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Matching Traffic Objects recorded by Stereoscopic Cameras
Alignment of cameras with partially overlapping views, and matching partial tra-
jectories
Tommy Phung & Stefan Areback
Complex Adaptive Systems
Chalmers University of Technology

Abstract
If one uses several cameras to film different but overlapping parts of a scene (in
our case an intersection), then a way to get an overview of the scene, is to relate
all the cameras to a single coordinate system. This can be done manually using
knowledge of the positions relative to the different cameras of objects that show up
in the overlapping part of the filmed scene. However, it would be preferable (to save
time, amongst other things) if this process could be automated, using information
recorded by the cameras (in this case the positions, velocities and timestamps of
traffic objects filmed by the camera). The suggested methods for achieving this is
Coherent point drift (CPD) with the use of Expectation maximization (EM).
Once a common coordinate system has been found, one still needs to merge the

trajectories from the different cameras corresponding to the same traffic object into
a single trajectory. Preferably, this too should be done using only the information
recorded by the camera (positions, velocities, timestamps). For finding a merge, the
presented method is a modified version of Longest Common Subsequence (LCSS)
with respect to the camera views and their overlap, presented as polygons.
CPD performs well for two cameras when LCSS is being applied as a method

for noise reduction whereas when there are three cameras it gives an ambivalent
solution. Using LCSS when matching trajectories for merging performs well for
both two and three cameras, however the merging methods needs some additional
calibrations.

Keywords: Point set registration, Coherent point drift, Expectation maximization,
Longest Common Subsequence, camera alignment
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1
Introduction

1.1 Background

Tracking traffic objects such as cars, heavy vehicles, cyclist or pedestrians in complex
traffic situations where additional cameras are involved to capture the magnitude of
its complexity, there is more room for error in the form of mix ups within each group
of traffic object. To track traffic objects stereoscopic cameras are used. The cameras
work independently, so tracks from different cameras need to be aligned and merged
into a global coordinate system. Hence, there exists a transformation problem.
The transformations between the cameras coordinate systems are currently found
by hand, meaning that a person is watching the tapes and correctly identifies the
appropriate traffic objects between each camera to form a transformation matrix
from those observation. One would thus conserve time if this process could be
(semi-)automated.
The approach to find a correct transformation(s) between two cameras is to find

their overlap and the points in which they share and apply some transformation
methods upon those points. Some previous attempts has been made in the form
of homogrophy estimation in combination with least median of squares algorithm
[1] which involves choosing trajectories randomly. This method however is not ro-
bust enough against noise and has a high time complexity since it is too reliant on
randomness when choosing trajectories in the data set for finding a proper transfor-
mation.
Others have used the vision of the cameras as input and using a iterative calculated

probability distribution for each point whether they belong in the overlap or not [2].
The method is called Expected Overlap Estimation and is capable of finding the
correct transformation if the level of noise is near nonexistent.
Where the previous sections involves time efficiency when finding a proper trans-

formation between cameras, the second part consists of improving the data through
merging. When there are multiple cameras, there is a possibility for them to register
a trajectory incorrectly as two seperate ones. A way to improve the data is thus to
detect the incorrect ones and merge them as one. An improved quality of data in
the form of traffic is mainly in the interest of developing of autonomous cars but
is also in interest overall when it comes to training neural networks. It is also of
interest for cities in order to improve traffic flow and identify sources of conflicts
between road users.
Previous work has been abled to produce such robust algorithms with the inclusion

of colors of the traffic objects [3]. This paper seeks to find such robust methods

1



1. Introduction

without the use of image analysis i.e filtered track data such as coordinates, velocity
and time.

1.2 Aim
The first part of the aim is to find methods to (partially) automate the estimation
of parameters for the transformations between the coordinate systems of the dif-
ferent cameras. The main aim of the second part is to produce a method to find
which trajectories have been split and labeled as seperate objects within the different
cameras.

1.3 Limitations
This paper does not aim to produce a complete merging algorithm after the split
trajectories have been found. Nonetheless, a temporary merging algorithm is still
being produced. More details about the temporary merging is in the discussion
about matching trajectories.

2



2
Theory

2.1 Camera alignment
Consider two (or more) stereo cameras set up at, for example, an intersection, ob-
serving different (but overlapping) parts of the intersection. Each camera records
the positions relative to the camera and velocities of traffic objects that enter its’
field of vision, along with the times they were recorded. Our goal is to use these
recorded positions, velocities and timestamps to find the rigid transformation relat-
ing the coordinate system of one camera to another. The method we will use to do
this makes use of the Expectation maximization (EM) algorithm, which we present
first.

2.1.1 EM algorithm
Suppose we have a sequence of observed random variablesX1, . . . , Xn and a sequence
Z1, . . . , Zn of unobserved random variables generated from some statistical model
depending on some parameters Θ. For our purposes the statistical model is a GMM
and the unobserved random variable Zk specifies which mixture component the
random variable Xk is generated from. We want to find the maximum likelihood
estimates of the parameters with respect to the observed dataX1 = x1, . . . , Xn = xn.
This means we want to find the maximum likelihood estimates of the parameters by
optimizing the incomplete likelihood function L(θ;X) (or equivalently, by optimizing
the incomplete log-likelihood function `(θ;X) = logL(θ;X)). In the EM algorithm
we will also make use of the complete log-likelihood function `(θ;X,Z).
In the case of a mixture model, the incomplete (or marginal) likelihod function is

given by

L(θ;X) =
N∏
n=1

M∑
m=1

πmϕm(xn|θ),

and the complete likelihood function is given by

L(θ;X,Z) =
N∏
n=1

M∏
m=1

ϕm(xn|θ)χ(Zn=m) .

The incomplete log-likelihood is in this case given by

`(θ;X) =
N∑
n=1

log
( M∑
m=1

πmϕm(xn|θ)
)
,

3



2. Theory

which is usually not an easy expression to deal with. On the other hand, the complete
log-likelihood function is given by

`(θ;X,Z) =
N∑
n=1

M∑
m=1

χ(Zn=m) logϕm(xn|θ), (2.1)

which is usually easier to deal with
In the EM algorithm, we attempt to find the maximum likelihood esimates of

the parameters of the incomplete likelihood function, by an iterative procedure. In
each iteration of the EM algorithm there are two steps. In the first step, called the
expectation step (E step), the expected value of the complete likelihood function,
with respect to the distribution of Z conditional on X and θ(r), is computed. The
result is a function Q of the parameter θ:

Q(θ, θ(r)) = EZ|X,θ(r)

(
`(θ;X,Z)

)
.

In the second step, the maximization step (M step), the next iterate θ(r+1) is found
by maximizing the Q-function:

θ(r+1) = argmaxθQ(θ, θ(r)).

One can show that the incomplete log-likelihood function increases as Q increases.
More specifically one can show that [4]

`(X|θ)− `(X|θ(r)) ≥ Q(θ, θ(r))−Q(θ(r), θ(r)),

so that an increase in Q implies at least an equal increase in the incomplete log-
likelihood.
Let us illustrate the E step in the special case of a mixture model. In the case

of a mixture model, the complete log-likelihood function is given by 2.1, so the Q
function is given by

Q(θ, θ(r)) =
∑
n

∑
m

EZ|X,θ(r)

(
χ(Zn=m)

)
logϕm(xn|θ)

=
∑
n

∑
m

P (Zn = m|X, θ(r)) logϕm(xn|θ)

We see that in the case of a mixture model the E step amounts to computing the
conditional membership probabilities P (Zn = m|X1 = x1, . . . , Xn = xn, θ). Using
Bayes’ law, these can be expressed in terms of the membership probabilities πj and
the densities ϕj of the mixture components, both of which are known quantities:

P (Zn = m|X, θ(r)) = P (Xn = xn|Zn = m, θ(r))P (Zn = m|θ(r))∑
j P (Xn = xn|Zn = j, θ(r))P (Zn = j|θ(r))

= πmϕm(xn|θ(r))∑
j πjϕj(xn|θ(r)) .

