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Abstract
The absence of a vehicle shell around the motorcyclist makes the motorcycle crashes
fatal as the rider collides directly with the objects. During motorcycle crashes, when
the rider is driving alone, there is no one to call for emergency rescue and first aid.
Moreover, when the rider is in the countryside or at a time or place where there
is no one to help, there rises a need for an automatic emergency alert system for
motorcycle riders. This report is about the thesis with Detecht motorcycle crash
detection company. Developing a crash prediction algorithm that can be used with
Detecht’s smartphone-based application. It includes the crash prediction using a
machine learning algorithm in python. Using the parameters from the sensors that
are built-in in all smartphones nowadays. Eliminating the need for any separate
device required for collecting the data needed to predict a crash and generate an
alert message accordingly.
The crash samples in Detecht’s data that includes the 26 simulated crashes and 3
real crashes are a small number of samples as compared to the 940214 samples of
normal driving samples recorded from 76 Detecht’s smartphone application users.
It makes this crash prediction, an anomaly detection case. To have the best accu-
racy in results and to reduce the false alarms generated by the algorithm, different
reasons for crashes are studied. These reasons show that a crash is not only a mo-
torcyclist’s mistake but there are many other factors involved in them.
Convolutional Autoencoder is the machine learning algorithm used for this anomaly
detection, which is an artificial neural network. The algorithm works by reducing
the dimensions of the data and regenerating the data using the learned reduce di-
mensions. Mean error distribution is used to evaluate the output of the algorithm
by comparing the algorithm output to the actual data. This comparison predicts
the crashes out of normal driving of the motorcyclists.
The report consists of a comparison of the convolutional autoencoder results with
the previously used algorithm by Detecht and discuss problems using the machine
learning algorithm to predict crashes. The behavior of the convolutional autoen-
coder is studied by relating the algorithm response to the respective sensor values
at the time of the crash. A total of 85% of the 940214 data samples are predicted
correctly having no false alarms and 62 % of the 26 simulated crashes were predicted
correctly using the convolutional autoencoder. The results of the thesis emphasize
more on reducing the false alarms from the algorithm. Since these false alarms can
be irritating for the user which will result in users not trusting the application.

Keywords: Crash prediction, motorcycle crashes, anomaly detecion, machine learn-
ing, convolutional autoencoder, python.
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1
Introduction

Motorcycle crashes cause much more injuries to the rider as compared to any other
vehicle crashes. Moreover, the fatality rate of motorcycle crashes is higher as com-
pared to car crashes [1]. A vehicle provides better active and passive safety features
like seat belts and airbags etc. The motorcyclists are more likely to hit the objects
directly in case of an accident, as they are not in a protective structure. On the
contrary, the body of the car acts as a shell to capsule the passengers inside its body,
protecting car passengers from direct contact with other objects during crashes.

Mostly the rider is alone when these crashes occur. There is no one to call for
emergency rescue and first aid. If there is a crash in a city, there are people to help
or call for an emergency in good time. But when the rider is in the countryside
or at a time when there is no or low traffic, there rises a need for an emergency
alert system for motorcycle riders. Many lives can be saved by giving proper first
aid care at the right time. In this era, when everyone has smartphones, this alert
system can be made as an application in a smartphone that can detect crashes
and generate alerts for rescue, which is the concept of this thesis. To develop a
machine learning algorithm using some programming language that can predict a
crash. This prediction could be used by the company Detecht in their android
and iOS application for generating alert messages or emergency calls in case if a
motorcycle crash is predicted.

1.1 Reasons of Motorcycle Crashes
Developing an algorithm requires the study of the different causes of the problem.
This thesis includes the study of the reasons that cause motorcycle crashes. There
can be many reasons for a motorcycle crash, which include accidents at junctions,
failure to control over bends, overtaking, loss of control, high speed, or use of alco-
hol. RoSPA Road Safety Research published a report [1] about common causes of
motorcycle accidents in 2017. According to the RoSPA report, the number of mo-
torcycle accidents over bends is 33% more than car accidents over bends, because
the motorcycle is not much stable especially in bad weather conditions. These acci-
dents are mostly because of the error of the rider, when the speed to maintain over
the bend is misjudged. More than half of motorcycle accidents occur at junctions
when the car drivers approach the path of an oncoming motorcycle without noticing
them. These are mainly because of the car driver’s fault [2]. Car drivers fail to see
motorcyclists and come in front of them having much slower speed as compared to
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1. Introduction

the motorcyclist.
The third common reason is overtaking collisions. These are more common among
young riders [1]. They occur when the rider is moving through the slow-moving
traffic and gets hit by a car trying to change lanes. These collisions also take place
when riders are changing lanes at high-speed, known as zic-zac driving. The rider
fails to see a slow-moving vehicle hidden in front of some heavy vehicle while chang-
ing the lane and collides with it.
Another reason that causes accidents is the loss of control. These are very important
to study since the majority of these accidents are related to the rider’s error and
slippery surfaces. In some cases, loss of control crash is the reason in addition to
high speed, and use of alcohol cases [3]. Accidents are also caused by exceeding the
speed limits. However, this is more common with motorcycles having an engine size
of more than 500cc involved in a crash. For the cases involving motorcycles having
smaller engines or the cases which are not related to high-speed driving, factors of
careless and reckless driving are commonly involved [2].
The lastly discussed reason in the report is the use of alcohol. This decreases the
concentration and reaction time of the rider resulting in misjudging the situation
and causing an accident. The percentages of these different reasons for crashes are
in the table 1.1.

