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Göteborg, Sweden 2018



Energy consumption, Performance and Stability Analysis of Articulated Vehicles Powered with Electrified Dolly
IURI PEREIRA BARROS

c© IURI PEREIRA BARROS, 2018

Master’s thesis 2018:61
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Göteborg
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Abstract

Regarding the emission of greenhouse gases by economic activity, transportation is accounted for almost 25.8%
of these emitted pollutants [1]. Moreover, the majority part of these emissions are derived from vehicles powered
with Internal Combustion Engines (ICEs). To avoid future complications due to air contamination, e.g. global
warming and health issues, most countries are proposing harder restrictions on vehicle emission standards.
Therefore, the search for sustainable drive-trains is in the spotlight of today’s automotive industry agenda.
Hybridization of conventional fossil fuel trucks, using electrified dolly, appears as a candidate solution for the
problem. Unlike conventional dollies, the electrified dolly posses an electric propulsion system (i.e. batteries
and electric drive), which makes it capable of propelling its own axle and aid the tractor unit to move the
system. As a consequence of this additional power source, the combination truck becomes a hybrid vehicle.

Considering that electrified dolly is a new trend in the industry and few studies were performed on this
topic, the benefits and drawbacks of the product are not well known. Hereupon, this work aims, via simulation,
to assess the potential impact of the e-dolly technology on vehicle’s performance, fuel efficiency and dynamic
stability. Furthermore, to verify how power split decisions, made by a control unit of a hybrid vehicle, are
affected when lateral stability constraints or drawbar constraints are included in the control algorithm.

The objects of study are A-doubles, a class of long haul articulated vehicles, with Gross Combination Weight
(GCW) of 60 and 80 tonnes. Models are proposed to simulate vehicle’s longitudinal and lateral dynamics along
with the control algorithm that is responsible to perform the power split decisions of the hybrid architecture.
The Energy Management Strategy (EMS) of the controller is based on an adaptive Equivalent Consumption
Minimization Strategy (ECMS) approach.

Keywords: A-double, electrified dolly, energy consumption, fuel consumption, heavy duty, hybrid, optimization,
stability, truck
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1 Introduction

1.1 Background

Dollies are usual in Long Combination Vehicles (LCVs) to attach full trailers and semi-trailers to the main
tractor unit, which allows them to transport additional freight. Studies regarding converter dolly electrification
are now being performed with the objective of hybridizing diesel-powered LCVs. A brief elucidation is exposed
in the following content in order to understand the scope and challenge related to this subject.

To avoid road damage most countries limit the amount of cargo tied to a truck by its number of axles. In
order to comply with the norms and depending on the user’s needs, a dolly might be used to overcome these
restrictions. A conventional dolly can be shortly described as a platform coupled with unpowered wheels that
attaches towed units to a truck with strong traction capacity (Fig. 1.1), doing so, the cargo does not need to
be fully placed over the main truck chassis, but rather distributed over the extra axles provided by dolly and
trailer units.

Figure 1.1: Conventional dolly used in long articulated vehicles [2].

To transport heavy freights and achieve satisfactory vehicle performance, e.g. range, grade-ability and
acceleration, the truck is traditionally powered with a robust ICE. However, the amount of fuel required to
operate a combustion engine is directly proportional to its size (in litre) and so is the pollutant formation from
the fuel combustion. Hence, to perform a transport task with this high sized engines, large amounts of fuel
would be required, which in turns would also produce large amounts of pollutant. Knowing that international
policies are gradually restricting the emission limit of greenhouse gases for road vehicles [2], it is necessary to
improve their propulsion system in a way that affords lower fuel consumption.

Optimization can be performed in many systems and fields, for example, one could implement lighter
materials on gearbox housings or improve heat exchange on the fuel combustion process. Unfortunately, since
several researches were made with the intention to enhance standard combustion vehicles and that succeeded
in doing so, the difficulty to improve conventional hardware has become higher and the eligible spots/rewards
lower.

Hybridization of ICE trucks, through dolly electrification, appears as a candidate solution to this problem.
Properly controlled hybrids leads to reduced fuel consumption and ownership cost in the long run. The
electrified dolly, or e-dolly for short, has an Electric Propulsion System (EPS) integrated to its hardware. The
main advantage of this feature is the possibility of truck hybridization without affecting the prime mover design,
but rather its software. Also, Plug-in HEVs allow battery recharge from the electric grid and offer a significant
range in pure electric mode, which might be necessary due to legislation. Stated the key element that fostered
this work, the thesis’ challenge and scope can now be described.
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1.2 Challenge

Hybrid electric vehicles posses two or more power sources to provide traction for the wheels, usually one
combustion engine and one electric machine. The existence of multiple sources within the same architecture
raises a challenging task defined as the Optimal Control Problem (OCP). It can be described, in its most
general form, as finding the set of actions (u(t)) that minimizes the fuel consumption (mf ) of a vehicle within
a time interval (ti ≤ t ≤ tf ), as demonstrated in Eq. 1.1. The action u determines how the power demanded
from the driver (Pdem) will be split between the available propulsion systems. Function J , also known as cost
function, can be designed to account many properties of interest, e.g. CO2 emissions [3] and total energy
consumption [4].

J =

∫ tf

ti

ṁf (u(t), t)dt (1.1)

To solve this problem, an Energy Management Strategy (EMS) is used by the control unit to give a solution
for the OCP, but there are many approaches to perform it. Furthermore, a truck propelled in two different
spots can be subjected to jack-knifing or spin-out if, for instance, the rear-end drive provides too much traction
to the wheels while cornering. Also, a wrong brake distribution can lead to steering instability of the front
wheels [5]. Therefore, the controller must be able to evaluate the consequences of each power split decision
made by the EMS with a representative model of the vehicle dynamics. However, it must be simple enough
to be implemented within the controller without increasing the control units’ run time excessively. For these
purposes, the challenge is to select the proper technique to compute the split decision given a vehicle set-up
and a transport task.

1.3 Scope

This research’s objective is to determine the pros and cons of e-dolly hybrid vehicles in comparison to con-
ventional diesel trucks while performing the same Operating Cycle (OC). More specifically, evaluate the
performance on energy efficiency (i.e fuel consumption), average speed, road gradeability and lateral stability
of an A-double truck with different hardware set-up and weight. Also, two control policies, one that takes into
account lateral stability and the other that does not, will be compared. The hardware may vary in engine size
and battery type, here 11, 13 and 16 litres diesel engines plus 2 power- and 3 energy-optimized batteries are
used. Regarding vehicle weight, loaded gross mass of 60 and 80 tonnes are assessed. For the 80 tons case, a D16
powered vehicle will be compared with a D13 plus e-dolly. With respect to the 60 tons, a D13 truck will be
compared to a D11 plus e-dolly combination. This investigation will verify how trucks with downsized internal
combustion engine coupled with an electrified dolly behaves in comparison to a standard diesel-powered trucks.

An A-double is a four units articulated vehicle that consists, respectively, of tractor, semi-trailer, converter
dolly and other semi-trailer. These two trailers are connected by the dolly (Fig. 1.2). The LCV in consideration
has five (5) groups of axle and eleven (11) axles.

Figure 1.2: A-double combination truck with converter dolly [6]. The bracket shows where the converter dolly is
placed in the combination vehicle.

Besides lateral stability, the remaining criteria for rating truck’s performance is evaluated in a modular
forward simulation, shown in Fig. 1.3, of the vehicle longitudinal dynamics. Simulink environment is used to
mimic vehicle components and Matlab to solve the instantaneous optimization problem. Lateral dynamics will
be simulated in Dymola environment using Modelica language. Further details and reasoning will be displayed
latter in this thesis. The models will be joined together with a Functional Mock-up Interface (FMU).
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Figure 1.3: The main frame of a forward simulation with 3 main models, the operating cycle, the driver and
the vehicle. Arrows represent signal flow. This picture was inspired in [7].

1.4 Goals and Limitations

This thesis is intended to:

• Compare the fuel consumption of heavy duty trucks with and without e-dolly technology over the same
distribution task.

• Compare the performance of heavy duty trucks with and without e-dolly on gradeability, vehicle average
speed and number of gear-shifts.

• Verify how power split decisions are affected when lateral stability constraints are included in the control
algorithm.

• Propose and assess a constraint that evaluates longitudinal stresses on drawbar coupling.

Limitations:

• The cost function J only takes into account fuel consumption, i.e. pollutant emissions, total energy
consumption, battery degradation and transport time are not weighted in the equation.

• The combustion engine cannot charge the batteries, i.e. road charging is not considered.

• The target State of Charge (SOC) curve is based on linear and piece-wise linear functions with respect to
distance, i.e. global optimum solutions are not found in the EMS.

• Longitudinal load transfer is not considered, i.e. distribution of vertical load between axles is constant.

• A single-track model with linear lateral tyre models is applied to assess vehicle lateral dynamics.

• Coulomb friction is assumed between tyre and road contact surfaces.

• Friction brake distribution is proportional to axles’ vertical load.

