

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, May 2010

LLVM back-end for the Timber compiler

Master of Science Thesis in the Programme Computer Science: Algorithms,

Languages and Logic

MATTIAS LUNDELL

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

LLVM back-end for the Timber compiler

MATTIAS LUNDELL

© MATTIAS LUNDELL, May 2010.

Examiner: BJÖRN VON SYDOW

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden May 2010

Abstract

This master’s thesis describes the design and implementation of a new back-
end for the Timber compiler, based on Low Level Virtual Machine (LLVM)
compiler infrastructure. The thesis describes the implementation and gives
detailed information about how a Timber program is translated into a LLVM
program and how it is represented. Furthermore the thesis compares the
existing C based back-end with the new LLVM based back-end in terms
of implementation complexity and the performance of programs that were
compiled with the respective back-ends. When compared to each other, the
LLVM based back-end was found to have a performance that was equal or
better than the C based back-end, with the cost of increased complexity of
the compiler in the form of an abstract syntax to represent LLVM assem-
bly code and an interface to the abstract syntax. The overall conclusion is
that LLVM offers a suitable back-end for the Timber programming language
compiler.

Keywords: Timber, LLVM, Low Level Virtual Machine, Compiler back-
end, Code generation

Sammanfattning

Denna uppsats beskriver design och implementation av en ny bakända till
Timber kompilatorn. Den nya bakändan baseras p̊a Low Level Virtual Ma-
chine (LLVM) som är en infrastruktur för kompilatorer. Uppsatsen beskriv-
er implementationen och ger detaljerad information om hur Timberprogram
översätts till LLVM program och hur dessa är representerade. Vidare görs en
jämförelse mellan den befintliga C baserade bakändan, och den nya LLVM
baserade bakändan i termer av komplexiteten av implementationen och pre-
standan hos program kompilerade med respektive bakända. Jämförelsen visade
att den LLVM baserade bakändan var kapabel att generera kod med sam-
ma eller bättre prestanda än den kod som genererats med den C baserade
bakändan. Detta till en kostnad av ökad komplexitet i kompilatorn i form av
en abstrakt syntax för att representera LLVM assemblerkod, samt ett inter-
face till den abstrakta syntaxen. Den slutgiltiga bedömmningen är att LLVM
är lämplig som bakända till programmeringsspr̊aket Timbers kompilator.

Nyckelord: Timber, LLVM, Low Level Virtual Machine, Kompilator bakända,
Kodgenerering

Acknowledgements

I would like to thank Björn von Sydow for his support, for sharing his knowl-
edge and for the many interesting discussions. Discussions that guided me
in the intriguing world of compilers and kept me focused during the year I
worked on the project.

Contents

1 Introduction 1
1.1 Aim . 2
1.2 Limitations . 2
1.3 Thesis outline . 2

2 Timber 3
2.1 Language summary . 3
2.2 Reactive objects . 4
2.3 Time in Timber . 5

2.3.1 Timing window . 5
2.4 Programming in Timber . 6

3 LLVM 8
3.1 Language . 8

3.1.1 SSA . 9
3.1.2 Instruction Set . 9
3.1.3 Type System . 11

3.2 LLVM tools . 13

4 Implementation 15
4.1 Compiler pipeline . 15

4.1.1 Run-time system . 16
4.2 LLVM back-end . 16

4.2.1 Kindle . 17
4.2.2 Code generation environment 17
4.2.3 Interface between Haskell and LLVM 19
4.2.4 LLVM abstract syntax 19

4.3 Code generation . 20
4.4 Representation of Data types 20

4.4.1 Kindle built-in types 21
4.4.2 User defined type declarations 24

4.4.3 Garbage collection tag 25
4.5 Representation of term bindings 27

4.5.1 Value bindings . 27
4.5.2 Function bindings . 27

4.6 Module init-function . 31
4.7 Example: compiling map . 32

4.7.1 Definition of map in Kindle 32
4.7.2 Definition of map in LLVM 33

5 Evaluation 37
5.1 Performance . 37
5.2 File size . 37

6 Conclusion 39
6.1 Further work . 40

6.1.1 Using Haskell FFI bindings to LLVM 40
6.1.2 Optimizations . 40

References 40

A Source code 42
A.1 Tak function . 42
A.2 Ackermann function . 42
A.3 Number of primes . 43
A.4 Concurrent number of primes 44

A.4.1 Concurrent map . 45
A.5 Mandelbrot set . 46
A.6 Matrix multiplication . 47
A.7 Fibonacci . 48

Chapter 1

Introduction

Writing a compiler for a high-level programming language that produces effi-
cient code for a specific architecture forces language designers to put a lot of
work on instruction selection, register allocation and low-level optimizations
performed on the generated code. If programs are going to be executed on
an other architecture, the back-end must be rewritten to support the new
architecture and the new set of instructions. To gain portability and to get
away from implementing and maintaining a back-end for each architecture
another approach must be taken.

One solution is to transform the code into another high-level language
such as C, which is the case in the original Timber compiler. The reason
for choosing C is that it operates on quite low level and there are compilers
available on most platforms. On the negative side is that there are small
possibilities to control the assembly code that is generated by the C compiler.

Another solution is to target a high-level assembly language. Low Level
Virtual Machine (LLVM) is such a language, along with a compiler infras-
tructure that makes it possible to target multiple platforms by only generat-
ing code in the LLVM assembly format. In addition to being able to generate
executable code for many platforms, LLVM also provides both platform in-
dependent and platform dependent low-level optimizations, which gives lan-
guage designers room to only focus on the language design and front-end
optimizations, while the back-end optimizations are for free.

This thesis describes the implementation of a new back-end for the Tim-
ber programming language compiler based on the LLVM compiler infrastruc-
ture. It will also cover a comparison between the existing C back-end and
the implemented LLVM back-end in terms of the performance and the size
of programs compiled with the two different back-ends.

1

1.1 Aim

The goal with the thesis work was to implement a new back-end for the
existing Timber compiler based on LLVM. Along with a description of the
implementation, this thesis also tries to answer the following questions:

• Is LLVM a suitable target for the implementation of a back-end for
a functional language and how complex does the back-end become in
comparison to the existing C back-end?

• How does the quality of the code generated by the LLVM based back-
end compare to the code generated by the existing C back-end measured
in execution time and size of generated files?

1.2 Limitations

• The compiler has no support for handling LLVM related optimization
flags.

• The comparison between the LLVM back-end and the C back-end is
rudimentary.

1.3 Thesis outline

The thesis is divided into six chapters. Chapter 1 is this introductory overview.
Chapter 2 gives an introduction to the programming language Timber. Chap-
ter 3 gives an introduction to LLVM virtual instruction set and the LLVM
infrastructure. Chapter 4 covers the implementation of the LLVM back-end.
Chapter 5 contains a comparison of the characteristics of programs compiled
with the new LLVM back-end and with the original C back-end. Finally,
chapter 6 concludes the report and discusses future work.

2

Chapter 2

Timber

Timber is a general programming language specifically aimed at the con-
struction of complex event-driven systems. These event-driven systems are
ranging from low-level device interfaces, over time-constrained embedded sys-
tems, to very high-level symbolic manipulation and modeling applications.
The language is developed and maintained by groups and individuals at Lule̊a
University of Technology, Chalmers University of Technology, University of
Kansas and Portland State University.

2.1 Language summary

The language Timber can be seen as a successor of O’Haskell [8] which is a
reactive, object-oriented, concurrent, functional language implemented as an
extension to Haskell. This relation is visible in the syntax of Timber, which
is very similar to the syntax of Haskell.

One big difference between O’Haskell and Timber is that O’Haskell had
lazy semantics, but in Timber the lazy semantics is switched to strict seman-
tics. The main reason for shifting from lazy to strict semantics was that lazy
semantics adds extra difficulties to time and space analysis of programs, an
analysis which is of importance when constructing real-time and embedded
software [2, p. 6].

Timber is a multi-paradigm programming language that tries to combine
the best features from three different programming paradigms.

• It is a pure functional programming language similar to Haskell. It sup-
ports recursive definitions, higher-order functions, algebraic datatypes,
pattern matching and Hindley/Milner-style polymorphism. Timber
also adds two features, subtyping and a monadic implementation of
reactive objects.

3

• It is an imperative object-oriented programming language with state-
ful objects supporting subtyping. It also has common features from
imperative languages such as loop constructs and variable assignment.

• It is also a strongly typed concurrent programming language with mes-
sage based interaction supporting both synchronous and asynchronous
communication. In Timber this is represented by a set of interconnected
reactive objects, each encapsulating a piece of the current global state.
The objects all evolve in parallel but execution of methods belonging
to a certain object are mutually exclusive. This makes concurrency
implicit in Timber and no notion of threads or other concurrency con-
structs are needed.

2.2 Reactive objects

The main building blocks of a Timber program are reactive objects. A re-
active object consists of a set of methods and a set of state variables. The
methods are invoked by external events or clocks. During idle time, an object
remains passive, maintaining its state and waiting for next event.