Reasons of motorcycle crashes Percentage of
crashes

Collision at junctions 64
Alcohol 39
Loss of control 20
Overtaking collision 15
Rear-end collision 11
High speed 9.2
Failure to negotiate bends 9

Table 1.1: Percentage of different reasons of motorcycle crashes from ACEM

The table 1.1 is formed using the information from the different studies of the As-
sociation of European Motorcycle Manufacturers (ACEM). ACEM performed Mo-
torcycle Accidents In-Depth Studies knows as MAIDS [4], comparing the causes of
motorcycle crashes. For this purpose, approximately 800-900 motorcycle crashes
were studied. According to ACEM reports, most of the crashes were at the junc-
tions hit by other vehicles. It is a general observation from the MAIDS study that
there is not always one single reason for a crash. Therefore, most of the crashes can
fit in even two or three reasons in the above table, making the data overlapping in
percentages.
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1. Introduction

1.1.1 Accidents Comparison

With the growing number of traffic on roads, the risk of having traffic accidents also
increases [5]. Although every car manufacturer company is struggling to provide
better safety features, there are not many safety features that can be designed for
motorbikes. Even a rider having a helmet and proper safety kit can have serious
injuries [1]. The motorcycle accidents cannot be linked only with riding carelessly or
riding at high-speeds [3]. As the report [1] shows that in some accidents, the rider is
not even making any error, driving carefully following all traffic rules and get hit by a
careless car driver. Or the rider can lose grip on the road because of weather or road
conditions. Sometimes rider loses their balance in attempting to save any person
or animal crossing the roads at distances where carefully stopping the motorcycle
is not possible. Since there are few motorcycles on roads as compared to cars and
other vehicles therefore their accidents are not enormous in numbers as compared
to everyday car crashes. But the ratio between the fatalities caused by motorcycle
accidents is increasing as compared to motorcar accidents fatalities. Because more
and more safety features are introduced in cars, making them safe to drive. The
figure 1.1 is the graph from data collected by the National Highway Traffic Safety
Administration (NHTSA) in 2010 [2]. This shows that how motorcycle accidents
are increasing every year in the USA, which highlights the requirements for safety
features for motorcycle users.
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Figure 1.1: Graph of motorcycle accidents from NHTSA data

In comparison to the increasing motorcycle accidents shown in above figure, it is
good to compare vehicles including cars, lorries and trucks etc which got involved
in accidents during the same years, shown in figure 1.2. This shows that beside
increasing in number of vehicles every year, their accident ratio is decreasing every
year. This is mainly because of the increasing safety measures for vehicles.
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Figure 1.2: Graph of cars/ trucks accidents from NHTSA data

The comparison between these two graphs 1.1 and 1.2, highlights the importance of
safety systems to be developed for motorcycles.

1.2 Purpose

With the increasing number of new and young motorcyclists, the risk of motorcycle
crashes also increases. Inherently motorcycles are more susceptible to accidents due
to their poor stability and high center of gravity. Most rider’s lives can be saved
from motorcycle accidents by giving proper first aid at the right time after the crash
[6]. There are motorcyclists who love to cruise driving away from the cities and traf-
fic. For such riders getting into any crash, even small injuries can cause causalities
if not timely rescued and treated [7]. For this and many other causes of accidents
stated above, having an automatic emergency alert system for motorcycle riders is
necessary.
This thesis develops and evaluates a machine learning algorithm using the python
programming language to predict motorcycle crashes. Almost everyone has a smart-
phone nowadays. Therefore, it is practical that motorcyclists use their phones for
this system rather than having a separate device for this purpose. As a crash alert
app on their smartphones can fulfill the requirements of data needed for prediction.
The use of GPS for maps is very common for riders. Phones also have the accelerom-
eter and gyro sensors built-in in them. These sensors from smartphones will be used
for crash detection. The accuracy of these predictions is very important since false
predictions will generate false alarms or the system not working properly can miss
a serious accident alert.
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1. Introduction

1.3 Aim

The primary aim of this thesis is to:

• Study different reasons for motorcycle crashes.

• Develop a machine learning based crash detection algorithm from naturalis-
tic data collected by Detecht’s users and data from real and simulated crashes.

• Compare the machine learning algorithm accuracy and flexibility to Detecht’s
current algorithm.

• Reducing the false alarms when there is no crash, these can help develop users’s
trust in the app and letting them use it all the time.

1.4 Scope and Limitations
The data is collected using the Detecht app running on smartphones from different
brands and years. The sensors of different smartphones are not equally calibrated.
For the same jerk, two different smartphones can record the different magnitudes
of values from the sensors. Similarly, the position of keeping the smartphone in a
pocket or in a bag can add errors in the recorded values. The speed of the motorcycle
calculated from GPS values is not accurate and has errors because the GPS values
update after an interval in smartphones. This adds a range of errors in the location
that can be up to a few meters in distance. Therefore it cannot detect sudden
changes in the speed of moving motorcycles. This limits the Algorithm to focus
more on accelerometer and gyro sensor values.

5
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2
Theory

This section includes the explanation of the methods and the theoretical background
which can help understand the working of the project.

2.1 Machine Learning
Machine learning is a branch of artificial intelligence that is nowadays a powerful tool
to automate the process of data analysis. It minimizes human intervention in the
process by learning and improving from the results. It uses computer capabilities
to predict the results. An algorithm is defined or a predefined algorithm is used
to compute data. Machine learning classifies the data into different classes, but in
this thesis, the data will be separated into two classes. The possible outcome can
be predicted motorcycle crash or predicting that it is no crash. Python language
is used for programming as it is open-source and provides very useful functionality
and libraries for machine learning that reduces the development time.

2.1.1 Anomaly Detection
Since there are very few accidents or crashes occurring as compared to the number
of riders driving normally everyday. This will be a problem for balancing classes
as if the data is classified into two classes crash or no crash, crash data will be
significantly small as compared to no crash data. Since crash can be an event of a few
seconds duration in the data log of a rider which can be hours long in time duration
driving normally everyday. Which makes it an anomaly detection problem and not
a classification problem. Anomaly detection is predicting the outliers or novelties
or rare events and separating them from the majority of data. This gathers all the
data that has almost the same qualities and properties and then the rare occurring
events that are odd ones are separated from them.
There are many examples of anomaly detection. To start working on the data
provided by Detecht, a similar problem of anomaly detection of credit card fraud
detection [8] was examined. This data had very few frauds and can be related to
the crash detection problem for learning purposes.

2.1.2 Evaluation of Predictions
When predicting the results during data analysis, it is very important to know how
close are the predicted values to the actual defined values. This is known as accuracy

7



2. Theory

and it helps to understand and improve the correctness of results. The relation for
accuracy is given by equation 2.1

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2.1)

where: TP = True positive; FP = False positive; TN = True negative; FN = False
negative

There are some other parameters commonly used to evaluate the results, to know
how many positive predictions are actually true and are not just false alarms. This
is called sensitivity and it is an important evaluation parameter in this thesis. The
higher sensitivity means the maximum number of motorcycle crashes are correctly
predicted. But it also increases the probability of higher false alarm rates or false
crash predictions. These false alarms may cause disturbance for the users and their
trust in the alert application will reduce. However, keeping the sensitivity maxi-
mum is important to predict all possible crashes. The equation 2.2 below gives the
sensitivity of the predictions.

