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Path Planning using Reinforcement Learning and Objective Data
TIAN XIA
ZIJIAN HAN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
With the rapid development of autonomous driving vehicles, decision making for
path planning has become advanced and challenging topics. Traditional planning
and control methods are usually limited by the difficulty to find good solutions, so
deep machine learning has become engineers’ focus in order to solve these problems.
Several related works using reinforcement learning have been done in the simulation
environment TORCS. This thesis will focus on training an vehicle to learn driving
at certain target speed on high way condition without collision. A complete learning
structure is designed for vehicle system, and a hierarchical learning algorithm will
be used with deep reinforcement learning methods. Deep Q learning is used to
learn option level of policy, and deep deterministic policy gradient is used to learn
primitive action level of policies. Neural networks are used to approximate the value
functions. The training results are tested on various set up of opponents vehicles on
the track, with the probability of damage recorded and compared.

Keywords: reinforcement learning, TORCS, policy, option, DQN, DDPG.
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1
Introduction

1.1 Background
Research on autonomous driving has become a topic of significant interest among in-
dustries. The goal of autonomous driving is to let the intelligent vehicles understand
the environment and make proper decisions on controlling the motion of vehicles
autonomously and safely without human drivers’ supervision. With fast develop-
ment of artificial intelligence algorithms and computational power, machine learning
has been widely applied in decision making processes such as autonomous driving
tasks. Compared with conventional optimization algorithms such as model predic-
tive control or stochastic optimization algorithms, machine learning algorithms have
advantages when handling multiple environments.

The actual driving scenarios in reality are much more complex than in ideal sim-
ulators. For example, the vehicle can drive into unknown environments that the
behaviour trained by supervised learning may not guarantee the safety of vehicle.
Reinforcement learning, among various of proposed methods, is probably the most
general framework in this case to learn the self-learning ability of decision making
and safe path planning for autonomous vehicles. As a result, reinforcement learning
combined with deep neural networks has become a popular and powerful method in
training self-driving vehicles to accomplish complex tasks that outperforms conven-
tional methods.

1.2 Related Work

1.2.1 Reinforcement Learning Algorithms for Autonomous
Driving

Reinforcement learning algorithms have been widely applied to decision making
problems, such as financial market operations and video games strategies. To solve
complex autonomous driving tasks which may contain different maneuvers, a num-
ber of reinforcement learning algorithms have been experimented in some researches
to perform certain self-driving tasks.

Q-learning or deep Q-learning has been widely applied to many self-driving tasks
such as simply driving along the track and overtaking. The method of learning over-
taking using simple Q-learning for primitive actions is introduced in [8]. In [3], more

1



1. Introduction

complex behaviours including overtaking and blocking are learned by Q-learning and
the study of overtaking mainly focuses on the generalization issue, which is learning
to overtake opponent cars with different behaviours. When using Q-learning in these
tasks, the primitive actions in continuous space have to be discretized into limited
fixed values as control signals. However, more smooth control signals are required
when controlling a vehicle in reality, planning and control in continuous action space
would be preferred from drivers’ perspective.

Compared with Q-learning, policy gradient methods are considered to be more pow-
erful and have better performance in solving complex tasks in continuous space[4].
Different policy gradient methods that have been applied in robotics are discussed
in [9], including finite-difference method, likelihood ration method, "Vanilla" policy
gradient and natural Actor-Critic approaches. Instead of stochastic policy gradient,
[13] proposed a deterministic policy gradient algorithm with continuous actions.
It argues that deterministic policy gradient can be much more efficient than usual
stochastic policy gradient by comparing the training results of Atari games with two
kinds of methods. Based on the deterministic policy gradient algorithm, [19] uses
deep deterministic policy gradient to learn obstacle avoidance of self-driving vehicles
with primitive actions. However, there are several problems if the policy gradient
method is applied directly to our tasks. First of all, learning primitive actions di-
rectly can lead to jerky behaviors. Secondly, it is extremely difficult to determine
the reward function. Moreover, methods in [19] cannot learn the policy successfully
anymore when there are more dynamic obstacles with complex behaviours on the
track.

The methods mentioned above are able to perform well with simple tasks, while for
more complex tasks which may consist of several sub-tasks, it is not easy to use
a simple learning method to achieve good results anymore. Therefore, the idea of
decomposing a complex task into several simply sub-tasks and learning them sep-
arately, which is the concept of option framework came to people’s mind. Option
framework was firstly proposed by Sutton in 1998 in [15], which is a framework for
temporal abstraction with the purpose of scaling up learning and planning in rein-
forcement learning. The idea of the thesis is based on using option framework to
create a general solution for complex driving tasks. The option framework method
has been developed further in [1], where an option-critic architecture is proposed
to tackle the problem of creating abstractions autonomously from data. The archi-
tecture uses an actor-critic structure to update intra-policy, it is able to learn both
internal policies and the termination conditions of options without extra reward
functions and sub-goals. However, it is proved that applying fully general learning
algorithm with no prior knowledge can be extremely inefficient in our learning task.
In other implementations of autonomous driving, sub-tasks are often assigned with
specific customized reward functions and exploration methods. A hierarchical tem-
poral abstraction method called “Option Graph” was used by Mobileye in [12] to
perform autonomous lane merging at the junction for self-driving vehicles. In the
"Option Graph" each sub-tasks are designed with specific goals such as merging left,
merging right and getting ready. In [2] a model-based hierarchical reinforcement

2



1. Introduction

learning method combines options framework, model-based planning and Bayesian
active learning was implemented to perform taxis’ path planning in TORCS.

Based on the implementations above, this thesis introduces a hierarchical reinforce-
ment learning structure for path planning of autonomous driving vehicles in high
way scenarios with Q-learning for option level learning and deep deterministic pol-
icy gradient for intra-policy level learning. The method combines the deterministic
policy gradient[13] and the way of building hierarchical learning layers[2]. How-
ever, different from [1] where all the internal policies are automatically learned, the
intra-policy and option level policy are trained independently. Since very specific
sub-tasks with customized reward and exploration can be defined in this case, it
would be more efficient to pre-train each intra-policy and easier to integrate them
in the option level. With such learning structure, we believe more sub-tasks with
specific purpose can be easily added into the complete task without re-training ev-
erything from the beginning.

1.2.2 Virtual Environments for Autonomous Driving Cars

There are several virtual environments specifically used for autonomous driving ve-
hicles simulation, including OpenAI Gym which is specially created to train agents
for reinforcement learning, Udacity self driving car simulator which performs better
in self driving behavioral cloning rather than reinforcement learning algorithms be-
cause it can only handle an ego car with limited numbers of tracks, CARLA which is
a newly developed simulation engine for autonomous driving but still lack of many
virtual modules to simulate real driving scenarios.

An racing car simulator names "TORCS" is selected for the simulation and reinforce-
ment learning algorithm development in this thesis. TORCS is a state-of-art open
source car racing simulator that provides a full 3D visualization, a sophisticated
physics engine and accurate vehicle dynamics[7]. Compared with other simulators,
TORCS contains more complete physical proprieties that users can customize the
environment, for example, tracks can be designed according to requirements and
opponent cars with different behaviours can be programmed and added into the
environment. In TORCS, the connection between game and client bots are based
on UDP communication and each car are programmed as separate client modules.
The software architecture of the TORCS are shown in figure 1.1.

3
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Figure 1.1: The architecture of the competition software[7]

TORCS has been a tool for doing research on reinforcement learning for a long time
and some related works have been done, for example, in [8], [3] and [19], algorithms
are all tested in TORCS environment.

1.3 Purpose
The main goal of this thesis is to investigate and simulate the behavior of reinforce-
ment learning method applied on an autonomous driving vehicle to perform the
overtaking scenario. More specifically, to investigate how the policy search method
handles the safe path planning tasks for overtaking. Safety would be the critical
consideration when performing the task and efficiency of how the task is finished
may also be evaluated.

1.4 Objective
The main objective is to build an agent that could autonomously control the steering,
acceleration and braking of a vehicle in some driving tasks. The input information
of the intelligent agent is limited to object-level data which is collected from TORCS
environment, the object-level data includes states of the ego vehicle(location on the
track, speed, acceleration, heading angles, etc), location and speed of surrounding
vehicles, lane-markers and also supplementary driving information like speed limits.
The agent is supposed to detect a proper triggering time for the vehicle to start the
overtaking task and suggest a high-resolution traveling trajectory that followed by
a designed controller. Safety and efficiency of driving would be the main concern of
agent.

4
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The focus of this thesis will be on the reinforcement learning techniques, includ-
ing but not limited to imitation learning and policy search for path prediction. The
baseline is to implement a policy search algorithm that could find the optimal tra-
jectory for the ego vehicle to overtake opponent vehicles. Safety constraints will
be added on the policy during learning to guarantee the safe driving of vehicle. In
the autonomous driving scenario, option framework is used in the highest hierarchy
to make high level decisions including overtaking and following. Policy gradient,
which is the method we mainly focus on, will be used to learn to plan path for
some time horizon in the future under the overtaking scenario. Meanwhile, a low
level PID controller will be used to follow the generated path. The agent will then
be evaluated in several traffic scenarios where the opponent vehicles have different
behaviours. The agent should make proper decisions when to begin overtaking or
following and be able to complete these behaviors safely and efficiently.

1.5 Limitations
Since it is impossible to test our algorithms in real driving scenario currently, there
are a lot of limitations in this thesis project because of the difference between sim-
ulation and reality. The real autonomous driving problem is extremely difficult
because of the complexity and uncertainty of the environment, the action of other
vehicles could be unpredictable sometimes and the sensor data is usually generated
with noise.

However, the simulation environment is much more ideal and simplified. First of
all, objective data is provided in the simulator so that we get absolute accurate
data from the environment without of any noise. Furthermore, road conditions and
driving behaviours of other vehicles are strictly designed or limited so that the basic
idea of the algorithm can be verified efficiently. Last but not least, our priority is
to accomplish overtaking task by generating a path, efficiency, comfort and other
factors will also be considered but not with a very high priority.
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2
Theory

2.1 Basis of Reinforcement learning

2.1.1 Elements of Reinforcement Learning
In this section the basic elements and concepts in reinforcement learning, including
the concept of policy, reward, value function, models, MDPs will be introduced. Be-
sides, the characteristics and categories of reinforcement learning will be discussed
as the background knowledge of the methods used in this thesis.

Policy - A policy reflects the behaviour of the agent, it defines how the agent
will take actions according to its perceived states[14]. A policy can be very sim-
ple, such as a function matching states with actions or a lookup table, it can also
be a searching process with more complex computation or represented by a neural
network. Generally, policy is extremely important to us because it decides how the
agent interacts with the environment.

