
Convergent Light Volumes for
Indirect Illumination
Master's Thesis in real-time indirect illumination using
ray tracing and lighting volumes

JAKOB BRATTÉN

DANIEL LINDÉN

Department of Computer Science and Engineering

Chalmers University of Technology

Gothenburg, Sweden 2013

Master's Thesis 2013:1

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants
that the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about
this agreement. If the Author has signed a copyright agreement with a third
party regarding the Work, the Author warrants hereby that he/she has obtained
any necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

Convergent light volumes for indirect illumination
Master's Thesis in real-time indirect illumination using ray tracing and light
volumes

Jakob Brattén
Daniel Lindén

© Jakob Brattén, 2013.
© Daniel Lindén, 2013.

Examiner: Ulf Assarsson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden 2013

Abstract

This thesis examines a technique to approximate indirect illumination in real
time on modern computer hardware. Incoming light information is stored in a
regular grid, called a light volume, by rasterizing large quantities of line seg-
ments into a 3D texture. Since indirect illumination is generally quite consist-
ent between frames, several light volumes can be merged to achieve more stable
lighting. In order to allow fast changes of the indirect illumination from fast
moving light sources, each cell in the light volume can be weighted di�erently
when they are merged. Since all of the light information is stored in a grid,
dynamic as well as static objects can be lit using the same technique which
ensures consistent lighting.

Acknowledgements

We would like to thank Avalanche Studios in Stockholm for opening their o�ce
to us. Also, Christian Nilsendahl, our supervisor on Avalanche studios who
provided very good support and help with the project. Finally, we would like
to thank our supervisor on Chalmers, Ulf Assarsson.

Contents

1 Introduction 1

1.1 Background . 1
1.2 Purpose . 1
1.3 Problem . 1
1.4 Limitations . 2
1.5 Source code . 2

2 Previous work 3

2.1 Path tracing . 3
2.2 Photon mapping . 3
2.3 Cascaded light propagation volumes 3
2.4 Radiosity . 4
2.5 Instant radiosity . 4
2.6 Precomputed radiance transfer 4
2.7 Voxel cone tracing . 4
2.8 Screen space techniques . 4

3 Algorithm 6

3.1 Overview . 6
3.2 First bounce and the re�ective shadow map 6
3.3 Ray intersection testing . 7

3.3.1 Spatial data structures . 7
3.4 Storing the light . 8

3.4.1 Light volume data structure 8
3.4.2 Light volume positioning 9
3.4.3 Cascades . 9
3.4.4 Injecting the rays into the light volume 9
3.4.5 Frame merging . 10

3.5 Rendering . 11

4 Results 12

4.1 Image quality . 12
4.2 Performance . 12
4.3 Problems . 13

i

CONTENTS CONTENTS

5 Discussion 16

6 Future work 17

ii

Chapter 1

Introduction

1.1 Background

Objects in the real world are lit by vast quantities of photons which are gov-
erned by complex rules of emission, re�ection and refraction. When rendering
computer generated images, it is not feasible to model all photons. Instead, the
behaviour of light is simpli�ed by using a wide arrange of tricks and approx-
imations. In the most simple approximation, indirect illumination is simply a
static value. While ensuring that areas not directly lit are not completely dark,
this is not very accurate, and may result in �at-looking results (see Figure 1.1).

O�ine rendering algorithms (Kajiya, 1986) has for a long time been able to
accurately simulate indirect lighting, but the computationally heavy nature of
the problem has prevented accurate real time implementations. With increas-
ingly powerful hardware and more sophisticated algorithms, it is becoming more
feasible to calculate more accurate indirect illumination in real time (Kaplanyan
and Dachsbacher, 2010), (Andersson, 2011).

1.2 Purpose

We aim to explore a novel approach to approximate indirect lighting in real time.
More speci�cally, the solution is aimed for game or game-like applications. This
means that we need to consider dynamic geometry and dynamic light sources.

1.3 Problem

The solution is targeted at the capabilities of current PC hardware, running
DirectX 11 or better. We are making use of GPGPU technology that is not
available on the current consoles (Xbox 360 and Playstation 3). Consulting with
our supervisor at Avalanche, we reasoned that at most 5 milliseconds per frame
should be dedicated to indirect illumination in a high-end game-like application.

While we have focused on static geometry in this thesis, the algorithm is
deliberately designed so that extending it to support dynamic objects is possible,
and that the lighting model is consistent between static and dynamic objects.

1

1.4. LIMITATIONS CHAPTER 1. INTRODUCTION

(a) Static ambience term (b) Ray traced indirect illumination

Figure 1.1: A comparison between an image rendered with and without indirect
illumination

1.4 Limitations

Only di�use indirect illumination is modeled, or LDDE light paths. We have
not examined specular light re�ections in this algorithm.