Sensitivity = (TN)/(TN + FP ) (2.2)

Another parameter is to correctly determine the rate of negative predictions. In this
thesis, the negative prediction is no crash, and the rate of this happening and then
correctly predicted by the algorithm is known as Specificity. The specificity is given
by the equation 2.3.

Specificity = (TP )/(TP + FN) (2.3)

The relation between these two parameters, sensitivity and specificity can be ex-
plained by two cases graphically presented below.

Figure 2.1: Sensitivity and Specificity: Case 1
Source: https://wikipedia.org/wiki/Sensitivity_and_specificity

8
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In figure 2.1, blue dots represent false-negative rate and red dots represent false-
positive rate. The lower the number of blue dots shows high sensitivity but it will
increase the number of red dots which represents a false-positive rate and hence
having low specificity. This is a trade-off between these two quantities. Some pre-
dictions require high sensitivity others require high specificity. Like in this crash
prediction application, it is very important that every crash is predicted correctly
and not a single crash is missed. But on the other hand, no rider wants false alarms
or unnecessarily alert messages which will automatically be generated when the
sensitivity is very low. This case is represented in figure 2.2 below.

Figure 2.2: Sensitivity and Specificity: Case 2
Source: https://wikipedia.org/wiki/Sensitivity_and_specificity

The figure 2.2 represents the second case where the false-negative rate represented
by blue dots is higher resulting in low sensitivity. But the red dots in this case repre-
senting false-positive rate are much lower having high specificity. These evaluation
parameters are very important to understand the classification problems.

2.2 Imbalanced Data
The first approach to deal with a classification problem is to analyze the data. This
process is called Exploratory Data Analysis (EDA) [9]. In exploring the data and
labeling it in different classes sometimes the distribution of data in one class is
huge as compared to the other class. This unequal distribution makes it difficult
to draw a line between the elements of these classes as they are not distributed in
an equal ratio. This is the case of imbalanced data [10]. On the other hand, the
balanced data sets have data equally distributed in two or more classes. A well-
known example of balanced data set is the Breast Cancer data set [11] which has an
approximately equal distribution of data in the classes cancer or no cancer having
a ratio of 1:1. Figure 2.3 shows the equal and unequal distribution of data in bal-
anced classes on the left chart and Imbalanced classes on the right chart respectively.

9
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Figure 2.3: Balanced and Imbalanced Distribution

Anomaly class data sets also fall in the category of imbalanced data sets, but their
distribution ratio in different classes has huge differences having very few data ex-
amples in one class called the anomaly class as compared to the normal class. Credit
card fraud data set [8] is an example of imbalanced data set which is an anomaly
detection problem where the fraud data class has very few entries as compared to
no fraud data.

2.2.1 Techniques For Imbalanced Data

The two commonly used techniques to process the data creating equal distribution in
different classes are undersampling and oversampling. In undersampling [12], some
of the data points are randomly deleted from the class having majority data. This
is done in order to match the number of data points in the class having only few
examples. The other technique is oversampling which is a complicated process as
compared to undersampling. In oversampling technique [13] random data samples
are generated which have the attributes of the minority class. These data samples
are added to the minority class to make this class having proportionally equal data
points as of majority class. The figure below helps understanding this concept of
undersampling and oversampling easily.
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2. Theory

Figure 2.4: Undersampling And Oversampling

The graph on the left shows original imbalanced data, the majority class represented
in orange is undersampled shown with arrows to meet the ratio of the minority class.
Similarly, the two graphs at the right represent oversampling, the random copies of
original data are created to meet the ratio of the majority class.

2.2.1.1 Ensemble of Sampler

In classification problems, sometimes the problem is too complex to be undersampled
or oversampled using only one algorithm. The solution to this problem is to use
multiple algorithms to estimate the results and improve performance which has
effective results as compared to any algorithm used alone. These algorithms work
as a system having democratic voting. It combines multiple estimators on a subset
of data that is randomly selected from the major class. Bagging methods [14] is a
popular example of this approach to such problems. There is an ensemble classifier
known as bagging classifier [15] in the scikt-learn library. Using this classifier for
imbalanced data, the estimators re-samples each subset of data and try to estimate
the majority class as the equal ratio of the minority class.

2.3 One Class SVM
A supervised machine learning algorithm that separates one class from another class
by learning the hyper-planes in the multidimensional data is known as Support Vec-
tor Machine (SVM) [16]. These algorithms are used to solve classification problems
having multi-class data. However, one class SVM is used for classification problems
where all the data available for training is of single class. SVM is trained to learn
the patterns in this single class which is the normal class. The new data that is la-
beled outside this normal class is identified as anomaly data. In the sklearn library
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in python language there is specific algorithm designed for such anomaly detection
which is known as “novelty detection”.

2.4 Time Series Data Anomaly detection

Unlike the credit card fraud data, the data from Detecht which will be used in
this project is time-dependent. Many time-series data are characterized by strong
randomness and high noise [17]. For crash prediction using anomaly detection tech-
niques, the events of crashes and no crashes should be selected to have complete
information about the crash. This is also done in order to avoid false alarms. The
figure below shows the representations of an outlier from the data in two different
ways. The one On the left is independent of time and on the right is dependant on
time. In the left figure, it is easier to identify the outlier as it is one point, but on
the right, with the time axis, it is very difficult to classify the anomaly event because
of time dependency making it complex to differentiate. The outlier is not just one
peak, it is an event having information that has some peaks and some normal data.

Figure 2.5: Anomaly detection independent of time vs time series
Source: https://towardsdatascience.com

The crash prediction using the provided data which is time-dependent data in which
the crashes are very rare is closely related to a gear bearing failure [18] problem in
a NASA machine. To develop the relation in these two data sets, the problem
of bearing failure needs to be understood. In this example, the vibration data of
bearings is provided for the lifetime of the bearings. A bearing failure is a very rare
event occurring after many years. A lifespan of a single bearing is shown in the
figure below.
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Figure 2.6: Bearing failure over the lifetime vs reconstruction loss
Source: https://towardsdatascience.com

The case of bearing failure is the motivation to adopt the anomaly detection tech-
nique used in this thesis. The free data set provided by NASA helped to select the
algorithm. Using the NASA data as the base to perform experiments and learning
the algorithm behavior by feeding this data at the input.
The algorithm selected for the motorcycle crash prediction is Convolutional Au-
toencoder (CAE) [19]. The reason for using this algorithm is that its performance
for multi-dimensional data is much better in predicting anomalies from the nor-
mal data. Another reason to prefer this algorithm on classification algorithms like
one-class SVM is that it minimizes the training time by using all the resources and
has the ability to perform parallel processing. Also, it deals with non-linearity and
complex data sets.

