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Abstract

Public transportation has increased a lot in the last couple of years and in Sweden,

buses have made the largest gain. People need to safely get on and off the buses and

therefore, it is important that the drivers stop close to the curbs at the bus stops. This

causes the drivers to sometimes hit the curb with the front right tyre which damages the

bus and become an expense for the bus companies. Especially unexperienced drivers

need help to complete the docking without damaging the bus.

This report presents a solution to the problem using an electric motor which gives

the driver feedback in the steering wheel by a torque in the direction he/she should

steer. Path planning was done using a gradient based minimization in a generated

potential field with moving goal and obstacle points. To be able to use the path

planning approach, the system needed information about the distance and approach

angle to the curb.

Sensors that could give this information were examined. Ultrasonic sensors and

computer vision using a single camera was tested practically before finally choosing

the ultrasonic sensor as the sensor to use. To be able to detect the curb and not get

interference from the asphalt, the mounting height and angle of the ultrasonic sensors

were of great importance.

The system was simulated using the mathematical non-slipping single track model.

Signal processing were made to filter the distance measurements to the curb. The result

of this project is the report which describes what to implement and how to implement

it to prevent further damaging of buses at bus stops. The path planning strategy has

been validated indoors and outdoors to see that the correct steering wheel angle was

generated and the ultrasonic sensors have been tested outdoors against a real curb.

The future development will consist of putting the parts together and test the

system on a real bus with the electrical steering.

Keywords: Bus docking, electrical steering, autonomous driving, path planning,

potential field, curb detection
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1 Introduction

Public transportation is used more today than ever as more people are aware of the envi-
ronmental damage caused by personal vehicles. In Sweden, transportation by bus has the
biggest increase in the last couple of years [1].

Local buses driven in cities passes a lot of bus stops to leave and pick up passengers.
The driver needs to stop the bus as close as possible to the curb for everyone to be able to
get on and to minimize the risk of injury. The width of the vehicle and the positioning of
the driver makes it hard to end up close. To do this maneuver, the driver sometimes lets
the front right tire hit the curb and roll against it the last meters to ensure that the bus is
in the right position. This damages mostly the tire, but also the suspension, and reduces
the time it can be used. When the tire is worn out, the bus needs to be taken out of traffic
and repaired. This is a great expense for transport companies like e.g. Veolia1, that should
be removed if possible.

Although this expense is of great importance, it is even more important that everyone
is able to use the public transportation in a safe way. For older people and people with
certain handicaps, getting on and of the bus is a greater deal and the risk of injury increases
when the bus is further away [2].

Systems that, more or less, automatically parks cars have been available for some years
and the first commercial system was released by Toyota2 in 2003. Since then, more compa-
nies have also introduced self parking systems in their cars. These systems often helps the
driver find a parking spot big enough for the car and then, from a command by the driver,
steers the car into the spot with the driver being in control of gas and brakes only.

There also exists assistance systems for parking cars. These systems are less complicated
and do not control any actuators of the car. Two examples are the parking sensors and
obstacle warning sensors [3]. The assistance systems alerts the driver when being to close
to another vehicle or obstacle with sensors mounted externally on the car. Although the
market has already introduced these active safety features for cars, buses have not yet been
equipped with such systems.

Buses need active safety solutions to make driving both simplier and more safe for the
passengers. An assisting parking system would be such a solution. The application would
help the driver come as close to the curb as possible without hitting it and save a lot of
tires and reparation time for the bus companies.

1.1 Purpose of the project

Examine if a technical solution, that will eliminate the wear on the tires at bus stops, exists
and can be commercially built. Also to identify potential challenges in the design of such
a product.

1.2 Project restrictions

To be able to carry out this project within the limited time, some restrictions were made
for the project:

1Veolia is one of the transport companies responsible for and operating buses in Gothenburg, see
www.veolia-transport.se for more information.

2Toyota introduces self parking car,
http://edition.cnn.com/2003/TECH/ptech/09/\\01/toyota.prius.reut/index.html.
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1. The bus stop maneuver was split into two parts (shown in Figure 1). The first part
was finding the bus stop and steer the vehicle into that space.
The second part was to steer the bus close and align it along the curb. The second
part was handled by the system, i.e. the first part of the maneuver was left completely
to the driver. When the bus is steered into the space, the system will be assisting the
driver to complete the docking.
This restriction simplified the finding of the curb since the vehicle will be close to the
curb at all times when the system is active.

Bus trajectory

Part 1

Part 2

Bus stop

Figure 1: Bus stopping maneuver split into two parts. The first part is to find the bus stop
and steer into it while the other is to end up close to the curb. The driver will only be
assisted with the second part of the maneuver.

2. The driver controls gas and brakes completely, he/she will only be helped with the
steering. If the system would be in control of gas and brakes as well, a lot more safety
issues must be considered. The driver must still be aware of the situation and be able
to brake if, for example, a person would step out in the trajectory of the bus.

3. The system must be designed in a way that meet the requirements while not being too
expensive. When creating such a system, design difficulties appear and compromises
needs to be made to complete the project. The system only needs to be “good enough”
to meet the expected performance while being as cheap as possible.

1.3 Project deliveries

The project resulted in the following main deliveries:

• A detailed report containing the mathematical model, a path planning strategy, an
algorithm for the implementation and a signal processing chapter containing infor-
mation how the signal from the sensors can be filtered. The report can be seen as a
guideline for how the system can be implemented and how the problem can be solved.

• A deeper investigation of different sensor types, amount of sensors and sensor place-
ments. This were mainly a theoretical investigation due to the limited amount of
time.

• An investigation and identification of important design difficulties of a commercially
applicable system. This delivery were of great interest since the result should be
commercially available in the future.
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1.4 Project outline and overview

The project was split up in some main steps that were followed to reach the result. This
part will roughly explain what had to be done to meet the deliveries stated in the previous
part.

A mathematical model of the vehicle motion were created to carry out computer simu-
lations of the system. When the mathematical model was created, stepwise simplifications
according to reasonable assumptions were made which led to simplified calculations [4].

Path planning was made by using a potential field approach where the information
about the bus position and pose were used to calculate the steering angle of the wheels.
The main idea was to generate a steering angle in every time step depending on where the
vehicle should end up (the goal position) and where it should not (the obstacle position).
The potential field approach were used because of its simplicity and flexibility to change
when the scenario changes.

When all the equations of the mathematical model and the path planning were at hand,
the bus stoping maneuver was simulated using MATLAB [5]. At this stage, the sensors
measuring the distance to the curb was ideal (i.e. noise free) and of unknown type. A rough
overview of what the algorithm looked like is presented as a flow chart in Figure 2.

Check the sensors

Filter the signal

Calculate steering angle

Steering wheel feedback

Figure 2: Flow chart of how the final system works. This loop is done in every time step
to give the driver continuos feedback in the steering wheel.

The practical implementations were done in several steps, starting with system valida-
tion to see that the path planning method gave the correct steering angles. These validation
tests were done indoors and with a car provided by CPAC. A computer interface was cre-
ated using MATLAB to give the driver instructions of how he/she should steer to dock the
vehicle. For the validation, cheaper ultrasonic sensors were be used.

After the validation, sensors that could give the correct information were chosen. A
theoretical study was made of the available sensors that could solve the problem and real
tests were made with ultrasonic sensors and a single camera vision sensor.

Simulated noisy sensors were processed to assure that the correct signal could be sent
to the electric motor. One of the filters that was tried out was the Kalman filter, where
the model of the system was used in combination with the noisy simulated sensors to give
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a more stable measurement to the curb.
The electrical steering system consists of an electric motor that is creating a torque in

the rod attached to the steering wheel (see Figure 3). It is the same technology used in the
Volvo FH3.

Figure 3: The electrical steering system used in the Volvo FH series. The electrical motor
can be used to e.g. remove vibrations, make steering easier or automatically steer the
vehicle.

The motor gives the driver feedback in the steering wheel by generating a torque in the
direction he should move the wheels. This can be compared to the lane cruising systems
used in some cars. But instead of following a lane, the bus will guide the driver to follow
the trajectory to make the docking as wanted.

3See http://www.volvotrucks.com/trucks/global/en-gb/newsmedia/pressreleases/Pages/pressreleases.
aspx?pubId=14852 and video at http://www.youtube.com/watch?v=pn6dwyUqvA8.

12



2 Mathematical modeling of a four wheeled vehicle

To make simulations for the path planning and to try out different filtering techniques for
the sensors, a mathematical model of the vehicle motion was needed.

The assumptions that can be made to go from a full four wheeled vehicle model to a
simplified mathematical model that were used for this project are presented in the following
parts. Although a mathematical model never tell the whole truth about the system they
do save a lot of time and money since different theories can be tested in a computer before
an implementation is made in real-life.

2.1 The full four wheeled vehicle model

A complete four wheeled vehicle model with three degrees of freedom as presented by
Pacejka [6] is very detailed. The model contains pitch, roll and yaw but the only motion of
interest for the system to dock is yaw. For more information about the four wheeled model,
please read [6].

2.2 The single track (bicycle) model

By assuming that the vehicle is symmetric and that no pitch or roll but only yaw motion
is present, along with the Ackermann steering geometry [7], the four wheeled model can
be simplified to a single track model [8]. The assumption holds if the vehicle is driven at
low speeds which was the case for this project. The vehicle will always be in a docking
(parking) situation when the system is active and low speeds (v(t)  5 m/s) will thereby be
present. In Gothenburg, bus drivers should never drive faster then 15 km/h (= 4.17 m/s)
around bus stops [9]. This assumption led to further simplifications later on.

