
Waypoint-based path following system for a jet ski

Development, simulation and implementation of a path following control
system for an autonomous driving jet ski that follows a lead boat

Master’s thesis in Systems, Control & Mechatronics

In cooperation with the Swedish Sea Rescue Society

Anton Bergholtz
Carl-Adam Hernvall

Department of Signals & Systems

Chalmers University of Technology

Gothenburg, Sweden 2015

Master’s thesis EX024/2015

Waypoint-based path following system for a jet ski

Development, simulation and implementation of a path following control system

for an autonomous driving jet ski that follows a lead boat

Anton Bergholtz

Carl-Adam Hernvall

Department of Signals & Systems

Automation research group

Chalmers University of Technology

Gothenburg, Sweden 2015

Waypoint based path following for a jet ski

Development, simulation and implementation of a path following control system for an

autonomous driving jet ski that follows a lead boat

ANTON BERGHOLTZ

CARL-ADAM HERNVALL

c© Anton Bergholtz & Carl-Adam Hernvall, 2015.

Supervisor: Fredrik Falkman, Swedish Sea Rescue Society

Examiner: Petter Falkman, Department of Signals & Systems

Master’s Thesis EX024/2015

Department of Signals & Systems

Automation Research Group

Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: The cover shows how the Rescuerunner sends information via Wi-Fi and uses

UDP protocol. The information is sent to the user program where reference throttle and

steering are calculated and sent back to the Rescuerunner.

Printed by Reproservice Gothenburg, Sweden 2015

Abstract

This thesis has been focusing on developing and implementing a path following control

system for an autonomous driving jet ski, making it able to follow the path of a lead

boat. This has been achieved by deriving a mathematical model and describing the

motion of the jet ski in a water environment in 6 degrees of freedom. In order to get

ideas on how the actual implementation was going to be performed, the mathemati-

cal model was included as a part of a simulation model, in which the behavior of the

jet ski following a predefined path consisting of a number of waypoints was simulated.

Each waypoint was given a certain radius of acceptance and once the jet ski was within

this tolerance it started heading towards the next waypoint. The heading and throttle

of the jet ski was regulated using two PID-controllers. For the actual implementation

a Rescuerunner, which is a kind of jet ski owned by the Swedish Sea Rescue Society,

was used. The Rescuerunner was rebuilt with an Arduino microcontroller, that enabled

the steering and throttle to be controlled digitally from a graphical user interface. The

Arduino was also equipped with several shields that allowed it to connect to a Wi-Fi

network and a GPS-device. Via the network, the Rescuerunner was allowed to send and

receive GPS-positions from a similar Arduino microcontroller that was installed on the

lead boat. As done in the simulation model, the GPS-positions that was dropped from

the lead boat, were assigned a certain radius of acceptance and once the Rescuerunner

was within this radius it starts aiming at the next waypoint. The path following control

system has been tested with good results. It shows great tendencies on working as de-

sired, although more testing and evaluation needs to be performed.

Keywords: Path following, simulation, mathematical model, automatic con-

trol, sensor fusion, control engineering, UDP communication, microcontroller,

Arduino, IMU, tilt compensated digital compass, autonomous jet ski, Res-

cuerunner, I2C communication, graphical user interface

Acknowledgements

First of all, we would like to thank our supervisor and examiner Petter Falkman for

his counselling. He arranged valuable meetings and supported us throughout the whole

project. The meetings gave us new angles of incidence on how to approach upcoming and

unpredictable problems that arose as the work went on. We would also like to thank our

supervisor Fredrik Falkman at the Swedish Sea Rescue Society for the input he gave us

regarding the desired behavior of the Rescuerunner, facilitating the implementation work

a lot. Consecutively we would like to send a special thanks to Adam Andersson, Viktor

Bäckman, Oscar Pantzare, Anders Sarvik and Oscar Granqvist who worked beside us

on a similar project. The cooperation with them gave us a lot of valuable exchange.

Finally, we would also like to send our thanks to Bo Egardt who took the time to help

us in the earlier stages of the project, guiding us in the right direction.

Anton Bergholtz and Carl-Adam Hernvall,

Göteborg, June 2015

Contents

Glossary V

Acronyms VII

List of Figures IX

List of Tables XII

1 Introduction 1

1.1 Context . 2

1.2 General objectives . 2

1.3 Contributions . 3

1.4 Constraints . 3

1.5 Thesis organisation . 3

2 Modeling 5

2.1 Kinematics . 5

2.1.1 Coordinate systems . 5

2.1.2 Coordinate transformation . 7

2.1.3 Linear Velocity Transformation . 7

2.1.4 Angular Velocity Transformation 9

2.2 Nonlinear dynamic equation of motion . 10

2.3 Rigid body dynamics . 10

2.3.1 The inertia matrix . 11

I

CONTENTS

2.3.2 Coriolis and centripetal terms . 11

2.4 Hydrodynamic forces and moments . 12

2.4.1 Strip Theory . 14

2.4.2 Gravitational forces and moments 16

2.5 State space model . 20

3 Simulation 23

3.1 Generating waypoints . 25

3.1.1 Predefined waypoint generator . 25

3.1.2 GPS waypoint generator . 25

3.2 Guidance system . 26

3.2.1 Waypoint selection . 26

3.2.2 Line of Sight . 28

3.2.3 Calculating a continuous Line of Sight angle 30

3.2.4 Speed calculation . 30

3.3 Reference model . 33

3.4 Controller . 36

3.5 Water jet thruster dynamics . 39

3.6 Equation of motion in 3 DoF . 40

4 Sensor fusion 43

4.1 Arduino I2C communication . 44

4.2 Inertial measurement unit . 47

4.3 Calibration . 48

4.3.1 Accelerometer . 48

4.3.2 Gyroscope . 49

4.3.3 Magnetometer . 50

4.4 Filtering . 54

4.4.1 Low-pass filtering . 54

4.4.2 Complementary filtering . 55

4.5 Tilt compensation . 56

5 Communication 57

5.1 Hardware . 57

II

CONTENTS

5.2 Arduino software implementation . 58

5.3 User Datagram Protocol communication 58

5.4 Graphical User Interface . 60

6 Results & Analysis 63

6.1 Simulation results . 63

6.1.1 Simulation test 1: vmax = 5m/s, ra = 5m 65

6.1.2 Simulation test 2: vmax = 10m/s, ra = 5m 66

6.1.3 Simulation test 3: vmax = 5m/s, ra = 8m 68

6.1.4 Simulation test 4: vmax = 10m/s, ra = 8m 68

6.1.5 Simulation test 5: vmax = 5 m/s, ra = 15 m 70

6.1.6 Simulation test 6: vmax = 10 m/s, ra = 15 m 72

6.1.7 Simulation test 7: vmax = 5 m/s, ra = 5 m 73

6.1.8 Simulation test 8: vmax = 10 m/s, ra = 5 m 74

6.1.9 Simulation test 9: vmax = 5 m/s, ra = 8 m 76

6.1.10 Simulation test 10: vmax = 10 m/s, ra = 8 m 76

6.1.11 Simulation test 11: vmax = 5 m/s, ra = 15 m 78

6.1.12 Simulation test 12: vmax = 10 m/s, ra = 15 m 78

6.2 Empirical results . 80

6.2.1 Empirical test 1 - Steering accuracy 81

6.2.2 Semi-manual results . 81

6.2.2.1 Emperical test 2 - Throttle 81

6.2.2.2 Empirical test 3 - Communication range 82

6.2.3 Path following results . 82

6.2.3.1 Empirical test 4 - Follow Me application 83

6.2.3.2 Empirical test 5 - Follow Me application 85

6.2.4 Empirical test 6 - Heading angle 87

7 Discussion and concluding remarks 90

7.1 Simulation model . 91

7.2 Real implementation . 92

7.2.1 Steering accuracy . 92

7.2.2 Sensor fusion . 93

7.2.3 Communication . 93

III

CONTENTS

7.2.4 Remote control . 94

7.2.5 Path following . 94

7.3 Future work . 95

Bibliography 98

A Simulation 1

B Arduino 4

B.1 Rescuerunner . 4

B.2 Ego boat . 8

C GUI - Follow me 10

D Digital appendix 13

IV

Glossary

Arduino The Arduino Mega is a microcontroller board.

Boat fixed Coordination system relative to the Rescuerunner.

DoF Degrees of Freedom is a way to describe translations and rotations of a body

around a number of axes in a coordinate system.

Earth fixed Coordination system relative to earth.

EB The main vessel leading the platoon of the two vessels.

GPS A satellite navigation system that provides location and time information any-

where on or near the earth where there is an unobstructed line to four or more

GPS-satellites.

GUI The graphical user interface is a program where the user can choose between

different modes depending on which kind of application and behavior the user

want to apply.

IMU An electronic device that measures a vessels velocity, gravitational force and head-

ing by using a combination of an accelerometer, a gyroscope and in some cases a

magnetometer.

LOS A term used to describe the straight line connecting two consecutive points.

V

Glossary

MATLAB A programming language developed by MathWorks Inc., originally released

in 1984.

PID A controller with a Proportional, an Integral and a Derivative term.

RoA The radius of the circle enclosing a waypoint.

RR A jet ski vessel used and developed by the Swedish sea rescue society.

Simulink A graphical programming envioronment for modeling and simulating multi-

dynamic systems.

SSRS A voluntary organization that was started 1907 and since rescued over 25 000

ships and 70 000 people in need at sea.

UDP A data communication protocol that was designed by David P. Reed in 1980.

WP A latitude and longitude coordinate.

VI

Acronyms

BF Body fixed.

DoF Degrees of Freedom.

EB Ego boat.

EF Earth fixed.

GND Ground.

GPS Global Positioning System.

GUI Graphical User Interface.

I2C Inter-Integrated Circuit.

IMU Inertial Measurement Unit.

LOS Line of Sight.

LSB Least significant bit.

RoA Radius of acceptance.

RR Rescuerunner.

SCL Serial Clock Line.

VII

Acronyms

SDA Serial Data Line.

SSRS Swedish Sea Rescue Society.

UDP User Datagram Protocol.

VCC Voltage at the common collector.

WP Waypoint.

VIII

List of Figures

1.1 Flow diagram is showing an overview how the work of this thesis will be

carried out. 4

2.1 Illustration of motions and rotations affecting the RR in 6 DoF 6

2.2 Rotation over the heading angle ψ about the z-axis. 8

2.3 Rotation over the pitch angle θ about the y-axis. 9

2.4 Rotation over the heading angle φ about the x-axis. 9

2.5 Illustration on how shape of the hull is approximated. 15

2.6 Illustration on how the hull is divided into strips 15

2.7 illustration of the transverse metacentric stability 17

3.1 Illustration of the different steps of the software implementation and in

what order they were carried out. 24

3.2 Schematic overview of the Waypoint block that is a part the software

implementation presented in Fig. 3.1 . 25

3.3 Schematic overview of the guidance system block that is a part the soft-

ware implementation presented in Fig. 3.1 26

3.4 Illustration of the path following technique 27

3.5 Illustration of how the desired heading angle, ψd, is calculated 29

3.6 Illustration of the Gaussian function used for setting the speed limit . . . 32

3.7 Schematic overview of the Reference model block that is a part of Fig. 3.1 33

3.8 Comparison between the desired heading before the reference model, ψd,

and after the reference model, ψ̂d. 35

IX

LIST OF FIGURES

3.9 Comparison between the desired heading, ψ̂d, and the reference heading,

ψr of the RR. 36

3.10 Schematic overview of the Controller block that is a part of Fig. 3.1. . . . 37

3.11 A schematic overview of the Water jet thruster dynamics model that is a

part of Fig. 3.1. 39

3.12 Schematic overview of the Equation of motion block that is a part of Fig.

3.1. 40

4.1 The IMU with accelerometer ADXL345, gyroscope ITG3200 and magne-

tometer HCM5843 . 43

4.2 Schematic overview of the IMU sensor fusion procedure. 44

4.3 Comparison of the raw data from the accelerometer before (black) and

after (red) the calibration. 49

4.4 Illustration of the drift phenomenon, over time, when the gyroscope is

rotated around the z-axis ±5◦ . 50

4.5 Illustration of the raw data from the magnetometer around the y- and

x-axis before the calibration. 51

4.6 Illustration of the shape of the data given from the magnetometer after

calibration. 53

4.7 Comparison of the accelerometer data in the x-direction before and after

the low-pass filtering . 55

5.1 Schematic overview of the communication between the RR and the EB. . 59

5.2 Overview of the GUI that is used for running the different applications

programmed into the RR on a computer. 60

5.3 Illustration of buttons in the GUI that is a part of Fig. 5.2. 61

5.4 Illustration of application setup, where the modes can be switch by press-

ing the buttons. This figure is a part of Fig. 5.2. 61

6.1 Illustration of how the RR follows WPs released by the EB, with key

parameters set to vmax = 5 m/s and ra = 5 m. 65

6.2 Illustration of the speed profile for the RR for the path shown in Fig. 6.1. 66

6.3 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 5 m. 67

6.4 Illustration of the speed profile for the RR for the path shown in figure 6.3. 67

X

LIST OF FIGURES

6.5 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 5 m/s and ra = 8 m. 68

6.6 Illustration of the speed profile for the RR for the path shown in Fig. 6.5. 69

6.7 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 8 m. 69

6.8 Illustration of the speed profile for the RR for the path shown in Fig. 6.7. 70

6.9 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 5 m/s and ra = 15 m. 71

6.10 Illustration of the speed profile for the RR for the path shown in Fig. 6.9. 71

6.11 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 15 m. 72

6.12 Illustration of the speed profile for the RR for the path shown in Fig. 6.11. 73

6.13 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 5 m/s and ra = 5 m. 74

6.14 Illustration of the speed profile for the RR for the path shown in Fig. 6.13. 74

6.15 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 15 m. 75

6.16 Illustration of the speed profile for the RR for the path shown in Fig. 6.15. 75

6.17 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 5 m/s and ra = 8 m. 76

6.18 Illustration of the speed profile for the RR for the path shown in Fig. 6.17. 77

6.19 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 8 m. 77

6.20 Illustration of the speed profile for the RR for the path shown in Fig. 6.19. 78

6.21 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 5m/s and ra = 15 m. 79

6.22 Illustration of the speed profile for the RR for the path shown in Fig. 6.21. 79

6.23 Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 15 m. 80

6.24 Illustration of the speed profile for the RR for the path shown in Fig. 6.23. 80

6.25 Comparison between desired and actual throttle of the RR 81

6.26 Illustration of the connection of the Wi-Fi network is tested at large dis-

tances. 82

XI

LIST OF FIGURES

6.27 Illustration of Test 1 where the RR drives autonomously towards Asperö. 83

6.28 Illustration of Test 1 zoomed out where the RR drives autonomously to-

wards Asperö. 84

6.29 Illustration of the controlled steering angle and LOS-angle for test 1 where

the RR drives autonomous towards Asperö. 84

6.30 Illustration of Test 2 where the RR drives autonomously towards Asperö. 85

6.31 Illustration of Test 2 zoomed out where the RR drives autonomously to-

wards Asperö. 86

6.32 Illustration of the controlled steering angle and LOS-angle for test 2 where

the RR drives autonomous towards Asperö. 86

6.33 Illustration of the angular difference between the GPS and the IMU . . . 87

6.34 Illustration of the angular difference between the GPS and the IMU when

the RR was lying still. 88

B.1 Overview of the Arduino programs in the RR. 4

B.2 Overview of the Arduino programs in the EB. 8

C.1 Schematic overview of how the GUI invokes its functions 12

XII

List of Tables

2.1 Notation of variables describing the RR in a 6 DoF environment 6

2.2 Vector notations of the RR in 6 DoF . 7

2.3 Matrix notations of the nonlinear dynamic equations. 11

2.4 Parameter list of gravitational forces and moments 18

2.5 Notations of the RR in 3 DoF . 20

4.1 Pin configuration between Arduino Mega 2560 and 9 DoF IMU 45

4.2 Sensor notations . 48

5.1 Hardware implementation where the table specifies which components are

used at each vessel. 58

6.1 Overview of performed simulation tests 64

XIII

1

Introduction

The Swedish Sea Rescue Society (SSRS) is a voluntary organization that was started

1907 and has since then rescued over 25 000 ships and 70 000 people in need at sea.

In the past years SSRS has been growing rapidly and they currently consist of 68 res-

cue stations, 190 rescue boats and approximately 2000 voluntary lifeguards along the

Swedish coast[1].

Larger rescue boats are good at making their way in rough seas. Once reaching the

scene of the accident the size of these rescue boats is a problem. Because of their size

they appeared to be inefficient when it comes to browsing accidental scenes where the

water is shallow. In order to solve this problem the SSRS developed the Rescuerunner

(RR), a small and flexible jet ski, which has now been situated at most of their rescue

stations. Once this problem was solved a new one arose: it was complicated to adapt the

larger rescue boats to carry the smaller RRs to the scene of the accident. This has led

to an infrequent use of the RR. Currently the RRs are mostly being used for education

and training operations in the vicinity of the rescue stations.

One solution to the problem stated above is to introduce an automated RR[2]. The

purpose of implementing an autonomous RR is to handle situations where riding the RR

is unwanted, e.g. when transporting the RR through rough sea to the scene of accident.

Because of that, the goal was to create an application making the RR follow another

larger boat (hereinafter referred to as an Ego Boat (EB)) to a certain position where it is

1

CHAPTER 1. INTRODUCTION

more needed. Such an invention will hopefully be of great help and make today’s rescue

missions even more safe and effective. The fact that the RR will be available at the

scene of the accident, without exhausting the crew, will save time, which very often can

correlate with saving lives. Another benefit is that there is no need to make adoptions

for launch and recovery to existing larger boats, which means that the functionality and

the performance is not compromised. When the RR is decoupled from the EB, the risk

of hassles and extra cognitive effort of towing is minimized.

1.1 Context

This project is a cooperation between the SSRS and the department of Signals & Systems

at Chalmers University of Technology. The idea was to make the most of the practical

knowledge of how the RR is used today. Identify its pros and cons and further discuss

how to make the new application as efficient as possible. Combining this practical

knowledge from SSRS with the technical knowledge from Chalmers to create and develop

an autonomous RR. A path following algorithm and a control system, enabling the RR

to follow an EB are then developed within the framework of this cooperation. This

project resulted in a master’s thesis, which was carried out by the authors during the

first half of 2015.

1.2 General objectives

The general objectives of this thesis are

1. Deriving a mathematical model for the RR.

2. Developing a simulation environment for the RR, in which it is able to autonomously

follow a path, consisting of waypoints (WP) fed to its control system.

3. Development of a communication system which enables wireless data transfer be-

tween the RR and EB.