Although all objects receive indirect illumination, the occlusion of the indir-
ect light is limited to static objects. However, we have designed the algorithm
so that an extension to support dynamic occluders would be possible. Though,
it is not something we have examined.

In outdoor scenes, the sky is an important source of indirect illumination
due to the scattering of light in the atmosphere. We will not simulate this type
of indirect light source. The thesis is limited to approximating indirect lighting
from point lights and directional lights.

1.5 Source code

The source code is available in a public google code repository under the MIT
license at https://code.google.com/p/lighting-thesis/. We have been using an
existing project as a base, and built our technique into this project. The code
that is of interest to this algorithm is the �le /source/CrazeGraphics/Renderer/
LightVolumeInjector.cpp and its associated header �le, the shaders in the folder
/source/CrazeGraphics/ Shaders/RayTracing, the shader /source/CrazeGraphics/
Shaders/IndirectLighting.psh and �nally a small amount of code to tie it to-
gether is present in the �le /source/CrazeGraphics/ Renderer/Renderer.cpp.

2

Chapter 2

Previous work

2.1 Path tracing

Classically, path tracing (Kajiya, 1986) has been used to calculate global illu-
mination. It uses monte carlo sampling of the scene to approximate the integral
of all incoming light directions for each shaded point in the scene. Because of
this, images that are not using enough samples may contain noise. However, the
images will have true global illumination, including high frequency phenomena
such as caustics. This technique is quite slow and high quality images without
noise requires o�ine rendering.

2.2 Photon mapping

In photon mapping (Jensen, 2001), photons are traced from the light source
and stored in a data structure called a photon map where photon rays intersect
with geometry. The technique is signi�cantly faster than classic path tracing
and produce images with less noise while still being capable of producing images
with full global illumination. By accelerating the �rst bounce and the �nal
gather using the GPU, McGuire and Luebke (2009), has created a variant of
this technique that runs with interactive frame rates.

2.3 Cascaded light propagation volumes

Cascaded light propagation volumes was introduced by Kaplanyan and Dachs-
bacher (2010), and is a real-time technique for indirect illumination. It is based
on injecting virtual point lights into a lattice and propagating the light con-
tribution over a few iterations. Geometry is injected into a separate lattice in
order to support occlusion of the indirect light. The technique is very fast and
has been implemented in real time on current generation consoles (Microsoft
XBOX 360 and Sony Playstation 3), but discretizes the light and thus reduces
accuracy.

3

2.4. RADIOSITY CHAPTER 2. PREVIOUS WORK

2.4 Radiosity

Radiosity (Goral et al., 1984) precomputes the form factors between all pairs of
surfaces. A form factor describes the amount of energy transferred by di�usely
re�ected light between two surfaces. In order to light a surface, the scene is
iterated to propagate the energy from surfaces with direct lighting and thus
achieve indirect illumination.

2.5 Instant radiosity

Keller (1997) introduces instant radiosity, which is an algorithm that spawns
light sources in the scene. These lights are used to approximate the indir-
ect illumination. The author intended the technique to be used to calculate
the illumination of a single image. However, using a modern deferred shading
(Deering et al., 1988) rendering pipline that is capable of rendering hundreds of
lights every frame (Andersson, 2011), this technique could be implemented in
real time.

2.6 Precomputed radiance transfer

Precomputed radiance transfer (Sloan et al., 2002) uses precomputed transfer
vectors to calculate the indirect illumination in a scene. These transfer vectors
are stored as spherical harmonics for the vertices of the scene. When lighting
the scene, the light is converted to a spherical harmonic approximation, and the
amount of light a�ecting each vertex can then be calculated with the precom-
puted transfer vectors. The transfer vectors are independent of incoming light,
and thus the light sources can be dynamic. However, the precomputed transfer
vectors rely on the geometry being static.

2.7 Voxel cone tracing

By storing a voxelized version of the scene with direct lighting information,
Crassin et al. (2011) renders both di�use and specular indirect illumination in
real time with cone tracing. In order to save memory and speed up the cone
tracing, a sparse voxel octree is used. The voxelization of static geometry can
be precomputed once, and voxelized dynamic objects can be merged with this
representation. The algorithm supports fully dynamic lighting as well, because
the direct lighting is rasterized into the sparse voxel octree, which is then used
when cone tracing. By using a few cones with wide angles, di�use indirect
illumination is calculated, and a cone with a narrow angle is used to calculate
the specular indirect illumination.

