. the angle between
the substrate normal and its nominal direction.

2.2 Substrate Choice

In section 1.8.3 we have mentioned how the selection of a suitable substrate
material can be determinant for a successful realization of a high-TC SET.
In Table 2.1 we compare the dielectric properties of a traditional substrate
material for YBCO epitaxial deposition such as strontium titanate (STO)
with non perovskite ones that have been selected as substrate material for
the realization of the devices of this work.

The Table 2.1 shows the lattice mismatch between the YBCO and dif-
ferent possible candidate substrate materials. The optimal fitting of lattice
parameter offered by STO, together with a — not shown — good matching
of the thermal expansion coefficient, has been historically the main reason
for the selection of such material as suitable substrate. The smaller the
lattice mismatch, the easier it is to achieve epitaxial growth of the YBCO
film. However, the high value of the dielectric constant ǫ in STO, as well as
in many perovskite based materials, is a constraint that is not acceptable
for the successful realization single electronics devices. Moreover the power
dissipated at high frequencies by such materials, expressed in the loss tan-
gent tan δ, is rather high and would impair the performances of our devices.
Magnesium Oxide (MgO) and Yttria Stabilized Zirconia ((Y )ZrO3 – YSZ)
permit to achieve better performances in both senses, still allowing the epi-
taxial deposition YBCO, and therefore have been selected as substrate to
realize the devices of this work.
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(a) (b) (c)

Figure 2.6: Grain boundary elongated (a) and Normally elongated (b) SQUID
design used in the bicrystal sample. The design (c) has been used the biepitaxial
sample.

2.3 Device design and Simulation

The chip layout has been designed to fit 5 × 5 mm substrates for both bicrys-
tal and biepitaxial samples. The smallest pad dimension has been fixed to
90 µm, with 45 µm spacing between them to facilitate the wire bonding. At
the same time, the largest possible number of pads has been fit in order to
maximize the number of devices realized on the same chip. In the Biepitax-
ial sample only SQUIDs has been realized while, on the bicrystal one, we
have fabricated both SQUIDs and SETs.

The SQUID design used in the biepitaxial and the bicrystal samples is
quite different. We have mentioned before that the bicrystal samples have,
as an intrinsic constraint, the need to align all the devices along the grain
boundary line.
Previous investigations[28] have given the evidence of a strong kinetic con-
tributions to the SQUID inductance when the current density distribution
in the SQUID has a component along the c-axis. To further investigate
such phenomenon, we have realized two elongated geometries with comple-
mentary orientation. In the grain boundary elongated geometry, shown in
Figure 2.6(a), the transport occurs mainly within the a-b planes while, in the
normally elongated geometry, shown in Figure 2.6(b), the current is forced
to have a the c-axis component. A sketch of the current density orientation
relative to the YBCO film for both geometries is given in Figure 2.7. In
both designs the SQUID loop dimensions has been fixed to 2 × 20 µm. This
allows to measure about ten critical current SQUID modulations with the
values of magnetic fields available and, contemporary, avoid an unwanted
distortion of the interference pattern due to big self-inductance effects. The
junction sizes has been set to 1 µm and 2 µm in the normally elongated
geometry. In the grain boundary elongated one, 1 µm and 2 µm and 4 µm
wide junctions are available. These five different designs will be further
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Figure 2.7: Two possible orientations of the Current density relative to the
YBCO ab planes: in the grain-boundary elongated geometry (b) the current
flows mainly within the ab-planes; in the normally elongated one (a) the current
distribution has a bigger component of current transport in between the planes,
along the c-axis.



46 Device fabrication

indicated in order with YSZ#1 up to YSZ#5.
In the biepitaxial sample the alignment constraint does not hold anymore.
A different geometry, shown in Figure 2.6, has been chosen to probe the
effect of the junction orientations. A bigger hole of 20 × 8 µm has been
used while the junction size has been kept fixed to 3 µm. These geometry
will further be indicated with MgO/STO.

All geometries have been simulated with the 3DMLSI software[29]. A
value of London penetration depth λL has to be given as input to the soft-
ware together with the geometry of both the SQUID and injection line. The
3DMSLI output consists of the the SQUID self-inductance LSQD, the injec-
tion line self-inductance LINJ and the SQUID-Injector mutual inductance
MINJ-SQD.
While the mutual inductance consists only of a geometric contribution, all
self-inductances returned by the simulation software comprehend both the
geometric and the kinetic parts. Therefore, some knowledge about the
physics of these two contributions has to be exploited to distinguish be-
tween them. As stated in section 1.1.2, the kinetic inductance is always
proportional to the square of λL. On the other hand, the geometric induc-
tance, at least for small values of λL, has an almost constant value. The
geometric and kinetic component can therefore be distinguished by repeat-
ing the simulations at different values of λL and by fitting the returned
values with a simple linear model:

Li(λL) = Li +
dLi

dλ2
L

λ2
L

The result of such fittings very much resembles, in all the geometries, the
plots in Figure 2.8. In Table 2.3 the zero and first order regression coef-
ficients are reported for all SQUID designs together with the correlation
coefficient R2. Values of R2 close to unity correspond to very good fitting of
the data. As expected, all self-inductances are very nicely fit by the model
while the mutual inductances are almost constant functions of λ2

L. The ge-
ometric part of the self-inductances can therefore be approximated with Li

while dLi

dλ2
L

λ2
L returns roughly the kinetic inductance contribution.

We finally have simulated the inductance given by the “non-ideal” leads,
feeding current to the injection line. Figure 2.9 show, as an example, the
geometries used to describe the real and ideal injection line in the simula-
tions for the geometry (a) of Figure 2.6. Such inductance contribution has
been estimated to be always less than 0.5 pH. An exception is the upper
injection line in the normally elongated geometry, in which the contribution
can rise up to 1.5 pH.

