
Evidence based training in cross-country
skiing
Predicting the force generated by the skier

Master’s thesis in Mathematical Statistics

ELIJAH FERREIRA

Department of Mathematical Sciences
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019





Master’s thesis 2019

Evidence based training in cross-country skiing

Predicting the force generated by the skier

ELIJAH FERREIRA

Department of Mathematical Sciences
Division of Mathematical Statistics
University of Gothenburg

Gothenburg, Sweden 2019



Evidence based training in cross-country skiing
Predicting the force generated by the skier
ELIJAH FERREIRA

© ELIJAH FERREIRA, 2019.

Supervisor: Professor Rebecka Jörnsten, Department of Mathematical Sciences
Examiner: Umberto Picchini, Department of Mathematical Sciences

Master’s Thesis 2019
Department of Mathematical Sciences
Division of Mathematical Statistics
University of Gothenburg
SE-412 96 Gothenburg

iv



Evidence based training in cross-country skiing
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Abstract

Evidence based training has been around for for while, where data is collected and
pre-defined measures are used to evaluate the training session. Skisens AB are pre-
senting new methods to evaluate a session which can be compared between sessions
in a fair way, without having outside factors influencing the results by, measuring
the force generated by the skier. Measuring the force generated involves customized
handles that changes the dimensions of the handles and in the extension the er-
gonomics of the handles. This thesis aims to try to accurately predict the force
generated in each stroke from the skier, in order for Skisens AB not having to mea-
sure the force using the customized handles.
We propose an unsupervised detection algorithm, for detecting when a stroking mo-
tion is performed as well as a few model design for achieving the best predictive
results.
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1
Introduction

With the technological improvements made in recent years, companies are collecting
data about everything possible. Data driven decision making has increased expo-
nentially and many call this day of age the age of data analytics.
This is true even in the world of sports where attaching sensors to athletes and
their gear to collect data with the intent of further analysis of performance, risk
assessments and improving their training results is something that has been around
for a while. Already in about a decade ago ADDIDAS released their football shoes
adizero f50 miCoach on the commercial market [1]. The shoes has a chip in the
sole which tracks the players movement, average speed, top speed, time between
steps and many other things. The player or the team could after a training session
download the data, analyze it and try to adjust the training to improve the player.
Another example comes from the American football league, where each of the 32
teams in the National Football League has an analytic department that collects data
about their players physical abilities, training performance and uses in further anal-
ysis to try to increase the players abilities.

Further, with smartphones and smartwatches even amateur athletes can in real
time get indications of their performance during a session. These indications could
be in the form of heartbeats per minute, speed or other measurements.
Using data and measurements as evidence of the performance while training has
become very wide spread with the help of technology. But the data, methods and
metrics can differ between sports. In some sports it is easier to get reliable and
important indications while in other it can be a harder.

1.1 Skisens

Skisens is a company founded by researcher and previous students at Chalmers uni-
versity of technology in 2017. Their idea is a tool that will help to improve the
methods in evidence based training for cross-country skiing. Today cross-country
skiers have a few different options when tracking their performance such as sport
clocks, chest belts and smartphone apps [2]. These tools usually keeps track of the
skiers distance, time, heartbeat and from the data collected the skier can evaluate
the session once finished. The downside with these measurements is that they can-
not in a fair way be compared between sessions, since there are many other factors
that will affect the data collected such as weather conditions, how well rested the
skier is before the session and more.

1



1. Introduction

Skisens tool is a power meter that in real time measures the force generated by
the poles and the angle of each pole, all in order to derive the power produced. The
power meter is built in to a customized handle that is then mounted on the two
poles.

Figure 1.1: The customized handle made by Skisens

Using a power meter, and in the extension effect, as a way of measuring performance
has been the a common method used for the past 10-15 years in competitive cycling.
But in cross-country skiing there has yet not been any similar tool before, so Skisens
saw an opportunity to improve the existing methods [3]. Effect is an absolute mea-
surement that is directly connected with the skiers performance, making it possible
to compare sessions and track development. An increased ability to generate force
translates to either an increased physical ability or better technique used.
Further, with the handle not only is the skier able to get information about the
angle of pole and the force but also the velocity and acceleration of the pole. This
additional information opens up for the the data to give indications of reasons that
could limit the skiers performance in certain situations, and in the extension offer
preferable adjustments to the technique.

1.2 Objective

To be able to measure the force it requires that the custom made handle has a
loading cell. To fit the loading cell in the handle the dimensions of the handle has
to be changed in a way that is not ergonomic for the skier. This could in theory
mean that the technique of the skier is changed due to adjustments made to the
new handles. Moreover, the loading cell is an expensive sensor in comparison to the
IMU sensor that measures the angle and movement of the pole.
Being able to calculate the force without measuring it is of the essence for Skisens.
Therefor the objective of this thesis will be to try to predict the force generated by
the skier from all the other information provided in the data.
This thesis in structured in the following way that in section 2 an overview of the
sensor data from Skisens is presented. Also, the construction of the features that
will be used for fitting a model and making predictions is presented and motivated.
Section 3 gives an theoretical background to the statistical models considered for
obtaining predictions. Section 4 and 5 presents the models that was used and the
results obtained from these models. Lastly section 6 discusses the findings, possible
limitations and drawbacks, and future work.
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2
Data Overview

The data used for this thesis is recorded by Skisens AB during two session when
Johan Högstrand was out skating on roller skates. The first of these two sessions is
recorded when he was skating around in the city of Gothenburg, while the second
one is from a skating session in the community of Sätila close to the northern lake
of Lyngen. The data is recorded from the sensors mounted on the handles of the
poles and on the skater. During the two sessions a total of four different techniques
was used, Double, Gear2, Gear3 and Gear4. After a session the data is cleaned
and partitioned into several CSV -files by Skisens, each file contains the data from a
specific session and one style executed in consecutive time. For example, during the
skate session in Sätila on three different occasions during the session, Johan used
the technique Double. Each of these three occasions are in separate files. So even
though we are recording the time, the files does not indicate in which order the tech-
niques was performed. This yields that effects like long term fatigue is something
that cannot be part of the analysis.

Moreover, only the data from the techniques Double and Gear3 will be used due to
the extensive work of creating a general function that is able to work for all four
techniques. Double was chosen because most of the data available is from skating
using that technique, moreover Gear3 was included due to similarities in technique
as Double when skating.
The methodology of predicting force for the two other techniques will be the same
as for the two that are included in this thesis.

2.1 Description of the data

The information recorded from each session will be described in this section. Table
2.1 gives a small overview of the all the measurements collected together with the
unit they are measured in.
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2. Data Overview

Measurements Unit
Time [s]
Left force [N]
Left angle [deg]
Left angular velocity vector [rad/s]
Left acceleration vector [m/s2]
Right force [N]
Right angle [deg]
Right angular velocity vector [rad/s]
Right acceleration vector [m/s2]
Flat eastward position [m]
Flat northward position [m]
Altitude [m]
Speed [m/s]

Table 2.1: Description of the data recorded from each session from the sensors in
the handles and on the skater. The sensors records measurements each 0.2 second.

Note that the time is relative to each file, i.e it starts over from 0 in each file. Also,
the sensor measures each variable every 0.2 seconds. The coordinate system for the
vectors of angular velocity and acceleration are described in table 2.2.

Axis Description
First Axis Pointing right (orthogonal to pole)
Second Axis Pointing down (parallel to pole)
Third Axis Pointing forward (orthogonal to pole)

Table 2.2: Description of the coordinate system for the data vectors acceleration
and velocity. The coordinate system for the vectors of acceleration and angular
velocity is relative to the pole.

In table 2.3 the abbreviations that will be used throughout this thesis for the mea-
sured variables are presented. These abbreviations are present in figures as well as
in the text.
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2. Data Overview

Abbreviation Description
fL force from the left pole
thL Angle of the left pole
w1L Velocity of the left pole in the first axis
w2L Velocity of the left pole in the second axis
w3L Velocity of the left pole in the third axis
a1L Acceleration of the left pole in the first axis
a2L Acceleration of the left pole in the second axis
a3L Acceleration of the left pole in the third axis
z The altitude of the skier
v The speed of the skier

Table 2.3: Abbreviation of the variables collected by Skisens that are used from
this point forward in the report. The abbreviations of the variables related to the
right pole are not present in this table with the suffix, i.e instead of ending with L
they end with a R.

Below is a small sample of how each variable corresponding to the right pole looks
like for the style Double. The corresponding figures for the left pole is shown in
section Appendix A but in general they have the same behaviour as its right pole
equivalent. The same is true for the variables when Gear3 is used.

Figure 2.1: A sample of the force over time, measured in seconds, generated by
the right pole during the session in Sätila.
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2. Data Overview

Figure 2.2: A sample of the angle of the right pole over time, measured in seconds,
during the session in Sätila.