4. Assess the results gathered from the simulation and use them to redesign the RR

for automatic navigation.

2

CHAPTER 1. INTRODUCTION

1.3 Contributions

The main contributions of this thesis are listed below.

• Development of a mathematical model for a RR that can be used in simulations

for testing its behavior in path following applications.

• Development of a decision making algorithm, making it able for the system to

determine what to do when a WP is missed.

• Derivation of a tilt compensated heading angle

• Development of a control system for the EB-RR system using microcontrollers.

• Development of a communication system for the EB-RR system using microcon-

trollers.

1.4 Constraints

To be able to complete this thesis within the limited time frame certain things had to be

neglected. Therefore the simulation model is constructed without environmental impacts

such as winds, waves and drift taken into account. The path following system is only be

tested for low velocities and neither have laws regarding unmanned vehicles at sea been

taken into consideration. In order not to violate any sea traffic regulations, there was

always someone on board the RR being able to stop the engine if something unforeseen

would happen, when the path following control system was tested. On the contrary

to the simulation model the actual implementation of the path following system used

during the empirical tests only allows 3 Degrees of Freedom (DoF) to be controlled.

1.5 Thesis organisation

The report starts with describing some prerequisites regarding modeling of ocean vehi-

cles, consecutively the approach of deriving a mathematical model for the RR is thor-

oughly described, see Flow diagram 1.1. It is also mentioned what simplifications are

made and what is being neglected in the model and for what reasons. This chapter is

followed by a simulations chapter, carefully describing how the mathematical model of

the RR is implemented in a simulation environment. The chapter is also, among other

3

CHAPTER 1. INTRODUCTION

things, describing how the simulations are carried out, how the path following algorithm

is developed and how the PID-controllers for heading and speed are implemented. The

simulations chapter is followed by a chapter describing how the simulation environment

is translated for use in a real system, using Arduino Mega microcontrollers. This chapter

also includes sensor fusion algorithm and filtering, e.g. how the yaw angle of the RR is

calculated by combining an accelerometer, a gyroscope and a magnetometer. A result

chapter follows this chapter, where the results from the simulation and the result from

the tests performed on the actual application are presented. Finally the results from

this thesis work are discussed, conclusions are drawn and proposal for future work are

mentioned.

Diagram 1.1: Flow diagram is showing an overview how the work of this thesis will be

carried out.

4

2

Modeling

I
n this chapter a mathematical model of the RR is presented. First, the kinematics

of the RR is demonstrated, and how it is positioned and orientated with respect to

the Body Fixed (BF) coordinate system. Further, the nonlinear dynamic equation

of motion is stated followed by the rigid body dynamics. In this chapter a state

space model in 6 DoF is derived. For simulation purposes however, the state space model

is simplified to 3 DoF.

2.1 Kinematics

To be able to describe the position and orientation of the RR as a rigid body, it is nec-

essary to use six independent coordinates, see Tab. 2.1, where the RR can be described

in 6 DoF. Note, further on, vectors will be notated with bold font.

2.1.1 Coordinate systems

The motion of the RR is based on a 6 DoF model, and uses two coordinate systems,

one EF (Earth fixed) and one Boat fixed[3], see Fig. 2.1. The BF coordinate axes are

defined as XBF (longitudinal axis), YBF (transverse axis) and ZBF (normal axis). The

EF coordinate axes are defined as XEF , YEF and ZEF . The RRs position and orientation

will be expressed relative to the BF frame and described by the vector ν, also called

the Euler rate vector. The linear and angular velocity vector η is formulated from the

5

CHAPTER 2. MODELING

Table 2.1: Notation of variables describing the RR in a 6 DoF environment

6 DoF

Forces

and

moments

Linear

and

angular vel.

Position

and

Euler angles

1. Motions in the x-direction (surge) X u x

2. Motions in the y-direction (sway) Y v y

3. Motions in the z-direction (heave) Z w z

4. Rotations around the x-axis (roll) K p φ

5. Rotations around the y-axis (pitch) M q θ

6. Rotations around the z-axis (yaw) N r ψ

XBF

YBF

ZBF

Boat Fixed

(CoG)

v (sway)w (heave)

u (surge)

Earth Fixed

XEF

Y EF

ZEF

r (yaw)

q (pitch)

p (roll))

Figure 2.1: Illustration of motions and rotations affecting the RR in 6 DoF. The motions

as well as the rotations are described along the x−, y− and z−axis respectively.

BF coordinate system. The forces acting on the RR in its three dimensions is referred

to as τ 1. The same goes for the moments, where τ 2 will describe the moments around

the three axes. Together they will form the forces and moments vector τ . The following

notations will therefore be used throughout this thesis, see Tab. 2.2.

6

CHAPTER 2. MODELING

Table 2.2: Vector notations of the RR in 6 DoF

η = [η>1 ,η
>
2]>, η1 = [x,y,z]>, η2 = [φ,θ,ψ]>,

ν = [ν>1 ,ν
>
2]>, ν1 = [u,v,w]>, ν2 = [p,q,r]>,

τ = [τ>1 ,τ
>
2]> τ 1 = [X,Y,Z] τ 1 = [K,M,N].

2.1.2 Coordinate transformation

In order to describe the position and movement of the RR relative to the earth-fixed

coordinate system a velocity transformation can be used. According to [3] the following

expression for this transformation can be derived

η̇1 = J1(η2)ν1. (2.1)

Here J1(η2) is a transformation matrix for expressing to so called Euler angles, i.e. roll

(φ) , pitch (θ) and yaw (ψ),. With the help of ”Euler’s Theorem of Rotation”as described

in [3], the rotation matrices can be derived as

Rx(φ) =

1 0 0

0 c(φ) s(φ)

0 −s(φ) c(φ)

 ,Ry(θ) =

c(θ) 0 −s(θ)

0 1 0

s(θ) 0 c(θ)

 ,Rz(ψ) =

c(ψ) s(ψ) 0

−s(ψ) c(ψ) 0

0 0 1

(2.2)

where s(·) = sin(·) and c(·) = cos(·) and the three rotation matrices Rx, Ry and Rz

about the rotation angle φ, θ and ψ respectively.

2.1.3 Linear Velocity Transformation

The transformation matrix is described by three rotations matrices and can be written

as

J1(η2) = R>x (φ)R>y (θ)R>z (ψ). (2.3)

It is important to have in mind that these rotations are not arbitrary, but are often set

according to the xyz-convention in control applications specified in terms of the Euler

7

CHAPTER 2. MODELING

angles as described in section 2.1.2. So will be done also in this thesis. From what is

written in 2.3 the inverse transformation is possible to express as

J1
−1(η2) = J>

1 (η2) = Rx(φ)Ry(θ)Rz(ψ). (2.4)

Subsequently expanding the linear transformation matrix results in the following expres-

sion

J1(η2) =

c(θ)c(ψ) c(ψ)s(θ)s(φ)− c(φ)s(ψ) c(φ)c(ψ)s(θ) + s(φ)s(ψ)

c(θ)s(ψ) c(φ)c(ψ) + s(θ)s(φ)s(ψ) c(φ)s(θ)s(ψ)− c(ψ)s(φ)

−s(θ) c(θ)s(φ) c(θ)c(φ)

 . (2.5)

In Fig. 2.2-2.4 it is described what happens with the roll, pitch and yaw when rotating

them around the z− ,y− and x−axis respectively. When considering rotation around the

z−axis the new coordinate system XBF,3YBF,3ZBF,3 arises[3]. This rotation describes

the behavior of the RR when rotating the yaw angle ψ about the z−axis (Fig. 2.2). The

same goes for the coordinate system XBF,2YBF,2ZBF,2 when rotating the pitch angle θ

about the y−axis (Fig. 2.3), and the coordinate system XBF,1YBF,1ZBF,1 when rotating

the roll angle φ about the x−axis (Fig. 2.4).

YBF,3

XBF,3

ŶBF,3

X̂BF,3

ψ

ψ

Figure 2.2: Rotation over the heading angle ψ about the z-axis.

8

CHAPTER 2. MODELING

XBF,2

ZBF,2

X̂BF,1

ẐBF,1

θ

θ

Figure 2.3: Rotation over the pitch angle θ about the y-axis.

YBF,1

ZBF,1

ŶBF,0 = YBF

ẐBF,0 = ZBF

φ

φ

Figure 2.4: Rotation over the heading angle φ about the x-axis.

2.1.4 Angular Velocity Transformation

The same approach is used as in section 2.1.3 when calculating the transformation matrix

J2(η2), now with the angular velocity vector ν2 = [p,q,r]> and the Euler rate vector

η2 = [φ,θ,ψ]>. The orientation of the RR can be described by the BF reference frame

with respect to the BF frame, see Eq. 2.6.

9

CHAPTER 2. MODELING

ν2 =

φ̇

0

0

+Rx(φ)

0

θ̇

0

+Rx(φ)Ry(θ)

0

0

ψ̇

 = J−1

2 (η)η̇. (2.6)

The Eq. 2.6 can be expanded in terms of η2 by

η̇2 = J2(η2)ν, (2.7)

with the corresponding inverse transformation matrix in Eq. 2.8.

J−1

2 (η2) =

1 0 −s(θ)

0 c(θ) c(θ)s(ψ)

0 −s(φ) c(θ)c(φ)

⇒ J2(η2)

1 s(φ)c(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)c(θ)

 , (2.8)

where s(·) = sin(·), c(·) = cos(·) and t(·) = tan(·). With all components derived the

overall kinematics can be describe by the vector in Eq. 2.9.

η̇1
η̇2

 =

J1(η2) 03X3

03X3 J2(η2)

ν1
ν2

⇒ η̇ = J(η)ν. (2.9)

2.2 Nonlinear dynamic equation of motion

To be able to describe the behavior of the RR in a water environment the equations of

motion, described by Fossen [3] is a powerful tool. The Eq. 2.10 describes the 6 DoF

nonlinear dynamic equation of motion with matrix explanations in Tab. 2.3

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ , (2.10)

2.3 Rigid body dynamics

In the following section it will be described how the rigid body parameters from Eq.

2.10 are calculated. The first part will show how to calculate the inertia matrix MRB

followed by the Coriolis and centripetal terms.

10

CHAPTER 2. MODELING

Table 2.3: Matrix notations of the nonlinear dynamic equations.

M = MRB +MA : Inertia matrix for a rigid body, including added mass

C(ν) = CRB(ν) +CA(ν) : Coriolis and centripetal forces, including added mass

D(ν) : Hydrodynamic damping matrix

g(η) : Gravitational forces and moments

τ : Control inputs as forces and moments

2.3.1 The inertia matrix

As mentioned by Krammer[4] the inertia matrix looks as follows

MRB =

mI3×3 03×3

03×3 I0

 , (2.11)

where I0 is the inertia tensor with respect to the origin, i.e.

I0 =

Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 . (2.12)

Here, Ixy = Iyx = Ixz = Izx = Iyz = Izy = 0[4], where the moments from the inertia

about centroidal axes x,y and z can be written as

Ixx =
(1

2
− 1

2
− 16

9π2
mr2

)
, (2.13)

Iyy =
(1

4
− 16

9π2
mr2

)
+

1

12
mL2, (2.14)

Izz =
1

4
mr2 +

1

12
mL2. (2.15)

2.3.2 Coriolis and centripetal terms

The matrix describing the Coriolis and centripetal forces can be written as below

CRB(ν) =

 mS(ν2) −mS(ν2)S(rG)

mS(rG)S(ν2) −S(I0ν2)

 , (2.16)

11

CHAPTER 2. MODELING

where rG is the distance from the origin to the center of gravity and S is Skew-Symmetric

(asymmetric) matrix, e.g.

S(λ) =

0 −λ3 λ2

λ3 0 −λ1
−λ2 λ1 0

 , S(ν2) =

0 −r q

r 0 −p

−q p 0

 . (2.17)

Since the origin of the BF coordinate system is placed in way which makes it coincide with

the RRs center of gravity rG =
[
0 0 0

]>
. From this it is obvious that S(rG) = 03×3,

why the following expression for CRB(ν) can be written as

CRB(ν) =

0 −mp mq 0 0 0

mr 0 −mp 0 0 0

−mq mp 0 0 0 0

0 0 0 0 −pIxx + qIxy + rIxz −pIyx + qIyy − rIyz
0 0 0 −pIzx − qIzy + rIzz 0 −pIxx + qIxy + rIxz

0 0 0 pIyx − qIyy + rIyz pIxx − qIxy − rIxz 0

.

(2.18)

2.4 Hydrodynamic forces and moments

Since the inertia of the surrounding fluid is affecting the RR the so called added mass

effect [3] has to be taken into account. This matrix is denoted as MA and can be seen

in Eq. 2.19.

MA = −

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

, (2.19)

12

CHAPTER 2. MODELING

but since the RR is symmetrical about the xbzb-plane. MA can be assumed symmetric,

thereforeMAij = MAji . As the off-diagonal terms inMA andMRB are small compared

to the diagonal elements, they could be neglected for further simplification, see Eq. 2.20.

MA = −diag(Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ), (2.20)

where the parameters in MA are calculated using strip theory, see Section 2.4.1.

As for the inertia matrix also the Coriolis and centripetal matrix is affected by the

movement of the fluid it lays in. Therefor a Coriolis and centripetal matrix CA(ν) for

the added mass must be included, see Fig. 2.21.

CA(ν) =

 03×3 −S(A11ν1 +A12ν2)

−S(A11ν1 +A12ν2) −S(A21ν1 +A22ν2)

 , (2.21)

where Aij , i ∈ [1,2] and j ∈ [1,2] are the coefficients that constitutes the added mass

inertia matrix, i.e. Eq. 2.22

MA =

A11 A12

A21 A22

 , (2.22)

where MA also hold the equality from Eq. 2.20. Thus of this it can be concluded that

A12 = A21 = 03×3 and A11 and A22 form the following expression

A11 =

Xu̇ 0 0

0 Yv̇ 0

0 0 Zẇ

 , A22 =

Kṗ 0 0

0 Mq̇ 0

0 0 Nṙ

 ,

and with this known the final expression for CA(ν) can be seen in Eq. 2.23.

13

CHAPTER 2. MODELING

CA(ν) =

0 0 0 0 −wZẇ vYv̇

0 0 0 wZẇ 0 −uXu̇

0 0 0 −vYv̇ uXu̇ 0

0 −wZẇ vYv̇ 0 −rNṙ qMq̇

wZẇ 0 −uXu̇ rNṙ 0 −pKṗ

−vYv̇ uXu̇ 0 −qMq̇ pKṗ 0

. (2.23)

Finally, the expression for C(ν) can be expressed in Eq. 2.24.

C(ν) = CRB(ν) +CA(ν)

=

0 −mp mq 0 −wZẇ vYv̇

mr 0 −mp wZẇ 0 −uXu̇

−mq mp 0 −vYv̇ uXu̇ 0

0 −wZẇ vYv̇ 0 −pIxx + qIxy + rIxz − rNṙ −piyx + qIyy − rIyz + qMq̇

wZẇ 0 −uXu̇ −pIzx − qIzy + rIzz + rNṙ 0 −pIxx + qIxy + rIxz − pKṗ

−vYv̇ uXu̇ 0 pIyx − qIyy + rIyz − qMq̇ pIxx − qIxy − rIxz + pKṗ 0.

.

(2.24)

2.4.1 Strip Theory

To derive and estimate the hydrodynamic derivatives the strip theory is applied [3].

The procedure is to describe the submerged part of the RR as a two dimensional strip.

The two-dimensional coefficients for the added mass, that the strip corresponds to, can

then be summarized over the length of the body of the RR in order to get the three

dimensional coefficients see Fig. 2.6. The three-dimensional coefficients are obtained by

integrating the two-dimensional coefficients with respect to each length in the geometry.

The hydrodynamic coefficients are now calculated with the assumption that the cross-

section of the submerged part of the RR has the shape of a half-ellipse, see Fig. 2.5. For

the RR that also has a part of its geometry above the sea level certain parameters can

be approximated accordingly to

14

CHAPTER 2. MODELING

a

b

Y

Z

Figure 2.5: Illustration on how shape of the hull is approximated. The grey area illus-

trates the hull of the RR and the dashed area is the simplified half-ellipse area used as an

approximation. Here, a denotes the submerged depth of the hull and 2b is the total width

of the hull at the water line.

L

a

b
Y

Z

X

Figure 2.6: Illustration on how the hull is divided into strips. The grey are illustrates how

the submerged part of the hull of the RR is divided into a number of strips. The grey plane

represents one strip. L is the length of the hull.

A2D
22 =

1

2
ρπa2, (2.25)

A2D
33 =

1

2
ρπb2, (2.26)

A2D
44 =

1

16
πρ
(
b2 − a2

)2
. (2.27)

According to [3] the three dimensional coefficient for the added mass can be approximated

and put together accordingly to Eq. 2.28-2.33

15

CHAPTER 2. MODELING

A11 = −Xu̇ = 0.05m. (2.28)

With this known all the coefficients for the added mass can be calculated as

A22 = −Yv̇ =

∫ L/2

−L/2
A2D

22 (y,z)dx =
1

2
Lρa2, (2.29)

A33 = −Zẇ =

∫ L/2

−L/2
A2D

33 (y,z)dx =
1

2
Lπρb2, (2.30)

A44 = −Kṗ =

∫ L/2

−L/2
A2D

44 (y,z)dx =
1

16
Lπρ

(
b2 − a2

)2
. (2.31)

The parameter A55 can be calculated as

A55 = −Mq̇ =

∫ L/2

−L/2
x2A2D

33 dx+

∫ a

−a
z2A2D

11 dz =
a3m

30
+
L3ρa2

24
. (2.32)

Finally the last coefficient A66 can be calculated as

A66 = −Nṙ =

∫ b

−b
y2A2D

11 dy +

∫ L/2

−L/2
x2A2D

22 dx =
b3m

30
+
L3ρa2

24
. (2.33)

With the notations above in Eq.s 2.28-2.33 the added mass matrix MA can now be

rewritten in terms of A11, A22, A33, A44, A55 and A66

MA =

m
20 0 0 0 0 0

0 Lρa2

2 0 0 0 0

0 0 Lπρb2

2 0 0 0

0 0 0 1
16

(
b2 − a2

)2
Lπρ 0 0

0 0 0 0 ma3

30 + L3ρa2

24 0

0 0 0 0 0 mb3

30 + L3ρa2

24

. (2.34)

2.4.2 Gravitational forces and moments

When calculating the gravitational moments and hydrostatic forces of the RR the restor-

ing forces will depend on the metacentric height GM i of RR, where i ∈ {T,L} for trans-

verse and longitudinal metacentric height and is the distance from the metacenteric Mi

16

CHAPTER 2. MODELING

Z0

Y0
B

Equalibrium

MT

GMT

mg

ρg∇

B1

Y

Z

φ

φφ
CoG

Figure 2.7: Illustration of the transverse metacentric stability. The grey area illustrates

the transverse metacentric stability. GMT is the transverse metacentric height. When the

RR is at rest mg = ρg∇. The lateral metacentric stability can be expressed in a similar

way, simply by replacing MT to ML and φ with θ.

to the CoG, the location of the center of gravity and the center of buoyancy (B) [3], see

Fig. 2.7.