2.8 Screen space techniques

By sampling the scene in screen space, techniques such as screen space direc-
tional occlusion (Ritschel et al., 2009) can provide plausible short-range indirect
illumination. A simpler version of this algorithm is screen space ambient occlu-
sion (Mittring, 2007), but it does not provide any color bleeding. An advantage

4

2.8. SCREEN SPACE TECHNIQUES CHAPTER 2. PREVIOUS WORK

of this kind of algorithms is that since they operate in screen space they are very
predictable and stable in performance. Also, performance scale independently
with the geometric complexity of the scene.

5

Chapter 3

Algorithm

3.1 Overview

First, we generate a set of rays approximating a small amount of photons after
the �rst bounce of the light. We do this for every light source in the scene con-
tributing to the indirect illumination. Intersection tests are performed between
each of these rays and the scene geometry, and rays are cropped to stop at
their �rst intersection point with geometry if such point exists. After this, the
lighting that these rays represent are injected into a 3D grid structure. From
this 3D grid, we calculate the amount of indirect lighting in the �nal rendered
image.

3.2 First bounce and the re�ective shadow map

In order to quickly calculate the �rst bounce of the rays we use a re�ective
shadow map, RSM, (Dachsbacher and Stamminger, 2005). The RSM is a texture
data structure that contains information about position, albedo and normal for
each pixel in a viewport. It is very fast to create by simply rasterizing the
scene. As shown by McGuire and Luebke (2009), by rasterizing the RSM from
the viewport of each light source, we can interpret every pixel in the RSM as
an intersection between the light of the light source and the geometry of the
scene. These intersection points can then be used to calculate re�ected rays
by randoming a ray in the hemisphere of the point. In order to cull away
unnecessary rays, an intersection test between the ray and the view frustum is
performed. If the ray contributes lighting to the visible scene, the ray, along
with the albedo of the pixel it is re�ected from, is stored. Rays also contain
information about the light source they are originating from: the color of the
light and the dynamicity (see Section 3.4.5) of the light source. The re�ected
rays generated in a frame can be seen in Figure 3.1.

In order to focus computational power on the rays that contribute the most,
we use russian roulette (Arvo and Kirk, 1990). Russian roulette is used to
discard rays with low intensity, so that low brightness rays are more rarely pro-
cessed. The brightness of all rays are then scaled to the inverse of the survival
probability, resulting in a smaller set of rays with less diversity in brightness.
The result is that the expected value of the lighting remains unchanged, but the

6

3.3. RAY INTERSECTION TESTING CHAPTER 3. ALGORITHM

Figure 3.1: Intersection rays are rasterized for demonstration purposes. Note
how rays originate from directly lit areas and how each ray's color is determined
by the scene material.

variance increases. Russian roulette increases the noise of the indirect illumina-
tion in the �nal image. However, since we are merging light volumes, the noise
is less noticeable.

3.3 Ray intersection testing

The set of re�ected rays are intersection tested against a low resolution version
of the scene geometry. Each ray is then converted to a line segment (though in
this report, it will still be referred to as a ray), that ends at the �rst intersection
point between the ray and scene geometry.

By performing intersection tests against a greatly simpli�ed scene, perform-
ance is improved. The indirect illumination is generally of quite low frequency,
and details in the intersection testing will not be visible in the �nal image due
to the low resolution light volume. An artist could construct a less complex ap-
proximation of the original scene manually, or the process could be automated
by using some kind of mesh optimization algorithm, e.g. the one presented by
Hoppe (1999).

3.3.1 Spatial data structures

A spatial data structure is used for fast ray intersection testing, such as the
kd-tree (Bentley, 1975). Kd-trees for the geometry can be built at runtime
(Wald and Havran, 2006). An algorithm for fast tracing of rays against this
acceleration structure is necessary, such as the one presented by Popov et al.
(2007), which is intended to be implemented on the GPU. By implementing the
ray intersection testing on the GPU, copying the data between the CPU and
the GPU back and forth can be avoided.

7

3.4. STORING THE LIGHT CHAPTER 3. ALGORITHM

Figure 3.2: A light volume cell is most easily visualized as a cube whose side
colors corresponds to the radiance inside the cube. Here, a red ray intersects the
cell and the cube's sides are colored based on the ray's orientation and color.

Figure 3.3: Artifacts from using spherical harmonics to store the light in the
light volume is visible as large black spots on the �oor.