1.5 Outline

This document follows the subsequent order. Chapter 2 describes the OC, it’s properties and how some of
them were acquired. In chapter 3, vehicle’s powertrain models are described and a detailed explanation of the
control strategy is shown. Next, in chapter 4, the lateral dynamics model applied in Dymola is stated and the
grip margin expression derived. Chapter 5 demonstrates some plots from the simulations using the models
derived in the previous chapters. After model validation, all results (relative to goals) will be displayed along
with general comments on the outputs. At the end, in chapters 7 and 8, a conclusion will be exposed and
future works will be exhibited.
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2 Transport Mission

The operating cycle represents a distribution task performed by heavy duty trucks in Sweden. The goal is to
transport goods between the cities of Gothenburg and Bor̊as, which might also be referred as port and dry-port
from now on. The mission begins at the port in Gothenburg and goes to the dry-port at Bor̊as, where freight is
unloaded and battery charges can be made. The truck is then loaded and driven back to the port. The task
described represents one cycle and it has a total extent of 152 kilometres.

Figure 2.1: Operating cycle view from GPS. Font: Geocontext.

Mission properties are described using the Operating Cycle format [7]. The OC gives a numeric description
of a transport task so that it can be standardized and applied into simulations. The format describes any
mission with four domains, they are: the Road, responsible to store route legal speed and topography data, for
instance; Weather, like surrounding temperature and ambient pressure; Traffic, to point the position of traffic
lights in the road; and the Mission, that states where the vehicle should stop, recharge, load/unload, etc.

All the information stored in the OC structure is used by the Operating Cycle Block in Simulink (1.3) to
give knowledge of the surroundings to the Driver, representing a visual view of the environment so that the
driver can perform acceleration or brake decisions. For further information, the reader must refer to [7] that
broadly describes the format and how to apply it in simulations.

To provide data in the OC structure, some mission parameters, e.g. the road curvature, were acquired using
free on-line tools. Internal Volvo data was also applied in the format. The tool for getting road curvature allow
users to sketch circles over a map and get their radius in the desired units. It was obtained for the most critical
parts of the circuit.
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3 Vehicle Longitudinal Model

The modelling approach used to describe the longitudinal dynamics of the LCV is grounded on [8]. In
the referenced report, strategies assumed in this thesis to design transmissions, engine, pedals and chassis
using physical expressions and Simulink blocks, are explained. However, these models can only represent a
conventional diesel truck. In order to depict the hybrid topology, additional models are needed, such as the
control unit, the Electric Machine (EM) and the energy storage system. This chapter focus on describing the
modelling of these extra features in HEVs, except for the EM that can be modelled similarly to the engine.
But before exposing them, a short elucidation of the longitudinal simulation process is provided next.

The brake and accelerator pedals are used as inputs to the vehicle model. Based on their displacement from
standstill (Dacc, Dbrk) the driver’s power demand is estimated using a linear pedal map (Eq. 3.1). Positive
values are given to acceleration and negative for deceleration demands.

Pdem = Pdem(Dacc , Dbrk) (3.1)

Fixed Pdem, it is used to feed the control unit so that the power split decision is taken. Then, each machine
(ICE and/or EM) transmits power to the wheels via the transmission system. The gearboxes rely on the vehicle
speed to perform gear-shifts, and thus selecting the proper gear ratio (i). The path efficiencies, e.g. from the
differentials and gearbox, are accounted as gains in the Simulink model. At last, the wheels’ propelling (Fprop)
and brake (Fbrk) forces are summarized with the road slope, the aerodynamic and rolling resistances (Fres)
and divided by the vehicle mass (mv) to compute the truck’s longitudinal acceleration (ax), which is then
integrated to find the longitudinal speed (vx). This process repeats until the trip ends.

ax =
Fprop − Fbrk − Fres

mv
(3.2)

3.1 Energy Storage System

Nowadays, most electrified vehicles use energy storage systems, such as lead-acid and Lithium-ion batteries, to
store and manage electric power on demand. As shown in the report published by McKinsey & Company [9],
this scenario has become possible due to technological advances provided by the car industry, which has made
strides towards profitability and energy storage capacity of batteries in the past few years. Other technical
improvements also have a major impact on the profitable production of electric vehicles. Better energy-to-mass
ratio, slow self-discharge (while the device is not in use), fast charging and high energy efficiency made battery
and electricity more attractive in vehicle application than other renewable energies, e.g. hydrogen fuel cells,
that were gathering ground in the industry.

The challenge of an engineer is to select the best battery type given the costumer’s needs, since the
vehicle acceleration capability, driving long distances, and decreasing cost of ownership depend on the battery
characteristics. It can possess high specific power or energy capacity, which influences the vehicle acceleration
and electric range, respectively. There are some aspects that must be taken into account while choosing
batteries for a propulsion system. They are for instance, usual range (km) covered by the vehicle, acceleration
request and start-stop conditions presented in the operation cycle. The latter case is frequently seen in public
transportation tasks, which encourages the application of hybrid and full electric vehicles. In order to identify
how the battery type affects the truck’s capabilities, a pre-selected set of batteries was applied and compared
in the simulations. Table A.1 holds the technical specification of the batteries implemented in this work.

Traditional batteries carry a dependence on temperature that might cause drastic drops on their performance
and cycle lifetime. Temperature fluctuations may be caused by internal chemical reactions or eventual climate
changes, possible to occur during long haul driving. The problem exposed requires enhanced models to describe
the side-effects of temperature on battery properties, which in turn demands heavy computational power and
parametrization methods. To avoid complex modelling of the ESS, it is assumed that the vehicle has a cooling
system that keeps the device at room temperature (around 27◦C), thus, thermal effects on battery states can
be neglected.
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3.1.1 State of Charge

Battery state of charge must be monitored with precision in order to allow reasonable power split decisions by
the controller. Several estimation techniques are presented and discussed in the literature, interested readers
are referred to [10]. The SOC tracking strategy of this powertrain is inspired by the Coulomb, or Ampere
hour, counting technique. It is classified as an integration method whose main advantage relies on the low
computational time and main disadvantage, the cumulative error given by the integral function. Following the
Coulomb’s idea, the actual SOC (SOC(t)) is expressed as the difference between the initial and used battery’s
charge as shown in equation 3.3. The second term of the expression represents the used charge, which is the
ratio between the cumulated discharge and initial charge.

SOC(t) = SOC(ti)−
1

C
·
∫ t

ti

Pbatt(t) · dt
V (t)

(3.3)

According to [10], any integration method used to track the battery’s SOC will become unreliable after a
long period of time due to the cumulative error inherit to any integral function. This error might debilitate the
controller’s performance as it needs a correct reading of the SOC to perform the power split decisions. Also, it
is informed that the method’s accuracy is dependent on the knowledge of the initial SOC. From a simulation
perspective, this requirement is effectively fulfilled, since SOC(ti) is a pre-defined parameter. Concerning the
cumulative error, for a Plug-in HEV, the integral can be often reset, i.e. set to zero, since one can assume that
the battery is fully charged at the beginning of each cycle, avoiding the cumulative error.

In the previous equation, Pbatt is the input or output battery power (W ), V is the battery’s open circuit
voltage (V ) and C is the battery capacity (C ). The integration, from the initial condition ti until an instant of
time t, is applied to compute the battery’s used capacity due to the electric power usage.

A characteristic of chemical batteries is that the terminal voltage is directly dependent on the actual state
of charge. Observing Fig. 3.1, one can understand this relationship and assume that the best utilization range
of the storage unit is between 20 and 90 %, where the output voltage remains relatively constant.

Figure 3.1: Open Circuit Voltage (OCV) curve of a new battery cell. The reader must refer to [11] for further
information. Data from Volvo Group (modified).

Reported the SOC estimation technique, a second state and its measurement approach will be described in
the next section.

3.1.2 State of Health

Any battery is subjected to degradation by calendar or cycle aging factors [11], these properties will influence
the energy storage capacity of the cells and consequently the available electric power of the hybrid vehicle. When
degradation reaches a critical threshold, the battery must be replaced to preserve vehicle’s performance, however,
this replacement generates additional costs to the owner and environmental issues (disposal of unhealthy units).
Usually, for EV, HEV and PHEVs the end-of-life of a pack is reached when its capacity drops to 80% or its
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internal resistance doubles compared to the manufacturer’s specification [13]. To track the battery health, a
variable that expresses the actual storage capacity in comparison to a brand new pack is used in the monitoring
system, it’s called State of Health (SOH) and is often given in percentage units. This variable aids the designer
to choose a product that fits the costumer’s needs, avoiding loose of electric propulsion, frequent recharges and
short life span.