Thus to this, the restoring forces will only affect the heave, pitch and roll modes [3]. The

complete parameter list is shown in Tab. 2.4.

17

CHAPTER 2. MODELING

Table 2.4: Parameter list of gravitational forces and moments

ρ : water density (kg/m3)

zG(ν) : z-coordinate center of gravity (m)

zB(ν) : z-coordinate center of buoyancy (m)

∇ : displaced volume of water (m3)

Awp(η) : water plane area (m2)

GMT : transverse metacentric height (m)

GML : longitudinal metacentric height (m)

When the RR is at rest i.e. no external forces and moments are applied to it, the

buoyancy and weight are said to be in balance and can be written as Eq. 2.35.

mg = ρg∇. (2.35)

Let the heave displacement be w = 0, which will express the equilibrium position with

respect to the nominal displaced water volume ∇. Thus, the hydrostatic force will results

in the difference between the gravitational and buoyancy forces [5]m see Eq. 2.36

Zrestoring = mg − ρg[∇+ δ∇(z) = −ρgδ∇(z)], (2.36)

where the variation of heave position results in the change of displace water δ∇(z). The

change in displaced water can be expressed by Eq. 2.37.

δ∇(Z) =

∫ z

0
Awp(ζ) dζ. (2.37)

Here, the water plane area, Awp, is a function of the heave position. For simplification

Awp(ζ) ∈ Awp(0) is always constant for small disturbances in z. With this assumption

the restoring force Z will be linear in z and can be expressed as Eq. 2.38.

Zrestoring ∈ −ρgAwp(0)z. (2.38)

Thus there can be situations where the RR is pushed downwards by external forces,

e.q. a rider steps onto it, hence z ≥ 0. Because of this external force the buoyancy will

increase and will grow larger than the gravitational force since the submerged volume

18

CHAPTER 2. MODELING

part ∇ of the hull will increase by δ∇ to ∇ + δ∇. This assumption by [5] is physically

equivalent to a spring with stiffness and it holds that Zz = ρgAwp(0) with position z

Zrestoring ∈ −Zzz. (2.39)

The restoring force can be expressed in the BF frame, δf br[5] and can be seen in Eq.

2.40 and the restoring moment can be seen in Eq. 2.41.

δf br = −ρg∇

−sin(θ)

cos(θ)sin(φ)

cos(θ)cos(φ)

∫ z

0
Awp(ζ) dζ. (2.40)

mb
r =

GMT sin(φ)cos(θ)cosφ

GMLsin(θ)cos(θ)cosφ

−(GMLcos(θ) +GMT sin(φ)sinθ

 . (2.41)

Finally, the two Eqs. 2.40 and 2.41 can med written as the total restoring forces and

moments, see Eq. 2.42.

g(η) = −

δf br
mb

r

 . (2.42)

For further simplification it can be convenient to use a linear approximation and assuming

that
∫ z
0 Awp(ζ) ≈ Awp(0)z and φ, θ and z are small, with other words sin(·) ≈ (·) and

cos(·) ≈ (1), (·) ∈ {θ,φ}. The linear approximation can then be written

g(η) ≈ Gη. (2.43)

Here, G = diag{0,0,ρgAwp(0),ρg∇GMT ,ρg∇GML,0}, which is based on the assumption

of yz-plan symmetry. With this mention, together with Eq. 2.42 the final simplified

matrix of restoring forces and moments can be summarized in Eq. 2.44.

19

CHAPTER 2. MODELING

g(η) =

−ρgAwp(0)zθ

ρgAwp(0)zψ

ρgAwp(0)z

ρg∇GMTψ

ρg∇GMLθ

ρg∇(−GML +GMTψθ

=

0

0

ρgAwp(0)z

ρg∇GMTψ

ρg∇GMLθ

0

. (2.44)

2.5 State space model

To summarize what has been done in this chapter, an example of how a mathematical

model of the RR in 6 DoF can be derived. In this last sub chapter of the modeling

section, the final mathematical expression of the RR will be presented. Eq. 2.10 can

now be rewritten in terms of the forces and moments acting on the RR. To simplify the

model even more, the 6 DoF has been reduced to a 3 DoF model with heave, roll and

pitch neglected, see Tab. 2.5.

Table 2.5: Notations of the RR in 3 DoF

3 DoF

Forces

and

moments

Linear

and

angular vel.

Position

and

Euler angles

1. Motions in the x-direction (surge) X u x

2. Motions in the y-direction (sway) Y v y

4. Rotation around the z-axis (yaw) N r ψ

With the new 3 DoF the state space model can be expressed as Eq. 2.45 and 2.46.

η̇ = J(ν)ν. (2.45)

(MA +MRB)ν̇ +CRB(ν) +CA(ν) +D(ν)ν +Gη = τ . (2.46)

20

CHAPTER 2. MODELING

With the state space variables:

η =

x

y

0

0

0

ψ

and ν =

u

v

0

0

0

r

. (2.47)

21

CHAPTER 2. MODELING

22

3

Simulation

I
n the following chapter the simulation procedure is explained. The simulations are

carried out in 3 DoF and not with the complete 6 DoF model derived in section 2.

This due to the fact that such complexity was not needed for the simulation results

to be satisfactory. An overview of the main implementation can be seen in Fig.

3.1. Initially the guidance system block, implementing the Line of Sight (LOS) procedure

for determining how the RR is supposed to follow the generated WPs is mentioned.

Consecutively this section will be followed by a description of how the reference models

for both the speed and the heading are implemented. It is also mentioned how the speed

and heading angle error are controlled using two separate PID controller. Consecutively

it is also described how the PID controllers are properly tuned for this purpose. Finally

a connection between a model of the water jet thruster and the 3 DoF transformation

from the BF coordinate system to the EF coordinate system is described. The simulation

environment was developed in and performed with the MATLAB/Simulink software.

The Marine Systems Simulator Toolbox [6] for Simulink was used since it includes a lot

of convenient functions when simulating a sea environment.

23

CHAPTER 3. SIMULATION

Create Waypoints

Predefined
Waypoint
generator

GPS
Waypoint
generator

Guidance system

Waypoint
selector

Line of sight
(LOS)

Calculate speed

Reference models

Heading
reference model

Speed
reference model

Controller

Speed
controller

Heading
controller

Water jet thruster dynamics

Thruster
dynamaics

Equation of motion for Rescuerunner in 3 DoF

Rescuerunner

η

ν

η

ν

Figure 3.1: Illustration of the different steps of the software implementation and in what

order they were carried out. The initial inputs to the systems are the to vectors η and

ν, describing the motions and rotations of the RR with respect to the earth-fixed and the

boat-fixed coordinate system respectively, together with the predefined WP generator. For

the real system, the WPs will be generated from the GPS on the EB and sent to the

guidance system block, reference model, controller, water jet thruster dynamics and finally

the equation of motion for the RR in 3 DoF block. Output from the system will be the

updated values of the vectors η and ν.

24

CHAPTER 3. SIMULATION

3.1 Generating waypoints

In this section it will be described how the WPs are generated, both for the simulation

environment and for the real implementation, see Fig. 3.2.

Predefined
Waypoint
generator

GPS
Waypoint
generator

xk, yk

Figure 3.2: Schematic overview of the Waypoint block that is a part the software im-

plementation presented in Fig. 3.1. In the block there are two sub-blocks, the Predefined

Waypoint generator and the GPS Waypoint generator blocks. The first block is used during

the simulation, to simulate WPs from the EB. Further, when the application is used in real,

the second block illustrates that the GPS position of the EB will instead be taken from a

GPS unit onboard.

3.1.1 Predefined waypoint generator

In the simulation environment the EB’s WPs are predefined for the RR to follow. This

means that the complete path the RR shall follow is determined before the simulation

starts. A Graphical User Interface (GUI) is created in MATLAB, in which the user

simply can set out WPs for the simulation. The WPs created from the GUI are stored

in vector, which is fetched from the MATLAB workspace once the simulation is started.

It is possible to create a path consisting of a maximum of 100 WP. This number is not

limited to 100, i.e. it can be change but its recommended for faster calculations to use

smaller routes.

3.1.2 GPS waypoint generator

A predefined WP generator can not be used in the real implementation since the RR

shall be fed with a reference position at a certain sampling rate, depending on how the

25

CHAPTER 3. SIMULATION

EB is moving. The implementation in the real system will be described in chapter 5.

3.2 Guidance system

The main blocks of the guidance system can be seen in Fig. 3.3.

Waypoint
selector

Line of sight
(LOS)

Calculate speed

xk, yk

ψd

ud

η

ν

Figure 3.3: Schematic overview of the guidance system that is a part the software imple-

mentation presented in Fig. 3.1. This block determines which WP the RR shall be heading

towards. When the WP and the position of the RR is known, the desired yaw angle is

calculated together with the proper speed, which depends on whether the RR is on course

or not.

3.2.1 Waypoint selection

Because the EB is continuously dropping coordinates, depending on its current position

at a certain time, the RR needs to be able to determine when it shall start to look for

a new WP. Let the current position of the RR be denoted as xi,yi and the coordinates

of the current WP as xi+1,yi+1. Knowing this information, i.e where the RR and the

next WP it the distance to target s can be calculated by Pythagorean theorem, see Eq.

eq:pythan and Fig. 3.5.

s =
√

(xi+1 − xi)2 + (yi+1 − yi)2. (3.1)

This means that the distance s can be used as a threshold value for determining when

the current WP should be switched to the next one, see Eq. 3.2

26

CHAPTER 3. SIMULATION

s < ra, (3.2)

which means that the WP is switched when the RR is within a certain distance, ra, from

the WP. A figure demonstrating the path through the WPs can be seen in Fig. 3.4.

The value of ra can be set arbitrarily and can be interpreted as the so called Radius of

Acceptance (RoA) surrounding the WP.

1

2 3

4

5

6

7

8

9
ra

Figure 3.4: Illustration of the path following technique. The EB (grey in picture) drops

WPs along its path. The objective for the RR (red in picture) is to navigate to the current

WP before switching to the next one

Different tolerances on the RoA will be discussed more thoroughly in chapter 6. Nonethe-

less it can be said that a big value of ra will make it easier for the RR to follow the path

of the EB, but will also contribute to bigger deviations from the original path. A smaller

ra, will make the path smoother since the RR would not be able to to drive as fast but

will on the other hand imply a more limited and rigorous way of determining the speed

of the RR.

It is suggested to implement a strategy for handling situations where a WP is missed.

If a time, t, is calculated based on the distance between two consecutive WPs and the

speed of the RR, Eq. 3.3 can be written as

27

CHAPTER 3. SIMULATION

t =

√
∆x2 + ∆y2

|u+ v| . (3.3)

The value of the variable t is the critical mean time the RR has to reach the next WP.

This mean time can be multiplied with a constant, k, depending on how much time that

shall be given between the WPs. This gives an additional condition for determining

when the RR shall aim at a new target. The ciritcal thresholds can be summarize in Eq.

3.4

(xk − xi+1)
2 + (yk − yi+1)

2 < r2 || t > k

√
∆x2 + ∆y2

|u+ v| . (3.4)

In Simulink a clock is used for keeping track of the time t, which is reset once the

condition is fulfilled. This implementation is very useful since WPs that are laying on so

called ”unstrategic”places, which is difficult for the RR to reach, will simply be neglected

and replace by a more unstrategic WP.

3.2.2 Line of Sight

In order to make it possible for the RR to follow the EB a guidance algorithm has to be

implemented. The idea is that the EB drops x and y coordinates at a certain sampling

rate, which the RR then can follow. The WPs have a certain RoA, making the boat

aim at a new WP when it is adequately close to the current one. Similarly to what is

done in [7] the LOS guidance controller is designed in a way that the angle between the

current position of the RR and the current WP is calculated. Say that the RRs current

position is denoted xi,yi and the position of the WP it currently is aiming at is denoted

xk,yk. Then the LOS-angle from the WP can be calculated using the atan2 function, i.e

Eq. 3.5

ψ = atan2

(
yk − yi
xk − xi

)
= atan2

(
∆y

∆x

)
, (3.5)

where atan2 is the four-quadrant inverse of tangent. The geometry is illustrated in Fig.

3.5. Eq. 3.5 is solved online for every step, which means that for every sample the

position of the RR is updated and a new LOS-angle is calculated, therefore Eq. 3.5 can

express the desired heading angle, ψd, see Eq: 3.6

28

CHAPTER 3. SIMULATION

ψd = atan2

(
yk − yi+1

xk − xi+1

)
, (3.6)

where the value i is increased every sample, e.g. for the initial position the value will be

x1,y1 and then consecutively increasing with a value of 1 throughout the simulation.

x (North)

y (East)

u ra

ψd

∆x

∆y

ss

ykyi

xi

xk

(CoG)

Figure 3.5: Illustration of how the desired heading angle, ψd, is calculated. The desired

angle ψd to the next WP is determined by taking the four quadrant inverse tangent atan2

of ∆y divided by ∆x. The distance s from the current position of the RR to the next target

is calculated simply by the Pythagorean theorem. The RoA is denoted ra.

29

CHAPTER 3. SIMULATION

3.2.3 Calculating a continuous Line of Sight angle

Because of the fact that atan2 function is discontinuous between the intersection (−π,π)

a mapping has to be performed to make sure that the desired yaw angle, ψd, do not

behave strange when crossing this particular point. If this is not accounted for the RR

its desired heading angle suddenly will jump from −π to π if this intersection is crossed.

Hence, the RR will make a 360◦ turn. This is solved by using a procedure similar to

[8] where the discontinuous angle is mapped into a continuous angle that is fed to the

reference model. Hence the problem is solved by developing a mapping for the LOS-

angle from (−π,π) to (−∞,∞). The pseudo code for the implementation can be found

in Appendix A but a brief explanation of the procedure is found below.

By dividing the unit circle into its four regular quadrants the current state can be kept

track on by introducing a variable called state. This variable can be used for saving

the current value of the desired heading angle in a new variable denoted psi_current.

A variable for keeping track of the previous heading angle, i.e. the previous value of

the atan2-function is also needed and this variable can be denoted psi_previous. The

challenge here is to keep the change between the previous and the current angle as small

as possible. The last variable needed is a variable that is keeping track of the accumu-

lated angular information, i.e. the angular change for all the previous time steps. In

the beginning of a simulation all three variables are set to zero and the challenge is to

compute the accumulation variable in a way such that the angular change between the

current and previous value of the angle become as small ass possible. The last thing that

happens in the code is that the variable accumulation, i.e. the accumulated angular

error, is increased and the value of the variable psi_previous is assigned the value of

the variable psi_current and the procedure is done over and over again throughout the

simulation.

3.2.4 Speed calculation

A speed calculation is also performed in the guidance system block as a way to increase

safety, since the RR is prevented from driving too fast depending on how close it is to

the WP. In the function where the WPs are created also a recommended speed between

two WPs are calculated. The speed is chosen as a function of the angle between the

current and the consecutive WP, xk,yk and xk+1,yk+1. This angle can be calculated as

30

CHAPTER 3. SIMULATION

the angle between the two vectors, see Eq. 3.7.

αk = atan2(‖zk × zk+1‖,zk · zk+1), (3.7)

where zk = [xk, yk]
> and zk+1 = [xk+1 − xk, yk+1 − yk]>. It would not be necessary to

reduce the speed if the RR is moving along a straight path. However, if it has to perform

a sharp turn, it sounds reasonable that the speed is set to a lower value. This can be

implemented as in [9], where the preferable (angle dependent) velocity is calculated using

a Gaussian normal distribution function, see Eq. 3.8

v(αk) = ce−
α2k
σ2 . (3.8)

Here the parameter αk determines the position of the center of the peak and the param-

eter σ determines the width of the ”bell” that arises in a normal distribution function.

The coefficient, c, bounds the value between an upper and a lower limit. Since the ve-

locity given from the exponential function needs to be bounded it can be favorable to

describe a relation between the maximum and minimum velocity in order to keep the

traveling speed at reasonable values. This is done by introducing the following equation

as the coefficient, c, in front of Eq. 3.8 such as

c = vmin +

(
vmax − vmin

)
. (3.9)

The exponential function has the following properties

lim
b→∞

e−b = 0 (3.10)

lim
b→0

e−b = 1, (3.11)

which means that when the exponential function yields a large value (close to 1) the RR

will travel with a speed that is approximately equal to vmax. On the other hand, if the

exponential function yields a small value (close to 0) the RR will travel with a speed

that is approximately equal to vmin [9]. Hence the expression for the velocity can be

calculated as,

v(αk) = vmin +

(
vmax − vmin

)
e−

α2k
σ2 (3.12)

31

CHAPTER 3. SIMULATION

-3 -2 -1 0 1 2 3

3

3.5

4

4.5

5
σ = 0.5

σ = 1

σ = 3

Figure 3.6: Illustration of the Gaussian function used for setting the speed limit. The

shape of the Gaussian function for three different values of σ is illustrated. The function is

bounded between the velocities vmin = 3m/s and vmax = 5m/s.

A plot of the Gaussian function with velocity bounds implemented is shown in Fig. 3.6.

in the picture the angle, αk, is plotted from −π to π. The velocities are chosen as

vmin = 3m/s and vmax = 5m/s and sigma are varied from between three different values,

as can be seen in the figure. The calculated value of the velocity is, together with the

coordinates of the WPs, saved in a matrix and fetched from the MATLAB workspace

once a simulation is executed.

32

CHAPTER 3. SIMULATION

3.3 Reference model

It is preferable to use a reference model for the desired heading and the desired velocity

to smooth out the control signals, hence avoiding a fitfully behavior. For the heading

reference model this is done be sending the desired angle, i.e. ψd through a third-order

low-pass filter [5], see Fig. 3.7.

Heading
reference model

Speed
reference model

ψd ψ̂d

ud ûd

Figure 3.7: Schematic overview of the Reference model block that is a part of Fig. 3.1.

A third-order low-pass filter obtains the reference models for heading and speed for each of

the two signals.