Reward - Reward is what the agent received from the environment every time after
it takes an action. If the agent gets a high reward, we consider the corresponding
(state, action) tuple as ’good’ states and if the agent gets a low reward we consider
these states as ’bad’ states. Set a proper reward function is also extremely impor-
tant because it is the only thing that connect the agent with the environment and
all that the agent learns is based on the reward it gets.

Value Function - Value function is the long-term reward. The value of a states
means the total discounted reward that the agent receives from the present state to
a few steps further in the future. The discounted reward means that reward in the
future can be multiplied with a discount factor as its weight. Value is meaningful in
reinforcement learning because the behaviour of an agent should not be only decided
by the immediate reward, instead, looking further to the future can lead to a better
learning result.

Model - A model is a set of the information from the environment that can be used
by the agent to predict the following state and reward after it takes an action. The
two most important kinds of model are statistic models, or we can call it distribu-
tion models, and sample models. The statistic models predicts the probabilities of
the next possible states and rewards. The sample models sample according to the
possibilities and finally produce only one of them as the result.

7



2. Theory

Agent and Environment - The agent and the environment are two key element in
reinforcement learning, the agent learns from its interaction with the environment
and make decision according to the state and policy. At each time step of the
learning process, the agent receive information from the environment as its state
and takes an action based on its policy, the agent will then go into a new state and
the environment will feed back a reward to the agent.

2.1.2 Characteristics of Reinforcement Learning
There are several aspects that make reinforcement learning different from other
machine learning methods. First of all, there is no supervisor in reinforcement
learning, instead, a reward signal will tell the agent what is good and what is bad.
Secondly, the feedback is delayed, which means the agent cannot get the feedback
immediately but in the future, thus the agent need to take the reward in the future
into consideration. Last but not least, what the agent do will affect the environment
and the subsequent information it receives on the future will be different.

2.1.3 Categorizing of Reinforcement Learning
Generally, there are two kinds of reinforcement learning methods, value based re-
inforcement learning and policy based reinforcement learning. In value based re-
inforcement learning, the value, or action-value is approximated according to the
parameters θ and the policy is directly generated from the value function. However,
in policy based reinforcement learning, there is no value function and the policy is
parameterized directly.

πθ(s, a) = P [a|s, θ] (2.1)
Equation 2.1 shows that the policy is parameterized by θ and the policy is learned
by updating the parameters θ. For some cases like tasks with large and continuous
state and action space, policy based reinforcement learning has several advantages
compared to value based reinforcement learning. It has better convergence prop-
erties with higher efficiency in high-dimensional and continuous action spaces, and
can learn stochastic policies. However, a local optimum may occur and it is usually
hard to evaluate such policy.
Actor-Critic is a special method that combines both value function and parameter-
ixed policy, which means that the value function and policy are both learned, this
method will be introduced later.

2.1.4 MDPs and Bellman Equations
Finite Markov Decision Processes(MDPs) are the framework of standard reinforce-
ment learning which formally describe an environment for reinforcement learning.
In MDPs, the environment should be fully observable which means that the current
state can characterize the process completely.
MDPs follow the following property,

P [St+1|St] = P [St+1|S1, ..., St] (2.2)

8
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which means that the current state includes all the necessary information that the
agent needs and what happens in the future is only decided by the present state and
independent of the past.
In the MDPs framework, the agent interacts with the environment at discrete and
lowest-level time scale[15], at each time step t=0,1,2,... the agent receives informa-
tion from the environment and consider itself at a state st ∈ S. The agent chooses
an action at ∈ At according to its policy, this action will lead the agent to a new
state st+1 and the environment will give a reward rt+1 as feedback to the agent, the
agent will then improve its policy according to the MDPs.
The MDPs can be represented by the following sequence:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (2.3)

vπ(s) = Eπ[Gt|St = s]
= Eπ[Rt+1 + γGt+1|St = s]
=

∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ|Gt+1|St+1 = s′]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

(2.4)

Bellman equation shows how to represent the value of the current state by the states
in the future, 2.4 shows that the value of a state s can be expressed by the sum of
the immediate reward and the value in the next state multiplied by a discount factor
γ which represents the weight of the next state’s value, the larger γ is, the more we
look ahead from the current state and take future rewards into consideration.

2.2 Value Function Approximation
Function approximation is using a function to estimate the true value which is dif-
ficult to calculate directly. For large MDPs with too many states and actions in
memory, it takes too much space to store all the state value or state-action value
pairs in the look-up table, and it is also very slow to learn the value of each state
individually. To solve this problem, function approximation is used for large MDPs
to estimate value function by v̂(s,w) ≈ vπ(s) or q̂(s, a,w) ≈ qπ(s, a) instead of using
a lookup table.

There are many types of function approximators, including linear combinations of
features, neural network, decision tree, nearest neighbour, etc. Here in our case,
only differentiable function approximators are taken into consideration, like linear
combinations of features, and neural network.

Furthermore, with a differentiable function approximators (neural network is mainly
used in this thesis), a training method suitable for non-stationary data is required.
Gradient descent is the most commonly used method to update the weights of func-
tion approximators.

9
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2.2.1 Stochastic Gradient Descent
Assuming J(w) to be a differentiable objective function with parameter vector w.
The gradient of J(w) is defined as:

5wJ(w) =


∂J(w1)
∂w1...

∂J(wn)
∂wn

 (2.5)

To find the local minimum of J(w), gradient descent will adjust parameter w in the
direction of negative gradient by:

4w = −1
2α5w J(w) (2.6)

where α is the learning rate.

And value function approximation by stochastic gradient descent is to find the pa-
rameter vector w the minimize the mean-squared error between approximate value
function v̂(s,w) and true value function vπ(s). The mean-squared error is defined
as:

J(w) = Eπ[(vπ(S)− v̂(S,w))2] (2.7)
The gradient descent of equation 2.7 can be calculated as:

4w = −1
2α5w J(w)

= αEπ[(vπ(S)− v̂(S,w))5w v̂(S,w)]
(2.8)

While stochastic gradient descent samples the gradient by:

4w = α(vπ(S)− v̂(S,w))5w v̂(S,w) (2.9)

And the expected update of weight parameters using equation 2.9 is equal to full
gradient update.

2.3 Q learning
Q-learning is known as an off-policy TD control algorithm first introduced byWatkins
in 1992 [17], which was an early breakthrough in reinforcement learning. The de-
cision making process of Q learning is based on action-value of the current state,
and the action with highest value would be considered the best. During learning,
the concept of update action-value is to use the difference between actual value and
estimated value, times a discount factor to update the value. The main update
equation used in Q learning is:

Q(st, at)← Q(st, at) + α[rt + γmax
a

Q(st+1, a)−Q(st, at)] (2.10)

where Q(st, at) is the action-value function, α is learning rate, rt is the reward re-
ceived after taking action at.

10



2. Theory

In Q learning an action-value function Q is learned to directly approximates q∗,
the optimal action-value function, without taking care of the policy. While the pol-
icy still have effect during learning, since it will decide which state-action pairs to
visit.

2.3.1 Tabular Q-learning

The state and action for original Q learning algorithm are both discrete, and they
can be represented by pairs or in a tabular format. Therefore here we use tabular
Q-learning for common Q learning algorithm to give a different name with the DQN
mentioned below. The basic algorithm [14] is given below.
Tabular Q-learning;
Initialize the action-value function Q(s,a) arbitrarily, for all s ∈ S+, a ∈ A(s);
for episode = 1 to k do

Initialize s;
for step = 1 to MAX_STEPS or termination do

Choose action a from s using policy derived from Q (e.g., ε-greedy);
Taking action a, observe reward r and next state s′;
Update Q with Q(s, a)← Q(s, a) + α[rt + γmaxaQ(s′, a)−Q(s, a)];
Update latest state s← s′;

end
end
Algorithm 1: Q-learning(off-policy TD control) for estimating optimal policy

2.3.2 Deep Q Network (DQN)

As the increasing complexity of tasks as well as state space changing from discrete
to continuous, original tabular Q learning is no longer able to approximate the value
function. Therefore, Deep Q network (DQN) is developed with a combination of
deep neural networks and Q learning to accomplish the function approximation in
continuous state space.

The overall algorithm can be described as:

11
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Deep Q-learning with experience replay
Initialize reply memory D to capacity N;
Initialize action-value function Q network with random weights θ;
Initialize target action-value function Q network with weights θ− = θ;
for episode = 1 to k do

Initialize state s1 and pre-process the state as the input format of neural
network φ1 = φ(s1);
for step = 1 to MAX_STEPS or termination do

With probability ε select a random action at, otherwise select
at = arg maxaQ(φ(st), a; θ);
Execute action at, observe reward rt and next state st+1;
Process state φt+1 = φ(st+1);
Store trasition (φt, at, rt, φt+1) in memory D;
Sample random minibatch of transitions (φj, aj, rj, φj+1) from D;
Set yj = ...;
Perform a gradient descent step on (yj −Q(φj, aj; θ))2 with respect to the
network parameters θ;
Every C steps reset target network weights Q̂ = Q;

end
end

Algorithm 2: Deep Q-learning with experience reply

2.3.2.1 Use of Neural Network

Neural network is used as function approximator to estimate the action-value func-
tion in Q learning, which means it can take continuous state and action space as
input for network, and output the value for action (shown in figure 2.1a), or take the
state as input and output the value for all possible actions(shown in figure 2.1b).

(a) Q function net-
work structure 1

(b) Q function network struc-
ture 2

Figure 2.1: DQN neural network structure
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2.3.2.2 Update of Neural Network

The update method of neural network is similar as equation 2.10, using gradient
descent. Temporal difference is used to estimate the difference between estimated
and actual Q value for current state, and using this as the error to update the
weights of neural network.

2.3.2.3 Experience Replay and Fixed Q-targets

Another two important benefits for DQN are that it uses experience reply and fixed
Q-targets.

It is found that approximation of Q-value using non-linear functions like neural
network is not very stable. The most common method to overcome this problem
is to use experience replay. Experience replay is a method that remember the pre-
vious sampled experience. This means during the updating of network, samples of
experience are randomly selected from the memory buffer instead of most the recent
transition, which will greatly improve the stability and efficiency of network.

Take value updating for example, given experience consisting of <state, value>
pairs D = {〈s1, v

π
1 〉, 〈s2, v

π
2 〉, ..., 〈sT , vπT 〉}, following two steps will be repeated: (1)

sample a state-value pair from experience;(2) apply stochastic gradient descent up-
date 4w = α(vπ(S)− v̂(S,w))5w v̂(S,w), until it converges to optimal solution.