This mathematical model is now a bicycle without pitch and roll motion. When the
single track model is applied to a four wheeled vehicle, the front wheels and the rear wheels
have been lumped together. Figure 4, from [10], shows the full single track model with all
its variables.
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Figure 4: The full single track model for the dynamic motion of a vehicle. Slip angles,
lateral tire forces and air resistance are handled by this mathematical model.

All the equations and explanation of Figure 4 can be found in [10] and [11]. The
equations of motion for this model is;

ẋ(t) = v(t) cos(✓(t)� ↵
slip

(t)) (1)

ẏ(t) = v(t) sin(✓(t)� ↵
slip

(t)) (2)

v̇(t) =
1

m
((F

long,rear

� F
air,long

) cos↵
slip

(t) + F
long,front

cos(�(t) + ↵
slip

(t))�

�(F
lat,rear

� F
air,lat

) sin↵
slip

(t)� F
lat,front

sin(�(t) + ↵
slip

(t))) (3)

↵̇
slip

(t) = ˙✓(t)� 1

mv(t)
((F

long,rear

� F
air,long

) sin↵
slip

(t) + F
long,front

sin(�(t) + ↵
slip

(t))+

+(F
lat,rear

� F
air,lat

) cos↵
slip

(t) + F
lat,front

cos(�(t) + ↵
slip

(t))) (4)

¨✓(t) =
1

I
zz

(F
lat,front

l
front

cos�(t)� F
lat,rear

l
rear

� F
air,lat

l
air

+ F
long,front

sin�(t)) (5)

The model has slip angles and lateral tyre forces which come from the fact that the
wheels do not roll without slipping against the surface. It also handles air resistance. From
now on the time dependent variables will not be expressed by the (t) for simplicity.

Further simplifications will be made in the next part.
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2.3 The final reduced model used for simulations

Since the assumption of low speeds were made in the previous part, it will still hold. This,
along with an assumption of good road conditions, i.e. high friction between the wheels
and the road, will make the wheels roll without slip angles [12], [8].

The slip angles ↵
slip

, ↵
slip,f

and ↵
slip,r

will all be equal to zero. This will make Equations
1 and 2 result in Equations 6 and 7. Also, the lateral tyre forces will disappear because of
the front and rear slip angles being zero [10]. The air resistance will also be very low and
therefore assumed to be 0.

The single track model can now be simplified even further. Figure 5 introduces the
notation to the model.

x

y

L

a, v

F

θ

ϕ

Figure 5: The final model used for computer simulations when simplifications have been
made. This is the non-slipping single track model. Because of the low speed, the movement
of the vehicle can be expressed by the kinematic expressions in Equations 6-9.

The dynamics of the non-slipping single-track vehicle model is described by the differ-
ential Equations 6-9;

ẋ = v cos ✓ (6)

ẏ = v sin ✓ (7)

˙✓ = v
tan�

L
(8)

a = v̇ =

F

m
(9)

where x and y is the position of the rear wheel, v is the absolute speed, ✓ is the heading
and � is the steering angle of the vehicle at time t. The constant L is the length between
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the front and rear axis. Equation 9 describes how the vehicle acceleration is dependent on
the force created by the torque from the driving wheel.

Note that this model might be very simple, but it is very applicable for a lot of vehicles
since so few parameters are needed [13]. The input signal is the steering wheel angle � and
the output of the system is the heading ✓ and the position [x, y] of the vehicle. The force
F is controlled by the driver and thereby seen as a disturbance. As seen in Equation 9,
the acceleration v̇ is directly dependent on this disturbance F . Since a(t) = v̇(t) = d

dt

v(t),
also the absolute speed of the vehicle is dependent of the disturbance created by the driver
and can not be controlled, it can however be measured. Equations 6-8 describes how the
heading angular velocity ˙✓ is dependent of the absolute speed v and the control signal �.
The velocities [V

x

, V
y

] = [ẋ, ẏ], is in turn dependent on the heading of the vehicle.
How to choose the control signal � is the problem. The vehicle should follow a specific

trajectory to be aligned along the curb in its final pose. This is a navigation problem and
a quite effective approach to do this is to generate a potential (artificial) field, explained in
the next chapter. Another design constraint is that the lateral acceleration of the vehicle
can not be too big. If it exceeds some comfortable constant c

latacc

the ride will not be
comfortable for the passengers. This limitation will lead to constraints on the steering
wheel angle (the control signal) depending on the speed of the vehicle.
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3 Path planning using potential fields

Path planning is the method of deciding what way to go from point A to B. From the
positioning and speed of the vehicle, a reference steering direction needs to be constructed
in such a way that the vehicle could follow a certain trajectory. The navigation must also
be made in such a way that the bus avoids hitting the curb.

A bus is non-holonomic4 and the whole path from point A to point B must thereby be
planned for the bus to end up in the correct position and pose. There exists a variety of
path planning algorithms that could be used and some are more complicated than others.
In the field of autonomous robots, grid-based methods like “Best-first search”, “Dijkstra’s”
or the “A*” algorithms are quite popular. These methods require that the controlled object
generates an artificial grid in its environment and then navigates through the nodes in the
grid. A non-grid-based method that is also popular is the potential field method (see below).
Model Predictive Control (MPC) could also be used to generate the path that should be
followed by the vehicle. MPC is an optimal control strategy used when constraints are
present. For more path planning strategies, see [15], [16].

For this project, the potential field method were used because it is simple and flexible
to changes in the scenario. It has also already been studied for lane keeping by cars, see
[17].

3.1 What is a potential field?

The easiest way to describe the potential field method is to imagine a landscape with peaks
and dips where if you drop a ball, it will roll down to the lowest point. An artificial field is
set up in the “brain” of the robot which looks pretty much like the landscape that was just
described. Obstacles will become peaks and goals will become dips. Artificial forces will act
on the object controlled pushing it to reach to a lower point in its surrounding [18]. Figure
6 shows a potential field graphically. Note that if you would place a ball in the upper right
corner it will roll down to the lower left corner without colliding with the obstacle placed
in the middle.

4A non-holonomic system has constrained degrees of freedom. The path the vehicle can take from a
given position and pose depends on the previous path taken and in this case, e.g. the maximum steering
angle [14].
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Figure 6: A potential field created by a function where goal position is the minima and
obstacle position is the maxima. A 3D view of a field can be seen to the left and a top view
of the same field can be seen to the right. In this field, the goal position has been placed
in the lower left corner and an obstacle in the middle. Red color indicates high point and
blue indicates low point.

There are many ways to setup a potential field and many equations can be used to build
the peaks and dips. One thing to be aware of when setting up the field is the existence of
local minimas where the controlled object could get stuck, thinking that it is in the goal
position [18]. This were however not an issue for this project since there will only exist one
minima which the bus will try to reach.

Back to the potential field in figure 6, a ball is dropped and its path is shown in Figure
7.
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Figure 7: The path taken to end up at the goal position without colliding with the obstacle.
The controlled object follows the negative gradient of the potential field function to end up
in the correct position.

The contours of the field have been plotted along with the negative gradients of the
field. These negative gradients are the main idea of how the potential field works. If the
controlled object always follow the negative gradient of the field, it will eventually end up
in the goal position (if not in a local minima).

The goal position is given one attractive field while the obstacles are given repulsive
fields. One potential can be described by the function;

 
i

(x, y, x
p

, y
p

, ...) (10)

where (x, y) is the current position of the object being controlled, (x
p

, y
p

) is the position
of the goal/obstacle i. The “...” indicates that more variables could be needed to set up
the potential field depending on the equation used.

The complete field is then generated by adding the attractive and the repulsive compo-
nents according to Equation 11.

 (x, y) =
X

n

 
n

(11)

3.2 The specific potential field equation used for the project

The potential field will figure as a generator of the reference steering angle. The equation
to set up the potentials is taken from [19];

 (x, y, x
p

, y
p

,↵,�, �) = ↵e
�(

x�x

p

�

)2�(
y�y

p

�

)2 (12)
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where (x, y) and (x
p

, y
p

) is the same as stated above. The parameter ↵ describes the
height of the potential, therefore a positive ↵ is repulsive while a negative ↵ is attractive.
The magnitude of ↵ describes how low or high the potential will be.

The last two variables, � and �, describes the shape of the potential. Different shapes
might need to be used for different potentials and by varying � and � this is possible. �
controls the width of the field along the x-axis and � controls the width along the y-axis.

As mentioned above, other equations can be used to describe potential fields. Equation
12 has been chosen because of the flexibility in creating the potentials. The shapes can
be controlled by changing the variables ↵, � and �. From now on, the parameters will be
divided into attractive and repulsive, e.g. ↵

a

is the ↵ used for the attractive potential and
↵
r

is the ↵ used for the repulsive potential.

3.3 The effect of changing the parameters ↵, � and �

By changing the variables ↵, � and � the structure of the different potentials can be changed.
This is of great importance when the vehicle is driven in different speeds and has altering
approach angle to the curb. By changing the variables, the path taken by the vehicle can
be controlled in a more efficient way.

If, for example, the vehicle would approach the curb at a higher speed, low steering
angles must be present for the passengers to feel comfortable. The vehicle should then not
steer too much straight into the curb in the beginning of the path, which would lead to a
much tighter turn later on. Instead, the �

a

parameter can be increased giving a wider field
and a straighter path to reach the goal. When the speed decreases, the �

a

parameter can be
decreased because larger steering angles will be possible. Figure 8 shows this graphically,
although at constant speed but the difference between a higher and lower �

a

is clearly
visible.

20



−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

Bus docking

Figure 8: The difference between a higher �
a

(blue line) and a lower (red line). A wider
field gives a straighter path to the goal position than a thinner field. The thinner field
however makes the bus approach the curb in an earlier stage of the docking.

