PENS: Leveraging Data Heterogeneity in
Federated Learning

A Decentralized Federated Learning Approach to Create
Personalized Models

Master’s Thesis in Data Science and Al

GUSTAV KARLSSON

Master’s Thesis in Engineering Mathematics and Computational Science

NOA ONOSZKO

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

MASTER’S THESIS 2021

PENS: Leveraging Data Heterogeneity in
Federated Learning

A Decentralized Federated Learning Approach to Create
Personalized Models

GUSTAV KARLSSON
NOA ONOSZKO

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

PENS: Leveraging Data Heterogeneity in Federated Learning

A Decentralized Federated Learning Approach to Create Personalized Models
GUSTAV KARLSSON

NOA ONOSZKO

© GUSTAV KARLSSON, NOA ONOSZKO 2021.

Supervisor at company: Edvin Listo Zec, RISE Sweden
Supervisor at university: Moritz Schauer, Department of Mathematical Sciences
Examiner: Tobias Gebéck, Department of Mathematical Sciences

Master’s Thesis 2021

Department of Mathematical Sciences

Division of Applied Mathematics and Statistics
Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BKTEX
Printed by Chalmers Reproservice

Gothenburg, Sweden 2021

v

PENS: Leveraging Data Heterogeneity in Federated Learning

A Decentralized Federated Learning Approach to Create Personalized Models
Gustav Karlsson

Noa Onoszko

Department of Mathematical Sciences

Chalmers University of Technology

Abstract

Federated learning (FL) is a decentralized machine learning technique where training
is done cooperatively by exchanging model weights or gradients instead of sharing
the raw data between the cooperating devices (clients). Classical FL algorithms such
as federated averaging work best in the special case when the data is IID over clients.
In this work, we address the problem of data heterogeneity in federated learning. We
propose a decentralized federated learning (DFL) algorithm termed Performance-
based Neighbour Selection Federated Learning Algorithm (PENS), that effectively
leverages the data heterogeneity over clients. PENS is a cooperative communication-
based algorithm where clients communicate with other clients that have a similar
data distribution. Specifically, model performance is used as a proxy for data sim-
ilarity as no raw data is allowed to be shared among clients. Experiments on the
CIFAR-10 dataset show that this communication scheme results in higher model
accuracies than if clients communicate randomly with each other. The method is
robust for different numbers of participating clients as long as the local datasets are
sufficiently large.

Keywords: decentralized federated learning, federated learning, data heterogene-
ity, personalization, distributed machine learning, gossip learning, privacy, image
classification

Acknowledgements

We would like to extend our deepest gratitude to our supervisor Edvin Listo Zec
for giving us the opportunity to write this thesis project at RISE. We would like
to thank him for all of his valuable feedback and guidance during all parts of the
project. Special thanks should also go to the rest of the Deep Learning research
group at RISE, including Olof Mogren, John Martinsson and Leon Siitfeld, for much
appreciated discussions, and for providing the computational resources needed to
finish this project. We would also like to thank our Chalmers supervisor, Moritz
Schauer for his insightful suggestions. Finally, we also wish to thank our dear friend
and fellow student Joel Lidin for providing moral support and valuable advice during
the project.

Gustav Karlsson & Noa Onoszko, Gothenburg, May 2021

vii

Contents

1 Introduction

1.1 Background
1.2 Problem Formulation,
1.3 Project Aims
1.4 Limitations
1.5 Contributions

2 Theory and Related Work

2.1 Convolutional Neural Networks
2.1.1 Convolutional Layer
2.1.2 Pooling Layer
2.1.3 Fully Connected Layer
2.2 Federated Learning
2.2.1 Decentralized Federated Learning
2.2.2 Non-IID Data in Federated Learning
3 Methods
3.1 Dataset
3.2 Network Architecture
3.3 Algorithms
3.3.1 Random
3.3.2 Improvements for Non-IID Data
3.4 Experimental Setup
3.5 Evaluation oo
4 Results
4.1 Randomon IIDdata
4.2 Comparison of Methods on Partitioned Data
4.3 PENS for Different Number of Clients

5 Discussion
6 Conclusion

Bibliography

13
13
13
14
14
14
19
20

23
23
25
27

29

33

35

ix

Contents

1

Introduction

1.1 Background

During the last decade, the development of computing capabilities in our mobile
devices has made it possible to deploy advanced machine learning systems for ap-
plications such as image recognition and recommender systems. At the same time,
in recent years there has been an increased focus on privacy for the users. The
introduction of GDPR in the EU, which regulates how companies and organizations
manage data from the users [1], is one example of this. Users have also become
more aware of the amount of data they are sharing on a daily basis. This develop-
ment is in large part driven by the increased amount of technology in our homes.
With more and more smart devices such as smartphones, smart TVs and cars we
are constantly sharing large amounts of data with companies, often without think-
ing about it. However, with new legal regulations and increased awareness among
users, organizations will have to come up with new solutions in order to protect
users’ privacy.

This is especially true in the field of machine learning where data is essential to
develop good models. Historically, the data has been collected from a set of local
devices such as smartphones. This data has then been used to train models on a cen-
tral server. However, if people do not feel like sharing sensitive data, organizations
will need a different approach to be able to train their models and still achieve high
performance. The combination of increased computational power and the increased
privacy concerns has motivated the development of distributed machine learning
systems. One such approach is federated learning (FL) [2]. In this framework there
exist a possibly large number of users who are connected to a central server. Tra-
ditionally, users collaboratively train a global machine learning model by training
locally and communicating model weights or gradients with the server. This way,
no raw data is shared between the local devices and the central server. However,
as communication between the local users and the central server is considered to
be expensive, the server’s bandwidth can become a bottleneck in the system. Even
more importantly, the use of a global model limits the ability to create personalized
models.

One approach that deals with these challenges is decentralized federated learning

1. Introduction

(DFL). In this framework, the central server is eliminated, letting the local users
communicate with each other directly. One crucial aspect of DFL is the commu-
nication scheme between the users - how many and which users should each user
communicate with, and at what frequency? In previous research, the users to com-
municate with has mainly been selected either at random or by a predefined com-
munication graph [3], [4], [5], [6]. This aspect becomes even more important if the
data is heterogeneous across users, that is, if users have different data generating
distributions. For instance, one group of users might be more interested in sports
articles while another group is more interested in fashion articles. On the one hand,
each user might not have enough local data to successfully train a machine learning
model. On the other hand, if the heterogeneity among the users is not taken into
consideration, we are not able to create personalized models based on the users’
data.

1.2 Problem Formulation

Consider a network of N individual clients, C = {C1, ..., Cy}, as illustrated in Figure
1.1. Each client C; represents an entity consisting of data and a machine learning
model. We define a client C; that is connected by a directed edge from client C; to
be a neighbour of client C;. Note that the graph is directed and hence, it does not
necessarily have to be the case that two clients are each other’s neighbours.

Let us assume there are M different data distributions, P = { Py, ..., Py}. Each
client C; € C has access to n independent feature-label pairs, Z = {z},..., 2"},
where 2! := (2!,y!), x denotes the features and y the label. Moreover, z! ~ P,
where k; € {1,..., M} denotes the cluster index for client C;. In this way, the clients

are partitioned into M disjoint clusters, = {Ky, ..., Ky }.