Fixed Q-targets is another way used in DQN to break the relevance between data
samples and policy, as the concept of Double Q learning introduced in [16]. It uses
two networks with same structure but different updating frequencies: one evaluation
network(used to calculate estimated Q value Q(s)) with regular frequency of update,
and one target network(used to calculate actual TD Q value r+ γmaxQ(s′)) which
update at a lower frequency.

2.4 Policy Gradient

In policy based reinforcement learning, the generation of action is different from
value based reinforcement learning which output the action based on values. In-
stead, action is given directly through policy. A policy can be directly represented
by an independent function approximator, such as a linear combination of the input
states or a neural network that takes states as input and actions as output with its
own parameters.

Compared with value based learning like Q learning, the greatest advantage of es-
timating action directly is that it is able to deal with problems in continuous state
and action space. While for Q learning, it would be impossible to save the values
for too large number of state and action space.
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2.4.1 Policy Objective Functions
Given a policy πθ(s, a), the best θ for the policy is supposed to be found and the
policy objective function J(θ) is used to measure the quality of the policy.
The policy objective function is usually defined as a function related to the value
function, for example, in episodic environments, the objective function is defined as
the start value J1(θ) = V πθ(s1) = Eπθ [V1]. In continuing environment, it is defined
as the average value JavV (θ) and it can be also defined as the average reward per
time step in some conditions.

2.4.2 Policy Gradient Theorem
Let J(θ) be the objective function of the policy, the policy gradient searched a local
maximum in J(θ) by ascending the gradient of the policy with respect to θ.
Theorem 1 (Policy Gradient) For an MDP with a objective function,

∂ρ

∂θ
=

∑
s

dπ(s)
∑
a

∂π(s, a)
∂θ

Qπ(s, a), (2.11)

where dπ(s) is a discounted weighting of states encountered starting at s(0) and then
following π : dπ(s) =

∞∑
t=0

λtPr{st = s|s0, π}.
Theorem 2 (Policy Gradient Theorem) For any differentiable policy πθ(s, a)
with any objective function, the policy gradient is

∇θJ(θ) = Eπθ [∇θlogπθ(s, a)Qπθ(s, a)] (2.12)

2.4.3 REINFORCE: Monte Carlo Policy Gradient
With policy gradient theorem, the policy function can be updated from the sample of
experiences in continuous action space. The most basic policy gradient framework
call REINFORCE was introduced in [18]. The algorithm is given in algorithm 3
below.
function REINFORCE;
Input : a differentiable policy parameterization π(a|s, θ)
Initialize parameter θ arbitrarily;
for episode {s1, a1, r2, · · · , sT−1, aT−1, rT} do

for t = 1 to T do
θ ← θ + α5θ log πθ(st, at)vt

end
end
return θ;

Algorithm 3: REINFORCE method for policy gradient
Note that the REINFORCE is a Monte Carlo algorithm, which means it uses the
complete episode for update. That is, the return from time t, which includes all
future rewards up to the end of episode will be used. In this case REINFORCE is
defined for episodic case.
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2.5 Actor-Critic
Although policy gradient method like REINFORCE can learn policy directly for
continuous action space, it is still not sample-efficient and learns slowly for large
space. Bootstrapping methods like temporal-difference can eliminate these inconve-
niences. In order to gain these advantages with policy gradient methods, actor-critic
methods with a bootstrapping critic was introduced[14].

Actor-critic method is a combination of Q learning and policy gradients. The actor
is the policy for selecting actions in continuous space, and critic is value-based
learning, which learns the value function and gives feedback to actor. Actor-critic
method enables bootstrapping that could update the actor for every step, instead
of updating until the episode ends in policy gradients.

2.5.1 Deep deterministic policy gradient
Despite the advantages of actor-critic methods, the two neural networks involved are
being updated in the continuous state and action space every step, and all of the up-
dates are strongly related, which might lead the network hard to learn. To solve this
problem, a modified algorithm based on the structure of actor-critic algorithm called
Deep deterministic policy gradient (DDPG) was introduced by Google DeepMind[6].

Deep deterministic policy gradient (DDPG) is a combination of Actor-critic method
with the concept of DQN, and it learns more efficiently on continuous space. This
is due to the fact that for deterministic policy gradient, the expected gradient of Q
function can be more efficiently estimated. As an off-policy actor-critic, determin-
istic policy gradient outperform their stochastic counter-parts in high-dimensional
action space[6].

For DDPG, the deterministic policy a = µθ(s) is used to estimate the fixed actions
for each state, rather than stochastic policy πθ = P [a|s; θ]

2.5.1.1 Gradients of Deterministic Policies

The majority of model-free of reinforcement learning is policy iteration, which in-
cludes policy evaluation and policy improvement. Policy evaluation is to estimate
action-value function by MC sampling or TD learning. While policy improvement
updates the policy with regard to estimated action-value function. However, in con-
tinuous action spaces, greedy policy improvement becomes problematic[6]. Instead
of globally maximizing Q, policy gradient is used to move the policy in the direction
of Q value gradient, shown in equation 2.13.

5θQ
µk(s, µθ(s)) = 5θµθ(s)5a Q

µk(s, a) (2.13)

While for deterministic policy µθ : S → A with parameter vector θ ∈ Rn, the
policy gradient theorem would also be used to update the policy. Since we have

15



2. Theory

the performance objective J(µθ) = E[rγ1 |µ], and the probability distribution p(s →
s

′
, t, µ), and discounted state distribution ρµ(s), the performance objective can be

expressed as:

J(µθ) =
∫
S
ρµ(s)r(s, µθ(s))ds

= ES∼ρµ [r(s, µθ(s))]
(2.14)

Therefore, the gradient of it can be calculated as:

5θJ(µθ) =
∫
S
5θµθ(s)5a Q

µ(s, a)|a=µθ(s)ds

= ES∼ρµ [5θµθ(s)5a Q
µ(s, a)|a=µθ(s)]

(2.15)

2.5.1.2 Deterministic Actor-Critic Algorithms

The overall algorithm of DDPG is given in [6], which is shown below.
DDPG Algorithm;
Randomly initialize actor µ(s|θµ) and critic network Q(s, a|θQ) with weights θµ
and θQ;
Initialize target network µ′ and Q′ with same weights as learned network;
Initialize replay buffer R;
for episode = 1 to k do

Initialize a random process N for action exploration;
Get and save the initial state s1;
for step = 1 to T do

Select action at = µ(st|θµ) +Nt according to current policy and exploration
noise;
Execute the actions at and observe reward rt and next state st+1;
Store the transition (st, at, rt, st+1) in buffer R;
Sample a random mini-batch of N transitions (st, at, rt, st+1) from R;
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′)|θQ′);

Update critic by minimizing the loss: L = 1
N

∑
l(yi −Q(si, ai|θQ))2;

Update the actor policy using sampled policy gradient;
5θµJ = 1

N

∑
i5aQ(s, a|θQ)5θµ µ(s|θµ)|si;

Update the target networks:;
θQ

′ = τθQ + (1− τ)θQ′ ;
θµ

′ = τθµ + (1− τ)θµ′

end
end

Algorithm 4: DDPG Algorithm
It is also stated in [6] that the learning may suffer from convergence issues due to
both bias introduced by function approximator, and also instabilities caused by off-
policy learning. A more principled approach would be using compatible function
approximation and gradient TD learning.

Also it is mentioned that the most challenging part of learning in continuous action
space is the exploration. However, for DDPG the problem of exploration can be
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treated independently from the learning algorithm, by adding noise sampled from a
noise process N to the actor policy:

µ′(st) = µ(st|θµt ) +N (2.16)

2.6 Hierarchical Reinforcement Learning

For complex tasks like overtaking, which might contains several operations of the
vehicle, including changing lanes to left or right, accelerating or braking in certain
sequences, it may be less efficient to learn from primitive actions. Option framework
can be a better choice since temporal abstraction is key to scaling up learning and
planning in reinforcement learning[1].

The concept of temporal abstractions can be understand as some kind of high-
level policy, with more abstract actions that could cover multi-steps for low-level
actions. Options in reinforcement learning is such kind of temporal abstraction that
contains more than one step of action.

The concept of options in reinforcement learning was first proposed by Richard
S. Sutton in 1998. Options are closed-loop policies for taking actions over a period
of time, and options enable temporally abstract knowledge and action to be included
in the reinforcement learning framework in a natural and general way [15]. The op-
tion framework is the minimal extension of reinforcement learning framework that
allows a general treatment of temporal abstraction.

2.6.1 Options
As mentioned above, options are generalization of primitive actions to include tem-
porally extended courses of action.

A Markovian option ω is a triple 〈Iω, πω, βω〉 which contains three components: intra-
option policy πω : S×A→ [0, 1]; a termination condition (function) βω : S+ → [0, 1];
and an initiation set Iω ⊆ S . The option is available in state st if and only if st ∈ I .
If the option is taken, the primitive actions are taken according to policy πω until
the option terminates stochastically according to βω.

Once an option is selected, an example for state-action trajectory with options can
be described as: First, the next action at is selected according to probability distri-
bution πω(st, ·). Take the action and observe the next state st+1, where the option
either terminates with probability βω(st+1), or else continue with next selected ac-
tion. When this option terminates, the agent will select another option according
to the policy over options.
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The termination of options can not only depend on the termination function, some-
times it would be useful for options to "timeout", which means if it has failed to
reach any certain state within some period of time, the option has to terminate.
This is not possible for Markov options because they are only based on the cur-
rent state. However, with option framework with semi-Markov options that keeps
record of all prior events since an option is initiated, it is possible to do so [15].
Assuming an option is initialized at time t and terminates after steps of k in state
st+k. Within this option, for Markov options at each intermediate time τ , the de-
cisions of intra-policy is dependent only on sτ , whereas for semi-Markov options,
the policy and termination condition may depend on the entire preceding sequence
st, at, rt+1, ..., rτ , sτ , denoted as htτ , the history from t to τ .

Policies over options µ : S × Ω → [0, 1] are the policies to choose an option ω
based on state st according to probability distribution µ(st, ·). Note that here even
the policy over options is Markov, however, the intra-option policy is semi-Markov
because the options are multi-step and the intra-option policy depends on the entire
history within that option.

2.6.2 Value functions
Based on the concept of options discussed above, the corresponding value functions
for options framework can also be defined.