Figure 2.3: A sample of the velocity of the right pole in the first axis over time,
measured in seconds, during the session in Sätila. The first axis of the velocity is
pointing right and is orthogonal to the pole.
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2. Data Overview

Figure 2.4: A sample of the velocity of the right pole in the second axis over time,
measured in seconds, during the session in Sätila. The second axis of the velocity is
pointing downwards and is parallel to the pole.

Figure 2.5: A sample of the velocity of the right pole in the third axis over time,
measured in seconds, during the session in Sätila. The third axis of the velocity is
pointing forward and is orthogonal to the pole.
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2. Data Overview

Figure 2.6: A sample of the acceleration of the right pole in the first axis over time,
measured in seconds, during the session in Sätila. The first axis of the acceleration
is pointing right and is orthogonal to the pole.

Figure 2.7: A sample acceleration of the right pole in the second axis over time,
measured in seconds, during the session in Sätila. The second axis of the acceleration
is pointing downwards and is parallel to the pole.
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2. Data Overview

Figure 2.8: A sample of the acceleration of the right pole in the third axis over time,
measured in seconds, during the session in Sätila. The third axis of the acceleration
is pointing forward and is orthogonal to the pole.

Figure 2.9: A sample of the altitude over a larger period of time, measured in
seconds, during the session in Sätila.
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2. Data Overview

Figure 2.10: The speed of the skier over a larger period of time, measured in
seconds, during the session in Sätila.

2.2 Unsupervised event detection

The data from each session is collected every 0.2 seconds, resulting in that we have
temporal information about each record in the data. This temporal information
allows for example the ability to track technique or performance changes due to
fatigue. The objective of this thesis is to predict the force generated from each pole,
the force is non-present (baseline is 0 [N]) most of the times, except for when the
skier is performing a stroke movement. Keeping the temporal information in the
data and building a statistical model for predicting the force at such a granular level
as for each recorded measure would result in that for the most part the model would
predict 0 force.

Figure 2.11: Counts of how often the force is less or equal to zero or larger than
zero for one data set from the technique Double. From the figure it becomes obvious
that the force is non-present most of the time.

Figure 2.11 displays the number of occurrences of strictly positive force vs less than
zero force, and with this figure as motivation, I will consider the time period of when
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2. Data Overview

the force deviating from its baseline until it comes back as an event. Meaning an
event will be the time period when the skater is performing a stroking movement.
So instead of predicting the force at each record, I will try to predict the overall
force generated over the time period of an event. This will yield that we loose the
temporal information at the most granular level but is still able to keep it on an
event level.

Figure 2.12: A sample of how an event in force looks like for a pole.

Next let’s see how the different variables look like when we have an event in force.
The red colored parts of the curves corresponds to having an event in force for the
left pole. Only figures of the variables for the left pole are presented, the figures for
the variables corresponding to the right pole can be found in Appendix A figure A.1
- A.7.

Figure 2.13: A sample of the accel-
eration of the left pole in the first axis.
The red colored parts of the curve
is the time periods when there is an
event in force for the left pole, i.e the
skier is performing an stroking motion
and generates positive force.

Figure 2.14: A sample of the ac-
celeration of the left pole in the sec-
ond axis. The red colored parts of the
curve is the time periods when there
is an event in force for the left pole,
i.e the skier is performing an stroking
motion and generates positive force.
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2. Data Overview

Figure 2.15: A sample of the accel-
eration of the left pole in the third
axis. The red colored parts of the
curve is the time periods when there
is an event in force for the left pole,
i.e the skier is performing an stroking
motion and generates positive force.

Figure 2.16: A sample of the veloc-
ity of the left pole in the first axis.
The red colored parts of the curve
is the time periods when there is an
event in force for the left pole, i.e the
skier is performing an stroking motion
and generates positive force.

Figure 2.17: A sample of the ve-
locity of the left pole in the second
axis. The red colored parts of the
curve is the time periods when there
is an event in force for the left pole,
i.e the skier is performing an stroking
motion and generates positive force.

Figure 2.18: A sample of the veloc-
ity of the left pole in the third axis.
The red colored parts of the curve
is the time periods when there is an
event in force for the left pole, i.e the
skier is performing an stroking motion
and generates positive force.
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2. Data Overview

Figure 2.19: A sample of the angle of
the left pole. The red colored parts of the
curve is the time periods when there is
an event in force for the left pole, i.e the
skier is performing an stroking motion and
generates positive force.

From figures 2.13 - 2.19 it becomes clear that each variable experiences the same be-
haviour when there is an event force, this knowledge will be the basis for construction
a function that identifies an event in force given the data from the sensors.

2.2.1 Identifying an event

Having a repeated pattern in the data for when the force is positive is useful for
constructing a detection algorithm to identify this time period. Some of the variables
in the data has a more clear pattern than others and these variables are the ones
that will be used in the algorithm. For instance, from figure 2.16 that display’s the
behaviour of w1L it clear that before an event in force this variable is experiencing
some kind of event by entering a valley. These patterns in the observed data can
be seen as events in those variables, and with the help of identifying events in those
variables the hope is to be able to identify events in force.
We will now take a closer look at the behaviour of the force when there is an event
in the variables w1L/R, a1L/R, a2L/R, a3L/R. It can be seen in figure 2.20 below
that during an event in w1L the curve in force is about to peak and is going back to
its baseline, i.e an event in w1L corresponds to capturing the end half of an event in
force.
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2. Data Overview

Figure 2.20: left figure: Identified event in w1L. Right figure: The corresponding
curve for force during the same time period.

Looking at the force curve during events in a1L and a2L, figure 2.22 and 2.23, the
time for the peak value of events in those two variables seems to be good indications
of the end of an event in force. Moreover, an event a3L, like w1L, also seems to
capture the second half of an event in force for the left pole. A stroking motion from
the skier has approximately the same duration for each motion, so if the start of an
event in w1L and a3L are shifted with an constant c, the idea is that this should be
a good indication of the start of the event in force for the left pole.

Figure 2.21: Left figure: Identified event in a3L. Right figure: The corresponding
curve for the force left during the event
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2. Data Overview

Figure 2.22: Left figure: Identified event in a1L where the red dot indicates the
peak of the event. Right figure: The corresponding curve for the force left during
the event where the red dot indicates the time of the peak value for the event in
a1L.

Figure 2.23: Left figure: Identified event in a2L where the red dot indicates the
peak of the event. Right figure: The corresponding curve for the force left during
the event where the red dot indicates the time of the peak value for the event in a2L

To my help to find events in these variables the function findpeaks [3] from the R-
library pracma was used. The function took as input the data, a threshold value
for what should be considered a peak and a minimum distance to the next peak. It
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2. Data Overview

returned the start time, end time, index of peak value and the peak value of each
event found.
Even though the data seems to be fairly regular, changes in the surroundings of the
skier makes it hard to set a global value for the threshold parameter that would
work over a longer period of time.
So instead of setting a global value for the threshold in the detection algorithm, the
data was fed in chunks to the algorithm where a sliding window was applied and in
each window the maximum value was returned. The input threshold value for the
data chunk was then set to a fraction of the minimum of all the max values returned
from applying the sliding window. This procedure assumes that the skier is skiing
at all times throughout the data chunk that was fed. Otherwise there is a possibility
of a window only containing data from when the skier was standing still, resulting
in the minimum max value being the baseline value or a unusually small value for
the variable, see figure 2.25.

So before identifying events in these variables, idle periods of the skier needs to
be removed. An idle period was assumed to be a period of over 2 minutes without
any stroking motion. To identify idle periods, a sliding window was applied over
the variable a2L of the data chunk and if the maximum value of the variable in the
window deviated enough from the global maximum of the data chunk then that in-
dicated that we had an period of when the skier was idle. a2L was the most obvious
variable where there was an active or idle period. Figure 2.24 illustrates a2L during
active period and an idle period, and it becomes clear when the idle period is.

Figure 2.24: Left figure: A sample
of a2L during active and idle period.
Right figure: The corresponding fL in
that time period. Its clear how there
is hardly any activity in a2L when
there is no force.

Figure 2.25: Left figure: A sample
of w1L during active and idle period.
Right figure: The corresponding fL in
that time period. w1L is not experi-
encing the same non-activity as a2L
when the skier is idle, see figure 2.24.

The parameter minimum distance between events for the function findpeaks was
easier to set as a global value since it is easy to set a lower bound for the time it
would physically would be possible to perform two stroke motions. After identifying
events in w1L/R, a1L/R, a2L/R, a3L/R, the start of an event in force for the left
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2. Data Overview

pole became a weighted average of the start of an event in w1L and a3L. With the
end of the event was set to the weighted average of the end of an event in w1L and
the peak for an event in a1L and a2L.
Algorithm 1 and 2 outlines how the the events in force was detected.

Algorithm 1 Pseudo-Algorithm for identifying idle periods
Input: Data chunk X
ω ∈ (0, 1)
Si := {Xi1 , ...,Xim}, i:th disjoint slice of X of size m
mi → Maximum of a2L in the i:th slice over X

1. Compute MX := Global max of a2L for data X

2. for slices Si do
compute mi

2.1 if mi < MX · ω then
find Istart := last occurrence of a2L ≥ MX · ω from the start of the slice up
until a2L is equal to mi.