The goal for each client is to obtain a model that performs well on a given task, on
its own data. No central server exists and it is not allowed to share data between
clients. Instead, the clients are allowed to share model weights. For a given client,
C;, consider a model with parameters, w;. In mathematical terms, the problem for
client C; then becomes to minimize its local objective function,

filw)) = E [L(wy;2)], (1.1)

z~Py,

where L(wy; z) is the loss of model w; for datapoint z. Note that clients belonging
to the same cluster will have the same objective function.

1.3 Project Aims

The aim of this report is to contribute to new knowledge in decentralized federated
learning. By building upon previous research and introducing new algorithms, we
hope to give new insights into the field. More specifically, the aim is to investigate
different approaches to improve the performance of decentralized federated learning
when data is heterogeneous across clients.

1. Introduction

Figure 1.1: A fully connected network where each client has the possibility to
communicate with every other client in the graph. Each client has its own local
dataset and its own model.

1.4 Limitations

In this study, the primary focus is to investigate different design choices in DFL,
especially those regarding the communication scheme. As the goal is to increase
performance by leveraging data heterogeneity, we are interested in the performance
relative to baselines and not the absolute performance. For this reason, we have used
a relatively small neural network and no exhaustive hyperparameter optimization
has been performed as this would be too time-consuming.

Generalization is a central concept in machine learning. In a decentralized setting,
this can mean different things. One possibility is to strive for generalization on all
clients’ data. Another goal could be that each client has a model that generalizes to
future local data, that is, that the model performs well on current and future data
points generated by the client. These two types of generalization abilities are very
different, so it might be difficult to achieve both at the same time. In this work,
we limit ourselves to trying to achieve the second type of generalization, where each
client’s model performs well on the local data.

DFL algorithms, ours included, are meant to be used by clients in a decentralized
setting. To simplify the implementation, the code for the proposed algorithms is run
on one computing unit and clients are iterated over sequentially, instead of acting
in parallel. As a consequence, we do not cover the topic of different bandwidth and
computational power among clients.

The designed algorithms are generic in the way that they could be used for any
problem within supervised learning. However, we only evaluate the algorithms on
image classification. Therefore, it is not certain how well the algorithms will perform
in other applications.

1. Introduction

1.5 Contributions

Our primary contributions are 1) a new method for selecting neighbours in decen-
tralized federated learning, using model performance as a proxy for data similarity;
2) the proposal of a decentralized federated learning algorithm that achieves good
personalization performance for a different number of clients in the presence of data
heterogeneity.

2

Theory and Related Work

In this chapter, we present the theory required to understand the proposed algo-
rithms in the thesis. First, a brief introduction to convolutional neural networks
is given. Secondly, we introduce federated learning and different approaches in de-
centralized federated learning. Finally, prior research about data heterogeneity in
federated learning is presented.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are special types of artificial neural networks
(ANNs) that are inspired by animal visual cortices. Just like the human eye and
brain, CNNs are excellent at detecting local details and are therefore often used in
tasks such as image analysis, pattern recognition and natural language processing
[7]. The main difference between CNNs and traditional ANNs is that CNNs use a
convolutional kernel. The kernel is used to extract local features from input data.
Moreover, the kernel is shared over all input data which reduces the number of
trainable parameters in the network [8]. In contrast, when using an ANN every
pixel in an image would be connected to a separate neuron. Even for fairly small
images, this would require a huge amount of parameters, making the neural network
slow to train. This is an important difference between CNNs and ANNs, and what
makes CNNs the more suitable option for image classification.

A CNN typically consists of three different types of layers - convolutional, pooling
and fully connected [8]. The convolutional and pooling layers are unique to the
CNN and extract features from the input data. The fully connected layers, typically
placed at the end of the CNN, then map these features to an output. A CNN can
therefore be seen as an extension of an ANN which only consists of fully connected
layers. The different types of layers will be explained in more detail in the following
chapters.

2.1.1 Convolutional Layer

As the name indicates, the convolutional layer is based on the mathematical operator
called convolution. Given two functions, f,g : Z?> — R, the convolution between

2. Theory and Related Work

these at a point k € Z2 is defined as

(f*)k ko] = D Y flks —na, ky — na)g(na, ma). (2.1)
n1€ZLn2€ZL

For a convolution layer, f represents the input data coming from the preceding layer
and g represents the convolutional kernel. Note that both f and g in the case of
convolutional layers usually have finite support, making the number of elements in
equation 2.1 fairly small. The output from a convolutional layer can be seen as a
weighted average of the input data with the convolutional kernel as weights. The
kernel then traverses through the input feature map creating the output feature map
which is then passed on to the next layer. This process is illustrated in Figure 2.1.
The size of the output feature map depends on the kernel size and how one deals
with the boundaries of the input feature map. In the example in Figure 2.1, no
special treatment is given to the boundaries which will reduce the size of the feature
map. Note that one may use several kernels for the same convolutional layer [9].

4x4 output feature map

00]1 0 1l0lofo]o
0 1 0'“ -6 x 6 input feature map
110 |1
3 x 3 kernel

Figure 2.1: The convolutional kernel traverses through the input feature map and
outputs a weighted average of the input data.

2.1.2 Pooling Layer

A pooling layer, usually placed after a convolutional layer, collects statistics about
each neuron’s local neighbourhood [9]. Two of the most commonly used pooling
operations are average pooling and max pooling. Max pooling enhances edges by
extracting the maximum value from each neuron’s neighborhood. An example of
max pooling is shown in Figure 2.2. Average pooling, on the other hand, smoothens
the feature maps by extracting the average value from each neuron’s local neigh-
borhood. Another important consequence of a pooling layer is that it reduces the
spatial dimension of the image data. By doing so, fewer parameters are required in
the subsequent steps of the network. Moreover, the lower image resolution enables
the following convolutional layer to extract features in a different length scale than
before.

2. Theory and Related Work

519
718
0|5|5 |7 2 x 2 ouput feature map
301149
2 (4|87
71643

4 x 4 input feature map

Figure 2.2: Resulting output feature map after applying a 2 x 2 max pooling layer
on the input feature map.

2.1.3 Fully Connected Layer

As mentioned earlier, one or more fully connected layers are typically placed at the
end of a CNN [9]. In a fully connected layer, every input node is connected to every
output node by a trainable weight. This is illustrated in Figure 2.3. Moreover, every
node has a trainable bias associated with it. In mathematical terms, this can be
expressed as

Yj = Z Wijzi + bj, (2.2)

where W;; denotes the weight from input node 7 to output node j, and b; denotes
the bias at node j.

Figure 2.3: A fully connected layer with two input nodes and two output nodes.

2.2 Federated Learning

The term federated learning was coined in 2016 by McMahan et al. [2]. In this
paper, a new class of methods is introduced where data from multiple sources are

7

2. Theory and Related Work

used to create a model without ever storing the data at a central server. Instead,
the training is done in the following steps:

1. A global machine learning model is initialized on a central server.
2. The global model is sent to all participating clients.

3. A randomly selected subset of the clients train the model locally for a number
of epochs.

4. The newly trained models are sent to the central server.

5. The server computes the new global model as a weighted average of the re-
ceived, newly trained models, with the size of the corresponding local datasets
as weights. Return to step 2 and repeat for a given number of communication
rounds.

McMahan et al. [2] also show that in step 1, it is important how one initializes the
models as this will affect the averaging. When the models are initialized with the
same parameters a lower loss is achieved than when the models are initialized with
different parameters.