As can be seen in Figure 8, the lower �
a

makes the bus come closer to the curb in an
earlier stage of the docking. This is a wanted motion as the bus should align with the
curb as fast as possible but it is only possible at lower speeds because of the higher lateral
acceleration. Figure 8 was the result of two simulations, one with �

a

= 10 and the other
with �

a

= 4. The other four variables ↵
a

, ↵
r

, �
a

and �
r

were kept the same.
The motion of the vehicle is determined by the characteristics of the potential field. In

Figure 9, a snapshot of the two different fields have been taken right in the initiation phase
of the docking.
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Figure 9: The different fields generated by �
a

= 10 (to the left) and �
a

= 4 (to the right).
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Note how the left plot in Figure 9 corresponds to the straighter path in Figure 8 and
how the shape of the field changes the path of the vehicle.

Through a relationship between the steering angle � and the vehicle speed the lateral
acceleration of the vehicle can be computed. From this, the parameter �

a

can be computed
in such a way that the lateral acceleration of the vehicle never exceeds the comfort constant
c
latacc

. More about this in the next chapter.
If instead �

a

would be changed, the fields would change in the direction of the x-axis.
This variable does not control the motion of the vehicle as much as �

a

and will not be varied
depending on the speed. Thereby it will be seen as a constant.

As earlier mentioned, ↵ controls the “height” of the field and should be chosen in such
a way that the goal will be reached and the obstacle will not be hit. This variable will
not be changed either. A good relationship between ↵

a

and ↵
r

could be found through
simulations.

3.4 Minimization problem to reach the goal

When the potential field is set up, the direction of descent will be the direction of motion for
the vehicle. This means that the vehicle will move away from obstacles while approaching
the goal if the field variables are chosen in a correct way. The usage of potential fields
is basically a minimization problem, where different methods can be used to reach the
minimum. Two well known minimization methods are:

• Steepest descent method [20], which iterates towards the minimum by using the neg-
ative gradient of the function;

xn+1 = xn �r (13)

where xn =[x
n

, y
n

] is the position at iteration n, r =(

@ 
@x

n

, @ 
@y

n

) is the gradient of
the function  (x

n

, y
n

).

• Newton’s method [20], which also uses the inverse Hessian of the function as;

xn+1 = xn � [H]

�1r (14)

In order for the vehicle to be able to steer properly towards the curb, the steepest descent
method will be used for this problem. Newton’s method will always point towards the
minimum and the vehicle will find the minimum faster but (for this project) in an undesired
motion [21].

Also, by simulating this, using steepest descent method and Newton’s method, the
difference is clear. Newton’s method finds the direction towards the minimum which is
not a wanted solution for the problem with the vehicle and the curb. Figure 10 below
shows the problem with using Newton’s method. Newton’s method will also increase the
computational load by the inversion of the Hessian. For the response to be as fast as
possible, inverting a matrix should whenever possible be avoided.
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Figure 10: Simulations made to test two different minimization methods to reach the goal.
Newton’s method (to the left) gives an unwanted path to the goal because it will always
make the bus steer straight against the goal. The bus will then reach the goal faster but
with an inappropriate path. The steepest descent method (to the right) makes the bus steer
against the curb in the beginning of the docking and then align against the curb. This is a
wanted motion and steepest descent should thereby be used.

In Figure 10, the dashed black line symbolizes the curb, the blue squares are the vehicle
and the blue lines following are the positions of center of rotation of the vehicles. As can
be seen, the steepest descent method firstly makes the vehicle approach the curb and then
turn, giving it a nice final pose. Newton’s method goes straight for the final position which
makes the vehicle reach the goal faster but is inappropriate if people wants to enter or get
off in the rear part. The usage of Newton’s method would also be dangerous in traffic where
the rear will be sticking out into the lane.

3.5 Generating the reference trajectory from the potential field

When the minimization method have been chosen to be steepest descent, the direction of
motion of the steering angle is generated by the normalized negative gradient of the field
as [19];

f = � r 
|r | (15)

where the vector f = [f
x

, f
y

] can be seen as a force where the direction will be;

�0 = tan(

f
y

f
x

) (16)

3.6 The role of the potential field in this project

The information from the sensors about distance from the curb and the approach angle,
along with the current speed of the vehicle will generate the new steering angle for the
vehicle, see Figure 11.

23
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Steering Angle
Potential Field method

Vehicle Parameters

Figure 11: The sensor readings and vehicle parameters generates the goal and obstacle
position of the potential field. The steering angle at this time step can then be calculated
by following the negative gradient of the field.

In every time step, a potential field will be set up, i.e. a desired path for the wheel
by different steering angles. Sensor readings will determine the distance and the approach
angle (vehicle heading) to the curb. From these known data, the position of the goal point
and the obstacle is calculated and used to set up the field and the reference steering angle
for this time step can be set.
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4 Simulations of the closed loop behavior

For the computer implementation, a simulator was setup using MATLAB. The simulator
consists of different parts which was tested one by one before the complete simulator was
set up. Starting with the motion of a vehicle, to the implementation of potential field and
sensors.

The algorithm used are presented as a flow chart with different phases in Figure 12 and
an explanation of each phase can be found below. The simulations were made with ideal
sensor readings, i.e. no noise were added at this stage.

Check the sensors

Both active?

Calculate approach angle

Calculate heading

Set up goal & obstacle

Calculate steering angle

Update system

Yes

No

Phase 1

Phase 2

Phase 3

Figure 12: Flow chart of the algorithm used for the simulation. The simulations aimed to
test if the path planning method made the bus dock in a correct way.

This algorithm is used until the difference between the sensor readings are below some
break criterion specified by the user.

4.1 Phase 1

In the simulations, the vehicle uses two sensors located at the right side shown in Figure
13. This setup is used to be able to get an approach angle from the sensor readings. In
real-life, the sensors might not use this technique but the simulated system will do so. The
global position and heading of the sensors can be calculated using simple geometry if the
position and heading of the vehicle is known.
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Figure 13: Location and direction of the simulated sensors. To get the calculation needed
to generate the steering angle, two sensors were needed.

The sensors are simulated using the same technique as in [19] but with only one ray
for each sensor pointing in a offset of 90° related to the heading of the vehicle. This is an
approximation of real-life since a real sensor would have some opening angle � (visualized
in Figure 14).

σ

Figure 14: Simulated sensor (to the left) only having one ray pointing in a �90° offset of
the heading of the vehicle. A real sensor (to the right) having a beam with an opening
angle.

When both sensors gives a reading, the system activates by a command from the driver.
Instead of simulating a driver command, the system takes control of the steering as soon
as both sensors are active.

The approach angle is calculated using the measured data from the sensors. As the
sensors are simulated like one ray pointing in a 90° offset from the heading of the bus some
geometry needs to be done. Figure 15 shows how the approach angle is calculated.
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Figure 15: The approach angle to the curb is calculated by the sensor readings, the posi-
tioning of the sensors and geometry of the bus.

In Figure 15, ' is the approach angle, s1 and s2 are the sensor readings from sensor 1
and 2, d1 and d2 are the closest distance to the curb from sensor 1 and 2. The length d3 is
the distance from sensor 1 to the point of the curb where the bus would hit if it, from this
pose, kept on moving straight forward. d4 is the length between the sensors.

The approach angle ' is the calculated as;

' = arctan(

s2
d3

) (17)

where

d3 =
d4

1� s1
s2

(18)

4.2 Phase 2

The the global heading is then;

✓ = �'. (19)

The goal and obstacle positions are set up using the knowledge gained in the previous
step. These positions are calculated with respect to the front right corner of the vehicle
which position is known in the global coordinate system. In the simulation, this position is
the same as the position of sensor 1.

Firstly, the actual distance d1 is calculated as;

d1 = cos(')s1 (20)

Note again that this is only done in the simulations of the real-life situation. The
position of the obstacle is then calculated as;

[x
obstacle

, y
obstacle

] = [x
sensor1, ysensor1 � d1 ��

obstacle

] (21)
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where �
obstacle

is a margin related to �
r

of the obstacle field. A tuning parameter that
in the simulations have been tuned as �

obstacle

= 1.
The goal position is calculated in the same way as;

[x
goal

, y
goal

] = [x
sensor1 +�

goal

, y
sensor1 � d1 + ⇠] (22)

where ⇠ is how far from the curb the vehicle should end up and �
goal

is how far ahead
the goal should be. �

goal

is related to �
a

and these two parameters also needs to be tuned
to get a neat behavior of the vehicle. In the simulations, this parameter has been set to
�

goal

= 15.

As for the parameters of the potential field, the variable �
a

controls the width of the
field around the goal position in the direction of the y-axis. A wider field gives a smoother
path while a thinner field will give harder turns but also a faster docking of the vehicle.
It is the comfort of the ride, i.e. the lateral acceleration of the vehicle, that controls �

a

.
By [22], humans judged that the lateral acceleration should be in the range (0.06� 0.22)g
where g = 9.82 m/s to be comfortable. The mean value of this will be used as a “comfort
constant” c

latacc

, which should not be compromised during the docking.

c
latacc

=

(0.06 + 0.22)g

2

= 1.3748 m/s2 (23)

The total lateral force from the tires of the vehicle is then given by Equation 24 as; [12]

F
lat

=

mv2

r
(24)

where r is the turning radius of the vehicle which relation to the steering angle � is
given by Equation 25;

r = L cot(�) (25)

where w is the width of the vehicle. Off course, the turning radius will be different in
different parts of the vehicle but this is the turning radius of the point located at the center
of the rear wheel axis, seen in Figure 16. This can be seen as a mean value of the lowest
turning radius.
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Figure 16: The turning radius of the vehicle is calculated by Ackermann geometry of the
steering.