To design the Single Electron Transistor, we have employed the smallest
junction size that could permit the YBCO to be still superconducting after
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SQUID YSZ#1 YSZ#2 YSZ#3 YSZ#4 YSZ#5 MgO/STO

SQUID Geometry (a) (a) (b) (b) (b) (c)
Hole dimensions, µm 2 × 20 2 × 20 2 × 20 2 × 20 2 × 20 8 × 20
Junction Width, µm 1 2 1 2 3 3

LSQD, pH 16.33 16.12 16.67 16.35 16 29.9
dLSQD

dλ2 , pH/µm2 120.8 90.15 117.49 87.51 69.45 166.6
R2 0.999 0.999 1.000 0.999 0.999 1.000

M , pH 9.37 9.53 4.28 4.67 5.32 21.55
dM
dλ2 , pH/µm2 1.52 1.311 0.754 0.86 1.09 0.83

R2 0.988 0.971 0.915 0.914 0.915 0.896

LINJ, pH 12.66 12.74 9.418 10.58 12.95 22.96
dLINJ
dλ2 , pH/µm2 41.15 40.68 22.51 24.27 27.71 126.99

R2 0.999 0.999 1.000 1.000 0.999 1.000

Table 2.2: Linear least-squares fitting parameters and correlation factor R2 for
the SQUID geometries. In the SQUID geometry row, (a),(b) and (c) refer to Fig-
ure 2.6 . The mutual inductance values, diversely than the self-inductance ones,
are badly fitted by a linear approximation and tend to saturates to a constants
for high-values of London penetration depth.
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Figure 2.8: Linear fitting of the self and mutual inductances between SQUID
loop and Injection Line.

(a) (b)

Figure 2.9: Geometry used to simulate the effect of a real(a) and ideal(b) injector
and current density distribution in the geometry YSZ#3.
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Figure 2.10: High TC Single Electron Transistor design.

the device patterning. The SET junctions are 0.3 and 0.5 µm close to the
grain boundary position and, as shown in Figure 2.10, broaden up to 4 µm
with increasing distance from the junction region. In this way the leads
act as oxygen reservoirs and contribute to preserve as much as possible the
YBCO superconductivity. To further shrink the 150 nm thick junctions, the
SET has been milled by using a Kauffman Broad Argon Ion source1 to a
thickness of 100 nm.

1An aluminum mechanical mask has been used to prevent the SQUID to be etched
as well
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2.4 Device fabrication

In this section we will review the procedure needed to pattern the devices.
Because of the close similarity of patterning bicrystals and biepitaxial sam-
ples, we will describe only the procedure to pattern the devices in the YBCO
bicrystals. Such procedure is slightly more complicated because of the need
to identify the exact grain boundary position and adapt the whole pattern
to each individual sample.

2.4.1 Electron beam lithography

All the device structures have been defined by electron beam lithography.
We have used a commercial JEOL 5DII. The system is provided with a
LaB6 source, emitting electrons at 50 keV, and a set of five lenses. The first
three make the beam collimated and coaxial with the electron-optic system.
Two objective lenses, called 4th and 5th lens, are available with different
working distances and width of the pupil. By using either the 4th ot the 5th

lens, high current–low resolution and small current–high resolution exposure
modes are respectively possible. The two exposure modes also differ for the
field sizes, i.e. the maximum area that the beam can expose without any
movement of the stage. The pattern, defined in an AutoCAD DXF file, is
converted into a format readable by the machine using a proprietary JEOL
software. The settings used to expose the different layers are shown in
Appendix A.

2.4.2 Lift-off

Positive resist has been used in all lithgraphies. This kind of resist becomes
soluble in the resist-developer when exposed to the electron beam. The
lithography technique used, called lift-off, is based on the following steps,
sketched in Figure 2.11:

• the sample is covered with a thin layer of resist by spin-coating.

• the resist is exposed with the desired pattern.

• the resist film is developed.

• a thin film of a desired material is deposited on top of the structure.

• the remaining resist, together with the material on top of it, is lifted
off with the aid of some solvent.
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Figure 2.11: Steps used in the lift-off technique. A double layer of resist is used
to realize the undercut structure.

For the unexposed resist to be removed after the metal deposition it is
important that the metal film deposited on the bare substrate is physically
separated from the one deposited on top of the resist layer. This limits
the thickness of the metal film deposited to be smaller than the resist one.
To further avoid the film to be deposited on the edge of the resist layer it
is custom to use directional deposition techniques — such as the electron
beam evaporation — and to develop a resist structured with an undercut. A
very simple way to realize such structure, sketched in Figure 2.11, is to coat
the sample with two layers of resist which can be developed independently.
By developing the bottom layer with long enough time it is possible to
control the depth of the undercut. The details of the procedure used in
such fabrication step are summarized in Appendix B.

2.4.3 Grain-boundary compensation

The first fabrication steps, indicated from 1 to 5 in Figure 2.12, involve
the definition of reference crosses and rulers as well as gold pads. Such
structures are defined evaporating a 2400 Å thick film of Gold, using the
above mentioned lift-off technique.
To proceed with the YBCO patterning steps it is necessary to modify the
e-beam mask, so that the position of the “devices” block can be adapted to
the specific position and orientation of the grain boundary relatively to the
reference system defined in the previous lithography step. To implement
this step, two optical micrographs are taken in the region where the rulers
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Figure 2.12: Steps used in the bicrystal sample fabrication.
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Figure 2.13: Insertion of the grain boundary position information by using opti-
cal micrographs. The e-beam lithography pattern can be corrected to compensate
the misplacement from the nominal position.

are defined. If we assume the grain boundary to be perfectly straight, it
is possible to extrapolate its position in the whole sample from the optical
micrographs of rulers, as it is shown in Figure 2.13. Thereafter, the whole
block of devices is translated and rotated to compensate for the new grain
boundary orientation and offset from the nominal central position.

2.4.4 Amorphous carbon mask and YBCO patterning

The updated pattern can be used to fabricate an amorphous carbon mask.
Such mask will partially cover and “protect” the YBCO film from the etch-
ing action of the argon ion beam while milling. The reason for employing
amorphous carbon instead of the resist layer itself is due to the the ex-
traordinary slow etching rate of the YBCO — a normal resist layer would
etch much faster than the YBCO under the Ar+ beam. The amorphous
carbon has been selected among other materials[30] because of its etching
rate under argon ion beam, much slower than the YBCO one, as well as the
ease of removal under oxygen plasma. To realize the carbon mask, we have
executed the following steps (we refer to Figure 2.12 while numbering the
steps):

• A thin amorphous carbon film is deposited uniformly on the sample
(6).

• A thin chromium mask is deposited by lift-off on top of the carbon
film (6→10). Previous to the chromium evaporation, alignment of
each device with the grain boundary is controlled and, if necessary,
corrected as shown in Figure 2.14.
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Figure 2.14: Correction of a single device position — SET in this case — em-
ploying optical micrographs of individual devices.