2.2.1 Decentralized Federated Learning

In decentralized federated learning, there exists no central server. Instead, the clients
have to communicate directly with each other to exchange information. A variety
of different approaches have been studied in DFL and most of them follow a similar
pattern to centralized FL. However, no global model can be used as no central server
exists. Instead, each client has its own local model. For a given client, the training
process can be described with the following steps:

1. Initialize a local machine learning model.

2. Select a set of clients and collect their models.

3. Merge with the selected group of clients.

4. Train the model locally for a number of epochs.

5. Return to step 2 and repeat for a given number of communication rounds.

Note that although most proposed algorithms follow the above structure, there might
be different ways of doing DFL. Step 3 described above is, similarly to centralized FL,
most commonly done by taking a weighted average of the received model parameters
(including its own model). However, the client selection differs a lot between different
approaches. One approach used in [10] is to use a network graph where each client
only communicates with its one-hop neighbours. However, it is not trivial how
one would create such a graph. Another approach is to select all available clients
at every round [5]. In this way, each client gets a lot of new information at each

8

2. Theory and Related Work

communication round. However, it can be very time-consuming to communicate
with all other clients. Thus, this approach is best suited when working with a
limited number of clients.

There are also strategies that incorporate randomness in the client selection step.
One example of this is Gossip Learning [11], [12]. In this framework, the client
sends its model to a randomly selected peer. When a client receives a model, it
updates its current model by merging it with the received one. This client will later
send its updated model to a new, randomly selected peer. In this way, the initial
model will perform a random walk over the network. Note that this process is fully
asynchronous as the clients are not required to merge or send their models at the
same time. Furthermore, note that, contrary to earlier mentioned approaches, only
2 models are merged at the same time in gossip learning.

One aspect that differs slightly from centralized FL is the model initialization in step
1. While common initialization of models might be a trivial task in centralized FL,
this can be more challenging in DFL where no central server is used. In centralized
FL, a central server makes sure that a global model is distributed to all clients
before the local training begins. Hence, all clients start with the same model at the
beginning of each communication round. In DFL, this is not possible except at the
very beginning of training. When new clients join the federation, the old clients will
all have different models parameters which makes common initialization impossible.

2.2.2 Non-IID Data in Federated Learning

The local dataset for a given client corresponds to the usage of that user’s personal
device. Each user has their own preferences and will therefore be exposed to different
data points. The distribution of the local data for a given client will therefore most
likely differ from the data distribution of the entire population. Because of the
natural heterogeneity among users in the decentralized setting and the potential to
develop personalized models, non-IID data has become one of the most researched
aspects in federated learning.

To understand in which situations data heterogeneity might arise, let us first assume
that there exists a set of clients, where Q denotes the distribution over available
clients. Here, Q gives the probability of drawing a client C; € C, when a subset of
clients is selected. Furthermore, let P;(x,y) denote the local data distribution for
client C; ~ Q, where x denotes the features and y the labels. In this setting, there
are a few different kinds of data heterogeneity that should be considered. First
of all, the distributions for two different clients, P, and P; can differ. Secondly,
the local data distribution, P; for a given client C; as well as the distribution over
available clients, O, might differ over time. Although both are important cases of
heterogeneity, we will mainly focus on the former.

There are a few different scenarios where P; # P;. To discuss these further, first note
that P;(x,y) can be rewritten as P;(y|x)P;(x) or P;(x|y)P;(y). It is now possible to
identify four types of heterogeneity in the data distribution [13].

2. Theory and Related Work

o Feature distribution skew: Py(x) # Pj(x) while P;(y|z) = P;(y|z). For in-
stance, images from users in Spain might have a higher pixel intensity than
images taken in Sweden.

o Label distribution skew: P;(y) # P;(y) while Pi(z|y) = P;(z|y). One example
of this is when the distribution of labels varies between different subgroups of
the population. For instance, people in Asia might eat different kinds of fruit
than what is eaten in Europe.

o Same label, different features: P,(y) = Pj(y) while Pi(z|y) # Pj(x|y). In this
case, the features, x varies even though the label, y is the same. On example of
this is that a picture of a house might look very different depending on where
and in what conditions the image is taken. For instance, a house in New York
will, due to economic, cultural and geographic differences, look vastly different
from a house in Sapmi.

o Same features, different label: P,(x) = P;(x) while P;(y|z) # P;(y|z). Even
though the features are the same, they might be interpreted differently in
different subgroups of the population.

Furthermore, a real-world dataset will likely contain a combination of the above-
mentioned effects.

There have been plenty of articles studying the effects of data heterogeneity in
federated learning. For instance, McMahan et al. [2] show that federated averaging
performs well on heterogeneous data in the case of label distribution skew, although
more communication rounds are required than if the data was IID. These results have
been disputed as [14] shows that federated averaging struggles to achieve the same
performance for non-IID data as for IID data. Moreover, the federated averaging
algorithm generates a global model. Hence, the algorithm is limited in the way that it
can not create personalized models based on the local data distribution of each client.
One common approach in the machine learning field to achieve personalization is
to first train the model on global data and then fine-tune it using a local dataset.
This approach is used in transfer learning [15] and meta-learning [16], and was first
introduced in distributed learning by Wang et al. [17]. First, a global model is
obtained by using the standard federated averaging algorithm introduced by [2].
By fine-tuning this global model on the local datasets, personalization could be
achieved, which resulted in higher overall accuracy.

Ghosh et al. [18] continue the research on data heterogeneity in FL by addressing
the issue of feature distribution skew. This is simulated by rotating CIFAR-10 and
MNIST images, creating disjoint data clusters, and assigning data points from only
one cluster to each client. A new framework is proposed where k global models are
initialized, each representing one cluster. In an iterative process, clients are assigned
to clusters based on the loss function of the global models and these models are then
updated by merging the local models that correspond to the assigned clients. The
idea behind this algorithm is to both capture the personalization aspect and to take
advantage of an increased amount of data by only merging with clients that have
the same feature distribution. Another centralized FL algorithm proposed by Listo

10

2. Theory and Related Work

Zec et al. [19] handles the problem with data heterogeneity by using a mixture of
experts. First, a global model is trained with federated averaging. Then, specialist
models are generated by fine-tuning the global model locally without cooperation.
In the final step, a weighted average of the specialist model and the global model is
trained with a neural network where a gating function is used to control the weight
of each model. In this step, the weights of the gating function and specialist model
are updated, whereas the global model weights are frozen.

Most existing research in decentralized federated learning is focused on obtaining
a global model [20], [21], [22], [23]. Although this makes sense when looking for
a consensus amongst the clients, there might be situations where one wants to
minimize the loss for local data. Moreover, the ability to create personalized models
becomes more natural in decentralized federated learning as there is no need for a
global model. Roy et al. [5] showed that a server-less peer-to-peer approach is able
to achieve higher performance on non-IID data than what is possible with federated
averaging. Fach client collects models from all other clients and merges its model
with those by taking a weighted average. This is followed by local training and then
the process is repeated a number of times. Hence, no special consideration is taken
in regards to the data heterogeneity. This illustrates that DFL has a natural ability
to perform well in the case of data heterogeneity.

Almeida and Xavier [24] propose a more involved solution in which they account for
similarities between the clients. Each client aims to find a model which minimizes
both the loss on the local dataset and the differences with its neighbours’” model
weights. A network matrix W is used where W;; controls the level of similarity
that we want client C; and C; to have. Thus, for a given client, W controls which
neighbours should be considered close. Furthermore, Almeida and Xavier state
that W;; can be chosen based on the similarity between client C;’s and client C;’s
local datasets. Vanhaesebrouck et al. [25] and Bellet et al. [26] have achieved
promising results on non-IID data with similar approaches using a similarity graph
as a regularization factor. However, the authors do not provide a suggestion on
how to calculate this similarity measure in a decentralized setting where the data is
private.