4



2. Theory

2.1.2 Coherent point drift
Suppose X = {x1, . . . , xN} and Y = {y1, . . . , yM} are two sets of points, and that
we want to find the rigid transformation y 7→ Ry + v (i.e. R is a rotation matrix
and v is a vector) that, in some sense, best aligns the set Y with X . In the Coherent
point drift (CPD) algorithm the idea is to consider the points Y to be the centroids
in a mixture model, and the points X to be generated from this mixture model.
We also have, corresponding to each point in X a timestamp (and similarly for Y).
Let ti be the timestamp corresponding to xi, and si the timestamp corresponding
to yi. We also assume there are unobserved variables Z1, . . . , Zn that specify which
mixture component the corresponding Xi is generated from. More specifically, we
assume that the variable (Xn, Tn) has distribution conditional on Zn = m given by

ϕm(x, t|R, v, σ2) = 1
(2πσ2)D/2

1
(2πτ 2)1/2 e

−||x−Rym−v||2/2σ2
e−||t−sm|2/2τ2

for m = 1, . . . ,M +1, and that (Xn, Tn) has distribution conditional on Zn = M +1
equal to

ϕM+1(x, t|R, v, σ2) = 1/N.
This last component is introduced to account for noise, i.e. points that do not seem
to be generated from any of the points in Y . We also assume that the mixture
weights πm = (1 − w)/M for m = 1, . . . ,M and πM+1 = w. The parameter w
indicates the proportion of points that are believed to be noise, and is set prior to
running the algorithm (one could let it be one of the parameters that are optimizied
for, so that one does not need to guess what its’ value is beforehand, but instead
optimizie it along with the other parameters in the M step. However, we will not
do this). Using the law of total probability, we find that the density of the whole
mixture model is

ϕ(x, t|R, v, σ2) = w
1
N

+ (1− w)
M∑
m=1

1
M
ϕm(x, t|R, v, σ2).

Let θ = (R, v, σ2). The complete likelihood function is given by

L(θ;X,T, Z) =
N∏
n=1

(w
N

)χ(Zn=M+1)
M∏
m=1

(1− w
M

ϕm(xn, tn|θ)
)χZn=m

which gives the complete log-likelihood function

`(θ;X,T, Z) =
N∑
n=1

(
χ(Zn=M+1) log w

N

+
M∑
m=1

χZn=m
(

log 1− w
M

+ logϕm(xn, tn|θ)
))
.

Taking the expectation of the log-likelihood function with respect to the distribution
of the latent variables Z conditional on X,T gives

Q(θ, θ′) = EZ|X,T,θ′
(
`(θ;X,T, Z)

)
=

N∑
n=1

M+1∑
m=1

γmn
(

log 1
M

+ logϕm(xn, tn|θ)
)
,

5



2. Theory

where γmn = P (Zn = m|X,T, θ′). Writing out the definitions of the densities ϕm
and ignoring terms that do not involve any of the parameters R, v, σ2 we end up
with

Q = − 1
2σ2

N∑
n=1

M∑
m=1

γmn||xn −Rym − v||2 − log σ2D

2

N∑
n=1

M∑
m=1

γmn

Note that if f(v) = ||x−Ry−v||2 = (x−Ry−v)T (x−Ry−v), then f(v+h)−f(v) =
(2(Ry + v − x))Th+ ||h||2, which implies that the gradient of f with respect to v is
given by 2(Ry+ v− x). So if we take the gradient of Q with respect to v we obtain

∇vQ = − 1
2σ2

∑
mn

γmn2(Ry + v − x). (2.2)

Setting this expression equal to zero, and solving for v, we get

v = 1∑
m,n γmn

(
∑
m,n

γmnxn −R
∑
mn

γmnym).

If we define µX =
∑

mn
γmnxn∑

mn
γmn

and µY =
∑

mn
γmnym∑

mn
γmn

we have v = µX − RµY . Substi-
tuting this v back into () gives us

Q = − 1
2σ2

N∑
n=1

M∑
m=1

γmn||x̂n −Rŷm||2 − log σ2D

2

N∑
n=1

M∑
m=1

γmn,

where x̂n = xn − µX and ŷm = ym − µY . In order to find the R that maximizes Q
we will use the following lemma [5]:
Lemma 1 Let A be a D×D matrix. Let USV T be the singular value decomposition
of A, and let

C =



1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...
0 1 . . . 1 0
0 0 . . . 0 det(UV T )

 .

Then the rotation matrix that maximizes R 7→ tr(ATR) is given by R = UCV T .
In order to use this lemma we must rewrite Q in an appropriate form. First note
that ||x̂n −Rŷm||2 = x̂Tn x̂n + ŷTmŷm − 2x̂TnRŷm. So

Q = − 1
2σ2

(∑
mn

γmnx̂
T
n x̂n +

∑
mn

γmnŷ
T
mŷm −

∑
mn

γmnx̂
T
nRŷm

)
− log σ2D

2
∑
mn

γmn.
(2.3)

Let X̂ be the matrix whose rows are the vectors x̂Tn , n = 1, . . . , N , and similarly
let Ŷ be the matrix whose rows are the vectors ŷTm, 1, . . . ,M . We have ΓT1m =
(∑m γm1, . . . ,

∑
m γmn)T . Let d(ΓT1m) be the diagonal matrix with the entries in

the vector ΓT1m on the diagonal. Then X̂Td(ΓT1m) is the matrix whose n:th row
is given by (∑m γmn)x̂Tn . It follows that the first term inside the paranthesis in (2.3)

6



2. Theory

is given by tr(X̂Td(ΓT1m)X̂). Similarly, the second term inside the paranthesis in
(2.3) is given by tr(Ŷ Td(Γ1n)Ŷ ). Finally, for the third term inside the parenthesis
in (2.3) first note that RŶ T is the matrix whose columns are the vectors Rŷm for
m = 1, . . . ,M . It follows that the matrix Ŷ RT X̂T has entries (RŷTm)T x̂n = x̂TnRŷm.
Then ΓT · Ŷ RT X̂T has entries ∑m γmkx̂

T
` Rŷm. This implies that tr(ΓT · Ŷ RT X̂T ) =∑

mn γmnx̂
T
nRŷm, which is the third term. So

Q = − 1
2σ2 (tr(X̂Td(ΓT1m)X̂) + tr(Ŷ Td(Γ1n)Ŷ )− 2tr(ΓT Ŷ RT X̂T ))

− log σ2D

2
∑
mn

γmn.
(2.4)

MaximizingQ with respect toR is equivalent to maximizing the term tr(ΓT Ŷ RT X̂T ) =
tr((X̂TΓT Ŷ )TR), which is now in the form required by the lemma, withA = X̂TΓT Ŷ .
So the optimal R is given by

R = UCV T , (2.5)
where USV T is the singular value decomposition of X̂TΓT Ŷ , and C is as in Lemma
1. Finally, we optimize the parameter σ2. The partial derivative of Q with respect
to σ2 is given by

∂Q

∂σ2 = 1
2(σ2)2 (tr(X̂Td(ΓT1m)X̂) + tr(Ŷ Td(Γ1n)Ŷ )− 2tr(ΓT Ŷ RT X̂T ))

− 1
σ2
D

2
∑
mn

γmn.

Setting this expression equal to zero and solving for σ2 gives us

σ2 = 1
D
∑
mn γmn

(tr(X̂Td(ΓT1m)X̂) + tr(Ŷ Td(Γ1n)Ŷ )− 2tr(ΓT Ŷ RT X̂T )). (2.6)

Summarizing, we initialize the parameters by setting R = I (the identity matrix),
v = 0 and σ2 = 1

DNM

∑
mn ||xn−ym||2 (here D is the spatial dimension of the points,

N is the number of points in X and M the number of points in Y). In the M step
we compute the conditional membership probabilites using Bayes’ law:

γmn = P (Zn = m|X, θ(r)) = ϕm(xn, tn|θ(r))∑
j ϕj(xn, tn|θ(r)) + c′

= e−||xn−R(r)ym−v(r)||/2(σ2)(r) · e−|tn−sm|/2τ2∑
j e
−||xn−R(r)yj−v(r)||/2(σ2)(r) · e−|tn−sj |/2τ2 + c

.