3.4 Storing the light

3.4.1 Light volume data structure

The lighting of the scene is stored in a three dimensional grid. We call this
data structure a light volume. Every cell stores information about the incoming
indirect illumination. By using a grid, dynamic objects can be lit by using the
same technique as static objects, unifying the appearance of all objects in the
scene. Each cell in this grid stores incoming light from all six sides of a cube,
similarly to the ambient cube technique presented by Mitchell et al. (2006) or a
cubemap with 1x1 side resolution (see Figure 3.2). Additionally, we also store
the dynamicity (see Section 3.4.5) of the light for each side of the light volume
cell. This storage technique requires six textures with four channels: three
channels for the color of the lighting and one for the dynamicity.

It is also possible to store the lighting in a cell using spherical harmonics.
We tried this, but we noticed some artifacts (see Figure 3.3) under certain con-
ditions. The problem we faced was that spherical harmonics that were created
in a cell where a lot of rays were traveling in a roughly similar direction often
caused strong negative lighting in the opposite direction. However, when using

8

3.4. STORING THE LIGHT CHAPTER 3. ALGORITHM

Figure 3.4: A 2D projection demonstrating the light volume positioning. The
colored boxes are axis aligned bounding boxes, encapsulating the view frustum.

spherical harmonics, it is possible to reduce the memory requirements of the
light volume. Storing the �rst two orders of a spherical harmonics requires four
values, resulting in a total of three RGBA textures plus an additional single
channel texture to store the dynamicity.

3.4.2 Light volume positioning

Having a static light volume covering the entire scene is not feasible for anything
but very small scenes. Instead, we use dynamic light volumes that covers a
subsection of the view frustum. As suggested by Kaplanyan and Dachsbacher
(2010), the light volume is positioned in discrete steps the size of a cell. This
removes some temporal light shimmering artifacts that occur when the light
volume moves and also enables us to merge the indirect lighting results between
frames (see Section 3.4.5).

Another option is to position the light volume with the camera in the center.
However, this reduces the e�ective resolution of the light volume since such a
large part of the light volume would exist outside of the view frustum. On the
other hand, fast camera rotation would enable reuse of more lighting information
from previous frames.

3.4.3 Cascades

To further increase the e�ective light volume resolution, we propose using cas-
caded light volumes. Further away from the camera, the quality of the indirect
illumination is less important. By adding additional light volumes with increas-
ingly large cells behind the primary light volume, we can store indirect lighting
at great ranges while retaining high light volume resolution near the camera. If
a scene expands beyond the last light volume, we simply extrapolate the lighting
information by clamping the light volume texture.

3.4.4 Injecting the rays into the light volume

The rays are injected into the light volume, which is a 3D texture, by rasterizing
them as lines. Since the whole ray is injected into the light volume, instead of
just the beginning and the end of the ray, any objects along the path of a ray
will receive indirect illumination as well. Dynamic objects, even if not included
in the geometry of the kd-tree, will therefore be lit as well.

9

3.4. STORING THE LIGHT CHAPTER 3. ALGORITHM

The lines could be rasterized with hardware accelerated line antialiasing,
which will e�ectively convert each ray into a cone instead. This improves the
stability of the lighting as the result is more blurred. However, this technique
resulted in signi�cant light bleeding through geometry.

Tessellating the rays

When rendering geometry into a 3D texture, special care has to be taken if
the geometry is to be rasterized into more than one z-slice of the texture. In
Direct3D 11, a single primitive can only be rasterized into a single z-slice at the
time. The z-slice it is rendered into is controlled by the RenderTargetArrayIndex
property set in the geometry shader. Since a ray is likely to intersect with several
z-slices, the ray needs to be split at these intersection points.

First, we tried doing this using the tessellation pipeline available in Direct3D
11. However, we also tried tessellating the rays in a compute shader, and then
store the result into a new bu�er. The latter technique proved to be slightly
faster. Performing tessellation in a compute shader also makes it possible to
tessellate the lines into an arbitrary amount of subdivisions. The tessellation
unit is limited to 64 segments (Mic, 2012b), essentially limiting the resolution
of the light volume to 64x64x64 without having to clip some lines intersecting
a lot of z-slices.

The input to the compute shader tessellator is a bu�er containing all rays.
The rays are processed and the tessellated segments are stored in a Append-
ConsumeStructuredBu�er. At �rst we only cloned the rays so that there were
enough rays for all the slices, but by instead clipping each segment to only be
as long as necessary we noted a signi�cant performance gain. This clipping is
performed by iterating over all of the segments, �nding the next intersection
point for each segment in a spirit similar to Amanatides and Woo (1987).

Rasterizing the rays

In Direct3D 11, the rasterization rules (Mic, 2012a) states that a pixel of a line
is drawn if the line exits a diamond shape in the pixel. By reversing the line
segments, so they start where the ray ends, the pixel where the ray ends is more
likely to be drawn and the pixel where the ray starts is less likely to be drawn.
This helps reducing self-illumination, which is a problem with storing lighting
in a grid, while ensuring that the ray illuminates its intersection point with the
geometry.