• The amorphous carbon film is selectively removed from the regions
left uncovered by the chromium mask by oxygen plasma etching (11).

• The YBCO film is milled by using Kauffman broad argon ion beam
source (12). The etching procedure is repeated until an infinite re-
sistance is measured between two insulated Au/YBCO islands on the
chip.

• The residual carbon mask is removed by oxygen plasma reactive ion
etching (13).

• The cap-gold film is removed by argon ion milling (14).

Some optical micrographs of the final devices are shown in Figure 2.15 .
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(a)

(c)

(b)

(d)

(e)

Figure 2.15: Optical micrographs of the measured superconducting devices: (a)
Shows one SET realized in the YSZ bicrystal; (c) (b) and (d) show respectively
the bicrystal SQUIDS indicated respectively with YSZ#1, YSZ#3 and YSZ#5;
(e) shows two biepitaxial SQUIDs.
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2.5 Measurement Setup

All measurements have been done in an Oxford Instruments Heliox VL
system, a 3He charcoal-absorber based cryostat capable of reaching temper-
atures below 300 mK. The structure of a cryostat similar to the one used is
shown in Figure 2.16. While measuring, the Heliox VL deepstick is inserted
in a liquid 4He dewar, which contains both a µ-metal and a superconduct-
ing magnetic shield. The whole system is located into an Electromagnetic
Interference shielded room. The system is equipped with a small magnetic
coil which can generate magnetic fields of the order of 2 mT.
Temperatures of 4.2 K can be obtained dipping the stick into the 4He bath.
A temperature of 1 K can be reached by pumping on the liquid 4He con-
tained in the so called 4He pot. When this temperature is reached, a char-
coal absorber can be heated up to release 3He and liquid 3He gets condensed
into the so called 3He pot. By pumping on such liquid with the charcoal
absorption pump — now free of 3He gas — the cryostat reaches 280mK.
All devices have been measured in current bias mode, generating a slow2

sawtooth signal with an Agilent 33220A. Such signal generator is connected
with a resistance Rser which limits the current that can be fed into the de-
vice. The resistance value, ranging from 100 kΩ to 1 MΩ, is chosen so that
the impedance of the measured device is always much smaller than Rser

and, at the same time, a suitable current interval is spanned. The current
fed into the device is obtained by measuring the voltage across the resis-
tor Rs with a battery driven Princeton Applied Research 5113 differential
pre-amplifiers. An amplifier of the same kind is used to directly measure
the voltage drop across the SQUID. All the voltages are then converted
into digital form by a National Instruments DAQ. The SQUIDs have been
measured in two different ways, shown in Figure 2.17. When measuring
the current-voltage characteristic at varying magnetic fields, a Yokogawa
7651 DC source, set in the current source mode, has been used to drive
the current trough the internal coil of the cryostat. When measuring the
current-voltage characteristic for different values of the injection current Ij,
the Yokogawa source has been set in the voltage source mode and used as
input to an instrumentation amplifier. The instrumentation amplifier, con-
nected as shown in Figure 2.18, acts as ground breaker and ensures that all
the current injected into one line is taken away from the other injector lead,
avoiding to drain current into other terminals. The insertion of a 5.5 kΩ
resistor in series to the injection leads permits to limit the current fed to
VYOKO/5.5 kΩ — VYOKO being the voltage generated by the Yokogawa source.
To avoid instabilities of the instrumentation amplifier, a resistance of 1 MΩ

2The current bias fundamental frequency was never higher than 10 Hz.
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Figure 2.16: Schematic of an L4He charcoal-absorber cryostat[31]. Charcoal
absorber 4He-pot and 3He-pot are highlighted rispectively in blue, green and red.
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Figure 2.17: Schematic of the SQUID measurement setup. The Yokogawa cur-
rent generator can be used to feed current to the coil (red circuit) and generate
magnetic field, or to feed current through one interferometer branch through the
injection lines (green circuit). The ground-breaking between current source and
the measurement setup is not shown.

is used to shunt the two independent grounds. The SET has been measured
by current bias, as shown in Figure 2.19. The gate voltage has been swept
by the Yokogawa generator in the voltage source mode, as shown in Figure
2.19 .
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Figure 2.18: An instrumentation amplifier (INA) is used as ground-breaking
circuit. The injection current value is set by the control resistance in series with
the resistance of the cryostat leads. To avoid the instability of the INA, a 1 MΩ
resistance shunts the independent grounds.

Figure 2.19: Lumped elements model of the SET measurement setup.
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Chapter 3

Results and discussion

The goal of this thesis work is to establish whether it is feasible to real-
ize a Single Electron Transistor based on YBCO grain-boundary junctions.
As discussed in section 1.8.3, to realize an SET we need, as basic building
block, tunnel junctions with both small capacitance and high normal resis-
tance. Small capacitances are needed for the charging energy of the SET
to be higher than any possible thermal energy fluctuation. In particular,
for coulomb blockade of tunneling to be effective at a temperature of 1 K,
junctions with capacitance lower than 1 fF are needed. Moreover the nor-
mal resistance of each junction has to be higher than 25 kΩ for quantum
fluctuations to be ineffective in washing away the Coulomb blockade.
If the estimation of a junction’s normal resistance requires only to measure
the slope of the current-voltage characteristic at high bias voltage, measur-
ing capacitances lower than 1 fF is certainly more complicated.

3.1 SQUID measurements

To determine the capacitance of the Josephson junctions of this work, we
have carried on the characterization out some SQUIDs, realized in two dif-
ferent technologies — biepitaxial and bicrystal technology. The value of
junction capacitance has been extracted by measuring the voltage at which
a particular current peak occurs in the current-voltage characteristic. Such
peak, attributed to a so called SQUID resonance, is caused by the non lin-
ear interaction between the Josephson circulating currents with a resonator
formed by the junction capacitance and the inductance of the supercon-
ducting SQUID loop.
A detailed description of this phenomenon is given in section 1.9. Anyway
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we recall that the voltage at which such step occurs has to be a multiple of:

VSQUID =
~

2e

√

2

LC

where C is the capacitance of a single junction of the SQUID, while L is
the SQUID self-inductance. In particular, the current step due to the first
order of resonance, which occurs at VSQUID, will be maximized whenever we
induce an “effective” external flux Φx of:

Φx = Φ0

[

1

2
+ n

]

, with integer n

By measuring the voltage at which the current step occurs we can have an
accurate estimation of the product LC and, with an independent measure-
ment of L, we can determine the value of capacitance C. The methodology
used to extract the SQUID self inductance L will be treated later in this
section.