2.5 Convolution
A set of learnable filters forms the convolution layer [20] in the CAE algorithm.
The convolution filters can be of different heights, widths, and depths. The height
and width of the filters are independent of the size of the input data. However, the
depth of the filters is the same as the input fed to the filters. Commonly the height
and width are smaller whereas the depth is the same size as compared to the input
data. The commonly used filter sizes are 3 × 3 × d, 5 × 5 × d, or 7 × 7 × d, where the
three positions correspond to height , width and depth (d ), respectively. During
the process, the filters are convolved over the height and width of the input signal.
Convolution takes place by taking the dot product of the filter with input at every
layer. The result is called a "feature map". These feature maps stack up to form the
final output. The values of these feature maps are computed by using the following
formula. Where the input signal is denoted by f and our kernel by h. The indexes
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of rows and columns of the result matrix are marked with m and n respectively.

G[m, n] = (f ∗ h)[m, n] =
∑

j

∑
k

h[j, k]f [m − j, n − k]

The figure shows the mapping of input to the reduced dimensions passing through
the convolution layer to the final output. Here only a local region of the input signal
is mapped to the hidden neurons. This technique is inspired by computer vision
which is less complex than connecting fully connected layers and each neuron to
every input feature. Moreover, the later discussed is extremely costly in terms of
complexity and requires more processing power to compute.

Figure 2.7: Convolution operation

The encoding layer used in this project has two 2D-convolution layers. In each layer,
8 times convolution is applied with the filters.

2.6 Autoencoder
An autoencoder is a type of artificial neural network which is used for dimension
reduction [19]. It works by learning efficient data coding in an unsupervised manner
[21]. There are two main parts of CAE which are called layers and the one attached
to the input is the encoding layer. The purpose of the encoding layer is to learn
the reduced parameters or dimensions of data which will be used to create the same
data at the output of the algorithm as it is on the input. The layer at the end of the
CAE is the decoding layer which is attached to the output of the algorithm. This
layer uses the reduced parameters learned by the encoder to create similar data at
the output of the CAE, as it was fed at the input.
In this example of bearing failure, the CAE artificial neural network compresses
the sensor readings which is basically bearing vibration data to a lower dimension
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representation, It develops the correlation among different variables at the input and
saves their relation in lower dimensions that are enough to generate the same results
at the output of the CAE. The main difference between the principal component
analysis (PCA) model [22] and CAE neural network is that it also allows the input
variable’s non-linearities.

Figure 2.8: Autoencoder network
Source: https://towardsdatascience.com

From the figure 2.8, it can be seen that the input is connected to output using
a hidden layer, in other words, it can be taken as a black box that connects the
inputs to outputs. This black box learns the representation of the data in terms
of its parameters as its dimensions. It works by reduction techniques, learning the
reduction of dimensions, and reconstruction of the data at the output using these
learned reduced dimensions. Autoencoder can be single layer perceptrons (SLP) or
multilayer perceptrons (MLP) [23] depending on the layers in that black box. Since
there is one layer each for input and output, controlling the number of hidden layers
can make it a multi-layer or single layer. In most cases increasing the number of
layers can increase the reduction of dimensions. In terms of dimensions, input and
output layers have the same number of nodes which are known as the dimensions
in each layer. Although an autoencoder aims to generate as close as possible results
at the output, as of input, but still there is a margin of error.
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2.6.1 Mean Error Distribution
The evaluation of the results of the autoencoder depends upon the difference in the
shape and characteristics of the data generated at the output using the data at the
input layer. The data generated at the output layer is automatically normalized by
the autoencoder, therefore the input data or the training data is also normalized to
compare it with the output. The mean error distribution (MED) of this difference
from output to input is calculated. The range of this MED is used to evaluate the
results. If the class lies within the error distribution range it is predicted as normal
data and if it is outside the range of MED, it is predicted as anomaly data. Here
the error from output to input is not as important as the range itself is concerned
to evaluate the performance of the algorithm in detecting the anomalies.
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Methods

The process of crash prediction begins with the processing of the data provided by
Detecht, making it useful for the objective. The objective is to make data compatible
to be fed as the input to the autoencoder. Implementation of the algorithm, tuning
the algorithm parameters, and defining an optimum CAE model. Deriving the
results from the autoencoder output and comparing the results to find the error,
that is used as the evaluation parameter for the algorithm. To organize the data to
be used as the training data or making it a suitable input for the CAE. The Detecht’s
data passes through a process. This process includes the following steps.

Extracting
required featuresDetecht Data

Labelling

Max feature
value per second

Defining new
sampling rate

Removing labels

Spliting data Input data for Autoencoder

Figure 3.1: Flowchart of Data processing
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3.1 Data
The data set for this project is provided by Detecht company. This data includes
different features collected from the smartphones of motorcycle users who are using
the Detecht smartphone app. This data is mainly from the users from Sweden,
however, there are few examples from the riders using the detect app in Denmark
as well. Other than normal data, Detecht has collected the data from test crashes
simulated using a crash dummy. Detecht has provided their kind permission to use
the data for this thesis.

3.2 Features
The data collected from smartphones provide information about different features
or parameters. The app is designed for both Android and iOS smartphones. The
features collected from the smartphones are values from the accelerometer sensor in
the X,Y,Z directions, gyro sensor values in X,Y,Z axis, and GPS coordinates. The
GPS coordinates are used to calculate the speed of the motorcycle rider. These
GPS coordinates can be used to send the location of the motorcycle crash to the
emergency contact number along with the rider’s details. The absolute sensor values
are also used to enhance the negative effect of the crash in the sensor values. These
parameters are collected with time and the sampling rate varies according to the
different conditions.