The interface to an object is typically described by a record with the
methods that the environment can invoke, as in this example:

struct Counter where

incr :: Action

value :: Request Int

This interface defines two methods. The first method incr, has type Action

which indicates that the method is asynchronous, the other method value, is
of type Request Int which means that the method is a synchronous method
returning a value of type Int.

The class itself consists of a set of state variables and the implementation
of the methods defined in the interface.

counter = class

n := 0

incr = action n := n+1

value = request result n

result Counter{..}

Instances of the class counter maintain a state that consists of an integer n.
The state can be modified by the asynchronous method incr, and the state
can be retrieved with the synchronous method value.

4

2.3 Time in Timber

One of the main features of Timber is that time is incorporated in the lan-
guage and deadlines can be expressed explicitly. Time is described in terms of
absolute time, which means that time progresses independently from program
execution. Programs can not themselves express or access absolute time, but
they can measure durations of time intervals. These durations are captured
in a primitive type Time, which measures the length of time intervals that
may occur in a program. Time is an instance of the type class Num which
makes it possible to add and subtract values of type Time (multiplication is
undefined).

2.3.1 Timing window

In Timber, each method execution is associated with a timing window de-
limited by a baseline and a deadline, both in terms of absolute time. The
baseline acts as the starting point of a reaction and may also be used as a
reference point in time, to which time expressions may relate. The dead-
line is the time where the system must have reacted to the event in order
for the system to behave correctly. The timing window is by default in-
herited from the method that initiated the execution, but for methods of
type Action it is possible to manually specify the timing window. This en-
ables the programmer to specify timing constraints of a Timber program in
a platform-independent manner. The manipulation of the timing window is
performed with two constructors, after and before.

after (sec 10) act

This expression sets the baseline for the expression act to be the current
baseline plus 10 seconds.

before (sec 10) act

This expressions sets the deadline for expression act to be its effective base-
line plus 10 seconds. By combining after with a recursive call it is possible
to express periodic execution

fun = action

complexCalculation

after (sec 10) fun

5

2.4 Programming in Timber

To give an illustration of how a Timber program may look, an implementation
of a prime number sieve based on the Sieve of Eratosthenes1 is given.

module Sieve where

A Timber program is built from a set of modules. One of these modules is
the root module which contains the definition of the root function. The root
function is the starting point for the execution of a Timber program. The
other modules contains definitions of functions used by the root module and
by other auxiliary modules.

import POSIX

After the header of the module all import declarations are listed. In this case
the program is intended to run under the POSIX environment2, therefore
the module POSIX is imported. The POSIX module contains an interface to
methods from the environment that are available, such as access to standard
output which can be used to print strings to the terminal.

struct Cell where

feed :: Int -> Action

In Timber, interfaces are implemented as structs which defines methods that
are reachable from the outside of an object. In this example an object of
type Cell has one asynchronous method visible, feed that takes an Int as
input and returns an Action.

cell print n = class

next := Nothing

feed k = action

if (mod k n) /= 0 then

case next of

Nothing -> do

c = new cell print k

next := Just c

print (show k ++ "\n")

Just c -> do

c.feed k

result Cell{..}

Timber class definitions start with the keyword class. Classes consist of
local state variables and their initializations, declarations of class methods

1The program is a rewrite of an example written in O’Haskell given in [8, p. 65]
2Portable Operating System Interface for Unix [4]

6

that access and modify the state, local auxiliary definitions and a result.
Typically the result is one or more interfaces that the class implements. In
this example there is a single state variable next, that holds the next cell
in the computation chain. There is also one class method feed and a result
that returns a value of type Cell.

sieve print n = do

c = new cell print 2

forall i <- [3..n] do

c.feed i

The function sieve takes a printing procedure and an integer n, a new cell
is created using the keyword new and for each number i from 3 to n, i is
tested for primality using the cell chain.

root :: World -> Cmd () ()

root w = do

env = new posix w

sieve env.stdout.write 1000

Finally the root function of the module. The root function takes a single
argument of type World, an abstract type representing the world external
to the program. In this example the program is executed under the POSIX
environment and in that environment the function stdout.write is defined
which is used to print strings to the terminal.

7

Chapter 3

LLVM

The Low Level Virtual Machine (LLVM) is a open-source compiler infrastruc-
ture, a virtual instruction set and a compilation strategy. The compilation
strategy of LLVM is to support effective program optimization during the
entire lifetime of a program. LLVM supports optimizations at compile-time,
link-time, run-time and idle-time1[7]. The development of LLVM started in
2000 as a part of Chris Lattner’s Master thesis[5]. The primary components
of the infrastructure is a GCC-based front-end for C and C++ called llvm-
gcc, a link-time optimization framework, Just-In-Time compilers and static
back-ends for several architectures. In the current version 2.7 the following
architectures are fully supported:

ARM Mips Mipsel
MSIL PowerPC 32 PowerPC 64
Sparc SystemZ Thumb
x86 x86-64 XCore

Table 3.1: Architectures supported by LLVM 2.7.

Other architectures are also supported but on an experimental level e.g. the
Cell CPU[6].

3.1 Language

LLVM code representation is designed to be used in three different forms: as
an compiler IR, as bitcode representation written to a file and as an assembly

1Optimizations between runs, using profile information collected during runs.

8

language. The three forms of representation is all equivalent. This section
gives an introduction of the LLVM assembly language and examples on how
the assembly language is used.

3.1.1 SSA

LLVM uses Static Single Assignment (SSA) form as its primary code repre-
sentation. To be in valid SSA form, each variable can only be defined by a
single definition [3, p. 228]. If the same variable is defined in two different
control-flow paths the rule is broken. To solve this problem the notion of
φ-functions is introduced. The φ-function returns the value of the argument
that corresponds to the control-flow path that was taken.

if (even) then x := 0 else x := 1

return x

In this example the variable x is defined in two different control-flow paths.
To transform the example into SSA form the φ-function must be used.

if (even) then x1 := 0 else x2 := 1

x := φ(x1, x2)

return x

The resulting value returned by φ(x1, x2) depends on which of the paths
the control flow takes, if it passes through the true branch of the if statement
the resulting value is x1 and if passes through the false branch the resulting
value is x2. To support SSA form LLVM provides an infinite number of
virtual registers and an instruction named phi.

<result> = phi <type> [<val0>, <label0>], ...

The semantics of phi is that result will take the value vali if the current
basic block is preceded by the basic block with label labeli.

3.1.2 Instruction Set

The LLVM instruction set is designed to capture the key operations of ordi-
nary processors without any processor specific constraints such as the number
and type of physical registers[7]. Instead of physical registers, the instructions
operate on virtual registers. The LLVM instruction set consists of eight dif-
ferent groups of instructions.

Terminator Instructions

In LLVM, every basic block must end with a terminating instruction. Ter-
minating instructions indicate which basic block that will be executed after

9

the current block. The terminator instructions used in the LLVM back-end
is: ret, br and unreachable.

Binary Operations

The binary operations take two operands and perform an operation on them,
the result is a single value. Both operands are required to have the same type,
the result from the computation has the same type. The operators operate
on values of integer type, floating point type and vectors. Examples of binary
instructions used in the LLVM back-end are: add, fadd and mul.

Bitwise Binary Operations

Bitwise operations perform bit manipulation. Both arguments to the opera-
tion have to be of the same integer type. The operations can also work with
vectors of integer type. The result of the computation has the same type
as the operands. Examples of bitwise binary instruction used in the LLVM
back-end are: and, or and shl.

Vector Operations

In addition to the arithmetic binary operations and bitwise binary operations
on vectors, LLVM offers instructions to extract respectively insert a scalar
element into a vector at a specified index. The vector operations used in the
LLVM back-end are: extractelement and insertelement.

Memory Access and Addressing Operations

The memory in LLVM is not in SSA form, but all accesses are made with
instructions which are in SSA form. To transfer data between memory
and the virtual registers, LLVM provides instructions to read, write and
allocate memory. To address sub-elements inside aggregated data struc-
tures such as arrays and structures the instruction getelementptr is used.
getelementptr does not access the memory, it only calculates the address to
the specific element. To illustrate how to address the second structure field
in a structure with three 32 bit integers.

%regptr = getelementptr {i32, i32, i32}* %sptr, i32 0, i32 1

Where %regptr is the identifier of the virtual register where the address
to the indexed element are stored, {i32, i32, i32}* is the type of the
structure, %sptr is the identifier of the virtual register where a pointer to the
structure is stored and the following list of comma-separated 32 bit integers

10

are indexes used for pointing out the structure element of interest. The first
index i32 0, tells the compiler to start address calculation from the address
where the structure object is located. The second index i32 1, points to the
second field in the structure object. The type of the virtual register %reg is
a pointer to the type of indexed element, in this case i32*, a pointer to a 32
bit integer. To get the actual integer the instruction load is used.

%reg = load i32* %regptr

This loads the actual value into %reg. To store a value into %reg, the in-
struction store is used.

store i32 42, i32* %regptr

The getelementptr instruction is often seen as confusing[10].

Conversion Operations

There is only one way to convert a value of one type into a value of an
other type and this is through a set of type conversation operations[7]. If
for example a signed 32 bit integer is needed to be converted into float, the
instruction sitofp is used.