By using Newton’s second law and combining Equation 24 and 25 the lateral acceleration
a
lat

is given by;

F
lat

= ma
lat

=

mv2

L cot(�)
=) a

lat

=

v2

L cot(�)
(26)

This lateral acceleration is depending on the speed of the vehicle and the steering angle
� which, in turn, is depending on the potential field parameter �

a

.
By simulating the docking at a constant maximum speed of v = 20 km/h and varying

�
a

, the lateral acceleration can be calculated using Equation 26 and plotted along with the
comfort constraint as in Figure 17.
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Figure 17: Simulating a docking situation with a constant speed at 20 km/h and varying
�
a

. The plot shows the lateral acceleration for the different fields generated by the different
�
a

. The goal is to choose �
a

so that the lateral acceleration never gets outside the comfort
zone, marked in the plot as dashed lines.

As can be seen in Figure 17, the lateral acceleration constraint is violated for �
a

< 6.7.
By this, �

a

has been chosen to be 7 for a speed of 5.556 m/s (20 km/h). With this tuning,
the system will not violate the lateral acceleration constraint and there will be a safety
margin if the vehicle would be driving faster than 20 km/h.

In Figure 17, one can also see that there is discontinuities in the lateral acceleration,
which would lead to an infinite jerk (time derivative of the acceleration). This is because
the simulated system is very simplified and lack dynamics. But since the purpose of the
docking system only is to guide the driver of how he/she should turn, this will not be a
problem.

For the lowest value of �
a

, simulations was also made but the lateral acceleration could
not be checked since low speeds will lead to very low lateral acceleration because of the
squared speed in Equation 26. The �

a

parameter was set to 2 for speeds at v  1 m/s
which gave good performance and not too high steering angles. When �

a

was set lower it
affected the system in a negative way and the goal point could not be reached.

The relationship between the vehicle speed v and the parameter �
a

could then be set
up as;

�
a

= v(t)K
�

+ �
min

(27)

Where the proportional constant K
�

=

�

max

��

min

v

max

�v

min

=

5
4.5556 = 1.1 and �

min

= 2.
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Through simulations, also the other parameters were set up and tuned. The values of
all parameters can be seen in Table 1.

Table 1: The parameters of the potential field. All parameters except �
a

has been set
through simulations and tests of the bus behavior during docking. �

a

is dependent on the
speed to have a lateral acceleration within the comfort zone.

Parameter Value
↵
a

�3

↵
r

2

�
a

14

�
r

5

�
a

v(t)K
�

+ �
min

�
r

0.3

4.3 Phase 3

Since the angle �0 is a global angle and the steering angle � is related to the heading ✓ of
the vehicle, the steering angle � is calculated as;

� = �0 � ✓ (28)

and the heading and position of the vehicle is then updated using Equations 6-8 and
the forward Euler difference approximation;

˙✓(t) ⇡ ✓(t+ dT )� ✓(t)

dT
⇡ v(t)

tan�(t)

L
=) ✓(t+ dT ) ⇡ ✓(t) + v(t)

tan�(t)

L
dT (29)

ẋ(t) ⇡ x(t+ dT )� x(t)

dT
⇡ v(t) cos ✓(t) =) x(t+ dT ) ⇡ x(t) + v(t) cos ✓(t)dT (30)

ẏ(t) ⇡ y(t+ dT )� y(t)

dT
⇡ v(t) sin ✓(t) =) y(t+ dT ) ⇡ y(t) + v(t) sin ✓(t)dT (31)

The loop then repeats itself until some break criterion is fulfilled. Off course, in real-life,
the driver is the one controlling when the vehicle should stop.

4.4 Running the simulation

With the algorithm set up as described in 4.1-4.3, the simulations are initialized by setting
the heading ✓0 = �⇡/8 rad and the absolute speed v0 of the vehicle. The speed is then
held constant through the simulation, v(t) = v0 = 2.5 m/s.

The initial phase of the simulation can be seen in Figure 18. Once again the dashed
line represents the curb to which the bus should come close to but not hit.
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Figure 18: Initiation of the bus docking simulation. The bus has been initiated with some
approach angle to the curb and will continue moving straight forward until both sensors
get a reading.

The two red dots at the side of the bus in Figure 18 represents the positions of the
sensors and the lines connected to these dots are the simulated sensor rays. The range of
the sensors has been set to 2 meter.

When both sensors become active, they will change color to green. When activated, the
goal and obstacle positions will appear along with the contours of the potential field. This
can be seen to the left in Figure 19 and a 3D plot of the potential field can be seen to the
right.
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Figure 19: The activated sensors and the contours of the potential field (to the left). 3D
plot of the potential field (to the right). Both sensors have now locked to the curb and the
bus is steering according to the negative gradient of the potential field.

To the right in Figure 19, the goal and obstacle positions are clearly visible as the lowest
and the highest points of the graph. This field will then continuously move along the y-axis
as the bus drives forward.

The bus is now turning according to the steering angle that is generated by the potential
field. The goal position has been set to be 5 cm away from the curb. In real life, the bus
driver will decide when to stop but the simulation uses a break criterion saying that the
front sensor should be less than 7 cm from the curb while the absolute difference between
sensor measurements should be less than 3 cm. The final pose of the bus can be seen to
the left in Figure 20.
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Figure 20: The bus simulation in its final pose. The bus has reached close to the curb
and the simulation terminates (upper). In reality, the bus driver will stop when the bus is
in position. The wheel angle during the docking can be seen to the lower left. The front
sensor measurement to the curb can be seen to the lower right.

The right plot in Figure 20 shows how the steering angle is varying along the simulation.
From this plot, it can be seen that the absolute maximum steering angle is approximately
0.32 rad t 18°.
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5 Validation

The system needs to be validated through testing to see if it really works since mathematical
models never tell the whole truth about a system [4]. The system was validated using two
regular ultrasonic sensors against a wall, both indoors with a rig and in a garage with a
car. Some tests were also made with an artificial curb made of boxes indoors.

5.1 Hardware and software used

The different main hardware parts that were used for the tests along with descriptions is
found below;

• Arduino5 MEGA 2560; an “open source electronics prototyping platform”. This board
is used to connect to the sensors from MATLAB with a user package (ArduinoIO6).

• Two Maxbotix XL-MaxSonar WRMA1 MB70927.

The software used for the validation was MATLAB combined with ArduinoIO.

5.2 The setup rigs used for the validation

The setup of the indoor validation can be seen in Figure 21. It consists of a rolling table
where the computer on top is connected through MATLAB to the Arduino below which in
turn is connected to the sensors (one in the front of the table and one in the back).

Figure 21: Indoor setups without a curb (left) and with an artificial curb (right). Testing
to see that the correct steering angle is calculated in reality.

The Arduino MEGA 2560 was used so that MATLAB could connect to the ultrasonic
sensors. A GUI was built in MATLAB to interact with the user and to see how the steering

5Information about Arduino can be found at www.arduino.cc.
6ArduinoIO is a user package for MATLAB that can be downloaded from [23]. With this package

installed, MATLAB will be able to connect to the Arduino and control the Arduino pins. ArduinoIO makes
rapid prototyping very simple since the algorithm used in the computer simulations can be used for the
practical implementation by reading from the sensors connected to the Arduino instead of the simulated
sensors in MATLAB.

7Detailed information about the sensors can be found at www.maxbotix.com.
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wheel angle changed in different poses of the table. A screenshot of the interface can be
seen in Figure 22 and for a more detailed explanation of the interface, please read Appendix
A.

Figure 22: The built MATLAB interface used for the test with the car. The left plot of the
interface shows the wanted steering direction while the right plot is showing an overview of
the vehicle and the angle it has to the curb.

The tests with a car were set up according to Figure 23. Two metal brackets were
screwed into a wooden stick at a proper distance from each other. The sensors were then
mounted to the brackets and the wires were taped along the stick. The stick was then
mounted underneath the car with the help of three straps. The Arduino boars was once
again connected to the sensors and the computer where the same MATLAB GUI was used
to communicate with the driver.
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Figure 23: The sensors mounted on the car for doing more real-life situation tests.

5.3 Results

When the tests were made, no effort was put in optimizing the rigs. Discoveries were made
that could be avoided for the upcoming outdoor tests with better ultrasonic sensor (see
below).

The MATLAB GUI gave the user directions of how to turn to be in the right direction at
the current distance and approach angle to the curb. Some scenarios are shown in Figures
24-26 where the rigs are seen to the left and the screenshots of the GUI to the right.

Figure 24: The pose of the rig (left) and the corresponding MATLAB GUI (right).
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Figure 25: The car in Pose one and the corresponding MATLAB GUI.

Figure 26: The car in Pose two and the corresponding MATLAB GUI.

The tests showed that the concept of potential fields are working for generating the
steering direction. The sensors were averaged over five samples to give a more robust
measurement although keeping the response of the system fast enough.

Some important discoveries and notes about the tests:
• Sensor interference; the sensors interfered with each other when not spaced that far

away from each other (like to the left in Figure 21). When the table was turned in
such a way that e.g sensor one measured 70 cm and sensor two measured 90 cm,
sensor two could rapidly change to 190 cm. This ought to be because of sensor one
emitting sound that echoes into sensor two. The same holds for sensor two measuring
the smaller distance.
Toggling between the sensors was tried but all the interference did not disappear and
the response time of the system became slower. When the sensors were spaced further
apart (like to the right in Figure 21) the interference were much less and the response
time was still fast. This is also a more real-life setup of the system since the sensors
would be spaced further apart on a vehicle. Also, as more information about e.g.
vehicle speed and current steering angle will be available through CAN-bus, a filter
could be set up using the model of the system.