3.3 Labeling
The data is labeled into two classes, crash or no crash. Crash is considered as an
event recorded in time having information of data for several seconds and not just
an incidence or jerk of a second. This will get more clear in the following section
selecting a time window (3.3.4). The crash class includes all reasons for accidents
identified in the introduction section. It includes crashes at the junctions, failure to
control over the bends, overtaking, high speed, bad weather conditions, and drunk
driving, etc. The real crash examples are very few as compared to the normal class.
Some of the test crashes are performed to collect more data from simulating dummy
crash experiments. Having 26 simulated crashes and 3 real crashes. This makes it
an anomaly detection case because of very few examples of crash class as compared
to the non-crash class which has 940214 samples.

3.3.1 Sampling
The Detecht smartphone app is designed to collect data at a variable sampling rate
depending on different conditions. Some thresholds are defined for accelerometer,
gyro sensor, and speed, such that if the values exceed these thresholds it is more
likely to have an accident. Keeping these thresholds in focus, the sampling frequency
of the data increases automatically in such cases. This is to capture all the peaks and
important samples at the time of the crush. Moreover different smartphones have the
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capacity to process data at different rates and the values from the sensors of different
smartphones are also not the same for the same event. The sampling rate using the
Detecht app also varies in different versions of the data. Another problem is that
different smartphones generate data at different frequencies. Keeping all these above
variations in sampling rate in focus, the data needs to be processed to behave as
regular time-varying data. The difference in operating ranges of some smartphones
is identified by Detecht, depending upon the data collected from the sensors of those
smartphones. The data collected from Detecht’s application installed on different
models of iPhones including iPhone 6, 6 Plus,7 and 8 provided different sampling
rates at the time of the crash.
Since the sampling rate varies for smartphones of different brands and the Detecht
application is designed to collect more samples per second during the interval when
there is an irregular change in sensor values. This creates much more samples for
the algorithm to process in the cases when the feature values exceed the threshold.
The solution to this problem is to make the sampling rate uniform. For this, the
approach that is adopted in this thesis is to take only the maximum of each feature
value in all X,Y,Z directions in every second. This keeps only the sample having
maximum values in every second and discard other samples from the same second.
By doing this the important information in the peaks during a crash event are saved
and unnecessary samples are deleted to reduce data.

3.3.2 Removing Labels
It is no use to train the algorithm on the data which is already labeled with crashes
and no crashes, therefore the labels from the labeled events are removed. Data is
divided into training and test data. The real crash events are separated manually
to be fed with test data. Apart from real crashes, the dummy crashes are also
processed and saved with the real crashes.

3.3.3 Seleccting A Time Window
A crash event is not just a sudden change in features. In other words, not every
jerk or sharp peaks of accelerometer and gyro-sensor values indicates a crash. To
make it confirmed as a crash event and reduce the false alarms, it is important to
study a few seconds (s) after the sharp peaks as well. A time window of the 30s
is selected after every second and these 30s windows are saved as new samples or
events to be fed to the algorithm as input. The purpose of selecting this window of
time is to cover two parts of the crash event in them. The first part is the crash
jerk which is indicated by sharp peaks in the sensor outputs. The second part is
the few seconds after the peaks where there is no significant change in the feature
values. This no-change indicates that the rider has not started driving the bike
again normally after the crash. This no change just after the sharp peaks confirms
that the crash has occurred and the rider needs to be rescued.
After examining the simulated crash data, it is decided to break data into 30 seconds
overlapping windows taken after every second. Removing all null data and useless
data (When app is recording data while rider is not driving at all) to improve training
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time and quality of the data. This provided the 940214 samples used as training
data for the algorithm.

3.4 One Class SVM
The process of decision making to use which of the machine learning algorithms
for this crash prediction anomaly detection problem, involves the training time and
the performance of the algorithm to learn data in one class as normal class. This
processed data having samples of 30 seconds is used for training using one class SVM.
The algorithm failed to learn the data completely. Unsuccessful training using one
class SVM lead to use of much complex anomly detection algorithm for this problem
which is convolutional autoencoder.
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3.5 Flowchart of Convolutional Autoencoder
The data is now processed and is in the shape to be used with the algorithm. This
data is fed to the input of the CAE. The CAE follows some steps of operations
creating filters and layers. These steps include the input data connected to the
encoder, from encoder layers to the black box known as code, from the code layer
to the decoder, and finally to the output. The flowchart below shows the sequence
with these steps.

EncoderInput data

Activation

Padding

Channel
Selection

Pooling

Flatten
and dense

CODE

Decoder

Activationn

Dense

Reshape

Upsampling Output data

Figure 3.2: Flowchart of working of Autoencoder algorithm
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3.6 Encoder

The data fed to the CAE is practically the input to the first layer of the encoder.
This input data has a size of (1,30,6) in this case. In this size 30 represents a
window of 30s and 6 is the number of parameters of data. In the Encoder layer,
some adjustments are done that controls the layers, the sizes of the layers, and nodes
in each layer. The CAE used in the thesis is 2D convolutional autoencoder [24]. The
input to the encoder has a size (8,3,3) where (3,3) is the length and width of the
filters. Here 8 is the depth showing 8 filters will be learned in each layer depending
upon the performance.

3.6.1 Activation

If the neural network is not activated it behaves just as a linear function. This
means that the high dimension complex data can not be handled with such a neural
network. The activation function [25] used for this purpose is usually non-linear
function. These functions provide or enable the abilities of the CAE to handle high
dimensional complex data. The activation function used for the activation of this
CAE for crash prediction is rectified linear unit (ReLU) [26]. This is a non-linear
function and it allows only non-negative values at the output. The ReLU function
is shown in figure 3.3 below.

Figure 3.3: ReLU function

3.6.2 Padding

After the convolution operation is applied, the dimensions of the input data are re-
duced. These reduced dimensions are learned from the filters during passing through
each layer of filters. Each filter reduces the dimensions, therefore it needs the data
to be padded to keep it in a uniform shape. For this, the padding [27] setting is set
to "same" which pads the reduced data with zeros at the ends shown in figure 3.4.
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Figure 3.4: Padding with settings set to "Same"
Source: https://towardsdatascience.com

3.6.3 Data Format

Here the channels [28] are selected for the operation. For example for RBG colored
image as an input data, the channel is set to 3. For grey mode, the channel is set
to 1, which is set to 1 in this case as the input data is not an image.