Iend := first occurrence of a2L ≥ MX · ω from where a2L is equal to
mi up until the end of the slice.

Remove the interval [Istart, Iend] from Si
end
3. return X =

⋃
j

Sj
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Algorithm 2 Pseudo-Algorithm for identifying events in force
Input: Data chunk X
e
(x)
i → i:th identified event for variable x
S
(x)
i → Start time for the i:th event for variable x
E

(x)
i → End time for the i:th event for variable x

P
(x)
i → Peak time for the i:th event for variable x
D

(x)
i → Duration of the i:th event for variable x

αx ∈ (0, 1)
βx ∈ (0, 1)
θ → minimum duration of event

1. Remove any possible idle periods in X

2. Identify events e(w1L)1 , e
(w1L)
2 , ..., e

(w1L)
n in w1L and apply possible static shifts of the

start and end of each event. Do the same for the other variables a1L, a2L and a3L
related to the left pole.

3. for events i = 1,...,n do
S
(fL)
i = αw1L · S(w1L)

i + αa3L · S(a3L)
i

Set E(fL)
i = βw1L · E(w1L)

i + βa1L · P (a1L)
i + βa2L · P (a2L)

i

end
4. Identify events e(w1R)1 , e

(w1R)
2 , ..., e

(w1R)
m in w1R and the same for the other variables

a1R, a2R and a3R related to the right pole.

5. for events i = 1,...,m do
S
(fR)
i = αw1R · S(w1R)

i + αa3R · S(a3R)
i

Set E(fR)
i = βw1R · E(w1R)

i + βa1R · P (a1R)
i + βa2R · P (a2R)

i

end
Now if the algorithm found more events for one pole than the other, this needs to
be taken care off.

6. if n < m then
6.1 Identify which of the m events for the right pole was not identified for the
left pole {mk1 , ...,mkm}
for l ∈ {mk1 , ...,mkm} do

Set S(fL)
l = S

(fR)
l

and E(fL)
l = E

(fR)
l .

end
else if n > m then

6.2 Identify which of the n events for the left pole was not identified for the right
pole {nk1 , ..., nkn}
for l ∈ {nk1 , ..., nkn} do

Set S(fR)
l = S

(fL)
l

and E(fR)
l = E

(fL)
l .

end
At this point, N events has been detected. This last step is to make sure an event
is not unusually short.

7. for events i = 1,...,N do
compute

DfL
i = EfL

i − S
fL
i

DfR
i = EfR

i − S
fR
i

compute δi =
|D(fL)

i −D(fR)
i |

2

if DfL
i < θ and DfR

i > θ then
set E(fL)

i = E
(fL)
i + δi, S

(fL)
i = S

(fL)
i − δi

else if DfL
i > θ and DfR

i < θ then
set E(fL)

i = E
(fL)
i + δi, S

(fL)
i = S(fL)

i −δi
end
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Note that for both techniques, Double and Gear3, the skier is stroking with both
poles simultaneously making it possible to borrow information from events found
for one pole to the other pole, like done in step 6 and 7.

2.3 Feature engineering

Transforming the data from containing information about the force at all times to
only contain information of when somethings happens makes it convenient for the
features to be summaries of the variables during an event in force. Therefore, the
features in the training data will be summary statistics of each of the variables
during an event in force. There are many possible summary statistics to extract
from the data and I have narrowed it down to a subset that I felt would be sufficient
for the objective of this thesis.
In the upcoming sections the features selected to use together with which response
variable for the model are presented. A description of what information they contain,
how they are constructed and small overview of each of them summary statistics of
them are given.
Figure 2.26 is a schematic figure of the work flow for constructing the training data
that was used for the models.

Identify events in
w1L/R, a1L/R
a2L/R, a3L/R

Pool information
about start and
end of each event

Extract response
variable

Extract features
for each variable

Figure 2.26: Schematic figure of the workflow for creating the training data given
a data chunk X. Note that this workflow does not illustrate the initial step of
removing any possible idle period in X.

2.3.1 Response variable

The response variable for the model will have to summarise the whole event in force.
For each event in the data we have information about the force and the duration
of the event, therefore a natural way of summarising the force over time is by the
area under the curve. Calculating the area under the force vs time graph will result
in calculating the impulse, which also is equal to the change in momentum. This
quantity is a good summary of the force generated for each event and can be used
for comparing two events.

Most humans have a preferred hand, this often leads to one arm being slightly
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stronger than the other one. Moreover the arm coordination is usually also better in
the preferable hand. With this in mind, it’s probably not correct to assume that the
force for the left pole is equal to the force for the right pole during an event that is
performed simultaneously. In figure 2.27 we can see that there exists a discrepancy
between the two force curves in a smaller window of time.

Figure 2.27: The force generated by the left hand side pole and the corresponding
force from the right hand side pole during the same time period. From this small
sample the existence of a systematical discrepancy in the force generated from the
two poles is obvious.

Based on this information, there will be a need of create two separate models, one
for predicting the area under the curve of the left force and one for the right force.

2.3.2 features

The features that will be extracted from the data are presented in table 2.4 and
subsequently explained in a more descriptive way below.
Given the identified start and end time for an event in force, some of the variables
are more active before the start of an event or after an event. For example having
a look at the variable thL in figure 2.19, it is clear that the angle of the pole is as
active before the pole has hit the ground as well as after. Only summarising thL
during the event in force would not be fair and we would miss out on information.
Therefor it is of more interest to summarising the feature in the time period before
and during the event in force.
This could be seen for a few more variable, so static shifts of the start and end of
an event in force was made to better fit the active period of each variable.
Given these new time periods summary statistics for each of the variables will be
extracted.
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Summary statistic Number of features extracted
Area under curve 14
Min value 14
Max value 14
Peak distance to center 14
Altitude 1
Velocity 1
Duration 1
Style 1
uphill 1
speed 1

total = 62

Table 2.4: A small overview of the summary statistics that would be extracted for
each variable and be used as features for the models.

Area under curve
This feature will be extracted for each of the vector valued variables acceleration,
velocity and the two variables angle.

Peak distance to center:
This feature will provide information of how many time units the peak in a variable
is from the center of the identified event in force. The center of the identified event
in force is assumed to correspond to the peak of the force curve, so this feature is a
measure of distance in time units between the peaks. This feature will be extracted
for each velocity, acceleration and angle variables .

Min value & Max value
As their names are indicating, they will be the max and in value of each variable
in a given time period. The information gain these two could for example be if the
skier lifted the pole too high causing a bad technique on the stroke. This feature
will be extracted for each velocity, acceleration and angle variables .

Velocity:
This feature calculated as the maximum recorded velocity from the end an event up
until the start of the next event. The reason for being calculated between events is
because after a stroke is when the maximum velocity is achieved. If the event was
the last event detected in the data, velocity is the maximum over that last event.
Since the start and end of events for the two poles could differ a bit, the end of the
event and the start of the next upcoming event is set to maximize the window size.
This is no limitation since the speed variable does not experience large fluctuations
over a shorter period of time.

Duration:
This is the duration of the force event and is calculated as the mean duration of the
event for the left pole and the right pole.
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Style:
This feature will hold information about which technique that was used by the skier.
In the collecting of the data two techniques was used, Dubble stroking and Gear 3.
So this feature is a categorical feature with two levels double and gear3.

Uphill
This is a categorical feature with two levels that checks if the change in altitude
between two consecutive events is positive or negative. If the change in altitude is
positive then the skier is skiing upwards.

Speed
This is a categorical feature with 3 levels. low if velocity ∈ [0, 2.5) m/s, medium
if velocity ∈ [2.5, 5) m/s and high if velocity ∈ [5,∞) m/s.
The cutoff points for each level is very subjective and was selected after eyeballing
the velocity over time in the data.

In table 2.5 - 2.9 some descriptive stats of all the features in the data set is presented.
The values for the mean and standard deviation have been truncated to one decimal.