In order to calculate the amount of light a ray contributes to a side of a cell
in the light volume, we use Li = max(0,n · l) ∗ c. Where Li is the amount of
incoming light to a side in the cell, n is the normal of the side, l is the direction
of the light and c is the color of the light. By using additive blending, the total
amount of incoming light for every side in every cell is accumulated.

3.4.5 Frame merging

In order to reduce the number of rays that needs to be processed each frame, we
use old light data as stored in the light volume and blend the current frame's
lighting information with the history of previous frames. Since the light volume
is positioned around the view frustum, spinning the camera will reposition the

10

3.5. RENDERING CHAPTER 3. ALGORITHM

light volume in world space. When a light volume repositioning occurs, the
content of each cell is moved so that the light data remains stable in world space.
In such a repositioning, there are always some cells at the edge of the volume
that moves into a world position previously unoccupied by the light volume.
These cells has no information of how light behaved at this world position at
the previous frame. In such cases, we preserve the light data we had before the
move as a �rst guess of the lighting value. Further, we increase the dynamicity
(see Section 3.4.5) of each ray rendered in this cell for a short duration in order
for the cell to more quickly converge into a more accurate result. Since the
light volume is essentially an axis aligned bounding box surrounding the view
frustum, there are in many cases some bu�er space between where the frustum
ends and the volume ends. Because of this, only very fast camera movement
will enable cells that are not fully converged to appear in the view frustum.

Dynamicity If the contribution of the rays rasterized each frame is too high,
the indirect light becomes unstable and will appear to �icker or pulsate. If the
contribution is instead too low, a moving light's indirect illumination will origin
from positions that are no longer directly lit. This would e�ectively cause the
indirect light to unnaturally lag behind the dynamic direct light. To counter
these problems, we introduce a concept called dynamicity. In addition to color
and direction, rays inherit the dynamicity value of the light source. A light
source's dynamicity is determined by its movement speed and, if applicable, its
rotational speed. When the rays are rasterized into the light volume, the highest
dynamicity o� all the di�erent rays intersecting the cell is stored in that cell.
We do this by using the max blend mode for the dynamicity color channel in
the graphics hardware. This aggregated dynamicity value is then used as alpha
when blending the light volumes, a higher dynamicity shifts more weight to the
new light volume.

3.5 Rendering

The light volume has a known world position and it is a simple matter to �nd a
pixel's corresponding cell in the light volume. We compare the normal of each
pixel to the irradiance of its corresponding light volume cell and use this to
evaluate the contribution of the indirect lighting for the pixel.

We add this direction dependent indirect lighting term to the pre-existing
lighting model as ambience. For pixels with no indirect lighting contribution
above a set threshold, we complement the ambiance with a static term. This
ensures that no area is completely dark, even in the cases where sections of the
light volume contain little or no indirect light, while still preserving the dynamic
appearance of the indirect illumination for the scene.

11

Chapter 4

Results

The problem of this thesis was to approximate indirect illumination in real time,
mainly for a game-like application. The algorithm we came up with has some
interesting properties for such applications, such as the high image quality and
good performance. However, there are several problems with it; these problems
makes the algorithm unsuitable for very fast camera movement. Unfortunately,
fast camera movement is a common occurrence in games.

4.1 Image quality

When compared to reference images rendered using a ray tracer, we believe that
the images generated by our algorithm produce indirect lighting that correspond
fairly well with ground truth.

4.2 Performance

For all performance tests, we have used an Intel Core i7-2600K CPU (3.40GHz)
processor and a single Nvidia GeForce GTX 560 Ti graphics card. As described
in the problem statement, the performance requirement of this algorithm was
that it had to run faster than 5 milliseconds per frame. Otherwise, it would not
be viable for real time use in computer games.

We have tested the algorithm using two di�erent settings on the resolution
of the light volume: 16x16x16 and 32x32x32 pixels. Both of these resolutions
performed within our performance target. The 16x16x16 quality setting ran the
sponza scene in 3 milliseconds, while the 32x32x32 quality took 4 milliseconds.
In Figure 4.3, we show images rendered an image using two di�erent quality
settings and the timings we measured.

The step of the algorithm that takes the longest to process is to rasterize
the rays into the light volume. The timings vary depending on how many rays
that are in the frame, but the timings for an image where most of the scene is
in view can be found in Table 4.1.

12

4.3. PROBLEMS CHAPTER 4. RESULTS

(a) Ray tracer reference render

(b) Our algorithm, using 32 cubed light volume resolution

Figure 4.1: The Crytek sponza atrium scene, using a ray tracer and our al-
gorithm respectively.