%float = sitofp i32 %int to float

sitofp converts the integer stored in the virtual register %int into a float
and stores the result in the virtual register %float, the resulting register has
the type float. The operators that converts between integer and float types
can also operate on entire vectors of values.

Other Operations

In this category are the “miscellaneous” instructions. The ones that are used
in the Timber back-end is icmp, fcmp and call. The first two instructions
are used to compare two values of integer type respectively floating point
values. The result of a comparison of two values is a one bit integer. If the
two operands are vectors the result is a vector of one bit integers. It is also
possible to compare two pointers against each other. The call instruction
represents a function call. All functions that are called must have been
defined with their type.

3.1.3 Type System

LLVM is a strictly typed representation. Every virtual register and memory
location has a specified type. The typed information gives the LLVM com-
piler the ability to perform high-level transformation on low-level code. The

11

type system is divided into two parts, the primitive types and the derived
types. The types are also divided into five different classes: integer, floating
point, first class, primitive and derived.

Primitive types

The primitive types are the fundamental building blocks of the LLVM system.

Type Syntax Description
Integer iN where N is a

literal integer
An integer type with bit width N.

Floating
point

float 32 bit floating point number,
LLVM supports other floating
point formats as well but in the
Timber back-end only float is
used.

Label label The label type represents code la-
bels.

Void void The void type does not represent
any value and has no size.

Table 3.2: LLVM primitive types.

Derived types

Derived types allow a programmer to represent types such as arrays, vectors
and pointers. The derived types are build up by primitive types and other
derived types.

12

Type Syntax Description
Array [10 x i32] An array with ten 32 bit in-

tegers.
Function i32 (i32)* A function that takes a 32

bit integer as an argument
and returns a 32 bit integer.

Pointer i32* A pointer to a 32 bit integer.
Structure {i32, i32 (i32)*} A structure with a 32 bit in-

teger in the first field and a
function in the second.

Vector <3 x float> A vector with three 32 bit
floating point numbers.

Opaque opaque Unknown content, used for
example as a placeholder in
a structure.

Table 3.3: LLVM derived types.

3.2 LLVM tools

LLVM provides a number of command-line tools. Some of them are used in
the LLVM part of the Timber compiler.

llvm-as is the LLVM assembler, translating files written in LLVM assembly
language into binary files containing LLVM bitcode. Before translating, the
assembler ensures that the code is in SSA form and that all basic blocks ends
with a terminator instruction.

llvm-ld is the LLVM linker. The linker takes a set of bitcode files and links
them together into a single LLVM bitcode file. The linker is also capable
of doing link-time optimizations. The llvm-ld tool is used by the Timber
compiler to link programs and generate the native executable.

opt is the modular LLVM optimizer and analyzer. The tool analyzes and
performs optimizations on single files in LLVM assembly format or in LLVM
bitcode format. The result from the optimizer is either stored in a file using
the bitcode format or printed out on the standard output.

13

llc is the LLVM static compiler, it compiles LLVM bitcode into native
assembly language for a specified architecture. The tool is indirectly used by
llvm-ld when generating the native executable.

14

Chapter 4

Implementation

This chapter describes the design and the implementation of the LLVM back-
end of the Timber compiler. The chapter also describes how the different
parts of a Timber module are translated and represented.

4.1 Compiler pipeline

The original Timber compiler generates C source code using a pretty printer
that turns a Kindle module into one C source file and one header file. These
files are compiled into object code using GCC, which is linked to the run-time
system and the standard library again using GCC.

timberc

gcc

gcc

C source code

Object format

Timber source file

main.c
libTimber.a

Executable

Figure 4.1: Compile chain with the C back-end.

The LLVM generating module is implemented as an additional Haskell mod-
ule on the same level as the C generating module. The back-ends are separate
from each other and the C back-end remains untouched. Both the LLVM
back-end and the C back-end operate on the same input, Kindle modules.

15

timberc

gcc

gcc

C source code

Object format

Timber source file

main.c
libTimber.a

Executable

opt

llvm-ld

Executable

LLVM bitcode

LLVM assembly

main.bc
libTimberLLVM.a

Figure 4.2: Compile chain with the LLVM back-end.

The LLVM code generator generates LLVM assembly code which is written
to a file. Each module is translated into one file. Each LLVM assembly file is
translated into LLVM bitcode representation and optimized using the LLVM
optimizer opt. The resulting bitcode files are linked together with a main
module named main.bc, the run-time system and the standard library using
the LLVM linker llvm-ld. Both the run-time system and the standard library
is located in an archive called libTimberLLVM.a that is created with LLVM
archiver llvm-ar. The linker finally generates a native executable file using
the LLVM system compiler llc and the system linker internally.

4.1.1 Run-time system

The run-time system of Timber is written in C. The only change that was
made to the run-time system was to add an additional function new. The
function provides the same functionality as the macro NEW, that is used in
the C back-end for allocating memory on the heap managed by the run-time
system. When used together with the LLVM back-end, the run-time system
is compiled with Clang. Clang uses LLVM as its back-end and it is possible
to compile into bitcode files which enables whole program optimizations with
both the program, the standard library and the run-time system in the scope.

4.2 LLVM back-end

Before a program written in Timber is compiled into LLVM assembly code
it passes through three different intermediate languages; “Syntax”, “Core”
and “Kindle”. The first representation, Syntax is used during desugaring
and renaming passes, the second language Core is the primary intermediate
language and is used during kind analysis, type checking and term reduction.
The third language Kindle is the main back-end intermediate language and

16

is used during tail call elimination and lambda lifting. Kindle is also the
input to the LLVM code generator.

• Desugar

• Renaming

• Kind analysis

• Type check

• Term reduction

• Lexing

• Parsing

Timber source Syntax IR Core IR Kindle IR

C source code

LLVM IR

• Kindle2C

• Kindle2LLVM

• Tail-call elimination

• Lambda lifting

Kindle IR

Figure 4.3: Internals of the Timber compiler.

4.2.1 Kindle

As said in section 4.3, Kindle in the main back-end intermediate language. It
is a typed imperative language with support for dynamic memory allocation
and garbage-collection. The language can be seen as an extended version of
the common subset of C, Java and C++, without the pointer arithmetic in
C and without the class hierarchies in Java and C++. In Kindle, a heap al-
located structure object may contain function valued fields that are invoked
by self-application. This gives Kindle a basic form of object-orientation ca-
pabilities. Kindle is intended to function as a high-level format that can be
translated into standard imperative languages such as C and into an assembly
language such as LLVM, which is done as a part of this thesis work.

4.2.2 Code generation environment

During code generation two environments are maintained. The first is on
module level and contains information about the current module. The other
contains information used in the current function.

Module level environment

This environment contains information that is common to the whole module.
The content of the environment is

• The name of the current module.

• A mapping from names of global variables in imported modules to their
virtual register.

17

• A mapping of names of top-level constants to their virtual register.
Examples of constants are strings and arrays that are used by the
garbage collector.

• A mapping from function names to their type. Both locally defined
functions and functions from imported modules are present in the map.

• A collection of all external functions. This is used when generating
function calls but it is also emitted to the final LLVM module as the
LLVM assembler needs to have function declarations of all external
functions that are used in the module.

• A collection of the functions that have been generated.

• A mapping between Kindle structures and named LLVM structure type
definitions.

• A map containing all structures and information about their fields.
This is used when looking up the type of a specific field and when
generating the tags used by the garbage collector.

• The next fresh string identifier. LLVM does not permit string literals
and therefore all string needs to be predefined and stored as a top-level
constant with unique virtual registers.

Function level environment

This environment contains information that is used in the generation of a
single function.

• The name of the function.

• The next fresh virtual register identifier.

• The next fresh label identifier.

• A list of labels that refer to the test part of a while-loop, this is used
when generating code for the “continue” command.

• A list of labels that refer to the end part of a while-loop, this is used
when generating code for the “break” command.

• A collection of the code that has been generated so far.

• A mapping between declared global and local variables and their virtual
register.

18

4.2.3 Interface between Haskell and LLVM

To be able to interface between the Timber compiler front-end and the LLVM
back-end, the front-end needs to be able to produce code that is readable by
the LLVM machinery. The LLVM FAQ[12] suggest three different approaches
to interface with LLVM:

1. Call into the LLVM libraries code using your language’s FFI (foreign
function interface).

2. Emit LLVM assembly from your compiler’s native language.

3. Emit LLVM bitcode from your compiler’s native language.

Due to the fact that the Timber compiler is implemented in Haskell and
Haskell already has bindings to the LLVM API[1], the first approach was
the first to be considered. But after a few tryouts with the bindings and a
discussion with one of the maintainers (Lennart Augustsson), this approach
was dropped. The main reason was that the bindings are operating on a very
high level and tries to bring the type safety of Haskell into the API. This
makes the API quite cumbersome to work with, taken into account that the
only thing that is needed for the Timber back-end is the ability to generate
code that is accepted by the LLVM compiler infrastructure.