This is a common procedure in applications of trajectory tracking control when the

heading or velocity is changed. This is also implemented in this thesis where a similar

system is modeled. When deriving a reference model for such an application, a model

of the third-order is preferable for satisfactory results. In [5][9] it is suggested that a

first-order low-pass filter is multiplied with a mass-spring-damper system. The transfer

function for a low-pass filter with the cutoff frequency wn, see Eq. 3.13

H(s) =
ωn

s+ ωn
. (3.13)

The transfer function in Eq. 3.14can be used to explain the spring-mass-damper system

G(s) =
w2
n

s2 + 2ζωns+ w2
n

. (3.14)

A third-order reference model is now derived by multiplying the two transfer functions,

H(s) and G(s), in Eq. 3.15.

33

CHAPTER 3. SIMULATION

ψd

ψ̂d
=

ω3
n

s3 + s2(2ζωn + ωn) + s(2ζω2
n + ω2

n) + ω3
n

. (3.15)

This result in a transfer function from the desired angle ψd to the filtered desired angle

ψ̂d. From Eq. 3.15 it shall be noted that ωn represents the natural frequency and

ζ denotes the damping. For such a system it shall be observed that the final value

theorem yields that the desired angle, ψd, approaches the filtered desired angle, ψ̂d, as

the time, t, approaches infinity. This can be seen in Eq. 3.16

lim
t→∞

ψd = ψ̂d. (3.16)

Filtering the signal is of importance, since it decreases the error between the desired and

the actual heading. It is important that the eigenvalues of the desired states are chosen

in a right way. That means that the bandwidth of the closed-loop system shall never be

exceeded by the cutoff frequency of the filtered desired angle. Such behavior will have

the outcome that the RR will not be able to track the desired state. For implementation

of this model in the simulation environment it is preferable to rewrite Eq. 3.15 on a

canonical controllable form[10], see Eq. 3.17

a1 = 2ζωn + ωn,

a2 = 2ζω2
n + ω2

n, (3.17)

a3 = w3
n.

Eq. 3.15 is rewritten with inverse Laplace transformed and coefficients from Eq. 3.17

are used, see Eq. 3.18.

...
ψd + a1ψ̈d + a2ψ̇d + a3ψd = a3ψ̂d. (3.18)

The state space model can now be derived according to Eq. 3.19.

q1 = ψd q̇1 = ψ̇d

q2 = ψ̇d q̇2 = ψ̈d (3.19)

q3 = ψ̈d q̇3 =
...
ψd.

34

CHAPTER 3. SIMULATION

Added to this, according to Eq. 3.18 the expression for q̇3 can be written as Eq. 3.20.

q̇3 = a3ψ̂d − a1ψ̈d − a2ψ̇d − a3ψd. (3.20)

With this said, the states can be chosen as ψd(s) = [ψd.ψ̇d, ψ̈d,] = [ψ1, ψ2, ψ3] and the

state space model can be written on controllable canonical, see Eq. 3.21

ψ̇1

ψ̇2

ψ̇3

 =

0 1 0

0 0 1

−a3 −a2 −a1

ψd

ψ̇d

ψ̈d

+

0

0

a3

 ψ̂d (3.21)

,

y =
[
ω3
n 0 0

]
ψd (3.22)

This reference model is implemented for the speed and the heading signal but the pa-

rameters are set a bit different in the two models, although the procedure is carried out

in a similar manner. In Fig. 3.8 the difference between the desired heading angle before

(ψd) and after (ψ̂d) the reference model are shown. It becomes clear that the reference

model manages to efficiently smooth out the curve, hence making it possible to avoid a

fitfully behavior.

Figure 3.8: Comparison between the desired heading before the reference model, ψd, and

after the reference model, ψ̂d. The figure clearly illustrates how the filtering smooths the

desired heading after the reference model out.

35

CHAPTER 3. SIMULATION

The filtered desired angle, ψ̂d, is later on sent to the controller. Fig. 3.9 illustrates the

filtered desired angle, ψ̂d, and the output from the controller, i.e. ψr which is the steering

control signal sent to the RR. Note that the reference angle, i.e. the control signal sent

to the RR, ψr is oscillating around the curve for the filtered desired heading ψ̂d with a

maximum value of ±5 degrees. It can be discussed whether this is a good behavior or

not but clearly the RR is staying on course and the mean value of the oscillations are

approximately equal to the value of the desired heading. A good idea is to implement a

constraint on the steering signal since the control signal from the heading is very active,

strongly oscillating with ±5 degrees around the input value.

Figure 3.9: Comparison between the desired heading, ψd, and the reference heading, ψr

of the RR. The oscillations of the reference heading, ψr, sent to the RR by the controller

indicates an active control signal.

3.4 Controller

Since the purpose is to make the RR able to follow an EB the only parameters that needs

to be controlled is the surge and yaw angle. Minimizing the pitch and heave moments

will not be taken into consideration, see Fig. 3.10. This chapter will present basic PID

tuning approach. With that said this chapter will be present a guideline how the PID

controllers should be tuned.

For this application two controllers will be constructed based on the general expression

for a simple PID controller, see Eq. 3.23.

36

CHAPTER 3. SIMULATION

Speed
controller

Heading
controller

ψ̂d ψr

ûd ur

u

ψ

Figure 3.10: Schematic overview of the Controller block that is a part of Fig. 3.1. In this

block, the speed ur and the reference heading angle ψr is regulated by two PID controllers.

u(t) = Kpe(t) +Ki

∫ t

0
e(t)dt+Kd

de(t)

dt
, (3.23)

where u(t) is the input signal, Kp,Ki and Kd are the proportional, integral and derivative

tuning gain parameters and e(t) is the resulting error. The main objective is therefore

to minimize the error angle relative the target by forcing the RR to steer in the right

direction by

eψ(t) = lim
t→∞

(ψ − ψd) = 0. (3.24)

A similar way goes for the speed controller. As mentioned in section 3.2.4 the velocity

changes depending on whether the RR are on course or not. If the yaw error is close to

zero the model will allow the RR to go faster. The speed error is is therefore also desired

to be minimized as

ev(t) = lim
t→∞

(v − vd) = 0. (3.25)

When applying speed and heading controllers to the RR one approach is to use the so

called first-order Nomoto model[11], see Eq. 3.26.

r =
K

1 + Ts
δ. (3.26)

The Nomoto model explains the transformation from the water jet thruster angle δ to the

actual yaw angle r of the RR. The thruster angle is measured in the BF coordinate system

37

CHAPTER 3. SIMULATION

while the yaw angle is measured in the EF coordinate system. The two parameters K and

T from the Nomoto model are often used to calculate the parameters of PID-controller.

With this said, the Eq. 3.26 can be rewritten with the assumption that the yaw velocity

is equal to the yaw rate (ψ̇ = r, see Eq. 3.27

ψ =
ψ

s(1 + Ts)
δ. (3.27)

Further, it can be said that mass of the RR is related to Nomoto’s first-order model, see

3.28

m =
T

K
. (3.28)

It is also necessary to calculate the natural frequency ωn, which is depending on the

relative damping ratio ζ and the closed-loop-bandwidth ωb of the regulated system, see

Eq. 3.29.

ωn =
ωb√

1− 2ζ2 +
√

4ζ4 − 4ζ2 + 2
. (3.29)

Normally the relative damping ratio ζ ∈ [0 1] depending on how the system is design

to tolerate the amount of overshooting[10]. When ζ ∈ [0 1] will result in a damped

oscillation, which is preferable in this case. ωb should be chosen between the bandwidth

of the Nomoto model and the thruster angle bandwidth[9].

Finally, the three gain parameters can be calculated, see Eqs. 3.30-3.30. It can be

noted that the integral gain Ki is set as
Kp
10 . This can be explained by a relation of a

large proportional gain compared to a smaller integral gain will provide a slower decaying

step disturbance.

The proportional gain: Kp = mω2
n ∈ Kp > 0. (3.30)

The integral gain: Ki =
1

10
ωnKp ∈ Ki > 0. (3.31)

The derivative gain: Kd = 2mζωn −
1

K
∈ Kd > 0. (3.32)

38

CHAPTER 3. SIMULATION

As the system is nonlinear it will most likely behave dissimilar in different situations.

This mostly depends if the RR have a low speed compared to when the RR planes. Thus

of this phenomena the application requires the control parameters to be adaptive, a so

called gain scheduling [10]. This can easy be done by setting up a certain thresholds

where the PID controllers uses different parameters depending in which kind of state its

currently is in into.

3.5 Water jet thruster dynamics

In similar work where a mathematical model for a boat is derived it concerns either a

boat driven with a classic propeller [7][8][9] or a sailing yacht [4][12][13]. Since the RR

is driven by a water jet thruster instead of the principles mentioned above, a new block

handling a jet thruster must be developed. The water jet works such that it pushes the

RR forward by shooting water in a certain direction, contributing to a force that pushes

the RR in the desired direction. Hence the water jet works as both a propeller and a

rudder simultaneously.

cos

sin ×

×

Lever
arm

ψr

FT

FT cosψr

FT sinψr
τ[X,Y,N]

Figure 3.11: A schematic overview of the Water jet thruster dynamics model that is a

part of Fig. 3.1.

The output from the speed controller, i.e. the throttle, FT , and the output from the

heading controller, i.e. the reference angle, ψr, is therefore combined in a way such that

the driving force FT can be divided into an x and y component, see Eq. 3.33.

39

CHAPTER 3. SIMULATION

Fy = FT cosψr,

Fx = FT sinψr, (3.33)

which is then fed to the 3 DoF-model of the RR alongside with a moment N around the

z-axis, which is proportional to the water jet angle and makes it possible for the RR to

turn. An overview of the procedure can be seen in Fig. 3.11. It shall also be noted that

the force in the z-direction and the moments around the , x- and y-axis, denoted K and

M are neglected.

3.6 Equation of motion in 3 DoF

As mentioned in the introduction of chapter 3 the simulations, in which the RR follows

a predefined path, are carried out in a 3 DoF. Although the model allows a 6 DoF sim-

ulation, this was not considered necessary for this project, hence the 3 DoF-model was

considered sufficient for yielding satisfactory results. This means that the forces in the

x− and y− direction (surge and sway) and the moment around the z−axis, the yaw, are

used. Hence the force in the z−direction (heave) and the moments around the x− and

y−axis (roll and pitch) are neglected.

As shown in Fig. 3.12, the forces τ are calculated from the water jet thruster dynamics

in section 3.5. This is further fed to the 3 DoF-model, where the calculations of the state

space variables η and ν are computed and fed back throughout the whole simulation.

Rescuerunner
τ [X,Y,N]

η

ν

Figure 3.12: Schematic overview of the Equation of motion block that is a part of Fig. 3.1.

For the 3 DoF-model a simulation block from the Marine Systems Simulator toolbox

[6] was used. This block includes speed-dependent fluid memory effects, cross-flow drag

40

CHAPTER 3. SIMULATION

and surge resistance[14].

This block is convenient to use since only the matrices that concern the mass inertia,

MA, the added mass, MRB, the inverse mass matrix, (MA + MRB)−1 and and the

buoyancy matrix, g have to be determined before the simulation. The matrices are

calculated and described in the chapter 2. The Coriolis matrices in the state space form,

i.e. CA and CRB are calculated from the inputs to the model automatically.

41

CHAPTER 3. SIMULATION

42

4

Sensor fusion

W
hen the simulations were carried out, the heading, i.e. the yaw angle,

of the RR in the EF coordinate system was always known. In order to

achieve this angle in reality the RR has to use an unit telling which head-

ing the vessle holds. This can be done by using a GPS unit and combine

it with an Interial Measurement Unit (IMU), see Fig. 4.1. An IMU is a combination

of two different sensors, an accelerometer and a gyroscope. Sometimes a magnetometer

is included as well. An IMU is a useful tool for measuring the velocity, gravitational

forces and heading of a vessel[15]. For the implementation done in this thesis the follow

components are used: the ADXL345 accelerometer, the ITG3200 gyroscope and the

HMC5843 magnetometer, which together represent 9 DoF.

Figure 4.1: The IMU with accelerometer ADXL345, gyroscope ITG3200 and magnetome-

ter HCM5843 [16]

43

CHAPTER 4. SENSOR FUSION

The IMU is complemented by a GPS device. Combining these sensor yields a stable

measurement of the heading angle of the RR. As the GPS device only works proper

when moving, it is not appropriate to use at low velocities. The IMU, on the other

hand, is much more accurate at low velocities. Hence, the heading angle is fetched from

the GPS device or the IMU depending on the velocity of the RR, i.e.

velocity =

IMU if velocity < thresholdm/s

GPS if velocity >= thresholdm/s

IMU Drivers for

Accelerometer: ADXL345
Magnetometer: HMC5843

Gyroscope: ITG3200

Calibration Filtering

atan2.

Complementary filter

Normalization

Tilt compensation

Araw

Graw

M raw

A

G

M

ALP

GHP

MLP

Apitch

Aroll

Gptich

Groll

Mnorm

φ

θ ψ

Figure 4.2: Schematic overview of the IMU sensor fusion procedure. The consecutive

steps in the procedure of combining the accelerometer, the gyroscope and the magnetometer

presented in the figure yields a tilt compensated yaw angle, ψ.

4.1 Arduino I2C communication

To read the raw data from the 9 DoF IMU stick, it is coupled to an Arduino Mega 2560

board[17]. This application uses the Inter-Integrated Circuit (I2C) bus, which enables

multi-master, multi-slave, single-ended setups. The I2C is usually used for attaching

lower-speed peripherals to processors on computer motherboards and embedded systems,

making it useful for this application[18]. The pin configuration can be seen in Tab. 4.1.

44

CHAPTER 4. SENSOR FUSION

Table 4.1: Pin configuration between Arduino Mega 2560 and 9 DoF IMU

9 DoF IMU Arduino Mega 2560

VCC 3.3V

GND GND

SCL SCL

SDA SDA

Each pin on the IMU stick is connected to a pin on the Arduino board[18]. When the

VCC and GND is connected this application just need two more wires, the Serial Clock

Line (SCL) and the Serial Data Line (SDA). The SCL wire is a clock line, synchronizing

all data that is transferred over the I2C bus and the data is transferred over the SDA

wire[18].

In order to collect data from the IMU stick, multiply register addresses have to be

read and written from. This is done by using the I2C connection bus on the IMU stick.

Register addresses for the three sensors combined on the IMU can be found in the data

sheet for each sensor respectively[19][20][21]. Below a few examples in pseudo code are

shown on how the reading of the sensors was performed in this particular implementa-

tion. The authors of this thesis implemented the pseudo code in the C-language but of

course it can be changed to other programming languages as well. As an example the

gyroscope’s (ITG3200[20]) registers can be reached by the following pseudo code.

45

CHAPTER 4. SENSOR FUSION

Algorithm 1 Algorithm for initializing the ITG3200 Gyroscope

1: procedure Read raw data from ITG3200 gyroscope

2: define GYRO ADDRESS

3: define SMPLRT DIV

4: define GYRO DLP FS

5: define GYRO FS

6: define FORMAT GYRO DATA

7: define GYRO X LSB

8:

9: start i2c connection, set sample full scale measurement mode and sample rate

10: Begin transmission from GYRO ADDRESS

11: Write on address GYRO DLP FS

12: Write on address GYRO FS

13: End connection from GYRO ADDRESS

14:

15: Begin transmission from GYRO ADDRESS

16: Write on address SMPLRT DIV

17: Write on address 0x1F

18: End connection from GYRO ADDRESS

19:

20: end procedure

This code described in Alg. 1 is an initialization of the sensor. Hence, it only has to

be executed before the main program has started. This code tells the program how to

read the data that is coming from the sensor. Certain register addresses on the ITG3200

gyroscope sensor are defined in the program. Consecutively the I2C-connection is initial-

ized with a chosen sample rate as well as a measurement mode[20]. This is important in

order to understand the output of the sensor and how much data that is sampled from

the sensor each second.

To get interpretable values from the ITG3200, the least and most significant bits for

the readings on the X−, Y− and Z−axis must be combined. The procedure of reading

the sensor data and to combine the readings to interpretable values is described in Alg.

2.

46

CHAPTER 4. SENSOR FUSION

Algorithm 2 Algorithm for reading ITG3200 IMU device

1: procedure Read raw data from ITG3200 gyroscope

2:

3: Begin transmission from GYRO ADDRESS;

4: Write on GYRO XLSB;

5: Request 6 bytes from (GYRO ADDRESS);

6:

7: while (connection available) {
8: GyroValues [j++] = Read values from GYRO ADDRESS);

9: }
10:

11: end connection from GYRO ADDRESS

12:

13: GyroX = (X LSB << 8) +X MSB; // convert x reading to int 16

14: GyroY = (Y LSB << 8) +Y MSB; // convert y reading to int 16

15: GyroZ = (Z LSB << 8) +Z MSB; // convert z reading to int 16

16:

17: end procedure

On rows 13,14 and 15 the values of the least significant bit are bit shifted and added to

the most significant bit of the reading of each axis in order to get proper values. The

procedure how to combine the least at most significant bits differs for different sensors on

the IMU stick. In this example the readings relate to the ITG3200 gyroscope but similar

procedures hold for the ADXL345 accelerometer and the HMC5843 magnetometer. The

full C-code implementation is found in Appendix D

4.2 Inertial measurement unit

A tilt compensated digital compass requires an accelerometer, a gyroscope and a magne-

tometer to work properly. Since the sensors have there pros and cons a fusion algorithm

has to be implemented for the readings to be reliable. The sensor fusion procedure is

shown in Fig. 4.2, where the pitch and roll angles are derived by combining the signals

from the accelerometer and the gyroscope, passing them through a complementary fil-

ter. This filtering gives a stable signal on the pitch angle, ϕ, and the roll angle, θ. The

47

CHAPTER 4. SENSOR FUSION

tilt compensation is then performed using filtered angles combined with the readings

from the magnetometer[22]. The sensors used in this project, with their corresponding

notations can be found in Table 4.2.

Table 4.2: Sensor notations

Sensor typ Sensor name Vector - 3 axes Parameters

Accelerometer ADXL3456 A Ax Ay Az

Gyroscope ITG3200 G Gx Gy Gz

Magnetometer HCM5843 M Mx My Mz

4.3 Calibration

Before using the sensor measurements, each sensor must be calibrated for reading accu-

rate values. The calibration is done individually for each sensor.

4.3.1 Accelerometer

Calibrating the accelerometer is fairly easy. First the sensor values need to be trans-

formed from the raw data to values in g [m/s2] [19], see Eq. 4.1.

Ag = γAraw (4.1)

where γ = 0.0039063 is the scaling factor used for the conversion. When the offset is

calculated, the sensor should lie flat in the xy-plane, where the x-axis pointing forward,

y-axis pointing left and z-axis pointing downwards. Eq. 4.2 calculates the offset for each

axis.