The value function of a state s ∈ S under a semi-Markov intra-option policy πω
as the expected return given the policy is initiated in state s can be expressed as:

V πω(s) = E{rt+1 + γrt+2 + γ2rt+3 + ...|ε(πω, s, t)} (2.17)

where ε(πω, s, t) denotes the intra-option policy initiated in state s at time t. Since
the policy over options will have a certain intra-option given a state, the value of
general policy µ can be defined as the value of the state under corresponding intra-
option policy: V µ(s) = V πω |µ(s)

The option-value function generalized from action-value function Qµ(s, ω) can be
defined as the value of taking option ω in state s under policy µ:

Qµ(s, ω) = E{rt+1 + γrt+2 + γ2rt+3 + ...|ε(ωµ, s, t)} (2.18)

2.6.3 SMDP methods
As mentioned before, options are related to the decision making problems known as
semi-Markov decision process, or SMDP [11]. explain what is semi-MDP[2]:

The theorem of relationship bewteen MDP and SMDP are described in [15] as:
Theorem 3 (MDP+Options=SMDP) For any MDP, and any set of options
defined on that MD, the decision process that selects only among those options,
executing each to termination, is an SMDP.
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Based on the relationship between MDPs, options and SMDPs, the methods for
planning and learning with options can be developed.

Planning with options need to know the update of state-value function from Bell-
man equations. For any option ω, let ε(πω, s, t) denote the event of option ω being
initiated in state s at time t. Then the reward part of model of ω for any state s is:

rωs = E{rt+1 + γrt+2 + γ2rt+3 + ...+ γk−1rt+k|ε(ω, s, t)} (2.19)
where t+ k is the time at which this option terminates.
The state-prediction part can be expressed as:

pωss′ =
∞∑
k=1

p(s′, k)γk (2.20)

where p(s′, k) is the probability that the option terminates in s′ after k steps. Thus,
the transmit probability is a combination of the likelihood that option terminates
in different steps, which describes the outcome of an option at potentially many
different times. This is called a multi-time model [10].

For multi-time models, the Bellman equations for general policies and options can
be written as:

V µ(s) = E{rt+1 + ...+ γk−1rt+k + γkV µ(st+k)|ε(µ, s, t)}
=

∑
ω∈Ω

µ(s, ω)[rωs +
∑
s′
pωss′V µ(s′)] (2.21)

Qµ(s, ω) = E{rt+1 + ...+ γk−1rt+k + γkV µ(st+k)|ε(ω, s, t)}
= E{rt+1 + ...+ γk−1rt+k + γk

∑
ω′∈Ω

µ(s′, ω′)Qµ(st+k, ω)|ε(ω, s, t)}

= rωs +
∑
s′
pωss′

∑
ω′∈Ω

µ(s′, ω′)Qµ(s′, ω′)
(2.22)

Finally, the generalizations of optimal value functions and optimal Bellman equa-
tions to options and policies over options can be given. Denote the set of options
by Ω, and the set of all policies selecting only from options in Ω by Π(Ω). Then the
optimal value function give set of options Ω is:

V ∗Ω(s) = maxµ∈Π(Ω)V
µ(s)

= maxω∈ΩsE{rt+1 + ...+ γk−1rt+k + γkV ∗Ω(st+k)|ε(ω, s, t)}
= maxω∈Ωs [rωs +

∑
s′
pωss′V ∗Ω(s′)]

= maxω∈ΩsE{r + γkV ∗Ω(s′)|ε(ω, s)}

(2.23)

where ε(ω, s) denotes option ω being initiated in state s.
And the Bellman equation for optimal option value is:

Q∗Ω = maxµ∈Π(Ω)Q
µ(s, ω)

= E{rt+1 + ...+ γk−1rt+k + γkmaxω′∈Ωst+kQ
∗
Ω(st+k, ω′)|ε(ω, s, t)}

= rωs +
∑
s′
pωss′maxω′∈Ωs′Q

∗
Ω(s′, ω′)

= E{r + γkmaxω′∈Ωs′Q
∗
Ω(s′, ω′)|ε(ω, s)}

(2.24)
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With equations given above, the approximations to V ∗Ω or Q∗Ω become the main goal
for planning and learning methods with options.

2.6.4 The Option-Critic Architecture
After the options framework was defined, discovering temporal abstractions au-
tonomously has been the subject of extensive research efforts [1]. With the majority
of existing work focusing on finding the subgoals, in [1] a new approach based on
policy gradient called Option-Critic architecture was proposed, that is able to per-
form gradual learning process of intra-option policies, termination functions and the
policy over options at the same time.

The process of algorithm is presented below in algorithm 5. The option-level policy is
learned with Q learning, while the intra-policy and termination function is updated
using policy gradient theorem.
Option-critic with tabular intra-option Q-learning;
Initialize the state s← s0
Choose an option ω according to an ε-soft policy over options µ(s)
for episode = 1 to k do

Choose action a according to intra-policy πω,θ(a|s);
Take action a in s, observe s′ and r;
1. Option evaluation:
δ ← r −QU(s, ω, a)
if s′ is non-terminal then

δ ← r + γ(1− βω,ϑ(s′))QΩ(s′, ω) + γβω,ϑ(s′)maxω̄QΩ(s′, ω̄)
end
QU(s, ω, a)← QU(s, ω, a) + αδ
2. Options improvement:
θ ← θ + αθ QU(s, ω, a)
ϑ← ϑ− αϑ (QΩ(s′, ω)− VΩ(s′))
if βω,ϑ terminates in s′ then

choose new ω according to ε-soft(πΩ(s′))
s← s′

end
end

Algorithm 5: Option-critic with tabular intra-option Q-learning
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3.1 Environments and Data

3.1.1 Track design
Since driving on the high way is a complex operation, the planning and controlling
decisions of a vehicle can vary from case to case. In order to verify that reinforce-
ment learning can be used to complete some autonomous driving tasks including
overtaking, a designed track is used in this case to create a simple and limited sce-
nario.

The layout of the designed path can be seen in figure 3.1 below, which consists of
two straight tracks with 1000 meters in length and two curves with radius of 100
meters. The track width is 8m and the track is flat.

Figure 3.1: Designed track in TORCS track editor

3.1.2 Opponent vehicle set up
In order to simulate the driving environment, several opponent vehicles are added
on the track. Since TORCS is a racing car simulator, the opponent vehicles are only
allowed to be on the specified start positions in TORCS, thus the initial position
of these vehicles cannot be very flexible. As a result, opponent vehicles with differ-
ent speed are set up, so they can drive on different sides of the track in certain order.

There are in total two different kinds of designed opponent vehicles used during
learning. Each kind of vehicle has a specific driving behaviour: the first kind of
opponent vehicle("RightFix") is designed to drive on right track with fixed speed;
the second kind of opponent vehicle("LeftFix") is designed to drive on left side of
track with fixed speed. Depending on the number of vehicles added on the track, the
designed highest speed for the same kind of vehicle varies from 40km/h to 92km/h.
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As a result, there are many different combinations of opponent vehicles so that
different training and testing scenarios can be created.

3.1.3 Traffic Rules constraints

When the self-driving vehicle is driving with certain behaviour (lane following or
overtaking), it is essential to obey the traffic rules (traffic light, track lines and
speed limit). Since there is no traffic light in TORCS environment, only track line
constraints and speed limit will be considered. For the track line constraint it is
allowed to go across the dash lines, while solid lines are not allowed to be crossed.
The speed limit for self-driving vehicle is set to 120 km/h.

3.1.4 Sensors and variables

In TORCS there are several virtual sensors located on the vehicle. The sensors can
be used to get objective-level information of the environment which can be used as
the input of the neural network. These inputs include an angle sensor measuring
the angle between the car direction and the direction of the track axis, 19 range
finder sensors measuring the distance between the track edge and the car with in
a range of 200 meters, 36 opponent sensors measuring the distance of the closest
opponent in the covered area, 3 speed sensors measuring the speed of the vehicle in
X, Y and Z directions, a track position sensor measuring the distance between the
vehicle and the track axis, 4 wheel rotational speed sensors measuring the rotational
speed of wheels, and 1 engine speed sensor for engine rotational speed. There are in
total 65 variables used as input state. The virtual sensors simulate the GPS, Lidar
and ultrasonic radar. The input variables from these sensors are listed in table 3.1
below.
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Table 3.1: Input variables from virtual sensors

Name Range (unit) Description Sensor
TrackAngle [−π,+π](rad) Angle between vehicle heading di-

rection and track axis
GPS

TrackPos (−∞,+∞) Lateral position of vehicle on the
track, 0 when in the middle of
track, -1 when on the right edge
of track and +1 when on the left
edge of the track; smaller than -1
or lager than +1 means vehicle is
out of track

GPS

Track [0, 8](m) 19 sensors, each returns the dis-
tance from track edge to the ve-
hicle

Ultrasonic
radar

SpeedX (−∞,+∞)(km/h) Longitudinal speed of the vehicle GPS
SpeedY (−∞,+∞)(km/h) Lateral speed of the vehicle GPS
SpeedZ (−∞,+∞)(km/h) Vertical speed of the vehicle GPS
Opponents [0, 200](m) Distance from ego vehicle to op-

ponents; a vector of 36 opponents
with each vector a span of 10 de-
grees around the vehicle

Lidar

WheelSpinVel [0,+∞)(rad/s) Vector of 4 sensors representing
the rotational speed of wheels

Wheel
En-
coders

Rpm [0,+∞)(rpm) Number of rotations per minute
of the car engine

N/A

A general figure shows the perception values is given in figure 3.2 below. As can
be seen in the figure, the thick dark lines on two sides of the figure are the left and
right road boundaries, with a dash line in middle of the figure. 36 arrows around
the vehicle indicate the Lidar sensors detection range. The yellow part of the arrows
indicates the frontal collision emergency braking detection range, the purple part
indicates the side collision detection range on the left side and the right side will be
the same. The angles, speedX and speedY are also illustrated in the figure.
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Figure 3.2: Sensors layout

3.2 Planning and Controlling System Design

In order to control the motion of the self-driving vehicle, different path planning
strategies are implemented and experimented, including learning of primitive ac-
tions and learning of abstract path representation.

Abstract path representation means that the path is represented by abstract vari-
ables, for example, a third order polynomial or a combination of target position and
speed. The planned path will then be transformed into primitive actions using a
low level controller.

However, during the experiments it is found out that learning primitive actions di-
rectly will result in very unsmoothed behavior of the agent vehicle, because the
learned policy may generate actions that varies a lot between each previous step.
Other ways including polynomial representation of path cannot be easily learned by
neural network as well. As a result, the learning of target lateral position on track
and target speed turns out to be the best solution among all.

After the path is planned, the path representation will be used as the input to the
low level controller, which transforms the path into primitive actions. In the end,
to guarantee safety during driving, a safety controller is implemented. This is es-
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sential due to the fact that there is no guarantee that the learned path can be 100%
safe. Although there are penalties for collision and critical situations in the reward
function, the value for penalty has to be extremely large to further lower the risk
of danger, which will also bring large variance to the learning result. Therefore, in-
spired by the solution from [12], a safety controller will be added that would actively
intervene when critical situation happens.