The battery degradation model is a curve fitting function dependent on, for instance, the number of cycles
(Ncycle), and is represented in this work as follows:

∆SOH =
Pcell

f(Ncycle)
(3.4)

Where,

∆SOH =

∫
d(SOH)

dt
· dt (3.5)

3.2 Energy Management Strategy

As stated in the previous chapters, any hybrid vehicle must have an Energy Management Strategy to take the
power split decisions. The strategies used to perform the energy control are divided into two main areas, real-
time (instantaneous) and off-line (predictive) control. The latter method relies upon previous knowledge of the
Operating Cycle (e.g. topography), vehicle hardware (e.g. engine and electric machine) and on representative
models of them. Applying optimization algorithms, global optimum control decisions can be acquired at a
cost of high computational power and time. To apply this method in real-time situations the problem must be
represented in a convex form, e.g. one must express the ICE and EM power characteristics with polynomial
equations. The drawback of representing machines’ behaviour with low order polynomial equations is that
one might lose representativeness of the machines’ true performance, thus this approach was not applied in
this thesis. On the other hand, instantaneous methods are generally based on heuristic rules and the optimal
strategy is highly dependent on the developer’s expertise. It disregards most of the road properties and generally
takes into account powertrain specifications. Therefore, this approach has fast computation, allowing on-time
implementation, but losing optimality.

The control applied in this framework is the Equivalent Consumption Minimization Strategy (ECMS), an
instantaneous approach. Unlike most heuristic methods, the ECMS relies on optimization algorithms, however
it reduces the global minimization problem (Eq. 1.1) to an instantaneous one that can be quickly solved and
implemented in on-line events [14]. This approach applies a proportionality factor to the cost of electric power
compared to the cost of fuel power, thus an equivalent fuel consumption can be associated with the use of
electricity from the batteries. The ECMS optimality depends on the magnitude of this equivalence factor
(λ) that might change during a transport task. Normally, an optimum set of λ is found using optimization
algorithms. Then, it is stored and used as a look-up table by the control unit to solve the optimal control
problem. However, in this thesis, an adaptive ECMS method will be applied. This approach does not require
the pre-computation of any set. The following subsections will describe in detail how the controller makes
power split decisions in the powertrain based on this methodology.

3.2.1 Objective Function

The ECMS objective function is not only a mathematical expression capable of rating the cost of a control
action but also, if minimized, represents the optimal power split decision. The equation used in this thesis is
presented in (3.6) and as it can be observed, this function is not an integral of time, but rather a straight-forward
(instantaneous) function. From the expression, the engine power (Peng) is a function of the mass flow rate (ṁf )
and lower heating value (Qlhv) of the fuel, in this case, the diesel. Concerning the battery power (Pbatt), the
actual energy consumed from the cells is given by the output power at the terminals (Pout) and the internal
losses due to chemical reactions (Pchemical). The equivalence factor (λ) acts as a penalty function, designed for
a specific transport task, and will be treated separately in section 3.2.4. As discussed, this method does not
provide global optimum solutions, but rather an instantaneous one.

J = Peng + λ · Pbatt (3.6)
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Where,

Peng = Peng ( ṁf , Qlhv )

Pbatt = Pbatt ( Pout , Pchemical )

In the optimization problem, the battery output power is taken as the design variable. For each iteration
a guess value must be assigned to Pout and the chemical losses, the engine power and the final cost must be
computed.
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3.2.2 Optimization Framework

The block diagram shown in Fig. 3.2 represents the optimization framework used by the control system to
perform the power split decisions. The input signals are related to the current vehicle states, such as longitudinal
speed and battery SOC, and the driver’s power demand, translated via position of throttle and brake pedals.
After executing the optimization process, the control unit must return a set of signals that states how much
power each device must supply in order to meet the driver’s demand. In the following lines a brief description
of the optimization process is provided. The interested reader shall find further information of optimization
methods in [15].

Figure 3.2: Flowchart representing the optimization framework used to perform the control unit power split
decision.

The optimization algorithm is initialized after specifying a preliminary guess, P 0
batt, which can be, for

instance, the power demanded by the driver. P 0
batt is used in the first of many iterations required to solve the

instantaneous minimization problem. In each iteration the algorithm tries a different guess and both P ′eng and
P ′disc (power delivered by the brake discs) are found by solving a linear system of equations. Here, the prime
super-index stands for iteration. The following section describes how they are estimated from Pdem and P ′batt.
Given the iteration variables, P ′batt and P ′eng, the cost function is calculated and the constraints verified. If
the proposed solution is feasible and optimum, it is stored. This process is carried out until the algorithm’s
criterion for optimality is satisfied, i.e. the cost is a global minimum for the studied instant of time, or until
the process reaches a limit, e.g. time allowed for optimization. The control unit will then pick the stored action
P ′batt, now designated as the optimal control action (P ∗batt), compute P ∗eng and P ∗disc, and send the signals to
their respective devices.

Power-train Dynamics

For trucks powered with electrified dolly, the driver’s power demand must be supplied by the batteries,
brake discs or engine. This relation is displayed in Eq. 3.7.

Pdem = Pbatt + Pdisc + Peng (3.7)
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The ECMS objective function presented in Eq. 3.6 requires previous knowledge of the battery and engine
output power. Whenever the driver desires to propel the vehicle (i.e. positive power demand) the system
assumes that the brake discs must stay unapplied (Pdisc = 0). Since both P ′batt and Pdem are known, P ′eng can
be estimated by solving a system of equations that contains, for example, Eq. 3.7.

Regarding deceleration scenarios the following remarks can be made to explain how the optimization
framework finds a solution. It is known that both ICE and brake discs convert power into not useful heat. In
order to make better usage of the truck’s kinetic energy, the system will prioritize braking with the electric
drive so that the batteries are recharged using EM’s generator functionality. The amount of electric energy
recovered and thus brake is often bounded by either the battery or electric machine capabilities, e.g. maximum
power that the battery or EM can receive. Beyond this limit, the remaining power demand must be supplied
by other systems, prioritizing the engine and then the brake discs. However, the ICE will only participate in
braking if it posses an exhaust brake utility. A schematic of the prioritization method is outlined in Fig. 3.3.

Figure 3.3: Priority diagram for braking scenarios, high priority is given by the intensity of the red line. Sources:
Meritor (brake), Volvo Trucks (engine) and [16] (electric machine).

In this work, the e-dolly propelled axle receives all the brake energy that it can sustain. The limit is either
from the electric drive (batteries and EM capabilities) or from the available road friction. If the EM reaches
its full potential on power generation, or if the batteries are fully charged, and the tyre is not saturated in
friction, the disc brake can be actuated on this same axle. Remaining deceleration demand, if it exists, is then
distributed equally over the other axles. Here, the engine does not have an exhaust brake utility.

3.2.3 Constraints

An optimization algorithm can use constraints to guide the tool in the search for an optimal solution. In
the hybrid control case, constraints are based in hardware and physical limitations. For example, the electric
drive can only provide or receive a certain amount of power, this limitation can be translated into a constraint
as demonstrated by Eq. 3.8. Furthermore, the e-drive capability is bounded by either the battery or electric
machine, provided that the first could produce an amount of power that is larger than what the electric machine
can endure and vice-versa. Not only that, but in the same manner as the maximum battery power (Pmaxbatt )
relies on the number of packs and cells that it posses, the number of electric machines within the drive must
also be contemplated while assessing the system limitations. Gathering these statements one can represent the
maximum and minimum e-drive power as in 3.9 and 3.10, respectively.

Pmine.d. ≤ Pe.d.(t) ≤ Pmaxe.d. (3.8)

Where,

Pmaxe.d. = min( Pmaxbatt , P
max
e.m. · ne.m. ) (3.9)

Pmine.d. = max( Pminbatt , P
min
e.m. · ne.m. ) (3.10)

Regarding the engine limits, a straightforward relation can be prescribed as follows,

Pmineng ≤ Peng(t) ≤ Pmaxeng (3.11)
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Longitudinal stresses on the drawbar must never exceed the physical limit of the hardware. Constraint 3.12
ensures this limitation. The equation used to estimate Fd(t) is derived from a longitudinal free-body diagram
of the articulated vehicle and is shortly described in the appendix.

Fd(t) ≤ Fmaxd (3.12)

Vehicle stability will be described by the available grip between tyre and ground. Whenever a split action,
being evaluated by the controller, leads to a grip below the pre-defined threshold, this action will be disregarded
from the optimization algorithm to avoid wheel slip. Therefore, the instantaneous grip margin, ∆µ(t), must
stay within a safe zone through the entire cycle (3.13). The approach used to determine ∆µ(t) will be discussed
later in section 4.2.

∆µ(t) ≥ ∆min
µ (3.13)

The topology appraised in this work has no mechanical, neither electrical, link between the ICE and the
EM. This way, battery recharge cannot be directly made by the engine. However, the system could choose
to perform a strategy called road charging. To explain this strategy lets consider the following scenario. The
driver demands an amount of power Pdem to propel the truck forwards. Then, the controller decides that the
engine will provide more power than the one demanded (Peng > Pdem). Performing a balance equation one will
notice that an extra quantity of power (Pextra) is left on the system as follows.

Pdem − Peng = Pextra

To balance this equation, the controller decides to also brake with the e-drive, thus recharging the batteries.

Pdem − Peng + Pe.d. = Pextra = 0

This strategy is called road charging, as the connection between ICE and EM is given through the road.
Not knowing the scenarios that could benefit from this strategy, as energy conversion usually involves losses,
the road charging will be avoided applying the constraint expressed in Eq. 3.14. ηc.d. is the path efficiency of
the combustion drive, i.e. efficiency from the engine to the wheels.