(2.7)

and obtain the Q function (2.4). In the E step we optimize the parameters in order
to maximize Q. We obtain (2.5), (2.2) and (2.6). Substituting these values into Q
gives us the maximial value:

Q(θ(r+1), θ(r)) = −D
∑
mn γmn
2

(
1 + log(tr(X̂Td(ΓT1m)X̂)

+ tr(Ŷ Td(Γ1n)Ŷ )− 2tr(STC))
)
,

(2.8)

where in the last term we used that RΓŶ T = USV T and R = UCV T .
These two steps are iterated until either the difference |Q(θ(r+1), θ(r))−Q(θ(r), θ(r−1))|

becomes smaller than some prespecified positive number ε, or until the number of
iterations becomes larger than prespecified number K.

7



2. Theory

2.2 Longest Common Subsequence
For the purpose of merging, a merging of two arbitrary trajectories is justifiable if
and only if there exist a common subsequence between the two trajectories. Since
established earlier, each camera has its own coordinate system, with different reach,
the only justifyable points for comparison between trajectories are the points in the
intersected polygon between camera k and camera l. Hence, let P k and P l be the
polygon created by all the points of the same type of traffic object in camera k
respective l and let the intersection between the two be defined as P i∩j = P i ⋂P j.
The chosen algorithm is a modified version of Longest Common Subsequence

(LCSS) [6]. Furthermore, let Lε,T,ξ(A,B) denote the longest common subsequence
between two arbitrary time sorted trajectories A, B in camera k respective l. Then

Lε,T,ξ(A,B) =


1 + Lε,T,ξ(An−1, Bm−1),
if ||an−1 − bm−1|| < ε ∧ |atn−1 − btm−1 | < T

0 if (A = ∅ ∨B = ∅) ∨ (|A| < ξ ∨ |B| < ξ, ∀a, b ∈ P k∩l)
max(Lε,T,ξ(An−1, B), Lε,T,ξ(A,Bn−1)), otherwise

(2.9)

where, an, bm are the coordinates for the nth respective mth point in trajectory
A and B, ε is the minimal Euclidean radius between each point in meters, T is
the maximum eligible time difference in seconds and ξ is the minimal length for
a trajectory containg points in P k∩l. The reason for the inclusion of ξ is that a
similarity measurement is pretty nonsensical if the amount of points are too small
for one or both of the trajectories.
In addition, let the similarity between trajectories Ak in camera k and trajectory

Bl in camera l be η(Ak, Bl) and is defined as

η(Ak, Bl) = Lε,T,ξ(Ak, Bl)
min(|Ak|, |Bl|) , ∀a, b ∈ P

k∩l (2.10)

thus, η ∈ [0, 1] and the closer η is to 1, the more ’similar’ trajectory Ak is to
trajectory Bl with respect to P k∩l and vice versa. Notice that (2.9) and (2.10 can
also be perfermed as a similarity measurements for velocity rather than position.
More details will come in the method. Furthermore, there is an additional aspect to
scrutinize. Which values of η justifies a merging? Let η̄ be defined as the threshold
for the similarity score. Then a merging of trajectory Ak and trajectory Bl is justified
if η(Ak, Bl) ≥ η̄. The choice of appropriate η̄ will be done through experimentation.
To compare each ith trajectory in camera k to each jth trajectory in camera

l with the addition of finding all points in P kl would result into a massive time
complexity and unneccessary calculations. Note, however, that Lε,T,ξ(Ak, Bl) (and
by extension η(Ak, Bl)) is nonzero if and only if atleast |ati−1− btj−1| < T in eq(2.9)
is satisfied. Hence, a direction to improve the time complexity, it is helpful to first
find when each trajectory from one camera collide with trajectories from the other
one. Therefore, define δj(Ai, Bj) as an auxilary function for finding if any points of
trajectory Bj is in the interval of trajectory Ai, defined as

8
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δj(Ai, Bj) =
1 if Bj ∈ [At1 , Btn ]

0 otherwise.

2.3 Merging

When η(Aki , Bl
j) is above a certain threshold of LCSS score, η̄ it is sufficient to merge

the two trajectories Aki and Bl
j. The merging consists of finding the LCSS array

from Alg(1) between Aki and Bl
j and use backtracking to find where the points are

matched. Let therefore Θ(Aki , Bl
j) be the merging function between the ith trajectory

in camera k and jth trajectory in camera l. Consequently, let α ∈ Ak be the matched
points from trajectory Ak and β ∈ Bl be the corresponding matched points in
trajectory Bl. Then, the coordinates becomes the point inbetween them and the
merged time is the minimum of them, added with the middle time difference between
the matched point. Therefore, the new trajectory is Θ(Aki , Bl

j) = {θ1, θ2, . . . , θI}
where

θi =


(ax, ay, at), if ai ∈ A ∧ ai /∈ α
(bx, by, bt), if bi ∈ B ∧ bi /∈ β
ζi = (ax+bx

2 , ay+by

2 ,min(at, bt) + |at−bt|
2 ), otherwise.

(2.11)

It should be clear that the points {θ1, θ2, . . . , θI} are time-sorted, similar to Ak and
Bl and ζi is a matched point.
In the case of a situation which involves more than two cameras; let k1, k2 . . . kN

denote the kth camera where N > 2 be the number of maximum cameras in the data
set, then ϕi be the ith merging over i ≤ N − 1. Furthermore, the merging ϕi with
respect to polygon P (k1,k2,...,ki−1)∩ki = (P k1

⋃
P k2

⋃ · · ·⋃P ki−1)⋂P ki is recursive and
defined as ϕi = Θ(ϕi−1, A

ki+1), ∀i ≤ N − 1 since

ϕ0 = Θ(Ak1 , ∅) = Ak1 , ∀ζi ∈ P k1

ϕ1 = Θ(Ak1 , Ak2) = Θ(Θ(Ak1 , ∅), Ak2) = Θ(ϕ0, A
2), ∀ζi ∈ P k1∩k2

ϕ2 = Θ(Ak1 , Ak2 , Ak3) = Θ(Θ(Ak1 , Ak2), Ak3) = Θ(ϕ1, A
k3), ∀ζi ∈ P (k1,k2)∩k3

...
ϕi = Θ(ϕi−1, A

k+1),∀ζi ∈ P (k1,k2,...,ki)∩ki+1

...
ϕN−1 = Θ(ϕN−2, A

kN ),∀ζi ∈ P (k1,k2,...kN−1)∩kN

where Aki is trajectory A in camera ki and ζ is all paired points which satisfies
the third row in (2.11). Note that the merging order is not always commutative
when N > 2 even though the first merging step does commute. When N =
3 there are 6 viable merging permutations Θ(Ak1 , Ak2),Θ(Ak1 , Ak3), Θ(Ak2 , Ak3),
Θ(Ak1 , Ak2 , Ak3), Θ(Ak1 , Ak3 , Ak2) and Θ(Ak2 , Ak3 , Ak1) which is pretty harmless
computationaly. However when N = 4 there are a total of 30 possible permuta-
tions and it scales pretty quickly from there. There is nonetheless only a need to

9
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check all possible permutation if an overall area P̄ =
N⋂
i=1

P ki exists for the chosen

traffic object. When P̄ = ∅ then the amount of permutation can be reduced suffi-
ciently, especially for N > 3. As a consequence, if the different polygons are aligned
in such a way that P k1

⋂
P k2 , P k2

⋂
P k3 , . . . , P kN−1

⋂
P kN or the trajectories in each

polygon are moving in such an order; then the merging orders can be reduced to a
single order, either Θ(Ak1 , Ak2 , . . . , AkN ) or Θ(AkN , AkN−1 , . . . , Ak1). Both of which
will yield the same results.
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The choice of programming language is Python with numpy, pandas and Polygon
from shapely.geometry where the last one is mainly being used in handling of the
different polygons.