• Sensor range; From 25 cm up to around 6 m, the sensors were accurate, but in the
close region (0 � 25 cm) the sensors measured 25 cm. This was the reason for the
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mounting of the sensors. E.g. to the right in Figure 21, the sensors have been mounted
as if underneath the vehicle and the distance is calculated as;

distance = reading � ✏

where

✏ = ⌘ cos'(t)

according to Figure 27. In the ideal case, the sensors would have been mounted at
the edge of the vehicle but these calculations makes the error less.

φ

φ

ε

η
measured distance

wanted distance

φ

Figure 27: Distance calculations because of sensor displacement.

• Indoor rig; the indoor rig was not ideal for the tests although good results were
retrieved in the end. Starting with the wheels, it was possible to turn not just the
front wheels but also the rear wheels which gave a non ideal movement of the table
(the table is holonomic while a car is non-holonomic). It became harder to simulate
a docking process as the rear wheels turned.
Another problem with the indoor rig was the acoustic echo created by the “legs” of
the rolling table. The sound emitted by the sensors bounced into the wall and then
at the legs of the table and back to the sensors, giving unreliable measurements. This
was however only a problem when the sensors where placed higher above the ground
(like to the left in Figure 21). The sound could also be reflected in such a way that
it did not echo back to the sensor.

• Car design; the Smart car is really low and it was difficult to mount something
underneath it. The ground needs to be very flat to ensure that the sensors are not
damaged in the tests. This problem would not exist on a regular bus since they are
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much higher, still the sensors can not be mounted too low.
Also, the length of the area in front of the front wheel axis is very short on a Smart
car. The ideal would be to mount the front sensor in the front edge of the vehicle but
if that would have been done, the sensor would have “seen” the right front tyre all the
time. The solution became to let the stick point out at a safe distance from the tyre
(see Figure 23) and then making the system believe that this was the actual length
of the car.

Overall, the tests gave good understanding about the problems that could arise if the system
was designed in a problematic way by e.g. not spacing the sensors too far apart or mounting
them close to parts of the vehicle that could reflect the echo in an unwanted way.

The tests showed a good behavior and the concept of the potential field approach is
working really well to generate steering directions.
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6 Sensors for robust curb detection

In todays vehicles, different sensors are used for parking assistance systems. Some parking
assistance systems (passive systems) gives the driver a warning when coming within a
certain distance from an obstacle (like another vehicle). Other, more advanced systems
(active systems), also control actuators of the car to fulfill the parking [3].

The sensors that will be tested in this project are ultrasonic sensors and monocular vision
(single camera sensor). Another sensor that could be used is a LRF (Laser Range Finder)
which is used by autonomous vehicles. The reason why it will not be tested practically is
because of the price of such a sensor. Stereo Vision could also be used for curb detection
[24] but it requires to much time and will not be tested here.

In the following parts, the basic theory behind each sensor option will be explained along
with its implementation and the following results8. For the LRF sensor and stereo vision,
there will only be a theoretical part and an explanation of how it could be implemented.

6.1 Ultrasonic sensors

Ultrasonic sensors (like the one from Pepperl Fuchs9 in Figure 28) are widely used in the
industry because of their relatively cheap price and accurate measurements in a variety of
environments.

Figure 28: Ultrasonic sensor form Pepperl Fuchs.

6.1.1 Theory

Ultrasonic sensors uses high frequency sound (> 20 kHz) and the time-of-flight technique
[25]. Sound pulses are emitted from the sensor through the surrounding medium, when
an object is in the range the sound will bounce on its surface and echo back to the sensor
which now is “listening” for the echoes. By the knowledge of the speed of sound and the
time it takes for the sound to travel from the sensor and echo back, the distance can be
calculated [26]. Some ultrasonic sensors consists of one transmitter and one receiver10 while
other models (like in Figure 28) has one part that switches between being transmitting and
receiving. An example of raw data from an ultrasonic sensor can be found in Figure 29.

8For the ultrasonic sensor and monocular vision.
9Information about Pepperl Fuchs can be found at www.pepperl-fuchs.com.

10Like the Ping))) sensor from Parallax (see http://www.parallax.com/tabid/768/productid/92/default.
aspx)
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Figure 29: An example of raw data from an arbitrary ultrasonic sensor. The peaks at t1
and t2 are objects detected at two different distances from the sensor.

The sensors are widely used in the automotive industry because of their accurate mea-
surements and their ability to be easily integrated in the vehicle design [27]. As an example,
some cars have ultrasonic sensors mounted in the bumpers of the car to alert the driver
when being close to obstacles that could damage the car. They are also used in parallel
parking aid systems to scan for parking spaces (between other parked cars) that are big
enough.

Although some ultrasonic sensor models are made to fit in an outdoor environment it is
much harder to use them outdoors because of the higher rate of noise being present. Filters
need to be applied to cope with this problem.

All ultrasonic sensors have a dead zone at close range where they cannot detect objects.
This is because the reflected sound of these close objects returns to the receiver before it
has been turned on. Usually, if the sensor has a long detection range, the dead zone is also
longer (for the sensor used for validation, the dead zone was in the interval 0� 25 cm). To
handle the dead zone problem, the mounting of the sensors is of great importance. The
sound emitted from the ultrasonic sensors can also be reflected by defectors to both change
the direction and beam pattern11 of the sound. This can make the dead zone from the
sensor “disappear” by being before the detector, see Figure 30. By using a deflector, the
sensor can also be mounted in a more covered way to prevent damage of the sensor.

11A beam pattern of an ultrasonic sensor show how the sound spreads from the sensor to objects. The
beam pattern for the sensor used in the validation part can be found in [28].
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Figure 30: Usage of deflector with an ultrasonic sensor. A sensor without a deflector
emitting sound and its dead zone (to the left). A sensor with a deflector and its dead zone
(to the right). The deflector compress the sound and can “remove” the dead zone. The
sound will be echoed back the same way as it is emitted.

Since the sensors are well used in commercial parking aid systems, although not for
curb detection, they need to be tested if they can detect the high curb at the bus stop.

6.1.2 How many sensors will be needed if one is failing?

The information that the system need from the sensors to be able to calculate the steering
angle is the distance from the curb and the approach angle to the curb. If only ultrasonic
sensors should be used, a minimum of two sensors must be mounted (like in Figure 15).

The failure of one sensor can lead to steering angles being incorrect. If two sensors are
used, the failure of one will lead to an incorrect approach angle and maybe also incorrect
distance to the curb if the front sensor is the failing one. Figure 31 shows one way of how to
view this and also how an increasing amount of sensors can be used to handle the problem
with one failing sensor measurement.

2 sensors 3 sensors 4 sensors

Sensor 1 Sensor 2 Sensor 1 Sensor 2 Sensor 3 Sensor 1 Sensor 2
Sensor 3

Sensor 4

Figure 31: The effect of one failing sensor (Sensor 1) when having a system consisting of
two, three or four sensors. The lines that can be drawn between each sensor represents the
measured curb position. Read below for further explanation.

Sensor 1 is the failing sensor in all of these scenarios. Figure 31 is explained further;

• Two sensors are mounted; if one of the two sensors fail this will lead to an immediate
failure of the system. The sensor that collects the wrong measurement will cause the
system to calculate the incorrect approach angle to the curb and steering angle. The
system can not detect a failing sensor from these measurements.

• Three sensors; by having this setup, a failing sensor an be detected but the system
cannot know which sensor is the failing one. There will exist 3 different approach
angles and the system will not know which one is the correct one.
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• Four sensors; now the system can know that one sensor is failing and it can determine
that Sensor 1 is the failing sensor. As can be seen in Figure 31, a total of 6 approach
angles can be calculated from the sensor data and 3 of them will (approximately) be
the same. The approach angles calculated between sensors 2� 3, 2� 4 and 3� 4 will
be the same and the system can determine that Sensor 1 is the failing sensor during
this time sample.
Adding another sensor cannot give the system additional information and will not be
needed.

If another sensor would fail making 2 sensors measure the wrong distance, a total of 5

sensors will be needed for redundancy.
This is however only if one sensor is failing. If tests of the sensors would show stable

results, only two will be needed to get the information necessary for the system to calculate
the steering angle.

6.1.3 Testing of the ultrasonic sensor

The specific ultrasonic sensor that will be tested for curb detection is the UC2000-30GM-
IUR2-V15 from Pepperl Fuchs. Specifications and information about the sensor can be
found in [29]. The sensor is tested using the rig in Figure 32. With this rig, different
mounting heights and angles could be tested at different distances from the curb. The
sensor could be mounted at intervals of 5 cm. A fake bus stop curb was built using wood
since a bus stop without any traffic could not be found. The wooden curb has the same
height as bus stop curbs (17 cm) [30].

Figure 32: The rig used for the tests with the ultrasonic sensor. The sensor could be
mounted at different heights and different angles for testing the detection range. A fake
curb made of wood was built to have a curb of the correct height.

A software to tune some of the sensor parameters was also available through Pepperl
Fuchs. Thresholds like sonic beam width, sensitivity and range could be set to see how the
sensor readings changed. A screenshot of the software can be seen in Figure 33 and more
information about possibilities of using the software can be found in [31].

The sensor should be mounted as high up as possible to prevent it from getting damaged.
The problem with mounting the sensor high is not detecting the curb when being close to
it. Different mounting angles and heights were tried along with different thresholds to find
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a good combination. The sensor can also be mounted further in underneath the bus to get
the curb within the sensors range at all times.

The distance between a Volvo city bus floor and the ground is approximately 20 cm [32]
while speed bumps are dimensioned to be approximately 10 cm high [33]. This will give
the sensor a minimum space of 10 cm between the bus floor and the ground. Because of
heavy loading of the buses, the sensor should however still be mounted as high as possible.

