

Stack Traces in Haskell

Master of Science Thesis

ARASH ROUHANI

Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, March 2014

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Stack Traces for Haskell

A. ROUHANI

c©A. ROUHANI, March 2014.

Examiner: J. SVENNINGSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Department of Computer Science and Engineering
Göteborg, Sweden March 2014

Abstract

This thesis presents ideas for how to implement Stack Traces for the Glasgow Haskell
Compiler. The goal is to come up with an implementation with such small overhead that
organizations do not hesitate to use it for their binaries running in production. Since the
implementation is aiming for efficiency it will be heavily tied to only GHC. This work has
been made possible thanks to a very recent contribution [1] that implements debug data
for binaries compiled with GHC. Thanks to that contribution, this thesis can almost
entirely focus on managing the GHC stack. Three different designs of stack values is
presented, they allow creation in constant time and we implement one of these designs.
The overhead of these designs can be kept small by utilizing laziness and the special
linked list structure of the GHC stack. The other contribution is the work on the Haskell
API that is exposed to programmers. We have implemented an API where the Haskell
programmer can create the stack value at will and examine its content. Different ways of
incorporating stack traces into the catching and throwing mechanism have been analyzed
and we have found a rethrowing semantics for Haskell that is backwards compatible,
convenient to use and easy to implement in GHC. The design in this paper allows stack
values to be first class values.

Acknowledgements

I would like to thank my supervisor Josef and my opponent Dima at Chalmers for al-
ways being available and helpful. This work would have never been possible without
Peter, who helped me every time I got stuck. Simon have been guiding and reviewing
my work and was kind and arranged for me to meet Peter in person at Facebook’s office
in London. I am also very grateful for Pepe’s feedback and review of my thesis. Last
but definitely not least, I would like to thank my two parents and my two brothers, who
have been there for me throughout my whole life.

Arash Rouhani, Göteborg, Sweden, March 2014

Contents

1 Introduction 1

2 Background 2
2.1 Stack traces . 2
2.2 Haskell . 3

2.2.1 Error handling in Haskell . 4
2.2.2 Functional Programming Concepts 5

2.3 Glasgow Haskell Compiler . 9
2.3.1 The stack in GHC . 9
2.3.2 The runtime system . 10

2.4 From source to machine code . 10
2.4.1 The intermediate representations in GHC 10
2.4.2 Generating debug data . 13

2.5 DWARF . 15

3 Related work 17
3.1 Debugging Haskell . 17

3.1.1 GHCi Debugger . 18
3.1.2 ghc-vis . 18

3.2 Avoiding Crashing . 18
3.2.1 Catch . 18

3.3 Inefficient stack traces . 19
3.3.1 Explicit call stack . 19
3.3.2 Stack traces with profiling . 20

3.4 Recent work . 20

4 The Execution Stack 23
4.1 Number of stacks . 23
4.2 What’s on the Stack? . 24

4.2.1 Fields and arguments . 26

i

CONTENTS

4.2.2 The members of the stack . 27
4.3 Structure . 29

4.3.1 Current stack pointer . 29
4.3.2 Buffering . 30
4.3.3 Stack squeezing . 30

5 Reifying the Stack 33
5.1 Frames of interest . 33

5.1.1 Update frames . 35
5.1.2 The other frames . 38
5.1.3 Artificial frames . 39

5.2 Efficient reification . 40
5.2.1 Reifying a constant number of frames 42
5.2.2 Static analysis . 42
5.2.3 Stack freezing . 43
5.2.4 Stack thawing . 44
5.2.5 Chunked reifying . 45

6 A Haskell Interface 47
6.1 User-invoked reification . 47
6.2 Exception system . 51
6.3 Adding the trace . 55

6.3.1 Catching the stack . 55
6.3.2 Rethrowing the stack . 58

7 Conclusions 61
7.1 Did we answer the question formulation? 61
7.2 What should be done next? . 62

Bibliography 70

ii

1
Introduction

P
art of software development is debugging. Debugging is the activity
of diagnosing flawed software, in practice this means finding programming mis-
takes in the program source code. Debugging is usually initiated when the run-
ning software behaves unexpectedly, like crashing. When a program crashes,

it’ll be required for a programmer to diagnose it in order to find the root cause and
correct it. As software systems become increasingly complex, they will grow in code size
and the debugging phase becomes a more involved process.

From an economical perspective, a lack of funding or commercial success can stagnate
the growth of a software project. But from a technological perspective, a software project
stagnates due to lack of technology that scales. There are software tools that make big
software systems manageable, even for hundreds of developers and millions of lines of
code. These tools include development environments, version control and programming
language features like interfaces. All of which are part of a programmers day to day
work. Another set of tools that become essential as software systems grows are those
that ease debugging.

This work implements and analyzes an implementation of stack traces for the pro-
gramming language Haskell. Stack traces is a language feature that prints out extra
context on a program crash, making the task of debugging the software easier [2]. Haskell
is both a research language [3, 4] and used in industry [5, 6].

1

2
Background

The reader of this thesis is likely to know Haskell very well and read this thesis to
understand the GHC stack (chapter 4) or to understand the stack traces proposal of
this thesis (chapter 5 and 6). However, this thesis must be approachable to my fellow
class mates according to the thesis regulations at Chalmers. That includes students with
almost no prior Haskell knowledge. Haskell is a big language with many aspects and it
takes many years to master. Therefore, the Haskell background which is in section 2.2
focuses on what is going to be essential to understand this thesis.

2.1 Stack traces

When a computer program crashes, the runtime of some programming languages gives
some context to where in the code the program crashed. Typically, a stack trace is
printed. A stack trace is the listing of the functions that have called each other and have
not exited yet, so they have all been part of the crash. The first function in the stack
trace is always the program entry point, the last function is where the crash actually
occurred.

The Rosetta Code wiki contains a code sample in Ruby illustrating a stack trace
[7], reproduced here in figure 2.1. As the figure shows, some languages can print stack
traces at any time, not only after crashes. Stack traces can not be implemented as a
regular user-level library, stack traces will need to look at the internal state of the run
time system or interpreter. In the case of Ruby, they have the magical primitive caller

which retrieves the call chain. It would not be possible for a user to implement caller

in pure Ruby. To implement stack traces in Haskell is no exception, the implementation
we present in this work will need to look at the internal state of the runtime system and
has to target a specific Haskell compiler. The compiler we target is GHC.

2

2.2. HASKELL CHAPTER 2. BACKGROUND

def outer(a,b,c)

middle a+b, b+c

end

def middle(d,e)

inner d+e

end

def inner(f)

puts caller(0)

puts "my arg is #{f}"

end

outer 2,3,5

(a) Ruby code printing a stack trace.

$ ruby stacktrace.rb

stacktrace.rb:10:in ‘inner’

stacktrace.rb:6:in ‘middle’

stacktrace.rb:2:in ‘outer’

stacktrace.rb:14

my arg is 13

(b) Output of running the Ruby program.

Figure 2.1: Illustration of a simple stack trace.

main = print (fibonacci 10)

fibonacci :: Int -> Int

fibonacci 1 = 0

fibonacci 2 = 1

fibonacci x = fibonacci (x - 1) + fibonacci (x - 2)

Figure 2.2: A simple Haskell program.

2.2 Haskell

Haskell is a lazy, functional, general-purpose programming language [8]. Haskell first
appeared in 1990 [9] and has since released the major standards Haskell 98 and Haskell
2010 [8].

Figure 2.2 shows a simple program in Haskell. Two functions are defined in this
program, main and fibonacci. The explicit type signature for the function fibonacci

means that it takes an int and returns an int. If a type signature is omitted, like for
main, Haskell will infer it automatically.

3

2.2. HASKELL CHAPTER 2. BACKGROUND

int integerDivision (int nom, int den) throws ArithmeticException {

if (den == 0) {

throw ArithmeticException("Division by zero");

}

else {

return nom / den;

}

}

(a) A total function in Java.

integerDivision :: Int -> Int -> Maybe Int

integerDivision n 0 = Nothing

integerdivision n d = Just (n ‘div‘ d)

(b) A total function in Haskell.

Figure 2.3: Two total functions.

2.2.1 Error handling in Haskell

In order for stack traces to be relevant for a programming language, programs must
have the notion of crashing. Intuitively, crashing causes sudden stops in execution,
either by the operating system or by the language’s own exception handling. Program
crashes can be disastrous, since they will also terminate processes that are supposed
to be long-running. Hence there are language constructs to eliminate some causes of
program crashes. For instance, evaluating a well-typed expression in Haskell can not
segfault [10].

In theoretical computer science, there’s a notion of a function being total. Meaning
that a function will terminate and not return any error. Therefore, such a function can
not crash. Unfortunately, as of the famous halting problem it’s not possible to decide
if a function will terminate or not. That implies that you can’t in general verify that
a function is total [11, p.380]. The good news, though, is that whenever we explicitly
choose to crash, we can systematically avoid it. This is not only true in the language
Haskell, Java implements this through the throws keyword [12]. To annotate the function
signature with throws ArithmeticException would mean that the function may throw
an ArithmeticException. Figure 2.3a shows a Java integer division function that is
total.

In Haskell, the most common way to implement“safe”division is to return the special
value Nothing instead of dividing by zero. To do this in Haskell, the Maybe wrapper
must be put in the function signature. See figure 2.3b.

The two functions in figure 2.3 will not crash when dividing by zero, rather, they

4

2.2. HASKELL CHAPTER 2. BACKGROUND

int integerDivisionUnsafe (int nom, int den) {

return nom / den;

}

(a) A partial function in Java.

integerDivisionUnsafe :: Int -> Int -> Int

integerDivisionUnsafe n 0 = error "Division by zero"

integerDivisionUnsafe n d = n ‘div‘ d

(b) A partial function in Haskell.

Figure 2.4: Two partial functions.

gracefully return a value of either the division or a value representing failure. But there’s
a drawback, both these functions are cumbersome to use. In Java the programmer needs
to explicitly catch the Exception combining the try and catch constructs [13, 14]. In
Haskell, an additional layer of pattern matching is required. Due to this inconvenience,
both languages allow for carrying out integer division without forcing the caller to do any
error handling. Figure 2.4 shows two partial functions. Partial functions are controversial
in Java [15] and discouraged when unnecessary in Haskell [16].

For the first time we now see the error function in Haskell (figure 2.4b). error is
a special built-in function that terminates execution and outputs the provided message.
While it’s not entirely accurate, we could think of error being the only gateway to
crashing a Haskell program. That means that all the typical dangerous operations like
integer division by zero or indexing outside an array would just invoke the error function.
We define “crashing” to be whenever error is called.

The conclusion is that Haskell has two major types of error values [17] [18], errors in
total functions (figure 2.3b) and errors in partial functions (figure 2.4b). In this thesis
we only care about the latter.

2.2.2 Functional Programming Concepts

The language that we want to add stack traces to is a lazy functional programming
language. It is important to be aware of this when implementing stack traces for Haskell.
In this subsection we will look at how Haskell expressions are evaluated. The concepts
presented here is fundamental knowledge in Haskell programming.

Equational Reasoning

We will not go into details of how the Haskell language specification defines evaluating
an expression, but there is no concept of a entering a function then let it return. Instead

5

2.2. HASKELL CHAPTER 2. BACKGROUND

-- We can define a few functions (or equations)

f x = g x + h x

g x = 5 + h x

h x = x + 2

-- If Haskell is evaluating a value like (f 10), you can apply the

-- equations from above and reach the same result as your Haskell

-- program would.

f 10 ==> -- equation for f

g 10 + h 10 ==> -- equation for g

(5 + h 10) + h 10 ==> -- equation for h

(5 + (10 + 2)) + h 10 ==> -- (+) (we treat it as a primitive)

(5 + 12) + h 10 ==> -- (+)

17 + h 10 ==> -- equation for h

17 + (10 + 2) ==> -- (+)

17 + 12 ==> -- (+)

29 -- Done!

Figure 2.5: Haskell can be understood by equational reasoning.

you think of it as successively applying equations until you reach a completely evaluated
value. Applying an equation having the form lhs = rhs on an expression means to
substitute lhs in the expression to rhs, figure 2.5 shows this by example. To understand
equational reasoning is helpful when learning Haskell.

Recursion and Tail Calling

Haskell has no statements, only expressions1. So obviously there can be no loop-
statements like the for-statement or while-statement. As a general purpose language,
Haskell naturally has a replacement for loops, namely recursion. Figure 2.6 shows two
implementations of the mathematical function fun(limit, acc) = acc +

∑limit
x=1 x, one in

Haskell and one in the imperative language C.
When recursion is used as a replacement for loops in C programming, it is often a

poor choice. Recursion uses stack space, it needs to save both local variables and a return
address on the stack for each function call. But this is not always true, in some cases it
is possible for the compiler to optimize the recursive code into code using loops! This
optimization is called tail call optimization. For functional programming languages, this
optimization is of utmost importance, as recursion is the standard way of doing control
flow. A tail call is a like a regular call, only that the caller is replacing its current stack

1Haskell has no statements, but the code can be in an imperative looking style when using the
do-syntax

6

2.2. HASKELL CHAPTER 2. BACKGROUND

fun acc 0 = acc

fun acc limit =

fun (acc + limit)

(limit - 1)

(a) Haskell version. Implemented with recur-
sion.

// ’acc’ is like a start-value

int fun(int acc, int limit) {

while (limit != 0) {

acc = acc + limit;

limit = limit - 1;

}

return acc;

}

(b) C version. Implemented with loops.

Figure 2.6: Two functions.

frame instead of creating a new stack frame. The insight is that if a call will not return
to the calling function (say if the call is the last statement), it is safe to overwrite the
current stack frame.

In Haskell, the intuition is the same, but the technical explanations don’t carry over.
There are no statements, so there is no notion of a last statement. In chapter 4 we will
see how function calls and jumps in Haskell are implemented for the Glasgow Haskell
Compiler.

Purity

Haskell is a pure language where functions do not have side effects and this is a good
consequence of equational reasoning. So any function fun can be run twice with the
same arguments and will always return the same value. There will also be no side effects
of running it twice. From figure 2.7 we see that purity is a necessity for equational
reasoning. Note how the first step is turning one occurrence of g into two occurrences
by applying the equation for f. If running g would have had side effects, this would not
have been possible.

Laziness

The critical reader would question why equational reasnoning evaluates expressions from
the outside like we do in figure 2.7. When expanding the equation for f we get two
occurrences of (g 10). Why did we not evaluate (g 10) first? It would have reduced
the number of evaluation steps since we evaluate (g 10) to 13 and then continue by
evaluating (f 13). It would have worked in this case, but we can not in general reduce (f
(g 10)) to (f 13). That would violate the laziness property of the language. Another
phrasing for using this evaluation strategy is that Haskell does outermost reductions.

Figure 2.8 shows an expression that must be evaluated with lazy evaluation. A strict
evaluation strategy would evaluate the arguments before applying the equation for myIf,
leading to a crash instead of 5.

7

2.2. HASKELL CHAPTER 2. BACKGROUND

-- Equations:

f x = x + x

g y = y + 3

-- Let’s evaluate (f (g 10))

f (g 10) ==> -- equation for f

(g 10) + (g 10) ==> -- equation for g

(10 + 3) + (g 10) ==> -- (+)

13 + (g 10) ==> -- equation for g

13 + (10 + 3) ==> -- (+)

13 + 13 ==> -- (+)

26 ==> -- Done!

Figure 2.7: A pure language is a requirement for equational reasoning.

-- Equations:

myIf True onTrue onFalse = onTrue

myIf False onTrue onFalse = onFalse

crash = error "scary side effect!"

-- Let’s evaluate (myIf False crash (2 + 3))

myIf False crash (2 + 3) ==> -- equation for myIf

2 + 3 ==> -- (+)

5 ==> -- Done!

Figure 2.8: Laziness is not an implementation detail, it is a mathematical necessity.

Thunks

But how do we then ensure that we only evaluate (g 10) once? Any sensible Haskell
implementation will not evaluate (g 10) twice like in figure 2.7. The solution is to
substitute (f (g 10)) with (f t) where t = (g 10) where t is a thunk. Figure 2.9
shows the same value being evaluated as in figure 2.7 but with thunks. Note that it
requires fewer steps to do evaluation with thunks. Haskell (in most compilers, in most
cases) uses this improved evaluation strategy with thunks, this evaluation strategy is
called outermost reductions with graph reduction [19].

8

2.3. GLASGOW HASKELL COMPILER CHAPTER 2. BACKGROUND

-- Let’s evaluate (f (g 10))

f t

where t = (g 10) ==> -- equation for f

t + t

where t = (g 10) ==> -- equation for g

t + t

where t = 10 + 3 ==> -- (+)

t + t

where t = 13 ==> -- (+)

26 ==> -- Done!

Figure 2.9: Equational reasoning with thunks.

2.3 Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) is a Haskell2010 compatible compiler [20]. With
it you can compile Haskell source code to an executable binary. Here’s an invocation of
the compiler on the program sample from figure 2.2.

$ ghc --make Fibonacci.hs

...

$./a.out

34

GHC as of today supports many features in addition to the Haskell2010 standard,
like parallelism, many optimizations, a LLVM backend, profiling and more [20].