The characterization of all the SQUIDs presented in this section1 has
been done by measuring the current voltage characteristic at different val-
ues of “effective” magnetic flux, generated by injecting a constant current
Iinj through one of the branches of the Josephson interferometer. All the
measurements shown in this chapter have been performed at 280 mK.
In figure 3.1(c) we show two current-voltage characteristic curves of a SQUID,
acquired at two distinct values of injection current which correspond to val-
ues of “effective” magnetic flux of Φ0 (blue curve) and Φ0/2 (green curve).
A current peak is clearly visible at voltages close to 0.5 mV in the green
curve while, in the blue one, such peak disappears. To enhance the peak vis-
ibility, in Figure 3.1(d) we have plotted the difference between the SQUID
current and the linear fit obtained at high bias voltages. Such current will
further be indicated as Josephson current contribution. Figure 3.1(e) rep-
resents the differential conductance dI/dV plotted against the voltage drop
across the SQUID. We can see that the current peak occurs roughly at the
intersection of the two conductance graphs. Finally, we represent in 3.1(d,e)
the conductance expressed in dBS with:

G|dBS = 10 log10

[ |G|
1S

]

and plotted against

1An exception is the measurement of the biepitaxial SQUID MgO/STO#2, which
has been characterized only by measuring the I-V curves with different applied magnetic
fields
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Figure 3.1: Plots of the bicrystal SQUID YSZ#1: G-I plot(a); G-V plot (b);
I-V characteristic (c); Josephson current contribution (d); Conductance plot (e).
The measurement has been done at 280 mK.
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Figure 3.2: Graphical representation of a excess current peak by plotting the
differential conductance as a function of voltage or current. The measurement
has been done at 280 mK.

• the injection current Iinj and

• the current I or the voltage V across the squid;

We will further refer to G-I and G-V plots when talking about the G(Iinj, I)
or the G(Iinj, V ) color plot.

The G-I and G-V plots graphs contain a lot of information and some
explanation might help to correctly interpret the graphs. The conductance
is represented by gray-scale color encoding. High values of conductance are
represented with a bright color while, vice versa, low ones are represented
by a dark color. As a consequence of this representation, a peak is identified
whenever a bright-dark colored sequence is found in the plot. The bright
region represents the part of the current step at which the current grows
up. On the other hand, the dark region represent the flat part of the step,
at which the extra current contribution diminishes with increasing voltage.
Figure 3.2 provides a support to this interpretation.
It’s worth to point out that the two regions of the step will have different
visibility whether we are looking at the G-I plot or at the G-V plot. The
rising part of the current step will in fact have a big extension in current
together with a small variation of voltage. Therefore, this part of the step
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will be predominant in the G-I plot while in the G-V plot will be concen-
trated into a single line. On the contrary, the “plateau” of the current step
will have an almost constant current and a big extension in voltage, i.e. it
will be more visible in the G-V rather than in the G-I plot, where it will be
concentrated on a curve.
Furthermore, it is worth to notice that the critical current interference pat-
tern is represented as the boundary of the bright colored central region of
the The G-I plot2. The G-I plot, therefore, conveys in one single graph the
information of the critical current pattern and the current step features we
are interested in.

The same kind of SQUID resonance step has been observed in two other
biepitaxial SQUID, indicated with MgO/STO#2 and MgO/STO#3. Fig-
ure 3.3 and 3.4 respectively show the set of plots for these two devices.
In such measurements the excess current caused by the SQUID resonance
occupies a wide voltage range and its contribution is immediately visible
from the IV curves. Such current step however is overlapped with a series
of smaller steps, occurring at evenly spaced voltages. Current steps of the
same kind have been observed also in the measurements of bicrystal SQUIDs
YSZ#3 and YSZ#5. The set of plots for these devices are shown in Figure
3.5 and 3.6. We believe that the origin of such steps resides in the non
linear interaction of the SQUID, acting a single distributed junction, with
an external resonator. Such resonator might be formed by the supercon-
ducting leads which are capacitively coupled to the substrate and, therefore,
act as a transmission line. At evenly spaced frequencies such structure acts
as a short circuit and, in the neighborhood of such spectral regions, we can
describe the resonator with a series LC lumped model. The interaction of
a single junction with such resonator has been described in section 1.10.
Here we only highlight that such junction-resonator interaction causes the
current step to be proportional to the critical current for all orders of reso-
nance, as it has been observed in our measurements.

After having identified the voltage at which the SQUID resonance occurs,
we still need to estimate the SQUID self-inductance to extract a value of
junction capacitance. We recall, from section 1.6, that the SQUID critical
current is a periodic function of the external flux, with periodicity of one flux
quantum Φ0. If the external flux is generated — as in our experiments —
by injecting a current through one branch of the Josephson interferometer,

2The presence of black dots in such region are due to the presence of noise in the
voltage measurements that, in theory should be oscillating around zero for currents below
the critical one.
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Figure 3.3: Plots of the bicrystal SQUID MgO/STO#2: G-I plot(a); G-V plot
(b); I-V characteristic (c); Josephson Current contribution (d); Conductance plot
(e). The measurement has been done at 280 mK.
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Figure 3.4: Plots of the bicrystal SQUID MgO/STO#3: G-I plot(a); G-V plot
(b); I-V characteristic (c); Josephson Current contribution (d); Conductance plot
(e). The measurement has been done at 280 mK.
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Figure 3.5: Plots of the bicrystal SQUID YSZ#3: G-I plot(a); G-V plot (b);
I-V characteristic (c); Josephson Current contribution (d); Conductance plot (e).
The measurement has been done at 280 mK.
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Figure 3.6: Plots of the bicrystal SQUID YSZ#5: G-I plot(a); G-V plot (b);
I-V characteristic (c); Josephson Current contribution (d); Conductance plot (e).
The measurement has been done at 280 mK.
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we can extract a value of inductance Lmeas from the current period ∆Iinj as:

Lmeas =
Φ0

∆Iinj

In Figure 3.6 we give a graphical representation of the origin of the above
mentioned formula.