The only reason for choosing approach number three instead of approach
number two is that it would result in slightly faster compilation times, but
the cost for that improvement is the tedious work of implementing the bit-
code writer. Approach number three was therefore rejected in favor of ap-
proach number two, emitting LLVM assembly from Haskell. This approach
was also taken by both Essential Haskell Compiler [9] and Glasgow Haskell
Compiler [11].

4.2.4 LLVM abstract syntax

As said in section 4.2.3, LLVM assembly code is emitted by the LLVM back-
end. LLVM assembly code is internally represented as abstract syntax im-
plemented using algebraic data types (ADT) and generalized algebraic data
types (GADT). The implementation of the abstract syntax is in the file
“LLVM.hs”. Here follows an description of the three most important parts,
modules, values and instructions. A LLVM module is represented by

data LLVMModule = LLVMModule {

modName :: String,

modTypDef :: [LLVMStructDef],

modGlobal :: [LLVMValue],

19

modFunDecl :: [LLVMFunctionDecl],

modTopConst :: [LLVMTopLevelConstant],

modFuns :: [LLVMFunction] }

where modName is the name of the module, modTypeDef is a list of LLVM type
aliases to structure types, modGlobal which is a list of global variables (both
local and from imported modules), modFunDecl which is a list of declarations
of functions from imported modules, modTopConst which is a list of global
constants such as strings, modFuns which is the functions defined in the
current module.

LLVM values are represented with LLVMRegisters and LLVMConstants
represent the operands of an instruction. LLVMRegister is also used to store
the result of an instruction. Virtual registers can be either local or global.

data LLVMValue = LLVMRegister LLVMType String LLVMRegisterTag

| LLVMConstant LLVMType ConstValue

deriving (Eq,Show)

data LLVMRegisterTag = TagGlobal [LLVMLinkage] (Maybe LLVMGlobalInit)

| TagLocal

deriving (Eq, Show)

LLVM instructions are implemented as a GADT with one constructor for
each instruction. As an example we have the instruction Add.

data LLVMInstruction where

Add :: LLVMValue -> LLVMValue -> LLVMValue -> LLVMInstruction

...

4.3 Code generation

The translation of a Kindle module into a LLVM module is divided into
four steps. First each Kindle type declaration is translated into a LLVM
structure type and a description of the structure is inserted into the module
environment described in 4.2.2. Secondly value binds are translated into
global variables and inserted into the list of global variables in the current
module. Thirdly all function bindings are translated into LLVM functions
and inserted into the list of functions in the current module. Finally, a
function that initiates the module is generated.

4.4 Representation of Data types

When generating LLVM assembly code to represent a Kindle program there
are several different kinds of types that have to be handled.

20

• Primitive scalar types such as Int and Float.

• Primitive types such as Array and List.

• Data types that are introduced by the user using data declaration or
struct declaration.

4.4.1 Kindle built-in types

Scalar Kindle types

Implementation of the Kindle primitive scalar types in LLVM is straightfor-
ward, each primitive scalar type is mapped onto corresponding primitive type
in LLVM (except OID which is mapped to a pointer to a memory location).

Kindle type LLVM type
Int i32

Float float

Bool i1

WORD i32

OID i32*

Char i8

BITS8 i8

BITS16 i16

BITS32 i32

TUP0 i8

Table 4.1: LLVM mapping of Kindle scalar types.

POLY

In the last step before the Kindle module is fed into the code generator
the module passes through a function that replaces all type variables with
a special type constructor POLY. In the LLVM back-end the type POLY is
represented by a pointer to a memory location, holding a value of arbitrary
type.

String

In Kindle, as well as in Timber, a string is a list of Char. To avoid that
the generated code gets bloated with code representing the strings as lists of
Char a helper function getStr is used. The function takes a C-style string

21

and returns a list of characters. To achieve this in LLVM all string literals
are stored as constant arrays of 8 bit integers and when the string is needed
a pointer to the first element of the constant array is passed as argument to
getStr and the list representation of the string is returned.

@str0 = private constant [5 x i8] c"LLVM\00"

Listing 4.1: String representation in LLVM.

List

Kindle lists are implemented as single linked lists. The base type %LIST is
used when lists are passed as arguments to a function or when a list is the
return type of a function. Before a list is used inside a function it is compared
against null to see if the list is empty or not. If the list isn’t empty the list is
cast to the %CONS type, indicating that the list is a cons-cell. The %CONS type
consists of three fields, the first is a pointer to the garbage collector tag, the
second field is the element or a pointer to the element and the third field is
a pointer to the next element of the list (or null if there is no next element).

%LIST = type {i32*}

%CONS = type {i32*, i32*, %LIST*}

Listing 4.2: Kindle list type in LLVM.

Array

The array type is a structure with three fields, the first is the garbage collector
tag, the second is an 32 bit integer that holds the length of the array and the
third field is an array of unknown length that holds the actual data. If the
data is of scalar type, such as Int, the actual values are stored in the array
but if the data is heap allocated object a pointer to that object is stored in
the array.

%ARRAY = type {i32*, i32, [0 x i32*]}

Listing 4.3: Kindle array type in LLVM.

Closure

Closures are implemented as four different structures based on the arity of
the function. There is one for unary functions, one for binary, one for ternary
and one for n-ary. Basically the structures consists of two fields, the first is a
pointer to the tag used by the garbage collector and the second is a pointer
to a function.

22

%CLOS1 = type {i32*, i32* (%CLOS1*, i32*)*}

%CLOS2 = type {i32*, i32* (%CLOS2*, i32*, i32*)*}

%CLOS3 = type {i32*, i32* (%CLOS3*, i32*, i32*, i32*)*}

%CLOS = type {i32*, void ()*}

Listing 4.4: Kindle closure types in LLVM.

The function types all follow the same pattern, the first argument is the
closure object itself and the rest of the arguments are arguments that are
passed to the function stored in the closure. Closures with an arity of one,
two or three are used as they are without typecast but closures with an arity
greater than three must be typecasted before they are called. As an example
we have a Timber function f

f :: (a -> a -> a -> a -> a) -> a -> a -> a -> a -> a

When compiled into LLVM the function gets the type

i32* @f(i32 %x, %CLOS* %g, i32* %a, i32* %b, i32* %c, i32* %d)

where the argument %g is the closure and %a, %b, %c and %d arguments to the
closure. Before the closure is called it has to be typecasted from void ()*

into a function type that takes the right number of arguments and returns the
right type. The typecast is performed with the LLVM instruction bitcast

%r0 = load %CLOS** %g

%r1 = getelementptr %CLOS* %r0 , i32 0, i32 1

%r2 = load void ()** %r1

%r3 = bitcast void ()* %r2 to i32* (%CLOS*, i32*, i32*, i32*, i32*)*

This instruction sequence converts a function pointer of type void ()* into
the type of a function that takes four arguments of type POLY and returns a
value of type POLY. The result is a pointer to a function of correct type that
is accessible from the virtual register %r3. The actual function call is then
made by using the function pointer in %r3 (the instruction is split across two
lines).

%r4 = call i32* (%CLOS*, i32*, i32*, i32*, i32*)*

%r3(%CLOS* %r0, i32* %a, i32* %b, i32* %c, i32* %d)

Ref

Ref is the type of a reference to an object, i.e. an instantiation of a class.
The reference type divided into two parts, one is the locking mechanism and
the other is the object. Under the POSIX environment the threading is
performed using pthreads and the locking mechanism used in references is a
union type pthread_mutex_t that is defined “pthreadtypes.h”. The lock is
located in the second field of the reference structure. The third field consists
of a pointer to the object.

23

%REF = type {i32*, %PTHREAD_MUTEX_T, i32*}

Listing 4.5: Kindle reference type in LLVM.

When a class is instantiated the memory needed for that object is claimed
using the primitive function new. The amount of memory needed is the
combined size of both the Ref structure and the structure of the object that
is referenced.

GCINFO

mut

STATE

GCINFO

Ref

Object

Object data

GC Ref

GC Object

Figure 4.4: Memory layout of a Ref object.

The reason for the combined size is that the object that the reference refers
to is located just after the reference itself. When the memory is allocated
the mutex is initiated using the primitive function INITREF.

%reg1 = alloca %Ref*

%reg2 = bitcast %Ref** %reg1 to i32**

call void @new(i32** %reg2, i32 10)

%reg3 = load %Ref** %reg1

call void @INITREF(%Ref* %reg3)

Along with INITREF, references also have three other primitive functions that
are used when references are involved; ASYNC that is used when invoking
functions that have Timber type Action, LOCK that locks the object from
being modified by other threads and the function UNLOCK that unlocks an
object.

Other

The other built-in types, Timer, Msg, Tuple and Either are all straightfor-
wardly translated into LLVM using structure types.

4.4.2 User defined type declarations

In Kindle a type declaration introduces a structure type that defines the
layout of a heap-allocated object. The structure type may contain both
value fields and function fields. The structure types are straightforwardly

24

translated into LLVM structure types. As an example of the translation we
define a data type of lists parametrized over a type a in Timber.

data List a = Nil | Cons a (List a)

Listing 4.6: Timber representation of the user defined List data type.