Zantedeschi et al. [27] extend previously mentioned research by learning the simi-
larity graph along with the model. In this approach, the objective function consists
of both model weights and weights from the similarity graph. The algorithm is di-
vided into two parts. First, given a fixed similarity graph W, personalized models
are trained in a similar way to what is described by Almeida and Xavier [24]. Then,
the graph weights W;; are optimized given fixed model weights. In this step, clients
expand their neighbourhood by randomly communicating with new clients that do
not currently belong to their direct neighbourhood (the clients with the highest sim-
ilarity score in the current similarity graph). The similarity graph is then updated
by applying gradient descent to the objective function. These two steps are then
alternated until convergence is reached. Results show that the algorithm manages
to approximately identify the correct clusters among the clients.

11

2. Theory and Related Work

In conclusion, there has been plenty of research on DFL and on data heterogeneity
but not many articles have studied how to leverage data heterogeneity to create
personalized models. Therefore, we aim to propose a new method for leveraging
non-IID data to achieve personalization in DFL.

12

3

Methods

3.1 Dataset

Federated learning is a problem-agnostic technique for decentralized machine learn-
ing. However, the literature mainly deals with FL in a supervised learning setting
and image classification is not uncommon. Similar to previous work, we chose to
evaluate the different FL. methods on an image classification problem, using the
CIFAR-10 [28] dataset. The dataset contains color images of ten common objects,
see Figure 3.1, and is partitioned into a training set of 50,000 images and a test set
of 10,000 images. Each image has three color channels and is of dimension 32x32.
Despite the low resolution, the best performing classifier to date has achieved 99.7%
accuracy [29]. The images are preprocessed only by normalizing each image channel
so that the pixel values for each image are N(0.5,0.5)-distributed. This is done to
improve learning since this will for example make gradients have more similar sizes.

Figure 3.1: CIFAR-10 sample images. The figure shows images from each class in
the dataset.

3.2 Network Architecture

The network used is a small convolutional neural network with three convolutional
layers, each followed by max pooling, and two fully connected layers. The full net-

13

3. Methods

work architecture is shown in Table 3.1. The network has 73418 trainable parameters
and assuming a float is 24 bytes, takes approximately 1.8MB of space.

Table 3.1: Network architecture

Layer #Channels Filter Size Activation Output Size #Parameters
Input Layer - - - 32x32x3 -
Convolutional 32 3x3 ReLLU 30x30x32 896
Max Pooling 1 2x2 - 15x15x32 -
Convolutional 64 3x3 ReLU 13x13x64 18496
Max Pooling 1 2x2 - 6x6x64 -
Convolutional 64 3x3 ReLLU 4x4x64 36928
Max Pooling 1 2x2 - 2x2x64 -

Fully Connected - - Linear 64 16448
Fully Connected - - Softmax 10 650

3.3 Algorithms

Below, we present the implemented DFL algorithms. Note that all algorithms are
described from the perspective of a single client. This means that each client will
follow the given algorithm. Moreover, to avoid duplication, a function defined in one
algorithm might be used in others without repeating the definition again. Values for
the hyperparameters used in the algorithms and during training are shown in Table
3.2 and Table 3.3. As a note on notation: In the algorithms descriptions, sets are
denoted by calligraphic letters and lists are denoted by brackets.

3.3.1 Random

First, we introduce a new DFL method, termed Random which is inspired by [10] and
[5]. However, instead of selecting the same clients for each communication round, a
random subset of clients is selected at each round. It is an iterative algorithm that
switches between local training and averaging model parameters with other clients,
which has great similarities with gossip learning. However, in contrast to gossip
learning where a client sends its model to other clients, the client receives models
from a number of other clients. In the averaging step, it is common to weigh the
model of each client with the size of its local dataset. We omit it here from the
algorithm description since we will work with balanced data, that is, each client has
the same number of data points. For a full description of the method, see Algorithm
1.

3.3.2 Improvements for Non-IID Data

Random does not take data heterogeneity into account. To leverage this to create
personalized models, four new algorithms were developed: Greedy in Algorithm
2, EpsilonGreedy in Algorithm 3, PENS in Algorithm 4 and RandomWeighted in

14

3. Methods

Algorithm 1 Random

1: Initialize network weights w

2: w < TRAINLOCALLY(w)

3: for round ¢ in 1,2,... do

4 Select Mgelectea clients C; C C randomly
5: w <~ MODELAVERAGING (w, C;)

6 w < TRAINLOCALLY (w)

7

8

9

: procedure MODELAVERAGING (w, C’)
Receive models @ from clients C’
W WU {w}
10: W —— 3

Mselected+1 wed
11: return w
12: procedure TRAINLOCALLY (w, F)
13: for each local epoch 1 to E do

14: for batch b € B do
15: w < w —nVL(w;b)
16: return w

Algorithm 5. In all four methods, the model performance on other clients is used
as a tool to improve the averaging process, either by selecting models based on
accuracy or weighing the models with the accuracy as in RandomWeighted. All
algorithms build upon Random. For Greedy, EpsilonGreedy and PENS, the main
difference from Random is in line 4 in Algorithm 1 where clients now are selected
based on data similarity instead of randomly. A client sends its model to a number
of other clients and requests that they evaluate it on their local data. The client then
receives classification accuracies and from this point, the algorithms differ. Greedy
then selects the subset of clients that report the highest accuracies and the averaging
is carried out with those. EpsilonGreedy does the same thing, except some of the
selected clients are swapped out randomly.

As a further improvement, we propose PENS, short for Performance-based Neighbour
Selection Federated Learning Algorithm. It consists of two steps: in the first step,
the goal is to find the right clients to communicate with and in the second step, the
Random algorithm is executed to train the model while collaborating with the clients
gathered in the first step. The idea is to find clients that have similar data, by using
accuracy as a proxy. The first step is similar to the Greedy algorithm, as clients
are selected greedily using the accuracies that they report. The difference is that in
each round, before the local training, the client sampling and subsetting process is
repeated a number of times, and the selected clients at each repetition are added to
a list of communication history. After the final round, a subset of the clients present
in the communication history is selected as the client population for step 2. The
clients that occur more frequently than the expected count, if clients were chosen
randomly, are selected. Finally, in step 2, Random is executed with the constraint
that the client now only communicates with clients in the new client population.

15

3. Methods

In the RandomWeighted method, the clients are still selected randomly. The main
difference from Random is instead in the averaging process. The accuracies collected
from evaluating the model on other clients’ data are here used as weights in the
averaging process. This is illustrated in Algorithm 5.

Model initialization can either be done with identical or different random seeds
across clients. To investigate the effect of using identical or different random seeds,
all experiments are done with and without identical random seeds.

Algorithm 2 Greedy

1: Initialize network weights w

2: w < TRAINLOCALLY(w)

3: for round ¢ in 1,2,... do

4: Cluected Campled <~ SELECTCLIENTSGREEDILY ()

5: w < MODELAVERAGING (w, C,1octed)

6: w < TRAINLOCALLY (w)

7

8: procedure SELECTCLIENTSGREEDILY ()

9: Select Mgample clients Csampiea C C randomly

10: A«

11: for client in Csampiea do

12: Send w to client and request that it evaluates w on its training data

13: Receive classification accuracy a; from client

14: Append a; to A

15: Select Mgelected Clients Ceelected C Csampled With the Mgelected highest accuracies
in A

16: return Cselecteds Csampled

Table 3.2: Hyperparameters used in the Random, Greedy, EpsilonGreedy and
RandomWeighted where F denotes the number of local epochs and Ir denotes the
learning rate.