Figure 33: Screenshot of the graphical user interface of the ultrasonic sensor. Through the
interface, thresholds like sonic beam width could be set to see how the result changed.

A variety of tests were made at different mounting heights, both with and without
the deflector. The goal of each test was to be able to detect the curb at a range where
Maximum Distance �Minimum Distance � 1 m, where the Minimum Distance was
the limiting factor.

Example: If Minimum Distance = 20 cm (the closest distance where the sensor detects
the curb) the Maximum Distance must be � 120 cm. The sensor could then be
moved 20 cm underneath the bus and still measure the distance from the side of the
bus to the curb in the range [0, 1] [m].

6.1.4 Results of the tests

The tests when using the deflector was poor compared to the tests with the sensor alone.
Thus, the results are based on the tests without the deflector. Also, when the sensor could
only handle small mounting angles ( 5°) to work properly. If the angle was higher or if the
beam width was to big, the measurement to the ground interfered with the measurement
to the curb.

The “best” results for the different mounting heights can be seen in Table 2 (the “best”
being the one having the lowest Minimum Distance). Different mounting heights was
tested because other buses might have other ground clearance heights than the Volvo bus
in [32].
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Table 2: Results of the ultrasonic sensor for different mounting heights.
Mounting Height Angle Minimum Distance Maximum Distance Threshold

 15 cm ⇠ 0° sensor deadzone � 150 cm � 20

20 cm ⇠ 0° ⇠ 10 cm � 150 cm 10

25 cm ⇠ 0° ⇠ 25 cm � 150 cm 7

30 cm ⇠ 0° ⇠ 40 cm � 140 cm 0

As can be seen in Table 2, the sensor perform very well when the mounting height is
low. The threshold value determines the width of the sonic beam where a high value means
a thinner beam (max 25, min 0). A low mounting height is however not wanted and by
moving the sensor up, it needs to be moved further in underneath the bus to be able to
have a detection range of � 1 m.

It would be harder to mount the sensor any higher than 30 cm because of the Minimum
Distance and the Threshold which are at the widest possible beam.

If information about the distance from the sensor to the ground was available, it would
be possible to tune the threshold of the sonic beam width with a lookup table. This would
be a good option if real-life tests show that the bus floor height is varying when driving.

Data was logged from the sensor at Mounting Height = 20 cm and Threshold = 10

to see how the performance of the sensor as if the vehicle was moving. The result of the
test is shown in Figure 34.
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Figure 34: Test of the ultrasonic sensor as if vehicle is moving. The fake curb was moved
irregularly and sensor data was logged and plotted. The sensor shows very stable results.

As can be seen in Figure 34, the sensor is very stable and does not fluctuate that much.
It shows a very good performance overall.
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6.2 Monocular vision

Cameras are also used as sensors in todays vehicles. Some of the applications where a
camera is used are e.g. parking aid systems (rear cameras for obstacle avoidance), lane
keeping and road sign recognition. Cameras are relatively cheap but they require a lot of
computational power for the calculations. The camera that will be used for the tests are a
simple webcam from Logitech, shown in Figure 35.

Figure 35: Webcam from Logitech used as camera sensor for the monocular vision test.

6.2.1 Theory

By image processing the camera sensors can give more information than just a distance
measurement. Unfortunately, they do not perform as well in e.g. dark or misty environ-
ments when it is hard to get a clear image of the scene. Because of the image processing,
they also require more computational power than e.g. the ultrasonic sensor.

A camera can be implemented by mounting it on the bus at a known distance to the
ground, facing the ground (see Figure 36). Image filters can then be applied to try to
extract the curb from the rest of the scene. The problem will consist of finding lines in the
image and also to find the line corresponding to the edge of the curb.

Mounted Camera

Image window

Curb

Figure 36: Mounting position of a camera on the bus. By this mounting, the approach angle
and distance to the curb could be calculated using a pinhole camera model an geometry.
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The distance to the curb can then be calculated by assuming a pinhole camera model,
knowing the resolution of the images and using geometry. The pinhole camera model is
presented in Figure 37 and the equations used for the calculations are;

X
world

=

x
image

Z
world

f

Y
world

=

y
image

Z
world

f

where f is the focal length of the camera, Z
world

is the distance to the object, i.e. the
mounting height of the camera, [x

image

, y
image

] is the coordinate of the pixel in the image
while [X

world

, Y
world

] is the 2D coordinate of the pixel in the world. Since the coordinate
[X

world

, Y
world

] is given in [pixels] the resolution must be known to convert the coordinate
to [m]. But as the distance to the object Z

world

is known, a converting constant can be
calculated by measuring the real world size of the image.

Image plane

World plane

f

Z

X
world

Y
world

y
image

x
image

Z
world

p

P

w

h

W

H

Figure 37: Pinhole camera model.

The point p represents the coordinate in the image of the real world point P . The
image resolution is w ⇥ h [pixels] while the real world window has the area W ⇥ H [m].
From these relationships, the real distance in [m] between two points in the image can be
calculated.

6.2.2 Testing of monocular vision

The implementation was made by using the webcam in Figure 35 along with MATLAB.
Images and videos were acquired from the camera as test data to be processed. The acquired
data was not taken when the camera was actually mounted on a vehicle but just held in
the approximately same pose as if it were. This had no effect on the result of the tests.

When the image processing was made, different filters were applied to find the line
belonging to the edge of the curb. The steps used for the processing were;
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1. Load the image (or frame); the resolution of the original image was 1024 ⇥ 768 and
8-bit grayscale. This corresponds to a 1024⇥ 768 matrix where the elements is in the
interval [0, 255] depending on the color (0 being black and 255 being white).

2. Resize the image; to make the calculations faster, the new image matrix has the
dimension 400⇥ 300.

3. Rotate the image 90°; the reason for this step will be clear later on.

4. Blur the image; a median filter12 is applied to the image to reduce the noise and
smoothen the image.

5. Edge detection; a Canny13 edge detection filter was used to detect the contours in
the image. The output from this filter is a binary image where the contours are white
(= 1) and the rest of the image is black (= 0).

6. Remove small objects; objects less than 50 pixels were removed to prevent that
unnecessary lines were found.

7. Find the lines of the image; the Hough-transform14 was used to detect the straight
lines in the image. The rotation of the image makes it possible to constrain the angle
interval of the lines that were supposed to be found to [�45, 45]°. This is the same as
saying that the bus approach angle will never be greater than 45° or less than �45°.

The result of some of the steps are shown in Figure 38.
12A median filter works through the image in pixel segments by 3x3 and changes the color

to the median value of the pixels in the segment. The segment size could be varied but the
effect to the image was the same. A larger segment gave slower calculations. Please see
http://www.mathworks.se/help/images/ref/medfilt2.html for a complete description of the MATLAB func-
tion.

13There exists a couple of edge detection algorithms like Sobel, Roberts etc. that could be used. However
the Canny filter gave the best result for this particular case. The MATLAB function is described at
http://www.mathworks.se/help/images/ref/edge.html.

14The Hough transform can be used to find features in an image, in this case it is straight
lines. The theory behind how the transform works is beyond the scope for this project.
The MATLAB functions used are described at http://www.mathworks.se/help/images/ref/hough.html,
http://www.mathworks.se/help/images/ref/houghpeaks.html and http://www.mathworks.se/help/images
/ref/houghlines.html.
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Figure 38: Original image (top left), grayscale image (top right), filtered image (lower left),
Canny image (lower right).

6.2.3 Results of the tests

Results showed that the monocular vision sensor was not well suited for finding the correct
measurement to the edge belonging to the curb, see Figure 39. Only one of the processed
images will be showed here since the results were the same for all the images and the video.

Too many lines were found and it was hard for the algorithm to detect only the correct
one. However, the approach angle of the bus can be estimated by implementing a single
camera sensor.
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Figure 39: Lines found in an image using the Hough transformation and Canny edge
detector. Too many lines of the same type are found and no significant color can be
used to pick out the correct one (the white area does not exist at every bus stop).

As can be seen in Figure 39, a total of 7 lines are found that belongs to 5 edges in the
image. The approach angle of the bus can be found quite easily, note that all the lines in
Figure 39 are parallel. But the distance to the correct line cannot be found in the image.

6.3 Stereo Vision

The concept of stereo vision is basically how our eyes work. From two views of the same
scene, we are able to determine the depth of the scene or approximate the distance to
certain objects in the field of view. By adding another camera to the single camera setup,
the same technique can be used to find the curb [24], [34].

6.3.1 Theory

Stereo vision requires two cameras that are separated by a distance (called baseline) and
then by detecting the same object (point in the world) in both images, triangulation can be
used to determine the distance to the object. This is shown in Figure 41. A stereo camera
sensor from Point Grey15 is shown in Figure 40.

15More information at www.ptgrey.com.
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Figure 40: Stereo camera sensor from Point Grey. Two parallel cameras mounted at a
distance apart from each other.

The process of finding features in the first image and then find the same feature in the
second image can be very time consuming. The process is much faster if it is known where
to search. This is made by epipolar geometry16. The complete theory of stereo vision will
not be covered here but from Figure 41, the depth to a point can be calculated from the
points p

l

and p
r

as;

Z =

bf

d
(32)

where b is the baseline, f is the focal length and d is the disparity, i.e. x
l

�x
r

(difference
between the images). The disparity will be higher for closer objects than for objects being
further away.
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Figure 41: Stereo vision triangulation (reconstruction).

Stereo vision is not that simple and requires a lot of work with calibration to get a good
result from the images. The complete theory of stereo vision is beyond the scope of this
project but more information can be found in [36], [35], [37].