3.1 LCSS
Let A and B be trajectories of known traffic object, the LCSS algorithm can, irre-
spective of P kl be described as
Algorithm 1: LCSS algorithm, Lε,T,ξ: Finding the longest common subse-
quence.
Input: A,B, ε, T, ξ
Output: LCSS array

1 N ← len(A)
2 M ← len(B)
3 D ← zeros(N + 1,M + 1)
4 if N < ξ or M < ξ then
5 return D
6 else
7 for i = 1, . . . N do
8 for j = 1, . . .M do
9 x← ||A[i− 1, : −1]−B[j − 1, : −1]||

10 ∆t← |A[i,−1]−B[j,−1]|
11 if x < ε and ∆t < T then
12 D[i, j] := 1 +D[i− 1, j − 1]
13 else
14 D[i, j] := max(D[i− 1, j], D[i, j − 1])

15 return D

where the last element D[−1,−1] is the largest common subsequence. To find where
the matched points occur, use backtracking.
When taking the data frame of the cameras into consideration, let Ck be the data

collected through camera k, containg ID numbers, coordinates (x, y), time and of the
same type of traffic object. Furthermore, let Aki ∈ Ck be the ith trajectory in camera
k. Thus Ck = {Ak1, . . . Akn}. Note that for this section, each point a = (x, y) are the
coordinates in terms of the global coordinate system. Let Hkl

ij = η(Aki , Alj) denote

11
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the similarity matrix and is the resulting matrix of comparing the ith trajectory in
camera Ck with the jth trajectory in camera Cl, where η(Aki , Alj) is defined in (2.10).
Thus, the algorithm to find matrix H is
Algorithm 2: Similarity matrix H
Input: Ck, Cl, ε, T, ξ, P kl

Output: H
1 U2 ← Cl.ID.unique()
2 M ← len(U2)
3 H ← list()
4 for A ∈ Ck do
5 Find all indices iTmp in A where a ∈ P kl

6 A← A[iTmp]
7 row ← zeros(M)
8 if A 6= ∅ then
9 δ ← {p1, . . . , pm}, ∀pj ∈ Cl[A[0,−1], A[−1,−1]]

10 B̃ ← δ.ID.unique()
11 if B̃ 6= ∅ then
12 for B ∈ B̃ do
13 Find all indices iTmp in B where b ∈ P kl

14 B ← B[iTmp]
15 if B 6= ∅ then
16 L← Lε,T,ξ(A,B)
17 row[U2 == B]← L[−1,−1]

min(len(A),len(B))

18 H.append(row)
19 return H
Since the aim is to merge a unique trajectory in Ck with another unique trajectory
in Cl, that is to say, each row should be uniquely assigned to another column in
Hkl, which results into the assignment problem. This paper uses the Hungarian
algorithm [7] to find the optimal association between each traffic object, similar to
[3]. Afterwards filtered out the paired trajectories which have a similarity score equal
to zero. The consequences of this is an array Λkl containg the ID’s from camera k
and camera l and their score which will be necessary when merging.

3.2 Merging
To determine which trajectories worth merging, it facilitates to have a list over
trajectories and their similarity score. Let Ãki be the ith trajectory in camera k and
Ãli be the corresponding matched trajectory in camera l. Then Λkl is defined as

Λ =


Ãk1 Ãl1 η(Ak1, Al1)
Ãk2 Ãl2 η(Ak2, Al2)
... ... ...
Ãkn Ãln η(Akn, Aln)

 . (3.1)

12



3. Method

where η(Ak1, Al1) > η(Ak2, Al2), . . . , > η(Akn, Aln). To create a merging data frame, Φkl,
using Λkl, define the merging algorithm
Algorithm 3: Merging trajectories from two data frames based on η̄.
Input: Ck, Cl,Λkl, η̄
Output: ϕkl

1 i = 0
2 Φkl = list()
3 while Λkl

i3 > η̄ and i < |Λkl| do
4 Φkl.append(Γ(Λkl

i1,Λkl
i2)) // Merge the two trajectories using 2.11 and

then append them into a merged data frame.
5 i = i+ 1
6 return Φkl

where each point in Ck and Cl consist of coordinates and time. According to Alg(3),
a merge between trajectory Aki and Ali will thus only be executed if their similarity
score is larger than the similarity threshold η̄, i.e η(Aki , Ali) ≥ η̄. Additionally, since
every traffic scene is unique and the amount of permutation is dependent on how
the different polygons intertwines with one another, define Ω as a list of merging
order where the first two elements in each row in Ω indicates which two cameras
will be merged first and then be compared and merged with the third element and
so forth. The process will then be repeated in the next row in Ω. In conclusion, the
merging process between N cameras, given that C = {C1, C2, . . . CN} , is therefore
Algorithm 4: Merging between all cameras.
Input: C, T, ε, ξ, η̄,Ω
Output: Φ = {ϕ1,ϕ2, . . .ϕN−1}

1 Φ = list()
2 for order in Ω do
3 H ij ← SimilarityMatrix(Ci, Cj, T, ε, PCi

⋂
Cj , ξ)

4 Do hungarian on H ij and find Λij

5 ϕij ← CreateMergedDataFrame(Ci, Cj,Λij, η̄)
6 Φ.append(ϕ)
7 Remove duplicates ϕi’s if |ϕij| ∈ |ϕijk|.
8 return Φ

3.3 TimeCPD
In this section we describe the implementation of the CPD algorithm, and also the
pre-computations done in order to reduce the amount of noise in the data.
All the points in the dataset X recorded by the first camera do not correspond to

some point in the data set Y recorded by the second camera. This is because the
portions of the scene recorded by the different cameras are not the same, but only
partially overlap. This means that the points in X that lie outside the overlapping
region do not match to any points in Y , and vice versa. So only the points that
lie in the overlapping region contribute to finding the correct rigid transformation
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between the coordinate systems of the different cameras; all points that lie outside
this region can be consider as "noise". The (modified) CPD algorithm is robust
to a certain amount of noise, but since the nonoverlapping regions of the different
cameras are (usually) larger than the overlapping region, the amount of "noise" can
be quite large.
Unfortunately we do not know beforehand which points belong to the overlapping

region. So before any of the algorithm below is performed, with the purpose to
reduce noise, a modified version of Alg(1), Alg(2) based on time and velocity rather
than time and position is performed. Third column in (3.1) will instead consist of
a similarity score based on velocity. Furthermore instead of merging data frames
in Alg(3), backtracking is done in order to find which points are similar in terms
of speed. Thus the output of this modified version of Alg(3) will give an output of
ζspeedkl which contains all the matched points between trajectories which had a higher
similarity score than η̄speed in camera k and camera l.
Below is pseudocode describing our implementation of the CPD algorithm. The

main function TimeCPD takes as input the data sets X and Y (whose rows are
of the form (x, y, z, t), where (x, y, z) are the spatial coordinates of a point, and
t is the time when the point was recorded by the camera), maxIter (maximum
number of iterations), tol (parameter controlling convergence...), tau2 (variance of
the distribution functions for the timestamps), and w (parameter describing the
amount of noise believed to be in the data). We set N equal to the number of rows
in X, M equal to the number of rows in Y and D = 3, the spatial dimension. First,
the parameters that will be optimized for are initialized. We set R = I, t = 0 and
σ2 = 1

DNM

∑
mn ||xn − ym||2. Also, the variable currIter (the number of iterations

performed) is initialized to 0, the variable err (the current absolute value of the
difference between Q for the current iteration and the last iteration) is initialized to
∞, and the variable Qprev (the value of Q in the last iteration) is initialized to ∞.
Next there is a while loop, inside which the two steps (E step and M step) of the EM
algorithm are carried out, either until convergence occurs, or the number of iterations
exceeds maxIter. Inside the while loop, first the points in Y are transformed using
the current rotation R and translation v. The transformed points TY , along with
X, w, σ2, τ 2, are input into a function that performs the E step, and returns the
matrix Γ containing the conditional membership probabilites. This matrix, along
with the data sets X and Y are then sent to a function performing the M step.
This function returns the new values of the parameters R, v and σ2, along with the
optimal value of the objevtive function Q. Finally, the error is computed, Qprev is
set equal to the new optimal value of Q, and currIter is incremented, and we go to
the next iteration. After we exit the while loop (either because of convergence or
because we have exceeded the maximal number of iterations allowed) we transform
the points in Y using the final values of the parameters and return the rotation R,
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the translation v, along with some other things.
Algorithm 5: TimeCPD
Input: X,Y, maxIter, tol, w, τ 2