Method | £ Batch size It Mgelected Msample (g,\)
Random | 3 8 1073 20 - -
Greedy | 3 8 1073 20 - -
EpsilonGreedy | 3 8 1073 4 20 {(0.2,1),
(0.5,1),
(1,0.99)}
RandomWeighted | 3 8 1073 20 - -

16

3. Methods

Algorithm 3 Epsilon-Greedy

1: Initialize network weights w

2: w < TRAINLOCALLY(w)

3: for round ¢ in 1,2,... do

4: Celected « SELECTCLIENTSEPSILONGREEDILY (¢)

5: w <+ MODELAVERAGING (w, Cselected)

6: w < TRAINLOCALLY (w)

7

8: procedure SELECTCLIENTSEPSILONGREEDILY ()

9: Select Mgample clients Csampiea C C randomly

10: A«

11: for client in Csampiea do

12: Send w to client and request that it evaluates w on its training data
13: Receive classification accuracy a; from client

14: Append a; to A

15: Select Mgelected Clients Cselected C Csampled With the Mgelected highest accuracies

in A

16: Sample Ngyap from the Bin(mgelected, A'e) distribution

17: Select Ngyap clients Coyap N Cselected Tandomly

18: Cnew population — (Csampled \ Cselected) U Cswap

19: Select Ngwap clients Cpew N Cpew population Tandomly
20: Cselected < (Cselected \ Cswap) U Crew
21: return Ceelected

17

3. Methods

Algorithm 4 PENS

1: Step 1: Collect communication history

2: Izlitialize network weights w

3: Cielected]

4: Csampled — J

5. w < TRAINLOCALLY(w)

6: for round ¢ in 1,2,... do

7 for round j in 1 to Ngamplings dO

8: Cluected Campled <~ SELECTCLIENTSGREEDILY ()
9: Append Clyooioq 10 Crelected

10: Csampled — Csampled U Csampled

11: w < MODELAVERAGING(w, Cl jocteq)

12: w < TRAINLOCALLY (w)

13: Cheighbours $— SELECTNEIGHBOURS(éselected, Csampled)
14:

15: Step 2: Train with a subset of clients

16: Perform Algorithm 1, only communicating with clients in Cpeighbours
17:

18: procedure SELECTNEIGHBOURS((jselected, Csampled)
19: T «— |Cselected|

|Csampled|

20: Cneighbours — g
21: for client in Csamplea dO
22: ¢ < number of occurrences of client in éselected
23: if ¢ > T then
24: Cneighbours — Cneighbours) {Chent}
25: return Cheighbours

18

3. Methods

Algorithm 5 Weights

1: Initialize network weights w

2: w < TRAINLOCALLY(w)

3: for round ¢ in 1,2,... do

4: Select Mgelectea clients C; C C randomly

5: w <— WEIGHTEDMODELAVERAGING(w, C;)
6: w < TRAINLOCALLY (w)
7. procedure WEIGHTEDMODELAVERAGING(w, C')
8 A+
9: for client in C’ do
10: Send w to client and request that it evaluates w on its training data
11: Receive classification accuracy a; from client
12: Append a; to A
13: Receive models « from clients C’
14: Evaluate w on the local validation set and denote the accuracy by a
15: W WU {w}
16: A« AU{a}
17: w > %w’, where a = Zﬂa’
(o’ w")e(A,w) a’cA
18: return w

Table 3.3: Hyperparameters used for PENS for different number of clients. FE
denotes the number of local epochs and Ir denotes the learning rate for the SGD
optimizer that was used during training.

Clients | £ Batchsize It Mgelected Msample Msamplings
50 | 2 8 10~ 1 5 10
200 | 10 8 1073 4 20 10
1000 | 50 8 1073 4 20 10

3.4 Experimental Setup

The algorithms described in the previous section are described from the perspective
of one client. To simplify the coding, instead of making a parallel implementation
where clients send requests to each other, as described in the algorithms, the com-
munication and training were carried out sequentially with respect to clients. First,
all clients trained locally in a sequence. Then, one client averaged with a number of
other clients, followed by the same procedure for another client and so on, until all
clients have averaged their models. In the averaging step, clients are iterated over
in random order with new random order for each communication round.

To simulate heterogeneous data across clients, the training set and test set were
partitioned into two datasets (M = 2), each of equal size. The images in one of
them were rotated 180° and the other dataset was left unchanged and we denote
their generating distributions by P, and P,. Half of the clients were assigned data

19

3. Methods

points from the rotated dataset and the other half got the untransformed images,
creating two client clusters C; and C3. The clients were given an equal number
of data points from the training set, and the whole training set was used. With
for example 50,000 train data points and 200 clients (N = 200), each client was
assigned 250 data points (n = 250). The data points of each client were split into a
training set and a validation set. The size of the training set and validation set for
the different number of clients is shown in Table 3.4. The training set was used to
train the models and to evaluate other clients’ models. The validation set was used
for early stopping. Early stopping was carried out on each client separately, using a
moving average of the validation accuracy. Training was stopped when the moving
average of the validation accuracy had not increased for a number of communication
rounds, determined by the patience, or when the maximal number of communication
rounds had been reached. See Table 3.5 for details. When a client stops early, it goes
back to its model at a previous time step where the maximal accuracy was achieved.
From the point of stoppage, the client no longer updates its own model but it still
participates in the training of other models by evaluating other clients’ models on
its dataset and sending its own model to other clients. The training continues either
until all clients have stopped early, or if the maximum number of total local epochs
for each client has been reached.

The algorithms were implemented in Python 3.8.3 and PyTorch 1.7.1 [30] was used
for the machine learning parts. Each experiment was repeated four times in order
to get information about the statistical uncertainty of the results. The experiments
were carried out on single v100-sxm2-32gb and RTX 2080 TI GPUs.

Table 3.4: Size of the training set and validation set for different number of clients.

Number of clients | 50 | 200 | 1000
training set size | 875 | 125 | 25
Validation set size | 125 | 125 | 25

Table 3.5: Hyperparameters related to the length of training.

Hyperparameter | Value
Maximum number of rounds | 333
Early stopping patience | 50
Early stopping window size | 5

3.5 Evaluation

After training, each client’s model was evaluated on the test set that corresponds
to its own data partition. The entire CIFAR-10 test set consisting of 10,000 images
was used for each client and depending on the client’s cluster it was left unchanged
or rotated. This way, the model’s personalization ability was measured, that is, how
well it generalized to unseen examples from its own data generating distribution.

20

3. Methods

Two evaluation metrics were used: classification accuracy and communication cost.
The classification accuracy is a performance metric that measures the ratio of cor-
rectly classified images. The communication cost measures the amount of communi-
cation between clients. We define the communication cost of a client as the number
of times it receives a model or sends its own model to another client. We report the
average communication cost over all clients participating in an experiment.

Table 3.6: Baselines used to evaluate the performance of the algorithms.

Name | Explanation

Local | One client trains without federation on
the same number of data points as the
algorithm it is compared with, e.g.
125.