Peng(t) · η-1c.d. ≤ Pdem(t) (3.14)

Any wheeled vehicle has its propelling/braking forces on axle ‘i’ (Fix) limited by two factors: the powertrain
capabilities, or the road friction (µ) limit and respective axle load (Fiz ). This property is described in equation
3.15 and is based on [5].

Fix = min(Fipwt
;µ · Fiz ) (3.15)

The powertrain forces (Fipwt
) are dependent on the power delivered by the propulsion system (Piprop) at

wheels, which includes all efficiencies along the path “motor to wheel”, and the brake power (Pidisc) provided by
the brake discs, see equation 3.16. Also, the vehicle speed (vx, m/s) and the rolling resistance (2nd component
of the expression) are needed to properly compute the force acting on the tire. CRRC is the rolling resistance
coefficient.

Fipwt
=

(Piprop + Pidisc)

vx
− CRRC · Fiz (3.16)

For the current case study the propulsion power can be given by either the ICE or EM, assuming respective
efficiencies, and is only present on the propelled axles. Therefore, an inequality constraint can be formulated
(3.17).

Fipwt
≤ µ · Fiz (3.17)

Other constraints are applied to secure the method feasibility and will not be covered in this report.
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3.2.4 Determining the Equivalence Factor

In a nutshell, the equivalence factor (λ) states the worthiness of using electricity from the battery than using
fuel from the tank. Therefore, if the value of λ is high, the algorithm will infer that the cost of using electrical
power is expensive, i.e. the controller is encouraged to use the engine while being discouraged from using the
electric machine to supply any power demand from the driver.

Usually, λ is defined as a map that points to its optimal value given the battery’s state of charge and the
vehicle position on the transport task. Optimization algorithms or machine learning methods, e.g. dynamic
programming [17] and reinforcement learning [18], are commonly used methods to compute the optimal set.
However, these approaches require high computational power, time and previous knowledge of the mission
and vehicle architecture. As a consequence, the values must be pre-computed and stored, or initialized before
starting the simulations. Also, the solution becomes very sensitive to the road and vehicle properties, i.e. a set
might be only optimal for a particular scenario. Once the parameters have been defined, table look-up methods
can be used to update the equivalence factor along the driving cycle, providing fast computation of the split
decisions.

In this work, the equivalence factor is estimated using an adaptive control method, which considers the
actual battery state of charge, function of time, and a target state of charge curve, function of the vehicle
position relative to the cycle (Eq. 3.18).

λ(SOCactual(t);SOCtarget(x)) (3.18)

This approach does not require pre-computation of any set, the magnitude of λ is given by the deviation of
the actual SOC to the target one. The penalty function applied to estimate the equivalence factor is based on
a tangent function [19]. The main advantage of the adaptive property is the flexibility given to the controller,
which does not need to follow the target curve, but rather use it to guide the power split decisions.

While using ECMS, the target curve should represent the global optimal trajectory of the battery’s SOC
through the mission. In turns, the curve would provide the ideal way to use electrical energy from the storage
unit. For instance, this curve could be found using optimization algorithms. Fig. 3.4 depicts a global optimum
curve achieved using Dynamic Programming [20].

Figure 3.4: Optimal SOC curves acquired using dynamic programming. “It” stands for iteration. Plot from [20].

Still, this work must not seek for optimal target curves. Therefore, the following assumption was made.
Examining the optimum curves was noticed a linear trend from the initial towards the final SOC. Taking
advantage of this fact, linear and piece-wise linear functions were used to represent the target SOC (Fig. 3.5).
It is clear that this assumption cannot lead to the best energy usage, but at least provide a satisfactory way to
perform the control decisions. Each curve represents a different charging scenario. For the dashed one it is
assumed that a charging station is available at the dry-port, so the batteries can be recharged while the freight
is being unloaded off the trailers. As regards to the straight line no charging is performed during the cycle.
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Figure 3.5: Optimum state of charge target curves used in the simulations. The solid line represents a scenario
without charge, and the second with it.

The tangent function makes the ECMS feasible for online applications because the optimal SOC curve is
only used to aid the control unit and must not be precisely followed. For example, to overtake another vehicle,
the powertrain is highly requested for power. If the control unit was compelled to strictly follow the SOC
reference, maybe, the driver would not have access to any other amount of power other than the one stated
by the optimal SOC curve. With the tangent function, flexibility is given to the control method. Now, the
optimal SOC curve can be disregarded and more power accessed by the controller. As a consequence, a penalty
is applied to the cost of electric energy.

The figure below illustrates the tangential behaviour of the penalty function. If the actual charge deviates
from the target (Eq. 3.19), causing the battery to have less stored energy than it should (positive deviation,
SOCdev > 0), the magnitude of λ must increase, indicating that the electricity cost is higher than the fuel.
This is represented in the middle chart of Fig. 3.6. The opposite can be assumed if the battery has more energy
than the target value and it is represented in the rightmost plot.

SOCdev =
SOCtarget − SOCactual

SOCtarget
(3.19)

Figure 3.6: Representative shape of the tangent function used by the control algorithm to penalize the equivalence
factor due to deviations from the target state of charge.
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Described the longitudinal model, the next chapter will discuss the equations and methods applied to asses
the A-double lateral dynamics and how it is assembled to the longitudinal frame.
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4 Vehicle Lateral Model

Any commercial vehicle may be subject to roll or yaw instability while driving, but articulated vehicles in
particular, e.g. long haul trucks, are more inclined to develop unpredictable behaviour than non-articulated
vehicles (i.e cars). Factors that can give an explanation for this sensitiveness are high centre of gravity and
one aspect native to articulated vehicles, rearward amplification. As specified by [21], yaw stability is mainly
dependent on both vehicle speed and lateral acceleration.

As mentioned, combination trucks are more sensitive to lateral acceleration than regular vehicles, but hybrid
trucks coupled with two separate propulsion systems might have greater tendency to be unstable. According to
[5] a rolling tyre is much more laterally stiffer than propelled or braked ones. Therefore, the driven tyres of the
e-dolly have less resistance to lateral disturbances and the vehicle must be less stable. On that account, to
avoid scenarios where a combination of lateral and longitudinal acceleration produces saturation of tyre’s side
or frontal grip, leading to spinout, jackknife or trailer swing, a simulation block must be implemented in the
longitudinal model to constraint tyre saturation level while optimizing the torque split.

4.1 Vectorized model

The lateral stability model applied in the main simulation framework is a vectorized single-track model for
articulated vehicles that uses Modelica language to be described [22]. The one-track hypothesis implies that
tires belonging to the same axle are treated as a single virtual tire, positioned at the centre of the holding axle,
which simplifies equations and improve simulation speed without losing relevant reliability. Modelica coding
style does not require explicit formulation neither to use symbolic toolboxes in order to find results from a
system of equations, the compiler is responsible to perform all necessary mathematical actions to solve the
problem, preserving the intuitive shape of all expressions. Furthermore, the coupling equations were held as
non-linear kinematic constraints, avoiding small angle approximation between units and validating the model
for high/low-speed manoeuvres.

The combination truck considered in this research possess 4 units, 5 group of axles and 11 axles. Only the
first axle of the tractor is steered, i.e. the e-dolly is modelled without a steerable axle. The second axle of
the tractor and e-dolly units is propelled; by an ICE and an EM, respectively. The system of equations that
describes the dynamic behaviour of the truck is also described in [22] and are designed to represent a large
range of articulated vehicles. Thus, to make use of this tool, one must supply the model with arguments that
define the truck’s shape, e.g. number of units, axles, metric dimensions and tire properties. The A-double 6x4
was defined using OpenPBS library [23].

In order to match the Modelica lateral model with the Simulink longitudinal model, so co-simulation became
possible, a modification on the longitudinal force balance equation on the Modelica model was made. Comparing
Eq. 4.2 with the one presented in [22], Eq. 4.1, it is possible to notice that this expression has additional
elements. Air drag and road grade contributions were the changes implemented in this equation, essential
elements to evaluate vehicle longitudinal performance. The air drag resistance depends on the drag coefficient
(Cdrag), the air density (ρair) and vehicle frontal area (Afront), while the road grade contribution is a function
of the gravity acceleration (g), the road grade (ϕ) and vehicle mass (m). Even though this modification was
applied, to compute the same vehicle states from both environments is difficult, since different solvers and
techniques are used within each platform, thus the results from each approach might have a small divergence.

m · ax = Fx − Fcx,rear + Fcx,front
· cos θ − Fcy,front

· sin θ (4.1)

m · ax = Fx − Fcx,rear
+ Fcx,front

· cos θ − Fcy,front
· sin θ − 0.5 · Cdrag · ρair ·Afront · v2x +m · g · sinϕ (4.2)

Having fixed the vehicle of interest and given the appropriate inputs, here defined as tire steering angle (δ),
longitudinal forces on the axles (Fx) and road slope, the system is able to determine the vehicle speeds (vx, vy
and ωz), accelerations (ax, ay and ω̇z) and remaining unknowns, e.g. lateral forces on the wheels (Fy) and tire
side slip (sy). These variables are used to compute the tyre’s grip margin, discussed in the following section.
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4.2 Strategy for Vehicle Stability Analysis

Any wheel rolling on a rough surface has its maximum traction/brake force, Fw, bounded by the road coefficient
of friction (µ) and by its normal load (Fwz

) as described in equation 4.3. This assumption gives a bases for the
friction circle theory, which represents the relationship between tire and road surface.

|Fw| =
√
F 2
wx

+ F 2
wy

6 µ · Fwz (4.3)

The theory states that, the norm of any vector acting on a wheel lies within a circle of radius µ · Fwz . A
graphical representation is shown in Fig. 4.1. From the diagram, one can identify the tyre, which rolls over
the xy plane (ground), the disturbing force Fw and its lateral (y) and longitudinal (x) components, and the
friction circle with radius R, function of the proposed parameters. Also, one must notice that both circle and
vector have origin at the centre of the wheel contact patch, considered uniformly distributed over the ground.