2.3.1 The stack in GHC

Most programmers have a decent picture of how programming languages implement
functions. Whenever a function is called, its arguments are pushed on the stack by the
caller and the caller jumps to the function’s code. When the function finally exits, it
returns to where it was called from and pops the stack arguments2. This was a short
reminder of how the regular stack works. Most programming languages use this to
implement functions.

Due to the nature of Haskell, it is not clear if the stack that worked so naturally
for languages like C can be used to implement Haskell. How does it work with partial
applications? How does it work for laziness? Instead one might look at creating a
completely new execution machine. The Spineless Tagless G-Machine (STG) from [21]
is implemented in GHC [22] in the sense that Haskell is compiled down to the STG

2Whether if the caller or the callee should pop the arguments will depend on the call convention, but
we do not need to worry about it here.

9

2.4. FROM SOURCE TO MACHINE CODE CHAPTER 2. BACKGROUND

Object
Files

ExecutableHaskell Core STG Cmm Assembly

Figure 2.10: The GHC phases of compilation. The LLVM and C backend are not
shown.

language at some point during compilation. The STG machine has a stack called the
execution stack. The details of the execution stack changes as new versions of GHC are
released. We have documented the execution stack in chapter 4 by examining the source
code of the 7.6.2 version of GHC.

2.3.2 The runtime system

Many implementations of programming languages have a run time system (RTS) and
GHC has a run time system too. The RTS in GHC is written mostly in C. The feature list
is long, but the rule of thumb is that whatever can not be implemented in pure Haskell has
to be implemented in the run time system. Some examples include garbage collection, an
implementation of arrays, synchronization primitives, Software Transactional Memory,
green threads and actual parallelization [23].

In this thesis, the C-code usually pertains to code from the run time system. When
we say that control is passed from Haskell-land to C-land, we mean that some Haskell
code have called a primitive function that is implemented in the RTS.

2.4 From source to machine code

Typically, compilers take source code and convert it to machine code. It would be over-
whelming to go directly to machine code, instead most compilers have some intermediate
representations (IR) in the pipeline [24, p.358]. For GHC, the pipeline is illustrated in
figure 2.10 [25], the figure only includes the native code (assembly) backend. Throughout
this thesis we will ignore the C and LLVM backend entirely.

2.4.1 The intermediate representations in GHC

Figure 2.10 only showed the names of the phases. To give a rough idea of how each in-
termediate representation might look like, we compiled a very small Haskell program with
ghc passing the flags -ddump-parsed -ddump-simpl -ddump-stg -ddump-cmm -ddump-asm.
The output is too verbose to reproduce in full, instead figure 2.11 shows some interesting
excerpts. Naturally, the IRs closer to the hardware (Cmm and assembly) will contain
more code and have therefore been truncated much more in figure 2.11.

10

2.4. FROM SOURCE TO MACHINE CODE CHAPTER 2. BACKGROUND

addition :: Int -> Int -> Int
addition x y = (x + y)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType]
addition_r8m =
 \ (x_a9l :: GHC.Types.Int) (y_a9m :: GHC.Types.Int) ->
 GHC.Num.+ @ GHC.Types.Int GHC.Num.$fNumInt x_a9l y_a9m

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType, Unf=OtherCon []] =
 sat-only \r srt:SRT:[(r9o, GHC.Num.$fNumInt)] [x_smq y_smr]
 GHC.Num.+ GHC.Num.$fNumInt x_smq y_smr;

S
uc

ce
ss

iv
e

re
ca

st
in

gs

Haskell

Core

...
cmG:
 R2 = GHC.Num.$fNumInt_closure; // CmmAssign
 I64[(old + 32)] = stg_ap_pp_info; // CmmStore
 P64[(old + 24)] = _smo::P64; // CmmStore
 P64[(old + 16)] = _smp::P64; // CmmStore
 call GHC.Num.+_info(R2) args: 32, res: 0, upd: 8; // CmmCall
...

Stg

Cmm

...
_cmG:
 movq %r14,%rax
 movl $GHC.Num.$fNumInt_closure,%r14d
 movq $stg_ap_pp_info,-24(%rbp)
 movq %rax,-16(%rbp)
 movq %rsi,-8(%rbp)
 addq $-24,%rbp
 jmp GHC.Num.+_info
...

x64
assembly

Figure 2.11: The IRs in GHC for a simple function. The assembly is also included
even though it is not an intermediate representation (it is the final representation).

11

2.4. FROM SOURCE TO MACHINE CODE CHAPTER 2. BACKGROUND

doubleAddition :: Int -> Int -> Int

doubleAddition x y = tot + tot

where tot = x + y

globalThunk :: Int

globalThunk = doubleAddition 2 3

(a) Haskell code.

doubleAddition = FUN(x y ->

let { tot = THUNK(plusInt x y);

}

in plusInt tot tot);

globalThunk = THUNK(doubleAddition two three);

-- And some imported functions

two = CON(I 2);

three = CON(I 3);

plusInt = FUN(x y -> ...); -- Definition omitted

(b) STG code with the Ministg syntax.

Figure 2.12: Haskell code and STG code.

The STG IR

There is nothing that says that Haskell must be implemented using some sort of stack. In
section 2.3.1 we saw that GHC, one popular Haskell compiler, chooses to implement the
language using a stack called the execution stack. The STG intermediate representation
in GHC is interesting to us since it is a representation of code where it is specified how
it will interact with the execution stack [21, 22]. The STG code in 2.11 does not have a
clean syntax, instead we use the syntax from the Ministg project [26]. Figure 2.12 shows
Haskell code and the corresponding Ministg code. In the Haskell world, doubleAddition
and globalThunk are both just values, in theory we do not really know if multiple uses
of globalThunk will be memoized. Such implementation details are not relevant in
the Haskell world. Looking at the STG however, we can be sure whether the value
globalThunk will be memoized or not. By examining the STG code in figure 2.12b we
can make the following observations.

12

2.4. FROM SOURCE TO MACHINE CODE CHAPTER 2. BACKGROUND

• The implementation of doubleAddition is a function that takes two arguments,
as expected3.

• The value of tot is put into one thunk. Another possible implementation would
be to inline it to ((x + y) + x) + y. But inlining would make it worse, because
the compiler would have to create two thunks instead. One for (x + y) and one
for ((x + y) + x).

• The value globalThunk will be a thunk. When a thunk is defined at the top level,
it can become a global thunk. A global thunk will only be evaluated at most once
during the execution of a Haskell program. Some Haskell programmers are more
familiar with the term CAF or constant applicative form. In this thesis we call
them global thunks.

• We are also reminded that literals like 2 and 3 are wrapped in constructors.

The experienced Haskell programmer will know all of this by heart by looking at the
Haskell code (in this case, the programmer was so confident that he named the value
globalThunk with such a suggestive name!). However, the only way to be certain is to
look at the intermediate code that GHC emits.

2.4.2 Generating debug data

There is one common complex problem that must be solved to enable debugging tools:
The programmer thinks of the program as its source code and the semantics of the lan-
guage. However, the processor only runs machine code. Unfortunately, there is no way
to associate the machine code to the source code that it originated from. This is a prob-
lem for all applications of debugging, not limited to stack traces [27]. As a consequence,
any compiler that wants to support debugging has to do the truly overwhelming task of
threading along information about the original source code that got compiled into each
intermediate step, this information must also be retained and transformed accordingly
during all the optimization steps. Figure 2.13 shows debug information that has been
retained through all the transformations in the GHC pipeline when compiling a simple
function.

One important observation is that any implementation can only be a best effort
implementation. Consider figure 2.14 which contains two Haskell functions with exactly
the same implementation. A clever compiler will be able to realize that the two function
bodies are identical, it would then be safe for the compiler to remove one of the functions
and just change the call sites of the removed function to use the other function. But
this has a drawback because a stack trace involving the removed function can not exist.
Figure 2.15 highlights this problem, Haskell can’t report which function caused the crash,
since that function is optimized away. In conclusion, an implementation of stack traces
that have no effect on performance can only be a best effort attempt.

3It could in theory be a function taking one argument returning another function of one argument.

13

2.4. FROM SOURCE TO MACHINE CODE CHAPTER 2. BACKGROUND

addition :: Int -> Int -> Int
addition x y = (x + y)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType]
 \ (x_a9l :: GHC.Types.Int) (y_a9m :: GHC.Types.Int) ->
 src<stages.hs:3:1-22>
 GHC.Num.+
 @ GHC.Types.Int
 GHC.Num.$fNumInt
 (src<stages.hs:3:17> x_a9l)
 (src<stages.hs:3:21> y_a9m)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType, Unf=OtherCon []] =
 sat-only \r srt:SRT:[(r9o, GHC.Num.$fNumInt)] [x_smq y_smr]
 src<stages.hs:3:1-22>
 src<stages.hs:3:17>
 src<stages.hs:3:21> GHC.Num.+ GHC.Num.$fNumInt x_smq y_smr;

S
uc

ce
ss

iv
e

re
ca

st
in

gs

Haskell

Core

...
 //tick src<stages.hs:3:1-22>
 //tick src<stages.hs:3:17>
 //tick src<stages.hs:3:21>
...
CmG:
 R2 = GHC.Num.$fNumInt_closure; // CmmAssign
 I64[(old + 32)] = stg_ap_pp_info; // CmmStore
 P64[(old + 24)] = _smo::P64; // CmmStore
 P64[(old + 16)] = _smp::P64; // CmmStore
 call GHC.Num.+_info(R2) args: 32, res: 0, upd: 8; // CmmCall
...

Stg

Cmm

...
_cmG:
 movq %r14,%rax
 movl $GHC.Num.$fNumInt_closure,%r14d
 movq $stg_ap_pp_info,-24(%rbp)
 movq %rax,-16(%rbp)
 movq %rsi,-8(%rbp)
 addq $-24,%rbp
 jmp GHC.Num.+_info
...

x64
assembly

Figure 2.13: The same figure as 2.11, only that here each IR has debug data attached
to it. The debug data tells us what Haskell source code the IR code is compiled from.
For clarity the debug data annotations have a red font.

14

2.5. DWARF CHAPTER 2. BACKGROUND

kilometerToMeter = (*1000)

kilogramToGram = (*1000)

Figure 2.14: Two functions with identical implementations.

reciprocal_1 :: Int -> Int

reciprocal_1 x = 1 ‘div‘ x

reciprocal_2 :: Int -> Int

reciprocal_2 = (1 ‘div‘)

main = do

print (reciprocal_1 5)

print (reciprocal_2 0) -- crash!

(a) Original program.

reciprocal_1 :: Int -> Int

reciprocal_1 x = 1 ‘div‘ x

main = do

print (reciprocal_1 5)

print (reciprocal_1 0) -- crash!

(b) After optimizations.

Figure 2.15: An example showing why optimizations can give inaccurate stack traces.

Finally, the information about the source-level functions that the compiler has held
tight throughout the IRs must get packaged into the binary. This concern arises naturally
in the final IR stage (Cmm in the case of GHC). How does the compiler emit the debug
information? How is it stored in a way so it doesn’t get in the way of the actual code?
A debugging format answers these questions. One such debugging format is DWARF.

2.5 DWARF

In 1988, DWARF was created hoping to solve a quite general problem. DWARF is a
language agnostic debugging format that is still producing updated revisions. DWARF
5 is planned to be released in 2014 [27]. The DWARF data that is stored in the binary
can be understood by a debugger like gdb. For example, it could help gdb explain how
some data should be displayed, for instance if a particular byte is a 8-bit number or a
character.

Looking at figure 2.13 again, we see that neither the first phase (the original Haskell
source code) nor the last phase (the output assembly) has any debug information at-
tached to it. This does make sense because programmers should not need to annotate
their source code to get stack traces, neither should the performance of the program
degrade by changing the output assembly. But then where is the final debug data emit-
ted? It must be included with the binary of course. The binary is divided into sections
[28], some of these sections are DWARF sections. The command line tool dwarfdump

15

2.5. DWARF CHAPTER 2. BACKGROUND

< 1><0x0000008d> DW_TAG_subprogram

DW_AT_name "addition"

DW_AT_MIPS_linkage_name "r8m_info"

DW_AT_external no

DW_AT_low_pc 0x00000020

DW_AT_high_pc 0x00000054

DW_AT_frame_base DW_OP_call_frame_cfa

< 2><0x000000b3> DW_TAG_lexical_block

DW_AT_name "cmG_entry"

DW_AT_low_pc 0x00000029

DW_AT_high_pc 0x0000004b

< 2><0x000000cf> DW_TAG_lexical_block

DW_AT_name "cmF_entry"

DW_AT_low_pc 0x0000004b

DW_AT_high_pc 0x00000054

Figure 2.16: The DWARF data generated from the debug annotations in figure 2.13.

can inspect the DWARF data in object files. Figure 2.16 shows some of the DWARF
data that GHC included in the object file it created. The figure shows only some of the
relevant debug information, for example, the line numbers are not stored anywhere in
the contents of the figure.

As will be revealed in section 3.4, this thesis work was made possible thanks to that
DWARF got integrated in GHC.

16

3
Related work

To programmers outside of the Haskell community, it could sound surprising that a
mature language like Haskell doesn’t support stack traces. This might raise the following
questions:

• Since stack traces are difficult, what other means of debugging are there?

• Are stack traces in Haskell really necessary?

• Is there at least any inefficient way to get stack traces?

• How close is the Haskell community in solving stack traces?

The overall structure of this chapter is that we answer the questions by looking at
related work. Most of the related work is recent, usually less than 5 years from the time
of publishing of this work. The first question is answered in section 3.1. Section 3.2
shows that Haskell is a language producing robust programs, which alleviates the need
for stack traces. The third question is answered in section 3.3 which shows many working
implementations of stack traces, all of which have significant overhead. The last question
is answered in section 3.4.

3.1 Debugging Haskell

Examining stack traces falls in the category of debugging. Programmers examine stack
traces printed from a handled exception or a crash. The amount of time the program
runs before it crashes can be anywhere between a few nanoseconds to many years. Stack
traces are most valuable for programs that crash unexpectedly after a long time of stable
execution, because it might be hard to reproduce the error in order to diagnose it. Ideally,
the stack trace aids the programmer in writing a minimal reproducible test case that
exercises the original bug. Once programmers have an easy to reproduce bug, they look
for tools that help them better understand why the bug is happening. In this subsection
we’ll look at existing tools for GHC that let programmers step through the program’s

17

3.2. AVOIDING CRASHING CHAPTER 3. RELATED WORK

execution and even print variables. Neither of which the stack trace implementation in
this paper can provide.

3.1.1 GHCi Debugger

GHC comes with its own interactive read evaluate print loop (REPL) which has a built-
in debugger. It’s rich in features, supporting break points, single-stepping, breaking on
crashes, a ”tracing mode” and even variable inspection. The implementation works only
with interpreted code [29, 30]. So there will be significant overhead both from the fact
that the code is interpreted and that the debugger is running.

3.1.2 ghc-vis

Debuggers are a view into the otherwise opaque executing program. The GHCi debug-
ger interface is text based, the programmer enters a command to the debugger and it
responds in text. ghc-vis on the other hand is a graphical debugger. It allows users to
visualize variables and interact with them with the mouse pointer. For example, when
clicking on an yet unevaluated expression (remember, Haskell is a lazy language) it will
evaluate the expression. Making it great for stepping through your program without
losing the big picture. ghc-vis is hooking itself into the program by running a thread
inside of GHCi. So it will only work with GHCi [31].

3.2 Avoiding Crashing

If a program never crashes, it will not matter if our language prints stack traces or not.
Never-crashing programs is a research area, sometimes called formal verification. There
are many approaches to formal verification. One can statically analyze C-programs [32],
use finite automata or formal grammars [33, 34], use type system tricks [35] or use total
functional programming [36]. In the end though, none of these methods are perfect,
otherwise we would not need stack traces.

There are also statical analysis tools for Haskell. HALO is a tool where the program-
mers write contracts about their own programs and then let HALO prove them [37].
HALO seems to be inspired from [38] which in turn is inspired by [39]. Another tool
is HipSpec which does automatic proof finding instead of having the programmer spell
out the properties to validate [40]. Yet another tool that’s mentioned on Haskellwiki is
Catch where its described to ”detect common sources of runtime errors” [41].

3.2.1 Catch

Catch is a static analyzer for Haskell. It can detect if a pattern-matching is sufficiently
covering, even if the cases aren’t collectively exhaustive. Figure 3.1 shows a function
where the pattern match isn’t exhaustive but sufficiently so. Catch can prove that such
a pattern matching is safe by doing flow analysis and ruling out impossible patterns for

18

3.3. INEFFICIENT STACK TRACES CHAPTER 3. RELATED WORK

safeFunction = nonExhaustivePatterns False

where

nonExhaustivePatterns False = 42

-- NOTE: No pattern for True

Figure 3.1: A safe function even though the non-exhaustive matching. A totality
checker like Catch can ensure that it’s safe.

the scrutiny (the expression that we case on). This eliminates the need for the human
programmer to manually check what can be automatically proven [42].