Different contributions add-up to the measured inductance, i.e.:

• a geometric mutual inductance MINJ-SQUID between the injection line
and the SQUID loop,and

• a kinetic inductance contribution Lkin due to collisionless behavior of
the cooper pair fluid.

To distinguish between them, we can repeat the simulations done in the
design phase — summarized in section 2.3 — taking care of adjusting the
nominal dimensions of the model to fit the real geometry of each SQUID.
Optical micrographs of the devices, like the ones shown in Figure 2.15, can
be used in this phase.
We recall, after section 2.3, that MINJ-SQUID is almost invariant with the
London penetration depth while, on the other hand, the kinetic inductance
contribution Lkin is proportional to the square power of the London pene-
tration depth λL. We can therefore estimate both MINJ-SQUID and Lkin from
the linear fits of such quantities against λ2

L.
In Table 3.1 we summarize some of the physical quantities measured for

the different devices together with the outcome of the 3DMLSI simulations.
We indicate with 1 degree order and 0 degree order respectively the slope
and the intercept of the linear fitting Li(λ

2
L), where Li can be MINJ-SQUID,

LSQUID or LINJ.
A value for the kinetic inductance contribution can be extracted by sub-

tracting the simulated mutual inductance value MINJ-SQUID from the mea-
sured one Lmeas. A consequence of the anisotropy in London penetration
depth of the YBCO (as indicated in Table 1.1) is that we should be able
to observe a bigger kinetic inductance whenever the current transport has
a component in the c-axis, at which λL has its maximum value. Our mea-
surements are qualitatively in line with this consideration if we notice that
the extracted kinetic inductance contribution is:

• almost negligible for the devices YSZ#3 and YSZ#5, where the cur-
rent transport occurs mainly along the ab planes,

• bigger for the SQUID YSZ#1, where the current transport has its
largest component among the bicrystal SQUIDs, and



3.1 SQUID measurements 71

Sample Type YSZ MgO/STO
Device ID 1 3 5 2 3

Geometry (a) (b) (b) (c ) (c )
θ=13◦ θ=27◦

Junction Width, µm 2.00 1.35 4.89 3.00 3.00
Film Thickness, nm 150 150 150 120 120

Film Critical Temperature, K 88.0 87.5

Do we have injectors ? Y Y Y N Y
Injection Line Resistances, Ω 5550 5550 5550 × 200000

Measurement summary T=280mK

Current range, µA 17.00 3.85 9.70 0.73 2.03
Voltage range, mV 1.16 0.32 0.39 0.58 1.28

Rn, Ω
max 83.0 79.0 46.6 774.0 636.0
min 80.1 67.0 45.9 774.0 636.0

Ic, µA
max 1.80 1.36 1.38 0.24 0.26
min 1.16 0.50 0.43 0.08 0.03

Linj, pH
Upper Line 1.778 4.065 4.731 × 292.724
Lower Line 9.834 4.051 4.820 - -

SQUID resonance, mV 0.567 × × 0.247 0.264

Simulated Inductances

LSQUID :
0◦ order, pH 14.438 14.499 12.939 29.923

1◦ order, pH/µm2 79.279 87.242 57.392 166.660

MSQUID-INJ – Upper Line:
0◦ order, pH 0.753 3.932 4.600 21.550

1◦ order, pH/µm2 0.193 0.876 1.418 0.834
Lower Line:

0◦ order, pH 7.499 3.932 4.600 -
1◦ order, pH/µm2 1.854 0.876 1.418 -

LINJ – Upper Line:
0◦ order, pH 1.772 9.485 13.854 22.963

1◦ order, pH/µm2 8.893 22.240 28.316 126.990
Lower Line:

0◦ order, pH 11.889 9.485 13.854 -
1◦ order, pH/µm2 38.956 22.240 28.316 -

Table 3.1: Measured quantities and simulated self and mutual inductances for
the different SQUIDs.
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Figure 3.7: Graphical representation of the local current density distribution
in a tilted YBCO film (left) and the London penetration depth ellipsoid (right).
Employing such ellipsoid, its possible to definite the effective London penetration
depth λeff .

• determinant in the MgO/STO biepitaxial SQUIDs, where the current
transport has a very large component in the c-axis direction because
of the 45◦[100] tilt.

To qualitatively confirm our assumption we try to extract the kinetic
inductance contribution from the simulations. Before we do that we need
to understand how to deal with the anisotropy of λL present in YBCO,
which is the cause of the anisotropy in kinetic inductance. We think it is
reasonable to define a London penetration depth ellipsoid, the axis of which
are equal to λab and λc

3. At every point of the YBCO crystal where a finite
current density J is present, we can define an effective London penetration
depth λeff as the length of the segment which goes from the origin to the
intersection of the ellipsoid with the current density direction. A sketchy
representation of this idea is given in Figure 3.7.

Indicating with α the [100] tilt — i.e the angle formed by c-axis and the
normal to the surface — and with β the angle formed by the current density
direction and the projection of the c-axis on the surface of the sample, we
can express λeff as:

λ2
eff

=
∑

ei=â,b̂,ĉ

(

J · ei

||J||

)

λ2
i =

(

λ2
ab

cos2 α+ λ2
c
sin2 α

)

cos2 β + λ2
ab

sin2 β

The software 3DMSLI, used to simulate the different devices, is not ca-
pable of taking into account such anisotropy in London penetration depth

3we can consider this ellipsoid as something analog to the inertia ellipsoid, used to
describe the motion of a rigid body.
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which, at least in theory, is necessary to accurately predict the inductance
of any high-TC SQUID. To avoid this problem, all the SQUIDs have been
designed with an elongated structure. In this way, the current density dis-
tribution of the SQUID has always one predominant orientation and the
simulations done by assigning a single isotropic London penetration depth
are still capable of giving reliable results.

By assuming values of λc and λab close to the ones defined in 1.1, we can
calculate λeff for every device. Moreover the kinetic inductance contribution
can be obtained as the product between λ2

eff
and the slope of the linear fit

of the simulated injection line self inductance with λ2
L. The results of all

the inductance estimations are summarized in Table 3.2.