Figure 4.1: Graphical representation of the friction circle applied to rubber tyres.

The strategy for stability analysis takes the difference between friction limit and applied force, here addressed
as margin grip (∆µ), to inform that the vehicle is stable or not. As shown in Eq. 4.4 the margin is a normalized
variable. Therefore, a vehicle will be considered stable if the margin stays within the 0 and 1 range, implying
that the tire is not sliding front or sideways (stable behaviour). By analogy, if the margin goes below zero, one
can assume that the tire is slipping and that the normalized force has magnitude greater than one, exceeding
friction circle radius. The normalized friction circle is illustrated in Fig. 4.2.

∆µ =
µ · Fwz

−
√
F 2
wx

+ F 2
wy

µ · Fwz

(4.4)

In section 1.4, it was mentioned that a linear tyre model is used in the vectorized model, i.e. it assumes no
friction saturation. Considering that a brush tyre model with combined slip and uniform pressure distribution
remains linear until half of the tyre’s maximum longitudinal force (|Fwx | = µ · Fwz ) [5], it is possible to assume
that the linear model is valid until the same measurement. Therefore, instability must be addressed if ∆µ goes
below a 0.5 threshold. Observing this approach, one cannot state what kind of instability event the vehicle is
experiencing but only infer that the wheel is slipping. Then, using ∆µ information, the control unit must take
actions, if necessary, to avoid tyre slip, for example, by choosing different power split or, in a more sophisticated
control, delivering less power than the one demanded so friction saturation is not reached.
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Figure 4.2: Graphical representation of the normalized friction circle applied to rubber tyres.

4.3 Implementation of the FMU

In automotive engineering, as the name suggests, longitudinal simulations are mainly concerned with describing
the longitudinal vehicle dynamics. They are often used to asses, for instance, control strategies and the vehicle’s
energy consumption. In order to understand how the lack of lateral dynamics affects these simulations and
their results, a FMU is used to include the vehicle’s lateral dynamics into the longitudinal simulation model.
The FMU, which was generated from the Modelica code, can be imported into Simulink as a block, or into
Matlab scripts as a function. Both implementation methods were used in this thesis.

The first one was applied to observe how many critical events are found in the studied cycle, i.e. how
frequently ∆µ of any tyre stays below the threshold. This FMU block substitutes the chassis block within the
vehicle module, whose responsibility is to compute the vehicle longitudinal speed (vx).

In order to compute the vehicle states and the margin grip, the FMU must be supplied with the tractive
or braking forces on each axle, the road angle and the wheel steering angle. These inputs are provided to
the block in the following manner. After computing the power split a simple logic is used to estimate the
longitudinal forces acting over each axle. Power derived from, or going to (brake), the battery is applied in the
propelled axle of the e-dolly. Power derived from the combustion engine is applied in the propelled axle of the
tractor unit. Additionally, when it comes to braking, besides the power supplied by the resistive forces from
the generator and rolling resistance, remaining brake energy is equally distributed among the other axles via
brake discs. Forces are derived from Eq. 4.5.

Fix =
Pi
vx

(4.5)

The forces are then stored in a matrix and used as inputs to the FMU. It uses the equations presented in the
previous section and computes all remaining unknowns, including the margin grip. The wheel steering angle is
acquired as shown in Eq. 4.6, where Lwb stands for the length of the tractor’s wheel base and c, the curvature.

δ = Lwb · c (4.6)

The second approach, FMU as a function, was used to implement the instantaneous evaluation of ∆µ within
the optimization process. This way, the control unit can disregard any split action that leads to instability
while solving the optimal control problem. The FMU is imported into the script using Modelon’s Functional
Mock-up Interface (FMI) Toolbox. When evaluating the margin grip Eq. 3.13 is used as a constraint. The
FMU is called to compute all tyres margin grip, the lowest ∆µ is stored and informed to the constraint. If
this value is greater than the threshold, it is a valid split action. Unfortunately, this method requires to much
computational time; therefore, a full simulation of the operating cycle was not performed but rather small
sections of it.
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5 Model Validation

In this section, the models and methods presented have been validated in order to ensure their reliability and
consistency. Validation has been performed through analysis of the simulations’ output, displayed in diagrams,
and by a brief discussion on their behaviour relative to prior expectations. Such study will guarantee that
reasonable answers are given to the thesis inquires.

State of charge tracking

Considering the adaptive approach imposed to the energy management strategy (described in section 3.2),
it is expected that the actual SOC will have a similar shape to the target curve. Plotting the actual and
target SOCs over the vehicle position (Fig. 5.1) it is possible to recognize that the battery level follows the
presumption, remaining close to the reference. The latter characteristic confirms the flexibility given by the
tangent function on the controller. One can also identify that the electrical charge, supposed to take place at
the dry-port, was accomplished.

Figure 5.1: Battery energy usage along the cycle. The blue line, true state of charge of the ESS, follows the
black one, the target curve. The initial SOC is set to 90% and the final to 20%. Battery is recharged in the
dry-port. Data from a 80 tonnes vehicle powered with D13 engine and three packs of energy optimized batteries.

To further understand how the equivalence factor varies according to the actual charge state, λ was plotted
over a small section of the cycle. Fig. 5.2 depicts the selected area. From the plot, one might identify that
penalization is quickly given to λ whenever the SOC level diverges from the target and that the penalty applied
to the equivalence factor is proportional to the deviation size. Initially, the battery level is below the reference,
and therefore λ shows a high value. As the system recovers energy, the factor is penalized and its magnitude
decreases, reducing the cost of electric power and stimulating the controller to consume electricity instead of fuel.
The opposite can be noticed when the charge level ascends the target and the algorithm increases the cost of elec-
tricity, avoiding its usage. This behaviour is exhibited by the equivalence factor several times during the mission.
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Figure 5.2: Effects of the actual state of charge on the equivalence factor.

Influence of road grade on vehicle speed

Assuming that propelling forces are kept constant, any vehicle subjected to a steep road grade will have its
speed reduced due to gravity and increased if exposed to a deep grade. To make a sanity check of the proposed
model, the following diagram of vx and road grade over position is presented. One can visualize the changes in
vehicle longitudinal speed due to road grade fluctuations. For example, as shown in km 62, a great amount of
velocity is lost when the truck needs to climb a small hill, which is a common behaviour for heavy duty trucks.

Figure 5.3: The influence of road grade on the vehicle speed.
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Power distribution

The control approach, used to manage the energy flow within the system, must decide which machine will
deliver the driver’s power demand based on the equivalence factor. At some point, the cost of electricity will be
lower than the fuel, under this circumstance the controller must use the electric drive to aid the engine, or even
alone, to boost the vehicle. It must be done so the engine operates at a high efficiency zone and fuel can be
saved. Furthermore, in the case of high equivalence factor, the ICE shall provide most of the demanded power,
as the cost of fuel will be lower than of the electricity. Fig. 5.4 shows the power distribution of the powertrain
in a section of the operating cycle.

Figure 5.4: Split actions performed by the control algorithm.

From the diagram, one can verify that the electric machine, engine and brake discs add to each other in
order to fulfil the power demands made by the driver. Moreover, the ICE is responsible to deliver the most
part of the propelling power. With respect to braking scenarios, the EM is prioritized and the discs are used
to complement the request. No engine brake can be observed in the plot due to the lack of exhaust brake
functionality assumed in this system.

One can also notice that, while propelling the vehicle, the power delivered is always greater than the
one requested, since every mechanical device that transport or converts energy holds an efficiency in its
path that will reduce the output power (coming out from the machine) when compared to the input. In
a powertrain this is given, for instance, by clutches, gears and differentials. During brake, this behaviour
does not happen since friction brakes are considered ideal machines whose purpose is to convert energy into heat.
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6 Results and Discussion

In this chapter, studies on vehicle performance and stability will be carried out using the simulation
framework earlier defined. The objects of study, as stated, are two long vehicles (A-doubles) that differ by
their Gross Combination Weight (GCW) and hardware. Some results will be displayed as percentages to cover
sensitive data.

6.1 A Comparison on Fuel Consumption

For the same GCW, a truck may vary in engine size and battery type. Remaining machines, e.g. electric motor
and gearbox, are fixed. Three engine sizes and six battery types are available for testing, further technical
specifications are provided in the appendix (Tab. A.1 and A.3). Defined the design parameters, specific hybrid
set-ups were compared to a regular diesel-powered truck in terms of mission fuel consumption. This comparison
aims to understand which type of battery pack would perform best in the given powertrain considering price,
electric range and fuel consumption.