3.3 Inefficient stack traces

There are already many successful stack trace implementations in Haskell. Unfortu-
nately, they all have a significant overhead. In this section we will look at previous work
about stack traces for Haskell. There are two common sources of overhead in existing
implementations:

• By building an explicit call stack (Subsection 3.3.1)

• By depending on expensive runtime settings (Subsection 3.3.2)

3.3.1 Explicit call stack

Stack traces can be achieved by doing some methodological source level transformations.
Figure 3.2 shows a program transformed into one producing stack traces on calls to
error. This transformation is essentially:

• Changing all top level functions to take one additional string argument. Except
for the program entry-point main.

• Transform all equations to define the new call stack stack’ and pass it as the first
argument to all calls of top level functions.

• Transform all calls to error to also print out the call stack.

This transformation is similar to [43] and a complete source-to-source implementation
called hat exists already [44]. But explicit call stack implementations don’t need to work
on a source level.

StackTrace

Allwood et al implemented a Intermediate Representation (IR) transformation pass
called StackTrace. It’s operating on the GHC Core IR. Since Core is like a small subset
of Haskell, its implementation will do something similar to what figure 3.2 illustrates.

19

3.4. RECENT WORK CHAPTER 3. RELATED WORK

main = print (f 100)

f :: Int -> Int

f x = g (5*x)

g :: Int -> Int

g 7 = error "Bang"

g x = 100 * x

(a) Original program.

main = print (f stack’ 100)

where

stack’ = "main \n"

f :: String -> Int -> Int

f stack x = g stack’ (5*x)

where

stack’ = "f (case 1)\n" ++ stack

g :: String -> Int -> Int

g stack 7 = error ("Bang" ++ stack’)

where

stack’ = "g (case 1)\n" ++ stack

g stack x = 100 * x

where

stack’ = "g (case 2)\n" ++ stack

(b) Transformed program.

Figure 3.2: An example of how a Haskell program can be transformed to one that
will print stack traces on errors. The syntax ‘str1 ++ str2’ is string concatenation.

Among its complications are the handling of higher order functions, linking with
code that doesn’t have stack traces and an efficient non-naive implementation of the
passed along stack [10]. Functional programming in particular relies on efficient tail call
optimizations, which requires the passed around call stack to efficiently handle this.

3.3.2 Stack traces with profiling

A mature and stable implementation of stack traces for Haskell is present in GHC since
GHC 7.4.1 which was released in February 2012. No paper has been produced from this
effort. But a talk were given at Haskell Implementors Workshop in September 2012 [45].
The implementation is only working in conjunction with the profiling mode of GHC. In
Profiling mode the execution of programs can expect to be twice as slow as their plain
counterparts. The cost centre stack traces have its own set of problems and is only an
approximation of what Haskell really is executing.

3.4 Recent work

Around the time when this thesis started, Peter Wortmann, a PhD candidate at Uni-
versity of Leeds showed a proof of concept stack trace in Haskell that was based on the
execution stack [46]. Peter had been working on non intrusive profiling for GHC. To

20

3.4. RECENT WORK CHAPTER 3. RELATED WORK

$wfibonacci =

\ (ww_spO :: Int#) ->

case ww_spO of ds_Xph {

__DEFAULT -> ...

(a) Without ticks, the default op-
tion.

$wfibonacci =

\ (ww_spO :: Int#) ->

src<0:Fibonnaci.hs:(4,1)-(6,51)>

case ww_spO of ds_Xph {

__DEFAULT -> ...

(b) With ticks by passing the flags -g -dppr-ticks.

Figure 3.3: The same excerpt of the Core generated from the program in figure 2.2.
Only the version on the right have debug data included.

accomplish this, he had developed a theory of causality of computations in Haskell and
his work extended even to optimized code [1]. To do profiling he needed to map instruc-
tion pointers to the corresponding source code. He added source code annotations that
propagated through the pipeline of IRs and optimizations and finally emitted DWARF
debugging data. Figure 3.3 shows how a code annotation has been placed in the Core
IR. With his patches, GHC now emits DWARF, making a stack trace implementation
to be low hanging fruit, enabling the quite sizeable problem of stack traces to be worked
on during the limited scope of a master’s thesis.

But the original stack traces produced from Peter’s simple demo are not satisfactory.
The stack trace from running the program in figure 3.4 looks like 3.5a. The outputted
stack trace doesn’t contain a single function from the program in figure 3.4. The bot-
tom of the stack is stg_catch_frame_ret, which is the default catch-handler that is
installed at the root of Haskell programs, before main is run. The writeBlocks and
showSignedInt give vague hints that we’re printing an Int-type, possibly to stdout
(they come from the usage of print). Parts of chapter 5 will look how to improve the
stack. Ideally the stack should look like in figure 3.5b. Yet, we have not looked deeply
into the internals of GHC and its execution stack, we will do this right now throughout
the whole of chapter 4.

21

3.4. RECENT WORK CHAPTER 3. RELATED WORK

main :: IO ()

main = do print 1

a

print 2

a, b, c :: IO ()

a = do print 10

b

print 20

b = do print 100

c

print 200

c = do print 1000

print (crashSelf 2)

print 2000

crashSelf :: Int -> Int

crashSelf 0 = 1 ‘div‘ 0

crashSelf x = crashSelf (x - 1)

Figure 3.4: A sample Haskell program that will crash when run.

0: stg_bh_upd_frame_ret

1: stg_bh_upd_frame_ret

2: stg_bh_upd_frame_ret

3: showSignedInt

4: stg_upd_frame_ret

5: writeBlocks

6: stg_ap_v_ret

7: bindIO

8: bindIO

9: bindIO

10: bindIO

11: stg_catch_frame_ret

(a) A stack trace, clearly based on the execu-
tion stack. Since the execution stack is bound
to GHC’s specific implementation of Haskell,
it’ll be difficult for programmers to interpret.

0: crashSelf

1: crashSelf

2: print

3: c

4: b

5: a

6: main

(b) An ideal, fictive, stack trace, without im-
plementation details of the execution stack.
It’s rather a semantic stack.

Figure 3.5: Two stack traces.

22

4
The Execution Stack

In this chapter we describe the execution stack. In section 4.1 we’ll look at the quantity
and ownership of execution stacks. Section 4.2 will examine the entries of the stack,
called stack frames. We’ll see what data layout a stack frame has to adhere to and look
at some common stack frames. Section 4.3 explains the structure of the stack and how
the convenient abstraction of the Sp-register works.

The content in this chapter will stick to objective facts, mostly based on the GHC
source code. Difficulties of implementing stack traces will be withheld for later chapters.

4.1 Number of stacks

Haskell’s base library exports the following primitive [47]:

forkIO :: IO() -> IO()

Intuitively forkIO just creates another ”green” thread running its argument. Since there
will be two concurrent threads running after this, clearly another execution stack have
been created somehow. In this section we look at how many execution stacks there will
be by looking at where they are referenced from.

The implementation of forkIO is that it will create another Thread State Object
(TSO). As can be seen from figure 4.1, a TSO points at a Stack object fully reproduced
in figure 4.2. Thread State Objects themselves are usually referenced from Capabilities.
A Capability contains all essential values for executing Haskell code. It can be thought
as a virtual CPU, it contains the virtual register values of the STG abstract machine.
A capability also contains a singly-linked deque of all TSOs that are scheduled to run,
meaning there is a one to many relationship between a capability and an execution stack.
Capabilities themselves also come in multitude in the run time system (with the default
settings). The number of capabilities is configurable through a runtime option, as a
rule of thumb it should be set to as many as the number of cores on the computer [48].

23

4.2. WHAT’S ON THE STACK? CHAPTER 4. THE EXECUTION STACK

typedef struct StgTSO_ {

StgHeader header;

// deleted lines ...

struct StgStack_ *stackobj;

// ...

struct Capability_* cap;

// ...

StgWord32 tot_stack_size;

} *StgTSOPtr;

Figure 4.1: The definition of StgTSO from the GHC run-time system code.

typedef struct StgStack_ {

StgHeader header;

StgWord32 stack_size; // stack size in *words*

StgWord32 dirty; // non-zero => dirty

StgPtr sp; // current stack pointer

StgWord stack[FLEXIBLE_ARRAY];

} StgStack;

Figure 4.2: The definition of StgStack from the GHC run-time system code.

Figure 4.3 shows an example of all the capabilities and TSOs at a particular moment
of a running Haskell program. The number of threads is dynamic of course, since new
threads can get created with forkIO and existing threads can finish executing. Since
GHC 7.6.1, the number of capabilities is dynamic too [49].

In conclusion, there is one execution stack for each green thread (TSO).

4.2 What’s on the Stack?

In STG-land, all values have the layout shown in figure 4.4 [50], these values are called
heap objects. In figure 4.4, we see that the first value of a heap object is a pointer to
executable code. It should also be noted that the code and info table is in static memory
while heap objects mostly are in allocated memory (global thunks being one exception).
Typically there would be multiple live heap objects pointing to the same info table (or its
code). When heap objects are no longer used they are removed during the next garbage
collection. Some info tables do not have any code, but mostly this is not the case, any
heap object pointing to an info table with runnable code is called a closure.

A stack frame is a closure whose info table’s type is any of the types listed in figure 4.5.

24

4.2. WHAT’S ON THE STACK? CHAPTER 4. THE EXECUTION STACK

TSO TSO TSO

Figure 4.3: Two virtual CPUs (Capabilities) running a total of three green threads.
Each green thread has its own execution stack.

Figure 4.4: Structure of heap objects in Haskell. Image is taken from [50].

25

4.2. WHAT’S ON THE STACK? CHAPTER 4. THE EXECUTION STACK

#define RET_BCO 31

#define RET_SMALL 32

#define RET_BIG 33

#define RET_FUN 34

#define UPDATE_FRAME 35

#define CATCH_FRAME 36

#define UNDERFLOW_FRAME 37

#define STOP_FRAME 38

// ... some omitted non-stack closure types ...

#define ATOMICALLY_FRAME 57

#define CATCH_RETRY_FRAME 58

#define CATCH_STM_FRAME 59

Figure 4.5: The subset of closure types that are present on the stack. The excerpt is
from [52].

f :: Bool -> Bool -> Bool

f = \x -> if x then not else id

(a) Haskell function.

f = FUN(x -> case x of {

True -> not;

False -> id });

(b) STG function, note that the number of
arguments is explicitly just one.

Figure 4.6: In Haskell-land, the function can be fed up to two arguments. But we
say that the arity is one, because the STG function that will be compiled takes one
argument and returns a FUN. Note that not and id are themselves FUNs.

Which types that exist on the stack is based on [51].
In this section we’ll dive into some details about the stack frames. Other details are

omitted, like how garbage collection is treating the closures.

4.2.1 Fields and arguments

We are used to think of the arity of a function as the number of arguments that it takes.
That is valid in the context of the STG-machine [53]. But the arity of the STG-function
does not always equal with the number of times a Haskell function can be applied to.
Figure 4.6 shows one Haskell function which can be applied to two arguments, but is
compiled to an STG-function with an arity of one.

The return convention in the Cmm IR is to jump to the code of the topmost stack
frame [54]. If the code takes arguments, they are pushed on the stack before jumping to
the code. In addition to arguments that are just pushed at invocation time, there are

26

4.2. WHAT’S ON THE STACK? CHAPTER 4. THE EXECUTION STACK

sp arg 2

arg 3

info pointer

field 1

field 2

info pointer

field 1

field 2

...

Info table B

Info table A

Figure 4.7: The stack when the topmost function on the stack is invoked. In this
example we pass the first argument by register, so arg 1 is stored in the virtual register
R1.

already fields fields residing in the stack frame. Fields are similar to arguments but are
already placed on the stack and are part of the stack frame. Fields are pushed just before
we push the info pointer and together they constitute the stack frame. Arguments on the
other hand are passed when code returns. When a function is entered, the arguments
are above the info pointer and the fields are below [55], like shown in figure 4.7. As
an optimization some of the arguments will be passed by the available registers of the
virtual CPU, the exact number of arguments that are passed by register will depend on
the backend that is targeted [56].

Figure 4.8 shows examples of Haskell code that compile to code that has both fields
and arguments. As soon will be revealed in the next section, case expressions will be
splitting points in the code generation. The pre-case code will push the post-case code
on the stack. The post-case code is also called a case continuation. In order to not
loose the variables when evaluating the scrutiny, the live variables from the pre-case
code will be pushed along as the fields of the post-case code. Jointly they form the case
continuation frame. When a variable is not needed by the case continuation, it will not
be a field, like in figure 4.8b.

4.2.2 The members of the stack

Previously we defined what a stack frame is and enumerated its types. However stack
frames can also be categorized by their purpose rather than their type. In this section
we look at stack frames, categorized by what they do.

27

4.2. WHAT’S ON THE STACK? CHAPTER 4. THE EXECUTION STACK

... = \x y -> ... case x of

4 -> x + y

_ -> x - y

(a) The case continuation will have y as a field
and x as an argument.

... = \x y -> ... case x of

4 -> x + 5

_ -> x + 10

(b) The case continuation doesn’t depend on
y, so it will have no fields and x as its only
argument.

Figure 4.8: Two examples of code that will be turned into case continuations.

Case continuation frames

Case continuations is what comes naturally from having lazy evaluation in conjunction
with pattern matching. When evaluating a case-expression, the code first pushes the case
continuation frame (case • of . . .) and then jumps to the entry code of the scrutiny.
When the scrutiny code returns, the code of the case continuation will have that value
as argument. Since that value is evaluated by now, it is possible to have a C language
style switch-case statement corresponding to the original Haskell case statement, or
at least corresponding to the STG case statement.

Update frames

Consider the following code:

let x = 2 + 3

in x + x

Here, x will only be evaluated once. This is implemented through update frames.
Update frames (Upd • t) are pushed when a THUNK x is evaluated, the frame’s only field
will be the thunk itself [57]. After the frame is pushed, the entry code for x is entered.
When the code returns, the result is passed to the update frame as an argument, which
will overwrite the thunk with an indirection to its argument (the result of x) [58].

Call continuation frames

When evaluating

f True False

where f is from figure 4.6, we have the following scenario:

• The function f has arity 1.

• We have an application of 2 arguments.

28

4.3. STRUCTURE CHAPTER 4. THE EXECUTION STACK

• The code has already type checked. We assume there is no programming error and
that f True will return another function.

We can’t just jump to the code of f and forget about the last argument False.
Instead, we first put a call continuation frame (• False) and then jump to the code of
f [22]. When evaluation of f True is complete it returns to the entry code of the call
continuation, the call continuation would first put its fields (False) on the stack (or
write to register R1) and then jump to the entry code of the argument it got passed (the
result of f True). All call continuations are of closure type RET_SMALL [59].

Underflow frames

Underflow frames allow the stack itself to dynamically grow or shrink. Their significance
is discussed in section 4.3.

Other frames

Figure 4.5 showed that there are other closure types that play a role on the Haskell
execution stack, including retry frames for Software Transactional Memory. We will not
examine these other frames further.

4.3 Structure

Since version 7.2.1, GHC switched its underlying structure of the execution stack to use
a chunked singly linked list rather than a dynamically growing array [60, 61]. When
the stack chunk that tso->stackobj is referencing gets full, it overflows, then a new
stack chunk is created with a reference to the first stack and tso->stackobj is set to
the new stack. Conversely, when a stack chunk gets depleted, it underflows, then we
just set tso->stackobj to point to what the underflow frame is referencing, the garbage
collector will later remove the abandoned chunk. Figure 4.9 shows one execution stack
owned by a TSO whose stack has two chunks, hence it must have exactly one underflow
frame.

4.3.1 Current stack pointer

Each stack chunk is represented by the StgStack-struct which has a member sp which is
a stack pointer. Since the execution stack is the collection of these chunks the execution
stack has multiple stack pointers. What the stack pointers more exactly are pointing at is
illustrated in figure 4.10. But the only relevant stack pointer is what we call the current
stack pointer, which is the one pointed by CurrentTSO->stackobj->sp. CurrentTSO

is a STG virtual register. In C-land, the CurrentTSO virtual register is stored in
cap->r->rCurrentTSO, where cap is the Capability that contains the CurrentTSO reg-
ister. So there is one current stack pointer for each Capability.

29

4.3. STRUCTURE CHAPTER 4. THE EXECUTION STACK

TSO stack_info

rest of stack_info payload

... frames ...

underflow_info

rest of underflow_info payload

stackobj
stack_info

rest of stack_info payload

... frames ...

stop_info

stop_info payload

sp

next_chunk

sp

Figure 4.9: Structure of the stack. The TSO is pointing at the current chunk and the
older chunks are referenced by underflow frames.

Syncing

The virtual CPU has the register Sp which also is a stack pointer. Sp should be safe
to assume to be in sync with the current stack pointer. To make this so, whenever one
jumps from Cmm-land to C-land (from virtual CPU to real CPU), or vice verse, it syncs.
The exception is when it is not necessary, then there is no syncing due to its overhead.
Syncing does happen however on stack underflows [62]. Note that while there is a syncing
between the virtual register Sp and the memory location CurrentTSO->stackobj->sp

[63], it also happens for all the other virtual registers.

4.3.2 Buffering

Each time an overflow happens, there is some overhead. In the worst case, a long
alternating sequence of pushing and popping will cause perpetual over and underflows.
Buffering is implemented to combat this, buffering will copy a few frames from the old
chunk to the new chunk [64], requiring that more than one frame have to be popped
before an underflow will happen.