4.3 Problems

In certain cases light may appear to bleed through opaque geometry and appear
on geometry closely behind it. This is due to to the discrete nature of the light
volume, and the problem can be remedied by increasing the resolution of the
light volume.

Additionally, we experience temporal instability, or shimmering. We intro-
duced the concept of dynamicity to counter this phenomena, but there are still
times, especially when the camera or the light sources moves very slowly, when
this shimmering is noticeable. On the other hand, if the algorithm is tweaked
incorrectly so that the light dynamicity is too low, there will be notable delays
when the light volume converges to its correct value.

13

4.3. PROBLEMS CHAPTER 4. RESULTS

(a) Ray tracer reference render

(b) Our algorithm, using 32 cubed light volume resolution

Figure 4.2: An alternative camera angle, presenting the iconic light bleeding
e�ect of indirect lighting.

Step of algorithm Time (in milliseconds)
Rasterizing rays into light volume 1.7
Ray intersection test 1.0
Apply indirect lighting 0.7
Generating rays 0.5

Table 4.1: Performance per step of the algorithm in a typical frame of the
sponza atrium scene.

14

4.3. PROBLEMS CHAPTER 4. RESULTS

(a) 16x16x16 light volume (2.7 milliseconds)

(b) 32x32x32 light volume (3.9 milliseconds)

Figure 4.3: A test scene rendered using di�erent settings.

15

Chapter 5

Discussion

We are pretty happy with the quality of the lighting that the algorithm pro-
duces. However, the problems with the instability and the short time it takes for
the lighting volume to converge, makes it unsuitable for most types of games. If
these problems were to be solved though, the algorithm does not require much
extra work from artists in order to be implemented in a game. The only new
geometry required is the one used for ray intersection testing. This geometry
could, as previously noted, be generated from the game assets. Alternatively,
if the game has a physics engine, it could be possible to use the physic engines
shapes directly. Such physics shapes are often spheres and similar mathematic-
ally simple objects. Using these shapes instead of triangle meshes could speed
up the ray intersection testing step.

Due to the real time nature of the algorithm, it seems that light propagation
volumes is a good algorithm to compare it to. The way that light propagates
in LPV limits the distance that light can travel. However, since our algorithm
is based on rays, we have no such problem. On the other hand, due to the
converging nature of our algorithm, and the way old lighting information is
reused, we have more problems with stability of the lighting that does not exist
in LPV.

This technique does not handle high frequency light phenomena, such as
detailed ambient occlusion. An ambient occlusion algorithm such as SSAO
(Mittring, 2007), should be used to achieve better details in the indirect illu-
mination.

Depending on the application in which this algorithm is used, some of the
artifacts could be reworked as features. By letting each computed frame of rays
have a high impact in the interpolated result, the lighting becomes unstable.
This could be directly bene�cial in a scene with lights such as torches, and one
could indeed enforce this behaviour for certain lights. Further, by decreasing
the light volume resolution, we gain a spotty, unstable result that could be used
as caustics in an underwater scene.

16

Chapter 6

Future work

Currently, we have not examined how to handle area light sources, which, in
some cases, can be very important. An example of an important area light
source is the sky in outdoor scenes. The ambient lighting originating from the
atmosphere as it re�ects light from the sun is a signi�cant part of the indirect
lighting outside, and that is not taken into consideration at all by our algorithm.
We have reasonably fast ray intersection testing which might be used to calculate
the sky illumination. This is however not something we have looked into deeply
and further reasearch is required.

Certain complex volumetric objects, such as the foliage in a tree, is prob-
lematic to light due to very detailed geometry. Instead of building a complex
collision mesh one could use a very simple mesh and assign it a density factor.
Every ray would then, based on this density factor, randomly decide to pass
through the object or to treat it like a traditional object and bounce o� it.

To include specular indirect lighting, the BRDF of the material could be
taken into consideration in order to determine the �rst bounce direction. This
would enable modeling of specular light bounces. Calculating specular re�ec-
tions for the �nal bounce is, however, much more problematic.

We have not examined dynamic objects closely, but there exist techniques to,
at runtime, create acceleration structures of dynamic objects on the GPU quite
quickly (Garanzha et al., 2011; Wu et al., 2011). These could be run several
times per second provided that the geometrical resolution of the dynamic object
occlusion meshes is low enough resolution. Another possibility is to approximate
the dynamic objects with primitive shapes such as boxes and spheres, which
would accelerate the ray intersection testing and reduce the need for an advanced
acceleration structure.