Feature Type Mean Std
AUC_thL Float 2316.2 422.2
AUC_thR Float 2517.2 352.3
AUC_w1L Float 55.9 8.8
AUC_w1R Float 55.3 8.9
AUC_w2L Float 35.0 9.8
AUC_w2R Float 59.3 11.7
AUC_w3L Float 17.7 8.5
AUC_w3R Float 14.5 6.9
AUC_a1L Float 185.5 66.4
AUC_a1R Float 123.5 35.3
AUC_a2L Float 222.0 88.5
AUC_a2R Float 251.7 82.7
AUC_a3L Float 358.8 111.5
AUC_a3R Float 419.4 127.7

Table 2.5: Overview of the features
area under the curve for the measured
variables

Feature Type Mean Std
peak_dist_thL Float -0.5 0.2
peak_dist_thR Float -0.6 0.2
peak_dist_w1L Float -0.1 0.08
peak_dist_w1R Float -0.1 0.06
peak_dist_w2L Float 0.3 0.1
peak_dist_w2R Float -0.1 0.3
peak_dist_w3L Float 0.4 0.3
peak_dist_w3R Float 0.3 0.2
peak_dist_a1L Float 0.0 0.2
peak_dist_a1R Float 0.2 0.2
peak_dist_a2L Float 0.0 0.2
peak_dist_a2R Float 0.0 0.2
peak_dist_a3L Float 0.0 0.3
peak_dist_a3R Float 0.0 0.2

Table 2.6: Overview of the feature
peak distance to center features for
the measured variables
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Feature Type Mean Std
MIN_thL Float 10.0 10.9
MIN_thR Float 13.5 10.7
MIN_w1L Float -0.1 0.7
MIN_w1R Float 0.1 0.7
MIN_w2L Float -4.0 1.3
MIN_w2R Float -2.3 0.7
MIN_w3L Float -0.6 0.5
MIN_w3R Float -1.1 0.5
MIN_a1L Float -29.9 10.5
MIN_a1R Float -9.3 3.6
MIN_a2L Float -52.2 17.7
MIN_a2R Float -60.2 16.6
MIN_a3L Float -47.2 16.1
MIN_a3R Float -54.4 16.9

Table 2.7: Overview of the features
min value for the measured variables

Feature Type Mean Std
MAX_thL Float 78.1 7.2
MAX_thR Float 83.4 4.8
MAX_w1L Float 3.9 0.7
MAX_w1R Float 3.8 0.6
MAX_w2L Float 2.1 1.0
MAX_w2R Float 6.3 1.8
MAX_w3L Float 1.3 0.4
MAx_w3R Float 1.2 0.4
MAX_a1L Float 8.2 4.4
MAX_a1R Float 12.2 5.0
MAX_a2L Float 16.7 8.6
MAX_a2R Float 14.6 7.7
MAX_a3L Float 12.9 7.8
MAX_a3R Float 14.9 9.6

Table 2.8: Overview of the max
value features for the measured vari-
ables

Feature Type Mean Std
velocity Float 4.8 1.1
Altitude Float 73.0 22.6
duration Integer 20.5 2.6
fL Float 1531.8 756.5
fR Float 1391.9 766.4

Table 2.9: Overview of the remain-
ing numerical features extracted

Feature Type levels proportion
style Categorical Double/Gear3 0.56/0.44
uphill Categorical Yes/No 0.49/0.51
speed Categorical low/medium/high 0.02/0.51/0.47

Table 2.10: Overview of the categor-
ical features extracted

2.4 Correlations

An overview of the correlations in the data set constructed is presented in figure 2.28.
Since the data collected consists of summarising similar information for both the
left and the right pole, it’s not very surprisingly that we can see strong correlations
between features extracted. Moreover, the features are constructed from summary
statistics that are closely related, so having groups of strong correlated features
can be expected. And we can in the figure see a few groups of strongly correlated
features.
From the figure 2.28 the block with the strongest correlations is between the some
of the Min value features and the two response variables. Further, there is a strong
negative correlation between the Min value features and the Max value features as
well.
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Figure 2.28: The correlation between variables in the data, including the two
response variables

2.5 Assumptions

In this section the assumptions that are used in the algorithm and the thesis are
shortly described and outlined.

More likely to miss events than finding ghost events:
Since skating involves using both poles simultaneous, if a event in force was identified
for one of the poles but not the other one, I have assumed that we have missed to
identify the event for the other pole. Consequently, the time period of the identified
event will be shared for the two poles meaning that there will be the same number
of events for both fL and fR.
The consequences of this assumption is that if we in fact did not have an event,
then we will add noise to the data in form of an observation where the force was
summarized during a time period when there was no positive force.
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Roller skating equivalent to skiing on snow
All the data used throughout this analysis is collected from skiers using roller skates
and skiing on the pavement, while the real application is for skiing on snow. The
difference in measurements from skiing with roller skates on pavement compared to
skiing on snow has not been investigated and is assumed to be zero.
The possible implications of this assumption is that the algorithm won’t work on
data from sessions on snow, but the methodology of how to identify events in force
and how to predict will still be the same. So this assumption is not seen to have
any limitations on the analysis.

Duration of events for the two poles are approximately equal
When finding events in the variables using the function findpeaks, there is a possibil-
ity that the function is not finding the correct start or end of the event due to noise
in the data. So to handle this scenario, if an event for one pole is unusually long or
short, information about the start and end of the event for the other pole is used to
correct this. This is also not an limitation in any way since for both techniques the
poles are used simultaneously.
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3
Theory review

This section is supposed to give a theoretical background of the models that has
been considered in order to achieve the aim of this thesis. The section is split into
several subsection to increase readability and interpretation.

To start off lets consider a the general setting that these models will work in, namely
supervised learning. The goal in supervised learning is given some input, x learn a
rule to predict the outcome y for unseen data in the future. This is done by finding
an approximation, f̂(x), of the function f(xj) = yj ∀j that underlies the predictive
relationship to the outcome.
The outcome could either be quantitative or qualitative, problems with quantita-
tive outcomes are usually refereed to as regression problems while problems with a
qualitative outcome is refereed to as classification problems.
It is called supervised since the data used in finding the approximation are already
observed input/outcome pairs (xj, yj).
The theory in the subsequent sections will only focus on the case when the outcome
is quantitative due to the relevance to the aim of this thesis.

3.1 Decision trees

Decision tree methods partitions the feature space into regions by recursively mak-
ing binary splits and models the response as a constant in each region. There are
several different tree methods but in this thesis I will focus on Classification and
Regression Trees (CART ), suggested by Breiman in [4].
Initially Breiman constructed two methodologies for constructing trees dependent
on the type of problem, regression or classification. This section will only deal with
the regression case but it should be noted that the construction of a tree in either
of the two cases are similar.

Let’s say that we have data (X, Y ), whereX consists of observations xi for i = 1, ..., n
and each xi ∈ Rp, and Y = {y1, ..., yn} where yi ∈ R, with the goal of constructing
a predictor f(X) to predict Y . Then a decision trees is constructed by partitioning
the feature space by a sequence of binary splits into terminal nodes. The response
in each terminal node t is then modeled as a constant value y(t).
Figure 3.1 illustrates a toy example borrowed from [6] of this procedure in a two-
dimensional case (X1, X2) with split-points ti ending up with 5 terminal nodes.
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Figure 3.1: Toy example of a 2-dimensional case of how a tree based predictor is
constructed. The figure is taken from [6]

To define the tree predictor, f(X), there are a few questions that needs to be an-
swered. How to select the best split in each intermediate step ?,When to stop splitting
a node ? and what to model the response as in each terminal node?.
To measure the accuracy of a predictor f in regression, the mean square error is
normally used and that is also the measurement suggested by Breiman in [4].
The mean square error R∗(f) of a predictor f is defined as

R∗(f) = E(Y − f(X))2

It can then be shown that the best predictor that minimizes R∗(f) is f(x) =
E(Y |X = x), i.e the conditional expectation of the response.

An estimate of R∗(f) is R(f) = 1
N

ΣN
i=1(yi − f(xi))

2 and then it is straight forward
to see that the best value of the constant y(t) in terminal node t that minimizes
R(f) is the average of yi in each node, i.e

y(t) =
1

Nt

∑
xi∈t

yi

Modeling y(t) as the average in each node t and using the notation R(T ) for the
mean square error we get that

R(T ) =
1

N

∑
t∈T̃

∑
xi∈t

(yi − y(t))2

The interpretation of the quantity
∑
xi∈t

(yi − y(t))2 is that it is the within node sum

of squares, and summing these quantities over all terminal nodes t yields the total
within sum of squares. Therefore the best value of the constant that models the
response in each node t is therefor y(t).

To find best split with the intent of minimizing R(T ) is usually computationally
infeasible since the tree is grown iterative. Instead a greedy algorithm that might
not find the optimal tree is used instead. Consider splitting X on feature j in
splitting point s into two partitions

P1(j, s) = {X|Xj ≤ s} P2(j, s) = {X|Xj > s}
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Then the goal is two find the feature j and the splitting point s that minimizes

min
j,s

[min
a1

∑
xi∈P1(j,s)

(yi − a1)2 + min
a2

∑
xi∈P2(j,s)

(yi − a2)2]

The inner minimization is solved for any pair of (j, s) by setting

a1 = y(P1(j, s)) a2 = y(P2(j, s))

For each feature, the best splitting point is easy to find therefore finding the best
pair (j, s) is computationally feasible.