4.3.3 Stack squeezing

When control is passed to an update frame, it will update its thunk and then pass control
to the next frame on the stack. An interesting scenario is when there are consecutive
update frames on the stack. In this case all the consecutive update frames will be passed
the exact same value and will modify their respective thunks to an indirection to the

30

4.3. STRUCTURE CHAPTER 4. THE EXECUTION STACK

... stack headers ...

... unused space ...

info_C

payload_C

info_B

payload_B

info_A

payload_A

 ... stop frame ...

... stack headers ...

 ... vacant space ...

info_E

payload_E

info_D

payload_D

 ... underflow frame ...

sp

sp (current)

Figure 4.10: Clarification of where the stack pointers are pointing. Note that these
two chunks (can) belong to the same execution stack.

31

4.3. STRUCTURE CHAPTER 4. THE EXECUTION STACK

 ...

update_frame_info

update_frame_info

 ...

thunk_B_info

 ... payload ...

updatee

thunk_A_info

 ... payload ...

updatee

(a) Before squeezing.

 ...

update_frame_info

 ...

thunk_A_info

 ... payload ...

updatee

indirection_info

indirectee

(b) After squeezing.

Figure 4.11: An illustration of stack squeezing.

same result. Stack squeezing is to detect this scenario and remove all but one remaining
update frame and instead turn the affected thunks into indirections pointing to the thunk
that the remaining update frame points to. One example is shown in figure 4.11 [65].

Stack squeezing happens on overflows and is only run on the current stack chunk. If
the stack squeeze is successful the overflow gets cancelled [66].

32

5
Reifying the Stack

In section 3.4 we saw Peter Wortmann’s prototype for execution stack based stack traces.
It was demonstrated in August 2013 [46]. This is a rough sketch of how it is implemented:

1. The program starts by installing a catch-all handler. This handler will print the
stack trace on a crash.

2. Program runs and crashes.

3. The run time system handles the crash by walking through the whole execution
stack and saving it in a separate array. It then invokes the installed handler and
passes the array.

To store the essential contents of the stack in a new value, possibly for later trace-
printing, is called reifying the stack. The reification from Peter Wortmann’s demonstra-
tion is quite simple, figure 5.1 illustrates this method of reifying the stack.

This chapter will go into stack reification in detail. By critically looking at the
prototype, we find room both for improvement and discussion. In section 5.1 we see
that the stack traces can become more readable by using the extra information in the
payloads of each stack frame. Section 5.2 deals with the issue of wasting resources when
reifying the stack without ever using it.

5.1 Frames of interest

Figure 3.5 showed that the stack trace from Peter Wortmann’s demonstration is very
far from the ideal stack trace. Worse, the only information we have to work with is the
execution stack, remember, we maintain no explicit call stack for performance reasons.
Still, the stack can become clearer by using the payload of the stack frames. For the
readers convenience, we reproduce the stack trace here again as figure 5.2.

33

5.1. FRAMES OF INTEREST CHAPTER 5. REIFYING THE STACK

... stack headers ...

... unused space ...

info_C

payload_C

info_B

payload_B

info_A

payload_A

 ... stop frame ...

... stack headers ...

 ... vacant space ...

info_E

payload_E

info_D

payload_D

 ... underflow frame ...

stg_array_info

size = 5

info_E

info_D

info_C

info_B

info_A

next_chunk

Figure 5.1: An illustration of stack reification, the rightmost box is the array allocated
to store the result of the reification, the diamond arrows show where the content is
copied from.

34

5.1. FRAMES OF INTEREST CHAPTER 5. REIFYING THE STACK

0: stg_bh_upd_frame_ret

1: stg_bh_upd_frame_ret

2: stg_bh_upd_frame_ret

3: showSignedInt

4: stg_upd_frame_ret

5: writeBlocks

6: stg_ap_v_ret

7: bindIO

8: bindIO

9: bindIO

10: bindIO

11: stg_catch_frame_ret

Figure 5.2: Stack trace (same as in figure 3.5a).

In section 5.1.1 and 5.1.2 we will revisit the stack frames we looked at in section 4.2.2.
This time we will look at how their frame-specific payload can be utilized to make the
stack traces more useful. In addition to utilizing the existing frames, we take a stab at
creating our own artificial stack frame in section 5.1.3 that could improve stack traces.

5.1.1 Update frames

Frame 0,1,2 and 4 from figure 3.5a are all update frames. Recall that the code for a
thunk will push one update frame. Thunks are common in Haskell and therefore update
frames are common as well. If we were able to print something better than the cryptic
stg_bh_upd_frame and stg_upd_frame, many frames in the stack trace would improve.

The actual code of the thunk that pushed the update frame could be anything. To
only see the info pointer of the update frames is hardly helpful. But we know that the
field of the update frame is a reference to the heap object the update frame is going to
update, the updatee. The updatee’s info table contains the code that pushed the update
frame. This is really good, because we can copy that info pointer to our array instead,
as illustrated in figure 5.3. Unfortunately this trick only works in some cases and it will
depend on the kind of update frame we have on the stack. There are three different
kinds of update frames [67].

• stg_bh_upd_frame is the update frame used for global thunks. Global thunks are
better known as CAFs.

• stg_upd_frame is the update frame used for local thunks.

• stg_marked_upd_frame is created by overwriting one of the other two kinds of
frames, it happens during garbage collection and this phase is named blackhol-

35

5.1. FRAMES OF INTEREST CHAPTER 5. REIFYING THE STACK

stg_stack_info

 ... frames ...

stg_upd_frame_info

 ... frames ...

thunk_A_info

 ... payload ...

updatee

stg_array_info

size = ...

 ... info pointers ...

thunk_A_info

 ... info pointers ...

Figure 5.3: An improved way of reifying update frames. The old method is showed
in the dashed line.

ing. Blackholing converts any update frame to a marked update frame [68] and
overwrites the updatee’s info pointer to point to a ”black hole” [69].

Unfortunately, only the updatee of local thunks point at interesting code and not a
black hole. The marked update frame always gets its updatee’s info pointer overwritten
to a black hole [69] and the update frame for global thunks’ updatee point at a black
hole to begin with [70].1

Blackholing have become a quite complicated part of the run-time system, having
multiple purposes [71] and is implemented with low-level tricks like pointer tagging.
But the traditional black hole as described in [72] is having clear purposes, blackholing
fixes a class of space leaks and it detects some cases of nontermination. In concurrent
Haskell, blackholing have synchronization purposes that increases sharing (avoids re-
computation). Blackholing is illustrated in figure 5.4.

Retaining code reference on blackholing

The bad effect of blackholing from a stack trace perspective is that thunks lose the
reference to the code that pushed the update frame (recall figure 5.3 and figure 5.4). So

1The names stg_bh_upd_frame and stg_marked_upd_frame are very confusing. In both cases they
point at black holes. A stg_marked_upd_frame points at a BLACKHOLE and a stg_bh_upd_frame points
at a CAF_BLACKHOLE. The names are kept true to their name in the GHC source code to ease verifiability.

36

5.1. FRAMES OF INTEREST CHAPTER 5. REIFYING THE STACK

thunk_A_info

 ... payload ...

Info table
for thunk_A

Info table
for blackhole

(a) A thunk.

stg_BLACKHOLE_info

result placeholder

Info table
for thunk_A

Info table
for blackhole

(b) A blackhole.

Figure 5.4: The same thunk, before and after blackholing.

instead of being able to print something useful, like ... 4: print ..., we have to
print ... 4: stg_upd_frame_ret

Unfortunately, blackholing is not optional [73]. It is however possible to retain the
reference by just adding a field for all thunks and copying the reference there. The
extended field is shown in figure 5.5.

The extra field has a runtime cost of course. The number of thunks ever created
during the lifetime of a Haskell program has no upper bound. However, there is only
a constant number of global thunks, which means that the performance cost would be
insignificant if we only applied the idea from figure 5.5 to global thunks. When only
changing the global thunks, we are able to identify the stg_bh_upd_frame frames but
not the stg_marked_upd_frame frames. For example, the segment

0: stg_bh_upd_frame_ret

1: stg_bh_upd_frame_ret

2: stg_bh_upd_frame_ret

...

could instead be

0: divZeroError

1: crashSelf

2: c

...

by utilizing the new payload. The second stack trace is of course much more useful
than the first stack trace. Unfortunately, to only add the field for global thunks will
only be useful for a short time of the life of the thunk, since blackholing is happening

37

5.1. FRAMES OF INTEREST CHAPTER 5. REIFYING THE STACK

stg_upd_frame_info

 thunk_A_info

 ... payload ...

Info table thunk_A

(a) The current layout.

stg_upd_frame_info

 thunk_A_info

thunk_A_info

 ... rest of payload ...

Info table thunk_A

(b) A layout that has a copy of the original info pointer, since the first info pointer will be
overwritten during blackholing.

Figure 5.5: Two different layout for thunks.

intermittently. If instead all thunks had the extra field, the blackhole thunks would also
retain the useful reference. Luckily though, if a global thunk is containing code that
crashes, it is probable that its update frame will be left intact if it crashes early. In
fact, we should consider ourselves extra lucky that top-level values like divZeroError

memoize. If there were no memoization, there would be no thunk or no update frames,
instead there would be regular tail calls and the first three frames would not even be on
the stack.

5.1.2 The other frames

Some of the stack frames don’t need any analysis because their info pointer is what
we want to print, other frames seem hopeless and are not investigated in depth. In this
subsection we will give a brief mention of the frames that we have not analyzed in depth.

For case continuations, the info pointer is pointing to code generated from Haskell, so

38

5.1. FRAMES OF INTEREST CHAPTER 5. REIFYING THE STACK

we consider case continuations as a trivial frame. For Call continuations, we’ve already
jumped to the interesting code and just left a trace of leftover arguments. There is
nothing to do for call continuations since the leftover arguments say nothing about the
over-applied function itself. Catch frames will hold a reference to the handler, but it is
not what is currently evaluating. The good news is that just seeing any catch frame is
helpful, with some context the programmer might be able to determine which catch in
the source code pushed the catch frame.

5.1.3 Artificial frames

So far we have looked at how to utilize the payload of already existing stack frames. In
this chapter we look at how we can add new artificial stack frames. Artificial frames are
stack frames whose only purpose is to improve the stack trace. The intended use case
is for programmers that have got a reproducible bug and a stack trace without enough
information. This should be a common situation, because stack traces derived from
the execution stack often lack frames due to tail calls. A versatile programmer might
switch to one of the many other stack trace implementations from section 3.3. But in
practice that is usually an overwhelming task due to technical difficulties like compiler
flags and missing libraries. Instead we present the programmers with an inbuilt primitive
to force a stack frame. When a stack is later reified, these artificial frames would work
as checkpoints and be printed.

There are two fundamentally different approaches here. Either you create an actual
function like pushStackFrame :: a -> a that takes one argument, pushes its argu-
ments info pointer on the execution stack (encapsulated in a special stack frame) and
then evaluates the argument. The other approach is to create a “macro”-like function
that will expand (forceCaseContinuation x) to (case x of _ -> x) in such a way
that the case expression can not be optimized away. This approach will create a unique
case continuation for every use site of forceCaseContinuation. The fundamental dif-
ference is that the first approach will save the jump target in the artificial frame’s field.
Meanwhile the second approach pushes a case continuation that will uniquely identify
the jump source. It is not obvious which method will be most useful and do what the
programmer expects. One nice property of the jump source implementation is that it
will include function f in the stack trace if forceCaseContinuation is put inside func-
tion f and its argument is currently evaluating. Further, the jump target approach has
a pitfall: When a nontrivial expression is passed to it, the nontrivial expression will be
put into a thunk that will have a source location associated to it from the jump source.
So the jump target will often be the same as the jump source. The programmers using
pushStackFrame should therefore understand when GHC decides to create thunks. On
the other hand, pushStackFrame can be the right tool for the job and will push an
artificial stack frame containing an interesting jump target.

39

5.2. EFFICIENT REIFICATION CHAPTER 5. REIFYING THE STACK

5.2 Efficient reification

When executing the program from figure 3.4, the reification need to happen at the crash
site and not in the handler. When control has been passed to the handler the execution
stack has been unrolled already, so the stack is inaccessible and maybe even overwritten.
At the same time, there is a cost associated with reifying the stack and the cost is
growing linearly with the size of the execution stack. So when we know that we’re going
to print the stack, it is acceptable to have the additional linear cost of reifying the stack,
but we shouldn’t tolerate the cost when we are not using the reified stack value. One
consequence of always reifying the stack is that functions that use throw for control flow
will become slower depending on how big the stack is when they’re called. To have the
time complexity of a total Haskell function depending on the state of the underlying
runtime system is not acceptable for a mature compiler like GHC. Note that control flow
can be an anticipated use case for exceptions [74] (however, a more recent paper does
not anticipate it [75]). lazyReadBuffered uses exception handling for control flow [76].
In this section we will look for alternative solutions to unconditional and strict stack
reification.

Before looking at theoretical solutions, we will test our hypothesis and convince
ourselves by experiment that stack reification really does take linear time. Figure 5.6
shows a Haskell program that runs the exact same pure computation twice, the first
time it runs the computation with a small execution stack and the second time a lot of
frames have been pushed on the execution stack. We also run the program twice, the
first time with stack traces enabled and the second time with stack traces disabled:

$./Benchmark +RTS --stack-trace -RTS

Takes 332 ms with small stack

Takes 18344 ms with large stack

$./Benchmark

Takes 175 ms with small stack

Takes 178 ms with large stack

The results clearly match the hypothesis. If we do not reify the stack at all like in
the second program run. The two functions are equally fast. But if we do one stack
reification per exception (as happens in stupidFunction), the program gets slower as
seen from the results in the first program run. We can also see that the program gets
much slower if the execution stack is already big. This is considered to be a serious
problem because pureFunction is not supposed to depend on its environment. The tests
were run on a Ubuntu 13.10 laptop, Intel(R) Core(TM) i7-4800MQ CPU at 2.70GHz
with GHC revision [77], we compile with -rtsopts -g -make as flags to ghc.

As we just saw, reifying the stack is costly and we will dedicate this whole section for
finding more efficient alternatives. The two natural solutions are to either reify the stack
conditionally or to reify it lazily. When reifying the stack conditionally, we only reify
the stack when we know for sure that we are going to print the stack. Subsection 5.2.2

40

5.2. EFFICIENT REIFICATION CHAPTER 5. REIFYING THE STACK

import Control.Exception (catch

, SomeException (SomeException)

, evaluate)

import System.IO.Unsafe (unsafePerformIO)

import Data.List (foldl’)

import System.CPUTime (getCPUTime)

main :: IO()

main = do

evaluate (stackBuilder 1) -- For fairness with CAFs

putStrLn $ "Takes " ++ show fast ++ " ms with small stack"

putStrLn $ "Takes " ++ show slow ++ " ms with large stack"

where

fast = stackBuilder 0

slow = stackBuilder 1000

getMilliSeconds :: IO Integer

getMilliSeconds = fmap (‘div‘ 1000000000) getCPUTime

timeIt :: Integer -> IO Integer

timeIt x = do t0 <- getMilliSeconds

evaluate x

t <- getMilliSeconds

return (t - t0)

-- Returns the time it takes to evaluate pureFunction

stackBuilder :: Integer -> Integer

stackBuilder x | x < 1 = unsafePerformIO (timeIt (pureFunction x))

stackBuilder x = x - x + stackBuilder (x-1) -- Push frames

-- It has to take an argument to not become a thunk

pureFunction :: Integer -> Integer

pureFunction zero =

foldl’ (+) 0 (map stupidFunction [1..(zero + 1000000)])

stupidFunction :: Integer -> Integer

stupidFunction x = unsafePerformIO (action ‘catch‘ handler)

where

action = evaluate (5 ‘div‘ 0)

handler (SomeException _) = return x

Figure 5.6: A Haskell program we use for benchmarking purposes.

41

5.2. EFFICIENT REIFICATION CHAPTER 5. REIFYING THE STACK

looks at solutions in this category. The second approach would be to let the stack
value be lazily evaluated. If creating the thunk for the execution stack value could be
done in constant time, we have a satisfactory solution. Subsection 5.2.3 and 5.2.5 are
implementation ideas for lazy stack values. But first we take a look at a simple and
unsophisticated solution in subsection 5.2.1.

5.2.1 Reifying a constant number of frames

A very simple solution would be to just reify a constant number of frames. The time
complexity for any reification would then be constant. The exact number of frames could
be specified through a run-time parameter or from Haskell-land. There is also a few other
benefits with this approach, for one there would be no user-interface issues with too long
stack traces being printed to the screen, second, as we saw from subsection 5.1.1, the
top of the stack is less likely to have been blackholed. The drawback is that the stack
trace could be too truncated to be useful.

To verify our speculations, we run the benchmarking program from figure 5.6 with
the frame size limits 10 and 500:

$./Benchmark +RTS --stack-trace --reify-x-frames 10 -RTS

Takes 232 ms with small stack

Takes 236 ms with large stack

$./Benchmark +RTS --stack-trace --reify-x-frames 500 -RTS

Takes 315 ms with small stack

Takes 4120 ms with large stack

This makes sense. In the case with a cap on reifying 10 frames, we see that both
computations take about the same time. It also takes more time than when not reifying
a stack at all (since 10 > 0), but it takes less time than when the stack is unbounded,
since 10 is less than the number of frames on the stack. For the case when reifying 500
frames, we see that the computation on a small stack is taking as much time as it did
then we reified the whole stack, this is because the whole stack is less than 500 frames.
The computation done with the larger stack takes about one fourth of what it was when
we reified the whole stack, this is because we call stackBuilder 1000 times, and each
time it pushes two frames (one addition, one subtraction).