For the bicrystal devices, values of λab ≈130 nm and λc ≈1µm are needed
to predict the kinetic inductance contribution. These values are in good
agreement with the one found in literature[32] for optimally doped YBCO
crystals. In the biepitaxial devices the λc values obtained assuming a λab

of 150 nm are very close to the ones expected from literature. By fitting
linearly the data point (λc, TC) given by Homes and coworkers [32], we have
been able to reproduce the TC of the film measured with an AC suscep-
tometer with good accuracy.
Given that the value of effective London penetration depth makes sense,
we can extrapolate a value of SQUID self-inductance and, consequently, ex-
tract the junction capacitance. For the bicrystal SQUID YSZ#1 we obtain
a junction capacitance of 35 fF while, for the biepitaxial devices, we obtain
in both devices junction capacitances smaller than 10 fF. Dividing the es-
timated capacitance by the product of junction cross section and vacuum
dielectric constant ǫ0 we can extract the ratio t/ǫR, where t is the distance
between the plates of the parallel plate capacitor of the junction and ǫR is
the dielectric constant of the material separating the plates. The values of
t/ǫR obtained in the YSZ devices are much smaller than the one measured
by Winkler and coworkers [33], while a comparable value is found for the
biepitaxial SQUIDs.

We finally go back to our goal, i.e. designing an all high-TC single elec-
tron transistor. We do this by commenting on the size of an hypothetic
square junction realized on the two different technological platforms, i.e.
bicrystal and biepitaxial samples, in order to fit the above mentioned re-
sistance and capacitance constrains. A technology is considered unsuitable
for SET applications if it is considered not to be possible to realize both:

• superconducting YBCO films thinner than the square junction size,
and
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Sample Type YSZ MgO/STO
Device ID 1 3 5 2 3

Junction Width, µm 2.000 1.350 4.890 3.000 3.000
Film Thickness, nm 150.000 150.000 150.000 120.000 120.000

Film Critical Temperature, K 88 87.5

Extracted Kinetic Inductance

Kinetic contribution, pH
Upper Line 1.026 0.133 0.131 × 271.174
Lower Line 2.334 0.119 0.219 - -

Simulated Kinetic Inductance

λc, µm 1.006 2.061
λab, µm 0.130 0.150

ab plane tilt - α, ◦ 12 12 12 45
current direction - β, ◦ 0 90 90 0

λeff, µm 0.245 0.130 0.130 1.461
λeff

2 0.060 0.017 0.017 2.135
dLINJ/dλ2, pH/µm2 38.956 22.240 28.316 126.990

Injector Kinetic Inductance, pH 2.334 0.376 0.479 271.138

SQUID self-Inductance

λeff, µm 0.245 0.130 0.130 1.461
LSQUID, pH 14.438 14.499 12.939 29.923

dLSQUID/dλ2

L, pH/µm2 79.279 87.242 57.392 166.660
SQUID loop inductance, pH 19.188 15.973 13.909 385.761

Extracted Capacitance

SQUID Loop inductance, pH 19.188 15.973 13.909 385.761 385.761
Estimated Capacitance, fF 35.079 × × 9.204 8.057

Specific Capacitance, fF/µm2 116.929 × × 25.567 22.381
t/ǫ, nm 0.076 × × 0.346 0.396

Square Junction size:

for C <1 fF, µm 0.092 × × 0.198 0.211
for R >25 kΩ, µm 0.045 0.036 0.052 0.149 0.135

Table 3.2: Results of Inductance and Capacitance estimations for the different
devices.
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• junctions whose width is smaller than the square junction size

A square junction with capacitance smaller than 1 fF, has got to have a size
smaller than:

• 92 nm in the 12◦-tilt YSZ bicrystal technology. Such technology does
not fit the requirements for the realization of an high-TC SET. Higher
tilt angles might help to achieve the goal.

• 0.2 µm in the MgO/STO biepitaxial technology. This size is bigger
than the film thickness (120 nm) used to realize the devices. We can
therefore “trade” the difference between the film thickness and the
constraint to gain some junction width, so keep the junction area
constant. In other words, with the current technology a junction
width of 0.34 µm would be suitable for the SET to fit the Capacitance
requirements.

To satisfy the second constraint and have a normal resistance higher than
25 kΩ, a square junction has to be smaller than:

• 45 nm in the bicrystal technology. This size is definitely too small for
the High-Tc junction to be realized successfully.

• 140 nm in the biepitaxial technology. This requirement can be fit with
the current technology if the junction size is smaller than 170 nm.

We point out that the last estimate is based on the implicit assumption
that the junction normal resistance scales inversely with the junction cross-
section, like any normal resistor. In the next section we show some mea-
surements performed on SET prototypes which will show that the junction
normal resistance constraint can be somehow relaxed.

3.2 SET measurements

The SET prototypes, realized in the YSZ bicrystal chip, have been measured
at first both at 6 K and 280 mK. In figure 3.8 the current voltage charac-
teristic of two SETs are shown. Such devices, further indicated as SET#1
and SET#3, had respectively an initial cross section of 0.15 × 0.6 µm2 and
0.15 × 0.8 µm2. The normal resistance has been found to be lower than
1 kΩ in all devices, a value much lower than the required 50 kΩ. No varia-
tion of the current voltage characteristics has been found by sweeping the
voltage at the gate electrode, i.e. no modulation due to Coulomb blockade
has been observed. Moreover, the estimated capacitance for both devices is
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Figure 3.8: Current-voltage characteristic of SET YSZ#1 (left) and YSZ#3
(right) measured at 280 mK before any etching treatment.

bigger than 10 fF, which would make the blockade of tunneling observable
at temperatures lower than 84 mK.

To achieve a smaller junction thickness, the device has been etched sev-
eral times by argon ion milling for few minutes. A Kauffman broad ion beam
source has been used for this scope. While etching, the sample has been
covered with an aluminum mechanical mask, to avoid the SQUIDs realized
on the same chip to be etched away as well. After every etching step the
device has been measured at 6 K. The etching-measuring cycle has been
stopped when one of the devices – indicated with SET#1 – has developed
a resistance higher than 50 kΩ, so that every single junction has a normal
resistance higher than the quantum resistance. Figure 3.9 shows the ex-
perimental current-voltage characteristic measured of two SET prototypes,
measured after every etching step.