Now the two of the three questions in defining a tree has been answered, the last
question when to stop splitting a node is not as easy to answer. The more splitting
of nodes should decrease the mean square error but the model would eventually
become to complex and not generalize so well for new unseen data.
So what was proposed was to first grow a very large tree Tmax until that for every
t ∈ T̃max, Nt ≤ Nmin or if all the values in the node are the same, Nmin usually is
taken as 5 [4].
Define a sub-tree T ⊂ Tmax to be any tree that could be obtained by collapsing the
internal nodes in Tmax.
Let

Nt = #{xi ∈ t}

y(t) =
1

Nt

∑
xi∈t

yi

Qt(T ) =
1

Nt

∑
xi∈t

(yi − y(t))2

Next define the cost complex criteria as

Cα(T ) =
∑
t∈T̃

NtQt(T ) + α|T̃ |

Now for each value of α, the idea is to find the sub-tree Tα ⊂ Tmax that minimizes
Cα(T ). The tuning parameter α controls the trade-off between goodness of fit and
model complexity. To find the value for α, it suggested in [6] to use 10-fold cross-
validation and select the value α̂ that minimizes the cross-validation sum of squares.

3.2 Random forest

Regression trees are known for having a high variance and small changes in the input
data could lead to a totaly different tree model, a technique to reduce the variance
is by using bagging. The main idea in bagging is to fit many trees to bootstrap
samples of the data and average the predictions of all these models to obtain the
final prediction. Trees are ideal to use in a bagging scheme since the have relative
low bias and are able to capture complex structures in the data when grown deep
[5].
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Bagging involves repeatedly drawing a sample Z with replacement from the training
data X and fit a tree fb to the data where b = 1, ..., B. Predictions for unseen data
is then given by averaging the predictions of each tree, where every tree contributes
equally to the final prediction, i.e f̂B(x) = 1

B

∑B
b=1 fb(x).

The sub samples are likely to contain about 63% of each observations in the sample
refereed to as in-bag samples while the rest 37% as refereed to as out-of-bag samples
(oob) [7]. Sampling with replacement and fitting trees to each sample yields fitting
a models to partially overlapping subsets of the data yielding the models not being
uncorrelated. This causes a problem when averaging since the variance of B i.i.d
random variables all with variance σ2 is equal to 1

B
σ2. Now if the variables are only

i.d (identically distributed) but not necessarily independent with positive pairwise
correlation ρ, the variance of the averaging instead becomes ρσ2 + 1−ρ

B
σ2. It’s clear

that the second term goes to 0 as B increases while the first term remains.

To keep the accuracy of the ensemble model but reduce the correlation between
the trees, Breiman introduced the Random Forest in [5], where a second step in
the fitting of a tree was incorporated. Instead of a tree considering all p features
as candidates in each split, only a sub sample of the features should be considered.
More specifically before each split m ≤ p input features are randomly sampled as
candidates for splitting, typical value for m = p/3 [5].
Let Θk characterize the k:th tree trained this way in terms of splitting variables,
cut-points at each node and terminal node values, then a prediction for unseen data
x is obtained from f̂B(x) = 1

B

∑B
b=1 fb(x; Θb).

Decreasing the number of candidate features in each split will reduce the correlation
between trees, also each tree in the forest are neither pruned to further reduce the
correlation between trees.

3.2.1 Variable Importance

Using a sub sampling scheme like bagging provides unseen data for each tree that
can be used to provide further insights via error estimates and more. For example,
the out-of-bag-samples for a tree could be used to estimate the error-term and
then averaging over all these estimates to obtain an estimate of the error for the
model. This estimate is similar to the estimate when using cross-validation with the
difference that in Random Forest the estimate is unbiased [5]. The oob-sample could
also be used for quantifying the predictive strength of each feature, this measurement
is called variable importance and will be shortly reviewed in this section.
The variable importance for feature j is calculated in the following way. After the
b : th tree is grown, the oob-samples are passed down the tree and the oob-error is
computed. Then the values of the j : th features is permuted in the oob-sample and
the sample is fed to the model again and the oob-error is computed once again. The
difference between the original oob-error term and the one for the permuted sample
averaged over all trees, normalized by the standard deviation of the differences, is a
measure of the predictive strength of feature j.
In other words variable importance works under the assumption that if a feature is
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important, permutation of the values should have a larger effect on the oob-error
estimate while a lower difference is related to weaker predictive strength.
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4
Study design

In this section of the thesis, 3 different designs of trying to predict the force are
presented. The models considered are all static, meaning that they are trained on
available data and as new data arrives it predicts the outcome of each new event.
The results from the investigations of the designs can be found in the section 5.
As an evaluation of the accuracy from the models fitted for the regression problem
in this thesis, R2 is considered as well as the residual mean square error. More
emphasis will be put on the R2 since the residual mean square error will usually
be very large due the magnitude of the response values, see table 2.9. For the
classification models, the accuracy will be used as evaluation metric of performance.
Before a model was fitted to the training data the hyperparameter mtry for the
random forest method was tuned using K-fold cross-validation and a random search
for the best value. The choice ofK differed between models depending on the sample
size of the training data. Moreover, as a metric of evaluating the accuracy in the
tuning, R2 is used to obtain the best value for the hyperparameter.
Random forest also has another parameter that could be tuned namely the ntree
parameter that controls the number or trees in the forest. This parameter has less
effect on the results but a larger value is recommended to obtain a more stable
model and also better results on the variable importance measures. A larger value
will however increase the computational time for fitting the model, but since the
training data isn’t huge this parameter was not tuned and set to 2000.

4.1 Design 1

The complete data that was used in this thesis came from two different skiing ses-
sions, so the settings for the models in this design is that the training data and the
test data will be from different sessions. I.e a model will be tuned and fitted to the
data from the session in sätila and tested on the session in the city, and conversely
tuned and fitted on the session in the city and tested on the session in sätila.
The idea in this design is that a new customer of Skisens product could come in and
ski a test session with the handles that measures the force to produce a training set,
a model is then fitted to the training data and the customer could go home with a
pair of handles that predicts the force instead of measuring it.
One cautionary remark with this design is that the sample sizes between the two
sessions differs significantly. For the session in Sätila there is approximately 2000
events and for the session in City there is sligthly above 500 events for training.
A direct implication of the sample size of the session in City is that the number
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of folds when performing tuning will be set to 5. While when a model is fitted to
the data from Sätila the number of folds will be set to 10 instead. Moreover, the
number of values tried for the parameter mtry will be set to 10 in both cases. Table
4.1 outlines the different models that will be trained using this design.

Model response data used for training
M1,1 fL Sätila
M1,2 fR Sätila
M1,3 fL City
M1,4 fR City

Table 4.1: An overview of the models that will be trained using this design.

4.2 Design 2

In this design, I will no longer distinguish between the data from the two sessions.
Instead, via subsampling the data will be split into a training set, Xtrain, and a test
set, Xtest. On the training set an initial random forest model will be fitted with the
task of predicting the style that was used during an event.
Then the training data will thereafter be partitioned based on the style and subse-
quently random forest models will be fitted to predict the force for both poles on
each of the partitions. The two partitions are about the same size and large enough,
therefor in parameter tuning via cross-validation the fold size was set to 10. As for
the previous approach, prediction R2 and RMSE will be used as evaluation metric
for selecting the best value on mtry.
Since discrepancies in the features and the response variables can be seen when con-
ditioned on style, Appendix A figures A.8 - A.13, the hope is having specific models
for each style and pole results in better predictions.
As a result, in this approach there will be a total of 5 models, that are outlined in
table 4.2 below.

Model Task response data used for training
M2,1 Classification style Xtrain

M2,2 Regression fL Xtrain|style=Double

M2,3 Regression fR Xtrain|style=Double

M2,4 Regression fL Xtrain|style=Gear3

M2,5 Regression fR Xtrain|style=Gear3

Table 4.2: An overview of the models that will be trained using design2 together
with their task and what data was used for fitting the model.

When all the models have been fitted to its respective data and its time to predict
the force for the two poles. For each observation in the test data, the style will first
be predicted and based on the outcome of that prediction a model will be selected to
predict the force generated. Figure 4.1 is a schematic figure of how the predictions
is made in this approach.
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Input Xtest

Predict style

Models for double Models for Gear3

Predict force Predict force Predict force Predict force

doub
le Gear3

left
right lef

t right

Figure 4.1: Schematic figure of how predictions are obtained for force left an force
right in design 2.

4.3 Design 3

The third and last design investigated in this thesis was to incorporate the two
previous ideas into one single design. Besides from training on data from one session
and trying to predict the outcomes for the another session, the models will also
be style specific. I.e their will be two models for predicting the force for the left
pole depending on the style used during the event. In design 2, I tried to train
a classification model with the task of classifying the style use. That model was
trained on a sufficiently large training data, but in this design the City session in
quite small in sample size. So for not to have faulty classifications affect the end
result in this design, the previous model will be used in the initial classification step
of predicting new data.
As a result a total of 8 models will be trained and evaluated in this design. In table
4.3 there is an overview of the models and their task in this design.