5.2.2 Static analysis

By analyzing Haskell source code at compile time we can get information that could
help decide whether we should reify the stack or not. For instance, when the compiler
generate code for the throw primitive operation, the compiler could choose if a stack
should be reified or not at this particular usage of throw. Another idea is to do static
analysis on the uses of the catch primitive, one could mark the catch frames that are
using the stack value and choose at run-time to reify the stack if the catch frame needs
it.

42

5.2. EFFICIENT REIFICATION CHAPTER 5. REIFYING THE STACK

To do static analysis on the uses of catch has no runtime cost, but there many
problems. When the execution stack contains a series of catch statements and if the
topmost catch frame indicates that it doesn’t need the stack, it will not be possible to
rethrow the stack trace to the second catch frame which might need it. Section 6.3.2 in
the next chapter will discuss semantics of rethrowing in detail.

Another serious obstacle with static analysis is that the code generation phase would
require a lot more context to decide what kind of catch or throw site it is. Catch
and throw sites have to generate code defensively (like with all compiler optimizations).
While code from remote libraries must be compiled defensively as one would expect, the
biggest issue is thunks! Since thunks passed as arguments can contain arbitrary code,
even code that throws, the compiler have to assume the worst.

We have not found any sensible way to do static analysis that prove that a throw
at a throw site don’t need to reify the stack. We reach the same conclusion when doing
analysis on catch sites. Even if a handler can be proven to not use stack traces, we might
still need reify the stack in order to pass it down to the next handler.

5.2.3 Stack freezing

One issue with lazy reification is that the stack is a mutable data structure, so it is not
enough to have a reference to the topmost chunk. The issue of mutability goes away
if we make the stack structure immutable when reifying2, we call that stack freezing.
To freeze the whole stack would mean to freeze each individual stack chunk. A frozen
chunk’s content should be regarded as read-only and the reference to the top of the stack
should not change either. It turns out that thanks to already existing machinery, much
is already implemented.

Freezing a particular chunk (a StgStack value) would be trivial by just setting the
chunk’s stack_size to be zero and saving the sp-value to another field. By setting
the stack_size to zero, the overflow check described in section 4.3 would automatically
kick in as a copy-on-write mechanism. Since we saved the sp value at the time of the
reification, the sp value can change, which means that the stack chunk can still safely
shrink. The stack value itself would be a value with a reference to the stack chunk that
was current at the time of the exception, as seen in figure 5.7.

So far this solution is linear, since freezing the whole stack would mean to traverse
through each chunk and freezing them. The number of chunks is linear in the size of the
stack. Luckily, we can get away with freezing the whole stack by only freezing the chunk
where the handler lies. Because when we get an underflow, control is passed to the RTS
[62]. From the RTS code we could freeze the next chunk of the underflow frame, which
can be thought of as freezing lazily.

There are multiple drawbacks of freezing the stack. When doing a garbage collection,
a stack value has a reference to the old stack and it would be wasteful to retain the

2So far, all stack reifications have been for the purpose of creating a stack value. The name reification
has been used since all methods discussed until now have been about copying the essentials of the stack
and store it in changed format. To avoid too much terminology in this paper, we call all methods of
creating a stack value for “reification”.

43

5.2. EFFICIENT REIFICATION CHAPTER 5. REIFYING THE STACK

TSOstg_stack_info

size = 100

 ... frames ...

handler_frame_A

 ... underflow frame ...

stackobj

stg_stack_info

size = 0

 ... frames ...

stg_stack_info

size = 0

 ... frames ...

next_chunk

stg_stack_value_info

next_chunk

stack_value
stack

Figure 5.7: Illustration of stack freezing. The frames with size = 0 are the frames
that have been frozen by the run time system when a crash was detected.

payloads and all their references if the eventual printed stack trace is only based on
the info pointers. Another drawback is that it is not clear when (if ever) to thaw the
stack. Thawing would be the process of undoing the freezing of the stack. Freezing
the stack and the chunk is very cheap, but a frozen chunk will cause overflows on every
push. Thawing can be done in constant time by just restoring the stack_size of the
current stack chunk. Thawing would ideally happen when the last stack value become
unreachable from Haskell code. Subsection 5.2.4 will look at how the RTS can know
when to initiate the thawing.

The overall advantage of stack freezing is that we would never actually need to create
another array, so then all payloads are still accessible. If the payloads are available from
the stack value in the handler, the optimizations from section 5.1 could be configurable
from code in Haskell-land. Even better, one day the stack traces could utilize the stack
frames even more by for example printing the values of the free variables in a case
continuation.

5.2.4 Stack thawing

When we defined freezing and thawing in subsection 5.2.3 we said that both freezing
and thawing were quite simple operations. However, we still need some sort a destructor
mechanism for heap objects since it is only safe to thaw the StgStack chunk when it
is not used anymore. The RTS in GHC does support weak pointers. Unlike regular
pointers, weak pointers do not maintain liveliness for the object it is pointing at. During
garbage collection, The weak pointers are visited after all other live pointers have been

44

5.2. EFFICIENT REIFICATION CHAPTER 5. REIFYING THE STACK

visited, in that way it is possible to see if a heap object have died since the last garbage
collection. When a dead weak pointer is visited, the pointer is removed and a finalizer
is run. It is tempting to let thawing be the finalizer of stack values, but there could be
values that are created from the stack value that relies on the stack being left intact.
For example, we could have that the stack is exposed to the programmer as a Haskell
list. If any of the list values are alive the stack must not thaw as the data source for
the list (the stack) can then be overwritten. One way to ensure that the finalizer is
not run prematurely is for every heap object that depends on the stack being alive to
have a pointer to the stack value. This way the stack value will be alive as long as its
dependents are alive.

Another design question is if the finalizer should thaw the stack. The stack is owned
by a particular capability, but the finalizer can be run by any capability doing the garbage
collection. We propose that thawing only should happen on stack underflows, because
then we are certain that the running thread is thawing its own stack and we do not need
to worry about the overhead of locks and there being race conditions. But then what
would the finalizer do? How would a underflowing stack chunk know if it should thaw
the succeeding chunk? We propose a scheme like in figure 5.8: Every StgStack chunk
has a linked list of subscribers that require the stack to be kept frozen (in the figure we
just have one pointer and do not show the linked list structure). The only weak pointer
is pointing at the stack value and its finalizer is to mark the subscriber as dead. When a
chunk underflows it will traverse its linked list and remove the entries pointing to dead
subscribers. The next chunk will then be be frozen if and only if the subscriber list is
nonempty. The list will then be inherited by the succeeding chunk.

One alternative for a linked list to subscribers could be to have a counter containing
the number of subscribers. But that would require synchronization primitives.

5.2.5 Chunked reifying

Chunked reifying of the stack is another idea about doing the stack reification lazily.
In chunked reification we do not freeze the stack, instead, we observe that the stack is
almost immutable already! The stack can only modify itself frame by frame unlike an
array which can access any element. This is a powerful property since this means that
the stack is almost immutable. Like for stack freezing we want to have some sort of copy-
on-write mechanism and we will save frames once they are popped from the stack. It is
too expensive to copy over one frame each time the stack pointer goes below its yet lowest
point since the reification. Instead we can copy over stack frames in chunks. Luckily, the
execution stack implemented in GHC is already chunked and we could decide to reify the
next chunk on each underflow. One very useful trick is to save the reified stack chunk
in the chunk that underflowed and not in its successor. It might feel more natural at
first to store the reified frames for chunk A in chunk A, but if chunk A overflows again
and does another stack reification, then A has to hold two different reified chunks and
the stack values would not know which one belongs to them. We avoid this problem by
storing the chunk in the overflowing chunk.

Like with the approach of stack freezing, it would improve performance to do some-

45

5.2. EFFICIENT REIFICATION CHAPTER 5. REIFYING THE STACK

weak pointer

stack value

stg_subscriber

alive = 1

 Stack chunk

dependent dependent

Figure 5.8: A scheme for stack thawing without locks.

thing similar to thawing the stack when stack values become inaccessible. Even if chun-
ked reification does not freeze the stack it must be able to tell stack parents that they
do not need to reify on underflows when no stack value is alive anymore. The finalizer
scheme could be the same as the one described in subsection 5.2.4.

46

6
A Haskell Interface

Our goal is for Haskell to ”have stack traces”. This could just mean that the language
prints a stack trace when the program crashes, however it would be more powerful if
the programmer has some control of this. With a Haskell-API, the programmer can
print the stack trace at will and not only on crashes. Further, the programmer could
examine what is on the stack, for example one could check if the function foo is on the
stack or not. For this to be possible, some interface has to exist in Haskell-land. One
contribution of this thesis is a Haskell API to the execution stack, section 6.1 explains
the design choices when creating that interface. Aside from the API, it would also be
great if stack traces got integrated into the exception system, since once an exception
has occurred, it is too late to get the original stack trace, somehow the stack trace has
to be passed to the exception handler. This will be discussed in section 6.3. Section 6.2
covers the preliminaries needed to understand section 6.3.

6.1 User-invoked reification

The stack traces shown in section 5.1 look something like this:

3: showSignedInt

4: print

5: writeBlocks

We basically have assumed that the DWARF debug data gives us a simple mapping
from instruction pointer to function names. We could model this in Haskell:

47

6.1. USER-INVOKED REIFICATION CHAPTER 6. A HASKELL INTERFACE

-- | Location in source code.

data LocationInfo = LocationInfo

{ startLine :: !Word16

, startCol :: !Word16

, endLine :: !Word16

, endCol :: !Word16

, fileName :: !String

, functionName :: !String

}

deriving(Eq)

Figure 6.1: The information necessary to display a row from the stack trace.

import Foreign.Ptr (Ptr)

data Instruction -- Empty data declaration (for type safety)

type FunctionName = String

lookupWithDwarf :: Ptr Instruction -> IO FunctionName

But we actually get much more information than just the function name from the
DWARF info. We also know in which file it was defined and more exactly where in the
function. A stack trace including all this information could look like this:

3: showSignedInt (at libraries/base/GHC/Show.lhs:432:1-434:56)

4: print (at libraries/base/System/IO.hs:281:29-281:37)

5: writeBlocks (at libraries/base/GHC/IO/Handle/Text.hs:584:4-609:31)

We have created a Haskell data type to encapsulate one frame like shown above. We
call the data type a LocationInfo and its definition is in figure 6.1.

Yet, there is even more information stored in the DWARF data. For a given instruc-
tion pointer, you would usually associate it to only one place in the source code, but the
situation is not always clear cut due to code transformations like inlining. Instead we
have a mapping from one instruction pointer to many source functions.

3: showSignedInt (at libraries/base/GHC/Show.lhs:432:1-434:56)

4: print (at libraries/base/System/IO.hs:281:29-281:37)

putStrLn (at libraries/base/System/IO.hs:267:37-267:38)

print (at libraries/base/System/IO.hs:281:35-281:36)

5: writeBlocks (at libraries/base/GHC/IO/Handle/Text.hs:584:4-609:31)

With the fact that each instruction pointer maps to multiple source locations, it
would make sense for lookupWithDwarf to return a list of LocationInfos. Perhaps the
signature should be like the following?

48

6.1. USER-INVOKED REIFICATION CHAPTER 6. A HASKELL INTERFACE

lookupWithDwarf :: Ptr Instruction -> IO StackFrame

Figure 6.2: Given an instruction pointer, you get a StackFrame value.

data StackFrame = StackFrame

{ unitName :: !String

, procedureName :: !String

, locationInfos :: ![LocationInfo] -- Empty without -g flag to ghc

}

Figure 6.3: The information necessary to display a frame from the stack trace.

lookupWithDwarf :: Ptr Instruction -> IO [LocationInfo]

Unfortunately, DWARF information is not always available in the executable, for
example if a Haskell module have been compiled without the -g flag. Luckily, symbol
table information might still be packaged inside the binary, which would be able to get
out some useful information.

Note that only some modules might have been compiled with or without -g, so a
stack trace could have some stack frames actually resolved while others just contain
information extracted from the symbol table. Here is an excerpt of a stack trace where
the Haskell module GHC.Show was compiled without the -g flag.

3: c1lo_entry (using libraries/base/GHC/Show.lhs)

4: print (at libraries/base/System/IO.hs:281:29-281:37)

putStrLn (at libraries/base/System/IO.hs:267:37-267:38)

print (at libraries/base/System/IO.hs:281:35-281:36)

5: writeBlocks (at libraries/base/GHC/IO/Handle/Text.hs:584:4-609:31)

While c1lo_entry is not too useful (but it hints that it could be a case continuation),
the second piece of information is useful. The file Show.lhs would probably have some-
thing to do with converting a value to a string. Therefore, it would help if the Haskell
value includes this information when it is present. With this in mind, we decide on the
API shown in figure 6.2 and 6.3. The structure fields unitName and procedureName

from figure 6.3 could example be libraries/base/GHC/Show.lhs and c1lo_entry re-
spectively, as in the last stack trace sample. The exact procedure of calculating the
unitName and procedureName is hard wired in the run time system. In essence, the
values will be based on DWARF values, like those shown in figure 2.16 [78]. If there is
no DWARF data stored in the binary, the symbol table of the binary can be used as a
last resort [79].

49

6.1. USER-INVOKED REIFICATION CHAPTER 6. A HASKELL INTERFACE

These decisions are debatable. What happens if there is no symbol table? What
happens if the frame on the execution stack was an update frame, but we reified the
code pointer of its payload (recall section 5.1.1)? Both the signature

lookupWithDwarf :: Ptr Instruction -> IO (Maybe StackFrame)

and

lookupWithDwarf :: Ptr Instruction -> IO [StackFrame]

makes sense. But the API should preferably be simple and natural. Most program-
mers might be used to a one to one mapping between instruction pointer and source
code. Therefore we choose the signature in figure 6.2. Then, when programmers looks
at what a StackFrame is, then they will be gently introduced to the fact that a stack
frame may contain multiple LocationInfos. Contrast this to giving an API based on
these observations:

• One execution stack frame maps to multiple stack frames (like for update frames).

• We ”meld” StackFrame and LocationInfos, basically substituting StackFrame

with [LocationInfo].

• We have a function getStackFrames that returns a list of the frames on the exe-
cution stack.

Then we would end up with a function like:

getStackFrames :: IO [[[Locationinfo]]]

Or if we commented the signature:

getStackFrames :: IO

[-- The execution stack has multiple frames

[-- Each execution stack frame maps to multiple frames

[-- An instruction pointer maps to multiple source code locations

Locationinfo

]

]

]

No, this is not a user-friendly API. Still, we need to discuss two issues:

1. All DWARF data and the symbol table could have been stripped away.

2. Update frames can be thought as being multiple frames.

50

6.2. EXCEPTION SYSTEM CHAPTER 6. A HASKELL INTERFACE

We solve the first issue by simply setting the String-fields of a StackFrame to a
descriptive value like "<No data>" or just "" if we do not find anything in the symbol
table.

In the case of having an execution stack frame that corresponds to multiple frames
(like for update frames), we pick the most helpful stack frame (the updatee over the
updater). After all, most reification methods from the previous chapter is only capable
of storing one info pointer per stack frame. But if we were making all frames accessible
from the Haskell API, one idea would be to squeeze in another field next :: Maybe

StackFrame in the definition of StackFrame from figure 6.3. Then that particular field’s
documentation could explain how it works.

Lastly, the API will include some non-controversial functions like pretty-printing of
the execution stack. Since there is only one natural implementation for these functions,
we do not discuss them further.

6.2 Exception system

The exception system of a language is how throwing and catching is done in that lan-
guage. The exception system for GHC got an overhaul when version 6.10.1 was released
in November 2008 [80]. The design of the new exception system was introduced in a pa-
per from 2006 [75]. In this section we will look at how this relatively new and current
exception system works. The most recent Haskell report does not mention this exception
system [8, ch. 42], but we only care about GHC here and still consider “Haskell” to mean
the language implemented in GHC.

The exposed exception system in Haskell is surprisingly similar to Java’s, but their
implementation differs vastly. There is a root exception type in Java called Exception

and the Haskell equivalent is called SomeException. One subclass of exceptions are arith-
metic exceptions, Java has ArithmeticException and Haskell has ArithException. So
Java and Haskell are similar in the sense that they both have an extensible and hier-
archical exception system. Haskell, unlike Java, do not have anything like the throws

annotation1 in the type system, but it can be implemented as a library [81, 82].
One way to learn the Haskell exception system is to study the documentation of the

Control.Exception module from the base library [83]. That module is quite sizeable,
so we will only study the catch and throw functions since that is enough background
to be able to discuss how stack traces can be added to the exception system. The
documentation contains many functions with various best practices the programmer
should know, catch and textttthrow is not enough to write good code. Let’s continue
by looking at some example uses of catch and throw in GHCi.

1Introduced in section 2.2.1.