CentralIIDHalfData | One client trains on half of the dataset,
without rotating any images. We call
this central training since all data that
is used is stored at one place.
CentralNonIID | One client trains on the full dataset,
where half of the images are rotated
and half are unchanged.

Random | The Random algorithm with the same
number of clients and data points as
the algorithm it is compared with.
Oracle | Random but where each client only
communicates with clients that belong
to the same cluster.

To evaluate the performance of the algorithms, several baselines were used, see
Table 3.6. Local is an easy baseline to beat. It is, however, possible for an FL
algorithm to perform worse since there is no guarantee that averaging models im-
proves performance. The performance of Oracle is supposedly an upper bound for
any DFL algorithm given the data partitioning, assuming that communicating with
clients from the other data partition is detrimental. CentralNonIID represents the
case where all data is stored centrally but no data partitioning has taken place and
CentrallIDHalfData is central training with half of the datapoints without any
rotation. The accuracies of these baselines are also upper bounds if we make the
rather plausible assumption that central training is better than FL with the same
total number of data points across clients. They are however interesting to compare
as they show how much worse the possible upper bound baseline, Oracle, performs.
Random is also on the list for one important reason. Namely, it does not take into
account that the data can be heterogenous over clients. Therefore, the hope is that
the other algorithms that do take this into account will perform better.

21

3. Methods

22

4

Results

In this chapter, we present the results for all algorithms and baselines mentioned
in the previous chapter in terms of performance and communication. First, we
present results from varying some of the hyperparameters in Random using 11D data.
Then, we present results for all baselines and algorithms on non-I1D data, both with
regards to performance and communication patterns among clients.

Note that all presented accuracies below are averages taken over the clients’ individ-
ual performances on the test dataset. From this point on, this average accuracy will
be denoted test accuracy. 95% confidence intervals over four identical repetitions
are reported for each experiment.

4.1 Random on IID data

First, we introduce the proposed Random algorithm by studying how the number of
selected clients, the number of local epochs and the learning rate affect the perfor-
mance. Note that this should not be considered as an exhaustive hyperparameter
search. Instead, one parameter is varied at a time while keeping all other parame-
ters fixed. The fixed values used are taken from the Random row in Table 3.2. The
results can be seen in 4.1. The results indicate that out of the tested values, the best
values are 10 for the number of selected clients, 3 for the number of local epochs
and 1073 for the learning rate. It is interesting to see how poor the performance is
when only using one local epoch. The accuracy seems to increase as the number of
selected clients increases. This is expected as each client gets a larger exchange of
information at each communication round. However, Figure 4.1a indicates a drop
in performance when exceeding ten selected clients.

In the following, a learning rate of 1073, three local epochs and 20 clients to com-
municate are used. Table 4.1 shows how Random compares to Local and central
training with these values for the hyperparameters. Central training was performed
on the full training set. Note that Random performs much better than the local
models which indicate that the federation is working. However, the achieved test
accuracy is much lower than for central training, see Table 4.1.

23

4. Results

0.6
0.500
0.475 0.5
>
g0 %0 / \ S04 \
50.425 / 3 \
(] © .
©0.400 0.3
@)
(]
F 0375 | a
0.2
0.350
0.325 5 10 15 20 0.1 2 4 8 10
Number of selected clients Number of local epochs
(a) (b)
0.5
0.4
>
[&]
o
3
00.3
o
g
|_ .
0.1 - - - _
10° 107 10° 107
Learning rate
(c)

Figure 4.1: Test accuracies with 95% confidence intervals when varying the number
of selected clients (a), the number of local epochs (b) and the learning rate (c). Note
that the x-axis in (c) is in logarithmic scale.

24

4. Results

Table 4.1: Test accuracy with corresponding 95% confidence interval for Local,
Random and central training on all datapoints.

Central training

69.3 £ 1.0

Local Random
24.6+0.1 | 46.0+ 3.9

4.2 Comparison of Methods on Partitioned Data

Table 4.2 shows the accuracy and communication cost for all implemented methods
and baselines. When using independent model initialization all algorithms that
take data heterogeneity into account got higher mean accuracies than Random and
PENS performs almost as well as Oracle. For common initialization, however, only
RandomWeighted and PENS got higher mean accuracies than Random. Overall, PENS
got the highest accuracy in both cases. However, the communication cost is almost
three times as high compared to Random.

One interesting observation from Table 4.2 is that the clients achieve higher accuracy
when using common model initialization. Moreover, the variability in accuracy
seems to be lower for the DFL algorithms when using common model initialization.
It is also worth pointing out that there seems to be a positive correlation between
test accuracy and communication cost.

Table 4.2: Test accuracy and communication cost for all methods and baselines
on partitioned data. Each score shows the mean and a 95% confidence interval for
four identical experiments but with different random seeds. The methods in gray
are upper baselines and have access to more information than the other methods.
Both independent and common model initialization are included. Values for ¢ and
A for the EpsilonGreedy methods are indicated as (e, \).

Method Independent initialization Common initialization
Acc. (%) Com. cost Acc. (%) Com. cost
CentrallIDHalfData 65.1£09 0 65.1£09 0
CentralNonIID 62503 0 62503 0
Oracle 43.7£ 1.8 6560 £ 430 50.0 £ 1.1 5980 + 320
PENS | 4294+1.0 16130+510 47.7+2.0 15310+ 190
EpsilonGreedy(0.5,1) |40.8+2.9 7190+ 430 421+ 1.8 5490 £ 500
EpsilonGreedy(1,0.99) | 39.5+2.5 6950 &+ 550 428 £0.9 5540 £ 530
EpsilonGreedy(0.2,1) |39.24+1.9 6820 + 690 41.1£2.2 5160 £ 450
Greedy 382+ 1.7 6630 £ 720 40.8 £0.7 4940 = 200
RandomWeighted 382+45 6630 % 960 454+1.1 5910 + 80
Random 374+18 6410 £ 720 441+1.6 5650 £ 240
Local 245£01 O 24707 0

Figure 4.2 shows the communication pattern for a selection of the methods in Table
4.2 when using independent model initialization. The color indicates how often a

25

4. Results

client has communicated with another client where a dark color means that the
two clients have communicated frequently. The clients are sorted so that all clients
in cluster 1 have client ID 0-99 and the remaining clients, belonging to cluster 2,
have client ID 100-199. This can be seen in Figure 4.2a, where it is clear that each
client only exchanges information with clients belonging to the same cluster. The
opposite is shown in Figure 4.2f where all clients communicate with each other,
even clients belonging to different clusters. It is worth pointing out that PENS has a
similar communication pattern to Oracle, indicating that this algorithm effectively
selects the correct clients to communicate with. Note, however, that most of the
clients in Figure 4.2b communicate with some clients belonging to the wrong cluster.
EpsilonGreedy seems to struggle more with the client selection, as can be seen in
Figure 4.2d and Figure 4.2c. Not surprisingly, a higher value of the exploration
factor ¢ yields a communication pattern more similar to Random. Another interesting
feature, which is especially visible in Figure 4.2e, is the vertical stripes which indicate
that some clients are selected more frequently than others. Note also that there
seems to be a correlation between Figure 4.2 and Table 4.2 in that the methods
in which the clients successfully find other clients in the same cluster also achieve
higher accuracy.