3.6.4 Pooling

The approach to reducing the size of the feature map, reducing parameters in the
model is known as pooling [29]. Pooling impacts the complexity and fitting of inputs
of the layers of CAE. There are three types of pooling maximum, minimum, and
average-pooling. Out of these techniques, max-pooling is used to keep the number
of parameters of the network controlled. Max-pooling is also used to get maximum
performance as compared to the other two pooling preferences. The depth of the
output of pooling is the same as the input because it is applied independently to
each layer. Using max-pooling with 2x2 filters and stride equal to 2 picks the
maximum values of features from a non-overlapping 2x2 box and saves it. This is
demonstrated in figure 3.5 by using different colors. For example in the first pink
colored box maximum value is 6 which is then copied and saved as a reduction of
this pink box. Similarly, 8 is saved as the reduction from the green box and so on.
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Figure 3.5: Maximum pooling using 2*2 filters

3.6.5 Flatten and Dense
The final layer of the Encoder flattens the 2D convolution output to the 1D output.
In the dense layer, a fully connected neural network is used, This takes the dot
product of 1D output with the set neurons. The set neurons or weights in this layer
are 256.
This gives the result from learned reduction and stores the results in "Code". Code
is the middle layer that stores the reduced parameters and the information required
to regenerate the data from these reduced parameters.

3.7 Decoder
After passing through filters of the encoder, the input data is compressed which
means the reduced dimensions are learned by the autoencoder. These reduced di-
mensions are used by the decoder layers connected to the output to generate similar
data as of input again at the output. Like the encoder, the decoder also has different
steps that it follows in the process of generating the data again.

3.7.1 Activation
The decoder is the same as the encoder but the operation order of the steps is
in reverse. The activation function for the decoder is also the same as the encoder
which is ReLU. The reason for adopting this function is that it decreases the training
time. However, the activation function for the last layer of the decoder is sigmoid
as we need to determine the probability in this layer as probability lies in the range
[0,1]. This activation function of sigmoid has output values in the range [0, 1] which
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fits perfectly with the probability range. The sigmoid function is shown in the figure
below.

Figure 3.6: Sigmoid Activation Function

However, the activation function used for the decoder layers is later changed to
ReLU which is the same as used in encoder layers. The reason for adopting this
function is that it decreases the training time.

3.7.2 Dense
The dense layer at the decoder works in the same principle as of encoder. The
output from the 1D fully connected neural network is flattened and the filters in
the layer take the dot product with the set weights. The output is generated from
the process in 2D. The input of 1x30x6 where 30 represents seconds in each sample
and 6 represents features is now multiplied with weight 45. This weight is formed
by 1x15x3 which is the reduced half size of the input.

3.7.3 Up-sampling
This stage of the decoder starts regenerating the shape of the actual input data.
This is done by using a set of filters in this layer. The up-sampling [30] process
consists of convolutions having a different number of filters. Each time the data is
multiplied and filtered to form the output. Up-sampling is an important part of the
decoder that helps to generate the output using the learned features, as the shape
of the data was reduced using max-pooling in the encoder.

3.8 Optimized Model
The figure 3.7 below shows how the pooling is performed after every convolution.
These layers and filters are arranged to form the encoder and decoder of the CAE.
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Figure 3.7: Encoder Layers from Convolution to fully connected network.
Source: https://towardsdatascience.com

Using the above set of layers applying convolution in encoder and decoder produced
a large error, which affects results and makes it difficult to identify an outlier. There-
fore the model used for the project consisted of two convolutions of 8 filters each
followed by max-pooling. This process of convolution and max-pooling is repeated
2 times in the final optimized model because the error was reducing after each train-
ing. However, no significant change in error is observed after applying more than 2
sets of these operations (each set is 2 times convolution followed by max-pooling).
Therefore its avoided to set more layers, which add the extra learning time for the
algorithm. These set of convolution layers are represented by red blocks followed by
max-pooling layers shown by green blocks in figure 3.8 below.

Figure 3.8: Optimized implemented model

The decoder of the optimized model consisted of a similar pattern as of encoder.
The difference is that instead of the max-pooling, the decoder uses up-sampling.
So the three sets are repeated forming 2 convolutions of 8 filters each followed by
an up-sampling layer. All the layers of convolutions, pooling, and up-sampling are
two-dimensional except the fully connected network used in the encoder.
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3.8.1 Multicore Usage
The algorithm is tuned to train parallel [31] on all cores of the CPU, this has reduced
the processing time, otherwise, it would take much more time for training whenever
any setting was changed. The code is running in tenser-flow [32] to use GPU for
processing. Tensor-flow is an open-source platform for machine learning algorithms
that enables the use of GPU for faster processing and provides flexible tools for
working with multi-dimensional data.

3.9 Evaluation
To evaluate how accurate reconstruction of data is obtained at the output, the out-
put needs to be compared with the original data. As the output data from the CAE
is normalized, therefore the input data is also normalized to compare it with the
algorithm output. The mean and standard deviation (STD) of the input data is
computed and then it is normalized using the formula:

Normalized data = (Data − Mean)/Standard deviation (3.1)

3.9.1 Error Distribution
The evaluation of the results to detect algorithm performance in predicting a crash
consists of calculating the reconstruction loss [33]. This process of calculating the
error distribution is for all data points in the test data set including 26 simulated
and 3 real crashes and comparing this error range or loss to the previous algorithms
used by the Detecht company for flagging this as an anomaly.
The normalized input data or the Detecht’s data is compared with the output data
which is the result of reconstruction from the autoencoder. This comparison gives
the difference between the newly regenerated data from the algorithm and the actual
data. Mean Error distribution (MED) is the parameter used in this crash prediction
algorithm to evaluate the performance of the CAE used. The MED provides the
range of error produced in the reconstruction. The outputs from the test data are
compared with this range of error distribution and the events having error exceeding
this range are declared as an anomaly or crashes.
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4
Results and Discussion

The normalized input data or the Detecht’s data is compared with the output data
which is the result of reconstruction from the autoencoder. This comparison gives
the difference between the newly regenerated data from the algorithm and the actual
data. Mean Error distribution (MED) is the parameter used in this crash prediction
algorithm to evaluate the performance of the CAE used. The MED provides the
range of error produced in the reconstruction. The outputs from the test data are
compared with this range of error distribution and the events having error exceeding
this range are declared as an anomaly or crashes.