51

6.2. EXCEPTION SYSTEM CHAPTER 6. A HASKELL INTERFACE

-- We import what we need

> :set -XScopedTypeVariables

> import Control.Exception

-- It is equivalent to cause the exception and to throw it manually

> (1 ‘div‘ 0)

*** Exception: divide by zero

> throw DivideByZero

*** Exception: divide by zero

-- You can catch the exception

> catch (throw DivideByZero) (\ (e :: SomeException) -> putStrLn "Yaay")

Yaay

-- But if the type of the error you are catching is not a superclass

-- of the exception being thrown, the catch will not be caught

> catch (throw DivideByZero) (\ (e :: IOException) -> putStrLn "Yaay")

*** Exception: divide by zero

The type signatures of catch and throw can be found in figure 6.4. The signatures
are reproduced from the documentation [83]. The type signature for both functions are
in the form :: Exception e => ..., this means that e is a constrained type. The type
variable e can not be of any type, under common circumstances it can not be an Int

or a String2, it has to be some sort of an Exception. Exception is not a type (unlike
SomeException and ArithException), Exception is type class3! For a particular type
to qualify as being an Exception type, it must adhere to the following interface:

• Any value of type e can be converted into a value of type SomeException. The
programmer has to provide the function:

toException :: e -> SomeException

• All SomeException values must have a more concrete type underneath4, the con-
crete type could for example be an ArithException. In general we would ask
ourselves if a particular SomeException value is somewhere down the hierarchy
built using a node of type e. If so, we say that we can downcast a SomeException

value to a value of type e, essentially we are looking for a downcasting function in
Haskell. This will probably be achieved using dynamic casting in Haskell. To fulfill
the Exception interface the programmer has to provide the following downcasting-
like function:

2But it can if an Exception instance is provided for one of these types
3The name “class” is unfortunate since it is not at all like classes in object oriented programming, it

is more like interfaces.
4At least all total and finite SomeException values

52

6.2. EXCEPTION SYSTEM CHAPTER 6. A HASKELL INTERFACE

-- | Throw an exception. Exceptions may be thrown from purely

-- functional code, but may only be caught within the ’IO’ monad.

throw :: Exception e => e -> a

-- | This is the simplest of the exception-catching functions. It

-- takes a single argument, runs it, and if an exception is raised

-- the "handler" is executed, with the value of the exception passed

-- as an argument. Otherwise, the result is returned as normal.

catch :: Exception e

=> IO a -- The computation to run

-> (e -> IO a) -- Handler to invoke if an exception is raised

-> IO a

Figure 6.4: The function signatures for catch and throw and some excerpts of the
documentation.

fromException :: SomeException -> Maybe e

So as indicated from the type signatures of throw and catch, they do use the
toException and fromException functions (otherwise they would not need the type
class constraint). The definition of throw uses toException meanwhile catch uses
fromException [84].

The implementation of toException and fromException differs for every type. But
the convention is that toException wraps a bare exception value into wrappers, one
wrapper per level of hierarchy. Similarly fromException removes the layers. For the
hierarchy shown in figure 6.5, the toException and fromException functions would
work like this:

53

6.2. EXCEPTION SYSTEM CHAPTER 6. A HASKELL INTERFACE

SomeException

SomeCompilerException

SomeFrontendException

MismatchedParentheses TypeCheckerFailure

Figure 6.5: One example exception hierarchy.

> toException MismatchedParentheses

SomeException

(SomeCompilerException

(SomeFrontendException MismatchedParentheses))

> toException TypeCheckerFailure

SomeException

(SomeCompilerException

(SomeFrontendException TypeCheckerFailure))

> (fromException :: SomeException -> MismatchedParentheses)

(toException MismatchedParentheses)

(Just MismatchedParentheses)

> (fromException :: SomeException -> TypeCheckerFailure)

(toException MismatchedParentheses)

Nothing

The multiple layer of constructors is added by toException and fromException

checks if its argument was wrapped by the corresponding toException function. When

54

6.3. ADDING THE TRACE CHAPTER 6. A HASKELL INTERFACE

seeing this it should be clear that we are not really doing downcasting in the OOP sense.
When using fromException we are actually losing information, we can not upcast the
value back to its original value of type SomeException. Contrast this to the real down-
casting that is done in Java, when an Exception in Java is successfully downcasted to a
ArithmeticException value it is still the same value, only with a new type. Upcasting
is always possible in Java by doing a normal type cast.

In section 6.3 we will look at how we can catch exceptions with stack traces. So far
we have only looked at how the exception system is implemented. The implementation
details are necessary background so we can discuss the proposal that modifies the existing
exception system.

6.3 Adding the trace

In this section we will look at two problems. First, how can we give the handler a
stack value? Second, which stack should be reified when we throw inside the handler?
When answering these questions, we say that we have a type called ExecutionStack,
values of this type will be named executionStack by convention. The underlying data
representation of the stack value that was discussed in section 5.2 should not matter.

6.3.1 Catching the stack

To catch the stack should have an intuitive interface. Possibly something like

catchWithStack :: Exception e => IO a -> Handler e -> IO a

Where Handler e is either (e -> ExecutionStack -> IO a) or
(e -> Maybe ExecutionStack -> IO a). Another approach would be if there was a
function like

getStack :: Exception e => e -> ExecutionStack

This would be very convenient and would solve both catching and throwing at the same
time. It is now time to look at possible implementations that would give a decent
Haskell-interface to the programmer.

Implementations in pure Haskell

We can change the type of SomeException from

data SomeException =

forall e . Exception e => SomeException e

to

data SomeException =

forall e . Exception e => SomeException e ExecutionStack

55

6.3. ADDING THE TRACE CHAPTER 6. A HASKELL INTERFACE

But this breaks compatibility because you change the type of SomeException. Fur-
thermore it is not as convenient as it seems. If the programmer catches an exception
downcasted to say an ArithException, it would be intuitive that the stack trace would
be reused if you throw the exception variable because the stack trace is stored in the
exception value. But that is not true once you downcast the SomeException value.

Another design is to add an optional layer containing the stack. If (toException

DivideByZero) evaluates to (SomeException DivideByZero), we could imagine a func-
tion toExceptionWithStack where (toExceptionWithStack DivideByZero) evaluates
to (SomeException (WithStack DivideByZero executionStack)). While this does
not break backwards compatibility, users has to actively choose toExceptionWithStack

over toException.
Both these solutions would be accompanied with small changes to library functions

like throw and small changes to the RTS. Ideally all raised exceptions will have the
stack trace in it without needing to change any external library code. However, we
have not found any work around for the fundamental issue of no proper downcasting.
That rethrowing the same exception only propagates the stack when the exception is
a SomeException is confusing, particularly for programmers used to languages with a
hierarchical exception system based on subtyping like Java and Python.

RTS-based solutions

It would be desirable for our solution to be implemented as much as possible in a Haskell
library instead of the run time system, it would then work for any Haskell compiler that
has the same exception system as GHC. Unfortunately we did not find a satisfactory
solution when limiting ourselves to solutions in Haskell-land (obviously there could exist
clever solutions we have not discovered). We will now broaden the solution space to
include RTS changes.

Currently, control is passed to the run time system when an exception is thrown.
The RTS gets passed control when functions like throw [85] and error are invoked,
because both will eventually call raise# which is is a RTS primitive [86]. When raise#

is called, it will walk the stack towards the first frame type that (possibly) can handle
exceptions (but we only consider CATCH_FRAME) [87, 88]. When a CATCH_FRAME frame is
found, raise# will run the frame’s handler with the exception passed as an argument.
The handler on the stack should therefore be of arity 1, more precisely it should conform
to (Exception e => e -> IO a). The way to get this catch frame on the stack in the
first place is to use the primitive catch#, for example it could be invoked with (catch#

ioThatCanCrash myHandler). The type signature for catch# is5:

catch# :: IO a -> (exception -> IO a) -> IO a

There are many interesting possibilities here, for example in Peter Wortmann’s
demonstration from section 3.4 he changed the catch# primitive to have the follow-
ing signature:

5The type system for RTS primitives is weaker, we can not constrain the type variable exception to
belong to the type class Exception.

56

6.3. ADDING THE TRACE CHAPTER 6. A HASKELL INTERFACE

sp

... vacant space ...

frame_A_info

... frame_A payload ...

 ... frames ...

catch_frame_info

handler

 ... frames ...

Catch
info table

(a) The stack when raise# is invoked.

sp

... vacant space ...

recovery_frame_info

 ... frames ...

Recovery
info table

stack
value

(b) The stack when the handler is invoked.

Figure 6.6: The stack before and after an exception.

catch# :: IO a -> (exception -> ByteArray# -> IO a) -> IO a

Where ByteArray# contains the reified stack. With this change it would be trivial to
implement catchWithStack and to reimplement catch in terms of catchWithStack.
But also the raise# primitive must change its implementation. After all raise# is
the function that invokes the handler (catch# just pushes it on the stack). The stack
reification can happen in raise# which will then pass it as an argument to the handler
it finds on the stack.

Another approach would be to not change the signature of catch#. But how would
catchWithStack be implemented if the undermost handler does not take the execution
stack as an argument? Of course it could be put in the exception value, but we propose
to instead push a recovery frame, the recovery frame would contain the stack value.
Figure 6.6 illustrates when and where a recovery frame would be pushed. Once the
handler gets control, we know that stack pointer Sp points at the recovery frame. It
would then be a constant time operation to retrieve the stack value. We can imagine a
function with this signature:

-- Traverse the stack and look for a recovery frame

recoverExecutionStack :: IO (Maybe ExecutionStack)

This approach will not break backwards compatibility since it does not change any
function in Haskell land. This time catchWithStack is defined in terms of catch and

57

6.3. ADDING THE TRACE CHAPTER 6. A HASKELL INTERFACE

Inside the handler Outside the handler

Throwing the caught exception Rethrow Rethrow

Throwing a new exception Throw anew Throw anew
Table 6.1: The throw semantics in Java.

not the other way around. But one of the best benefits with this approach is that it
introduces a nice way to implement rethrowing of stack traces.

6.3.2 Rethrowing the stack

When throwing an exception for the first time we reify the stack at the crash site. After
reification the exception will be passed to a handler. We can categorize the resulting
effects of running the handler, either:

• The handler can resolve the exception. For example it can print an error message.

• The handler can declare itself incapable of handling the exception, the exception
must then be passed to the next handler on the stack. We say that the handler
rethrows the exception. When rethrowing we always want the next handler to get
the original stack trace.

• The handler itself may crash and generate a completely new exception on its own,
we say that the handler is throwing anew. When throwing anew we always want
the next handler to get a new stack trace.

These scenarios do not directly map to an obvious Haskell interface. In Java, the stack
traces are stored inside the exception. To do a rethrow you must throw the exception
value that you caught. If you create a new exception (even if it is of the same type) a
new stack trace will be reified from inside the handler. Whether if you throw from inside
the code of the handler6 or not does not matter in Java. The way a language defines
rethrowing can be summarized in a table, for Java it would look like be like table 6.1.
The stated behavior of Java is based on the experiments in [89].

When designing any programming language, we will obviously be steered by what is
technically possible. When we tried to put the stack trace value inside the SomeException
type, we realized that the hierarchical exception system from [75] is inferior to actual
class hierarchies and “real” downcasting that exists in the object oriented programming
language Java. Due to the technical reasons we can not conveniently store the stack
trace in the SomeException value, so the semantics of throwing in Haskell can not be
identical to Java. Instead we propose that Haskell have the semantics shown in table 6.2,
so that we count a throw as a rethrow if it is within the handler.

6in Java we say that the catch-block is the handler.

58

6.3. ADDING THE TRACE CHAPTER 6. A HASKELL INTERFACE

Inside the handler Outside the handler

Throwing the caught exception Rethrow Throw anew

Throwing a new exception Rethrow Throw anew
Table 6.2: One suggested throwing semantics for Haskell.

try :: Exception e => IO a -> IO (Either e a)

try a = catch (a >>= \ v -> return (Right v)) (\e -> return (Left e))

-- | A variant of ’try’ that takes an exception predicate to select

-- which exceptions are caught. If the exception does not match the

-- predicate, it is re-thrown.

tryJust :: Exception e => (e -> Maybe b) -> IO a -> IO (Either b a)

tryJust p a = do

r <- try a

case r of

Right v -> return (Right v)

Left e -> case p e of

Nothing -> throwIO e

Just b -> return (Left b)

Figure 6.7: The definition of try and tryJust.

Snatching the trace in the recovery frame

Now we can contemplate over how to implement rethrowing to follow the specification
in table 6.2. Recall the recovery frame, it can be used for rethrowing too: Say that we
are inside a handler, then a recovery frame must be somewhere on the execution stack.
If the handler now does a rethrow, we do not need to pass the stack trace to the throw
function, because the handler-search in raise# will walk the stack downwards anyway,
when doing that it can look for the recovery frame and snatch the stack trace stored
within it.

One serious issue is that sometimes a function might intend to rethrow but do the
throwing outside the handler. Consider the implementation of tryJust from [90] repro-
duced in figure 6.7. The implementation of tryJust would not do a rethrow if Haskell
had the rethrow semantics shown in table 6.2 and it is obvious that tryJust should be
rethrowing.

There is another problem with using the semantics that throwing in handlers mean
rethrowing. Imagine a long-running handler, the handler could be calling a separate
function that throws on its own, both rethrowing and throwing anew are likely intents
here. What can we do about this? It would be disastrous if the user would get an

59

6.3. ADDING THE TRACE CHAPTER 6. A HASKELL INTERFACE

incorrect stack trace! Of course, we will provide throw functions where a programmer
can explicitly say if we throw anew or if we should look for a recovery frame. But there
will still be code using throw and for those cases the stack traces might be confusing.
One comfort will be that long running handlers that do install their own catch handler
will not be problematic. If a handler install its own catch frame, the handler will not
get the old stack trace since it lies below the inner catch frame on the stack. Whether
if long-running handlers are common have not been investigated in this thesis.

Long running handlers also have another issue, the recovery frame will point to a
stack trace value, which means that it will not get garbage collected until the recovery
frame is popped. For some of the implementations suggested in section 5.2, the stack
trace value can keep ridiculous amounts of memory from being garbage collected. The
stack trace value implementation of stack freezing from subsection 5.2.3 keeps the whole
execution stack at the crash site alive.

These two issues with long-running handlers can be fixed by having a way to remove
the pushed recovery frame. It must be called immediately in the handler (just as with
recoverExecutionStack):

-- This function must be called first thing in the handler.

-- It will remove the recovery frame. Returns true iff successful.

removeRecoveryFrame :: IO Bool

Asynchronous throwing and other complications

The ideas presented in this section have not been implemented (not even partially).
There are many features in GHC that have not been discussed that must be considered
before the ideas in this thesis can be considered implementable. For instance Haskell
supports asynchronous exceptions [91]. While we do not see any immediate problem with
incorporating asynchronous exceptions and stack traces there could be subtleties around
the corner, like in [92]. Another issue not brought up is concurrency. So the final word
of this section is a warning that these ideas most probably will not work without some
modifications that only will be realized down the road.

60

7
Conclusions

This thesis is titled“Stack traces in Haskell”which is a problem that have been attempted
and solved many times before. The title was chosen to be understandable rather than
specific. The actual question formulation is “Can efficient stack traces be implemented in
GHC?”. We will now try to conclude how we managed to answer the question formulation
and to guess how the future could be for GHC.

7.1 Did we answer the question formulation?

A prototype had already been made when this thesis work started. The prototype had
set up a very promising start: The debug data did not interfere with optimizations
and the debug data was emitted in the DWARF format. DWARF sections are stored
separately in an executable and should therefore not affect performance. So the question
was solved in the ”code generation” sense already, but the run time details of reifying
the stack were problematic. Chapter 5 identified the efficiency issues with the stack
reification method in the prototype. Some solutions were proposed that are able to
reify the stack in constant time. Chapter 6 dealt with the problem that the original
prototype was always reifying a new stack trace regardless of the kind of throw, but you
do not want a new reification if you are propagating an exception. It turned out that
the rethrow semantics must be a language decision and the semantics that is easy to
implement in Java will not work in Haskell. The important result is that a consistent
semantic of throwing can be implemented.

In this thesis we have come closer to incorporating efficient stack traces since we both
have an idea of how to represent the stack trace value internally (Chapter 5) and how
to expose it to users in Haskell-land (Chapter 6). Also, chapter 4 translated the code
of the stack related parts in the run time system into high level text and illustrations.
That chapter should shorten the time it takes to understand the execution stack for new
GHC contributors.

61

7.2. WHAT SHOULD BE DONE NEXT? CHAPTER 7. CONCLUSIONS

7.2 What should be done next?

The contributions in lines of code from this thesis is quite small. Most ideas from
chapter 5 and chapter 6 was never implemented. Which means that we do not know if
they actually work and we have not been able to benchmark their performance. The
ideas are however usually quite small changes and the theoretical analysis are indicating
that the overhead should be low.

I expect to slowly try to implement some of the ideas and successively get patches
merged. At the time of writing, all of my stack trace patches must wait for Peter
Wortmann’s debug data patches and DWARF patches to get merged first.