Output: R, v
1 Initialize R to the identity matrix, v to the zero row vector, and

σ2 = 1
DNM

∑
m n||xn − ym||2

2 Initialize currIter to zero, err to ∞, and Qprev to ∞
3 while currIter ≤ maxIter and err ≥ tol do
4 TY = TransformPoints(Y, R, v)
5 Γ = Estep(X, TY, w, σ2)
6 R, v, σ2, Q = Mstep(X, Y, Γ)
7 err = |Q-Qprev|
8 Qprev = Q
9 currIter = currIter + 1

10 TY = TransformPoints(Y,R,v)

Algorithm 6: Estep
Input: X, TY, w, σ2, τ 2

Output: Γ
1 Compute Γ using Bayes’ law as in (2.7)

Algorithm 7: Mstep
Input: X, Y, Γ
Output: R, v, σ2, Q, w

1 Compute v, σ2 and R as in (2.2), (2.6) and (2.5)
2 Compute optimal Q as in (2.8)

Algorithm 8: TransformPoints
Input: Y, R, v
Output: TY

1 TY = Y RT + v
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4
Results

Each data poin includes their ID number, x and y coordinates, time, speed, type
(pedestrian, cyclist, car or heavy vehicle) and estimation. The data is not entirely
raw, meaning it has been through some kind of filtering to a different coordinate
system, hence the category estimation. Estimation is binary and determines if the
data point is dubious (1) or sufficient (0). If each of the last data points in an
arbitrary trajectory has the estimation value 1, then it is most likely not a sufficient
trajectory. However the amount of points which require to be 1 is not given. This
thesis uses the minimal length trajectory ξ as the same measure of amount of points
in the end of a trajectory is equal to 1 before discarding it. Hence, before any
calculations are made, a trajectory is temporary discarded from the data if the sum
the amount of last points (ξ) whose estimation sum are also equal to ξ.

4.1 Simulated data
In the simulated data, the proposed method shall put to test before performing data
from real traffic.

4.1.1 Camera alignment
We take a subset of the data from Skövde camera 111 data set, and use the points
along with the timestamps in this dataset as the point set X. Then we take all
those points in X whose x coordinate lie to the left of some line x = x0 andapply a
random rotation matrix R and a random translation t to these points, letting this
point set be Y . Finally, from the original point set X we remove all points whose y
coordinate lie above a line y = y0. See figure 4.1 for an example of how this might
look.
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(a) Original subset of
Skövde camera 111 data

(b) Dataset Y (c) Dataset X

Figure 4.1: Datasets used for testing (subplots (b) and (c)) obtained from subset
of Skövde camera 111 data (subplot (a))

Using the obtained datasets X and Y as input to timeCPD we in practically all
cases attempted got results very close to the ground truth (i.e. the random rotation
R and the random translation t mentioned above used to obtain Y ). For example,
in figure 4.2 we can see the result when timeCPD is applied to the datasets in figure
4.1. In this case the rotation R is roughly equal to(

0.54 0.84
−0.84 0.54

)

and the translation is roughly equal to t = (12.76, 8.21)T . The rotation output from
timeCPD is roughly equal to (

0.53 0.85
−0.85 0.53

)

and the translation output from timeCPD is roughly equal to (12.4, 8.3)T , which in
this case is very close to the ground truth.

Figure 4.2: Datasets used for testing ((b) and (c)) obtained from subset of Skövde
camera 111 data ((a))
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4.1.2 Matching Trajectories
Let the simple function y(x) = x2, x ∈ [0, 6] be split into two. Let the first part
be A where x ∈ [0, 3.6] and the second part called B, where x ∈ [3, 6]. When
performing Alg(1) with only the spatial coordinates to consider (i.e all time stamps
are the same) it produced

Figure 4.3: Alg(1) with only respect to coordinates. Blue: trajectory A, orange:
trajectory B, black: matched points from A to B, Red: matched points from B to
A.

where ε was chosen to 1. When taking time into consideration, T was chosen for
1 second. Furthermore, four of the matched points (black and red) was chosen
randomly to have a time difference of less than one second, whereas the rest had
more than one second. The result became
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Figure 4.4: Alg(1) with respect to time and coordinates. Blue: trajectory A,
orange: trajectory B, black: matched points from A to B, Red: matched points
from B to A.

where Alg(1) found the three that should be matched. The next test is to see if
LCSS is capable of finding the matched points with respect to a polygon

Figure 4.5: Alg(2) with respect to time, coordinates and polygon. Blue: trajectory
A, orange: trajectory B, black: matched points from A to B, Red: matched points
from B to A.

where the blue triangle is a polygon. The last test is for LCSS to perform with
respect to an overlap. Alg(2) with respect to overlap became
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Figure 4.6: Alg(2) with respect to time, coordinates and overlap. Blue: trajectory
A, orange: trajectory B, black: matched points from A to B, Red: matched points
from B to A.

where the orange and blue triangle are two polygons including their overlap (green)
to simulate two cameras and their overlap. Figure(4.6) shows that LCSS is capable
of find matching based on space, time, and overlap in a simulated area.

4.2 Skövde Data
The first data is an intersection in Skövde, Sweden and which contains two cameras

(a) View of camera 111.
(b) View of camera 114. (c) View of camera 111 and

114 put together.

Figure 4.7: Camera view of camera 111 and camera 114 in Skövde.

where 4.7.a and 4.7.b are the polygons of camera 111 and 114 respectively for the
whole crossing 4.7.c. Camera 111 and camera 114 consist of 261584 respectively
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160667 data points. The total number of trajectories after first filtering based on
estimated for the intersection in Skövde was

Table 4.1: Number of trajectories for each traffic object. (∗): number of trajectories
which has atleast ξ points in P 111,114

Camera 111 (∗) Camera 114 (∗) Total traffic object (∗)
Pedestrians 132 (38) 136 (4) 268 (42)
Cyclists 896 (293) 475 (183) 1371 (476)
Cars 11075 (6189) 8423 (1716) 19498 (7905)

Heavy vehicles 2013 (1324) 1166 (467) 3019 (1791)
Total 14116 (7844) 10200 (2370) 24316 (10214)

where (∗) determines the amount of trajectories which has atleast ξ number of points
in P 111,114. Since the camera 114 has less objects in P 111,114, the (∗) in camera 114
also becomes the maximum amount of possible merging of the whole data set.

4.2.1 Camera alignment
Let us first show an example were no precomputations were done. We let X be
the cars in camera 111 whose timestamps lie between 18:00 and 18:05, and Y be
the cars in camera 114 whose timestamps lie in the same time interval. The points
X can be seen in Figure 4.8 (a), and the points Y can be seen in Figure 4.8 (b).
After running timeCPD with these points and transforming the points in Y with
the resulting rigid transformation, we get Figure 4.8 (c). Nothing in this picture is
matched up, which indicates that the resulting rigid transformation is incorrect. So
just picking out a subset of the given data and using it as input to timeCPD does
not usually result in a rigid transformation that seems "correct".

(a) Points corresponding
to cars in camera 111
whose timestamps lie be-
tween 18:00 and 18:05

(b) Points corresponding
to cars in camera 114
whose timestamps lie be-
tween 18:00 and 18:05

(c) The same points where
the red points have been
transformed using the rigid
transformation obtained
from CPD

Figure 4.8: Data without any filtering, 18:00-18:05

So in order to get better results we did some precomputations. First we divided the
data set into 4 parts, corresponding to the time intervals 00:00-06:00, 06:00-12:00,
12:00-18:00 and 18:00-00:00. For each of these subdatasets we matched trajectories
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using LCSS, but with velocities (which are coordinate system independent) instead
of the points themselves. The minimal velocity between each point εspeed and the
maximum eligible time difference T was chosen to be 2 m/s respective 1 s was chosen
to find similarities between cars in terms of speed and time. According to Table 4.1,
the total data consists a total of 19498 trajectories of cars. The aim is to find as
many paired trajectories with minimal of ambiguity, hence η̄speed = 0.8 was chosen,
i.e they are much alike (in terms of speed and time). The first of these datasets
contained few points, and so we decided not to include it. The results obtained for
the other datasets are presented below.