Normalizing
data

Detecht processed data

Comparing
with normal-
ized input

Autoencoder output

Mean error
distribution

Error >
Distribution

range
No

Yes

No crash

Crash
predicted

Check for
start time
of crash

Generate alarm

Figure 4.1: Flowchart of predicting crash.
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4.1 Error Distribution
The error distribution or the reconstruction loss [34] of crash data makes it possible
to define a threshold value for an event to be declared as a crash event or normal
driving. From the distribution plot below in figure 4.2, the error range on the x-axis
which is from 0 to 0.2 is important to study. This range defines the threshold for
an event to be an anomaly or not.

Figure 4.2: Mean Error Distribution

In the above figure, the blue bars correspond to the number of samples from the
training data that occurred for each value of the error range. Since the training
data has no crash events in it as it trained with only one class, therefore every value
outside this range is considered as an anomaly. The blue line represents the defined
threshold value or range for flagging an anomaly. The crash event is any event
that lies outside this 0-0.2 range of mean error distribution. The peak magnitude
of occurrence is 50, but it is of no importance for predicting a crash since it only
shows that this much samples of the training data belong to the corresponding value.
These values for the number of occurrences are proportional since actual figures are
in thousands depending upon the number of samples in training data. The range is
very important to predict the class as a crash. The table 4.1 shows the exact values
of error calculations from the results.

Error Value
Mean error 0.208
Maximum error 9.826
Minimum error 0.008
Standard deviation 0.405
Median 0.081

Table 4.1: Table of error values
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4.2 Anomaly class
Predicting crashes is the aim of the thesis and the crashes being very rare and few in
numbers are the anomaly in this case. To study the behavior of the crashes, Detecht
provided 26 test experiments which are confirmed crashes. These test examples are
tested with the algorithm and most of them are predicted as crashes as the loss
distribution of these events is outside the 0 - 0.2 range. The loss distribution plot of
one crash event is shown below which defines that the event is predicted as a crash
event by the autoencoder.

Figure 4.3: Error distribution of a test crash

In the figure, it can be seen that the maximum error magnitude is at 6 seconds
shown on the x-axis, and the error value at the y-axis is approximately 0.35 which
corresponds to this time. This maximum error of 0.35 is outside the distribution
range which is 0- 0.2 therefore the algorithm has predicted it as a crash event.
However, in the above plot and some other crash events, it is observed that the
magnitude of error remains outside the error range even after the crash. There are
several reasons for this behavior when the start time of the crash is not confirmed.
Although this is considered the first step in crash prediction. To confirm it as a
crash and avoid false alarms from the algorithm some procedures to determine the
start of the crash are followed in the later steps.

4.3 Comparison
The results that are confirmed as crash events by the CAE are compared side to
side with one of the previously proposed algorithms by Detecht. This comparison is
performed on all of the test crashes that are collected by experiments. The purpose is
to study the behavior of the CAE algorithm response to the crash event as compared
to the values from the accelerometer and gyro sensors at the time of the crash. An
example from the comparison is stated below by relating figure 4.4 and figure ??.
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Figure 4.4: Error distribution of a crash event

The maximum error in the plot of figure 4.4 is at 17 seconds which indicates that
the crash happens at this time. However, the error started rising from the error
range of 0.2 even from the start of the plot. The reason behind this rise is that
every second contains the information of the next 30 seconds since we have taken
each sample for 30 seconds. According to this, the crash will be at maximum or
the end of the rising pattern of the curve but it starts affecting the error 30 seconds
before it actually happens. This is also manually confirmed by comparing it with
the sensor values from the data.
In this example, in figure 4.4 the error remained below the 0.2 range after the crash
but this is not always the case. As in most of the experiment crashes or some real
crashes where the rider is not seriously injured, the rider starts riding again after a
small pause and the error value gets disturbed. This might be because the rider has
no major injuries and does not wait for the rescue. The algorithm worked for such
cases as well.

4.4 Start time of the crash
The input to the algorithm are events, each of these events is 30 seconds long and are
taken after every second interval. This means that the algorithm has the information
of the next 30 seconds when it is ready to predict any crash. The crash is indicated
by the peak in the accelerometer and gyro sensor values. These peaks are translated
30 seconds before the actual time in the error distribution graph as every second
has information of the next half minute. This means that the algorithm requires
information of 30 seconds to report a crash. This method adds a 30 seconds delay
in the process to call rescue during live ride, but it has removed most of the false
alarms generating when there is no crash. The figure 4.5 below indicates a sharp
peak at 36 seconds exceeding the distribution range indicating it has a crash at this
point. But the algorithm has already given an error greater than the distribution
range of 0.2 at 6 seconds. This indicates that the effect of a crash is translated 30
seconds before it happened and this error increases until it reaches the point where
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the crash actually occurred. The error of the crash event is shown in figure 4.5 and
after comparing it with the sensor values this behaviour is confirmed.

Figure 4.5: Start time of crash from CAE output

The figures 4.5 is just one example indicating that the crash occurred at some time
and it has effect on the CAE output 30 seconds before it. However, the threshold
values to trigger for the crash event or to indicate the start of the crash should
be generalized for all experiments and real crashes. Therefore after observing the
behavior of all of the experimental crashes, the generalized algorithm is designed for
the prediction of the start time of the crash. This algorithm starts looking for the
increasing pattern of the error starting from the point where its value gets higher
than the error range of 0.2 and declares the maximum peak which is within the 30
seconds after this point, as the start time of the crash event. In simple words, this
point is predicted as a crash and the algorithm generates an alarm in this case. The
working of the start predicting algorithm is shown in the flowchart 4.6 below.
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Error of a event
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No

Normal driving

Figure 4.6: Generalized algorithm to predict start time

4.5 Limitations
However, there are some cases where the generalized method is not fully recom-
mended for all of the test crashes. The reason for applying this method to identify
the start of the crash and trigger the alert alarm is that it worked for most of the
test cases without generating any false alarms. But there are few limitations of this
method where the results are not satisfactory. Even using the optimized 30 sec-
onds window which improved results but the sensitivity of only 62% is achieved for
simulated crash predictions. Such cases are discussed below in order to understand
the reasons behind the failure of the algorithm in these cases. These crashes are
categorized as three types : crash at the start, crash at the end, and acceleration
after crash. The percentages of these events predicted in the simulated data along
with their respective sensitivity are mentioned in subsection "Summary of crashes"
below. Apart from these simulated crashes, 135667 samples out of 940214 samples
of the data were predicted outside the 0.2 error distribution range having sensitivity
of 85%. These samples cause false alarms.