As is described above, the overall perception, planning and controlling structure
are shown in figure 3.3. The path planner, which includes option level policy and
intra-policies, receives state information from environment, and outputs the learned
abstract path representation which is then transformed into primitive actions and
passed through the safety controller for the agent to take actions.

Figure 3.3: The algorithm architecture

3.2.1 Path Planner
As is mentioned above, path planner is the core component of self-driving agent.
In this case the planner will learn middle-level of actions: target lateral position on
track and target speed.

The learned middle-level actions are listed in table 3.2 below.
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Table 3.2: Path-planner-level of actions

Name Range Description
Target Lateral Position [−1,+1] Target track position in lateral direction, -1

means on most left side of the track and +1
means on most right side

Target Speed [0, 1] Target speed within set minimal and max-
imal speed range, 0 means minimal speed,
and 1 means highest speed

3.2.2 Low Level Controller
The function of the low level controller is to transform the abstract path represen-
tation into three primitive actions(steering, acceleration and braking) that can be
directly used into TORCS. The variables for these three primitive actions are listed
in table 3.3 below.

Table 3.3: Primitive action variables for vehicle controlling

Name Range Description
Steering [−1,+1] Steering wheel angle, -1 and +1

means full right and left respec-
tively

Acceleration [0, 1] Virtual acceleration value for gas
pedal (0 means no acceleration
and 1 means full throttle)

Braking [0, 1] Virtual braking value for brake
pedal (0 means no braking and 1
means full braking)

The low level controller are separated into two parts: a lateral controller and a
longitudinal controller. They will control the steering and throttle of agent vehicle
separately using PID control law.

Before being given to the controller, the target lateral position dtarget and the target
speed vtarget will be constrained by their boundaries as given in equation 3.1 below:

dtarget ⊆ [−1, 1]
vtarget ⊆ [0, 1]

(3.1)

3.2.2.1 Lateral Controller

The lateral controller will transform target track positions into steering wheel angles
according to the current vehicle lateral position using equation 3.2:

aθ = tanh(Kangle
p (obangle)−Kposition

p (obtrackPos − dtarget)) (3.2)
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where aθ is the steering angle shown in table 3.3, obangle is the angle between the
vehicle heading direction and the track middle axis shown in table 3.1, obtrackPos
is the current lateral position of the vehicle on the track in table 3.1, dtarget is the
target lateral position shown in table 3.2 and Kangle

p and Kposition
p are the coefficients

for controller. By tuning the controller in TORCS, the coefficient Kangle
p is chosen

to be 5 and Kposition
p is chosen to be 0.5.

3.2.2.2 Longitudinal Controller

The longitudinal controller mainly have two functions: transforming target speed
into throttle control signals (acceleration and braking) and decreasing the accelera-
tion when there is risk of sliding.

The inputs of the longitudinal controller are the observations from the environment
and the target speed. The first step of the controller is to transform the target speed
fraction(in range [0,1]) into the real target speed (in unit of km/h) between the set
of minimal and maximal vehicle speed using equation 3.3:

starget = smin + sfraction · (smax − smin) (3.3)

where sfraction is the target speed fraction in range of 0 and 1, starget is real target
speed in unit of km/h, smin and smax is the minimal and maximal vehicle speed.
smin is set to be 10km/h and smax is 120km/h.

Based on the current vehicle speed, the target speed will be transferred into throttle
control signals using a PD controller given in equation 3.4 below:

aacc =

0, obspeedX ≥ starget

tanh(−Kbrake
p (starget − obspeedX)−Kbrake

d aspeedX), otherwise

abrake =

tanh(Kacc
p (starget − obspeedX) +Kacc

d aspeedX), obspeedX ≥ starget

0, otherwise

(3.4)

where aacc is the acceleration control signal, abrake is the braking control signal,
obspeedX is the the current observed vehicle speed, aspeedX is the calculated accelera-
tion of the vehicle, Kbrake

p and Kacc
p are the P controller coefficient for braking and

acceleration components which are both set to 0.6, Kbrake
d and Kacc

d are the D con-
troller coefficient for braking and acceleration components which are both set to 0.05.

For the function of traction control, the acceleration will be decreased based on the
rotational speed difference between two axles of wheels:

if (obws[2] + obws[3] − obws[0] − obws[1] > thresholdTC) :
aacc = aacc − aTC

acc
(3.5)

where obws[i] is the observation of the wheel spinning velocity of front wheels and
rear wheels, thresholdTC is the maximum allowed spinning velocity difference, which
is set to be 5 rad/s, and aTC

acc is the decreased part on acceleration, which is set to
be 0.2 m/s2.
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3.2.3 Active Safety Controller
The learned policy cannot guarantee 100 percent safety of the vehicle, so active
safety controller will intervene at critical situations. Active safety controller will
use Lidar sensors as perception system(described in opponents part in observation).
Front collision emergency braking system and side collision steering assistance will
be the two main functions of the active safety controller.

The front collision emergency braking system will detect the distance to the vehi-
cles in the frontal range, the collision steering assistance will detect the side distance
to the opponent vehicles. Commonly, this value for distance representation should
be time to collision(TTC), which is the distance between two vehicles divided by
relative speed between them. However, it is hard to do object tracking in TORCS
environment and the speed of opponents vehicles cannot be accurately estimated
due to the low frequency of observation. Therefore, the relative distance will be
used to evaluate the critical situation to simplify the case both in the collision emer-
gency braking system and side collision detection system.

For the front collision emergency braking system, the intervention of throttle control
signal will be given in equation 3.6, and for the lateral steering assistance, the control
law for steering with be give in equation 3.7:

if ob(opponents[FCRange] < SafetyLong :aacc = 0
abrake = 0.4

(3.6)

if obopponents[SCRange] < SafetyLat :

asteer = asteer ±KSC · vx · (1−
obopponents[SCRange]

SafetyLat
)

(3.7)

where ob is the observation from environment, aacc indicates the acceleration, abrake
indicates braking deceleration, asteer indicates the steering wheel angle, vx is the
longitudinal velocity. SafetyLong is set to 15 meters, SafetyLat is set to 5 meters and
steering assistance factor KSC is set to 3.0 in this case.

3.3 Learning Option-level Policy with Fixed Intra-
policy using Q-Learning

Based on the scenario set-up and learning structure mentioned above, an important
concept of learning a complex task such as autonomous driving is to decompose
it into several simpler sub-tasks by using option framework. As the first trial of
method, fixed intra-policy for each option is used in this section to evaluate the
possibility of learning option-level policy. Deep Q network(DQN) will be used in
this section since the number of the output of option-level policy is finite.
For the option framework, another important concept besides policy is the termina-
tion function. To simplify the learning process, the learning process of termination
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function is performed in another format in our case: the duration of option is not
represented by a function approximator, instead, a group of options are assigned
with different operation duration. Thus, the learning of termination function is
encoded in the learning of selecting options.

3.3.1 Implementation of DQN
The implementation of DQN to learn option-level policy follows the algorithm of
DQN given in algorithm 2, the Q network will learn the state-option value which
means the agent only learns to choose options. After an option is chosen, the
pretrained intra-policies will execute the option.
DQN for option learning with fixed intra-policy;
Initialize the TORCS environment and learning agent
Randomly initialize the Q network Q(s, o|θQ) with weights θQ
for episode = 1 to k do

Reset the environment and get initial state s1;
for step = 1 to done or MAX_EP_STEPS do

Select an option based on Q-value ot = arg maxθQ Q(s, o) or randomly select
an option according to ε -greedy exploration policy;
for primitive step = 1 to done or current option’s duration do

Get the primitive action at using low level controller;
Execute the primitive action at, observe the primitive reward
rprimitiveand next state st+1;
Accumulate the discounted reward within this option by
roption = roption + γprimitivestep · rprimitive;

end
Save the latest state st+1;
Store the transition (st, ot, roption, st+1) in buffer R;
Sample a random mini-batch of N transitions (st, at, rt, st+1) from R;
Set yi = ri + γmaxQ′(si+1, ai+1|θQ

′);
Update Q network by minimizing the loss:;
L = 1

N

∑
l(yi −Q(si, ai|θQ))2;

Update the target networks:;
θQ

′ = τθQ + (1− τ)θQ′ ;
end

end
Algorithm 6: Learning option with fixed intra-policy using DQN

The training process begins with the initialization of the TORCS environment and
Q network. For each episode, firstly the initial observation will be saved and trans-
formed to the format of neural network’s input. Then, for each option-level step, an
option is selected using ε-greedy exploration and then executed for certain steps or
until it terminates. The discounted rewards are accumulated as the reward for this
option and the transition is save din the memory buffer. Afterwards, a mini-batch
of transition is sampled from the memory randomly and the loss is then minimized
by gradient descent. Finally the weights in target network are updated. The overall
algorithm is given in algorithm 6 above.
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3.3.2 Q network
The neural networks used to approximate Q-value function include a training net-
work and a target network, with exactly the same structure. The inputs of the
Q-value networks are the 65 state variables explained in section 3.1.4. The outputs
are the state-option values for each option according to the current state. The 4
options designed in our case are:

• option 1: driving on the left track with duration of 15 primitive steps;
• option 2: driving on the left track with duration of 30 primitive steps;
• option 3: driving on the right track with duration of 15 primitive steps;
• option 4: driving on the right track with duration of 30 primitive steps;

The duration for each option are set to be 15 and 30 according to the result of
the experiments, it is found out that a smooth lane changing maneuver would take
approximately 12 to 18 primitive steps. Therefore, two different duration time will
be set for the agent to choice during the learning process, which means the agent
would learn to plan the path either for a longer time or a shorter time.

The networks used in this case are all fully connected networks with 2 hidden layers
including 200 neurons. The activation function is chosen as "RELU" for each hidden
layer and "linear activation" for the output layer. Furthermore, Mean-squared error
is used as loss function.

3.3.3 Design of Reward Function
Reward function is one of the most important parts in reinforcement learning. Ac-
cording to the results of experiments, the reward function used in this section consists
of the following four components:

1. reward represents target track position: rtrack;
2. reward represents target speed: rspeed;
3. reward represents critical situation (danger): rsafety;
4. reward represents collision and running out of the track: rdamage;

The calculation for each part of the reward function is given as below. As can be
seen in equation 3.8, the track position reward penalizes the difference between the
vehicle track position and the target track position(in this case the vehicle would
keep on the right side of the track). The speed reward increases when the vehicle
has a higher longitudinal speed along the track direction and decreases when there
is lateral speed. Furthermore, if critical situation(either triggering safety condition
boundary or crashing) occurs, the agent will receive a large negative reward.

rtrack = −vx|trackPos− offset|
rspeed = vx cos θ − |vx sin θ|
rsafety = −1.0
rdamage = −5.0

(3.8)
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The offset is set to 0.5 in the experiment which means that the prioritized driving
position is on the right side.