Energy optimized batteries have larger storage capacity, but less throughput power, i.e. traction capacity.
On the other hand, those power optimized have higher throughput power, but less storage capacity. So,
the designer must make a trade-off between this characteristics and choose the product that best suits the
costumer’s needs. Normally, HEVs spend less fuel due to their extra electric motor. In this regard, it is expected
from the following analysis that all combinations exhibit some fuel economy relative to the diesel-powered
vehicle. Furthermore, the savings must be proportional to the battery’s capacity, as the vehicle will have more
access to electric power while performing the distribution task.

Starting with the 80 tonnes case, simulations were performed considering the load distribution from OpenPBS
database (Tab. A.2 in the appendix). Later, total fuel consumption was stored for each combination under
evaluation. Fig. 6.1 depicts the fuel saving of the hybrid topology in comparison to the conventional one for
different battery types.

Figure 6.1: Fuel saving of 80 tons heavy-duty trucks powered with e-dolly and D13 engine relative to a
conventional diesel truck powered with a D16 engine. Nomenclature: BP - Battery Pack; E - Energy; Opt -
Optimized; P - Power. withCharge and noCharge designates if the battery is charged or not at Bor̊as.

Based on the results, shown in the bar plot, it is possible to infer that the expected behaviour of fuel
economy is present in all cases. Furthermore, the vehicle savings are proportional to the battery energy storage
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capacity and to the presence of a charging station at the dry port. The last vehicle configuration, with four
packs of energy optimized batteries, shows the best fuel saving, driving the majority part of the task in electric
mode. Despite the significant fuel saving shown by this combination, the additional cost associated to its usage
is much more expensive than a vehicle, for example, with 2 power optimized batteries. Therefore, the cost
of ownership for this arrangement increases considerably, making it infeasible for the studied transport tasks.
Considering the cost, fuel saving and the electric range, a powertrain equipped with two power optimized
batteries shows the best cost-benefit ratio.

Fig. 6.2 shows the fuel savings for the 60 tonnes case. Compared to the previous results, similar statements
can be made to this scenario. However, energy optimized batteries stand out over the power optimized ones,
proving similar fuel consumption with a lower number o battery packs. This might be occurring because energy
capacity is more relevant than traction capacity for this lower weight case, i.e. the truck does not required all
the traction power provided by the power optimized models.

Figure 6.2: Comparative analysis of different hardware combinations for a 60 tons heavy duty truck.
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6.2 A Comparison on Vehicle Performance

Considering that the hybrid vehicle has one additional driven axle, allowing greater road grip utilization, one
can expect that the tractor plus e-dolly combination, for any weight class, has higher traction capacity than
the conventional one. This aspect must provide better performance on vehicle average speed, acceleration and
thus mission time.

Gradeability

According to [24] gradeability is the maximum uphill grade that a laden vehicle is capable of sustaining at
a certain speed. In addition to this description, gradeability definition will account another aspect, which is
to maintain high gears. Such condition is of great interest in vehicles equipped with stepped transmissions
to reduce downshift while going on uphill so the engine operates in higher efficiency zones. Gradeability was
assessed only for a severe slope condition of 5 deg. All outcomes are shown below.

GCW 80 tonnes

Engine Battery ∆Speed (%) ∆Gear

D13

1BP/P/O 2.38 0

2BP/P/O 21.43 1

1BP/E/O -7.14 0

2BP/E/O 2.38 1

3BP/E/O 21.43 1

4BP/E/O 21.43 1

GCW 60 tonnes

Engine Battery ∆Speed (%) ∆Gear

D11

1BP/P/O 17.07 1

2BP/P/O 56.66 2

1BP/E/O -12.20 1

2BP/E/O 12.20 1

3BP/E/O 53.66 2

4BP/E/O 63.41 2

Table 6.1: Results from a 5% gradeability simulation of an A-double coupled with e-dolly and different battery
types. The column ∆Speed states the difference in maximum longitudinal speed of the given hybrid combination
in comparison to the reference vehicle. Column ∆Gear states the number of gears that the hybrid truck was
above or below the gear of the reference vehicle. Also, ∆Gear is only assessed for the gearbox on the tractor
unit. The reference parameters are from an ICE truck powered with D13 (60t) or D16 (80t) engine. Battery
nomenclature: number of battery packs / power or energy / optimized.

From the table, truck gradeability is improved for almost all combinations, except if applied 1 battery
pack of energy optimized to the EPS. For the 80t vehicle, a reason can be understood by observing engine
specification in Tab. A.3. Comparing the maximum output power from a D16 engine with a D13 plus the
battery in question, the maximum propelling power achieved by the standard vehicle is greater than the one
with e-dolly (approximately 10%), resulting in a lower powertrain performance and thus a lower gradeability
performance.

As the vehicle is described with a quarter car model, the whole combination weight is sustained by just one
axle. Analysing equation 6.1, the maximum longitudinal force (Fmaxix

) that an axle can sustain before slip is
directly dependent on the normal load (Fiz ). Therefore, in the gradeability simulation, the tyre will not slip as
the available grip is too high (Fiz too high). Maybe, if the grip limit was conditioned with load distribution,
one could find a different result on the previous case, as the hybrid LCV has more friction available because of
the extra propelled axle on the e-dolly.

Fmaxix = µ · Fiz (6.1)

For the 60t combination, one cannot explain the slower speed using the same reasoning as before, thus
another explanation must be addressed to this case. Observing the column Gear, the simulation shows that the
e-dolly topology is one gear step higher than the one presented by the conventional vehicle. Since high gears
give lower traction capacity, this might be causing the hybrid truck to have a lower velocity in the gradeability
test. To examine this assumption, the simulation was performed again with a constraint. Now, the speed is
bounded to be at least equal to the one shown by the diesel-powered truck. From the simulation the vehicle
speed was 7% greater than the conventional one, but with the same gear; i.e. ∆Speed 7% and ∆Gear 0.
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Average speed

Hereupon, considering that some batteries are expensive or posses either low traction or storage capacity, only
two battery types were applied in the following analyses. They are, the formerly mentioned two packs of
power-optimized batteries, due to the best cost-benefit ratio; and, three packs of energy-optimized batteries, as
it yields the same throughput power as the two power-optimized packs but with a larger energy capacity.

In order to sustain the gradeability test and aid the average speed analysis, the longitudinal speed was
plotted over the same road length for both hybrid and diesel trucks, i.e. they are subjected to the same road
grade.

Figure 6.3: Longitudinal speed profile of 80t trucks with (hybrid) and without (diesel) e-dolly over the same
road grade and length. The hybrid vehicle posses 2 packs of power optimized batteries.

As demonstrated by the speed profiles in Fig. 6.3, the hybrid combination sustains its velocity better than
the diesel truck under the same road grade conditions. This output supports what has been presented in the
previous section, that the vehicle with an additional electric drive will perform best in gradeability. Also, if the
hybrid vehicle is capable of better maintaining its speed, one can assume that the same vehicle shall have a
better mission average speed than the regular one. Tab. 6.2 shows a comparison between the study objects and
confirms this assumption.

80 tonnes

Battery Charge ∆Average Speed (%)

2BP/P/O
No 3

Yes 2

3BP/E/O
No 3

Yes 3

Table 6.2: Average vehicle speed shown by 80t hybrid combinations relative to the case without e-dolly. Different
hardware set-up and charging scenario are evaluated.
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Gear shifting

Gear shifting involves a series of mechanical actions in the powertrain related to the motion of moving parts,
e.g. clutches and gear wheels. Whenever one of these elements are engaged to or disengaged, wear occurs as
a result of the relative movement of two solid surfaces. Comparing two vehicles that, for instance, have two
different gear-shifting strategies, the one that performs a higher number of gear-shifts over the same cycle will
show a reduced gear wheel lifetime due to wear.

Worn gears have less efficiency when compared to those unused, dissipating more power and consequently
increasing fuel consumption. All these debilitating factors might lead to early product replacement yielding
additional costs to the costumer. Hence, to decrease number of gear shifts performed by a transmission system
is naturally stated beneficial. On this knowledge Tab. 6.3 displays the amount of gear-shifts executed by the
hybrid architectures over cycle under consideration. Again, the results are compared to the reference vehicles
earlier declared.

80 tonnes

Battery Charge ∆Gear Shifts (%)

2BP/P/O
No -4

Yes -8

3BP/E/O
No -9

Yes -15

Table 6.3: Percentage of gear-shifts showed by 80t hybrid combinations relative to the reference vehicle. Different
hardware set-up and charging scenario are evaluated.