Model Task response data used for training
M3,1 Regression fL XSatila|style=Double

M3,2 Regression fR XSatila|style=Double

M3,3 Regression fL XSatila|style=Gear3

M3,4 Regression fR XSatila|style=Gear3

M3,5 Regression fL XCity|style=Double

M3,6 Regression fR XCity|style=Double

M3,7 Regression fL XCity|style=Gear3

M3,8 Regression fR XCity|style=Gear3

Table 4.3: An overview of the models that will be trained using design 3 together
with their task and what data was used for fitting the model.

As mentioned in the description of design 1, the data set from the session in City
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is not very large, and in this design we are partitioning that data based on style
yielding an even smaller sample size’s for the models to train on.

36



5

Results

In this section the results from all the models considered in the thesis is presented.
The results are presented with figures and tables that are considered to be relevant
for the aim outlined in section 1. Moreover all the models are outlined and described
in section 4. For starters the results from the parameter tuning for each model is
presented followed by the performance of the models for each design. Lastly, which
features are the most important for predictions are evaluated with the variable
importance measures from each model.

5.1 Parameter tuning

As described in section 4 the parameter tuning was made using the R function train
that is available in the library Caret. The parameter to tune is mtry and it was
conducted using cross-validation where the number of folds differs between models
due to the sample size of the training data in hand. Moreover, as mentioned with
the models being static and the run time is not a concern, the parameter ntree is
not tuned and set to 2000.
The evaluation metric for selecting the best value of mtry was a combination of
both RMSE and R2, but only the results of R2 will be presented in the tables since
that metric was subjectively of most interest. Since for each value value of mtry
we are performing K-fold cross-validation, we will get K estimates of R2. This
allows for estimating the error, σ̂, of the point estimate of R2 and this quantity is
also presented in the tables below. Lastly, the different values of mtry are sampled
uniformly between 1 and the dimension of the input feature space.
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5.1.1 Result of tuning for the models in design 1

mtry R2 σ̂
1 0.852 0.019
5 0.884 0.032
10 0.889 0.033
14 0.890 0.034
19 0.891 0.034
28 0.892 0.033
29 0.891 0.034
36 0.890 0.035
43 0.889 0.035
56 0.887 0.036

mtry R2 σ̂
2 0.869 0.044
13 0.887 0.043
14 0.885 0.044
18 0.886 0.041
19 0.886 0.041
29 0.886 0.039
39 0.886 0.035
42 0.885 0.035
58 0.885 0.030

Table 5.1: The results of tuning the parameter mtry, the first column contains the
values tested. The following two columns contains the R2 value and the standard
deviation of the estimate. The models was fitted to the data from the City session
and the left figure is the outcome from having fL as response variable and the right
figure is for the model having fR as respons. Cross-validation was used as method
of tuning with effective sample size of 519 therefor the number of folds was set to 5.

mtry R2 σ̂
1 0.801 0.016
25 0.855 0.014
31 0.854 0.016
42 0.849 0.017
44 0.850 0.017
55 0.846 0.019
56 0.845 0.017
59 0.846 0.017
62 0.847 0.017

mtry R2 σ̂
1 0.805 0.022
4 0.844 0.016
8 0.852 0.014
16 0.855 0.012
44 0.855 0.013
21 0.851 0.014
46 0.850 0.013
54 0.849 0.013
58 0.849 0.015

Table 5.2: The results of tuning the parameter mtry, the first column contains the
values tested. The following two columns contains the R2 value and the standard
deviation of the estimate. The models was fitted to the data from the Sätila session
and the left figure is the outcome from having fL as response variable and the right
figure is for the model having fR as response. Cross-validation was used as method
of tuning with effective sample size of 2074 therefor the number of folds was set to
10.

Table 5.1 and 5.2 displays the results of the tuning done on each respectively data
set. The results are similar to each other with mtry not being so influential to the
fit of the model. Only for very low values mtry could there be seen a little drop
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in the fit. With many of the features being closely related and highly correlated is
not very surprisingly that there wouldn’t be a large discrepancy between lower and
higher values of mtry.

5.1.2 Result of tuning for the models in design 2

mtry R2 σ̂
9 0.908 0.023
10 0.908 0.024
19 0.912 0.022
20 0.911 0.023
21 0.910 0.023
23 0.910 0.024
33 0.911 0.025
40 0.911 0.024
44 0.912 0.025
50 0.911 0.025

mtry R2 σ̂
2 0.767 0.036
8 0.792 0.041
17 0.792 0.052
22 0.790 0.050
33 0.785 0.056
39 0.782 0.060
47 0.783 0.062
49 0.781 0.061
55 0.781 0.063
61 0.777 0.064

Table 5.3: The results of tuning the parameter mtry, in the first column contains
the values tested. The following two columns contains the R2 value and the standard
deviation of the estimate. Both models had fL as response variable where the results
in the left table are from the model trained with data from the style Double. The
right table contains the results from the model trained on data from the style Gear3.
The effective sample sizes where 1098 and 846 respectively K in cross-validation was
set to 10.
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mtry R2 σ̂
2 0.851 0.026
8 0.873 0.019
13 0.875 0.017
14 0.875 0.016
19 0.875 0.015
35 0.874 0.014
36 0.874 0.013
37 0.874 0.015
38 0.873 0.013
42 0.872 0.014

mtry R2 σ̂
2 0.801 0.042
14 0.834 0.030
30 0.834 0.030
33 0.833 0.028
38 0.832 0.028
55 0.828 0.028
57 0.827 0.027
60 0.826 0.027
61 0.826 0.028

Table 5.4: The results of tuning the parameter mtry, in the first column contains
the values tested. The following two columns contains the R2 value and the standard
deviation of the estimate. Both models had fR as response variable where the results
in the left table are from the model trained with data from the style Double. The
right table contains the results from the model trained on data from the style Gear3.
The effective sample sizes where 1098 and 846 respectively K in cross-validation was
set to 10.

mtry Accuracy σ̂
9 0.987 0.007
19 0.984 0.008
25 0.983 0.008
30 0.982 0.008
41 0.980 0.008
43 0.982 0.008
46 0.980 0.008
51 0.980 0.008
56 0.980 0.007
57 0.980 0.008

Table 5.5: The results of tuning the parameter mtry, in the first column contains
the values tested. The following two columns contains the Accuracy and the stan-
dard deviation of the estimate. The task of this model was to predict the style used
during an event. It is clear that mtry is not influential to the fit of the model.

From figure 5.3 and 5.4 it is clear that the models perform about the same as long
as the value of mtry is not to low. When the parameter value there was a drop
in performance. A slight discrepancy between the models in predicting fL and fR,
where the model for predicting fL achieves the best results.

The results from performing tuning on the models in design 3 are not present in this
section of the thesis due to the similarities in results to the models in design 1 and
2. Where the value of mtry did not have a huge effect on the fit of the models.
Instead those results could be found in Appendix A at the end of this thesis.
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As mentioned in the theory review, section 3, a way to reduce the correlation between
the trees and consequently the variance in the prediction was to select a lower value
of mtry. So models was trained using one of its respective lowest tested value of
mtry where the R2 value still was high.

5.2 Performance of models

5.2.1 Performance of the models in design 1

Training data response R2

sätila fL 0.787
Sätila fR 0.759
City fL 0.639
City fR 0.692

Table 5.6: The results of the performance for the models trained in design. In
design 1 a model was trained on data from one session only to predict the outcome
from another session. When there is more training data available, i.e sätila session,
the models are able to perform a little bit better.

There seems not be be any larger difference between predicting left force or right
force. Both those models are achieving almost the same result. The models trained
on the data from the session Sätila are performing a bit better than the models
trained on City. This is probably due to the fact that the sample size in Sätila is
larger which helps to predictive relationship.

5.2.2 Performance of the models in design 2

predicted \real double Gear3 %
double 354 2
Gear3 1 292

99.54

Table 5.7: Confusion matrix for predicting the style used in the test set.

The model for predicting the style used by the skier is performing very well with an
accuracy of over 99%. This model is key for predicting the force in this design, so
these results are very satisfactory.
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Style response R2

Double fL 0.875
Gear3 fL 0.767
Double fR 0.808
Gear3 fR 0.796

Table 5.8: The results of the evaluation metrics for the models trained in design
2. The overall R2 when predicting fL came out at 0.828 and for predicting fR was
0.815

Compared to the models in design 1 there was a slight increase in performance from
the models in this design. The model for predicting fL that was trained on the data
from the style Double is performing very well. Both models trained on data from
the style Gear3 seems to perform worse than for the style Double.

5.2.3 Performance of the models in design 3

Training data Style response R2

Sätila Double fL 0.822
Sätila Gear3 fL 0.610
Sätila Double fR 0.758
Sätila Gear3 fR 0.606
City Double fL 0.663
City Gear3 fL 0.424
City Double fR -0.446
City Gear3 fR 0.478

Table 5.9: The results of the evaluation metrics for the models trained in design 3.
Only two of the models seemed to perform fairly well, all the other models performed
worse than in previous designs. Note that the model for predicting fR trained on
the Double data from the City session has a negative R2. The model seems to have
induced a huge bias making predictions lousy.