A = Ag −Aoff . (4.2)

This can also be seen in Fig. 4.3, where Ax,off is sub tracked from Ax,g. The signal is

pretty noisy, hence it can result in a unwanted behavior. Because of this the signal from

the accelerometer needs to be low-pass filtered, see Eq. 4.3.

ALP = ALP ∗ α+ (1− α)ALP,pre. (4.3)

48

CHAPTER 4. SENSOR FUSION

Further explanation of the low-pass filtering can be found in section 4.4. The values

measured with the accelerometer can now be used to calculate the roll and pitch, see

Eq. 4.4.

Apitch = atan2

(
Ax,LP√

A2
y,LP +A2

z,LP

)
, (4.4)

Aroll = atan2

(
Ay,LP√

A2
x,LP +A2

z,LP

)
.

Time [s]
0 1 2 3 4 5 6 7 8 9 10

A
c
c
e

le
ra

ti
o

n
 i
n

 x
-a

x
is

 [
m

/s
2

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
g

A = A
g
 - A

o
ff

Figure 4.3: Comparison of the raw data from the accelerometer before (black) and after

(red) the calibration. The offset is sub tracked from Ag

.

4.3.2 Gyroscope

The raw data from the gyroscope ITG3200 measures ±2000deg/sec[20]. To be able

to read useful and accurate values from the gyroscope the raw data is transformed to

radians by Eq. 4.5. The gyroscopes resolution is 14.7 Least significant bit (LSB)’s per

second), which means the maximum value will be 2000 ∗ 14.7 ≈ 29000 which also is the

maximum value possible with a signed 2-byte number.

49

CHAPTER 4. SENSOR FUSION

G = Graw
1

14.7
∗ π

180
. (4.5)

This signal is then integrated to obtain the angular position GApos, see Eq. 4.6.

GApos =

∫
G(t)dt. (4.6)

The gyro has one big disadvantage, called drift[22]. It means that the gyro tend to drift

away from the correct value with time, this phenomenon is shown in Fig. 4.4. The

solution to this problem lies in low-pass filtering the gyroscope signal together with the

accelerometer values. This is further explained in section 4.4.

Time [s]
0 5 10 15 20 25 30

G
y
ro

s
c
o
p
e
 a

ro
u
n
d
 x

-a
x
is

 [
d
e
g
]

0

5

10

15

20

25

30

G

Figure 4.4: Illustration of the drift phenomenon, over time, when the gyroscope is rotated

around the z-axis ±5◦

4.3.3 Magnetometer

The raw data from the magnetometer HCM5843 measures the magnetic fields around

each axis in milli Gauss [mGa][21]. The sensor input field range is set to ±1 Ga with

gain 1300 counts/mGa and the output range is −2048 to 2047.

The offset on the magnetometer is divided into two sub offsets, hard-iron and soft-iron

offset. They both need to be accounted for in order for the sensor to be able to provide

reliable values. Hard-iron offsets correspond to external magnetic fields that affect the

magnetometer, e.g. an additional constant magnetic field generated by a cell phone[23].

This is accounted for by correcting the center of measurements for all axis for M around

0, see Eq. 4.7.

50

CHAPTER 4. SENSOR FUSION

Mx,HIO =
1

2

(
max(Mx)−min(Mx)

)
, (4.7)

My,HIO =
1

2

(
max(My)−min(My)

)
,

Mz,HIO =
1

2

(
max(Mz)−min(Mz)

)
,

where the index HIO stands for Hard-iron offset. This forms the vector MHIO =

[Mx,HIO My,HIO Mz,HIO]. Fig. 4.5 demonstrates the influence of hard-iron offsets since

the center of the ellipse is not located in the point (0,0,0).

Magnetometer Raw data around X-axis
-600 -400 -200 0 200 400 600 800

M
a

g
n

e
to

m
e

te
r

R
a

w
 d

a
ta

 a
ro

u
n

d
 Y

-a
x
is

-800

-600

-400

-200

0

200

400

600

Figure 4.5: Illustration of the raw data from the magnetometer around the y- and x-axis

before the calibration. The hard-iron errors are the reason the ellipse is not centered in

x = 0, y = 0 and z = 0 and the soft-iron errors are the reason the data forms an ellipse

instead of a sphere.

The soft-iron offset corresponds to the direction change and magnitude of the earth’s

magnetic fields when other ferromagnetic objects are in the vicinity of the sensor[23].

Materials such as kovar and steel are usually impart of such errors. Since the soft-iron

errors are the errors that makes the plot of the magnetic field look elliptical (as can be

seen from 4.5 the circle looks more like an egg), those errors are usually sorted out by

using rotations matrices[24]. However, in this thesis, a different approach presented by

Camel Software is used[25]. The elliptical shape is removed with a scaling factor instead

51

CHAPTER 4. SENSOR FUSION

of using rotation matrices and the procedure is described below.

The average values for the hard-iron offsets, calculated in Eq. 4.7, are used to create

a minimum and maximum vector for each axis by taking the minimum and maximum

values and subtracting the average value. For the maximum vectors the procedure is

shown in Eq. 4.8.

Mx,SIOmax = max(Mx)− 1

2

(
max(Mx)−min(Mx)

)
,

My,SIOmax = max(My)−
1

2

(
max(My)−min(My)

)
, (4.8)

Mz,SIOmax = max(Mz)−
1

2

(
max(Mz)−min(Mz)

)
,

and for the minimum values respectively as shown in Eq. 4.9

Mx,SIOmin = min(Mx)− 1

2

(
max(Mx)−min(Mx)

)
,

My,SIOmin = min(My)−
1

2

(
max(My)−min(My)

)
, (4.9)

Mz,SIOmin = min(Mz)−
1

2

(
max(Mz)−min(Mz)

)
.

The next step is to find the distance from the center, therefore the negative values

are inverted and the average distance from the center on each axis is calculated. The

calculations for the x-component is show below but the same procedure holds for the y-

and z-components as well, see Eq. 4.10

x̄ =
1

2

(
Mx,SIOmax +Mx,SIOmin

)
. (4.10)

Now the components are averaged between the three axes according Eq. 4.11.

M̄ =
1

3

(
x̄+ ȳ + z̄

)
(4.11)

From Eq. 4.11 the scaling factor on each axis, x̃, ỹ and z̃ are now calculated and combined

in the vector MSIO, see Eq. 4.12.

52

CHAPTER 4. SENSOR FUSION

MSIO =

x̃ = M̄/x̄

ỹ = M̄/ȳ

z̃ = M̄/z̄

 , (4.12)

and is multiplied with the magnetometer readings before the hard-iron offset is sub-

tracted as done in Eq. 4.13.

M = M raw ×MSIO −MHIO. (4.13)

The results from the calibrated magnetometer is shown in Fig. 4.6 and it can be seen

that the hard- and soft-iron offsets have been compensated for. Thus the center of the

spheres now is located in (0,0,0) and the elliptical shape of the sphere is as good as gone.

600

400

M
x
 [mGA]

200

0

-200

-400

-600-600

-400

-200M
y
 [mGA]

0

200

400

-400

0

-600

200

400

600

-200

600

M
z
 [
m

G
A

]

Figure 4.6: Illustration of the shape of the data given from the magnetometer after cali-

bration.

Before using the data from the magnetometer the signal is normalized, see Eq. 4.14.

Mnorm = M
1√

M2
x +M2

y +M2
z

. (4.14)

53

CHAPTER 4. SENSOR FUSION

The magnetometer can now measure an accurate yaw angle if the sensor is placed hor-

izontal in the xy−plane described in section 4.3.1 with no roll and pitch. Thus this

application is placed on the RR the roll and pitch can not be neglected. This requires

measurements from the gyro and the accelerometer to be combined with the magne-

tometer readings in order to make the yaw angle, φ, tilt compensated.

4.4 Filtering

In the following section the procedure of filtering the signals are more thoroughly de-

scribed. Starting with the low-pass filtering of the accelerometer signals for removing

the noise. Continuing with the complementary filtering of the gyroscope and accelerom-

eter signals for obtaining stable pitch and roll angles without drift. Ending this section

by combining the filtered signals together with the normalized magnetometer values in

order to calculate a tilt compensated yaw angle, ψ.

4.4.1 Low-pass filtering

Even after the sensors are calibrated the data can still be noisy. In order to get rid of

the noise, the signals are filtered as a step to get a smoother signal. For the ADXL345

accelerometer and HMC5843 magnetometer a low-pass filter is used for this purpose,

see Eq. 4.15

Acali = Acali × α+ (Aprev cali × (1− α)), (4.15)

where α ∈ [0,1] decides how much of the signal that should be filtered[22]. If α has a

high value (≈ 1) then the filter just relay on the current measure and the filter is said to

be nor or less inactive. If α is close to 0, then instead only rely on the previous measure

and the behavior will be very slow. An arbitrary value for this application is chosen to

α = 0.5. The result of the low-pass filtering for the accelerometer in the x-direction can

be seen in Fig. 4.7.

It is clear that the filtered signal, the thick red line is smoother than the non-filtered

signal. This example demonstrates the x-axis from the accelerometer but the same

filtering is done for all three axes of the accelerometer. A low-pass filtering is also made

on the magnetometer readings since its raw data is also noisy.

54

CHAPTER 4. SENSOR FUSION

Time [s]
0 1 2 3 4 5 6 7 8 9

A
c
c
e
le

ra
ti
o
n
 i
n
 x

-a
x
is

 [
m

/s
2
]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Non filtered signal
Filtered signal

Figure 4.7: Comparison of the accelerometer data on the x-axis before and after the low-

pass filtering. The blue dashed signal is the signal before the filtering and the thick red line

is the smoother signal after the filtering.

4.4.2 Complementary filtering

To prevent the drift phenomenon from the gyroscope a complementary filter needs to

be added. This filter combines the roll and pitch values from the accelerometer and the

gyroscope and creates a more stable, non-drifting behavior. The complimentary filter

have many similarities with the low-pass filter, see Eqs. 4.16 and 4.17, where the roll φ

and pitch θ are calculated from the accelerometer and the gyroscope.

φ = (1− β)Aroll + βGx,Apos, (4.16)

θ = (1− ζ)Apitch + ζGy,Apos, (4.17)

where β and ζ ∈ [0,1]. In several applications a Kalman filter is used for this purpose

but the authors of this thesis were satisfied with the readings from the complementary

filtered signals and considered them sufficient. A Kalman Filter could be more powerful,

55

CHAPTER 4. SENSOR FUSION

but more computationally expensive, hence for an application using an Arduino board

a complementary filter is more preferable[26].

4.5 Tilt compensation

Finally, the readings from the accelerometer, the gyroscope and the magnetometer can

be combined to derive the tilt compensated yaw angle[22], see equation 4.18 and 4.19

form the Eq. 4.20

TCx = Mx,normcos(θ) +My,normsin(φ)sin(θ) +Mz,normcos(φ)sin(θ), (4.18)

TCy = My,normcos(φ) +Mz,normsin(φ), (4.19)

ψ = atan2

(
TCx

TCy

)
. (4.20)

56

5

Communication

T
his chapter presents the basic theory behind the communication between the

RR and the EB and how it is implemented. The hardware is built using

Arduino Mega [17] microcontrollers, with additional shields attached for en-

abling necessary applications. The communication is built both on a wire

setup over Ethernet and wireless communication over Wi-Fi, using User Datagram Pro-

tocol (UDP). The navigation of the RR is controlled in a Graphical User Interface (GUI)

program.

5.1 Hardware

The main hardware that was used in this application is shown in Tab. 5.1. Both the

RR and the EB are equipped with an Arduino Mega 2560 board. Additional to this,

multiple shields were connected to enabling the boards to collect GPS data, enable

handlebar steering, switching between manual/automatic steering and throttle. A full

description of the hardware implementation can be seen in the twin project report [27],

which was carried out as a B.Sc. thesis at Chalmers University of Technology during

the first half of 2015.

57

CHAPTER 5. COMMUNICATION

Table 5.1: Hardware implementation where the table specifies which components are used

at each vessel.

RR EB Purpose

Arduino Mega 2560 YES YES Motherboard

Arduino Wi-Fi shield YES NO Send data over Wi-Fi

Arduino Motor shield YES NO

Enables motor steering.

Enable Manual/Auto mode.

Steer the handlebar

Arduino Ethernet shield NO YES Send data over Ethernet

Arduino GPS shield YES YES Collects GPS data

Songle Relay board

5V 8-Channel
YES NO

Throttle: Manual/Auto

Handlebar Left/ Right.

Sparkfun IMU sensor YES NO Digital compass

Pulse sensor (IR) YES NO
Measure the handlebars

motor revolutions

DLink WirelessN 150

Home Router DIR-600
NO YES Setting up the network

5.2 Arduino software implementation

As there are two separate Arduinos, one in the RR and one in the EB, they have been

programmed different. Explanations of the programs are provided in Appendix B.

5.3 User Datagram Protocol communication

UDP makes it possible to send information from one unit to another unit over a net-

work. In this application the UDP will send strings of text containing information about

the GPS position, speed and heading angle from both the RR and the EB. With this

information known it is possible to derive a proper heading angle and throttle for the

RR. A schematic overview of how the application is built can been seen in Fig. 5.1.

58

CHAPTER 5. COMMUNICATION

WIFI

ETHERNET

ROUTER

NETWORK:FOLLOWME

USER PROGRAM

FOLLOWME

-GPS POSITION

-SPEED

-HEADING
-GPS POSITION

-SPEED

-HEADING

-IMU

-REF HEADING

-REF SPEED

Figure 5.1: Schematic overview of the communication between the RR and the EB.

The RR is equipped with a wireless device, sending information from its GPS and the

IMU. This is information is merge into a string RR_getData, see string below,

RR_getData = Longitude/Latitude/Speed/HeadingAngle/HeadingAngleIMU

This string is sent to GUI via a router. The EB on the other hand will not use the

wireless communication as the RR does, instead the data is sent through Ethernet to

the router and the further to the GUI. Thus the router is also placed on the EB. This

string is called EB_getData, see string below,

EB_getData = Longitude/Latitude/Speed/HeadingAngle

Note, that the EB is not equipped with an IMU as the RR were. The GUI will now

continuously receive strings (packages) with this information from both the RR and the

EB.

59

CHAPTER 5. COMMUNICATION

5.4 Graphical User Interface

As mentioned in section 5.3 a program, where the user can chose between two separate

settings (modes) additional to the regular Manual mode, has been developed, see Fig.

5.2.

Figure 5.2: Overview of the GUI that is used for running the different applications pro-

grammed into the RR on a computer.

Before the RR can run, the network needs to be up and ready. By pushing the button

Connect, see Fig. 5.2 the program checks if the RR’s and EB’s communication hardware

are online. The program sends a message to both vessels asking if they are connected.

If they are available they will answer with an acknowledgement telling they are okey.

If both vessels were successfully connected the program continues. As long as the user

is connected, the user has the ability to stop the engine at any time by pressing the

STOP ENGINE button, see Fig. 5.3. This simply shuts down the engine and sends an

acknowledgement to the GUI telling the engine is off. The engine can be started again

by pressing the Start engine button, running the starting engine for four seconds. When

the engine is on, an acknowledgement is sent, telling the engine is on. If the user want to

disconnect completely from the RR and the EB the user simply press Disconnect. This

60

CHAPTER 5. COMMUNICATION

will put the RR in Manual mode before the program shuts down the connection between

the units.

Figure 5.3: Illustration of buttons in the GUI that is a part of Fig. 5.2.

However, now the system is connected and in Manual mode. This manual button is

green, see Fig. 5.4.

Figure 5.4: Illustration of application setup, where the modes can be switch by pressing

the buttons. This figure is a part of Fig. 5.2.

There are two additional modes beyond the Manual mode, e.i. Follow me and Semi

manual. The first one is the application where the RR should follow the path of the EB,

copying its heading and speed. The user can chose which distance and angle to the EB

the RR should have. This is controlled by two controllers (see chapter Controller - 3.4),

which regulates the heading angle and throttle. The RR is now said to be in Follow me

mode and will follow the EB by itself until another command has been given by the user.

Note, the Follow me button is green.

If the user wants to stop the Follow me application it is simply done by pressing the

Manual button. This will stop the application and put the RR into Manual mode. Note

that the program is still running, i.e. the program is connected. From here the user can

select the other modes, e.g. Semi manual. This application has the purpose of maneu-

61

CHAPTER 5. COMMUNICATION

vering the RR by commands given from the user directly, i.e. this mode will not follow

the EB directly. Instead the user can chose the heading angle and speed, maneuvering

the RR in a specific path.

When using Semi manual and Follow me mode the navigation parameters throttle

and steering are sent approximately three times every seconds. This means if the RR

is able to receive the commands, the navigation parameters will be updated three times

every second. When the RR receives a command it does not resend an acknowledgement

message back to the GUI telling the commands where received. Instead the RR only

updates the navigation parameters with a new throttle and a new steering.

The idea is that when combining all three modes, Manual, Follow Me and Semi manual

the RR can first be set in Semi manual to navigate out from harbor. As soon as the

boat is on open water the user switches over to Follow me mode and the RR follows the

EB until the scene of accident has been reached. Again, the user switches back to Semi

manual mode and navigates the RR next to the EB. After this, when the RR is boarded

to the EB the rider change to Manual mode and start the rescue mission. When the

mission is done and it is time to return, the user simply press Follow me button again

and the RR will follow the EB back to the harbor.

Further explanation of how the Graphical User Interface (GUI), i.e. the user program

works and the functions it is invoking can be found in Appendix C.

62

6

Results & Analysis

I
n the follow chapter the results from this thesis will be presented. That pertains

both the results from the simulated system and the tests from the implementa-

tion of the control system in the actual RR. Initially the different tests from the

simulated system will be described and properly commented and thereafter the

same will be done for the actual implementation.

6.1 Simulation results

For the simulated environment the tests has been performed using the MATLAB/Simulink

software. The tests was performed to check the ability of the RR how well it could fol-

low a path of predefined WPs (as described in section 3.2). The tests pertains to both

different parameters set on speed limits, but also on the RoA that the RR has to reach,

before its target is shifted to a new WP. The main focus when performing the tests, were

to investigate how the model was affected by changing the control algorithms, i.e.:

• Different limits set on the maximum speed, vmax according to a normally dis-

tributed curve (as described in section 3.2.4).

• Different RoAs on the WPs the RR has to follow.

The speed and the RoA are key parameters that affects the behavior of the system to

a large extent. Imagine the case where the RoA is set to two different values. A high

63

CHAPTER 6. RESULTS & ANALYSIS

value denoted, rh, and a low value denoted, rl. This means, when the higher value is

used, the RR will be able to pass through almost all WPs without any trouble and the

speed can be set to a higher value. Thus the RR starts to aim at the next WP once the

RoA is reached. However, the path taken by the RR will not be as precise as if the RoA

is set to a lower threshold value, i.e. rl.