6.3.2 How to implement stereo vision

A stereo vision sensor could be implemented in the same way as the single camera, by facing
down towards the curb. A correctly implemented camera would see the curb as a distinct

16For more information about epipolar geometry, see [35]
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change in the depth. The correct line within this area could then be found in the same way
as with monocular vision and the distance could be measured.

6.4 Laser range finders (LRF’s)

Different laser range finders are often used for autonomous vehicles and prototype vehicles17

and depending on the sensor, it can scan in either 2D or 3D. These sensors are very expensive
but they give a very accurate measurement of the distance to an object.

6.4.1 Theory

The LRF sensor rotates and scans its surrounding. The sensor in Figure 42 can scan 360°
and is continuously measuring. Like the ultrasonic sensor, the LRF uses the time-of-flight
measurement to determine the distance to an object with laser light instead of ultrasonic
sound. This gives the laser sensor much faster and accurate measurements and it does not
depend on color or shape of the objects around it.

The raw data from a 2D laser sensor is given as a distance and angle to the object that
gets hit by the laser beam.

Figure 42: 2D Laser Range Finder from Pepperl Fuchs. LRF sensors are widely used by
autonomous prototype vehicles.

6.4.2 How a LRF sensor could be implemented

This sensor could be mounted either on top or at the side of the bus. If mounting the LRF
on top of the bus, a scan could be made in the horizontal plane to search for some reflectors
at the bus stop and then by triangulation, the position and pose can be calculated (see
Figure 43). By mounting the LRF on top of the bus, more autonomous applications could
be implemented in the future to assist the driver.

17Like the Google driverless car.
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Detection zone

Reflector 1

Reflector 2

Curb

Figure 43: Implementation of a horizontal LRF sensor. The top mounted sensor could
detect two reflectors mounted at the bus stop. By triangulation, the position and pose of
the bus can be calculated. With this setup, the whole bus stopping maneuver could be done
by the system since the bus stop can be detected at a further distance. In combination
with a GPS and data base for the outlay of each bus stop, precise docking can be made. A
top mounted LRF can also be used in other autonomous bus applications and active safety
solutions.

The other way of mounting the sensor would result in a vertical scan at the side of the
bus. The scan would then result in raw data where a L-shaped pattern would represent the
curb. Two LRF’s would then be needed or one combined with e.g. computer vision to get
the approach angle to the curb. The side mounting of the sensor can be seen in Figure 44.

Detection zoneCurb

LRF sensor

Figure 44: Implementation of a vertical LRF sensor. A scan is made in the vertical plane
at the side of the bus. The curb can then be detected as a L-shaped figure in the raw data
from the sensor.

6.5 Sensor discussion

For the system to be of any use for the drivers, it relies on correct sensor measurements.
For autonomous driving, laser seems to be the “standard” option to use although these
autonomous driving vehicles are still prototypes (like the Google Car).

The problem with implementing these kind of systems on buses is mostly that the price
cannot be to high. One of the reasons for this is the smaller manufacturing volumes of
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buses compared to cars. Another is the customer, where the passenger of the bus will not
be able to enjoy the consequences of a system like the one described in this report because
he/she is not driving the vehicle. In a car, people a more willing to pay for active safety
solutions and comfort (like self parking applications).

Laser sensors are robust in the sense of precise and very fast measurements. Because of
the time-of-flight measurements they need to respond very fast because of the high speed
of the light. If the budget for the project had been greater, these sensors would have been
the obvious choice. Also because of their ability to be used in other applications than
just at the bus stops. A top mounted LRF (like in Figure 43), with either a 2D- or 3D-
scanning technique could be used to implement more active safety solutions along with this
application.

The ultrasonic sensors require that the vehicle is closer to the curb before they activate
the steering assist. This is not a bad thing but it requires more from the driver in the sense
of coming into the bus stop in a better way than if the system would give assistance in an
earlier stage of the maneuver. At this distance, they give an accurate enough measurement
to the curb.

The price basically controls what should be possible for the system and how much help
the driver should get. For this project where the bus stopping maneuver was divided into
two parts (as in Figure 1), the ultrasonic sensors will work and less tires will be worn out
because of the driver hitting the curb.

Tests for the ultrasonic sensor have only been made for curbs that are of swedish stan-
dard height (17 cm). All new and rebuilt bus stops have this height because it makes it
easier for old people and people with certain handicaps to get on and off. The sensors
need to be tested for the lower curbs as well to see if they can handle such a situation.
A problem that could occur would be different sensor parameter tuning for different curb
heights. Since the system is unable to measure the height of the curb it will not be possible
to tune the parameters depending on the curb height. This would require a more advanced
sensor.

The ultrasonic sensors are very good in the sense that they do work nicely in darkness
and does not depend on the color of the measured object (the curb). A LRF sensor would
also have managed to measure even in complete darkness. For the camera, if a good
algorithm would have been found that could extract the correct edge from the image it
would still have had problem at night when it is dark. Night vision is an alternative but
would most likely make the sensor more expensive.

Ultrasonic sensors would also do good in a dusty environment where dust might end
up on the sensor or the deflector. The sound will still be able to travel and hit the correct
object for measuring.

The hardest part to conquer is a snowy environment. The ultrasonic sensor will be
able to get a good reading of the side of the curb as long as the snow does not cover too
much of it. Snow has a sound absorbing performance which can make the measurement less
accurate. The camera would not be able to see any edges at all if the ground was covered
with the least layer of snow.

6.5.1 Which sensor should be used?

Table 3 explains the strengths and weaknesses of each sensor alternative covered in this
chapter.
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Table 3: Pros and cons for the different sensor alternatives.
Sensor type Pros Cons

Ultrasonic Sensor Precise measurement, cheap Not knowing if measuring distance to curb
Monocular Vision Approach angle could be found Could not find correct line

Stereo Vision Curb can be found from the depth Computationally heavy, sensitive for vibrations
Laser Range Finder Very precise Expensive

Since the goal with the implementation is to be able to build a system that is as cheap
as possible. For this, the ultrasonic sensor is a good enough option. The system will only
be active when the bus is close to the curb and within this range, the ultrasonic sensors are
reliable enough to detect and measure the distance to the curb.
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7 Signal processing and filter design

The result from the ultrasonic sensor test shown in Figure 34 is stable and does not contain
that much noise. If the sensor were to perform like that when mounted on a real bus,
any filtering would not be necessary. However, mounting the sensor on a real bus would
introduce some error sources like e.g. sound noise and altering mounting height which can
make the sensors measure the wrong distance to the curb.

This chapter aims to explain what filtering techniques that can be used if there would
be a noisy signal from the ultrasonic sensor. Since no real noisy sensor data were available,
the simulator described in chapter 4 was used and noise were added to the simulated sensor
signals. Different filters were then applied for removing the noise and to see how the
simulated bus behaved.

The filters that were applied were the simpler median and mean value (averaging filters),
the first order low pass filter and the more advanced Kalman filter. The Kalman filter was
firstly implemented as a static type and then by using information about the system to see
the difference in performance.

7.1 The median and mean value (averaging) filters

These two averaging filters smoothens the signal so that a more solid measurement is given
by the sensors. They filter out unwanted small and rapid changes in the measurements
by collecting n measurements at time step k, take the mean or median value of the n
measurements and use that value as the sensor signal at the current time step.

The discrete mean value filter can be used when the signal is known to be noisy without
any abrupt changes (like if the sensor would loose a value).

As can be predicted, the performance of the filter gets better as n gets higher. The draw-
back of this filter is the time it takes for an ultrasonic sensor to update the measurements.
The speed of the sensor controls how large n can be to get a wanted sample frequency of
the system. Also, if the sensor would drop a reading (which would make the sensor give
its maximum value), the mean value will also change. This makes the filter unuseful for a
sensor where readings could be lost.

A median value filter uses exactly the same technique as the mean value filter but takes
the median of the collected measurements instead of the mean. By doing this, the filter
will have the ability to filter out a lost reading.

Because these filters require many readings to smoothen the signal, they are inappro-
priate to implement in the bus. The slow filters could make the sample time drop and
information might be lost which can make the bus hit the curb.

7.2 First order low pass filter

A first order low pass filter can be implemented to get rid of the noise in the sensor signal
[38]. The filter is implemented as;

z̄
k

= �z̄
k�1 + (1� �)z

k

(33)

where z̄ is the filtered signal and z is the measurement. The constant � depends on
the sample time and time constant of the system. How to calculate � is described in [38].
The results of tests with different � can be seen in Figure 45. The tests were made with a
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variance of 0.1. Note that Figure 45 is the same as the lower right of Figure 20 but with
the added noise.
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Figure 45: Tests of first order low pass filter (or moving average filter) with varying param-
eter �.

A higher value of � gives a more stable result but requires a slower process, i.e. a higher
time constant ([38]). The lower the � gets the more noise comes through the filter and will
affect the system.

This is a simple filter to implement and only requires tuning one parameter to get a
pleasing result.

7.3 The Kalman filter

When the behavior of the system is known, i.e. the next step of the process can be estimated
mathematically, the Kalman filter is good to use to filter the sensor signal. The Kalman
filter is an optimal estimator [39] which are used to filter signals and to fuse different signals
together (sensor fusion) [40].

7.3.1 Basic theory of the Kalman filter

The process to be estimated by the Kalman filter is x
k

= Ax
k�1 +Bu

k�1 +w
k�1 with the

measurement z
k

= Hx
k

+ v
k

. These are linear equations with w
k

and v
k

being the process
and measurement noise [39]. The steps of the general implementation18 of the discrete
Kalman filter is then to;

18These are the same steps as presented in [39]. For a more detailed description of the Kalman filter and
how it is implemented, see [39].
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1. Predict the next value of the state from the linear model. Calculate the predicted
state x̂�

k

= Ax
k�1 +Bu

k�1.