The models in design 3 are not performing so well, it is most obvious looking at the
models trained on the City data. One reason for it being like this is that the sample
sizes of the training sets are so small and no model is able to accurately find the
predictive relationship between the features and the response variables.

5.3 Feature importance

There where many models trained throughout the investigation performed and in
this section we will have a look at which features where important in predicting the
force for each of the models.
For each of the models, the 5 most influential features will be listed and compared
between models and response variables. Table 5.10 displays the most influential
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features for the models with the task of predicting fL and 5.11 is the corresponding
table for the models with the response fR. The model abbreviations used in these
two tables are described in section 4 under each of the designs, next the each model
abbreviation the individual ranking of the importance of the feature for that model
is displayed.

MAX_a3R MAX_a3L MAX_a1L MIN_a3R MIN_thR MIN_a3L AUC_w1R peak_dist_a3L duration Altitude velocity
M1,1 (1) M1,1 (2) M1,1 (3) M1,1 (4) M1,1 (5)
M1,3 (4) M1,3 (1) M1,3 (5) M1,3 (3) M1,3 (2)
M2,2 (3) M2,2 (1) M2,2 (2) M2,2 (4) M2,2 (5)
M2,4 (1) M2,4 (3) M2,4 (2) M2,4 (4) M2,4 (5)
M3,1 (3) M3,1 (1) M3,1 (4) M3,1 (5) M3,1 (2)
M3,3 (1) M3,3 (3) M3,3 (2) M3,3 (4) M3,3 (5)

M3,5 (1) M3,5 (2) M3,5 (4) M3,5 (3) M3,5 (5)
M3,7 (1) M3,7 (3) M3,7 (2) M3,7 (5) M3,7 (4)

Table 5.10: The table displays the top 5 features for each model trained through-
out this thesis with the task of predicting fL. The model abbreviation and feature
abbreviations are described in section 4 and 2 respectively. The table does not give
any indication on the magnitude of the importance for each model but their ranking
within each model is presented next to each model abbreviation. Noticeable is that
even though the models are supposed to predict fL many of the features are related
to the right pole of the skier.

MAX_a3R MAX_a3L MAX_a1L MIN_a3R MIN_a3L MIN_w3L AUC_w1R AUC_w3L AUC_a1R peak_dist_w1R peak_dist_a2R altitude velocity
M1,2 (1) M1,2 (5) M1,2 (4) M1,2 (3) M1,2 (2)
M1,4 (1) M1,4 (3) M1,4 (5) M1,4 (4) M1,4 (2)
M2,3 (1) M2,3 (5) M2,3 (4) M2,3 (2) M2,3 (3)
M2,5 (1) M2,5 (4) M2,5 (5) M2,5 (2) M2,5 (3)
M3,2 (1) M3,2 (4) M3,2 (3) M3,2 (5) M3,2 (2)
M3,4 (1) M3,4 (3) M3,4 (5) M3,4 (2) M3,4 (4)
M3,6 (1) M3,6 (3) M3,6 (2) M3,6 (5) M3,6 (4)
M3,8 (1) M3,8 (4) M3,8 (3) M3,8 (5) M3,8 (2)

Table 5.11: The table displays the top 5 features for each model trained throughout
this thesis with the task of predicting fR. The model and feature abbreviations are
described in section 4 and 2 respectively. The table does not give any indication
on the magnitude of the importance for each model but their individual ranking is
displayed next to each model abbreviation. As in table 5.10 it is noticeable that
even though the models are supposed to predict fR many of the features are related
to the left pole of the skier.

From the two tables with the variable importance results from the models trained
it seems that many of the same features are important for predicting either fL or
fR. For most models MAX_a3R, MAX_a3L and AUC_w1R seems to be important, even
though the magnitude and of the importance of the features is not displayed in the
tables, from their ranking it is obvious that MAX_a3R is important for predicting
either fL or fR.
It is also a little interesting that features related to the pole on one side is important
for predicting the force generated from the pole on the other side. One reason for it
being this way could be that even though the sensors are mounted on different poles
making the measurements independent in that sense, the motion of the a pole is
dependent on the motion of the opposite side pole. For example, in the style Double
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where the two poles are supposed to follow the same movement. So in the stroking
motion, if the right hand side pole is raised to a certain height the left side pole will
approximately be raised to the same height.
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The goal with this thesis was to try to predict the force generated by the skier when
performing cross-country skiing. Being able to accurately predict the force gener-
ated will help the company Skisens in their strive of incorporating new methods
for evidence based training for cross-country skiing. The result would be methods
where performance could be comparable between sessions without outside factors
influencing the results.
At my disposal, I had data collected by Skisens from two sessions where each mea-
surement was recorded every 0.2s. Predicting the force at that granular level seemed
superfluous since the force is non-present except for when a stroking motion is per-
formed and the poles hits the ground. So, the methodology I chose to work with
was to view each stroke as an event of some kind and then try to summarize the
force generated throughout that event.
An unsupervised algorithm for detecting these events was created by trial and error
which also was tuned in an ad hoc manner for the data from the two sessions, with
the hope that the algorithm would work for unseen data.
As an event was detected the variables in the data was summarized into several
features that was thought to contain the necessary information to be able to predict
the force during an event.

Random forest was the only method used for building the predictive models in
this thesis. One reason for that is that the features extracted from the data where
highly correlated and where some methods breaks down from having correlated fea-
tures, Random forest does not break down from the features being correlated. Also
utilizing the strength of an ensemble of predictors was preferable given that there
might be many outside factors affecting the response variable yielding that the re-
lationship between the features and the response being hard to capture. Moreover,
as is mentioned in Future work with the existence of a nice extension of Random
forest in an online setting available, solidified the reason for going with tree based
ensemble models.

A few different designs of models for predicting the force was tried in this thesis.
Each of the designs had in mind how Skisens could build sufficient models for new
customers of their product. For example, in design 1 the idea was to see if a model
trained on the data from one session could predict the outcome of the response from
another session. That way, a new costumer could initially do a training session using
the handles where force is measured to create enough data for the model to pick up
the signal, and afterwards use handles where a model predicts the force in future
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sessions. Similarly, the key idea in design 2 was to see if having separate models for
each technique used could enhance the predictive performance of the models.
The results was that having separate models for each technique improved the per-
formance compared to the results in design 1, where the results was not very sat-
isfactory. I would say that it is hard to evaluate the results in design 1 in a fair
way because the two session are quite different. In one session the skier is skiing in
Gothenburg city on the streets while the other session is around a lake close to the
more calmer place Sätila. The terrain in the second session also allowed for longer
sections of uninterrupted skating. Moreover, I would also consider the unbalance in
sample sizes a problem for achieving great results with this design.
The last and third design is meant to be a mixture of the two first designs, with
fairly good results in performance from design 2 the idea was to investigate if the
I could improve the performance compared to design 1. In this design, the limited
samples at hand was a huge pitfall for the models, in the City session a total of
519 events was detected and used for creating the training data. These 519 events
was then partitioned into two partitions based on the technique used yielding even
smaller sample size’s for the models to train on.
Only one model in this design preformed well, and that was the model trained on
data from the Sätila session with the task of predicting fL for the technique Double.
This small result makes me hopeful that if more data was available, the models in
this design would perform well.
As a proof of concept investigation, I would say that even though that the results
are not fantastic, there is a slight indication in design 2 that it would be possible of
predicting the force accurately.

6.1 Future work

One of the problems encountered throughout this thesis was the lack of more data
and more diverse data. With more data at hand the models would have an easier
time to pick up the predictive signal. However, there are a lot of factors influencing
the skier that is not measured, so it would be beneficial to have more data where
the surroundings differs. It would also be interesting to investigate if there is a need
for having a personalized model, i.e would a model trained on the data from one
skier be able to accurately predict the outcome from another skier?

A lot of work was put into detecting events, In the construction of the training
data there is one simplification made that could have a larger effect on the results.
That was that once an event in force was identified we had the start time and end
time of that event, call those two time periods t1 and t2. Given the interval [t1, t2]
information about the other variables was extracted. For some variables the interval
needed to be shifted in order to overlap with something happening in the variable.
Constant shifts was applied to the variables that it was found needed for, for exam-
ple for the variable thL the interval as shifted to [t1 − c, t2], for some value of c ,
since half of work in thL is conducted before an even in force.
The downfall with this is that if t1 isn’t corresponding to the start of an event in
force but rather a few time steps before the start, then t1− c will neither correspond
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to the start of work in thL yielding that we would add noise into the features con-
structed from thL. A better way would to from the interval [t1− c, t2] use a function
to identify an even in thL. This would limit the amount of uninformative data added
into the construction of the features.
Further, the features for the training data could and probably should be extended
and overview by someone with more insights in cross-country skiing than me. The
features constructed in this thesis seemed logical from a physical point of view, but
since I have never cross-country skied there are probably many aspects in the data
that I am missing.