This data type is translated into a set of Kindle structure types. Before the
Kindle code is passed to the LLVM code generator the type parameter a is
translated into a type constructor called POLY.

struct List {

POLY GCINFO;

}

struct _Nil {

POLY GCINFO;

}

struct _Cons {

POLY GCINFO;

POLY a;

List b;

}

Listing 4.7: Kindle representation of the user defined List data type.

The first structure type is consists of a single field of type POLY and is used as
a pointer to the head of the list, the second structure type _Nil, represents
the empty list. Finally the third structure type _Cons represents a cons cell
and contains three fields. The first field named GCINFO, contains a tag used
by the garbage collector, the second field contains the actual element of the
cell and the third field contains a pointer to the tail of the list. These three
Kindle structure types are represented as type aliases to structure types in
LLVM.

%List_Mod = type {i32*}

%_Cons_Mod = type {i32*, i32*, %List_Mod*}

%_Nil_Mod = type {i32*}

Listing 4.8: LLVM representation of the user defined List data type.

4.4.3 Garbage collection tag

The first field in all heap allocated objects contains information used by the
garbage collector. The field is called GCINFO, and consists of a pointer to
an array of 32 bit words describing the heap layout of the object. The array
consists of 3+n words where n is the number of fields in the structure except
the GCINFO field. The layout of the array is on the form

25

• The first element contains the size of the object in words.

• The second element contains a tag that classifies the object into a small
number of groups.

• The next n elements contains either the offset in words for each field
of the object that is a pointer or 0 if the field consists of a scalar.

• The last element is used when collecting arrays and indicates whether
the arrays stores values of scalar types or if it stores pointers to heap
allocated objects.

Continuing on the example of the List data type described in Listing 4.6. If
the list contains elements of the scalar type Int the GCINFO tag is:

{3, 0, 2, 0, 0}

This array tells the garbage collector that the object has a size of three 32
bit words, it is of the standard structure type and that the element in the
field with an offset of two 32 bit words is a pointer, in this case the pointer
points to the next cons cell in the list. If instead the list contains elements
of type Tuple, the GCINFO is:

{3, 0, 1, 2, 0}

Now the third and fourth element indicate that there are pointers in the
fields with an offset of one and two, in this case the first pointer points at
the tuple that is the element in the current cons cell and the second pointer
points at the next cons cell in the list.

In the list case there is one type parameter and therefore two different
GCINFO tags are needed, one is used when the element is of scalar type and
one if the element is a pointer to a heap allocated object. In the general case
where the data type has m type variables, 2m different GCINFO tags are
needed, which each consists of an array with n+ 3 elements.

The Timber compiler generates one global array of 2m(n + 3) words for
each structure type. This array contains all 2m different GCINFO tags each
with a length of n+ 3. When a new object is created their GCINFO field is
set to point in a suitable sub array inside holding the correct tag depending
on what type parameters that was used. In LLVM this array is implemented
as a constant global array holding 32 bit integers.

@__GC__List_Mod = global [3 x i32] [i32 1, i32 0, i32 0]

@__GC___Cons_Mod = global [10 x i32] [i32 3, i32 0, i32 1, i32 2, i32 0,

i32 3, i32 0, i32 2, i32 0, i32 0]

Listing 4.9: Garbage collector tag for an object of type List

26

If we want to allocate a list object holding a single Int 5, the GCINFO field
must be set to point at the second sub array of the global array _GC___Cons_Mod.
In LLVM this is achieved by casting the address of the global array into an 32
bit integer and perform a sequence of arithmetic operations on the address
and then typecast it back to a pointer again.

%reg2 = bitcast %List_Mod** @xs_Mod to i32**

call void @new(i32** %reg2, i32 3)

%reg3 = load %List_Mod** @xs_Mod

%reg4 = bitcast %List_Mod* %reg3 to %_Cons_Mod*

%reg5 = mul i32 5, 1

%reg6 = getelementptr [10 x i32]* @__GC___Cons_Mod, i32 0, i32 %reg5

%reg7 = getelementptr %_Cons_Mod* %reg4, i32 0, i32 0

store i32* %reg6, i32** %reg7

Listing 4.10: Allocation of a List and assigning GCINFO.

Row 5 prepares the offset used to point at the second sub array of
_GC___Cons_Mod. This pointer is then stored in the GCINFO field of the
newly allocated List.

4.5 Representation of term bindings

Beside type declarations, Kindle modules also contain term bindings. There
are two types of term bindings, either named values of atomic type or named
functions.

data Bind = Val AType Exp

| Fun [Name] AType ATEnv Cmd

deriving (Eq,Show)

4.5.1 Value bindings

Kindle value bindings are represented as global virtual registers holding a
pointer to a heap allocated object. Initialization of the registers are made in
the function that initiates the module (see section 4.6).

4.5.2 Function bindings

Before generating a LLVM representation of the function body, the vari-
able environment is updated with the arguments that was provided to the
function. These arguments together with global variables from the current
module and global variables from imported modules form the variable envi-
ronment that is used during code generation of the function body. The body

27

itself consists of a command that computes the desired result, possibly with
side effects.

Commands

Kindle commands are translated into LLVM using the function k2llvmCmd

that takes a Cmd node in the Kindle AST and translates that node into
the abstract LLVM representation introduced in section 4.2.4. The abstract
representation is added to the list of commands that already have been pro-
cessed.

Variable binding The command CBind introduces new variables in the
current function. These variables along with their type and associated virtual
register are stored in the variable environment used by the current function.
There are two different kinds of variable binds in Kindle, those which are heap
allocated and those which are stack allocated. Stack allocated variables are
allocated only using the LLVM instruction alloca, that allocates a certain
amount of space on the stack. Heap allocation on the other side needs special
treatment. The heap in Timber is managed by the run-time system and to
prevent concurrent threads allocating the same memory, all allocation on the
heap is done with the function new which uses compare-and-swap (CAS) to
make sure that the allocations are performed atomically. In the C back-end
heap allocation is made with a macro NEW but since there is no possibility to
use this C macro in the LLVM back-end, the functionality of the macro was
moved to a function. The resulting function has the type

void @new(i32**, i32)

where the first argument is a pointer to an address which will be used to store
the address to the memory allocated by the function. The second argument
is the amount of memory that should be allocated, measured in whole 32 bit
words. To illustrate the use of new an example is taken from the function
map in the file “Prelude.t”.

%reg17 = alloca %CONS*

%reg18 = bitcast %CONS** %reg17 to i32**

call void @new(i32** %reg18, i32 3)

This sequence allocates memory on the heap that is used to store a cons cell.
First a pointer to a cons cell is allocated on the stack, this pointer is cast
into an address that is passed as an argument to new along with the size of
a cons cell in 32 bit words. The function allocates three 32 bit words on the
heap and stores the address to these words on the address that was given an
argument.

28

Switch All parts in Timber that has some kind of case analysis such as
conditional statement, case statement and guarded equations get transformed
into Kindle switch commands. The following representation is used in the
Kindle AST.

CSwitch Exp [Alt]

where Exp is the expression that is analyzed and [Alt] is the alternatives.
The alternatives has the type

data Alt = ACon Name [Name] ATEnv Cmd

| ALit Lit Cmd

| AWild Cmd

deriving (Eq,Show)

The ALit construct holds literals that are compared against the expression
Exp and the command that is to be executed if the comparison succeeds.
AWild corresponds to the default alternative and holds the command that will
be executed if none of the comparisons succeeded. Basically there are three
different types of switches that need to be handled in the LLVM back-end,
String, Float and Int. In the C back-end, Int switches are implemented
using switch statements and Float and String are implemented with if-
then-else statements. In the LLVM back-end all three are implemented in
the same way using a LLVM translation of the if-then-else statement. The
only thing that is different is the method of comparison. Int are compared
using the instruction icmp with condition code eq that test for equality,
Float are compared using fcmp with condition code ueq that test that the
two operands are ordered1 and equal.

Other The other commands that are a part of kindle; return a value
(CRet), run a function for its side effects (CRun), update a variable (CUpd),
update a mutable structure object (CUpdS), update an array element
(CUpdA), sequential evaluation of two commands (CSeq) and raising an
exception (CRaise) are all straightforward translated into a LLVM represen-
tation.

Expressions

Except from the different function calls in Kindle, the translation from Kindle
expressions into the corresponding LLVM representation is straightforward.

1Neither operand is a quiet NaN.

29

Function call There are two major forms of function calls in Kindle. The
first is the ordinary call to a local or a global function (ECall) and the
second is calling functions that is a part of a structure type (EEnter). As
an example we have a function abs :: Int -> Int, that takes an integer
value and returns the absolute value of the integer. An ordinary call to this
function are compiled into a single line of LLVM assembly.