In this section the results of choosing a number of different values on those parame-

ters will be thoroughly evaluated and commented. The results will be collected from two

different paths, one circular-shaped and the other one is zigzag-shaped. On each path,

six tests will be performed, see Tab. 6.1. The minimum allowed speed is constant and

set to vmin = 2.1m/s. This limit is set due to the fact when the RR is idle, the speed is

around 2.1 m/s.

Table 6.1: Overview of the tests that will be performed with the simulation model of the

system where the RR follows consecutive WPs, released by the ego-boat.

Test Path vmax[m/s] ra[m]

1 Circular 5 5

2 Circular 10 5

3 Circular 5 8

4 Circular 10 8

5 Circular 5 15

6 Circular 10 15

7 Zigzag 5 5

8 Zigzag 10 5

9 Zigzag 5 8

10 Zigzag 10 8

11 Zigzag 5 15

12 Zigzag 10 15

64

CHAPTER 6. RESULTS & ANALYSIS

6.1.1 Simulation test 1: vmax = 5m/s, ra = 5m

Starting with the circular path, the first test will be done with the following values on

the key parameters:

• vmax = 5m/s,

• ra = 5m.

The result from the simulation can be seen in Fig. 6.1.

East [m]
-200 -150 -100 -50 0 50 100 150 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

1

2

3
4

5
6

7

8

9

10

11
121314151617

18

19

20

21

22
23

24

Figure 6.1: Illustration of how the RR follows WPs released by the EB, with key parameters

set to vmax = 5 m/s and ra = 5 m.

It can be seen from the Fig. 6.1 that RR manages to follow the path in a good way as

long as the path is straight. When the path turns quickly it misses a WP. The controller

does not manage to correct the steering angle enough for the RR to reach the RoA of

the next . This is what happend at WP 5 in Fig. 6.1. In Fig. 6.2 the speed profile for

the simulation is shown.

65

CHAPTER 6. RESULTS & ANALYSIS

time [s]
0 50 100 150

v
e

lo
c
it
y
 [

m
/s

]

0

1

2

3

4

5

6

7

8

Actual velocity

vmax = 5m/s

Figure 6.2: Illustration of the speed profile for the RR for the path shown in Fig. 6.1.

It can be seen that the actual speed of the RR approaches the maximum speed allowed,

vmax. The reason the RR does not immediately accelerates is dependent on the PID-

controller is setting the speed. Until the RR has driven approximately 30m the steady

state error is not completely removed by the integral action. The dips in the curve

symbolizes what happens when the RR makes a turn, therefore consequently the PID-

controller decreases the velocity. Since the path is not very rigorous, the controller

allows the RR to drive at the maximum allowed velocity, i.e., vmax for almost the whole

simulation. It shall be noted that the RoA, ra, is set to a low value, which is a hard

constraint on the system.

6.1.2 Simulation test 2: vmax = 10m/s, ra = 5m

For the second test the key parameters are set to:

• vmax = 10m/s,

• ra = 5m.

The value of ra remains unchanged, while the value of vmax is increased by 5m/s. The

result of the RR following the path with increased speed is shown in Fig. 6.3.

66

CHAPTER 6. RESULTS & ANALYSIS

East [m]
-300 -200 -100 0 100 200 300

N
or

th
 [m

]

0

50

100

150

200

250

300

350

400

450

1
2

3 4
5

6

7

8

9

10

11121314151617

18

19

20

21

22 23
24

Figure 6.3: Illustration of how the RR follows WPs released by the EB for the key param-

eters set to vmax = 10 m/s and ra = 5 m.

Fig. 6.3 illustrates that the RR does not manage to follow the desired path in a satis-

factory way with these settings. Several WPs are missed. This is not understood by the

controller, which interprets the misses as if the RR is driving on a straight line. Hence,

the speed is set almost constant as vmax = 10 m/s. The behavior is illustrated in Fig.

6.4.

. time [s]
0 20 40 60 80 100 120 140 160 180 200

v
e

lo
c
it
y
 [

m
/s

]

0

2

4

6

8

10

12 Actual velocity

vmax = 10m/s

Figure 6.4: Illustration of the speed profile for the RR for the path shown in figure 6.3.

Note, a distinct connection between the values set on the maximum speed vmax and the

RoA ra can be observed.

67

CHAPTER 6. RESULTS & ANALYSIS

6.1.3 Simulation test 3: vmax = 5m/s, ra = 8m

For the third test the RoA ra will be changed to the larger value 8 m, i.e. the key

parameters are set to:

• vmax = 5 m/s,

• ra = 8 m-

In Fig. 6.5 it can be seen that the RR manages to follow the desired path in a good way

when the maximum speed is set to vmax = 5 m/s.

. East [m]
-200 -150 -100 -50 0 50 100 150 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

1

2

3
4

5
6

7

8

9

10

11
121314151617

18

19

20

21

22
23

24

Figure 6.5: Illustration of how the RR follows WPs released by the EB for the key param-

eters set to vmax = 5 m/s and ra = 8 m.

However, from the speed profile shown in Fig. 6.6 it can be seen that when the RoA,

ra, is set to a larger value the RR starts aiming at the next WP at an earlier moment

in time.

Hence, the speed profile get more bumps, which is a result of this since the controller is

lowering the speed in order to manage to reach the new WP.

6.1.4 Simulation test 4: vmax = 10m/s, ra = 8m

For the fourth test on the circular path the values of the key parameters are set to:

68

CHAPTER 6. RESULTS & ANALYSIS

time [s]
0 50 100 150 200

v
e

lo
c
it
y
 [

m
/s

]

0

1

2

3

4

5

6

7

8

Actual velocity

vmax = 5m/s

Figure 6.6: Illustration of the speed profile for the RR for the path shown in Fig. 6.5.

• vmax = 10m/s,

• ra = 8m.

The result can be observed in Fig. 6.7. The figure illustrates that the RR manages to

follow the path in a robust way than when the value of ra is increased alongside the value

of vmax. It misses four of the WPs but manages to stabilize its path after the fourth

WP is missed.

. East [m]
-200 -150 -100 -50 0 50 100 150 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

1

2

3
4

5
6

7

8

9

10

11
121314151617

18

19

20

21

22
23

24

Figure 6.7: Illustration of how the RR follows WPs released by the EB for the key param-

eters set to vmax = 10 m/s and ra = 8 m.

69

CHAPTER 6. RESULTS & ANALYSIS

Basically, the controller allows the RR to drive at vmax throughout the whole simulation,

as can be seen from Fig. 6.8

. time [s]
0 20 40 60 80 100 120 140 160 180 200

v
e

lo
c
it
y
 [

m
/s

]

0

2

4

6

8

10

12 Actual velocity

vmax = 10m/s

Figure 6.8: Illustration of the speed profile for the RR for the path shown in Fig. 6.7.

6.1.5 Simulation test 5: vmax = 5 m/s, ra = 15 m

For the last two tests on the circular path the value key parameters are set to:

• vmax = 5 m/s,

• ra = 15 m.

The results are shown in Fig. 6.9 and Fig. 6.10 and it can be seen that the RR manages

to follow to desired path almost perfectly.

70

CHAPTER 6. RESULTS & ANALYSIS

. East [m]
-200 -150 -100 -50 0 50 100 150 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

1

2

3
4

5
6

7

8

9

10

11
121314151617

18

19

20

21

22
23

24

Figure 6.9: Illustration of how the RR follows WPs released by the EB for the key param-

eters set to vmax = 5 m/s and ra = 15 m.

This is a combination of the maximum allowed velocity set to a lower value and the RoA

set to a comparatively large value. As mentioned in Test 3, a larger threshold value on

RoA causes more bumps in the speed profile. Simply because the RR need to turn more

often to aim at the consecutive WP. Comparing the speed profiles for the maximum

speed vmax to 5 m/s, it can be observed that the bumps are bigger when the RoA is set

to 15 m, see Fig. 6.10 compared with the value set to 8 m/s as shown in Fig. 6.6.

. time [s]
0 50 100 150 200

v
e

lo
c
it
y
 [

m
/s

]

0

1

2

3

4

5

6

7

8

Actual velocity

vmax = 5m/s

Figure 6.10: Illustration of the speed profile for the RR for the path shown in Fig. 6.9.

71

CHAPTER 6. RESULTS & ANALYSIS

This is a consequence of what happens when the value of ra increases. The RR enters the

RoA around a specific WP more often than if this parameter is given a lower threshold

value.

6.1.6 Simulation test 6: vmax = 10 m/s, ra = 15 m

For the last test on the circular path the values of the key parameters vmax and ra are

set to

• vmax = 10 m/s,

• ra = 15 m.

The obtained result is visualized in 6.11, which shows that this is the first test when the

RR manages to follow the circular path without missing a WP for the larger value set

on the maximum speed velocity, vmax.

. East [m]
-200 -150 -100 -50 0 50 100 150 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

1

2

3
4

5
6

7

8

9

10

11
121314151617

18

19

20

21

22
23

24

Figure 6.11: Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 15 m.

It can also be observe from the speed profile in Fig. 6.12 that in this test it takes more

time for the steady-state error to be removed for the maximum speed than in previous

tests.

72

CHAPTER 6. RESULTS & ANALYSIS

.

time [s]
0 20 40 60 80 100 120

v
e

lo
c
it
y
 [

m
/s

]

0

2

4

6

8

10

12 Actual velocity

vmax = 10m/s

Figure 6.12: Illustration of the speed profile for the RR for the path shown in Fig. 6.11.

It also shows that the controller is working properly, since the bumps in the velocity

curve are present in this test. It visualizes how the controller is adapting the motion of

the RR in a way that makes it follow the desired path in a satisfactory way.

6.1.7 Simulation test 7: vmax = 5 m/s, ra = 5 m

The last six tests form the simulations are performed on a zigzag-shaped path. The key

parameters that are varied are the same is the first 6 tests, i.e. the maximum allowed

speed vmax and the RoA ra. For the first test on the zigzag-shaped path the values on

the key parameters are set to:

• vmax = 5 m/s,

• ra = 5 m.

From Fig. 6.13, it can be observed that the RR manages to follow the path.

However, observing the speed profile shown in Fig. 6.14 the bumps in this curve are

much bigger than for the tests performed on the circular path. This shows that in order

to be able to pull of the sharp turns, the velocity has to be decreased even more than

on the circular path.

73

CHAPTER 6. RESULTS & ANALYSIS

. East [m]
-200 -100 0 100 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

400

450

1

2

3

4

5

6

7

Figure 6.13: Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 5 m/s and ra = 5 m.

. time [s]
0 20 40 60 80 100 120 140 160 180

v
e

lo
c
it
y
 [

m
/s

]

0

1

2

3

4

5

6

7

8

Actual velocity

vmax = 5m/s

Figure 6.14: Illustration of the speed profile for the RR for the path shown in Fig. 6.13.

6.1.8 Simulation test 8: vmax = 10 m/s, ra = 5 m

For the second test on the zigzag-shaped path the value of the key parameters are set

to the values:

• vmax = 10 m/s,

• ra = 5 m.

74

CHAPTER 6. RESULTS & ANALYSIS

Clearly from Fig. 6.15 it can be seen that the combination of the maximum velocity set

to 10m/s and the comparatively small value set on the RoA, the path becomes to sharp

for the controller to handle and at the last two WPs, the RR does not even manage to

follow a path close to the desired path.

. East [m]
-400 -300 -200 -100 0 100 200 300

N
or

th
 [m

]

0

100

200

300

400

500

1

2

3

4

5

6

7

Figure 6.15: Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 15 m.

From the speed profile in Fig. 6.16, small deflections can be seen for the first WPs.

When the controller does not manage to follow the WPs due to the clingy value set on

ra, the RR accelerates to the maximum velocity, constantly trying to find the next WP.

. time [s]
0 20 40 60 80 100 120 140

v
e

lo
c
it
y
 [

m
/s

]

0

2

4

6

8

10

12 Actual velocity

vmax = 10m/s

Figure 6.16: Illustration of the speed profile for the RR for the path shown in Fig. 6.15.

75

CHAPTER 6. RESULTS & ANALYSIS

6.1.9 Simulation test 9: vmax = 5 m/s, ra = 8 m

As for the tests on the circular path the tests on the zigzag-shaped path continues with

the same setups. The key parameters are now set to :

• vmax = 5 m/s,

• ra = 8 m.

In Fig. 6.17 it is shown that the RR still manages to follow the zigzag-shaped path in

satisfactory way, even with the increased RoA.

. East [m]
-200 -100 0 100 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

400

450

1

2

3

4

5

6

7

Figure 6.17: Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 5 m/s and ra = 8 m.

Similarly to tests performed on the circular path, i.e. as shown from Fig. 6.6 and Fig.

6.10 the bumps where the speed is decreased are deeper with the increased value on the

RoA, ra. Once again, the reason for this is the fact that the RR starts aiming at a new

WP at an earlier moment in time. This causes the controller to change the heading and

speed more rapidly.

6.1.10 Simulation test 10: vmax = 10 m/s, ra = 8 m

For the key parameters on the zigzag-shaped path chosen as:

76

CHAPTER 6. RESULTS & ANALYSIS

. time [s]
0 20 40 60 80 100 120 140 160 180

v
e

lo
c
it
y
 [

m
/s

]

0

1

2

3

4

5

6

7

8

Actual velocity

vmax = 5m/s

Figure 6.18: Illustration of the speed profile for the RR for the path shown in Fig. 6.17.

• vmax = 10 m/s,

• ra = 8 m.

The results are shown in Fig. 6.19.

. East [m]
-300 -200 -100 0 100 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

400

450

1

2

3

4

5

6

7

Figure 6.19: Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 8 m.

Even though the maximum speed allowed is set to a higher value, the RR manages to

reach the first two WP. It then lose track of the desired path but manages to re-establish

it at the seventh WP. Finally it reaches the eighth WP. From Fig. 6.20 small deflections

77

CHAPTER 6. RESULTS & ANALYSIS

are seen on the speed profile for the earlier points, but then when the controller does not

longer manage to re-establish the path it tries to compensate for this behavior. Hence,

accelerating the RR up to the maximum speed.

. time [s]
0 20 40 60 80 100 120

v
e

lo
c
it
y
 [

m
/s

]

0

2

4

6

8

10

12 Actual velocity

vmax = 10m/s

Figure 6.20: Illustration of the speed profile for the RR for the path shown in Fig. 6.19.

6.1.11 Simulation test 11: vmax = 5 m/s, ra = 15 m

For the second last test, the zigzag-shaped path the key parameters are set to:

• vmax = 5 m/s,

• ra = 15 m.

From Fig. 6.21 it can be observed that the RR manages to follow the desired path in

a satisfactory way. As predicted in Fig. 6.22 shows that bumps in the speed profile are

even larger, because the RR reaches the desired WPs at earlier and earlier moments in

time.

6.1.12 Simulation test 12: vmax = 10 m/s, ra = 15 m

For the last test on the zigzag-shaped path the value of the key parameters are set to:

• vmax = 10 m/s,

• ra = 15 m/s.

From Fig. 6.23 it can be observed that the RR manages to follow the desired path for

the first three WPs and then it looses the path, which it manages to re-establish for the

sixth, seventh and eighth WP.

78

CHAPTER 6. RESULTS & ANALYSIS

. East [m]
-200 -100 0 100 200

N
or

th
 [m

]

0

50

100

150

200

250

300

350

400

450

1

2

3

4

5

6

7

Figure 6.21: Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 5m/s and ra = 15 m.

.
time [s]

0 20 40 60 80 100 120 140 160

v
e

lo
c
it
y
 [

m
/s

]

0

1

2

3

4

5

6

7

8

Actual velocity

vmax = 5m/s

Figure 6.22: Illustration of the speed profile for the RR for the path shown in Fig. 6.21.

As predicted, Fig. 6.24 the speed is almost constantly set to the maximum speed allowed,

i.e. vmax. The steady-state error is removed by the controller at a later moment in time

since the first three WPs are passed in a satisfactory way.

Clearly the RR have issues making sharp turns, when driving at the higher speeds. This

is a result of the controller simply being to slow for this application. The results will be

discussed more in section 7.1.

79

CHAPTER 6. RESULTS & ANALYSIS

. East [m]
-300 -200 -100 0 100 200 300

N
or

th
 [m

]

0

50

100

150

200

250

300

350

400

450

1

2

3

4

5

6

7

Figure 6.23: Illustration of how the RR follows WPs released by the EB for the key

parameters set to vmax = 10 m/s and ra = 15 m.

.
time [s]

0 10 20 30 40 50 60 70 80 90 100

v
e

lo
c
it
y
 [

m
/s

]

0

2

4

6

8

10

12 Actual velocity

vmax = 10m/s

Figure 6.24: Illustration of the speed profile for the RR for the path shown in Fig. 6.23.

6.2 Empirical results

This part of the chapter presents the results that were collected during actual tests per-

formed on the RR. All tests were performed in shallow and calm conditions in L̊angedrag,

Sweden.

80

CHAPTER 6. RESULTS & ANALYSIS

6.2.1 Empirical test 1 - Steering accuracy

When testing the accuracy of the steering motor the result were mixed. There were

some indistinct behavior of the steering, most likely because the highest accuracy the

IR-sensor was able to measure was 0.66 degrees out on the handlebar. Larger accurancy

was not availble thus the hardware installed on th RR. This made a uncertainty how the

steering bar was steering in some cases.

6.2.2 Semi-manual results

The Semi-manual results were obtained when the RR was remote controlled from the

GUI.

6.2.2.1 Emperical test 2 - Throttle

This test shows how the throttle given in percent affects the real speed measured by the

GPS on-board the RR, see Fig. 6.25.

.
0 20 40 60 80 100 120 140 160

T
h
ro

tt
le

 [
%

]

 10

31.6228

M
e

a
s
u

re
d

 s
p

e
e

d
 w

it
h

 G
P

S
 [

m
/s

]

0

5

Trottle given
Meassured speed with GPS

Figure 6.25: Comparison between desired and actual throttle of the RR. This plot contains

two plots with there own axes. The dashed black line is the throttle given in percents and

the red line is the real speed measured by the GPS on-board the RR.

The GPS speed is expressed with an int variable, hence the edgy plot. At sample 44 it

can be seen that there is a decrease in the velocity even though the RR have an increasing

throttle. This is because the RR took 180◦ turn at this moment. Therefore the velocity

was decreased.

81

CHAPTER 6. RESULTS & ANALYSIS

6.2.2.2 Empirical test 3 - Communication range

The test was carried out in order to test the connection ability o the Wi-Fi network.

The purpose was to determine how far from the router the RR could go before the

connection was lost. This is of great importance since a lost connections means the

controller cannot navigate RR. The test was performed by driving in a rectangular path

of varying dimension. The path is illustrated in Fig. 6.26.