2. Estimate the process error P�
k

= AP
k�1A

T

+ Q. Where Q is the process noise
covariance.

3. Calculate the Kalman gain as K
k

= P�
k

HT

(HP�
k

HT

+ R)

�1. R is the sensor noise
covariance.

4. Correct the predicted state with the measured state as x̂
k

= x̂�
k

+K
k

(z
k

�Hx̂�
k

).

5. Correct the estimated process error as P
k

= (I �K
k

H)P�
k

.

7.3.2 Implementing the Kalman filter to process the signal

A scalar Kalman filter can be implemented for the two sensors of the simulated bus. Noise
is added to the sensors and the unfiltered signal is sent through the filter.

If nothing would be known about the system, i.e. the scalars/matrices A and B are
not known the prediction of the next value of the state would simply be x̂�

k

= x
k�1,

(A = 1, B = 0). This is a stationary form of the Kalman filter (stationary Kalman filter)
which is used in [41] and can also be implemented to the system with the bus. By following
the steps in 7.2.1, the scalar equations used by the filter are;

x̂�
k

= x
k�1 (34)

P�
k

= P
k�1 +Q (35)

K
k

=

P�
k

P�
k

+R
(36)

x̂
k

= x̂�
k

+K
k

(z
k

� x̂�
k

) (37)

P
k

= (1�K
k

)P�
k

(38)

The equations 34-38 are then used for both sensors.
The Kalman filter needs initial guesses for the error P and the noise covariances Q and

R. Figure 46 and 47 illustrates how the covariance variables affect the performance of the
filter. When these simulations were made, the bus was initialized 2 m from the curb with
a heading ✓0 = 0 and the goal was set 0.05 m from the curb.
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Figure 46: Kalman filter with constant R and varying Q. High Q (to the left) and low Q
(to the right).
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Figure 47: Kalman filter with Q held constant and varying R. High R (to the left) and low
R (to the right).

From Figure 46 and 47 it can be seen that the low Q and high R gives the best per-
formance. The Kalman filter “trust” more in the prediction of the sensors (x̂�

k

) since the
covariance of the sensor noise is much higher than the process noise. This was an expected
result since noise has only been added to the sensors and the fact that the process is quite
static from around sample 75 and forward. By the static behavior of the process, x̂�

k

= x
k�1

becomes a very good prediction of the next value and thereby the good result.

As the system model is known, i.e. the movement of the sensor can be estimated
using knowledge from the mathematical relationships defining the movement of the vehicle.
Since the Ackerman steering geometry is assumed to hold, the movement of any point of
the vehicle can be predicted since they are rotated around the same point [7]. This is shown
in Figure 48.
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Figure 48: The movement of the sensors depending on the steering wheel angle. Since the
Ackermann steering geometry is assumed, every point of the bus will rotate around the
same point and the sensor movement can thereby be calculated using geometry.

From knowing the steering wheel angle �, the direction of movement of the front sensor
(�

s1) can be calculated as;

�
s1(t) = arctan(

l
s1

R+

w

2

) (39)

where R is calculated according to Equation 16 and the movement along the y-axis
(Equation 7) for the sensor will be;

ẏ
s1 = v(t) sin�

s1(t). (40)

From the simulations it can be seen that the steering wheel angles are not that large.
As shown by Figure 20 the maximum steering wheel angle was t 0.32 rad which is assumed
to be low. The small angle approximation (sin�

s1 t �
s1) can then be used to linearize

Equation 40, hence

ẏ
s1 = v(t)�

s1(t) (41)

and the maximum error caused by this approximation is only 1.7 %. The prediction of
the next value of the state (step 1 in 7.2.1) can be calculated as;

ŷ�
s1,k = y

s1,k�1 + v
k�1dT�s1,k�1 (42)

with A = 1, B = v
k�1dT and u

k�1 = �
s1. By following the implementation steps, the

rest of the calculations will yield;
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P�
s1,k = P

s1,k�1 +Q (43)

K
s1,k =

P�
s1,k

P�
s1,k +R

(44)

ŷ
s1,k = ŷ�

s1,k +K
s1,k(zs1,k � ŷ�

s1,k) (45)

P
s1,k = (1�K

s1,k)P
�
s1,k. (46)

The same technique is then used for the second sensor, with l
s2 instead of l

s1 in Equation
39. The result of this filter for noisy sensors with var = 0.1 can be seen in Figure 49. The
plot shows the result of the front mounted sensor.
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Figure 49: Simulations of the Kalman filter using information about the movement of the
sensors.

7.4 Which filter should be used for the bus docking application?

The Kalman filter and the first order low pass filter shows very good results from the
simulations. Real-life tests however needs to be made to see the true performance of the
filters. The Kalman filter requires more calculations and the low pass filter should thereby
be used if possible. Also, the sensor seem to give quite robust raw data so it might be
enough to use the first order low pass filter.
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8 Project status

The project has been examining the possibility to make an assisting system for docking
buses. The simulated closed loop system shows good results and a sensor that could manage
to detect the curb has been found. Filtering techniques to use if sensors would give noisy
readings have also been considered. The project is now in turns of moving from a theoretic
to a more practical approach with implementing the different parts described in this report.

8.1 Future work

Since the time for the master’s thesis is restricted, the implementation of the system in the
bus could not be made. The project will however continue with an implementation phase
to get the prototype done. A bus with the electric steering is available and the system will
be implemented according to this thesis.

One of the things that remains to be considered is the response of the electric motor, i.e.
in what way should the driver receive the steering wheel feedback? It is possible to make
the motor generate a turning torque with an magnitude depending on the error between
the actual steering angle and the steering angle calculated from the potential field. The
motor could also make the steering wheel vibrate when not being inside some interval from
the reference steering angle. These tests should appropriately be made in association with
bus drivers since they will be the ones using the system. A good functioning system can be
seen as a learning tool for unexperienced drivers to help them get the feeling of where to
position the bus at curbs.

The bus docking system is one of several applications that could be enabled by the in-
stallation of an electric motor. The buses are not even close of having the same active safety
solutions that exists in cars but with the electrical steering, there are a lot of possibilities.
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Appendix

A The MATLAB interface explained

The interface used for the implementation in the car was built using MATLAB. MATLAB
has a tool called MATLAB GUI for this which is simple to work with. This part will explain
the layout and functions of the interface. In Figure 50, the interface has just been started
up.

Figure 50: The MATLAB interface at start up.

In this view, we see the basic layout of the interface. Basically it consists of;

1. General information button; by pushing this button, an information box of how to
use the interface will pop up.

2. “Set parameters” panel; in this panel, the user can input the specific parameters
needed for the system to operate, these are:

(a) L1: The length between the front of the vehicle and the front wheel axis.
(b) L2: The length between the front and rear wheel axis.
(c) L3: The length between the rear of the vehicle and the rear wheel axis.
(d) Width: The width of the vehicle.
(e) Sensor1: The length between the front sensor position and the rear wheel axis.
(f) Sensor2: The length between the rear sensor position and the rear wheel axis.
(g) “Parameter information” button; by pushing this button the same information

as in (a)-(f) will pop up in a message box.
(h) “Default Smart Car” button; by pushing this button, the interface will fill out

the parameters according to the test with the Smart car done in 3.2.2.

Note: all of the parameters should be set in meters.
Example: Please go back and look at Figure 13. That vehicle would give the
parameters; L1 = L1, L2 = L, L3 = L2, Sensor1 = L+ L1 and Sensor2 = L.
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3. “Steering direction” plot window; in this window, the direction that the user should
move the steering wheel will appear as a line.

4. “Hawk eye” plot window; in this window, the vehicle will be plotted along with the
curb as is seen from above.

5. The white area underneath the plot windows is an information field. In this field, the
user will get information about the current process of the system.

6. “Initialize” push button; by pushing, the system will connect with the Arduino. This
button will change its appearance during the docking, see forward.

7. “Terminate” button; by pushing, the session will be terminated.

If the user first push the “Default Smart Car” button and then hit “Initialize”, the interface
will change its display and show the information seen in Figure 51.

Figure 51: MATLAB interface initializing.

When the system has initialized and connected to the Arduino board the interface will
be displayed as in Figure 52.

Figure 52: MATLAB interface initialized and ready.

The system is now ready to be used and by hitting the “Start” button, the sensors will
start to search for the curb. The interface will now have three different looks depending on
whet stage of the docking the vehicle is in.
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Figure 53 displays the first stage, when the sensors are searching but have not yet found
the curb.

Figure 53: MATLAB interface when no curb has yet been found.

Note how the push button that was named “Start” in the earlier stage now reads “No
curb found” and has changed color to red. Also, the information field now displays the
distance from “Sensor1” to the curb (the dashed line in the “Hawk eye plot”). The “Steering
direction plot” wants the driver to turn quite a lot to the right which is reasonable.

In the next stage, the curb has been found and the interface will be displayed as in
Figure 54.

Figure 54: MATLAB interface when the curb has been found.

Note now how the push button once again has changed its color to orange and reads
“Curb found! Follow steering directions!”. Also note the changes in distance to the curb,
steering direction and “Hawk eye plot”. Moving forward a bit in this stage a scenario could
become as in Figure 55.
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Figure 55: MATLAB interface, closer to the curb.

Now the vehicle is closer to the curb and the steering direction has changed. If the
directions are followed correctly by the driver, the display of the interface will eventually
change to the one seen in Figure 56.

Figure 56: MATLAB interface when the wanted position and pose has been reached.

Once again the color of the push button has been changed, now to green, reading “In
position! O.K to stop!”. The driver then knows that he is in a good position and pose close
to the curb. The current session can be terminated and the driver can leave his vehicle.
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