%reg1 = call i32 @abs_Mod(i32 10)

If instead the function was a part of a Timber struct

struct Abs where

abs :: Int -> Int

a call of the function will generate a sequence of LLVM instructions

%reg2 = load %Abs_Mod** %reg0

%reg3 = getelementptr %Abs_Mod* %reg2 , i32 0, i32 1

%reg4 = load i32 (%Abs_Mod*, i32)** %reg3

%reg5 = load %Abs_Mod** %reg0

%reg6 = call i32 (%Abs_Mod*, i32)* %reg4(%Abs_Mod* %reg5, i32 5)

Line 1 loads the object which of the function abs is a part. Line 2 and 3
loads the function itself and line 5 performs the actual call. If the function
is passed as an argument the function call is performed using a closure (see
section 4.4.1) and the instruction sequence becomes

%reg2 = load %CLOS1** %reg0

%reg3 = getelementptr %CLOS1* %reg2 , i32 0, i32 1

%reg4 = load i32* (%CLOS1*, i32*)** %reg3

%reg5 = load %CLOS1** %reg0

%reg6 = inttoptr i32 5 to i32*

%reg7 = call i32* (%CLOS1*, i32*)* %reg4(%CLOS1* %reg5, i32* %reg6)

%reg8 = ptrtoint i32* %reg7 to i32

Line 1 loads an object of the closure structure type, line 2 and 3 loads the
closure, line 5 casts the 32 bit integer literal into a pointer, that is because
the closure expects an argument of type POLY. Line 6 performs the actual
call to the closure and line 7 casts the result of the closure call back to a 32
bit integer.

Other The other expression that are defined in Kindle are; variables (EVar),
literals (ELit), structure field select (ESel), type conversation (ECast) and
heap memory allocation (ENew) are all straightforward translated into their
LLVM equivalent. More information on heap memory allocation can be found
in section 4.5.2.

30

4.6 Module init-function

The final step of generating the LLVM representation of a Kindle module
is to generate a function that initializes the module. The initialization is
performed in two steps. In the first step all imported modules are initialized
by calling the initialization function in respective module. Step two is to
initialize all global virtual registers, by first allocating memory on the heap
using the primitive function new and then set the global register to point
on the allocated memory chunk. Below in listing 4.11 is an example of an
init-function, the example is taken from the library module BitOps in the file
“BitOps.t”.

@eqBits8_BitOps = common global %Eq_Prelude* null

Definition of a global virtual register that is later initiated in the module
initiator function.

define void @_init_BitOps() {

%reg0 = load i1* @INITIALIZED

%reg1 = icmp eq i1 0, %reg0

br i1 %reg1, label %label0, label %label1

label0:

call void @_init_Prelude()

...

%reg126 = bitcast %Eq_Prelude** @eqBits8_BitOps to i32**

call void @new(i32** %reg126, i32 3)

%reg127 = load %Eq_Prelude** @eqBits8_BitOps

%reg128 = getelementptr [0 x i32]* @__GC__Eq_Prelude , i32 0, i32 0

%reg129 = getelementptr %Eq_Prelude* %reg127 , i32 0, i32 0

store i32* %reg128 , i32** %reg129

...

store i1 1 , i1* @INITIALIZED

br label %label1

label1:

ret void

}

Listing 4.11: Initiate function in BitOps module.

The _init_ function follows the same pattern in all modules.

1. The first part above label0 defines a global Boolean valued virtual
register INITIALIZED that holds information whether the module al-
ready has been initiated or not, this is to prevent the same module
from being initialized multiple times.

2. For each imported module the respective module initiator function is
called. The BitOps module imports the module Prelude and therefore
_init_Prelude() is called.

31

3. All global virtual registers are initialized.

4. Global virtual register INITIALIZED is set to true to prevent the module
from being initialized again (if the module is imported from several
modules).

4.7 Example: compiling map

As an example of how the compilation of a Timber function into LLVM rep-
resentation is made, we take a closer look on the compilation of the function
map, which is defined in the library module Prelude in the file “Prelude.t”.

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x : xs) = f x : map f xs

Listing 4.12: Timber definition of function map

The function map takes a polymorphic function f of type a -> b and maps
f recursively over a list of type [a]. The result is a list of type [b].

4.7.1 Definition of map in Kindle

Before the LLVM back-end generates a LLVM representation of the map func-
tion, the code is transformed in the front-end of the compiler and translated
into the main back-end intermediate language, Kindle (see section 4.2.1).

LIST map (BITS32 a_328, CLOS1 a_12, LIST a_13) {

CONS x_326 = new CONS {

GCINFO = CONS(primIntTimes(5,

primSHIFTR32(

primAND32(a_328, (BITS32)2), 1))),

a = (POLY)0,

b = (LIST)0

};

CONS a_327 = x_326;

while ((Bool)1) {

switch ((WORD)a_13) {

0: { a_327->b = (LIST)0;

return x_326->b;

}

default: { POLY v_194 = ((CONS)a_13)->a;

LIST v_195 = ((CONS)a_13)->b;

CONS x_329 = new CONS {

GCINFO = CONS(primIntTimes(5,

primSHIFTR32(

primAND32(a_328, (BITS32)2), 1))),

32

a = a_12->Code(v_194),

b = (LIST)0

};

a_327->b = (LIST)x_329;

a_327 = (CONS)a_327->b;

a_13 = v_195;

continue;

}

}

}

RAISE(1);

}

Listing 4.13: Kindle definition of function map.

4.7.2 Definition of map in LLVM

The original function took two arguments, a function of type a -> b, an a
list with elements of type a. When polymorphic functions is translated into
LLVM, the function receives an extra argument. The extra argument is a
tag, indicating whether the type variables are pointers or scalars.

define %LIST* @map_Prelude(i32 %a_328, %CLOS1* %a_12, %LIST* %a_13) {

In the case of the function map, the extra argument is i32 %a_328. The
second argument is the function f transformed into a unary closure, the
third argument is the list.

%reg39 = alloca %CONS*

%reg38 = alloca %LIST*

%reg33 = alloca i32*

%reg19 = alloca %CONS*

%reg3 = alloca %CONS*

%reg2 = alloca %LIST*

%reg1 = alloca %CLOS1*

%reg0 = alloca i32

store i32 %a_328 , i32* %reg0

store %CLOS1* %a_12 , %CLOS1** %reg1

store %LIST* %a_13 , %LIST** %reg2

All functions that are generated with LLVM starts with allocating memory
for all variables on the stack. The main reasons for that is to prevent stack
allocations from happen inside a loop, and therefore lead to stack overflow
and to be able to take advantage of the LLVM optimization pass mem2reg,
that promotes memory to registers.

%reg4 = bitcast %CONS** %reg3 to i32**

call void @new(i32** %reg4, i32 3)

33

%reg5 = load %CONS** %reg3

%reg6 = load i32* %reg0

%reg7 = and i32 %reg6, 2

%reg8 = lshr i32 %reg7, 1

%reg9 = mul i32 5, %reg8

%reg10 = getelementptr [0 x i32]* @__GC__CONS , i32 0, i32 %reg9

%reg11 = getelementptr %CONS* %reg5 , i32 0, i32 0

store i32* %reg10 , i32** %reg11

In the third part of the LLVM code an initial cons-cell is allocated on the
heap. The first field in the structure type that describes the cons-cell is a
pointer to GCINFO. The offset of the sub-array of the array __GC__CONS is
calculated by a sequence of arithmetic operations. The result from the calcu-
lation is used in as argument to the instruction getelementptr to index the
correct sub-array. A pointer to the sub-array holding the correct GCINFO
is stored in the GCINFO field.

%reg12 = load %CONS** %reg3

%reg13 = inttoptr i32 0 to i32*

%reg14 = getelementptr %CONS* %reg12 , i32 0, i32 1

store i32* %reg13 , i32** %reg14

%reg15 = load %CONS** %reg3

%reg16 = inttoptr i32 0 to %LIST*

%reg17 = getelementptr %CONS* %reg15 , i32 0, i32 2

store %LIST* %reg16 , %LIST** %reg17

%reg18 = load %CONS** %reg3

store %CONS* %reg18 , %CONS** %reg19

br label %label0

Both the element of the cell and the pointer to the next cons-cell is set to
0. At the end of the code block there is an unconditional break to label0,
which is the basic block that contains the test expression of the while loop.

label1:

%reg20 = load %LIST** %reg2

%reg21 = ptrtoint %LIST* %reg20 to i32

%reg22 = icmp eq i32 %reg21, 0

br i1 %reg22, label %label4, label %label5

This basic-block contains the first test expression in the switch statement.
Before the test, the pointer to the next cons-cell is cast to a 32 bit integer.
This integer is compared against 0, where 0 should be interpreted as the
empty list. If the test succeeds (the current cell is the last in the list) the
control flow moves to label4, if there is a next cons-cell the control flow
moves to label5.

label4:

%reg23 = load %CONS** %reg19

%reg24 = inttoptr i32 0 to %LIST*

34

%reg25 = getelementptr %CONS* %reg23 , i32 0, i32 2

store %LIST* %reg24 , %LIST** %reg25

%reg26 = load %CONS** %reg3

%reg27 = getelementptr %CONS* %reg26 , i32 0, i32 2

%reg28 = load %LIST** %reg27

ret %LIST* %reg28

br label %label5

When the pointer to the next cons-cell is null, the whole list has been pro-
cessed. The pointer to the next cons-cell in the new list is set to null and
head of the new list is loaded and returned.

label5:

%reg29 = load %LIST** %reg2

%reg30 = bitcast %LIST* %reg29 to %CONS*

%reg31 = getelementptr %CONS* %reg30 , i32 0, i32 1

%reg32 = load i32** %reg31

store i32* %reg32 , i32** %reg33

%reg34 = load %LIST** %reg2

%reg35 = bitcast %LIST* %reg34 to %CONS*

%reg36 = getelementptr %CONS* %reg35 , i32 0, i32 2

%reg37 = load %LIST** %reg36

store %LIST* %reg37 , %LIST** %reg38

The next basic-block handles the case where the cell has a pointer to another
cons-cell. First the data of the current cell and the pointer to the next
cons-cell loaded.