.

Figure 6.26: Illustration of how the connection of the Wi-Fi network is tested at large

distances. The red dot represents the areas where the RR lost packages sent from the GUI.

At close distances, i.e. below 120 m, the connection was good and not a single package

was lost. When the distance increased, i.e. above 120 m, the connection became unstable

and the connection was sometimes lost. The area where the connection was lost is marked

red, right corner in Fig. 6.25. This distance is crucial for the RR. At larger distances

the information of how the RR should navigate is limited. However, the test lasted

for approximately three minutes and of totally 426 packages sent, 411 were received

successfully. That corresponds to 3.5 % package loss and comes from the red area in

Fig. 6.25. The average response time during the test was 6.41 ms.

6.2.3 Path following results

When testing the Follow me application a WP containing the GPS position of Asperö

was set. Asperö is an island in the vicinity of L̊angedrag, where the tests were carried

82

CHAPTER 6. RESULTS & ANALYSIS

out. Hence, the objective for the Follow Me application was to navigate the RR to

towards Asperö autonomously. Asperö1 is located south-west in relation to the test

site. Two test were performed, the results were a bit different but the controller showed

satisfactory behavior in both tests.

6.2.3.1 Empirical test 4 - Follow Me application

The results from the first test of the Follow me application is shown in Fig. 6.27 and

6.28.

.

La
tit

ud
e

57.6692

57.6692

57.6692

57.6692

57.6693

57.6693

57.6693

57.6693

57.6693

Longitude
11.8458 11.846 11.8462 11.8464 11.8466 11.8468 11.847 11.8472 11.8474

Path tracked by GPS
Received GPS data
Start
Stop

Figure 6.27: Illustration of Test 1 where the RR drives autonomously towards Asperö.

The RR, controlled by the PID-controller, tries to drive towards Asperö. In the beginning

there is some trouble establishing the direction but this is sorted out after some time and

the RR starts driving towards Asperö.

It can be seen from the figures that the control system has a bit hard to determine in

what direction the RR shall be driving. It drives in a circle but then the controller

manages to stabilize the path and set the heading towards Asperö. It can also be noted

that the throttle was allowed to only 10% of its maximum when the RR was driving in

a circle. The throttle was than increased to 30% of its maximum and the RR responded

better to the control signals.

In Fig. 6.29, two plots are shown. The top one shows how the PID-controller sets

the steering angle for the RR, i.e. the angle that is fed to the Arduino which sets the

angle of the RRs handlebar. The bottom plot shows how the LOS-angle between the

1The location of Asperö is N57◦64′8707688734994 and E11.79′9488067626953

83

CHAPTER 6. RESULTS & ANALYSIS

.

Figure 6.28: Illustration of Test 1 zoomed out where the RR drives autonomously towards

Asperö.

RR and the GPS point on Asperö is changing. The reason that the angle is changing

with a very small rate is due to the fact that Asperö is located far (approximately 3 km)

from the current position of the RR, hence the rate of change becomes very small.

.

Number of samples
0 10 20 30 40 50 60

An
gl

e
[d

eg
]

-6

-4

-2

0

2

4

6

8

Controlled steering error

Number of samples
0 10 20 30 40 50 60

An
gl

e
[d

eg
]

-157

-156.8

-156.6

-156.4

-156.2

-156

LOS-angle between RR and desired position

Figure 6.29: Illustration of the controlled steering angle and LOS-angle for test 1 where

the RR drives autonomous towards Asperö. The PID-controlled steering angle (top) and

how the LOS-angle between the RR and the GPS position on Asperö is changing (bottom)

for the first test where the RR is driving autonomously in the direction of Asperö.

84

CHAPTER 6. RESULTS & ANALYSIS

6.2.3.2 Empirical test 5 - Follow Me application

For the second test the results are illustrated in Fig.6.30 and 6.31. Once again it can be

observed that the RR has a hard time establishing its path when the throttle was given

a low, i.e. around 10%. When the throttle was increased to 30% of its maximum the RR

manages to establish a path but it drives a northwest. However, when observing the top

plot of Fig.6.32, i.e. the controlled steering angle that is sent from the PID-controller to

the RR is −20 degrees, which means that the handlebars make a deflection to the left.

Hence, if the test were to continue longer the RR would have turned left, towards the

GPS-position placed on Asperö.

.

La
tit

ud
e

57.6692

57.6692

57.6693

57.6693

57.6694

57.6694

57.6695

57.6695

57.6695

57.6696

57.6697

Longitude
11.8465 11.8466 11.8467 11.8468 11.8469 11.847 11.8471 11.8472 11.8473 11.8474 11.8475

Path tracked by GPS
Received GPS data
Start
Stop

Figure 6.30: Illustration of Test 2 where the RR drives autonomously towards Asperö.The

RR controlled by the PID-controller, tries to drive towards Asperö. In the beginning there

is some trouble establishing the direction but this is sorted out after some time and the RR

starts driving north-west.

For this test it can also be noted that the LOS-angle changes with a very small rate, the

reason for this is the same as in section 6.2.3.1.

85

CHAPTER 6. RESULTS & ANALYSIS

.

Figure 6.31: Illustration of Test 2 zoomed out where the RR drives autonomously towards

Asperö.

.

Number of samples
0 10 20 30 40 50 60 70 80 90

An
gl

e
[d

eg
]

-20

-15

-10

-5

0

5

10
Controlled steering error

Number of samples
0 10 20 30 40 50 60 70 80 90

An
gl

e
[d

eg
]

-157

-156.8

-156.6

-156.4

-156.2

-156
LOS-angle between RR and desired position

Figure 6.32: Illustration of the controlled steering angle and LOS-angle for test 2 where

the RR drives autonomous towards Asperö. The PID-controlled steering angle (top) and

how the LOS-angle between the RR and the GPS position on Asperö is changing (bottom)

for the second test where the RR is driving autonomously in the direction of Asperö.

86

CHAPTER 6. RESULTS & ANALYSIS

6.2.4 Empirical test 6 - Heading angle

The performance of the IMU, i.e. the tilt compensated compass the yields the yaw angle,

was also tested. The test was performed by driving in a rectangular path of varying

dimension. The result from the test is illustrated in Fig. 6.33. It can therefore be stated

that the yaw angle given from the IMU corresponds well with the yaw angle given from

the GPS. Simultaneously as the test was performed the results were also compared with

the readings of the analog compass attached on the RR. It shall be mentioned that this

compass gave a reading that lied somewhere between the GPS and the IMU. Which one

of the two devices to use and reasons for noise in the IMU signal, will be discussed in

section 7.2.2.

La
tit

ud
e

57.6685

57.6686

57.6687

57.6688

57.6689

57.669

Longitude
11.8458 11.8459 11.8459 11.846 11.8460 11.8461 11.8462 11.8462 11.8463 11.8463 11.8463

Path tracked by the GPS

Number of samples
0 100 200 300 400 500 600 700 800 900 1000

An
gl

e
[d

eg
re

es
]

0

100

200

300

400

500
GPS heading
IMU heading

Figure 6.33: Illustration of the angular difference between the GPS and the IMU. The

angular difference between the GPS and the IMU was tested when driving in a rectangular

path of varying dimension as shown in the top figure. The bottom figure shows the difference

between the angular deflection given from both the GPS and the IMU.

The performance of the GPS and the IMU was also tested for the RR lying still. See

Fig. 6.34

87

CHAPTER 6. RESULTS & ANALYSIS

Number of samples
0 5 10 15 20 25 30 35 40 45 50

G
P

S
 h

e
a
d
in

g

0

50

100

150

200

250

300

350

GPS heading
IMU heading

Figure 6.34: Illustration of the angular difference between the GPS and the IMU when

the RR was lying still.

88

CHAPTER 6. RESULTS & ANALYSIS

89

7

Discussion and concluding

remarks

I
n the following chapter the results obtained in this master’s thesis, will be discussed

and conclusions will be drawn. In section 1.2 the following objectives were stated:

1. Deriving a mathematical model for the RR.

2. Developing a simulation environment for the RR, in which it is able to autonomously

follow a path, consisting of waypoints (WP) fed to its control system.

3. Development of a communication system which enables wireless data transfer be-

tween the RR and EB.

4. Assess the results gathered from the simulation and use them to redesign the RR

for automatic navigation.

The conclusions pertains to the results of obtained from the testing the actual implemen-

tation in a water environment, but also the results received from the simulation model.

The simulation model has had a great impact on how the control system in the actual

RR was implemented.

The conclusion chapter starts by commenting on the results derived from the simulation

model. The authors of this master’s thesis feel that the objectives have been fulfilled

in a satisfying way. What has been done within the framework of this project can be

90

CHAPTER 7. DISCUSSION AND CONCLUDING REMARKS

improved for even better results. Considering what has been achieved within the time

frame, under which this project was carried out, the results are definitely more than

acceptable.

7.1 Simulation model

A great part of the work that has focused on developing a simulation model of the RR

following a predefined path. Starting with deriving the rigid body dynamic equations of

the behavior of the RR when in a fluid, ending with deriving a functional model of the

RR able to follow a predefined path. The way in which the model was developed, has

greatly affected the way the implementation in the RR was carried out.

When considering the results obtained from simulations, presented in chapter 6, it can

be seen that the simulated model is good at following the predefined path when the RoA

and the maximum allowed speed, had values corresponding good with each other. The

shape of the path is also a parameter that affects the simulated behavior, hence a good

combination of the three parameters yields a satisfying result. Taking the circular path,

e.g. Fig. 6.1 the RR manages to follow the path when the speed was chosen to 5m/s

and small values were set on the RoA. When the speed is high it becomes harder for

the RR to follow the predefined path. It manages to do so only for the RoA is set to a

larger value, i.e. 15m, as shown in Fig. 6.11. The results presented in section 6.1 shows

that the system is robust for lower velocities and manages to follow a predefined path

even if the RoA is assigned a clingy value. If the simulated system shall have a chance

to follow a path, the RoA must be set more generously when the speed is increased.

For the zigzag-shaped path it can be seen that for quick adjustments, regarding the

heading direction of the RR, the controller has very hard to adjust the speed and head-

ing for higher speeds. Even if the RoA is assigned with a more generous value, see Fig.

6.23. It shall be mentioned that the zigzag-shaped path is designed in a complex way,

which puts hard constraints on the controller. Therefore it should be hard for the RR to

follow it. For lower values set on the speed, the model manages to follow the predefined

path in a satisfactory way. The reasons for this behavior could be many. One possible

explanation is that the RR was simulated in 3 DoF. Adding the other 3 DoF would yield

a different result on the behavior. At least for higher speeds. The reason it was kept to

91

CHAPTER 7. DISCUSSION AND CONCLUDING REMARKS

3 DoF in this thesis was due to the fact that it was considered enough for the results

to be satisfactory. Another interesting aspect, certainly affecting the behavior, is the

pick of controllers. The authors of this thesis chose to work with PID-controllers, for

setting both the speed and the heading. A different pick of controllers might have given

a different behavior.

A final remark that also affects the behavior to a large extent is deviation, wind and

waves, which are all neglected in this model. The impact these three components have

will not be a clincher when the weather is calm, which has been assumed throughout

this thesis work. For stormy weather though, these three components will have a great

impact on the behavior of the RR.

7.2 Real implementation

For the implementation in the actual RR the tests were carried out in two different

ways. The ability to control the RR was performed both with a remote control, i.e.

sending steering and throttle signals directly to it from the self-developed GUI, but also

by making it follow a predefined path, fed to a steering and a throttle controller.

7.2.1 Steering accuracy

The PID-controller had a hard time trying to steer the RR in a correct way: Probably,

since the accuracy of the IR-sensor measuring the position of the handlebars was low. An

attempt to increase the accuracy was done. Instead of measuring deflections two times

per revolution with the IR sensor, four deflections were measured. This would yield a

higher accuracy in theory but the result ended up in a bad loop, where the IR-sensor

continuously interrupted the main sequence in the Arduino program. This prevented

the main program loop to run properly and resulted in a program failure. To gain better

accuracy, parallel executions would have been preferable. This could be achieved by

adding additionally Arduino Mega 2560’s solely for counting the revolutions from the

steering motor.

92

CHAPTER 7. DISCUSSION AND CONCLUDING REMARKS

7.2.2 Sensor fusion

The sensor fusion procedure was used in order to get a tilt compensated yaw angle, i.e.

to determine in what direction the RR was oriented. In section 6.2.4 a comparison was

made between the yaw angle returned from the GPS and the yaw angle returned from

the IMU. The angular values from both units were almost similar, as can be seen in

Fig. 6.33. It shall be mentioned though, that the GPS returns a reliable yaw angle only

when the RR is moving. This is due to the fact that the GPS estimates the yaw angle

based on how it passes through two consecutive points on its path. If it is standing still,

these points lie at the same place, hence a reliable yaw angle cannot be estimated. In

order to get a reliable estimation of the yaw angle at lower velocities, the IMU has to

be used. Though the yaw angle returned by the GPS is more stable than the yaw angle

returned by the IMU a suggestion from the authors of this thesis is to use the data from

the IMU at lower velocities, and the data from the GPS at higher velocities. It shall also

be noted that a reason for the noise in the signal might be due to the sensor calibration.

The sensors on the IMU stick was calibrated when the RR was standing on land with

the motor turned off. The noise in the signal might be a result of the vibrations of the

motor in the RR being turned on. Hence, the box containing the IMU starts to sway.

When the motor is turned on it generates magnetic fields that also affect the IMU.

7.2.3 Communication

The Wi-Fi communication worked good and only 3.5% of the packages were lost at a

distance of approximately 120 m from the router. At distances < 120 m it was easy

to navigate the RR with proper behavior. Sine the steering angle and throttle were

sent three times every second it was not crucial if a command was missed. Navigation

problems arose with an increased package loss rate. When this rate was to high the RR

was impossible to control properly.

As Semi manual and Follow me parameters are sent without an acknowledgement, the

user has no idea whether the RR received a package or not. The application could be

modified, forcing the Arduino program in the RR to send an acknowledgement every

time the navigation parameters were received. This would increase the robustness in the

system. The reason this has not been taken into account in this thesis work is due to

problems with communication speed between the RR and the GUI when sending several

93

CHAPTER 7. DISCUSSION AND CONCLUDING REMARKS

data strings using UDP. Excluding the handshake between the two programs had no big

influence on the system when the reception was good.

A critical situation was when a package was sent with no restriction of returning a

acknowledgement back to the GUI, e.g. when setting the throttle and steering relays

from automatic to manual and vice versa. If such a command was not received, the RR

was not able to navigate as intended. This created an uncertainty between the GUI and

the behavior of the RR.

7.2.4 Remote control

For the application, where the RR is driven with remote control over the Wi-Fi the

results where very satisfactory. The RR responded well on the steering signals that was

fed to it from the GUI. For this application it became obvious that it was easier to

maneuver the RR when it was allowed to drive at higher percentages of the maximum

throttle.

7.2.5 Path following

The RR could successfully be directed to its wished position. The path following tech-

nique was implemented in a similar way as done in the simulations. A predefined GPS

position was placed in a vector, which was fed to the implemented controllers in the

actual RR. In analogy with the simulation a tolerance was put on each WP. The ob-

jective of the RR was to switch WP when it was within the RoA of the current one.

The two controllers calculated the errors of the steering angle and of the throttle and

successfully fed to the Arduino in the RR, making it able to establish its wished position.

As described in section 6.2 the controller had trouble guiding the RR in the right di-

rection when the throttle was limited to lower values. When the throttle was allowed

the reach approximately 30% of the maximum throttle the control system managed to

steer the RR in the correct direction. A thing, which was not considered in this control

system, that has a great impact on the control behavior is the rotation velocity of the

RR. The controller manages to guide the RR in the correct direction. Although it cannot

compensate for the overshoot on the tail of the RR, which is a result of its inertia to-

gether with drift and other environmental disturbances as a result of traveling in water.

94

CHAPTER 7. DISCUSSION AND CONCLUDING REMARKS

However, the path following implementation can be perfected, since the RR sometimes

have a hard time following several WPs set out as a path. Sometimes the WP switching

does not work properly and this is something that has to be investigated in future work.

This behavior might be due to the pick of controller for the application and maybe a

different implementation would have been more suitable. However, this was outside the

scope of this project.

7.3 Future work

In this section the authors of this thesis will propose a couple of things that are worth

investigation thoroughly in continuous work. A list of areas to investigate is attached

below:

• Implement environmental disturbances on the simulation model such as deviation,

turbulence from waves and wind.

• Implement a 6 DoF model of the RR for a more realistic result at higher velocities.

• Investigate if different controllers are required for velocity and heading. Faster,

more adaptive controllers, are suggested when the RR reaches higher velocities

and for its path following to become more robust.

• Further development of the path following implementation. Make the application

more robust.

• Take more advantage of the powerful IMU sensor installed on the RR, e.g. use the

gyroscope and accelerometer to increase the steering performance preventing the

RR to slide sideways.

95

Bibliography

[1] Sjöräddningssällskapet. (2015, January) We save lives at sea with no government

funding. [Online]. Available: http://www.sjoraddning.se/ine-english/

[2] F. Falkman. (2015, January) Follow-me, little rescue boat! - how might we make

the rescuerunner follow a bigger rescue boat automatically on a safe distance?

[Online]. Available: http://fredrikfalkman.tumblr.com/

[3] T. I. Fossen, Guidance and Control of Ocean Vehicles. Buffins Lane, Chichester,

West Sussex, England: John Wiley & Sons Ltd., 1994.

[4] D. Krammer, “Modeling and control of autonomous sailing boats,” Master’s thesis,

Eidgenössiche Technische Hochschule, Zürich, Switzerland, 2014.

[5] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. Buffins

Lane, Chichester, West Sussex, England: John Wiley & Sons Ltd., 2011.

[6] T. I. Fossen and T. Perez, “MSS - Marine Systems Simulator,” March 2015.

[Online]. Available: http://www.marinecontrol.org

[7] T. I. Fossen, M. Breivik, and R. Skjetne, “Line-of-sight path following of underac-

tuated marine craft,” Center of Ship and Ocean Structures (CESOS), Norwegian

University of Science and Technology (NTNU), Trondheim, Norway, Tech. Rep.,

2003.

[8] M. Breivik, “Nonlinear maneuvering control of underactuated ships,” Master’s the-

sis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,

2003.

96

http://www.sjoraddning.se/ine-english/
http://fredrikfalkman.tumblr.com/
http://www.marinecontrol.org

BIBLIOGRAPHY

[9] T. Marius Jensen, “Waypoint-following guidance based on feasibility algorithms,”

Master’s thesis, Norwegian University of Science and Technology (NTNU), Trond-

heim, Norway, 2011.