When transforming the data to contain events instead of records measured each 0.2
second, we lose a bit of information that could be useful. Since the skier is human
it is natural that he/she is not able to perform with the same intensity over a long
time making the measurements time dependent. It would be good to incorporate
this dependency in the model in order to increase the accuracy of the predictions.
When I got the data, the data was partitioned into several csv-files where the time
was local to each file. And without the possibility of knowing in which order the
data was collected made it almost impossibly to model this time dependency. With
the events there is still information about time since we know in which order the
events occurred, but what makes it hard to model the time dependency is that the
time lives in a different scale and would still only be local to each file. So as part
of the next step in this investigation, I propose that the time should not be local to
each file for the possibility to include this dependency in the model.

Lastly, as mentioned before Random forest has an extension to an online learn-
ing scheme where the data arrives to the model in a stream and the model is able
to replace bad performing learners and update it self on the fly. I think that this
kind of model would be able to perform much better due to the possible changes in
surroundings for the skier. A models like this would be more locally anchored be
able to adjust to changes, while the models trained in this thesis are more globally
anchored and are assumed to work over time.
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Appendix

A.1 Right side variables when positive force

Figure A.1: Acceleration of the
right pole in the first axis, the red
parts of the line is when we have a
positive force.

Figure A.2: Acceleration of the
right pole in the second axis, the red
parts of the line is when we have a
positive force.

Figure A.3: Acceleration of the
right pole in the third axis, the red
parts of the line is when we have a
positive force.

Figure A.4: Velocity of the right
pole in the first axis, the red parts of
the line is when we have a positive
force.

I



A. Appendix

Figure A.5: Velocity of the right
pole in the second axis, the red parts
of the line is when we have a positive
force.

Figure A.6: Velocity of the right
pole in the third axis, the red parts
of the line is when we have a positive
force.

Figure A.7: Angle of the right pole, the
red parts of the line is when we have a
positive force.
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A.2 Distribution of a few features conditioned of
style

Figure A.8: Empirical distribution
of the feature area under curve of a1L

Figure A.9: Empirical distribution
of the feature area under curve of a3R.

Figure A.10: Empirical distribution
of the feature max a2R

Figure A.11: Empirical distribution
of the feature max w1L
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Figure A.12: Empirical distribu-
tion of the response variable force left
when conditioned on style

Figure A.13: Empirical distribution
of the response variable force right
when conditioned on style

A.3 Result of tuning for the models in design 3

mtry R2 σ̂
2 0.934 0.007
4 0.935 0.008
5 0.937 0.009
6 0.937 0.009
8 0.938 0.010
25 0.934 0.015
30 0.933 0.017
38 0.930 0.020
60 0.924 0.029
61 0.924 0.029

mtry R2 σ̂
15 0.708 0.056
17 0.707 0.058
23 0.694 0.065
26 0.692 0.063
29 0.688 0.065
35 0.677 0.066
36 0.678 0.069
46 0.667 0.072
55 0.662 0.073
60 0.662 0.071

Table A.1: The results of tuning the parameter mtry, the first column contains the
value tested. The following two columns contains the prediction R2 value and the
standard deviation. The models was trained on data from the Ciry session, where
the left table is for the style Double and the right table corresponds to the style
Gear3. Both models had fL as response variable. The sample sizes for fitting the
models where 338 and 181 respectively.
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mtry R2 σ̂
29 0.928 0.005
33 0.927 0.005
39 0.925 0.006
43 0.925 0.005
48 0.924 0.007
49 0.924 0.007
53 0.923 0.007
54 0.923 0.007
55 0.923 0.007
58 0.922 0.007

mtry R2 σ̂
7 0.722 0.076
18 0.719 0.091
21 0.718 0.091
27 0.712 0.097
32 0.710 0.101
33 0.710 0.097
35 0.703 0.106
38 0.707 0.101
53 0.694 0.111

Table A.2: The results of tuning the parameter mtry, the first column contains
the value tested. The following two columns contains the R2 value and the standard
deviation. The models was trained on data from the Ciry session, where the left
table is for the style Double and the right table corresponds to the style Gear3. Both
models had fR as response variable. The sample sizes for fitting the models where
338 and 181 respectively.

mtry R2 σ̂
34 0.876 0.030
40 0.876 0.030
44 0.875 0.031
46 0.875 0.031
49 0.874 0.031
50 0.875 0.031
53 0.873 0.031
58 0.873 0.032
61 0.873 0.032

mtry R2 σ̂
1 0.786 0.040
6 0.829 0.031
23 0.833 0.031
24 0.832 0.030
28 0.832 0.030
31 0.830 0.032
42 0.828 0.032
53 0.826 0.033
59 0.825 0.033

Table A.3: The results of tuning the parameter mtry, the first column contains
the value tested. The following two columns contains the R2 value and the standard
deviation. The models was trained on data from the Sätila session, where the left
table is for the style Double and the right table corresponds to the style Gear3. Both
models had fL as response variable. The sample sizes for fitting the models where
1115 and 959 respectively.
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mtry R2 σ̂
3 0.798 0.042
7 0.812 0.040
8 0.812 0.039
9 0.814 0.040
25 0.813 0.039
36 0.809 0.040
46 0.808 0.040
56 0.807 0.040
60 0.807 0.040

mtry R2 σ̂
1 0.815 0.029
4 0.852 0.026
9 0.864 0.025
36 0.869 0.025
41 0.868 0.026
44 0.868 0.026
55 0.867 0.027
60 0.8685 0.029
61 0.864 0.028

Table A.4: The results of tuning the parameter mtry, the first column contains
the value tested. The following two columns contains the R2 value and the standard
deviation. The models was trained on data from the Ciry session, where the left
table is for the style Double and the right table corresponds to the style Gear3. Both
models had fR as response variable. The sample sizes for fitting the models where
1115 and 959 respectively.

A.4 Diagnostic plots

A.4.1 Models design 1

Figure A.14: Left: The residuals vs the true outcome from the model trained
on the events from the sätila session with the task of predicting the force from the
left pole. Right: The residuals vs the true outcome from the model trained on the
events from the sätila session with the task of predicting the force from the right
pole. Both figures shows that there is a trend in the residuals that the model is
over estimating the force for low values of the true outcome and underestimating
the force for larger values.
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Figure A.15: Left: The residuals vs the true outcome from the model trained on
the events from the City session with the task of predicting the force from the left
pole. Right: The residuals vs the true outcome from the model trained on the events
from the City session with the task of predicting the force from the right pole. Both
figures shows that there is a trend in the residuals that the model is over estimating
the force for low values of the true outcome and underestimating the force for larger
values.

A.4.2 Models design 2

Figure A.16: Left: The residuals vs the true outcome from the model trained
on events when the style Double was used with the task of predicting the force for
the left pole. Right: The residuals vs the true outcome from the model trained on
events when the style Double was used with the task of predicting the force for the
right pole. Looking at the figures, it becomes clear that the model for predicting
the left force is achieving better results, which also was shown in the table 5.8. The
model for predicting the force from the right pole is over estimating the force for
low values while for larger values it is both under and over estimating the force.
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Figure A.17: Left: The residuals vs the true outcome from the model trained on
events when the style Gear3 was used with the task of predicting the force for the
left pole. Right: The residuals vs the true outcome from the model trained on events
when the style Gear3 was used with the task of predicting the force for the right
pole. As in the previous figures in this section, the models seems to overestimate
the force for lower values and underestimating the force for larger values.

A.4.3 Models design 3

Figure A.18: Residuals vs true force for the left pole. Left figure is the model with
trained on events from the Sätila session when the style Double was used. Right
figure is the model with trained on events from the Sätila session when the style
Gear3 was used.
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Figure A.19: Residuals vs true force for the right pole. Left figure is the model
with trained on events from the Sätila session when the style Double was used.
Right figure is the model with trained on events from the Sätila session when the
style Gear3 was used.

Figure A.20: Residuals vs true force for the left pole. Left figure is the model with
trained on events from the City session when the style Double was used. Right figure
is the model with trained on events from the City session when the style Gear3 was
used.
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Figure A.21: Residuals vs true force for the right pole. Left figure is the model
with trained on events from the City session when the style Double was used. Right
figure is the model with trained on events from the City session when the style Gear3
was used.

X


	Introduction
	Skisens
	Objective

	Data Overview
	Description of the data
	Unsupervised event detection
	Identifying an event

	Feature engineering
	Response variable
	features

	Correlations
	Assumptions

	Theory review
	Decision trees
	Random forest
	Variable Importance


	Study design
	Design 1
	Design 2
	Design 3

	Results
	Parameter tuning
	Result of tuning for the models in design 1
	Result of tuning for the models in design 2

	Performance of models
	Performance of the models in design 1
	Performance of the models in design 2
	Performance of the models in design 3

	Feature importance

	Conclusions
	Future work

	Bibliography
	Appendix
	Right side variables when positive force
	Distribution of a few features conditioned of style
	Result of tuning for the models in design 3
	Diagnostic plots
	Models design 1
	Models design 2
	Models design 3