%reg40 = bitcast %CONS** %reg39 to i32**

call void @new(i32** %reg40, i32 3)

%reg41 = load %CONS** %reg39

%reg42 = load i32* %reg0

%reg43 = and i32 %reg42, 2

%reg44 = lshr i32 %reg43, 1

%reg45 = mul i32 5, %reg44

%reg46 = getelementptr [0 x i32]* @__GC__CONS , i32 0, i32 %reg45

%reg47 = getelementptr %CONS* %reg41 , i32 0, i32 0

store i32* %reg46 , i32** %reg47

Then the a new cons-cell is allocated and the GCINFO field is initiated.

%reg48 = load %CONS** %reg39

%reg49 = load %CLOS1** %reg1

%reg50 = getelementptr %CLOS1* %reg49 , i32 0, i32 1

%reg51 = load i32* (%CLOS1*, i32*)** %reg50

%reg52 = load %CLOS1** %reg1

%reg53 = load i32** %reg33

%reg54 = call i32* (%CLOS1*, i32*)* %reg51(%CLOS1* %reg52, i32* %reg53)

%reg55 = getelementptr %CONS* %reg48 , i32 0, i32 1

store i32* %reg54 , i32** %reg55

35

The closure is applied to the element of the data field in the old cell and the
result is stored in the data field of the new cell.

%reg56 = load %CONS** %reg39

%reg57 = inttoptr i32 0 to %LIST*

%reg58 = getelementptr %CONS* %reg56 , i32 0, i32 2

store %LIST* %reg57 , %LIST** %reg58

The pointer to the next cell in the new list is set to null.

%reg59 = load %CONS** %reg19

%reg60 = load %CONS** %reg39

%reg61 = bitcast %CONS* %reg60 to %LIST*

%reg62 = getelementptr %CONS* %reg59 , i32 0, i32 2

store %LIST* %reg61 , %LIST** %reg62

%reg63 = load %CONS** %reg19

%reg64 = getelementptr %CONS* %reg63 , i32 0, i32 2

%reg65 = load %LIST** %reg64

%reg66 = bitcast %LIST* %reg65 to %CONS*

store %CONS* %reg66 , %CONS** %reg19

%reg67 = load %LIST** %reg38

store %LIST* %reg67 , %LIST** %reg2

br label %label0

br label %label3

In the last part of the basic-block, the variables used in the body of the while
loop is prepared for the next iteration and the control flow moves to label0.

label3:

br label %label0

This is only an effect of the compilation schema of the switch statement and
the basic-block is never entered.

label0:

%reg68 = icmp eq i1 1, 1

br i1 %reg68, label %label1, label %label2

The main work in the map function is done inside the infinite while-loop, the
test expression only compares 1 and 1 for equality, which is always true, and
the control flow moves to label1.

label2:

call void @RAISE(i32 1)

unreachable

}

The last basic-block, which is outside of the infinite while-loop and the con-
trol flow should never enter. The basic-block only contains a call to the
function RAISE that raises an exception and an instruction unreachable.
unreachable is added because the LLVM assembler does not permit a func-
tion call as the last instruction in a basic-block.

36

Chapter 5

Evaluation

In this chapter the LLVM back-end is compared against the C back-end. The
comparison consists of a small set of Timber programs that are compiled
with respective back-end and the performance of the resulting executables
are compared against each other. All programs were run on a Core 2 Duo
P8600 processor running at 2.40GHz, with 2048MB of memory under Ubuntu
10.04 (2.6.32-22-generic kernel). The execution time given is the mean value
of 20 subsequent executions. The source code for each program can be found
in the Appendix.

5.1 Performance

As seen in table 5.1, the LLVM back-end produces code of significantly higher
quality than the C back-end on all programs except two, and in those cases
the LLVM back-end is not far behind. One interesting result is the last row,
a program that calculates the 45th Fibonacci number, with the 45 given as
a constant inside the program. in this case, LLVM really takes advantage of
this knowledge and produces code that executes approximately twelve times
faster than the code compiled with the C compiler.

5.2 File size

Of the programs that were compiled, the LLVM beck-end generated inter-
mediate files that were smaller than the intermediate files generated by the
C back-end, in five out of eight cases. But when comparing the size of the
executable file, the LLVM back-end produced smaller files in all cases.

37

Program C [s] LLVM [s] Relative
Tak (Int) 3.6756 2.1874 1.6804
Tak (Float) 4.3028 2.2697 1.8958
Tak (Polymorphic) 10.4161 9.3560 1.1133
Ackermann (Int) 2.4364 1.1835 2.0586
Ackermann (Float) 4.8131 1.9042 2.5276
Ackermann (Polymorphic) 26.4403 18.7475 1.4103
Primes 1.2801 1.3065 0.9798
Concurrent primes 22.7399 14.7495 1.5417
Mandelbrot set 2.5975 2.6340 0.9861
Matrix multiplication (Int) 2.5547 1.9097 1.3377
Matrix multiplication (Float) 2.8432 2.0688 1.3743
Fibonacci (argument) 19.6203 11.2080 1.7506
Fibonacci (constant) 19.6191 1.6290 12.0436

Table 5.1: Comparison of the execution time.

Executable Intermediate
Program LLVM C LLVM (.bc) C (.o)
Tak function 50541 74956 1796 2524
Ackermann function 50541 74956 2356 2652
Primes 50607 75057 2716 2468
Concurrent primes 56426 86049 10488 9200
Mandelbrot set 62617 86847 8936 8284
Matrix multiplication 51226 75769 4356 4640
Fibonacci argument 50480 74905 1084 1584
Fibonacci constant 50480 74905 1080 1476

Table 5.2: Comparison of file size measured in bytes.

38

Chapter 6

Conclusion

This thesis has described the design and implementation of the LLVM back-
end of the Timber compiler. Looking at the implementation, no significant
modifications on the run-time system was necessary in order to make it work
with the LLVM back-end. The LLVM back-end is implemented as a separate
module and none of the existing modules in the compiler was altered.

Compared to the C back-end, the LLVM back-end is larger (measured
in lines of code), this is mainly because the LLVM back-end uses an inter-
mediate abstract representation of the LLVM assembly language, which is
pretty-printed to a text file, while the C back-end uses a pretty-printer di-
rectly, without an abstract representation. However, the use of an abstract
representation can be eliminated by using Haskell FFI bindings to the LLVM
API (see 6.1.1).

As seen in chapter 5, the LLVM back-end performs nearly as good as the
C back-end or better. In the two cases where the C back-end was the fastest;
on the Mandelbrot test and on the single threaded Primes test, the LLVM
back-end performed nearly as good, but in the rest of the test cases the
LLVM back-end performed significantly better than the C back-end. This is
a very promising result given that the development of the LLVM back-end
has only started.

Further possibilities with LLVM is to utilize the full optimization facilities
that are offered. Compile-time optimization of single modules generated from
single Timber modules, link-time optimization with whole program scope and
optimizations on the linked program. The C source code generated from the
original C back-end has a distinct style and so does the LLVM assembly code
generated. This should imply that there is set of LLVM optimization passes
that could be extra beneficial for the certain style of assembly code that the
LLVM back-end generates. This could lead to smaller size of generated files
or even faster execution time. In the optimal case, the optimizations will

39

produce files that are both smaller in size and have shorter execution time.
Another possibility with LLVM is to use the LLVM optimization pass

framework and write optimization passes that are especially targeted to the
certain style of LLVM assembly code that the Timber compiler produces.

The conclusion is that the LLVM compiler infrastructure offers a suitable
back-end for the Timber compiler and it is capable of generating code that
has higher quality than code generated by the C back-end, both measured
in size and performance.

6.1 Further work

The further work can be divided into two parts, one focuses on the modifying
the LLVM back-end of the Timber compiler and the other focuses on utilize
the LLVM optimization machinery.

6.1.1 Using Haskell FFI bindings to LLVM

Instead of generate LLVM assembly code from the Timber compiler, the
code generator should use Haskell FFI bindings to the LLVM API. Those
bindings should operate on a lower than those that currently are available[1].
This would reduce the complexity of the LLVM back-end and enable writing
LLVM bitcode files directly instead of writing LLVM assembly code that are
assembled with a command line tool.