(a) Points corresponding
to cars in camera 111
whose timestamps lie be-
tween 06:00 and 12:00, after
filtering by pre-matching
using LCSS with velocities
and timestamps

(b) Points corresponding
to cars in camera 114
whose timestamps lie be-
tween 06:00 and 12:00, after
filtering by pre-matching
using LCSS with velocities
and timestamps

(c) The same points where
the red points have been
transformed using the rigid
transformation obtained
from CPD

Figure 4.9: First dataset, 06:00-12:00

(a) Points corresponding
to cars in camera 111
whose timestamps lie be-
tween 12:00 and 18:00, after
filtering by pre-matching
using LCSS with velocities
and timestamps

(b) Points corresponding
to cars in camera 114
whose timestamps lie be-
tween 12:00 and 18:00, after
filtering by pre-matching
using LCSS with velocities
and timestamps

(c) The same points where
the red points have been
transformed using the rigid
transformation obtained
from CPD

Figure 4.10: Second dataset, 12:00-18:00
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(a) Points corresponding
to cars in camera 111
whose timestamps lie be-
tween 18:00 and 00:00, after
filtering by pre-matching
using LCSS with velocities
and timestamps

(b) Points corresponding
to cars in camera 114
whose timestamps lie be-
tween 18:00 and 00:00, after
filtering by pre-matching
using LCSS with velocities
and timestamps

(c) The same points where
the red points have been
transformed using the rigid
transformation obtained
from CPD

Figure 4.11: First dataset, 18:00-00:00

For all three datasets we got R roughly equal to the identity matrix. The translations
we got for the three different datasets were roughly the same: for the first one we got
v = (−13.34, 17.56)T , for the second one we got v = (−12.84, 18.55)T , and for the
last one we got v = (−12.54, 18.73)T . These differences can probably be accounted
for by the fact that the three datasets are different, and all contain some amount of
noise. The fact that running timeCPD on all three of these datasets give roughly
the same values of R and t makes us believe that these lie close to the "real" values
of these parameters; if the algorithm gave the wrong answer, it would be weird if it
gave the same wrong answer for three different datasets. As a semi verification of
these results we plot the points used in Figure 4.9 (a) and (b) transformed into the
common coordinate system that had been previously obtained by hand We see that
the plot of these transformed points (Figure 4.12) looks essentially the same as the
points in Figure 4.9 (c) after a reflection and a rotation.
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Figure 4.12: Red: Trajectories from camera 114. Cyan: Trajectories from camera
111.

4.2.2 Matching Trajectories
Based on Table(4.3), regular cars will be one of the main focus regarding overall
Skövde data.

4.2.2.1 Cars

The polygons created based on all the coordinates in both cameraas became
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Figure 4.13: Black is the polygon created through all cars in camera 111. Orange
is the polygon created through all cars in camera 114. White is the intersection of
camera 111 and 114.

25



4. Results

where the black polygon is camera 111, orange is camera 114 and white is their
intersection. There were scores with maximum similiarty score such as
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(a) Overview with polygon of 19381
and 50210319.

−20 −10 0 10 20

−20

0

20

Score 1.00
Cam0, ID19381
Cam1, ID50210319

 7.5  5.0  2.5 0.0
0

10

20

30
Trajectories from both

 7.5  5.0  2.5 0.0
0

10

20

30
Merged

(b) How the merging between 19381
and 50210319 would look like.

Figure 4.14: Comparison between camera 111 and 114; upper left: 19381 and
50210319 as seperate trajectories, upper right: as merged trajectories, lower: how
both trajectories interact with respect to polygon. Similarity Score: 1.0
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(a) Overview with polygon of 20812
and 22722.
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(b) How the merging between 20812
and 22722 would look like.

Figure 4.15: Comparison between camera 111 and 114; upper left: 20812 and
22722 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 1.0

where in these cases, the temporary merging is also a sufficient permanent merging
of the two trajectories. The chosen threshold was η̄ = 0.35. Car trajectories with a
score slightly above η̄ = 0.35 was
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(a) Overview with polygon of 23369
and 25273.
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(b) How the merging between 23369
and 25273 would look like.

Figure 4.16: Comparison between camera 111 and 114; upper left: 23369 and
25273 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 0.357

is still sufficient to merge. The same argument can still be made for trajectories
with equal values η̄ = 0.35 such as
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(a) Overview with polygon of 24808
and 26632.
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(b) How the merging between 24808
and 26632 would look like.

Figure 4.17: Comparison between camera 111 and 114; upper left: 24808 and
26632 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 0.35
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(a) Overview with polygon of 24808
and 26632.
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(b) How the merging between 24808
and 26632 would look like.

Figure 4.18: Comparison between camera 111 and 114; upper left: 24808 and
26632 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 0.35.

Right below η̄ = 0.35 the frequncey of less coherent merged trajectories are increas-
ing such as
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(a) Overview with polygon of 17276
and 19021.
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(b) How the merging between 17276
and 19021 would look like.

Figure 4.19: Comparison between camera 111 and 114; upper left: 17276 and
19021 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 0.33.
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However there also exists some justifiable ones below η̄ = 0.35 such as
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(a) Overview with polygon of 4019 and
4155.
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(b) How the merging between 4019 and
4155 would look like.

Figure 4.20: Comparison between camera 111 and 114; upper left: 4019 and
4155 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 0.333

Overall, η̄ = 0.35 was chosen as the threshold to add more certainty in the merging
process. Note that for a pair of trajectory to have a similarity score around 0.35,
the temporary merging is not sufficient.

4.2.2.2 Heavy Vehicles

The polygons for heavy vehicles
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Figure 4.21: Black is the polygon created through all pedestrians in camera 111.
Orange is the polygon created through all pedestrians in camera 114. White is the
intersection of camera 111 and 114.
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which is similar to 4.13 as it should be since both vehicles cover the same ground in
the intersection as shown below.
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(a) Overview with polygon of 3979 and
4104.

−20 −10 0 10 20

−20

0

20

Score 1.00
Cam0, ID3970
Cam1, ID4104

 15  10  5 0

0

10

20

30
Trajectories from both

 15  10  5 0

0

10

20

30
Merged

(b) How the merging between 3979 and
4104 would look like.

Figure 4.22: Comparison between camera 111 and 114; upper left: 3979 and
4104 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 1
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(a) Overview with polygon of 5210 and
5368.
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(b) How the merging between 5210 and
5368 would look like.

Figure 4.23: Comparison between camera 111 and 114; upper left: 5210 and
5368 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 1
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Examples of paired trajectories with low similarity score are
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(a) Overview with polygon of 14855
and 15465.
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(b) How the merging between 14855
and 15465 would look like.

Figure 4.24: Comparison between camera 111 and 114; upper left: 14855 and
15465 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 0.1
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(a) Overview with polygon of 5392 and
5572.
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(b) How the merging between 5392 and
5572 would look like.

Figure 4.25: Comparison between camera 111 and 114; upper left: 5392 and
5572 as seperate trajectories, upper right: as merged trajectories, lower: how both
trajectories interact with respect to polygon. Similarity score: 0.08

Even though trajectories follows similar pattern by distance metric, most of their
time stamp do not match.

4.2.2.3 Cyclists

Created polygons for cyclists with the inclusion of all data points was
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Figure 4.26: Black is the polygon created through all cyclists in camera 111.
Orange is the polygon created through all cyclists in camera 114.

where the black points are the cyclists in camera 111 and orange points are cyclists
in camera 114. The matched trajectories using the LCSS algorithm do also have the
same direction
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(a) Overview of the intersection with x
and y - axis involving the trajectories
interacting with camera 111 (black)
and camera 114 (orange).
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(b) The direction of both trajectories
are the same.