The total reward for each episode is calculated using equation 3.9 below.

r =


γtrackrtrack + γspeedrspeed, if no danger or damage
rsafety(terminate), if danger but not damage
rdamage(terminate), if damage

(3.9)

where γtrack and γspeed are scaling factor for track position reward and speed reward
components. In order to balance the value between each part of the reward. They
are set to 120 and 240 separately. If critical situation including danger and damage
occurs, the current episode will terminate so that the agent can learn from more
samples of the safe condition.

3.3.4 Design of Exploration
The balance between exploration and exploitation will have a great effect on learning
results. Exploitation is how much the agent act to gain more reward according to its
learned policy while exploration means how much the agent will explore the unknown
world . In order to avoid local optimal situation and maximize the future reward,
the percentage for exploitation and exploration need to be balanced, otherwise the
agent can either be stuck in local optimal or be unable to learn anything from
its experience. The exploration in DQN is commonly performed by an approach
called ε-greedy policy which is shown in 3.10. With this method, the agent will
try to select random actions for ε percentage of time and select actions according
to the learned policy in the rest time. The randomness in exploration will help
the agent occasionally try some new behaviours in action space. The randomness
variable ε decays as the option-level steps increases during the entire training process.
Equation 3.11 shows the decay of ε:

ot =

arg maxoQ(s, o), if ζ ≥ ε

random(options), otherwise
(3.10)

where ot is the option, Q(s, o) is the option value function, ζ is a randomly generated
number between 0 and 1.

Also, the randomness decreases as the number of training episodes increases as is
described in equation 3.11:

ε = max(ηi−1ε0, εmin) (3.11)

where η is the epsilon decay factor which is selected to be 0.997 in this case, ε0 is
the initial epsilon value which is set to be 1.0, εmin is the minimal allowed epsilon
value which is set to be 0.01 and i is the total option-level steps during the training
process.
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3.3.5 Update of Target Network

The weights of target network is updated with a frequency lower than the learned
network, which is performed using equation 3.12 below.

θQ
′ = τθQ + (1− τ)θQ′ (3.12)

where τ is the update factor which is set to 0.001 in this case, θQ is the weight
matrix for the learned network and θQ′ is the weight matrix for the target network.

3.4 Learning intra-policy using DDPG

Although option-level policy can be easily learned using DQN, it is still heavily
relay on the hard-coded intra-policy(control law to transform options to primitive
actions). In order to get a better and more adaptation for general scenarios, intra-
policy within options are considered to be learned directly from the observation
using an end-to-end learning strategy. As is shown in figure 3.3, the intra-policy
will now be learned with a path planner instead of simply using a fixed controller.
Consider the fact that the middle-level action space (target track position and target
speed) is continuous, deep deterministic policy gradient is used to learn the primi-
tive action level policy.

In this case, two kind of intra-policies will be learned:
1. Intra-policy 1: Overtaking - The agent vehicle will try to drive at a target

speed on the right side of the track. If there is a slower vehicle in front of the
agent vehicle, the agent vehicle will try to overtake it from the left side of the
track.

2. Intra-policy 2: Following - The agent vehicle will try to drive at a target speed
on the right side of the track. If there is a slower vehicles in front of the agent
vehicle, agent vehicle will try to slow down and follow the vehicle ahead and
keep a relative safe distance.

Based on the same structure, different intra-policies will be learned with different
exploration parameters and reward functions.

3.4.1 Implementation of DDPG

The implementation of DDPG for intra-policy learning is shown in algorithm 7 which
follows the algorithm description in section 2.5.1 below.
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Intra-policy learning with DDPG;
Randomly initialize the actor µ(s|θµ) and critic network Q(s, a|θQ) with weights θµ
and θQ;
Initialize the target network µ′ and Q′ with the same weights as in learned network;
Initialize the replay buffer R with buffer size (100000);
for episode = 1 to k do

Initialize a random process for the action exploration;
Reset the environment and get the initial state s1;
for step = 1 to done or maxSteps do

Select a target action at = µ(st|θµ) +Nt according to the current policy and
exploration noise (Ornstein-Uhlenbeck process dxt = θ(µ− xt)dt+ σdWt);
Transform the target action into primitive actions using low level controller
aprimitive = f(at);
Execute the primitive actions aprimitive, observe the reward rt and next state
st+1;
Store the transition (st, at, rt, st+1) in buffer R;
Sample a random mini-batch of N transitions (st, at, rt, st+1) from R;
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′)|θQ′);

Update the critic by minimizing the loss:;
L = 1

N

∑
l(yi −Q(si, ai|θQ))2;

Update the actor policy using sampled policy gradient;
5θµJ = 1

N

∑
i5aQ(s, a|θQ)5θµ µ(s|θµ)|si;

Update the target networks:;
θQ

′ = τθQ + (1− τ)θQ′ ;
θµ

′ = τθµ + (1− τ)θµ′

end
end

Algorithm 7: DDPG with primitive action
Similar to learning option policy, the learning process of intra-policy begins with
initialization the neural networks and replay memory buffer. Then for each episode,
firstly the TORCS environment is reset and an initial observation is obtained.
Within the maximum allowed episode steps (note: this is primitive steps here, while
for option level learning it is option-level steps), select the target action according to
exploration process, and then use a low level controller to transform the target ac-
tions into the primitive actions that can be executed by TORCS agent. Afterwards,
the observed transition is stored into the memory buffer. In the update process, a
random mini-batch of 32 transitions are selected before the actor and critic networks
are updated according to the policy gradient theorem.

3.4.2 Structure of Neural Networks

Neural networks are used as function approximators for both actor and critic net-
works. Keras and tensorflow are used as tools to build up the network model.
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3.4.2.1 Actor Network

The actor network is used to approximate the deterministic policy function µ(a|s, θµ).
The input layer consists of 65 variables of states and the final layer generates 2 con-
tinuous actions: target track position(between -1 and 1) which is a single unit with
tanh activation function, and target speed(between 0 and 1) which is also a single
unit with sigmoid activation function. The two outputs are combined with a Keras
function called Merge which is used to combine variables with different activation
functions. The two hidden layers are both fully connected layers with "relu" ac-
tivation functions with 300 and 600 hidden units respectively. The final layer is
initialized with µ = 0 and σ = 10−4 to make sure that the initial outputs of the
policy are not zero.

3.4.2.2 Critic Network

The critic network is used to approximate the action-value function Q(s, a|θQ), tak-
ing both 65 state variables and 2 action variables as input. First of all, the state
variables are processed by the first hidden layer with 300 hidden units and "relu"
activation function. Secondly, the processed state and action variables are sent into
two fully connected layer with 600 hidden units and linear activation functions and
the outputs are merged together. Then, the merged result are then processed by
the third hidden layer with 600 hidden units and "relu" activation function. In the
end, the final fully connected layer with linear activation function generates the
value for the state-action pair. The model is trained with Adam optimization and
mean-square loss.

3.4.2.3 Target Network

Similar to the update process of DQN networks, the DDPG target network is also
used to overcome the unstable during learning process with neural networks. The
target networks are exactly the same as the actor and critic networks, used to
calculate the target values and updated by slowly track the learned networks using
equation 3.13:

θ
′ = τθQ+ (1− τ)θ′ (3.13)

where θ is the weight matrix of learned networks, and θ′ is the weight matrix of
target networks, τ is set to 0.001 in this case.

3.4.3 Design of Reward Function for Overtaking and Fol-
lowing

As mentioned before, one of the advantage of learning intra-policy with DDPG is
that different intra-policies can be learned with the same algorithm framework, with
only different reward functions. In this case, the main difference between learning
overtaking and following is how the reward function is designed.
Since the target behaviour is overtaking and following that is similar as introduced
in DQN before, the reward function of the overtaking intra-policy is also the same,
consisting of four components:
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1. reward regarding target track position: rtrack;
2. reward regarding target speed: rspeed;
3. reward regarding critical situation (danger): rsafety;
4. reward regarding collision and running out of the track: rdamage;

The rewards are calculated with equation 3.9 and equation 3.8. The only difference
between the reward functions of overtaking and following is that the coefficient of
rspeed and rtrack are both set to 120 when training the following behaviour.

3.4.4 Design of Exploration Behavior
Finding a proper way to perform exploration algorithm in continuous action space is
also a critical issue of learning DDPG. However, according to the experiment result
in the overtaking learning case, the most commonly used ε-greedy exploration is not
working very well with primitive action level of learning in TORCS environment
because two actions in continuous space will be taken at the same time. It usually
doesn’t make much sense if the combinations of actions are chosen randomly from
uniform random distribution.

Therefore, the exploration are performed by adding noise on actions using Ornstein-
Uhlenbeck process introduced in [6] and [5].

3.4.4.1 Ornstein-Uhlenbeck Process

Ornstein-Uhlenbeck process is a stochastic process with mean-reverting proper-
ties[19] commonly used for exploration in continuous domain. The Ornstein-Uhlenbeck
process can be expressed as the following stochastic differential equation:

dxt = θ(µ− xt)dt+ σdWt (3.14)

where Wt represents a standard Brownian motion. θ is the rate of mean reversion
which represents how fast the variables revert towards the mean. µ is the long
term mean of the process, which represents the mean value of the variable. σ is the
volatility or average magnitude per square-root time which represents the volatility
degree of the process.

The Ornstein-Uhlenbeck process has a mean-reverting property. When the last
random fluctuations part in the process is ignored, it can be seen that xt has an
overall drift trend towards the mean µ, which means the process xt reverts to this
mean at the rate of θ.

3.4.4.2 Exploration for Overtaking

The value for parameters used in OU(Ornstein-Uhlcnbeck) function for overtaking is
given in table 3.4 below. For overtaking, the agent vehicle is expected to accelerate
towards the target speed, so the mean for target speed is set to be 1.0, while the
mean for target position is set to 0.0 to achieve an fair exploration between left and
right side of the track.
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Table 3.4: Ornstein-Uhlenbeck parameters for Overtaking

Action θ µ σ
Target track position 0.6 0.0 0.3
Target speed 0.9 1.0 0.1

3.4.4.3 Exploration for Following

For training following, it is found out that using OU exploration function cannot
reach a good result. Therefore, the ε-greedy exploration policy is still used in this
case when training the following behaviour. Instead of picking a random action, we
generate a random noise and multiply a coefficient with it, adding it on the output
of the neural network. The final action to be executed is shown as follows:

a = aoriginal + αN (3.15)

where N is a random number generated with in the set [−1, 1] for the target position
and [0, 1] for the target speed, α is a coefficient to tune the scalar of the noise.