4.5.1 Summary of Crashes
The crash and no crash plots of the reconstruction loss are compared with the pre-
viously used algorithm by Detecht. The comparison involved the test experiment
crashes carried out by Detecht experienced motorcycle rider using the same smart-
phone for all of these tests so that there is no problem in the calibration of sensor
values or sampling rate variations by using different smartphones. The results are
summarized as 62 % of the test crashes are predicted as true crashes having the
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exact starting time of the crash. However, in the remaining crashes the algorithm
has predicted these crash files as crashes but at the incorrect time where the crash
not actually occurred. These false alarms are further divided into three categories
as mentioned in the limitations section. The sensitivity of data in these categories
is as below in table 4.2.

State of crash/ Reason of failure Prediction Sensitivity
Crash predictions True positive 62 %
Crash at start False Alarm 16 %
Crash at the end False Alarm 8%
Acceleration after crash False Alarm 14%

Table 4.2: Table of Percentage of data in different categories

4.5.2 Crash at the start
Practically the probability to have a crash in the first 30 seconds of starting the
crash prediction smartphone application is very low.

Figure 4.7: Crash at the start

But from the experiment crashes
there are 4 cases where the
crash is simulated in the first
30 seconds and the algorithm
designed to check for a crash
fails for these 4 crashes to be
predicted correctly as a crash.
Such a crash is shown in this fig-
ure 4.7. The reason is that the
algorithm waits for 30 seconds
to generate an alarm in order to
reduce the rate of false alarms.
If this wait time of 30 seconds
to generate the alarm is reduced
to 20 or 10 seconds then most of
the normal driving behaviors where the rider accelerates much faster in the start,
the algorithm starts predicting them as crashes. In this example, the algorithm fails
to predict which of these peaks indicate a start time of the crash.
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4.5.3 Crash at the end
In 2 of the experimental crashes which occurred in the last 30 seconds of the riding
or in the last 30 seconds of using the application, the behavior of the algorithm
response is found abnormal.

Figure 4.8: Crash at the end

There is not enough samples
available for the algorithm to
perform properly. Although it
predicts the error higher than
the normal driving indicating it
as a crash event. However, the
algorithm fails to predict the
start of the crash because of the
incomplete information fed to it
after the peak of the crash. One
such example is the error plot in
figure 4.8. This shows an error
peak at the end of the time but
if the complete plot is observed,
the error is higher than the 0.2
range even when the rider is driving normally. Another important observation from
the plot is that, since each second has the information of the next 30 seconds there-
fore the last 30 seconds are never shown in the error plots. Even in this example,
the file duration is 120 seconds but it only shows an error in the first 90 seconds.

4.5.4 Acceleration after crash
There are 4 test events out of 26, where the rider has a crash and after a little pause
it starts riding again normally. Another possibility is when the rider starts with the
higher acceleration and ends up in a crash because of any reason.

Figure 4.9: Acceleration after crash

In this case, the algorithm fails
to identify that which peak is a
crash as in few events the nor-
mal driving style of the rider
gives much sharper results in
accelerometer and gyro sensor
values than the values recorded
at the crash incident. One of
such cases is plotted in figure
4.9. In this file, the crash oc-
curred at the start of the driv-
ing but after some rest, the
rider starts driving again and
the response from the algorithm
is much higher for the normal
driving after the crash. The possibility of this behavior of driving after the crash is
very rare in real crashes. However, the experimental data provide such examples,
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and few of them generated false alarms as in this figure, the alarm is generated at
the end of the time but actually, it occurred in the start.

4.5.5 Shrinking time window
At first, the algorithm is trained by taking samples of 30 seconds after every second.
Later it is trained with samples of 20 seconds and 10 seconds respectively. Shrinking
the window not only increases the training time to approximately two times as the
number of samples is increased by a big difference, but also the reconstruction of the
data at the output provides a high error range of approximately 0-9 which makes
it difficult to draw a boundary between anomaly and normal data. Therefore the
adopted 30 seconds window provides better results. The table 4.3 provides the error
ranges by training the CAE with different settings before adopting the final model
that consist of 30s window and 3 sets of (2 convolution layer with max-pooling) in
encoder and 3 sets of (2 convolution layers with up-sampling) in the decoder of the
CAE. This model is adopted as the optimum model for the crash prediction using
CAE in this thesis.

Settings Error Range
20s window 0-9
10s window Noise (model learned no pattern)
30s window with 2 convolution layers 0-1.5
30s window with optimum model 0-0.2

Table 4.3: Table of error ranges by varing window size

4.6 Normal class
To test the algorithm, that is it only predicting the crash events outside the loss
distribution range, or it can also predict no crash events. The processed data is fed
to the algorithm and examined. A total of 804547/940214 samples are predicted
correctly as normal driving data having no crashes making sensitivity of 85%. This
data does not have any real or experiment crash events in it, as those are also
removed at the start of the data processing.
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5
Conclusion

Implementation of the Convolutional Autoencoder which is an artificial neural
network was successful for the data provided by Detecht. The reason for using
this algorithm is that it gives good results for multi-dimensional data and pre-
dicting anomalies. Minimizing the training time by using all the resources and
have the ability to perform parallel processing. Implementing the algorithm
and tuning it to have an optimal model based on the trade-off among training
time, error range from reconstructing data, and the number of filters in each
layer of the autoencoder. This also decides how many convolutions should be
performed. The optimal model resulted in 85% of the data in the distribution
range of 0 to 0.2 which is considered as normal driving. The remaining samples
are out of the prediction range and declared crashes by the algorithm. This is
because the data is not collected from experts but from real-world motorcy-
clists which can add human error while recording the data.
The performance of the algorithm is evaluated by comparing the results with
the previously used algorithm by Detecht. The comparison not only provided
the information about the performance but also the reasons for the failure of
the algorithm in some test experiments to predict a crash at the crash time.
The convolutional autoencoder has successfully predicted 62% of the total sim-
ulated crashes. The summary of predictions and failure reasons is prepared to
have an understanding of evaluation.
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