6.1.2 Optimizations

The implemented LLVM back-end only make use of the standard optimiza-
tion passes, it would be interesting to make use of the full optimization
machinery that LLVM provides. This involves both extending the Timber
compiler with support for flags that is passed to the LLVM optimizer and to
perform an investigation of which passes that are suitable for the code that
are generated by the Timber LLVM back-end.

40

Bibliography

[1] Lennart Augustsson and Bryan O’Sullivan. HackageDB: llvm-0.7.1.1.
Mar. 2010. url: http://hackage.haskell.org/package/llvm.

[2] Magnus Carlsson, Johan Nordlander, and Dick Kieburtz. The Semantic
Layers of Timber. Vol. 2895. 2003, pp. 339–356.

[3] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan
Kaufmann, 2004. isbn: 155860698.

[4] The IEEE and The Open Group. The Open Group Base Specifications
Issue 7. Mar. 2010. url: http://www.opengroup.org/onlinepubs/
9699919799/.

[5] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimiza-
tion”. See http://llvm.cs.uiuc.edu. MA thesis. Urbana, IL: Com-
puter Science Dept., University of Illinois at Urbana-Champaign, 2002.

[6] Chris Lattner. The LLVM Compiler Infrastructure. Feb. 2010. url:
http://llvm.org/.

[7] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: Proceedings of
the 2004 International Symposium on Code Generation and Optimiza-
tion (CGO’04). Palo Alto, California 2004.

[8] Johan Nordlander. “Reactive Objects and Functional Programming”.
PhD thesis. Chalmers University of Technology, 1999.

[9] John van Schie. “Compiling Haskell to LLVM”. MA thesis. Utrecht
University, 2008.

[10] Reid Spencer. The Often Misunderstood GEP Instruction. Feb. 2010.
url: http://llvm.org/releases/2.6/docs/GetElementPtr.html.

[11] David Anthony Terei. “Low Level Virtual Machine for Glasgow Haskell
Compiler”. MA thesis. The University of New South Wales, 2009.

[12] Unknown. LLVM: Frequently Asked Questions. Mar. 2010. url: http:
//llvm.org/docs/FAQ.html.

41

Appendix A

Source code

A.1 Tak function

Calculates the Tak function.

-- Integer arguments

takI :: Int -> Int -> Int -> Int

takI x y z

| x <= y = y

| otherwise = takI (takI (x-1) y z) (takI (y-1) z x) (takI (z-1) x y)

-- Floating point arguments

tFloat :: Float -> Float -> Float -> Float

tFloat x y z

| x <= y = y

| otherwise = takF (takF (x-1) y z) (takF (y-1) z x) (takF (z-1) x y)

-- Polymorphic arguments

takP x y z

| x <= y = y

| otherwise = takP (takP (x-1) y z) (takP (y-1) z x) (takP (z-1) x y)

A.2 Ackermann function

Calculates the Ackermann function.

-- Integer arguments

ackI :: Int -> Int -> Int

ackI m n

| m == 0 = n+1

| m > 0 && n == 0 = ackI (m-1) 1

| otherwise = ackI (m-1) (ackI m (n-1))

42

-- Integer arguments

ackF :: Float -> Float -> Float

ackF m n

| m == 0 = n+1

| m > 0 && n == 0 = ackF (m-1) 1

| otherwise = ackF (m-1) (ackF m (n-1))

-- Polymorphic arguments

ackP m n

| m == 0 = n+1

| m > 0 && n == 0 = ackP (m-1) 1

| otherwise = ackP (m-1) (ackP m (n-1))

A.3 Number of primes

Calculates the number of prime numbers below or equal to a given integer.

module Primes where

import POSIX

root :: World -> Cmd () ()

root w = do

env = new posix w

limit :: Int

limit = fromRight (parse (env.argv!1))

primesCounter = new primes limit

ct <- primesCounter

env.stdout.write (show ct++"\n")

env.exit 0

primes limit = class

primesBound = limit ‘div‘ log3 limit

primes := uniarray primesBound 0

count := 0

isPrime k = loop 0

where loop n = do

p = primes!n

if p*p > k then

result True

elsif k ‘mod‘ p == 0 then

result False

else

r <- loop (n+1)

43

result r

checkFrom k = do

p <- isPrime k

if p then

primes!count := k

count := count + 1

if k < limit then checkFrom (k+1)

result request

primes!0 := 2

count := 1

checkFrom 3

result count

log3 :: Int -> Int

log3 n

| n < 3 = 0

| otherwise = 1 + log3 (n ‘div‘ 3)

A.4 Concurrent number of primes

Calculates the number of prime numbers below or equal to a given integer
using a concurrent approach.

module ConcPrimes where

import ConcMap

import POSIX

import Data.Functional.List -- sum

-- Computes and prints the number of primes smaller than or equal to

-- command line argument.

root :: World -> Cmd () ()

root w = do

env = new posix w

limit = fromRight (parse (env.argv!1))

limr = isqrt limit -- floor (sqrt (fromInt limit))

smallPrimes = primesTo limr

finish ps = action

count = length smallPrimes + sum ps

env.stdout.write (show count ++ "\n")

env.exit 0

tasks = ((limr-1)*limr+1,limit) : [((j-1) * limr + 1, j * limr)

| j <- [2..limr-1]

44

]

cmap (countPrimes smallPrimes) tasks finish

-- counts primes in interval (from,to);

-- requires ps to be list of all primes up to at least sqrt(to).

countPrimes ps (from,to) = loop from 0

where loop k ack

| k > to = ack

| noFactors ps = loop (k+1) (ack+1)

| otherwise = loop (k+1) ack

where

noFactors [] = True

noFactors (p : ps) = p*p > k ||

(k ‘mod‘ p /= 0 && noFactors ps)

-- Used to compute list of "small" primes for use as argument

-- to countPrimes.

primesTo n = sieve [2..n]

where sieve (p:ps)

| p*p > n = p : ps

| otherwise = p : sieve [q | q <- ps, q ‘mod‘ p /= 0]

isqrt n

| n < 4 = 1

| otherwise = isqrt’ n

isqrt’ n

| (n1 + 1) * (n1 + 1) <= n = n1 + 1

| otherwise = n1

where n1 = 2 * (isqrt (n ‘div‘ 4))

A.4.1 Concurrent map

module ConcMap where

cmap :: (a -> b) -> [a] -> ([b] -> Action) -> Cmd _ ()

cmap f xs cb = do

c = new cmap1 f xs cb

c

result ()

private

cmap1 :: (a -> b) -> [a] -> ([b] -> Action) -> Class _

cmap1 f xs cb = class

numRunning := 0

results := array []

45

storeResult x v = request

if size results == 0 then

results := uniarray (length xs) v

results!x := v

numRunning := numRunning - 1

if numRunning == 0 then

cb (fromArray results)

result ()

launchTasks = action

forall x <- xs do

n = numRunning

ev = new class result action (storeResult n (f x))

ev

numRunning := numRunning + 1

result launchTasks

fromArray :: Array a -> [a]

fromArray a = fromArray’ [] (size a-1)

where fromArray’ xs n

| n < 0 = xs

| True = fromArray’ (a ! n : xs) (n-1)

A.5 Mandelbrot set

Generates an square image of the Mandelbrot set.

module MandelT where

import BitOps

import ConcMap

import POSIX

root :: World -> Cmd () ()

root w = do

env = new posix w

wid = fromRight (parse (env.argv ! 1)) -- width of image in pixels

finish res = action

env.stdout.write ("P4\n" ++ show wid ++ " " ++ show wid ++ "\n")

forall i <- res do

env.stdout.write i

env.exit 0

cmap (mk_row wid) [0..wid-1] finish

46

mk_row w y = loop (wb-1) "" -- produce image row at y

where

wb = w ‘div‘ 8 -- width of image in bytes

wc = 2 / fromInt w -- width of a pixel in the complex plane

ci = fromInt y * wc - 1

loop j ack

| j < 0 = ack

| otherwise = loop (j-1) (toEnum (toInt (mk_byte (j*8) 8 0)) : ack)

mk_byte x n b

| x < w = if n == 0

then b

else mk_byte (x+1) (n-1) ((b .<<. 1) .|. v)

| otherwise = b .<<. n

where cr = fromInt x * wc - 1.5

v = fractal 0 0 50

fractal :: _ -> _ -> Int -> BITS8

fractal r i k

| r2 + i2 > 4 = 0

| k == 0 = 1

| otherwise = fractal (r2-i2+cr) ((r+r)*i+ci) (k-1)

where (r2,i2) = (r*r,i*i)

A.6 Matrix multiplication

Multiplication of two matrices.

matmult a b = do

res = new class

m = size a

n = size b

p = size (b!0)

r := uniarray m (uniarray p 0)

result request

forall i <- [0..m-1] do

forall j <- [0..n-1] do

forall k <- [0..p-1] do

r!i!j := r!i!j + a!i!k * b!k!j

result r

r <- res

result r

47

A.7 Fibonacci

Calculates the nth number in the Fibonacci sequence.

fib :: Int -> Int

fib n = if n <= 1 then 1 else fib (n-1) + fib (n-2)

48