3.5 Learning Option-level policy with learned intra-
policy

In this section, the option-level policy learned with DQN and intra-policy learned
with DDPG are combined to create the entire learning strategy for the agent. Simi-
lar to the previous training process in section 3.3, the option-level policy will still be
trained with DQN, while the fixed intra-policy will be replaced with the pre-trained
intra-policy in section 3.4. The purpose of implementing the path planning part
in this way is to evaluate the possibility of training the agent to learn the entire
end-to-end planning process, and be more adaptive to more complex and unseen
scenarios.

In this case, it is found out that the structure of Q network in DQN with fixed
intra-policy is not able to learn the overall task very well, so the number of hidden
layers and hidden units are increased. In this case the Q network contains 3 hidden
layers, with 300, 600 and 300 neurons for each hidden layer separately. The other
parameters of the networks remain the same.

The number of options in this case is increased to 6 with different duration, which
are:

• option 1: overtaking with duration of 10 primitive steps;
• option 2: overtaking duration of 20 primitive steps;
• option 3: overtaking duration of 30 primitive steps;
• option 4: following with duration of 10 primitive steps;
• option 5: following with duration of 20 primitive steps;
• option 6: following with duration of 30 primitive steps;
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The reward function is same as in equation 3.9, where:

rtrack = −vx|trackPos− offset|
rspeed = vx cos θ − |vx sin θ|
rsafety = −5.0
rdamage = −30.0

(3.16)

Compared with equation 3.8, the negative reward for the safety component is set to
−5.0 and for the damage component is set to −30.0 in order to give more penalty to
danger behavior. The four components of the reward function are shown in equation
3.16.

The exploration uses ε-greedy policy with a decaying factor of 0.997 for DQN.

The implementation of the algorithm is given in algorithm 8, which is basically the
same as algorithm 6. The only difference is that after selecting the option from value
function, the primitive target actions will be generated from learned intra-policy in
the last section.
DQN for option learning with learned intra-policy;
Initialize the TORCS environment and agent
Load the model for intra-policies with termination steps
Randomly initialize the Q network Q(s, o|θQ) with weights θQ
for episode = 1 to k do

Reset the environment and get initial state s1;
for step = 1 to done or MAX_EP_STEPS do

Select an option based on Q-value ot = arg maxθQ Q(s, o) or randomly select
an option according to ε -greedy exploration policy;
for primitive step = 1 to done or current option’s duration do

Get the target action from learned intra-policy model;
Get the primitive action at using low level controller;
Execute the primitive action at, observe the primitive reward
rprimitiveand next state st+1;
Accumulate the discounted reward within this option by
roption = roption + γprimitivestep · rprimitive;

end
Save the latest state st+1;
Store the transition (st, ot, roption, st+1) in buffer R;
Sample a random mini-batch of N transitions (st, at, rt, st+1) from R;
Set yi = ri + γmaxQ′(si+1, ai+1|θQ

′);
Update Q network by minimizing the loss:;
L = 1

N

∑
l(yi −Q(si, ai|θQ))2;

Update the target networks:;
θQ

′ = τθQ + (1− τ)θQ′ ;
end

end
Algorithm 8: Learning option with learned intra-policy using DQN
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4
Results

4.1 Learning Option-level Policy with Fixed Intra-
policy by Q Learning

The agent is trained for 5000 episodes on the designed track described in section
3.1.1, using ε-greedy exploration process with decay rate 0.997. The training process
should not last too long so that the overfitting problem can be prevented.

According to the opponent vehicles set up described in section 3.1.2, the opponent
vehicles are designed as followed: two "RightFix" vehicles driving on right side of
the track, with average speed of 92km/h and 80km/h separately; two "LeftFix"
vehicles driving on left side of the track, with average speed of 92km/h and 80km/h
separately. The agent vehicle starts in the end position on the right side of the track,
figure 4.1 shows the initial queue of all the vehicles.

Figure 4.1: Vehicle start positions for option learning with fixed intra-policy

There are several variables reflecting the quality of the training process, figure
4.2 shows the key variables, including accumulated rewards for the entire training

39



4. Results

episode, average step rewards, rate of critical situations and epsilon.

(a) Total Reward (b) Average Reward

(c) Critical Situation Rate (d) Randomness in policy

Figure 4.2: Training process for option learning with fixed intra-policy using DQN

Figure 4.2a shows the total reward per episode, indicting how good the agent per-
forms in the overtaking task, 4.2b shows the average reward per step per episode,
which is the more proper variable to reveal the effect of learning indicates the over-
all performance during the operation time. Figure 4.2c shows the critical situa-
tions(collision and in danger of collision) percentage in each episode. Figure 4.2d
shows the value of ε during exploration, which indicates the randomness rate of
actions in each episode.

As can be seen from figure 4.2a and 4.2b, the agent obtains the ability of overtak-
ing after around 1300 episodes, during which the average reward for each episode
rapidly raises to approximately 0.8 for most episodes and the number of episode
with bad performance(low rewards) decreases. It can also be seen in figure 4.2c that
after 1000 episodes, the probability of going into critical situations drops obviously,
meanwhile, With the randomness rate decreasing closely to zero, the performance
of the agent tends to be stable after 1500 episodes.
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Some typical driving scenarios can be seen in figure 4.3, including following and lane
merging.

(a) Approaching front vehicle (b) Merging to left

(c) Merging to right (d) Overtaking

Figure 4.3: Scenarios of running option policy with fixed intra-policy

After 5000 episodes’ training, the learned policy is tested in several environments
and the agent can have excellent performance. The test environments are given in
table 4.1. It can be seen that the agent successfully learns to drive at the desired
maximum speed and executes safe overtaking without collision in all the test cases,
with the number of opponent vehicles varying from one to four.

No. Num. of opponents Set up Task Finished Damage
1 1 RightFix(80[km/h]) Yes No
2 1 RightFix(92[km/h]) Yes No
3 2 RightFix(92+80[km/h]) Yes No
4 3 RightFix(92+80[km/h]) +

LeftFix(80[km/h])
Yes No

5 4 RightFix(92+80[km/h]) +
LeftFix(92+80[km/h])

Yes No

Table 4.1: Tested environment for option learning with fixed intra-policy
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Example of the monitored variables for test cases 5 are shown in figure 4.4, where
the first sub-figure gives the reward received at each primitive step, the second sub-
figure shows the selected options at current primitive step, the third sub-figure shows
the vehicle track position (-1 means left and 1 means right) and the last sub-figure
shows the speed change. In this test case there are two opponents on the left track
and two opponents on the right track so the agent has to execute two times of over-
taking to come to the first position. As shown in sub-figure 2, the agent decides
to start overtaking at around step 55 and step 150, where the option jumps from
1 to 3 and the track position successfully changes at the same time. The merging
back behaviors can also be seen clearly from sub-figure 2 and 3. After overtaking
2 opponents on the right track, the agent continues to drive at almost a constant
speed (around 117km/h) on the right track.

Figure 4.4: Trained results for option learning with fixed intra-policy using DQN

It is noticed that in this test case the agent only selects between option 1 and 3,
which means the path planning duration is 30 option-level steps, the shorter plan-
ning period with 15 option-level steps are not selected.

The learning of primitive actions is able to perform the overtaking maneuver within
200 episodes of learning. It is obvious that the ego vehicle tends to drive stably
on the right side of the track at the target speed and when the opponent vehicle
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appears ahead with a lower speed than the ego vehicle, the ego vehicle will merge
lane to the left side of the track. After taking over the opponent vehicle, the ego
vehicle will merge back to the right lane of the track.

4.2 Learning Intra-policy using DDPG
In this section, two intra-policies are trained separately. Since they will be later
combined with option-level policy for complex set-up, the training set-up for these
two intra-policy is not very complex. Besides, for continuous action space of learning,
it is found out that it is extremely difficult to learn a proper policy when setting too
many opponent vehicles.

4.2.1 Learning Overtaking
For learning overtaking, the agent is trained for 1800 episodes for each time of train-
ing on the designed track described in section 3.1.1 using the Ornstein-Uhlenbeck
process for exploration, with decay rate of 0.998 in each episode. The training set-up
in this training process includes only two opponent vehicles on the right track in
front of the agent: 2 "RightFix" vehicles driving on the right side of the track with
average speed 92km/h and 80km/h separately. The agent vehicle starts on the right
side of the track in the last position as shown in figure 4.5.

Figure 4.5: Vehicle start positions for learning overtaking

The learning process is shown by monitoring the same variables as in DQN learning
process which are given in figure 4.6. As can be seen from figure 4.6a and 4.6b, the
agent begins to obtain the lane changing ability after around 300 episodes. Besides,
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merging back from left to right is much harder to learn then the first lane change
from right to left. After 1500 episodes of training, the agent is able to show obvious
intention of perform the overtaking maneuver. However, after testing with several
experiments and trials with different weighting factors in reward function, it is found
out that the learned operation is very hard to be collision free. This is because that
the agent shows the intention of performing two times of lane changing, but during
the merging process the agent sometimes merges back a little bit earlier and scratches
with the opponent vehicles. This is obviously unacceptable during real life driving.

(a) Total Reward (b) Average Reward

(c) Critical Situation Rate (d) Randomness in policy

Figure 4.6: Training process for learning overtaking using DDPG

After training, the policy is tested on the environment set-ups given in table 4.2
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No. Num of
Oppo.

Set up Finishing
task

Danger Collision

1 1 RightFix(92[km/h]) Yes 0% No
2 1 RightFix(80[km/h]) Yes 0% No
3 2 RightFix(92+80[km/h]) Yes 3.34% Yes
4 3 RightFix(92+80+62[km/h]) No 3.01% Yes
5 4 RightFix(92+80+62+57[km/h]) Yes 6.25% Yes

Table 4.2: Tested setup and results for learning overtaking without safety controller

The testing results shows that the agent can finish most of the cases with a rather
low critical situation rate. The danger situation is due to the same situation as
in training case, that when the agent vehicle tries to merge back to right track, it
always merges a little bit early. Also the start position will have an effect on the
damage rate because some critical situations happened in the beginning when the
agent is too close to other vehicles. It is also noticed that the agent gets lower
rewards at higher speed because the early merging back collision may cause a worse
result at high speed.