10 o 10 o 1.0
o o o
< < <
© © ©
<=8 =8 <=8
& 05 & 05 & 05
o8 o] o8
e £ . e 0 !
L “Ehds 3
0 40 80 120 160 0.0 0 40 80 120 160 0.0 0 40 80 120 160 00
Client Id Client Id Client Id
(a) Oracle (b) PENS, step 2 (c) EpsilonGreedy(0.5,1)
1.0 10 o 1.0
2 g
ko) o i k]
& 05 & 05 & 0.5
O OR O]
o o
© ©
vl ki IS - LR ‘_, 2 !
0 40 80 120 160 0.0 0 40 80 120 160 0.0 0 40 80 120 160 0.0
Client Id Client Id Client Id
(d) EpsilonGreedy(0.2,1) (e) Greedy (f) Random

Figure 4.2: Heatmaps showing the communication pattern between clients where
a value close to 1 at pixel (4, j) means that client C; has collected the model from
client C; frequently. The clients are sorted so that clients with ID 0-99 belong to
the first cluster and clients with ID 100-199 belong to the second cluster.

26

4. Results

4.3 PENS for Different Number of Clients

In Figure 4.3, the best performing algorithm, PENS, is evaluated for different number
of clients. The experiments are done with both independent and common initial-
ization. By comparing Figure 4.3a and Figure 4.3a, it is clear that common model
initialization yields better performance. What is more interesting is that this seems
to be more important when the size of the local datasets is small, which is the case
when using a large number of clients. Moreover, PENS performs significantly better
than Random if there are 50 or 200 clients. In particular, note that the accuracy for
PENS and Oracle are nearly identical in the case of 50 clients. However, for 1000
clients, the method does not beat Random.

0.7

©
N

> & Method < «90 66\/ Method
9 9° 9 ,\ etho
SRR
0.6 o B Random 0.6 o = Random
, = PENS «“ o® mmm PENS

>,0-5 &‘9 % Oracle .05 Oracle
€] ,\vQ‘ Q @)
©) ©
304 Q- 504
(6] (9]
@ @ © &
So3 203 ,go
d 9 A N o
= S DY =

0.2 RIEN 0.2

0.1 II 0.1

0.0 50 200 1000 0.0

Number of clients Number of clients

(a) Independent model initialization (b) Common model initialization

Figure 4.3: Test accuracies for Random, PENS and Oracle in the case of 50, 200
and 1000 clients. The vertical lines illustrate 95% confidence intervals over the four
repetitions.

Table 4.3 shows two important statistics related to the selection of neighbours for
step 2 in PENS. One of them is the precision for neighbour selection, which we define
as the fraction of clients that a client selects as neighbours for step 2 that belong
to the correct cluster. The other one is the recall for neighbour selection, that is,
the number of correctly selected neighbours divided by the total number of correct
clients. A precision of 100% would mean that the client only has selected clients
from its own cluster and a recall of 100% would mean that all clients in the same
cluster are selected, and possibly some clients from the other cluster. We report the
average of these statistics over all clients. In general, the vast majority of selected
neighbours belong to the correct cluster. However, the ability to select neighbours
correctly seems to deteriorate as the number of clients grows.

27

4. Results

Table 4.3: Precision and recall for the neighbour selection in step 1, averaged over
all clients. 95% confidence intervals over four identical repetitions are reported.

Clients | Independent initialization Common initialization
Precision (%) Recall (%) Precision (%) Recall (%)

50 100.0 80.8 100.0 67.6

200 97.8 71.2 99.7 67.4

1000 82.2 80.6 82.2 80.2

28

O

Discussion

The results indicate that it is possible to achieve higher accuracies on non-IID data
with DFL when communication is not random. Out of the algorithms proposed,
PENS performs best. Its accuracy is close to the accuracy of Oracle which indicates
that the neighbour selection method is effective. This can also be seen in that the
precision and recall for neighbour selection is high for 50 and 200 clients, see Table
4.3. Moreover, this is illustrated in Figure 4.2b, where there are two distinct squares
indicating communication with clients in the correct cluster. These squares are also
visible in the heatmaps for Greedy and EpsilonGreedy, but are not as clear as for
PENS. This indicates that the clients communicate with clients from the other cluster
more often than in PENS. Communication with clients from the wrong cluster is likely
detrimental as the model of a client from another cluster probably is more distant
in weight space than one from the same cluster. The reason for PENS’s success in
selecting correct clients could be that the number of local epochs is 10, compared
to 3 local epochs in the Greedy-based methods. More local training likely makes
the models within a client group become more similar, which makes correct client
selection more likely. Although many local epochs make the models in the same
group more easily distinguishable, it makes all models diverge more as they overfit
to their local data. This means that the averaging will make the models worse than
if fewer local epochs were used, resulting in low accuracy, which is illustrated in
Figure 4.1b This is acceptable in step 1 of PENS, as we only use the communication
history, but for the Greedy-based methods this would be detrimental. Another
possible advantage of PENS is that during training in step 2, the number of clients
to communicate with is 20 instead of 4 in the Greedy-based methods. This is likely
advantageous since many selected neighbours correlate positively with high accuracy
in the case of IID data, see Figure 4.1a.

A drawback with all algorithms is that their communication costs are higher than
that of Random. The Greedy-based methods are not too costly, increasing the com-
munication by up to 12 %, but do not offer much of an improvement in performance
either. It is important to note that Random has access to the same communication
budget as all other methods, except PENS. The reason that the Greedy-based meth-
ods have a slightly higher communication cost is because early stopping occurs later
than in Random. PENS, on the other hand, has a communication cost roughly 2.5
times as large as Random but in return yields a significant improvement in perfor-
mance. How to reduce communication costs for PENS would be an interesting topic

29

5. Discussion

for future research, as the performance is already quite good. With relatively small
models of 1.8MB as in this work, the average client would have to communicate
roughly 27GB worth of models. This is the communication cost for both step 1 and
step 2 and in a practical application, it is possible that step 2, that is, the training,
is repeated regularly whereas step 1 is done less frequently. As step 2 in PENS con-
sists of Random, this would mean that the communication cost could be similar to
Random. It is however not clear whether step 1 has to be performed frequently or
not.

PENS got higher accuracy than Random for 50 and 200 clients. For 1000 clients, it
performed similarly to Random. We see in Table 4.3 that the precision for neighbour
selection is much lower than for 200 and 50 which plays a large part in this. This
is likely due to the small number of data points per client. In the 1000 clients
case, each client only had 50 data points of which 25 were used for training and
25 for validation and early stopping. With 25 data points, a client could have
a very skewed data distribution in label space that could be similar to the label
distribution of some clients in the other client group. Then these clients could have
similar models, despite the difference in feature space due to the rotation, leading
to incorrect communication. If this is correct, a large number of clients in itself is
not a problem but rather a small number of local data points.

Initializing the clients’ models with different or common random seeds turned out
to have a significant effect on performance for all algorithms and baselines. With
independent initialization and given the highly parameterized nature of the models,
it is not obvious that DFL would even work as there is a chance that all models would
converge towards different local optima. However, the results in the previous chapter
show that at least some models indeed do converge to the same local optimum despite
different starting points. The reason why independent model initialization results in
lower accuracies is however not clear, although it would be reasonable if the models
end up in more clusters in weight space than in the case of common initialization.

The presented algorithms were mainly evaluated using 200 clients and with data
from one or two distributions. To further evaluate the robustness of our methods it
would be interesting to test both Random and PENS in different environments. For
instance, one could evaluate the methods for a different number of clients or using
a different number of data partitions. In a real-world scenario, there will probably
exist unbalancedness, both in the number of data samples per client and in the size
of the client clusters. Moreover, the clusters might not be as well defined as in this
constructed environment. By varying these parameters it would be possible to see
how robust Random and PENS are to changes in the environment, and how well the
methods will perform in a real-world scenario.