17

Bibliography

John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray
tracing. In In Eurographics '87, pages 3�10, 1987. Cited on page 10.

Johan Andersson. DirectX 11 rendering in battle�eld 3, March 2011. URL http:

//publications.dice.se/attachments/GDC11_DX11inBF3_Public.pdf.
Cited on pages 1 and 4.

James Arvo and David Kirk. Particle transport and image synthesis. In
Proceedings of the 17th annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH '90, pages 63�66, New York, NY, USA,
1990. ACM. ISBN 0-89791-344-2. doi: 10.1145/97879.97886. URL http:

//doi.acm.org/10.1145/97879.97886. Cited on page 6.

Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509�517, September 1975. ISSN 0001-0782.
doi: 10.1145/361002.361007. URL http://doi.acm.org/10.1145/361002.

361007. Cited on page 7.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann.
Interactive indirect illumination using voxel cone tracing. Computer Graphics
Forum (Proceedings of Paci�c Graphics 2011), 30(7), sep 2011. URL http:

//maverick.inria.fr/Publications/2011/CNSGE11b. Cited on page 4.

Carsten Dachsbacher and Marc Stamminger. Re�ective shadow maps. In
Proceedings of the 2005 symposium on Interactive 3D graphics and games,
I3D '05, pages 203�231, New York, NY, USA, 2005. ACM. ISBN 1-59593-
013-2. doi: 10.1145/1053427.1053460. URL http://doi.acm.org/10.1145/

1053427.1053460. Cited on page 6.

Michael Deering, Stephanie Winner, Bic Schediwy, Chris Du�y, and Neil Hunt.
The triangle processor and normal vector shader: a VLSI system for high per-
formance graphics. In Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, SIGGRAPH '88, pages 21�30, New York,
NY, USA, 1988. ACM. ISBN 0-89791-275-6. doi: 10.1145/54852.378468. URL
http://doi.acm.org/10.1145/54852.378468. Cited on page 4.

Kirill Garanzha, Simon Premoze, Alexander Bely, and Vladimir Galaktionov.
Grid-based sah bvh construction on a gpu. Vis. Comput., 27(6-8):697�706,

18

http://publications.dice.se/attachments/GDC11_DX11inBF3_Public.pdf
http://publications.dice.se/attachments/GDC11_DX11inBF3_Public.pdf
http://doi.acm.org/10.1145/97879.97886
http://doi.acm.org/10.1145/97879.97886
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://maverick.inria.fr/Publications/2011/CNSGE11b
http://maverick.inria.fr/Publications/2011/CNSGE11b
http://doi.acm.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/54852.378468

BIBLIOGRAPHY BIBLIOGRAPHY

June 2011. ISSN 0178-2789. doi: 10.1007/s00371-011-0593-8. URL http:

//dx.doi.org/10.1007/s00371-011-0593-8. Cited on page 17.

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett
Battaile. Modeling the interaction of light between di�use surfaces. In
Proceedings of the 11th annual conference on Computer graphics and inter-
active techniques, SIGGRAPH '84, pages 213�222, New York, NY, USA,
1984. ACM. ISBN 0-89791-138-5. doi: 10.1145/800031.808601. URL
http://doi.acm.org/10.1145/800031.808601. Cited on page 4.

Hugues Hoppe. New quadric metric for simplifying meshes with appearance
attributes. In Proceedings of the 10th IEEE Visualization 1999 Conference
(VIS '99), VISUALIZATION '99, pages �, Washington, DC, USA, 1999.
IEEE Computer Society. ISBN 0-7803-5897-X. URL http://dl.acm.org/

citation.cfm?id=832273.834119. Cited on page 7.

Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping, 2nd
Edition. A K Peters/CRC Press, 2nd revised edition edition, July 2001.
ISBN 1568811470. Cited on page 3.

James T. Kajiya. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, SIGGRAPH '86,
pages 143�150, New York, NY, USA, 1986. ACM. ISBN 0-89791-196-2. doi:
10.1145/15922.15902. URL http://doi.acm.org/10.1145/15922.15902.
Cited on pages 1 and 3.

Anton Kaplanyan and Carsten Dachsbacher. Cascaded light propagation
volumes for real-time indirect illumination. In Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games, I3D '10,
pages 99�107, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-939-
8. doi: 10.1145/1730804.1730821. URL http://doi.acm.org/10.1145/

1730804.1730821. Cited on pages 1, 3, and 9.

Alexander Keller. Instant radiosity. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, SIGGRAPH '97, pages 49�
56, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.
ISBN 0-89791-896-7. doi: 10.1145/258734.258769. URL http://dx.doi.

org/10.1145/258734.258769. Cited on page 4.