One example of test cases with four "RightFix" opponent vehicles is shown in figure
4.7. The agent starts on the right side of the track, with two opponent vehicles
merging from left to right with speed around 80km/h and another two opponent
vehicles driving straight on the right track. The overtaking behavior is shown with
dash lines in the figure. The pink line indicates the start of overtaking and the
blue line indicates the end of overtaking. In the beginning the agent is blocked by
the left vehicle which tries to move to the right track and some collision happened.
The agent vehicle changes lane to the left side at around 13 steps and starts to
accelerate to 117km/h at 30 steps. After the agent overtakes the third opponent
vehicle it merges back to the right side at 40 steps and starts the next overtaking
at 45 steps. In the second overtaking process, the agent decides to overtook the two
opponent vehicles ahead at the same time. It stays on the left track until around
73 steps and merges back at around 73 steps, at 95 steps, the overtaking is finished
after which the agent stays on the right track with a constant speed.
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Figure 4.7: Trained results for leaning overtaking without safety controller

To solve the problem of collision during overtaking, a safety controller is activated
as the ADAS system to assist the agent, as mentioned in section 3.2.3. With the
assistance of safety controller, the agent could successfully avoid the problem of
getting too close to the opponent vehicles, which can be seen from table 4.3. The
probability of having danger situation is greatly reduced. No collision happens in
test cases except in the start position when the agent is very close to the opponents.
The same variables for test environment with four opponents are shown in figure
4.8. Compare with figure 4.7, it is obvious that in sub-figure 1 in figure 4.8, there
is no reward of −5 received which means no collision happens. The performance of
the agent with safety controller is much better than the original one.

No. Num. of
Oppo.

Set up Finishing
task

Danger Collision

1 1 RightFix(92[km/h]) Yes 0% No
2 1 RightFix(80[km/h]) Yes 0% No
3 2 RightFix(92+80[km/h]) Yes 1.672% No
4 3 RightFix(92+80+62[km/h]) Yes 2.007% No
5 4 RightFix(92+80+62+57[km/h]) Yes 5.251% No

Table 4.3: Tested setup and results for learning overtaking with safety controller
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Figure 4.8: Trained results for leaning overtaking with safety controller

4.2.2 Learning Following
The following behaviour is much easier than overtaking and only after 800 episodes
the agent learns this behaviour. The training process is almost the same with train-
ing overtaking and the only difference is the exploration policy and reward function.

In the following intra-policy, the agent is always supposed to follow the vehicle in
front of it no matter which lane the ego car is on, learning to accelerate when the
distance is too large and brake when it is too small. The training scenario includes
two opponent cars in front of the ego car on the two lanes separately, keeping the
same speed and there is only a narrow space between them so the ego car can hardly
find room to overtake.

When learning the following behaviour, noise is add to the action to be executed
and ε-greedy exploration policy is used. The noise added on the target speed is a
random number between -1 and 1 which means the right and left edge of the track.
Besides,the noise added on the target speed is a random number between -5 and
10 so that the agent can learn to speed up easier, the target speed will remain un-
changed if it is a negative number after the noise is added.

There is also small difference when training the following behaviour, when the dis-
tance detection sensor detects that the distance to the vehicle in front of the agent
is smaller than 20 meters, the agent will receive a negative reward, the smaller the

47



4. Results

distance is, the more punishment the agent will get so that the agent will not reach
a too close position to the vehicle ahead meanwhile drives as fast as possible on the
right side of the track.

(a) Total Reward (b) Average Reward

(c) Critical Situation Rate (d) Randomness in policy

Figure 4.9: Training process for learning following using DDPG

Figure 4.9 shows the training process of the following intra-policy, Figure 4.9a il-
lustrates the total reward of each episode and 4.9b illustrates the average reward
per step during training. In the beginning 180 episodes, the agent basically learned
nothing and the reward is almost zero. The reward suddenly increased at after 180
episodes but is still unstable as the distribution of the reward is very noisy which
means the agent is still doing a wide range of exploration. However, both the total
reward and the average reward seem to reach a high and relative stable position
after 420 episodes and reach the peak and most stable position after 650 episodes
when the agent finally learned the over take behaviour.

Figure 4.9c illustrates the damage rate during training the following behaviour. In
the beginning 120 episodes, the damage rate stays at a low standard which is below
9, this is because the agent can not even learn to drive inside the track and kept
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running out of the track in the beginning and the training terminated before it
caused more crash with the opponent vehicles. The agent learned to run inside the
track and tried to follow the vehicle in front of it after 120 episodes more collision
appeared because the agent could stay longer inside the track before the episode
terminated. The critical rate becomes extremely low after 640 episodes and that is
exactly when the agent could learn the following behaviour will. However, as there
are still some random behaviour during training, collision occurs with a low rate and
the simulation test result shows that the agent can follow the vehicle ahead without
any collision.

Figure 4.10: Trained results for leaning following without safety controller

Figure 4.10 illustrates the training result of the following behaviour. It can be seen
that the primitive reward per step generally has the same tread with speed because
the reward function is multiplied with speed. The second sub-figure shows that the
agent can stay on the right side of the road, there are some oscillation which shows
that the agent keeps adjusting its position. The third sub-figure illustrates that the
agent tries to control its speed so that it can keep a proper distance to the vehicle
in front of it. The agent keeps its speed around 80 km/h, accelerating when it is
too far from the vehicle in front of it an d braking when the distance is too short.

4.3 Learning Option-level Policy with Learned Intra-
policy

The training set-up of option level policy with learned intra-policy is the same as
learning option with fixed intra-policy. The only difference is that in this case the
pre-trained intra-policies using DDPG will be loaded to replace the fixed hard-coded
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controller.

The agent is trained for 3000 episodes with ε-greedy exploration policy and the same
start position set-up as shown in figure 4.1. The monitored variables during learning
process is shown in figure 4.11 below.

(a) Total Reward (b) Average Reward

(c) Critical Situation Rate (d) Randomness in policy

Figure 4.11: Training process for option learning with learned intra-policy using
DQN

From figure 4.11a we can see that the total reward in the episode gradually converges
to around 400 with a dropping trend from the beginning. However, the learning pro-
cess can be more clearly seen from figure 4.11b where the average reward per step
is showing a converging trend and from figure4.11c where the critical situation rate
is getting down. The dropping trend in episodic reward is due to the fact that at
beginning of learning, the agent sometimes always try to selecting overtaking with
some collision, but high speed from beginning. And that can lead to unexpected
high episodic reward.

The tested cases are given in table 4.4 with four different combinations of vehicles
on both side of the track. To further see the performance of agent vehicle, detailed
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variables of each test cases are also given in figure 4.12 below.

(a) Test case No.1 (b) Test case No.2

(c) Test case No.3 (d) Test case No.4

Figure 4.12: Tested cases key variables for option learning with learned intra-policy

It is obvious that in test case 1 and 2, where there is only one opponent vehicle on
right track to overtake, the agent vehicle select overtaking policy and perform one
overtaking at proper time. For test case 3 and 4, where there are two opponent
vehicles on right track, the agent performs overtaking two times. Noted in figure
4.12c that the agent first tried to overtake but end up being blocked by the vehicle on
left track, so it selected following policy and merged back to right again. The overall
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performance with very low critical situation rate shows the agent has successfully
learned to overtake at proper time and avoid collision.

No. Num.
of
Oppo-
nents

Set up ([km/h]) Task
Fin-
ished

Danger Collision

1 2 RightFix(92)+LeftFix(80) Yes 0.45% No
2 2 RightFix(92)+LeftFix(92) Yes 0.91% No
3 3 RightFix(92+80)+LeftFix(92) Yes 2.08% No
4 4 RightFix(92+80)+LeftFix(92+80) Yes 1.82% No

Table 4.4: Tested setup and results for learning option with learned intra-policy
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5
Conclusion

In this thesis, a complete autonomous driving structure for the self-driving vehicle
is developed, that could execute continuous actions. Reinforcement learning algo-
rithms are applied for the leaned policy. DQN is used for learning option level policy
and DDPG is used for learning intra-policies. Under several traffic and vehicle dy-
namic constraints, the learning algorithms learns to perform the autonomous driving
tasks efficiently. Several experiments are performed to study the proper combination
of reward functions.

The results shows that that the reinforcement learning is able to learn the path
planning during self-driving tasks. With the designed learning structure, which is a
combination of learned path planner and low level controllers, the agent can perform
well in the simulated environment to drive on the high way, with several opponent
vehicles on both driving track and side track. That is, the agent learns to plan the
path for a certain time period, and the planner is able to make behavior changing
decisions, such as lane merging, overtaking and following. It is found out that the
DQN is very efficient for learning option level of policy, while DDPG for continuous
primitive action level of learning is not very easy to achieve a satisfied performance.
Therefore, safety controller is still required in this thesis work to guarantee the safety
of agent vehicle.

The learned policy is generalize enough to some environment change, but not tested
with much randomness of the opponent vehicles due to the working time and limita-
tion of simulation environment. And the algorithm is still far away from real driving
data and real world test.

Overall, the concept of using reinforcement learning to plan the path for a cer-
tain period has been verified to be reasonable and work at least in the simulation
environment with objective level of data.
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6
Future Work

6.1 Improvement on Simulation Environment
Though TORCS is a well-developed simulation environment, it is developed for race
cars, which makes the track and environment set-up different from urban driving
situation. Based on the learning purpose of this thesis, the simulation environment
still has many limitations, including:

• The designed track is for racing vehicles, which contains only one lane actually;
• The opponent vehicles can not be easily placed on any position of the track;
• During training the visualization tool cannot be disabled, which slows down

the training process;
• The frequency for all the observation data is same, and for some of the per-

ception data it is not high enough.
• The angular resolution for simulated Lidar data is still not enough for accurate

perception.
For future development including using real data, probably a simulator more related
to real urban scenario should be used to enable more flexibility in environment setup.

6.2 Extension of Training Scenarios
Due the the limitation of working time and simulator as well, the training and testing
scenarios do not vary enough in this thesis. That is, to evaluate and test the learning
agent, a much bigger group of testing environment with more randomness should be
used, including more randomness behavior of opponent vehicles and different tracks.

6.3 Improvement on Learning Algorithms

6.3.1 Observation Data
The input data for learning agent in this thesis should be objective level data. How-
ever for TORCS, some of the input data is still raw data from sensors, which could
be further processed before being used for learning. For example the Lidar and
Ridar data which detects the opponent vehicles and tracks, could be processed with
object tracking algorithms. In this way it should be easier for reinforcement learning
agent to learn.
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Furthermore, the data from simulation is still different from real world data, that
errors and drifts have not be taking into consideration in this thesis.

6.3.2 Algorithm Structure
Although the agent managed to learn the expected behavior, the learning result is
still not good enough. Therefore, many hard-coded controllers have to be added
to guarantee the safety of agent vehicle. Besides, the DDPG part of learning is
not guaranteed to be able to learn every time. Deeper understanding of actor-critic
algorithm is still needed to improve the learning algorithm, to make a more stable
and efficient learning process.

6.3.3 Low Level Controller
The low level controller in this thesis is designed as a simple PID controller. To
achieve better performance, more advanced and well tuned controller can be devel-
oped, for example the MPC(Model Prediction Control) controller that is often used
in automotive industry.
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