No Coulomb blockade has been observed while measuring SET#1 even
after the final etching step. No variation in shape or position has been ob-
served in the current-voltage characteristic by the application of a voltage at
the gate electrode. A capacitance of 6.7 fF is estimated for the last junction
cross section of 0.097 × 0.6 µm2. If any blockade of tunneling is effective in
our device, it would be observable at temperatures lower than 138 mK.
We believe that oxygen out diffusion from the YBCO film might be respon-
sible for the loss of superconductivity of the device in the junction region,
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Figure 3.10: RN (T ) of the SET#1 after the last milling step.

causing a transition to an insulating phase. Such transition might be fos-
tered in the last etching step. In support to such observation we show in
Figure 3.10 the measurement of the normal resistance while warming up the
sample. A clear exponential dependence of the normal resistance is observ-
able, sign of the semiconducting behavior of the junctions caused, perhaps,
by a metal-to-insulator transition. However, further measurements at lower
temperatures could help to verify the existence of the Coulomb blockade.

The data acquired in the etching-measurement cycle can be used to draw
some conclusions about the scaling behavior of the normal resistance with
the junction size. In order to draw such considerations a relation between
etching time and film thickness is needed. An etching rate of 15 Å/min is
generally assumed when milling with the settings described in Table C.3.
To confirm such etching rate estimate, an AFM image has been taken on the
device SET#3 shown in figure 3.11. The YBCO film thickness, measured
along the grain boundary position, is about 97 nm. Therefore the above
mentioned etching rate can be considered to be reliable. In Figure 3.12 we
show the measured behavior of the normal resistance, plotted against both
the total etching time and the estimated film thickness.
The SET with smaller junction size has been found to have an increase

in resistance almost three times biggeer compared to the other one. To
further investigate the scaling behavior of the junction resistance we plot
the product RNΣ, where RN is the normal resistance and Σ is the junction
cross section. Such product should be theoretically independent on the film
thickness if we assume the resistance of junctions to scale according to the
following equation:

RN = ρ
l

Σ

where ρ and l are respectively the resistivity and the length of the classical
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Figure 3.11: Atomic Force micrograph (a) and junction cross section (b) of the
device SET#3.

resistor. We will further assume the junction width to be unchanged in the
etching process. The scaling behavior of RNΣ with the junction thickness is
shown in Figure 3.13 for both devices. According to Figure 3.13 the product
RNΣ increases by decreasing the junction cross section , i.e. the normal
resistance has the tendency to increase more than expected for a classic
resistor. Therefore the SET resistance requirement might be achieved for
bigger junction sizes than the ones discussed in the last part of last section
and the corresponding junction size limitation might be relaxed.

We remind that the biepitaxial junction are roughly 10 times more re-
sistive than the bicrystal ones. Therefore, reducing the cross section in such
junctions might have a bigger impact in the normal resistance, which might
be enhanced in a stronger way. If we further assume the biepitaxial junction
to scale with the same behavior of SET#1 and take into account the general
ratio between the normal resistances in the two different technologies, we
might be able to satisfy the 25 kΩ resistance constraint with a junction of
cross section 0.3 × 0.1 µm2.

We therefore assess the MgO/STO biepitaxial technology as a suitable
and very promising technological platform to further develop an all high
TC Single Electron Transistor. We suggest 0.3 µm and 100 nm as suitable
junction width and YBCO film thickness for the future realization of a
biepitaxial SET prototype. The ion milling procedure or focused ion beam
might be further used to shrink the junction thickness and width in case the
Coulomb blockade has not been achieved. More systematic investigations
on the scaling behavior of the junction normal resistance might be helpful
to achieve a better accuracy in the future SET design.
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Chapter 4

Conclusions

This thesis work has been focused on understanding whether two different
technologies, used to realize grain boundary Josephson junctions, are suit-
able for the realization of a single electron transistor (SET).
The importance of realizing an SET with high-TC superconductors resides
on the possibility to measure directly the quasi particle gap in different di-
rections of the momentum space. In particular, such device would permit
to directly observe the existence of an imaginary s-wave component of the
order parameter in the nodal directions of the d-wave — desired feature for
high-TC phase qubit applications.

YBa2Cu3O7−δ has been used in both the technologies assessed in this
work. Such technologies, on the other hand, differ in the way the grain
boundary junctions are realized.
In the bicrystal technology the artificial grain boundary is formed because
of the different growth direction of the superconducting film in two diversely
oriented halves of the substrate — 12◦-[100] tilt in both halves, 0◦-[001] and
45◦-[001] tilt in the two halves of the crystal. In the biepitaxial technology
MgO vicinal substrates has been used together with an STO seeding layer.
Such technology permits to obtain a bigger [100]-tilt angle of equal to 45◦,
since the YBCO grows [001] on the bare substrate and [103] on top of
the STO seeding layer. YSZ bicrystals and MgO substrates has been used
because of the low value of dielectric constant and dielectric losses at radio
frequency.

For a single electron transistor to be realized, the Josephson junctions
which constitute the device have to satisfy two different constraints. The
normal resistance of each junction has to be higher than 25 kΩ while the
junction capacitance has to be close to 1 fF. Under such conditions, both
quantum and thermal fluctuations will not be able to provide enough en-
ergy to perturb the energy level quantization due to charging, i.e. Coulomb
blockade of tunneling will play the leading role in charge transport through
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the junctions. To extract the capacitance and normal resistance of the
grain boundary junctions of this work, we have characterized different DC
SQUIDs realized with the two different technologies.
The junction capacitance has been extracted from the voltage at which a
current step, caused by SQUID resonance, occurs. Such voltage is related
to the product between the SQUID self-inductance and the junction capac-
itance. The SQUID self-inductance has been estimated indirectly, by mea-
suring the periodicity of the SQUID critical current by applying an injection
current through one branch of the interferometer. From this measurement
and from the simulation of the SQUID, performed with the 3DMLSI soft-
ware, it is possible to discriminate between kinetic and geometric contri-
butions of the mutual inductance between SQUID and injection line. The
kinetic inductance contribution can be further employed to extract a value
of effective London penetration depth, which can be further used to infer
the complete SQUID self-inductance. The junction normal resistance has
been obtained from the slope of the current-voltage characteristic of the
SQUID, measured at high enough bias voltages.