Moreover, it would be of great interest to test the implemented methods in other
domains such as natural language processing. Some of the fundamental ideas of
the algorithms are also generic and could therefore be applied to other methods
in decentralized federated learning. For instance, an initial filtering of neighbours
based on data similarity could also be applied before gossip learning. By doing so,

30

5. Discussion

one could compare the performance of Random with gossip learning, both in the case
of homogeneous and heterogeneous data.

31

5. Discussion

32

O

Conclusion

Our experiments indicate that having clients communicate with other clients with
similar data distributions yields better results than if clients communicate with
each other randomly. Out of the five proposed algorithms, PENS performed best
but it also had the highest communication cost. PENS seems to perform well for
different number of participating clients as long as the local datasets are sufficiently
large. It also works both when the models are initialized with unique and common
random seeds. Since PENS requires a lot of communication to achieve good results,
it would be an interesting topic for future research to investigate how to reduce the
communication cost. PENS was only tested on an image classification problem and
with one type of data heterogeneity. It would be interesting to investigate if PENS
performs well on other problems and when data distributions differ in other ways
across clients.

33

6. Conclusion

34

1]

Bibliography

B. Wolford, “What is GDPR, the EU’s new data protection law?.” https:
//gdpr.eu/what-is-gdpr/, n.d. Accessed: 2020-05-06.

H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated Learning
of Deep Networks using Model Averaging,” CoRR, vol. abs/1602.05629, 2016.

A. Agrawal, D. D. Kulkarni, and S. B. Nair, “On Decentralizing Federated
Learning,” in 2020 IEEFE International Conference on Systems, Man, and Cy-
bernetics (SMC), pp. 1590-1595, 2020.

C. Li, G. Li, and P. K. Varshney, “Decentralized Federated Learning via Mutual
Knowledge Transfer,” CoRR, vol. abs/2012.13063, 2020.

A. G. Roy, S. Siddiqui, S. Pélsterl, N. Navab, and C. Wachinger, “BrainTorrent:
A Peer-to-Peer Environment for Decentralized Federated Learning,” CoRR,
vol. abs/1905.06731, 2019.

A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer Federated
Learning on Graphs,” CoRR, vol. abs/1901.11173, 2019.

G. W. Lindsay, “Convolutional Neural Networks as a Model of the Visual Sys-
tem: Past, Present, and Future,” Journal of Cognitive Neuroscience, p. 1-15,
Feb 2020.

J. Koushik, “Understanding Convolutional Neural Networks,” CoRR,
vol. abs/1605.09081, 2016.

B. Mehlig, “Artificial Neural Networks,” CoRR, vol. abs/1901.05639, 2019.

S. Savazzi, M. Nicoli, and V. Rampa, “Federated Learning With Cooperating
Devices: A Consensus Approach for Massive [oT Networks,” IEEFE Internet of
Things Journal, vol. 7, p. 4641-4654, May 2020.

[. Hegediis, G. Danner, and M. Jelasity, “Decentralized learning works: An
empirical comparison of gossip learning and federated learning,” Journal of
Parallel and Distributed Computing, vol. 148, pp. 109-124, 2021.

35

https://gdpr.eu/what-is-gdpr/
https://gdpr.eu/what-is-gdpr/

Bibliography

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

36

L. Giaretta and S. Girdzijauskas, “Gossip Learning: Off the Beaten Path,” in
2019 IEEE International Conference on Big Data (Big Data), pp. 1117-1124,
2019.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira,
S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascon, B. Ghazi, P. B.
Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson,
J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Kone¢ny, A. Korolova,
F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock,
A. Ogzgiir, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song,
W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramer, P. Vepakomma, J. Wang,
L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances and Open
Problems in Federated Learning,” CoRR, vol. abs/1912.04977, 2019.

K. Hsieh, A. Phanishayee, O. Mutlu, and P. B. Gibbons, “The Non-IID Data
Quagmire of Decentralized Machine Learning,” CoRR, vol. abs/1910.00189,
2019.

M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and Transferring Mid-
level Image Representations Using Convolutional Neural Networks,” in 2014
IEEFE Conference on Computer Vision and Pattern Recognition, pp. 17171724,
2014.

C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks,” CoRR, vol. abs/1703.03400, 2017.

K. Wang, R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and
D. Ramage, “Federated Evaluation of On-device Personalization,” CoRR,
vol. abs/1910.10252, 2019.

A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An Efficient Framework
for Clustered Federated Learning,” ArXiv, vol. abs/2006.04088, 2020.

E. L. Zec, O. Mogren, J. Martinsson, L. R. Siitfeld, and D. Gillblad, “Federated
learning using a mixture of experts,” CoRR, vol. abs/2010.02056, 2020.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual Averaging for Dis-
tributed Optimization: Convergence Analysis and Network Scaling,” IEEFE
Transactions on Automatic Control, vol. 57, p. 592—-606, Mar 2012.

I. Colin, A. Bellet, J. Salmon, and S. Clémencon, “Gossip Dual Averaging
for Decentralized Optimization of Pairwise Functions,” in Proceedings of The
33rd International Conference on Machine Learning (M. F. Balcan and K. Q.
Weinberger, eds.), vol. 48 of Proceedings of Machine Learning Research, (New
York, New York, USA), pp. 1388-1396, PMLR, 20-22 Jun 2016.

X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous Decentralized Parallel

Bibliography

[23]

[24]

[25]

[20]

[27]

28]

[29]

[30]

Stochastic Gradient Descent,” arXiv, vol. abs/1710.06952, 2018.

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2; Decentralized Training
over Decentralized Data,” CoRR, vol. abs/1803.07068, 2018.

[. Almeida and J. Xavier, “Djam: Distributed Jacobi Asynchronous Method
for Learning Personal Models,” IEEE Signal Processing Letters, vol. 25,
p. 1389-1392, Sep 2018.

P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized Collaborative
Learning of Personalized Models over Networks,” CoRR, vol. abs/1610.05202,
2016.

A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized and Private
Peer-to-Peer Machine Learning,” in AISTATS 2018 - 21st International Con-
ference on Artificial Intelligence and Statistics, (Lanzarote, Spain), pp. 1-20,
Apr. 2018.

V. Zantedeschi, A. Bellet, and M. Tommasi, “Communication-Efficient and
Decentralized Multi-Task Boosting while Learning the Collaboration Graph,”
CoRR, vol. abs/1901.08460, 2019.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” Tech. Rep. 0, University of Toronto, Toronto, Ontario, 20009.

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-Aware Mini-
mization for Efficiently Improving Generalization,” CoRR, vol. abs/2010.01412,
2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
7. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning li-
brary,” in Advances in Neural Information Processing Systems 32 (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.),
pp. 8024-8035, Curran Associates, Inc., 2019.

37

Bibliography

38

	Introduction
	Background
	Problem Formulation
	Project Aims
	Limitations
	Contributions

	Theory and Related Work
	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer

	Federated Learning
	Decentralized Federated Learning
	Non-IID Data in Federated Learning

	Methods
	Dataset
	Network Architecture
	Algorithms
	Random
	Improvements for Non-IID Data

	Experimental Setup
	Evaluation

	Results
	Random on IID data
	Comparison of Methods on Partitioned Data
	PENS for Different Number of Clients

	Discussion
	Conclusion
	Bibliography