As of date, Haskell is a backwards language in regards to stack traces, but the ideas
in this thesis could push Haskell towards becoming a forwards language. If one would
implement the lazy reification idea of stack freezing from subsection 5.2.3 in combination
with the idea of recovery frames from section 6.3, then Haskell have the potential to have
stack trace values with the following properties:

• Efficient – The reification is done in constant time with respect to the stack size.
This must obviously happen lazily, any strict implementation would need to be at
least linear in the size of the stack. Efficient reification is a must if programmers
are using exceptions for control flow.

• Available post mortem – The stack can not only be reified at will, but also at the
time when an exception is thrown.

• With variables – To print the values of the variables is out of reach today, but the
stack value will keep the payloads alive as well. So only thing hindering variables to
be printed is that the instruction pointer to source code mapping does not describe
the fields1.

• First class value – The stack value would act like any other Haskell value. You
can put it in an IORef, pass it around between functions and let other threads use
it. As long as the stack value is live it is accessible. Contrast this to the Python
programming language, which relies on the magical and “thread and stack frame
local” function sys.exc_info() [93].

• Lock free – Synchronization primitives are slow. By only attempting thawing when
underflowing, we can be sure that only one virtual CPU is mutating the thread
state objects and its stack chunks at a time.

Yet, there is still a lot of work on stack traces not even considered throughout this
thesis. In particular how stack traces will work in conjunction with foreign C calls and
in calls (C code calling into Haskell). Haskell code in general is quite robust and free
from errors thanks to its type system and its users appreciation for totality. So even if

1Well, Haskell is a lazy and non-total language, so evaluating a variable in the payload could both
take time and have side effects.

62

7.2. WHAT SHOULD BE DONE NEXT? CHAPTER 7. CONCLUSIONS

just 1% of Haskell code is dealing with foreign calls and in calls, we should expect for
it to be responsible for a much higher percentage of the crashes. In particular, Haskell
users from industry are interested in stack traces for foreign calls, the typical scenario
would be that a company has a large code base written in C and just wants a small
Haskell program using the larger C code base. Fortunately, the problem of stack traces
for segfaulting code have been studied as of very recently [94]. Indeed, stack tracing is
a very sought-after problem to solve for Haskell programmers.

63

Bibliography

[1] Peter M. Wortmann and David J. Duke. “Causality of optimized Haskell: what is
burning our cycles?” In: Haskell. Ed. by Chung chieh Shan. ACM, 2013, pp. 141–
152. isbn: 978-1-4503-2383-3.

[2] Adrian Schroter, Nicolas Bettenburg, and Rahul Premraj. “Do stack traces help
developers fix bugs?” In: Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on. IEEE. 2010, pp. 118–121.

[3] Haskellwiki. Research papers. Nov. 2013. url: http://www.haskell.org/haskel
lwiki/Research_papers.

[4] Jason Dagit. Getting Started With GHC Hacking. Nov. 2013. url: http://blog.
codersbase.com/posts/2013-08-03-getting-started-with-ghc-hacking.

html.

[5] Haskellwiki. Haskell In Industry. Oct. 2013. url: http://www.haskell.org/
haskellwiki/Haskell_in_industry.

[6] FP Complete. Case Studies. Oct. 2013. url: https://www.fpcomplete.com/
business/resources/case-studies/.

[7] Rosetta Stone Wiki. Stack traces. Dec. 2013. url: http://rosettacode.org/mw/
index.php?title=Stack_traces&oldid=171024#Ruby.

[8] Simon Marlow. Haskell 2010 Language Report.

[9] Paul Hudak et al. “A history of Haskell: Being lazy with class”. In: In Proceedings
of the 3rd ACM SIGPLAN Conference on History of Programming Languages
(HOPL-III). ACM Press, 2007, pp. 1–55.

[10] Tristan O. R. Allwood, Simon L. Peyton Jones, and Susan Eisenbach. “Finding
the needle: stack traces for GHC.” In: Haskell. Ed. by Stephanie Weirich. ACM,
2009, pp. 129–140. isbn: 978-1-60558-508-6. url: http://dblp.uni-trier.de/
db/conf/haskell/haskell2009.html#AllwoodJE09.

[11] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Lan-
guages, And Computation. 1st. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2000. isbn: 0201441241.

64

http://www.haskell.org/haskellwiki/Research_papers
http://www.haskell.org/haskellwiki/Research_papers
http://blog.codersbase.com/posts/2013-08-03-getting-started-with-ghc-hacking.html
http://blog.codersbase.com/posts/2013-08-03-getting-started-with-ghc-hacking.html
http://blog.codersbase.com/posts/2013-08-03-getting-started-with-ghc-hacking.html
http://www.haskell.org/haskellwiki/Haskell_in_industry
http://www.haskell.org/haskellwiki/Haskell_in_industry
https://www.fpcomplete.com/business/resources/case-studies/
https://www.fpcomplete.com/business/resources/case-studies/
http://rosettacode.org/mw/index.php?title=Stack_traces&oldid=171024#Ruby
http://rosettacode.org/mw/index.php?title=Stack_traces&oldid=171024#Ruby
http://dblp.uni-trier.de/db/conf/haskell/haskell2009.html#AllwoodJE09
http://dblp.uni-trier.de/db/conf/haskell/haskell2009.html#AllwoodJE09

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Oracle. Method Throws. Jan. 2014. url: http://docs.oracle.com/javase/

specs/jls/se7/html/jls-8.html#jls-8.4.6.

[13] Oracle. Compile-Time Checking of Exceptions. Jan. 2014. url: http://docs.

oracle.com/javase/specs/jls/se7/html/jls-11.html#jls-11.2.

[14] Oracle. The catch Blocks. Nov. 2013. url: http://docs.oracle.com/javase/
tutorial/essential/exceptions/catch.html.

[15] Oracle. Unchecked Exceptions - The Controversy. Jan. 2014. url: http://docs.
oracle.com/javase/tutorial/essential/exceptions/runtime.html.

[16] Haskellwiki. Avoiding partial functions. Jan. 2014. url: http://www.haskell.
org/haskellwiki/index.php?title=Avoiding_partial_functions&oldid=

47858.

[17] Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart. Real world haskell.
O’Reilly Media, Inc., 2008.

[18] Edward Z. Yang. 8 ways to report errors in Haskell revisited. Mar. 2014. url:
http://blog.ezyang.com/2011/08/8-ways-to-report-errors-in-haskell-

revisited/.

[19] Wikibooks. Haskell/Graph Reduction. Mar. 2014. url: http://en.wikibooks.
org/w/index.php?title=Haskell/Graph_reduction&oldid=2562184.

[20] GHC Website. What is GHC? Oct. 2013. url: http://www.haskell.org/ghc/.

[21] Simon. “Implementing Lazy Functional Languages on Stock Hardware: The Spine-
less Tagless G-Machine”. In: Journal of Functional Programming 2.2 (1992), pp. 127–
202. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.
3729.

[22] Simon Marlow and Simon Peyton Jones. “Making a fast curry: push/enter vs.
eval/apply for higher-order languages”. In: Journal of Functional Programming
16.4–5 (July 2006), pp. 415–449. url: http://community.haskell.org/~simonm
ar/papers/evalapplyjfp06.pdf.

[23] GHC Commentary. Mar. 2014. url: https://ghc.haskell.org/trac/ghc/

wiki/Commentary/Rts?version=29.

[24] Alfred V Aho et al. “Compilers: Principles, Techniques, & Tools with Gradiance”.
In: (2007).

[25] David Anthony Terei and Manuel MT Chakravarty. “Low level virtual machine
for Glasgow Haskell Compiler”. PhD thesis. The University of New South Wales,
Sydney, Australia, 2009.

[26] Haskellwiki. Ministg. Mar. 2014. url: http://www.haskell.org/haskellwiki/
index.php?title=Ministg&oldid=45213.

[27] Michael J Eager and Eager Consulting. Introduction to the DWARF debugging
format. 2012.

65

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-11.html#jls-11.2
http://docs.oracle.com/javase/specs/jls/se7/html/jls-11.html#jls-11.2
http://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.haskell.org/haskellwiki/index.php?title=Avoiding_partial_functions&oldid=47858
http://www.haskell.org/haskellwiki/index.php?title=Avoiding_partial_functions&oldid=47858
http://www.haskell.org/haskellwiki/index.php?title=Avoiding_partial_functions&oldid=47858
http://blog.ezyang.com/2011/08/8-ways-to-report-errors-in-haskell-revisited/
http://blog.ezyang.com/2011/08/8-ways-to-report-errors-in-haskell-revisited/
http://en.wikibooks.org/w/index.php?title=Haskell/Graph_reduction&oldid=2562184
http://en.wikibooks.org/w/index.php?title=Haskell/Graph_reduction&oldid=2562184
http://www.haskell.org/ghc/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.3729
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.3729
http://community.haskell.org/~simonmar/papers/evalapplyjfp06.pdf
http://community.haskell.org/~simonmar/papers/evalapplyjfp06.pdf
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts?version=29
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts?version=29
http://www.haskell.org/haskellwiki/index.php?title=Ministg&oldid=45213
http://www.haskell.org/haskellwiki/index.php?title=Ministg&oldid=45213

BIBLIOGRAPHY BIBLIOGRAPHY

[28] Oracle. Object File Format. Mar. 2014. url: http://docs.oracle.com/cd/

E19683-01/817-3677/chapter6-46512/index.html.

[29] Simon Marlow et al. “A lightweight interactive debugger for haskell”. In: Proceed-
ings of the ACM SIGPLAN workshop on Haskell workshop. ACM. 2007, pp. 13–
24.

[30] GHC. The GHCi Debugger. Nov. 2013. url: http://www.haskell.org/ghc/
docs/7.6.3/html/users_guide/ghci-debugger.html.

[31] Dennis Felsing. “Visualization of Lazy Evaluation and Sharing”. Bachelor’s Thesis.
Germany: Karlsruhe Institute of Technology, Sept. 2012.

[32] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking ANSI-C
Programs”. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004). Ed. by Kurt Jensen and Andreas Podelski. Vol. 2988. Lecture
Notes in Computer Science. Springer, 2004, pp. 168–176. isbn: 3-540-21299-X.

[33] Neil T. Dantam and Mike Stilman.“The Motion Grammar: Analysis of a Linguistic
Method for Robot Control”. In: IEEE/RAS Transactions on Robotics 29.3 (2013),
pp. 704–718.

[34] Arash Rouhani, Neil T. Dantam, and Mike Stilman. “Software-Synthesis via LL(*)
for Context-Free Robot Programs”. In: 4th Workshop on Formal Methods for
Robotics and Automation, RSS. June 2013.

[35] James Cheney and Ralf Hinze. First-class phantom types. Tech. rep. Cornell Uni-
versity, 2003.

[36] D. A. Turner. “Total Functional Programming”. In: Journal of Universal Computer
Science 10.7 (July 28, 2004), pp. 751–768.

[37] Dimitrios Vytiniotis et al. “HALO: Haskell to logic through denotational seman-
tics”. In: Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM. 2013, pp. 431–442.

[38] Dana N Xu, Simon Peyton Jones, and Koen Claessen. “Static contract checking
for Haskell”. In: ACM Sigplan Notices. Vol. 44. 1. ACM. 2009, pp. 41–52.

[39] Dana N Xu. “Extended static checking for Haskell”. In: Proceedings of the 2006
ACM SIGPLAN workshop on Haskell. ACM. 2006, pp. 48–59.

[40] Koen Claessen et al. “Automating inductive proofs using theory exploration”. In:
Automated Deduction–CADE-24. Springer, 2013, pp. 392–406.

[41] Haskellwiki. Development Libraries and Tools - Static Analysis Tools. Jan. 2014.
url: http://www.haskell.org/haskellwiki/index.php?title=Development_
Libraries_and_Tools&oldid=55967#Static_Analysis_Tools.

66

http://docs.oracle.com/cd/E19683-01/817-3677/chapter6-46512/index.html
http://docs.oracle.com/cd/E19683-01/817-3677/chapter6-46512/index.html
http://www.haskell.org/ghc/docs/7.6.3/html/users_guide/ghci-debugger.html
http://www.haskell.org/ghc/docs/7.6.3/html/users_guide/ghci-debugger.html
http://www.haskell.org/haskellwiki/index.php?title=Development_Libraries_and_Tools&oldid=55967#Static_Analysis_Tools
http://www.haskell.org/haskellwiki/index.php?title=Development_Libraries_and_Tools&oldid=55967#Static_Analysis_Tools

BIBLIOGRAPHY BIBLIOGRAPHY

[42] Neil Mitchell and Colin Runciman. “Not All Patterns, But Enough - an automatic
verifier for partial but sufficient pattern matching”. In: Haskell ’08: Proceedings
of the first ACM SIGPLAN symposium on Haskell. Victoria, BC, Canada: ACM,
Sept. 2008, pp. 49–60. isbn: 978-1-60558-064-7. doi: http://doi.acm.org/

10.1145/1411286.1411293. url: http://community.haskell.org/~ndm/

downloads/paper-not_all_patterns_but_enough-25_sep_2008.pdf.

[43] GHC Wiki. Maintaining an explicit call stack. Oct. 2013. url: http://ghc.

haskell.org/trac/ghc/wiki/ExplicitCallStack#Transformationoption1.

[44] Hat Team. Hat - generating and viewing traces. Nov. 2013. url: http://projects.
haskell.org/hat/.

[45] Haskellwiki. HaskellImplementorsWorkshop/2012. Dec. 2013. url: http://www.
haskell.org/haskellwiki/HaskellImplementorsWorkshop/2012#Programme.

[46] GHC Trac. Show stack traces. Dec. 2013. url: https://ghc.haskell.org/trac/
ghc/ticket/3693#comment:44.

[47] Hackage. forkIO. Feb. 2014. url: http://hackage.haskell.org/package/base-
4.6.0.1/docs/Control-Concurrent.html#v:forkIO.

[48] GHC Commentary. Feb. 2014. url: https://ghc.haskell.org/trac/ghc/wiki/
Commentary/Rts/Scheduler?version=23#Capabilities.

[49] GitHub. Feb. 2014. url: http://www.haskell.org/ghc/docs/7.6.1/html/
users_guide/release-7-6-1.html.

[50] GHC Commentary. Feb. 2014. url: https://ghc.haskell.org/trac/ghc/wiki/
Commentary/Rts/Storage/HeapObjects?version=33#HeapObjects.

[51] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/3c9aa40f1cb3f
228a86b359466ac8f058583e157/rts/sm/Scav.c#L1640-L1769.

[52] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/4f603db253434ba
0758142c42109d02c95a0ceda/includes/rts/storage/ClosureTypes.h.

[53] GHC Commentary. Feb. 2014. url: https://ghc.haskell.org/trac/ghc/wiki/
Commentary/Rts/HaskellExecution/FunctionCalls?version=3#FunctionCall

s.

[54] GHC Commentary. Feb. 2014. url: https://ghc.haskell.org/trac/ghc/

wiki/Commentary/Rts/HaskellExecution/CallingConvention?version=3#

ReturnConvention.

[55] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/58e5843a4118ca
19fd1c93f52f2365d90bb1b9b6/compiler/cmm/CmmParse.y#L167-L179.

[56] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/2f69aaea7066b8d
11034925d9376fadd67361eca/includes/stg/MachRegs.h.

[57] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/ea584ab634b17b
499138bc44dbec777de7357c19/compiler/codeGen/StgCmmBind.hs#L554-L581.

67

http://dx.doi.org/http://doi.acm.org/10.1145/1411286.1411293
http://dx.doi.org/http://doi.acm.org/10.1145/1411286.1411293
http://community.haskell.org/~ndm/downloads/paper-not_all_patterns_but_enough-25_sep_2008.pdf
http://community.haskell.org/~ndm/downloads/paper-not_all_patterns_but_enough-25_sep_2008.pdf
http://ghc.haskell.org/trac/ghc/wiki/ExplicitCallStack#Transformationoption1
http://ghc.haskell.org/trac/ghc/wiki/ExplicitCallStack#Transformationoption1
http://projects.haskell.org/hat/
http://projects.haskell.org/hat/
http://www.haskell.org/haskellwiki/HaskellImplementorsWorkshop/2012#Programme
http://www.haskell.org/haskellwiki/HaskellImplementorsWorkshop/2012#Programme
https://ghc.haskell.org/trac/ghc/ticket/3693#comment:44
https://ghc.haskell.org/trac/ghc/ticket/3693#comment:44
http://hackage.haskell.org/package/base-4.6.0.1/docs/Control-Concurrent.html#v:forkIO
http://hackage.haskell.org/package/base-4.6.0.1/docs/Control-Concurrent.html#v:forkIO
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler?version=23#Capabilities
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler?version=23#Capabilities
http://www.haskell.org/ghc/docs/7.6.1/html/users_guide/release-7-6-1.html
http://www.haskell.org/ghc/docs/7.6.1/html/users_guide/release-7-6-1.html
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects?version=33#HeapObjects
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects?version=33#HeapObjects
https://github.com/ghc/ghc/blob/3c9aa40f1cb3f228a86b359466ac8f058583e157/rts/sm/Scav.c#L1640-L1769
https://github.com/ghc/ghc/blob/3c9aa40f1cb3f228a86b359466ac8f058583e157/rts/sm/Scav.c#L1640-L1769
https://github.com/ghc/ghc/blob/4f603db253434ba0758142c42109d02c95a0ceda/includes/rts/storage/ClosureTypes.h
https://github.com/ghc/ghc/blob/4f603db253434ba0758142c42109d02c95a0ceda/includes/rts/storage/ClosureTypes.h
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/FunctionCalls?version=3#FunctionCalls
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/FunctionCalls?version=3#FunctionCalls
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/FunctionCalls?version=3#FunctionCalls
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/CallingConvention?version=3#ReturnConvention
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/CallingConvention?version=3#ReturnConvention
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/CallingConvention?version=3#ReturnConvention
https://github.com/ghc/ghc/blob/58e5843a4118ca19fd1c93f52f2365d90bb1b9b6/compiler/cmm/CmmParse.y#L167-L179
https://github.com/ghc/ghc/blob/58e5843a4118ca19fd1c93f52f2365d90bb1b9b6/compiler/cmm/CmmParse.y#L167-L179
https://github.com/ghc/ghc/blob/2f69aaea7066b8d11034925d9376fadd67361eca/includes/stg/MachRegs.h
https://github.com/ghc/ghc/blob/2f69aaea7066b8d11034925d9376fadd67361eca/includes/stg/MachRegs.h
https://github.com/ghc/ghc/blob/ea584ab634b17b499138bc44dbec777de7357c19/compiler/codeGen/StgCmmBind.hs#L554-L581
https://github.com/ghc/ghc/blob/ea584ab634b17b499138bc44dbec777de7357c19/compiler/codeGen/StgCmmBind.hs#L554-L581

BIBLIOGRAPHY BIBLIOGRAPHY

[58] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/1c160e588706f4f
f6b4e391602e38f0a2044ec13/rts/Updates.cmm#L37.