As expected, the hybrid truck performs less gear-shifts than the conventional one. Also, in with charge
scenarios, lower percentages are found. The presence of a secondary propulsion system, in this case an electric
motor, causes the engine to operate less than usual and so the gearbox. Furthermore, if one takes into account
that a truck’s lifetime is approximately 5 years, to reduce the gear-shifting by, for example, 4% on each task,
this reduction might lead to a considerable impact on the costumer’s total cost of ownership. Therefore, the
electrified dolly favours the lifespan of moving parts and consequently total cost of ownership.
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6.3 A Comparison on Vehicle Stability

In order to claim that long haul trucks coupled with e-dollies are dynamically more unstable than conventional
ones, the margin grip strategy, presented in Sec. 4.2, is applied. The axles’ margin grip were assessed by
post-processing the data obtained from the longitudinal simulations as follows. Primarily, the functional
mock-up interface is instantiated with the necessary variables from the data file, e.g. vehicle speed and the
longitudinal forces on the axles. Then, the model is initialized and the grip margins are computed. The
minimum margin over all axles is used to define the vehicle’s minimum margin curve, displayed in Fig. 6.4.
This process is done for both diesel and hybrid vehicles.

Figure 6.4: Minimum grip margin curves of a conventional diesel truck powered with a D16 engine (ICE) and
an e-dolly hybridized truck powered with a D13 engine and 2 power optimized battery packs (HEV).

From the plot it is possible to observe that both vehicles show similarities in margin grip behaviour. Although
the blue line, which represents the margin of the e-dolly combination, stands out from the red one, they shows
almost the same grip depreciation when reaching low margin values. To better understand the outcomes from
the post-processing a second chart was depicted in Fig. 6.5.

While cornering, lateral forces are developed on the wheels, this in turn, reduces the available grip between
road and tyre, making it easier to cause wheel slip. As can be seen in the plot, whenever the driver faces a curve,
which implies that a steering input is given to the wheels, the available grip decreases. One can also observe
that the depreciation is proportional to the magnitude of the steering input. This observation shows that the
model acts as expected, giving some reliability to the stability approach developed earlier. Summarizing from
both plots, one can state that the average stability of a long combination vehicle powered with an e-dolly
suffers a small depreciation in comparison to a standard vehicle not equipped with this device.
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Figure 6.5: Minimum grip margin curves and normalized curvature from a section of the operating cycle. ICE
refers to the standard diesel truck and HEV to the hybrid e-dolly combination truck. The curves were smoothed
using “pchip” function from Matlab.

Figure 6.6: Grip margins of the tractor’s steered and propelled axles, and e-dolly’s propelled axle of the hybrid
combination truck. As mentioned in sec. 4.1, the e-dolly is modelled with a non-steerable axle. The curves were
smoothed using “pchip” function from Matlab.
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Figure 6.7: Grip margins of the tractor’s steered and propelled axles of the standard diesel truck. As mentioned
in sec. 4.1. The curves were smoothed using “pchip” function from Matlab.

Considering the margin behaviour of the selected axles displayed in Fig. 6.6 and Fig. 6.7, one can state that
the steered axle is the one most responsible for depreciating the truck’s minimum grip margin curve, illustrated
in Fig. 6.5. Also, is possible to imply that the lateral stability of the vehicle plus e-dolly combination is not
heavily affected by the extra propelled axle. The main difference between a truck with and without an e-dolly
is the axle responsible for lowering the margin grip, which changes between the ICE and EM propelled axles
according to the power split actions, depicted in the last two plots.
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6.4 The Influence of the Stability Constraint on Control Decisions

To identify how the stability constraint affects the control unit power split decision, simulations were performed
with and without the margin grip limitation within the control algorithm. The objective is to detect any
changes in the split action performed by the controller and verify if these changes have substantial discrepancy
to the usual actions. Such knowledge will point out where longitudinal models, generally used to estimate fuel
consumption, are strongly affected, or not, by the dynamics of the truck. To perform this analysis, a segment
of the cycle, which includes steering inputs and both powertrains usage, was chosen. The diagram below shows
how the power distribution behaves for each control strategy. Also, both algorithms must supply the same
amount of energy, demanded by the driver, so a fair comparison is made.

Figure 6.8: Simulation results of a vehicle using two different control strategies (with and without stability
constraints). Upper diagram: battery and engine output power over position. Lower diagram: tractor and
e-dolly propelled axles’ grip margins over position. “s.c.” stands for stability constraint and “w/” for with.

In the diagram, the blue color is used to represent variables associated to the e-dolly, i.e. the battery output
power and the margin grip of the electrically propelled axle. The red colour, in the other hand, represents
variables related to the tractor unit. Moreover, dashed lines characterize split decisions made considering the
stability constraint (Eq. 3.13), while the continuous ones refer to split decisions without this constraint.

Considering the case scenario where no stability constraint is used, the tractor’s propelled axle ∆µ is below
the threshold, approximately 0.38 at 25.6 km. However, examining the margin curve of the e-dolly’s propelled
axle, considerable grip is available for usage by that axle, which could be used to assist the first axle. After
implementing the grip constraint in the algorithm, a different split action is picked by the control unit. Now,
the engine supplies less energy than before, increasing the grip margin of the tractor’s propelled axle. The
opposite happens to the battery, which is used to supply the remaining energy demand from the driver.

Paying attention to the figure, one may notice that both diagrams show a mirrored behaviour. This can be
motivated as follows. The grip margin is inversely proportional to both longitudinal and lateral forces. These
are mainly developed from the input power and the steering angle given to the wheel, respectively. Therefore,
if the lateral forces are kept constant (i.e. no steering input) and the power decreases, the longitudinal force
over the axle will also decrease. Thus, the grip margin will increase. Also, the margin will display a mirrored
behaviour to any oscillation in power. See Fig. 6.8.

To better understand how the controller make its decisions, a single time step that bears an unstable event
was used to demonstrate how the power distribution changes due to the inclusion of the grip margin constraint.
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Table 6.4 displays the actions taken by the control system and the respective outcomes.

Split Decisions

Variable With Lat. Control Without Lat. Control Unit

Pdem 370 370 kW

Pdelivered 418 410 kW

Pbatt 87 5 kW

Peng 331 405 kW

∆µ +10.35 -9.81 %

Table 6.4: The difference in the power split decisions made by two control units, in which one of them does not
consider the vehicle’s lateral stability and where the same input conditions are given.

Observing the results, when the controller neglects the grip constraint, almost all power demand is supplied
by the engine. This, in turn, causes the available grip in the tractor’s wheel to go below the threshold, indicating
that the wheel is either slipping front or side ways, converting power into heat and wearing the tyre. In contrast,
the case with lateral constraint shows that the control unit adopted a different split decision in order to maintain
the tyre grip above the threshold. This was done by using the electric axle to aid the diesel-powered one,
keeping the grip of the tractor propelled axle in a safe region.

Summarizing, once the grip margin is used as a constraint in the optimization problem, different split
decisions are made. Therefore, one can claim that, stability constraints do affect the control unit’s power split
decisions. However, these decisions only differ in particular sections of the operating cycle, e.g. during unstable
events. Knowing that these events are sporadic, one can also claim that, for simulations whose objective is to
estimate energy consumption, these different split decisions might not produce a significant impact on the final
result.
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6.5 The Influence of Drawbar Limitations on the Control Decision

Regarding deliverable 4, in section 1.4, an expression is proposed to estimate stresses on drawbar couplings. To
implement the equation as a constraint in the optimization algorithm, without increasing its run-time, the
expression is made explicit and simple. Represented by Eq. 6.2, this expression only computes the longitudinal
force on the coupling joint as drawbars are often subjected to longitudinal pushing and pulling forces. The
equation requires the vehicle mass distribution, where me is the mass pulled by the e-dolly and mt the mass
pulled by the tractor unit, and the forces acting on the axles (Fix) as inputs. Appendix B demonstrates how it
was obtained using a free-body diagram of the articulated truck.

Fd =
(F1x + F2x + F3x + F4x + F5x + F6x) · (me

mt
)− (F7x + F8x + F9x + F10x + F11x)

1 + (me

mt
)

(6.2)

The equation above intends to help the designer in two ways. First, to judge whether or not a drawbar
model supports the loads arising from the motion of the truck (in the given cycle). This is done by knowing the
magnitude of the forces acting on the drawbar (Fd). Second, to understand how the control unit (optimization
algorithm) will perform with additional constraints.

The plots on Fig. 6.9 and 6.10 are from two different simulations, they differ in the force allowed on the
coupling point. The plots in the first figure were acquired applying a limit of 100 kN to the drawbar stress, and
the ones in the second figure, 20 kN. By presenting the power distribution and the drawbar force it is possible
to understand the influence of the studied constraint on the control unit decision making and to verify the
proposed model.

Figure 6.9: Simulation results of power distribution and force on the drawbar over position for a component
with mechanical limit of 100 kN.

Observing the left chart on Fig. 6.9, the propelling power is mostly given by the ICE (dotted red line).
According to the plot on the right side, this split decision leads to coupling forces greater than 30 kN, which is
below the 100 kN bound settled in the simulation. If the limit is changed to 20 kN, the controller shall decide
for a different split distribution to keep the drawbar stress below the new threshold. On Fig. 6.10, the second
scenario (20 kN ) is addressed. From the left-hand side picture, one can realize that the controller avoided
reaching the new threshold by changing the output power of both ICE and EM, i.e. propelling the vehicle’s
second-half with the e-dolly, thus the tractive force acting on the drawbar joint is diminished and the constraint
satisfied as shown in the right-hand side of Fig. 6.10. This short comparison depicts the effectiveness of the
proposed formulation. Also, this shows how a control system can be shaped to reach some objectives through
implementation of new constraints.
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Figure 6.10: Simulation results of power distribution and force on drawbar over position for a component with
mechanical limit of 20 kN.