Morgan McGuire and David Luebke. Hardware-accelerated global illumina-
tion by image space photon mapping. In Proceedings of the 2009 ACM SIG-
GRAPH/EuroGraphics conference on High Performance Graphics, New York,
NY, USA, August 2009. ACM. URL http://graphics.cs.williams.edu/

papers/PhotonHPG09/. Cited on pages 3 and 6.

Rasterization Rules. Microsoft, 2012a. URL http://msdn.microsoft.com/

en-us/library/windows/desktop/cc627092(v=vs.85).aspx. Cited on
page 10.

Tessellation Overview. Microsoft, 2012b. URL http://msdn.microsoft.

com/en-us/library/windows/desktop/ff476340(v=vs.85).aspx. Cited
on page 10.

19

http://dx.doi.org/10.1007/s00371-011-0593-8
http://dx.doi.org/10.1007/s00371-011-0593-8
http://doi.acm.org/10.1145/800031.808601
http://dl.acm.org/citation.cfm?id=832273.834119
http://dl.acm.org/citation.cfm?id=832273.834119
http://doi.acm.org/10.1145/15922.15902
http://doi.acm.org/10.1145/1730804.1730821
http://doi.acm.org/10.1145/1730804.1730821
http://dx.doi.org/10.1145/258734.258769
http://dx.doi.org/10.1145/258734.258769
http://graphics.cs.williams.edu/papers/PhotonHPG09/
http://graphics.cs.williams.edu/papers/PhotonHPG09/
http://msdn.microsoft.com/en-us/library/windows/desktop/cc627092(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc627092(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff476340(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff476340(v=vs.85).aspx

BIBLIOGRAPHY BIBLIOGRAPHY

Jason Mitchell, Gary McTaggart, and Chris Green. Shading in valve's source
engine. In ACM SIGGRAPH 2006 Courses, SIGGRAPH '06, pages 129�142,
New York, NY, USA, 2006. ACM. ISBN 1-59593-364-6. doi: 10.1145/1185657.
1185832. URL http://doi.acm.org/10.1145/1185657.1185832. Cited on
page 8.

Martin Mittring. Finding next gen: CryEngine 2. In ACM SIGGRAPH
2007 courses, SIGGRAPH '07, pages 97�121, New York, NY, USA, 2007.
ACM. doi: 10.1145/1281500.1281671. URL http://doi.acm.org/10.1145/

1281500.1281671. Cited on pages 4 and 16.

Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek.
Stackless kd-tree traversal for high performance GPU ray tracing. Computer
Graphics Forum, 26(3):415�424, September 2007. (Proceedings of Eurograph-
ics). Cited on page 7.

Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approximating dy-
namic global illumination in image space. In Proceedings of the 2009 sym-
posium on Interactive 3D graphics and games, I3D '09, pages 75�82, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-429-4. doi: 10.1145/1507149.
1507161. URL http://doi.acm.org/10.1145/1507149.1507161. Cited on
page 4.

Peter-pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer
for Real-Time rendering in dynamic, Low-Frequency lighting environments.
In ACM Transactions on Graphics, pages 527�536, 2002. Cited on page 4.

Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray tracing, and
on doing that in o(n log n). In IN PROCEEDINGS OF THE 2006 IEEE SYM-
POSIUM ON INTERACTIVE RAY TRACING, pages 61�70, 2006. Cited
on page 7.

Zhefeng Wu, Fukai Zhao, and Xinguo Liu. Sah kd-tree construction on gpu.
In Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics, HPG '11, pages 71�78, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0896-0. doi: 10.1145/2018323.2018335. URL http://doi.acm.

org/10.1145/2018323.2018335. Cited on page 17.

20

http://doi.acm.org/10.1145/1185657.1185832
http://doi.acm.org/10.1145/1281500.1281671
http://doi.acm.org/10.1145/1281500.1281671
http://doi.acm.org/10.1145/1507149.1507161
http://doi.acm.org/10.1145/2018323.2018335
http://doi.acm.org/10.1145/2018323.2018335

	Introduction
	Background
	Purpose
	Problem
	Limitations
	Source code

	Previous work
	Path tracing
	Photon mapping
	Cascaded light propagation volumes
	Radiosity
	Instant radiosity
	Precomputed radiance transfer
	Voxel cone tracing
	Screen space techniques

	Algorithm
	Overview
	First bounce and the reflective shadow map
	Ray intersection testing
	Spatial data structures

	Storing the light
	Light volume data structure
	Light volume positioning
	Cascades
	Injecting the rays into the light volume
	Frame merging

	Rendering

	Results
	Image quality
	Performance
	Problems

	Discussion
	Future work