Figure 4.27: Overview and a directed graph over trajectories 20840 (red) and
50220027 (green).
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Figure 4.28: Upper left: 20840 (red) and 50220027 (green) as seperate trajectories,
upper right: as merged trajectories, bottom: how both trajectories interact with
respect to polygon of camera 111 (black) and camera 114 (orange). Similarity score:
0.93

as shown in figure 4.27(b) Alg 2 does take into account the direction of a pairing
(otherwise it would not be a match).

4.2.2.4 Pedestrians

There was no matches were found for pedestrians. The maximum amount of merging
options was 4, according to 4.3 and it shows through the intersected polygon P 111,114

for pedestrians.
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Figure 4.29: Black is the polygon created through all pedestrians in camera 111.
Orange is the polygon created through all pedestrians in camera 114.
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4.2.2.5 Overall

The total number of possible merging which has a similarity score above η̄ = 0.35
was

Table 4.2: Number of merged traffic objects with a similarity score larger or equal
to than 0.35.

(ε, T ) Pedestrians Cyclists Cars Heavy vehicles Total
(1, 1) 0 12 209 72 293
(1, 2) 0 12 231 84 327
(2, 1) 0 15 922 161 1098
(2, 2) 0 15 945 172 1132

The Table 4.2 shows that the number of merging is more dependent on the minimal
distance ε than time T .

4.3 Mellingen Data
The second data is a crossing in Mellingen, Switzerland and contains three cameras

Figure 4.30: Red is the view of camera 109, blue is the view of camera 110 and
cyan is the view of camera 142.

where the latter one invloves have higher number of obstacles around the intersec-
tion, which eventuates to higher density of corrupt data. Fig(4.30) is a representa-
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tion of the real area the cameras cover from camera 109 (red), camera 110 (blue)
and camera 142 (cyan).

Table 4.3: Number of trajectories for each traffic object for Mellingen.

Camera 109 Camera 110 Camera 142 Total traffic object
Pedestrians 530 511 527 1568
Cyclists 409 357 497 1263
Cars 13955 12889 17133 43977

Heavy vehicles 203 264 671 1138
Total 15097 14021 18808 47926

4.3.1 Camera Alignment

As we can see in Figure 4.30, the overlapping region between cameras 110 and
142 is quite small and narrow. This lead to difficulties since most of the data will
lie outside the overlapping region, resulting in large amounts of noise. An idea for
finding the transformation between camera 110 and 142 is to find the transformations
from camera 142 and 109, and the transformation from camera 109 to camera 110,
and then compose these to get the transformation from camera 142 to camera 110.
Trying to match using bycyclists or pedestrians did not work out either. This
might be because the pedestrians and bycyclists would in only a small part of the
overlapping regions, i.e. the crossings. For example, between camera 142 and camera
109, the crossing takes up a fairly small part of the overlap. This of course results
in there being few data points corresponding to pedestrians and bycyclists in the
overlapping regions. Using new data for camera 109 we ran the timeCPD algorithm
again on points from camera 109 and camera 142, after a similar precomputation
as before, and got the result shown in Figure 4.32 (after transforming the points
into a global coordinate system, i.e. first the points in camera 142 were transformed
using the rigid transformation obtained from timeCPD into the coordinate system
of camera 109, and then these points along with the points from camera 109 were
transformed into the global coordinate system). The rotation was roughly equal
to the identity matrix and thr translation v = (1.88, 1.09)T . Comparing the result
with Figure 4.31, which is the points used in timeCPD transformed into the global
coordinate system using the "real" transformation. The figures are quite similar,
indicating that the rigid transformation found using timeCPD is close to the correct
one. However, the transformed points (cyan points in Figure 4.31) are somewhat
shifted downwards compared to the corresponding points in Figure 4.31. They also
look as if they have been rotated slightly too much clockwise.
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Figure 4.31: Points from camera 109 (red points), and from camera 142 (cyan
points) plotted in a global coordinate system
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Figure 4.32: Points from camera 109 (red points), and from camera 142 (cyan
points) plotted in a global coordinate system, where the points from 142 were first
transformed into the coordinate system of camera 109 using the rigid transformation
obtained from timeCPD

Next we also tried to find a rigid transformation between cameras 109 and 110
using the new 109 data, after once again precomputing as before. The result is show
in Figure 4.34, and the "correct" plot is shown in Figure 4.33. The figures indicate
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the result is very far from being correct. Looking at figure 4.33 we see that the
proportion of points that overlap is quite small, meaning that most of the data can
be considered "noise" when used as input to timeCPD.

−30 −20 −10 0 10 20
x

−20

−10

0

10

20

y

Figure 4.33: Points from camera 109 (red points), and from camera 110 (cyan
points) plotted in a global coordinate system
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Figure 4.34: Points from camera 109 (red points), and from camera 110 (cyan
points) plotted in a global coordinate system, where the points from 110 were first
transformed into the coordinate system of camera 109 using the rigid transformation
obtained from timeCPD
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4.3.2 Matching Trajectories

4.3.2.1 Cyclists

The resulting polygons was
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Figure 4.35: The polygons created by only using the data of cyclists. Black is
camera 109, orange is camera 110 and pink is camera 142.

where black is for camera 109, orange for camera 110 and pink for camera 142.
The number of cyclists in each camera vision with atleast ξ points in each polygon
intersection can be presented in the form of a cayley table

Table 4.4: Cayley table of number of cyclists with atleast ξ points in each polygon
intersection.

~ P 109 P 110 P 142

P 109 409 150 188
P 110 115 357 72
P 142 139 153 497

where P k ~ P l is number of trajectories in P k,l for camera k.
Alg 1 was able to identify pair of trajectory with high similarity score for the

different combination of cameras with examples from camera 109 and 110,
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(a) A map overview of the intersec-
tion with adjusted x and y - axis over
Mellingen.
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(b) Before (upper left) and after (up-
per right) merging with overview in
regular x and y - axis.

Figure 4.36: Comparison between camera 109 and 110 with trajectory 5510 (red)
from camera 109 and trajectory 6528 (green) from camera 110 with similarity score
1.
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Figure 4.37: Comparison between camera 109 and 110 with trajectory 50640001
(red) from camera 109 and trajectory 13440 (green) from camera 110 with similarity
score 1.

camera 109 and 142 and
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Figure 4.38: Comparison between camera 109 and 142 with trajectory 10133 (red)
from camera 109 and trajectory 15276 (green) from camera 142 with similarity score
1.
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Figure 4.39: Comparison between camera 109 and 142 with trajectory 5369 (red)
from camera 109 and trajectory 8574 (green) from camera 142 with similarity score
1.

lastly 110 and 142.
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Figure 4.40: Comparison between camera 110 and 142 with trajectory 11037 (red)
from camera 110 and trajectory 15563 (green) with similarity score 1.
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Figure 4.41: Comparison between camera 110 and 142 with trajectory 6151 (red)
from camera 110 and trajectory 8162 (green) with similarity score 1.
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Duplicates between the merging order occured when ϕ142,109,110 was executed

Figure 4.42: Merging between camera 142 and camera 109 (black) and the detec-
tion of a trajectory in camera 110 (green).

where the black trajectory was merged first and the green one got detected after.
The green trajectory was however intercepted during the merging order ϕ110,109,142

Figure 4.43: Merging between camera 110 and camera 109 (black) and the detec-
tion of a trajectory in camera 142 (cyan).
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where in this case, the cyan one that was merged previously in fig(4.42). Both of
which will be replaced by a total merge of all three trajectories.

4.3.2.2 Pedestrians

For pedestrians at Mellingen, the data looked like the following Cayley table:

Table 4.5: Cayley table of number of pedestrians with atleast ξ points in each
polygon intersection.

~ P 109 P 110 P 142

P 109 530 194 271
P 110 177 511 157
P 142 195 69 527

with the polygons
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Figure 4.44: The polygons created by only using the data of pedestrians. Black is
camera 109, orange is camera 110 and pink is camera 142.