[59] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/2f69aaea7066b8d
11034925d9376fadd67361eca/utils/genapply/GenApply.hs#L525.

[60] GHC Blog. Feb. 2014. url: https://ghc.haskell.org/trac/ghc/blog/stack-
chunks.

[61] GHC Changeset. Feb. 2014. url: https://ghc.haskell.org/trac/ghc/change
set/f30d527344db528618f64a25250a3be557d9f287/ghc.

[62] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/1bffa2b2e7b7d1a
829dff44256a5d1da3f2aef88/rts/StgMiscClosures.cmm#L25-L42.

[63] GitHub. Feb. 2014. url: https : / / github . com / ghc / ghc / blob / 5f98d44d

8617756971cf47c040f2556de4e98f63/compiler/codeGen/StgCmmForeign.hs#

L261-L275.

[64] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/d3b24e10d419f
48e0839b08eb740d7138e56b390/rts/Threads.c#L602-L661.

[65] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/9562f18769b18cd
44290d14628dd8d9a45e7d898/rts/ThreadPaused.c.

[66] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/d3b24e10d419f
48e0839b08eb740d7138e56b390/rts/Threads.c#L561.

[67] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/1c160e588706f4f
f6b4e391602e38f0a2044ec13/rts/Updates.cmm.

[68] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/9562f18769b18cd
44290d14628dd8d9a45e7d898/rts/ThreadPaused.c#L237.

[69] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/9562f18769b18cd
44290d14628dd8d9a45e7d898/rts/ThreadPaused.c#L326-L328.

[70] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/95854ca5276e3f
4063ade7fe3a934bed46648270/rts/sm/Storage.c#L376.

[71] GHC Changeset. Feb. 2014. url: https://ghc.haskell.org/trac/ghc/change
set/5d52d9b64c21dcf77849866584744722f8121389/ghc.

[72] Richard Jones. “Tail recursion without space leaks”. In: J. Funct. Program. 2.1
(1992), pp. 73–79.

[73] GitHub. Feb. 2014. url: https://github.com/ghc/ghc/blob/3c9aa40f1cb3f
228a86b359466ac8f058583e157/rts/sm/Scav.c#L1690.

[74] Simon Peyton Jones et al. “A semantics for imprecise exceptions”. In: ACM SIG-
PLAN Notices. Vol. 34. 5. ACM. 1999, pp. 25–36.

[75] Simon Marlow.“An extensible dynamically-typed hierarchy of exceptions”. In: Pro-
ceedings of the 2006 ACM SIGPLAN workshop on Haskell. ACM. 2006, pp. 96–
106.

68

https://github.com/ghc/ghc/blob/1c160e588706f4ff6b4e391602e38f0a2044ec13/rts/Updates.cmm#L37
https://github.com/ghc/ghc/blob/1c160e588706f4ff6b4e391602e38f0a2044ec13/rts/Updates.cmm#L37
https://github.com/ghc/ghc/blob/2f69aaea7066b8d11034925d9376fadd67361eca/utils/genapply/GenApply.hs#L525
https://github.com/ghc/ghc/blob/2f69aaea7066b8d11034925d9376fadd67361eca/utils/genapply/GenApply.hs#L525
https://ghc.haskell.org/trac/ghc/blog/stack-chunks
https://ghc.haskell.org/trac/ghc/blog/stack-chunks
https://ghc.haskell.org/trac/ghc/changeset/f30d527344db528618f64a25250a3be557d9f287/ghc
https://ghc.haskell.org/trac/ghc/changeset/f30d527344db528618f64a25250a3be557d9f287/ghc
https://github.com/ghc/ghc/blob/1bffa2b2e7b7d1a829dff44256a5d1da3f2aef88/rts/StgMiscClosures.cmm#L25-L42
https://github.com/ghc/ghc/blob/1bffa2b2e7b7d1a829dff44256a5d1da3f2aef88/rts/StgMiscClosures.cmm#L25-L42
https://github.com/ghc/ghc/blob/5f98d44d8617756971cf47c040f2556de4e98f63/compiler/codeGen/StgCmmForeign.hs#L261-L275
https://github.com/ghc/ghc/blob/5f98d44d8617756971cf47c040f2556de4e98f63/compiler/codeGen/StgCmmForeign.hs#L261-L275
https://github.com/ghc/ghc/blob/5f98d44d8617756971cf47c040f2556de4e98f63/compiler/codeGen/StgCmmForeign.hs#L261-L275
https://github.com/ghc/ghc/blob/d3b24e10d419f48e0839b08eb740d7138e56b390/rts/Threads.c#L602-L661
https://github.com/ghc/ghc/blob/d3b24e10d419f48e0839b08eb740d7138e56b390/rts/Threads.c#L602-L661
https://github.com/ghc/ghc/blob/9562f18769b18cd44290d14628dd8d9a45e7d898/rts/ThreadPaused.c
https://github.com/ghc/ghc/blob/9562f18769b18cd44290d14628dd8d9a45e7d898/rts/ThreadPaused.c
https://github.com/ghc/ghc/blob/d3b24e10d419f48e0839b08eb740d7138e56b390/rts/Threads.c#L561
https://github.com/ghc/ghc/blob/d3b24e10d419f48e0839b08eb740d7138e56b390/rts/Threads.c#L561
https://github.com/ghc/ghc/blob/1c160e588706f4ff6b4e391602e38f0a2044ec13/rts/Updates.cmm
https://github.com/ghc/ghc/blob/1c160e588706f4ff6b4e391602e38f0a2044ec13/rts/Updates.cmm
https://github.com/ghc/ghc/blob/9562f18769b18cd44290d14628dd8d9a45e7d898/rts/ThreadPaused.c#L237
https://github.com/ghc/ghc/blob/9562f18769b18cd44290d14628dd8d9a45e7d898/rts/ThreadPaused.c#L237
https://github.com/ghc/ghc/blob/9562f18769b18cd44290d14628dd8d9a45e7d898/rts/ThreadPaused.c#L326-L328
https://github.com/ghc/ghc/blob/9562f18769b18cd44290d14628dd8d9a45e7d898/rts/ThreadPaused.c#L326-L328
https://github.com/ghc/ghc/blob/95854ca5276e3f4063ade7fe3a934bed46648270/rts/sm/Storage.c#L376
https://github.com/ghc/ghc/blob/95854ca5276e3f4063ade7fe3a934bed46648270/rts/sm/Storage.c#L376
https://ghc.haskell.org/trac/ghc/changeset/5d52d9b64c21dcf77849866584744722f8121389/ghc
https://ghc.haskell.org/trac/ghc/changeset/5d52d9b64c21dcf77849866584744722f8121389/ghc
https://github.com/ghc/ghc/blob/3c9aa40f1cb3f228a86b359466ac8f058583e157/rts/sm/Scav.c#L1690
https://github.com/ghc/ghc/blob/3c9aa40f1cb3f228a86b359466ac8f058583e157/rts/sm/Scav.c#L1690

BIBLIOGRAPHY

[76] GitHub. Mar. 2014. url: https://github.com/ghc/packages- base/blob/

master/GHC/IO/Handle/Text.hs#L417-L424.

[77] GitHub. Mar. 2014. url: https://github.com/Tarrasch/ghc/tree/d60c99748d
837f4cc5f448bf36e61fe10b849a69.

[78] GitHub. Mar. 2014. url: https://github.com/Tarrasch/ghc/blob/ffc0c

799822d19565666c7587108230d02f169b2/rts/Dwarf.c#L569-L584.

[79] GitHub. Mar. 2014. url: https://github.com/Tarrasch/ghc/blob/ffc0c

799822d19565666c7587108230d02f169b2/rts/Dwarf.c#L467-L471.

[80] GitHub. Mar. 2014. url: http://www.haskell.org/ghc/docs/6.10.1/html/
users_guide/release-6-10-1.html.

[81] GitHub. Mar. 2014. url: https://github.com/pepeiborra/control-monad-
exception/tree/d32767e95756e3970909e65fc7b020af262ca04f.

[82] Hackage. The control-monad-exception package. Mar. 2014. url: http://hackage.
haskell.org/package/control-monad-exception.

[83] Hackage. Control.Exception. Mar. 2014. url: http://hackage.haskell.org/
package/base-4.6.0.1/docs/Control-Exception.html.

[84] GitHub. Mar. 2014. url: https://github.com/ghc/packages- base/blob/

8c249173042f978a1ce8503a76682547e61c8039/GHC/IO.hs#L280.

[85] Hackage. GHC/Exception.lhs. Mar. 2014. url: http://hackage.haskell.org/
package/base-4.6.0.1/docs/src/GHC-Exception.html#throw.

[86] GitHub. Mar. 2014. url: https://github.com/ghc/ghc/blob/3fb19a913f7bf
79bd7895c85c750b98308ddb1cf/rts/Exception.cmm#L431-L617.

[87] GitHub. Mar. 2014. url: https://github.com/ghc/ghc/blob/3fb19a913f7bf
79bd7895c85c750b98308ddb1cf/rts/Exception.cmm#L463-L465.

[88] GitHub. Mar. 2014. url: https://github.com/ghc/ghc/blob/8f3ea7d7b88b7d
ac26756e8af9f9defd4208e521/rts/Schedule.c#L2627-L2727.

[89] GitHub. Mar. 2014. url: https://gist.github.com/Tarrasch/7431590/5f868a
3d0dc1c9ec456b5e260f0c82773b2f4859#file-inout-java.

[90] Hackage. Control.Exception.Base. Mar. 2014. url: http://hackage.haskell.
org/package/base- 4.6.0.1/docs/src/Control- Exception- Base.html#

tryJust.

[91] Simon Marlow et al. “Asynchronous exceptions in Haskell”. In: ACM SIGPLAN
Notices. Vol. 36. 5. ACM. 2001, pp. 274–285.

[92] Edsko de Vries. The darker corners of throwTo. Mar. 2014. url: http://www.
edsko.net/2013/06/11/throwto/.

[93] Python Software Foundation. System-specific parameters and functions. Mar. 2014.
url: http://docs.python.org/3.3/library/sys.html#sys.exc_info.

69

https://github.com/ghc/packages-base/blob/master/GHC/IO/Handle/Text.hs#L417-L424
https://github.com/ghc/packages-base/blob/master/GHC/IO/Handle/Text.hs#L417-L424
https://github.com/Tarrasch/ghc/tree/d60c99748d837f4cc5f448bf36e61fe10b849a69
https://github.com/Tarrasch/ghc/tree/d60c99748d837f4cc5f448bf36e61fe10b849a69
https://github.com/Tarrasch/ghc/blob/ffc0c799822d19565666c7587108230d02f169b2/rts/Dwarf.c#L569-L584
https://github.com/Tarrasch/ghc/blob/ffc0c799822d19565666c7587108230d02f169b2/rts/Dwarf.c#L569-L584
https://github.com/Tarrasch/ghc/blob/ffc0c799822d19565666c7587108230d02f169b2/rts/Dwarf.c#L467-L471
https://github.com/Tarrasch/ghc/blob/ffc0c799822d19565666c7587108230d02f169b2/rts/Dwarf.c#L467-L471
http://www.haskell.org/ghc/docs/6.10.1/html/users_guide/release-6-10-1.html
http://www.haskell.org/ghc/docs/6.10.1/html/users_guide/release-6-10-1.html
https://github.com/pepeiborra/control-monad-exception/tree/d32767e95756e3970909e65fc7b020af262ca04f
https://github.com/pepeiborra/control-monad-exception/tree/d32767e95756e3970909e65fc7b020af262ca04f
http://hackage.haskell.org/package/control-monad-exception
http://hackage.haskell.org/package/control-monad-exception
http://hackage.haskell.org/package/base-4.6.0.1/docs/Control-Exception.html
http://hackage.haskell.org/package/base-4.6.0.1/docs/Control-Exception.html
https://github.com/ghc/packages-base/blob/8c249173042f978a1ce8503a76682547e61c8039/GHC/IO.hs#L280
https://github.com/ghc/packages-base/blob/8c249173042f978a1ce8503a76682547e61c8039/GHC/IO.hs#L280
http://hackage.haskell.org/package/base-4.6.0.1/docs/src/GHC-Exception.html#throw
http://hackage.haskell.org/package/base-4.6.0.1/docs/src/GHC-Exception.html#throw
https://github.com/ghc/ghc/blob/3fb19a913f7bf79bd7895c85c750b98308ddb1cf/rts/Exception.cmm#L431-L617
https://github.com/ghc/ghc/blob/3fb19a913f7bf79bd7895c85c750b98308ddb1cf/rts/Exception.cmm#L431-L617
https://github.com/ghc/ghc/blob/3fb19a913f7bf79bd7895c85c750b98308ddb1cf/rts/Exception.cmm#L463-L465
https://github.com/ghc/ghc/blob/3fb19a913f7bf79bd7895c85c750b98308ddb1cf/rts/Exception.cmm#L463-L465
https://github.com/ghc/ghc/blob/8f3ea7d7b88b7dac26756e8af9f9defd4208e521/rts/Schedule.c#L2627-L2727
https://github.com/ghc/ghc/blob/8f3ea7d7b88b7dac26756e8af9f9defd4208e521/rts/Schedule.c#L2627-L2727
https://gist.github.com/Tarrasch/7431590/5f868a3d0dc1c9ec456b5e260f0c82773b2f4859#file-inout-java
https://gist.github.com/Tarrasch/7431590/5f868a3d0dc1c9ec456b5e260f0c82773b2f4859#file-inout-java
http://hackage.haskell.org/package/base-4.6.0.1/docs/src/Control-Exception-Base.html#tryJust
http://hackage.haskell.org/package/base-4.6.0.1/docs/src/Control-Exception-Base.html#tryJust
http://hackage.haskell.org/package/base-4.6.0.1/docs/src/Control-Exception-Base.html#tryJust
http://www.edsko.net/2013/06/11/throwto/
http://www.edsko.net/2013/06/11/throwto/
http://docs.python.org/3.3/library/sys.html#sys.exc_info

BIBLIOGRAPHY

[94] GitHub. Mar. 2014. url: https://github.com/blitzcode/ghc-stack/tree/
7e7e941a04d2c0b3faf79204a675ffa1a1df4d62.

70

https://github.com/blitzcode/ghc-stack/tree/7e7e941a04d2c0b3faf79204a675ffa1a1df4d62
https://github.com/blitzcode/ghc-stack/tree/7e7e941a04d2c0b3faf79204a675ffa1a1df4d62

	Introduction
	Background
	Stack traces
	Haskell
	Error handling in Haskell
	Functional Programming Concepts

	Glasgow Haskell Compiler
	The stack in GHC
	The runtime system

	From source to machine code
	The intermediate representations in GHC
	Generating debug data

	DWARF

	Related work
	Debugging Haskell
	GHCi Debugger
	ghc-vis

	Avoiding Crashing
	Catch

	Inefficient stack traces
	Explicit call stack
	Stack traces with profiling

	Recent work

	The Execution Stack
	Number of stacks
	What's on the Stack?
	Fields and arguments
	The members of the stack

	Structure
	Current stack pointer
	Buffering
	Stack squeezing

	Reifying the Stack
	Frames of interest
	Update frames
	The other frames
	Artificial frames

	Efficient reification
	Reifying a constant number of frames
	Static analysis
	Stack freezing
	Stack thawing
	Chunked reifying

	A Haskell Interface
	User-invoked reification
	Exception system
	Adding the trace
	Catching the stack
	Rethrowing the stack

	Conclusions
	Did we answer the question formulation?
	What should be done next?

	 Bibliography