[10] B. Lennartson, Relgerteknikens grunder, 4th ed. Lund: Studentlitteratur AB, 2002.

[11] K. Nomoto, T. Taguchi, K. Honda, and S. Hirano, “On the steering qualities of

ships,” International Shipbuilding Progress, vol 4, Tech. Rep., 1957.

[12] L. Xiao and J. Jouffroy, “Modeling and nonlinear heading control for sailing yachts,”

in OCEANS 2011,Waikoloa, HI, Sep.19-22, 2011, pp. 1–6.

[13] F. Furrer, “Developing a simulation model of a catamaran using the concept of

hydrofoils,” Master’s thesis, Eidgenössiche Technische Hochschule, Zürich, Switzer-

land, 2010.

[14] T. I. Fossen and T. Perez. (2015, March) Kinematic models for seakeeping and

maneuvering of marine vessels. modeling, identification and control. [Online].

Available: http://www.marinecontrol.org

[15] G. Geiger, J. Bartholomeyczik, U. Breng, W. Gutmann, M. Hafen, E. Handrich,

M. Huber, A. Jäckle, U. Kempfer, H. Kopmann, J. Kunz, P. Leinfelder, R. Ohm-

berger, U. Probst, M. Ruf, G. Spahlinger, A. Rasch, J. Straub-Kalthoff, M. Stroda,

K. Stumpf, C. Weber, M. Zimmerman, and S. Zimmerman, “MEMS IMU for AHRS

Applications,” in Position, Location and Navigation Symposium, ’08 IEEE/ION,

Monterey, CA, May 5–8, 2008, pp. 225–231.

[16] Sparkfun. (2015, April) 9 degrees of freedom - sensor stick. PICTURE. [Online].

Available: https://www.sparkfun.com/products/10724

[17] Arduino Software. (2015, March) Arduino Mega, Specifications. [Online]. Available:

http://arduino.cc/en/Main/arduinoBoardMega

[18] F. Leens, “An Introduction to SPI and I2C Protocols,” IEEE Instrumentation and

Measurement Magazine, vol. 12, no. 1, pp. 8–13, February 2009.

[19] ADXL345 Digital Accelerometer Specification, Analog Devices Inc., 2009-2013.

[20] ITG3200 Gyroscope Product Specification, Revision 1.4, InvenSense Inc., 2010.

97

http://www.marinecontrol.org
https://www.sparkfun.com/products/10724
http://arduino.cc/en/Main/arduinoBoardMega

BIBLIOGRAPHY

[21] 3-Axis Digital Compass IC HMC5843, Honeywell Inc., 2009.

[22] F. Abyarjoo, A. Barreto, J. Cofino, and F. Ortega, “Implementing a Sensor Fusion

Algorithm for 3D Orientation Detection with Inertial/Magnetic Sensors,” in Innova-

tions and Advances in Computing, Informatics, Systems Sciences, Networking and

Engineering. Cham: Springer International Publishing, 2015, pp. 305–310.

[23] Electronic Compass Design Guide - Using The HMC5843 Digital Compass IC, Hon-

eywell Inc., 2009.

[24] H. Pang, M. Pan, C. Wan, J. Chen, X. Zhu, and F. Luo,“Integrated compensation of

magnetometer array magnetic distortion field and improvement of magnetic object

localization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9,

pp. 5670–5676, 2014.

[25] Camel Software. (2015, May) 3-axis magnetometer calibration –

a simple technique for hard & soft errors. [Online]. Avail-

able: http://www.camelsoftware.com/firetail/blog/uavs/3-axis-magnetometer-

calibration-a-simple-technique-for-hard-soft-errors/

[26] W. T. Higgins, “A Comparison of Complementary and Kalman Filtering,” IEEE

Transactions of Aerospace and Electronic Systems, vol. 11, no. 3, pp. 321–325, 1975.

[27] A. Andersson, V. Bäckman, O. Pantzare, A. Sarvik, and O. Granqvist, “Eskortering

av autonom vattenskoter,” 2015, unpublished.

98

http://www.camelsoftware.com/firetail/blog/uavs/3-axis-magnetometer-calibration-a-simple-technique-for-hard-soft-errors/
http://www.camelsoftware.com/firetail/blog/uavs/3-axis-magnetometer-calibration-a-simple-technique-for-hard-soft-errors/

BIBLIOGRAPHY

99

A

Simulation

Pseudo code for generating a continuous mapping of the LOS-angle, i.e. from (−π,π) to

(−∞,∞).

Algorithm pseudo code describing the mapping of the atan2-function

1: procedure atan2-mapping(previous state,current state,accumulation)

2: if previous state = 1 then

3: if current state = 1 then

4: accumulate = psi current− psi previous.
5: else if current state = 2 then

6: accumulate = psi current− psi previous.
7: else if current state = 3 then

8: if abs(psi current + psi previous <= π then

9: accumulate = psi current− psi previous.
10: else

11: accumulate = psi current− psi previous+ 2π.

12: end if

13: else

14: accumulate = psi current− psi previous.
15: end if

16: current state = 1

17: current state = 2

1

APPENDIX A. SIMULATION

Algorithm pseudo code describing the mapping of the atan2-function (continued)

18: else if previous state = 2 then

19: if current state = 1 then

20: accumulate = psi current− psi previous.
21: else if current state = 2 then

22: accumulate = psi current− psi previous.
23: else if current state = 3 then

24: accumulate = psi current− psi previous.
25: else

26: if abs(psi current + psi previous <= π then

27: accumulate = psi current− psi previous.
28: else

29: accumulate = psi current− psi previous+ 2π.

30: end if

31: end if

32: else if previous state = 3 then

33: if current state = 1 then

34: if abs(psi current + psi previous <= π then

35: accumulate = psi current− psi previous.
36: else

37: accumulate = psi current− psi previous+ 2π.

38: end if

39: else if current state = 2 then

40: accumulate = psi current− psi previous.
41: else if current state = 3 then

42: accumulate = psi current− psi previous.
43: else

44: accumulate = psi current− psi previous− 2π.

45: end if

46: current state = 3

2

APPENDIX A. SIMULATION

Algorithm pseudo code describing the mapping of the atan2-function (continued)

47: else

48: if current state = 1 then

49: accumulate = psi current− psi previous.
50: else if current state = 2 then

51: if abs(psi current + psi previous <= π then

52: accumulate = psi current− psi previous.
53: else

54: accumulate = psi current− psi previous+ 2π.

55: end if

56: else if current state = 3 then

57: accumulate = psi current− psi previous+ 2π.

58: else

59: accumulate = psi current− psi previous.
60: end if

61: accumulation = accumulation+ accumulate.

62: psi previous = psi current.

63: end if

64: current state = 4

65: end procedure

3

B

Arduino

B.1 Rescuerunner

Rescuerunner(

)nyGPS.h(

dataAcquisi)on.h(

IMUSensor.h(

poten)ometerDefiene.h(

relayDefine.h(

sensorInit.h(

steering.h(

str2num.h(

Variables.h(

Figure B.1: Overview of the Arduino programs in the RR.

4

APPENDIX B. ARDUINO

• Rescuerunner - This is the main function of the RR’s Arduino program. This pro-

gram connects to the wireless network Follow Me with static IP-adress 192.168.0.101

with port number 2390. The program then listens if any UDP package where sent

to the port. When a package is received there are several if statement depending

which message that was received.

1. if (message.startsWith("RRconnect")) - If string was RRconnect return

an acknowledge to the GUI through UDP that the RR was connected.

2. if (message.startsWith("RRstart")) - If string was RRstart invoke func-

tion startRelay() to start engine.

3. if (message.startsWith("RRstop")) - If string was RRstop invoke function

stopRelay() to stop engine.

4. if (message.startsWith("RR_getData")) - If string was RR_getData in-

voke function sendYawGPSdata(), return the GPS and yaw data to the GUI.

5. if (message.startsWith("RRinit)) - If string was RRinit invoke function

initCounter() to initilize steering.

6. if(strncmp(packetBuffer, "setNav",6) == 0) - If string starts with setNav

the following text in that string will contain information about steering and

throttle. The string will look like

setNav025/050

where setNav is the identifying string, 010 is the steering angle and 050

is the throttle in percents (50%)

7. if (message.startsWith("RRinit)) - If string was RRinit invoke function

initCounter() to initialize steering.

8. if (message.startsWith("RR_Man2Aut")) - If string was RR_Man2Aut in-

voke function steering_Man2Aut()

9. if (message.startsWith("RR_Aut2Man")) - If string was RR_Aut2Man in-

voke function steering_Aut2Man()

10. if (message.startsWith("RRrelayMan")) - If string was RRrelayMan set

minimum throttle and invoke function set2ManRelay();

5

APPENDIX B. ARDUINO

11. if (message.startsWith("RRrelayAut")) - If string was RRrelayAut set

minimum throttle and invoke function set2AutRelay()

• tinyGPS.h - This library contains code for reading the GPS unit. Returning GPS

position in longitude and latitude with 10 digits each, e.g. longitude can have the

following value 57.68856048. It is also calculating the true speed in meter/second

and heading angle in degrees.

• dataAcquisition.h - This library just contains one function

1. void senYawGPSdata(void) - this function builds up the string base in the

GPS data and sends the GPS data from tinyGPS.h to the GUI through UDP

protocol.

• IMUsensor.h - This library reads the IMU sensor and calibrate and filtering the

values returning a tilt compensating compass with values 0-359 degrees, see Chap-

ter 4.

• relayDefine.h - This library sets the Songle relay board’s depending if the system

want to be in manual mode or automatic mode. This library contains five functions

1. void initRealy(void) - This function initialize the pins on the Arduino and

puts all relays into manual mode at start up.

2. void startRelay(int realyPos) - This function enables the start engine to

run.

3. void stopRelay(int realyPos) - This function disable the main engine and

turn it off.

4. void set2AutRelay(void) - This function disables handlebar throttle and

enables digital throttle from the program.

5. void set2ManRelay(void) - This function enables handlebar throttle and

disable digital throttle from the program.

• potentiometerDefine.h - This library four throttle functions.

1. void initPot(void) - Initialize pin and set the throttle to minimum.

2. void digitalPotWrite(int command, int value) - This function sets the

throttle by changing the potentiometer.

6

APPENDIX B. ARDUINO

3. double percToOhm(int percent) - This function returns throttle from per-

cent to ohm by [27]

0.036*percent + 0.9

where 0.9 is the idle resistance for the motor to be able to start.

4. int ohmToByte(void) - This function returns the throttle from ohm to byte

by [27]

(ohm-0.0957) / 0.0308

• sensorDefine.h - This library handles the steering sensors. There are two sensors,

one calculating how many revolutions the steering motor has turned with a IR

sensor and one measures when the handlebar has swung to maximum right.

1. void initCounter(void) - This function will initialize the handlebar turn-

ing it maximum to left. After that it will start counting revolutions from

the steering motor by calling void degreeCount(void) function. Now the

handlebar tuning right until the amount of revolutions has been equal to the

pre-calculated revolutions making it know where straight ahead is.

2. void degreeCount(void) - This function will count the revolutions contin-

uously.

• steering.h - This library handles the steering functions

1. void steerLeft(int U) - This function steer the handlebar to left with an

input voltage U that is set to 12V.

2. void steerRight(int U) - This function steer the handlebar to right with

an input voltage U that is set to 12V.

3. void stopMotor() - Sets the steering to manual mode by slacking pulley

4. void steering_Man2Aut(void) - Sets the steering to automatic control by

extend the pulley.

7

APPENDIX B. ARDUINO

5. void steering_Aut2Man(void) - Sets the steering to automatic control.

6. steerInit(void) - Define pin modes for slacking/extend motor

7. steeringInit(void) - Define pin modes for steering motor.

• str2Num.h - This library handles the string that are recieved from the program

and convert it into digits.

• variable.h - This library contains all the parameters that is used.

B.2 Ego boat

Ego$boat$

(nyGPS.h$

dataAcquisi(on.h$

Variables.h$

Figure B.2: Overview of the Arduino programs in the EB.

• egoBoat - This is the main function of the EB’s Arduino program. This pro-

gram connects to the network Follow Me through Ethernet, with static IP-address

192.168.0.100 with port number 2391. The program then listens if any UDP pack-

age where sent to the port. When a package is received there are several if state-

ment depending which message that was received.

1. if (message.startsWith("EBconnect")) - If string was EBconnect return

an acknowledge to the GUI through UDP that the EB was connected.

2. if (message.startsWith("EB_getData")) - If string was EB_getData in-

voke function sendGPSdata(), return the GPS data to the GUI.

8

APPENDIX B. ARDUINO

• tinyGPS - This library contains code for reading the GPS unit. Returning GPS

position in longitude and latitude with 10 digits each, i.e longitude can have the

following value 57.68856048. It is also calculating the true speed in meter/second

and heading angle in degrees.

• dataAcquisition.h - This library just contains one function

1. void sendGPSdata(void) - this function builds up the string base in the

GPS data and sends the GPS data from tinyGPS.h to the GUI through UDP

protocol.

• variable.h - This library contains all the parameters that is used.

9

C

GUI - Follow me

The GUI invokes multiply functions during its operation, see Fig: C.1.

• RR_try_connect() - Tries to connect to RR. Returns true if it does, else false

which means program needs to be connected again.

• EB_try_connect() - Tries to connect to EB. Returns true if it does, else false

which means program needs to be connected again.

• RR_steering_Aut2Man() - Set steering into manual mode.

• RR_steering_Man2Aut() - Set steering into automatic mode.

• RR_start() - Start the start engine for four seconds.

• RR_stop() - Stop the engine.

• RR_init_steering() - Run the initialize steering routine.

• RR_steering_correction() - Makes sure the steering is between arbitrary values.

• RR_enable_throttle(boolean) - Switch between handlebar/digital throttle.

• RR_getData() - Request information from the RR’s GPS and IMU sensor. Returns

a string with GPS and IMU data, RR_info

• EB_getData() - Request information from the EB’s GPS Returns a string with

GPS data, EB_info

10

APPENDIX C. GUI - FOLLOW ME

• distance_between(RR_info EB_info) - Calculates the distance between RR and

EB returning distance. Input parameters is the GPS and IMU data from both

RR and EB.

• tolerance_acceptance(distance) - Check if the RR is arbitrary close to the EB.

Input distance.

• RR_velocity() - Calculates the RR’s speed.

• angel_between() - Calculates the angle between the RR and EB.

• steering_PID(steering_error,vel_RR) - Calculates the RR’s new heading an-

gle. Returns steering_signal

• throttle_PID(throttle_error,vel_RR) - Calculates the RR’s new throttle. Re-

turns throttle_signal

• setNavigation() - Sends throttle and steering angle to RR.

• Disconnect() - Turns of the communication between the two Arduinos and the

GUI.

11

APPENDIX C. GUI - FOLLOW ME

Follow%Me%

RR_try_connect.m% EB_try_connect.m%

Connected%=%false%

RR_start.m%Engine%is%on!%

RR_steering_Aut2Man.m%

RR_stop.m%RR_Disconnect.m%

Disconnect%=%true% Stop%engine%=%true%

Manual%=%true%

RR_steering_Man2Aut.m%

Follow%me%OR%Semi%manual%=%true%

RR_enable_throEle.m%

RR_init_steering.m%

Steering_correcFon.m%

Read%parameters%
ThroEle%
Steering_angle%

RR_getData.m%

EB_getData.m%

angle_between.m%distance_between.m%

tolerance_acceptance.m% steering_PID.m%

throEle_PID.m%

RR_velocity.m%

Follow%Me%=%true%Semi%manual%=%true%

RR_setNavigaFon.m%

Follow%me%OR%Semi%manual%=%true%Manual%=%true%

Figure C.1: Schematic overview of how the GUI invokes its functions

12

D

Digital appendix

The Digital appendix will include code, simulation models and similar packages that have

been used through this thesis. The Digital appendix is divided into the four following

parts:

1. Simulation.zip - Functions and files to run the simulations in Simulink.

2. Arduino.zip - Arduino programs for RR and EB.

3. Follow Me.zip - GUI that enables the user to control the RR.

4. Movie.zip - Movie clips testing the RR.

13

	Glossary
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Context
	General objectives
	Contributions
	Constraints
	Thesis organisation

	Modeling
	Kinematics
	Coordinate systems
	Coordinate transformation
	Linear Velocity Transformation
	Angular Velocity Transformation

	Nonlinear dynamic equation of motion
	Rigid body dynamics
	The inertia matrix
	Coriolis and centripetal terms

	Hydrodynamic forces and moments
	Strip Theory
	Gravitational forces and moments

	State space model

	Simulation
	Generating waypoints
	Predefined waypoint generator
	GPS waypoint generator

	Guidance system
	Waypoint selection
	Line of Sight
	Calculating a continuous Line of Sight angle
	Speed calculation

	Reference model
	Controller
	Water jet thruster dynamics
	Equation of motion in 3 DoF

	Sensor fusion
	Arduino I2C communication
	Inertial measurement unit
	Calibration
	Accelerometer
	Gyroscope
	Magnetometer

	Filtering
	Low-pass filtering
	Complementary filtering

	Tilt compensation

	Communication
	Hardware
	Arduino software implementation
	User Datagram Protocol communication
	Graphical User Interface

	Results & Analysis
	Simulation results
	Simulation test 1: vmax = 5m/s, ra = 5m
	Simulation test 2: vmax = 10m/s, ra = 5m
	Simulation test 3: vmax = 5m/s, ra = 8m
	Simulation test 4: vmax = 10m/s, ra = 8m
	Simulation test 5: vmax = 5 m/s, ra = 15 m
	Simulation test 6: vmax = 10 m/s, ra = 15 m
	Simulation test 7: vmax = 5 m/s, ra = 5 m
	Simulation test 8: vmax = 10 m/s, ra = 5 m
	Simulation test 9: vmax = 5 m/s, ra = 8 m
	Simulation test 10: vmax = 10 m/s, ra = 8 m
	Simulation test 11: vmax = 5 m/s, ra = 15 m
	Simulation test 12: vmax = 10 m/s, ra = 15 m

	Empirical results
	Empirical test 1 - Steering accuracy
	Semi-manual results
	Emperical test 2 - Throttle
	Empirical test 3 - Communication range

	Path following results
	Empirical test 4 - Follow Me application
	Empirical test 5 - Follow Me application

	Empirical test 6 - Heading angle

	Discussion and concluding remarks
	Simulation model
	Real implementation
	Steering accuracy
	Sensor fusion
	Communication
	Remote control
	Path following

	Future work

	 Bibliography
	Simulation
	Arduino
	Rescuerunner
	Ego boat

	GUI - Follow me
	Digital appendix