Fig. 6.11 delineates how the drawbar experiences stresses throughout the cycle. Inspecting the peaks one
will notice that the mechanism by no means reaches the threshold of the drawbar inspected in this thesis with
mechanical limit of, approximately, 100 kN. Furthermore, the peak value has a magnitude three times lower
than the upper bound, thus one can imply that the safety factor of the component, assessed for the hardware
set-up described in the figure, is close to 3. Such a value of safety factor is commonly used for mechanical
components of heavy duty trucks. Therefore, one might assume that the equation is reasonable.

Figure 6.11: Force on drawbar due to propulsion and brake of the combination vehicle over position. The
drawbar constraint is set to 100 kN.

In addition to the previous analyses, the fuel consumption was also compared. Again, both study cases
were assessed (20 kN and 100 kN ). It can be seen from Fig. 6.11 that, for most of the cycle, the force on the
drawbar remains below 20 kN. Therefore, if the force allowed on the drawbar is reduced to 20 kN, one expects
that the power split decisions will not change much as well as the fuel consumption in comparison to the 100
kN case. The simulation results show that, if the bound is set to 20 kN, the vehicle consumes 1% more fuel
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than the other study case, which is reasonable considering the presumption afore mentioned.
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7 Conclusion

This thesis provided an overview of the e-dolly concept and explored how it affects the energy consumption and
powertrain performance of long haul trucks. Furthermore, it was investigated how vehicle stability constraints
change power split decisions made by the control unit of a hybrid vehicle. A forward simulation model and an
adaptive ECMS controller was used and described in this thesis work. In the study case a short set of batteries
were assessed.

According to the results, the e-dolly technology is a promising feature for heavy duty trucks. Vehicles
powered with this system and equipped with a downsized engine show good fuel savings, approximately 16%
considering an e-dolly with two power optimized battery packs, and better performance in almost all aspects of
vehicle capabilities, i.e. ∼21% in gradeability, ∼3% in average speed and ∼-4% of gear-shifts.

As regards vehicle stability, the analysis performed in Sec. 6.4 showed that stability constraints do affect
control decisions, however, only during unstable events, which are a few in the evaluated cycle. The high
computation time, the complex formulation and the low impact of a control algorithm that considers stability
constraints does not encourages the application of this approach in simulations that, for instance, are used to
estimate energy consumption of vehicles performing a distribution task. However, the presented approach may
be useful to understand how the control unit must act in manoeuvres that might cause instability.
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8 Future Work

The analysis carried out in this work verifies the performance of LCVs combined with electrified dollies, but
performance does not always mean profitability as mentioned in section 6.1. For this reason, a total cost of
ownership investigation shall be conducted on the given combinations, so that, from a financial perspective,
one can identify in which occasions a conventional truck would benefit from the e-dolly application. Along with
this study, future scenarios could also be evaluated, considering that fuel price and taxes might increase for
ICE driven vehicles while fees, battery and electricity costs might decrease for electric and hybrid vehicles in
the forthcoming years due to fiscal incentives and progress in battery technology.

In order to improve the control decisions and the accuracy of the simulation results, specially concerning
the vehicle fuel consumption, an optimal target curve for the state of charge must be obtained. This can be
accomplished using optimization algorithms. Then, the new SOC target can be fixed in the software so global
optimum actions are made by the controller. Furthermore, due to the adaptive control, it would be possible to
verify (with other simulation frameworks, e.g. Volvo’s simulation platform) how the control and active safety
systems behave when the vehicle is subjected to lane change or rollover scenarios.

The system of equations that represents the vehicle’s lateral dynamics shall also be enhanced to a two-track
model as rollover scenarios are better described with this kind of assumption. Moreover, the tyre model must
be changed to a more refined model, such as the magic tyre formula [25], to better describe the contact between
tyre and road surfaces, and thus stability. Concerning the powertrain models, to select advanced gear-shift
and brake strategies might improve the overall simulation reliability. The last, but not least, would be to
develop an explicit expression to assess the tyre grip margin that could be implemented directly in Matlab
scripts, without the necessity of using FMUs, thereby decreasing computational time and reducing the amount
of software/licenses required to perform this type of simulation.
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A Data

Battery Specification

Label 1BP-PO 2BP-PO 1BP-EO 2BP-EO 3BP-EO 4BP-EO Unit

Ebatt 33 66 170 340 510 680 MJ

Pmin -150 -300 -100 -200 -300 -400 kW

Pmax 150 300 100 200 300 400 kW

Vnom 3 3 3.5 3.5 3.5 3.5 V

ncell/pack 200 200 360 360 360 360 -

Rcell 0.003 0.003 0.004 0.004 0.004 0.004 Ω

Table A.1: Batteries characteristics. BP - Battery Packs; P - Power; E - Energy; O - Optimized.

Mass Distribution

80t 9841 33101 3200 33800 kg

Table A.2: Distribution of the Vehicle mass on each unit. They are, the tractor, first semi-trailer, dolly and
second semi-trailer respectively.

Engine Specification

Engine Max Power (kW ) Max Torque (Nm) Max Exhaust Braking Power (kW )

D11K450 332 2150 160

D13K540 397 2600 200

D16K750 552 3550 230

Table A.3: Engine specifications. Table’s contents are public records, i.e. not confidential, available in [26].

38



B Drawbar Constraint

This appendix shows how to obtain a simplified expression to estimate the forces on a drawbar (Fd). The
coupling mechanism is represented as a point where pulling and pushing forces can act on (Fig. B.1). These
forces are derived from the action and reaction forces of i) the first-half of the A-double, i.e. tractor and trailer
(Fdtractor ), and ii) the second-half of the A-double, i.e. converter dolly and semi-trailer (Fddolly ). The coordinate
system used to derive the expression is in accordance to ISO 8855.

Figure B.1: Free-body diagram of the drawbar and acting forces.

Based on the Free-Body Diagram (FBD) above, an equilibrium equation is derived as follows,

Fdtractor − Fddolly = 0

Fdtractor = Fddolly = Fd

In order to find the contribution of Fdtractor
and Fddolly the problem is split between each half of the combination

vehicle. First, the load contribution from the tractor side will be addressed. The FBD is shown in Fig. B.2.

Figure B.2: Free-body diagram of the first-half of an A-double truck. The tractor unit and trailer are visualized.
mt is the tractor’s pulling mass

Applying equilibrium on the longitudinal (x ) direction the following equation is found. Here, “ϕ” is the road
grade, “g” is the acceleration of gravity, “mt” is the mass pulled by the tractor unit, “Fair” is the air drag
resistance, “Fix” is the force on the axle and “ax” the vehicle’s longitudinal acceleration.

F1x + F2x + F3x + F4x + F5x + F6x + (sinϕ ·mt · g)− (mt · ax)− Fair − Fd = 0

To derive the forthcoming explicit equation for Fd a common variable shared by both sides of the vehicle is
needed. Here ax is adopted. Thus, rearranging the previous expression for ax,

ax =
F1x + F2x + F3x + F4x + F5x + F6x + (sinϕ ·mt · g)− Fair − Fd

mt
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Before proceeding, a second equation is needed. Doing the analysis of the dolly contribution (see Fig. B.3) a
second equilibrium equation is obtained.

Figure B.3: Free-body diagram of the second-half of an A-double truck. The dolly unit and semi-trailer are
visualized. mt is the e-dolly’s pulling mass

From the equilibrium the equation below is found. “me” is the mass pulled by the e-dolly.

F7x + F8x + F9x + F10x + F11x + (sinϕ ·me · g)− (me · ax) + Fd = 0

Again, rearranging the equation for ax.

ax =
F7x + F8x + F9x + F10x + F11x + (sinϕ ·me · g) + Fd

me

Now, there are two equations for ax function of Fd. Matching both, a general expression can be reached.

F1x + F2x + F3x + F4x + F5x + F6x + (sinϕ ·mt · g)− Fair − Fd
mt

=

F7x + F8x + F9x + F10x + F11x + (sinϕ ·me · g) + Fd
me

and therefore,

(F1x + F2x + F3x + F4x + F5x + F6x + (sinϕ ·mt · g)− Fair − Fd) · (
me

mt
) =

F7x + F8x + F9x + F10x + F11x + (sinϕ ·me · g) + Fd

The influence of the road slope can be canceled out and the air drag neglected.

(F1x + F2x + F3x + F4x + F5x + F6x − Fd) · (
me

mt
) = F7x + F8x + F9x + F10x + F11x + Fd

Isolating Fd the final expression is acquired.

Fd =
(F1x + F2x + F3x + F4x + F5x + F6x) · (me

mt
)− (F7x + F8x + F9x + F10x + F11x)

1 + (me

mt
)

(B.1)

Eq. B.1 is used as a constraint in the optimization algorithm.
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