The extracted specific capacitance of the bicrystal SQUIDS has been
found to be about 116 fF/µm2 while, for the biepitaxial SQUIDs, a surpris-
ingly low value of 22 ÷ 25 fF/µm2 has been found. Therefore, to obtain a
junction with 1 fF capacitance, the width and the thickness of the junction
should be smaller than 92 nm for the bicrystal technology and 200 nm in the
biepitaxial technology. The biepitaxial technology seems therefore suitable
for the realization of Josephson junctions with small capacitance.
Moreover, the biepitaxial junctions has been found to be very-highly re-
sistive, with 600 ÷ 700 Ω normal resistance and cross-section of 0.72 µm2.
The bicrystal junctions appear to be much more conductive, with resis-
tances of about 80 Ω for a 0.6 µm2 cross-section junction. Consequently,
the resistance constraint can be satisfied more easily — with bigger junction
cross-section — in the biepitaxial technology. Measurements performed on
bicrystal SET prototypes have revealed that the junction resistance can be
increased more than expected for a normal tunneling junction. The product
cross-section normal resistance, whose value should be cross section inde-
pendent, is increased when decreasing the cross section of the junction. This
effect could further help to achieve the high resistance 25 kΩ goal.

We asses the MgO/STO biepitaxial technology as a suitable and promis-
ing platform for the realization of high-TC single electron transistor. We
suggest 300 nm×120 nm as a good cross-section size to realize such devices.
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Electron beam lithography

Reference crosses and alignment rulers are defined in the RUL layer, exposed
in 5th lens mode to obtain an high resolution. The bonding pads structure,
defined in the PAD layer, has been exposed with the 4th lens at high current
to make the exposure fast. These layers have been exposed in the lithogra-
phy step.
SQUIDs and SETs structures, shown in Figure 2.6 and 2.10, have been
defined in the SDQ and SET layers respectively, to make possible an inde-
pendent dose optimization. Both layers structures has been exposed in the
same lithography steps in 5th lens. Finally the leads, defined in the CNN

layer, have been exposed with the 4th lens with high current.
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RUL PAD

SQD

CNN

SET

Figure A.1: Layers as defined in AutoCAD file. The injection line of neigh-
bor couple of SQUIDS are connected joined to in the same pad. To allow a
single SQUID measurement, such lines has been cut by Focused Ion Beam.
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Layer RUL PAD CNN SET SQD

Current 100 pA 10 nA 10 nA 40 pA 40 pA
Base Dose, µC/cm2 90 90 90 90 90

Lens 5 4 4 5 5
EOS 8,7 4,7 4,7 7,7 7,7

# Step / µm 400 40 40 400 400
Field Size, µm 70 700 700 70 70

SubField Size, µm 10 100 100 70 70
PREAD step , µm 0.01 0.1 0.1 0.005 0.005

PREAD resize , µm 0.005 0.05 0.05 0.0025 0.0025
Min Modulation step, % 5.56 5.56 5.56 8.89 8.89

Max Modulation, % 3200 3200 3200 3200 3200
Max Dos, µC/cm2 2970 2970 2970 3200 3200

Table A.1: Settings used for to expose different e-beam patterns.
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Appendix B

Lift-off

Before every lithography the sample has been cleaned in Acetone and Iso-
propanol and blown dry with Nitrogen. PMMA(8,5)MAA EL10 Copolymer
has been used as bottom layer while, for the top one, ZEP520 resist diluted
1:2 in Anisole has been the choice. After the e-beam exposure, the ZEP layer
is developed in Oxylene while The bottom layer can be fully developed us-
ing ECA in solution 1:5 with Ethanol. Both developments are stopped by
rinsing in Isopropanol. The whole resist handling procedure is summarized
in Table B.2.
To execute the lift-off the sample is put in a low power ultrasonic bath of
Shipley 1165 resist remover or Acetone at 60 ◦C. The sample is inspected at
the optical microscope, to ensure that all the liftoff metal has been removed
and, if necessary, the ultrasonic bath is repeated. The sample is then rinsed
in Isopropanol and blown dry in nitrogen.

E-beam evaportion Au a-C Cr

Base pressure, mbar 10−5 10−7 10−5

Deposition rate, Å/s 5 1 3 − 5
Film thickness, nm 2400 1200 500

Table B.1: Parameters used in the E-beam evaporation steps.
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Resist Layer Bottom Top

Resist P(MMA)MAA 1:10 EL ZEP 1:2 Anisole
Spinner Speed, r/min 4000 4000

Spinning Time, min 1 1
Baking Temperature, ◦C 135 135

Baking Time, min 5 10
Resist Thickness, nm ∼ 400 ∼ 100

Developer Oxylene ECA 1:5 Ethanol
Developing time 45 s 7 min

Rinser Isopropanol Isopropanol

Table B.2: Parameters used for e-beam resist spin-coating, soft-baking and
development.
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Other fabrication parameters

We gather here some tables that summarize the parameters used in the
Laser ablation deposition, Kauffman Source Argon Ion Milling and Plasma
Etching steps.

PLD deposition STO YBCO

Heater Temperature, ◦C 680 760
Base pressure, mbar 10−6 10−6

Working pressure, mbar 0.2 0.6
Laser pulse frequency, Hz 10 10

Film thickness, nm 30 100 − 150

Table C.1: PLD deposition parameters of STO and YBCO films on MgO
substrates for the fabrication of biepitaxial samples.
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Plasma treating Ashing C-stripping

Power 50 W 50 W
Pressure 250 mbar 100 mbar

Oxygen pressure 10 cm3/min 10 cm3/min
Processing time 15 s 30 min

Table C.2: Parameters used in the plasma treating steps.

Milled Material STO YBCO Au

Voltage, V 300 300 300
Current, mA 15 7 7

Base Pressure, mbar 2 − 3 × 10−7 2 − 3 × 10−7 2 − 3 × 10−7

Working pressure, mbar 2.3 × 10−4 2.3 × 10−4 2.3 × 10−4

Milling angle, ◦ 5 3.5 3.5
Rotation, r/min 3 3 3

Table C.3: Parameters used in the Kauffman-source Argon Ion Milling
steps. The YBCO etching rate with such settings is about 15 Å/min. To
achieve a low pressure in the chamber an outgassing procedure is followed,
i.e. the filaments which ignite the Ar+ Plasma as well as the neutralizer
filament are heated up with a current of 7 A for 120 min.
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