Notice that in the case of pedestrians, P̄ = ∅, which means that the total amount of
merging permutation can be reduced. The merging order of camera 110, camera 142
and camera 109 can for instance be discarded. Alg 2 did also work for combining
two cameras and compare with the third. First, choose trajectories from camera 109
and 110 with a η̄ ≥ 0.8 the results became
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Figure 4.45: The polygons and the merged trajectories (black) and the soon to
merged trajectory from camera 142. Black is camera 109, orange is camera 110 and
pink is camera 142 and the white area is P (109,110)∩142.

where the black trajectory θ̃ is Θ(4655, 50400080) with respect to P 109∩110. The
white area is P (109∪110)∩142 after comparison with trajectories from camera 142. ID
7526 from camera 142 was found to be the one most appropriate one, with ηϕ,7526 =
0.888. The final merging Θ(θ̃, 7526) became

Figure 4.46: Total merging of all chosen trajectories (black).

In comparison to the chosen ID’s original paths
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Figure 4.47: The merged trajectories seperately, green: trajectory from 110, red:
trajectory from 109, cyan: trajectory from camera 142 with respect to P (109,110)

⋂
142

(white).

Another pairing of trajectory, but this time, first finding trajectories from camera 142
and camera 109 and then merge them. The original trajectories with the obtained
polygons, became

Figure 4.48: The merged trajectories seperately, green: trajectory from 110,
red: trajectory from 109, cyan: trajectory from camera 142 with respect to white:
P 142,110)

⋂
109.

45



4. Results

where the first merging step (i.e merging from camera 142 and 109) lead to

Figure 4.49: First merging step. Black: Merging of trajectories from camera 142
and 109, green: trajectory from camera 110, white: P (142,109)

⋂
110.

with the final merge being

Figure 4.50: Total merging of chosen trajectories from all cameras.

where the final merging score was η(Θ(50500014, 12548), 50500067) = 0.76.
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4.3.2.3 Cars

The polygons for cars are
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Figure 4.51: The polygons created by only using the data of pedestrians. Black is
camera 109, orange is camera 110 and pink is camera 142.

where P̄ is quite large and does contain large amount of data. The order is thus of
greater importance since the paired trajectories

Figure 4.52: Paired trajectories was found in the order of 142 (cyan), 110 (black)
and 109 (red). White: P (142,110)

⋂
109.

could only be found by the merging order of 110, 142 and then 109 since P (110,142)∩109

(white) does cover enough of the trajectory from camera 109 (red) whereas the
merging order 109, 110 and then 142 would result in
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Figure 4.53: Paired trajectories was found in the order of 109 (red), 110 (black)
was found. Not 142 (cyan). White: P (109,110)

⋂
142.

where cyan did not appear since P (109,110)∩142 (white) does not cover enough points
from trajectory in camera 142 (cyan).

4.3.2.4 Heavy Vehicles

The amount of heavy vehicles was rather low
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Figure 4.54: The polygons created by only using the data of pedestrians. Black is
camera 109, orange is camera 110 and pink is camera 142.

but it produced decent polygons. The small amount of heavy vehicles could, in this
traffic scen, have avail it in forming its polygons, compared to the polygons obtained
by cars fig(4.51).

48



4. Results

4.3.2.5 Overall

The merging threshold for both steps during a two step merging process was chosen
as in Skövde, i.e η̄1 = 0.35. The results can be presented as

Table 4.6: Number of merged trajectories for η̄ = 0.35. (±n) determines the
amount of duplicates.

Pedestrians Cyclists Cars Heavy vehicles Total
P 109∩110 64 16 3153 28 3261
P 109∩142 55 12 7105 28 7200
P 110∩142 25 22 72 0 119

P (109,110)∩142 0 (+7) 0 (+1) 38 (+6) 1 39
P (109,142)∩110 7 (−7) 1 (−1) 408 (−6) 1 417
P (110,142)∩109 0 0 11 0 11

Total 151 51 10787 60 22096

where the parameters (ε, T ) was chosen as (1, 1) and (±n) determines the duplicates
that were found during another permutation where (+n) determines which data set
they are added at and (−n) where they are removed from.
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Discussion

5.1 Camera alignment
Being able to align the coordinate systems of different cameras using a data driven
method such as the method we have used would save time and effort, since one does
not need to manually find keypoints in the camera pictures to match by hand.
The main problem in finding the rigid transformation between the coordinate

systems of the different cameras seems to be that having a large number of points
that lie outside the region where the cameras’ views overlap (and other types of
"noise") will most likely lead to most point set registration algorithms failing to find
the correct solution. Since which points belong to the overlapping region is not
known beforehand, one of the main things to do in order to succeed in finding the
rigid transformation is to reduce the amount of noises attempt to make sure that at
least a substantial number of points lie in the overlapping region. Another problem
related to this is if the overlapping region is very small or narrow. In this case there
may not be enough points in the overlapping region.
Another point is that information that is independent of the coordinate systems

can possibly help make point set registration algorithms more accurate, and at the
very least speed up computations. For example, in our case we used the timestamps
associated with each point in our point set registration algorithm. By doing this
a large number of point correspondences can immediately be excluded, i.e. if a
the timestamps of the two points in the different cameras differ by some amount,
then they should not be matched together (which in our case is accomplished by
downweighing the corresponding matching probability). The inclusion of other co-
ordinate independent data may be able to improve the accuracy and speed of the
point set registration, e.g. colors of the traffic objects corresponding would allow
one to remove or downweigh correspondences between traffic objects with different
colors (unfortunately, the cameras used in this project are not color cameras).

5.2 Matching Trajectories
As of its own, the LCSS algorithm Alg(4) is capapble of finding paired trajecto-
ries with high probability of being the same trajectories. However, for the paired
trajectories with some ambivalence (paired trajectories around η̄ = 0.35) should be
scrutinized with a complementary algorithm. In addition, the parameters of (ε, T )
was done by intuition rather than some metric. A possibly more sensible approach
would to take the average distance and time between each traffic object in each
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intersection and finding an optimal (ε, T ) before performing LCSS. The merging
threshold for the first and second merging should in this case, be the same since
only one of the two trajectories is capable of matching with the third which is the
same as taken the matching one and match it with the same third one. The version
presented on LCSS, namely the similarity matrix Hkl, is a sence, robust against
noises since noises tends to behave "unnateral", thus making it harder to pair them
with other real trajectories. Nonetheless, if most or many noises behave the same,
Alg(2) would not be able to detect them. As a method to reduce noise (especially for
two cameras), for other algorithms such as TimeCPD, then it seems reliable enough.
As of merging, it should be accentuated that the merging method (2.11) should

only be used as a temporary merge when there are more than two cameras. The
aim of a temporary merge is to preserve the original two trajectories without too
much loss of information before comparing with the other available cameras. For
the final merging (regardless of the number of cameras) when all the comparison is
done, the presented merging method is only applicable if the matching occur at the
start of one trajectory while also being matched at the end of the other trajectory,
such as Figure(4.36). In other instances, it is still incomplete Figure(4.17). The
final merging, which in addition to (2.11), should consist of removal of unwanted
and redundant points for the "natural" appearance of a trajectory, after comparing
all local cameras.
LCSS has been used in camera alignment but is not necessarily bounded by it since

it can be applied in any type of data set consisting of trajectories with respect to
some attributes. These examples could be from microscopic levels in the movement
of some bacteria to military related applications in radar related systems. In the
case of data analyzis, LCSS have shown to be capable to reduce noise for other
algorithms such as TimeCPD. In addition, LCSS has also been shown to be accessible
to implement as LCSS have been used in this thesis both as coordinate and velocity
for finding similarities.
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LCSS is capable of reducing noise for other algorithm such as TimeCPD, however
the area of the overlap is of importance. The bigger the overlap the more robust
it gets for obtaining a transformation. The trade off of having a big overlap is the
information collected from cameras is being reduced. In addition to the area of
the overlap, the general movement inside the overlap is also of importance since
the overlap can still be large but the majority of the points moves in a small area
of the overlap. Even though the amount of permutations scale pretty fast when
merging trajectories, each intersection is unique with an inclusion of flow of the
given traffic scen, one should be able to reduce the number of permutations. LCSS
and the merging algorithm presented is an important step and is capable of pairing
the divided trajectories within each camera but will still need some work to do.
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