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Hydrogen adsorption on graphene and coronene
A van der Waals density functional study

Eskil Varenius
Department of Microtechnology and Nanoscience
Chalmers University of Technology

Abstract
This thesis investigates hydrogen adsorption on graphene and coronene within
the framework of density functional theory. The new nonlocal van der Waals
density functional (vdW-DF) method is used: the original version, vdW-DF1,
and the new higher accuracy version, vdW-DF2. Hydrogen adsorption is studied
in the context of formation of molecular hydrogen in interstellar space, a process
thought to depend on hydrogen adsorbing on a graphitic surface.

Calculations were done for hydrogen above coronene and graphene with both
vdW-DF1 and vdW-DF2 to investigate how these functionals perform in the case
of hydrogen adsorption on a graphitic surface. All calculations were performed
with the software GPAW in a non-self consistent way based on underlying self-
consistent GGA (revPBE) calculations.

The results show that vdW-DF2 predicts hydrogen to physisorb on a graphitic
surface with an essentially site independent adsorption energy of ≈70meV at
a distance of 2.85-3.0Å from the surface. The physisorption energy is overes-
timated by 30meV compared to experiment and accurate quantum chemical
studies, but the binding distance is in good agreement. The functional vdW-
DF1 gives around the same adsorption energy and adsorption distance. In the
case of physisorption coronene seems to be a good model of graphene, provided
the adsorption sites are in the vicinity of the innermost carbon ring.

The results also show a barrier between the chemisorption and physisorption
wells of up to 597meV, which is high. However, this result was obtained in
the absence of relaxations in the vdW-DF2 study. Atomic relaxations affect
the chemisorption behaviour and energies and I expect that the barrier will
be significantly lower in calculations which includes the chemisorption-induced
morphology changes of the coronene or graphene substrates.

In the barrier region it was also hard to make the calculations converge due
to partial spin-polarisation of the system. With tougher limits for convergence
in the barrier region it is possible that the height will be lower.

The calculations performed in this thesis indicate that it is important to use
a spin-polarised description of the physics to get accurate results for hydrogen
adsorption on a graphitic surface.

Keywords: DFT, van der Waals, vdW-DF, hydrogen, coronene, graphene,
physisorption.
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Chapter 1

Introduction

Quantum physics has opened strong connections between seemingly different
areas of science. The development of computers and computer science today
makes it possible to use the models of physics to accurately calculate what
happens in chemical reactions. This kind of meeting ground for phenomena
in chemistry, biology and physics bodes for very interesting times around the
corner. One may, for example, consider the potential for a new computational
theory of biology. Accurate simulations of DNA (see figure 1.1(a)) and other
large molecules important in biology is right now starting to show promising
results, and researchers use models based on quantum physics trying to calculate
how viruses work.

What I personally find very interesting is the chemical process where hydro-
gen atoms in interstellar space combine to form molecular hydrogen and more
complex molecules. Hydrogen is the most abundant element in the universe.
Because of its abundance molecular hydrogen (H2) can dominate the spectral
characteristics of molecular clouds [1]. Clouds of molecular hydrogen are of-
ten associated with star formation regions such the famous Eagle nebula, figure
1.1(b).

Astrophysicists believe that the formation of molecular hydrogen happens on
the surface of graphitic (graphite like) grains [1]. To investigate this formation
process one can use quantum physics simulations.

Much theoretical work has been carried out related to the formation process
and various studies uses simulations based on quantum physics. Most of these
quantum physics models are at some point incorporating empirical corrections.
In this thesis I use a very recent non-empirical model to investigate the inter-
action of hydrogen with a graphitic surface. This work illustrates the current
reach of the model, and how it can be used to understand problems where long
range forces are important.

In this introductory chapter I give a brief overview of concepts central to
the further chapters in this thesis. The first section contains an introduction to
molecular hydrogen in interstellar space. In the second section I briefly discuss
van der Waals forces and why they are interesting in this context. The third
section contains a brief survey of earlier studies related to the formation of
molecular hydrogen in interstellar space. Finally, in the last section I describe
the purpose of this thesis and provide a brief overview of the remaining chapters.
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(a) Electron density of DNA.

(b) The eagle nebula.

(c) A gecko climbing a wall.

Figure 1.1: Expressions of van der Waals binding. Panel (a) shows the ground
state electron density for 700 atoms in DNA. Calculated with LCAO in GPAW
by Eskil Varenius, Magnus Sandén and Elisa Londreo, spring 2011. Picture
made using VESTA [2]. Panel (b) shows star forming pillars in the Eagle Nebula,
as seen by the Hubble Space Telescope’s WFPC2. Hydrogen physisorption on
graphite is believed to catalyse a very high H2 concentration in these clouds.
Picture from Wikimedia Commons. Created by NASA (Public license). Panel
(c) shows a gecko climbing on a glass surface. The millions of tiny hairs on the
feet of the gecko get very close to the surface. The van der Waals forces between
the hairs and the surface is thought to enable the gecko to adhere to smooth
vertical surfaces [3]. Picture from Wikipedia Creative Commons, CCAS 3.0,
GFDL License.
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1.1 Molecular hydrogen in interstellar space

The obvious way of forming molecular hydrogen, H2, is by taking two hydrogen
atoms and putting them together. But in interstellar space the chance of two
hydrogen atoms finding each other is not very big. In fact, calculations show
(see for example chapter 8.7 in the book by A. Thielens [1]) that the process of
forming molecular hydrogen through gas phase interactions between hydrogen
atoms (or ions) is too slow to account for the observed formation rate. Therefore
one might suspect that there is some other process causing the faster formation
of molecular hydrogen.

1.1.1 The role of interstellar dust grains

It is today generally accepted within the astrophysics community that the for-
mation of molecular hydrogen in interstellar space proceeds on the surfaces of
interstellar dust grains (again chapter 8.7 in [1]). The basic idea is that one sin-
gle hydrogen atoms have a much larger chance of finding a large grain structure
than another single hydrogen atom. This means that suitable larger structures
could catch many hydrogen atoms. These atoms may then move on the grain
surface where they have a much higher probability of forming H2 compared
to free hydrogen atoms in a gas phase. In the diffuse interstellar medium the
dominant grain surfaces are thought to be bare silicate (a compound contain-
ing silicon) and graphitic (graphite like) grains. The presence of graphite in
the interstellar medium is supported by observations of a strong absorption of
radiation with a wavelength around 200 nanometres. Graphite has a strong
resonance around this wavelength and calculations show that the presence of
graphitic grains of size around 30 to 200Å would fit the observed feature very
well, see the book by Thielens [1].

1.1.2 Two ways of forming H2

Two ways of including interstellar grains in the process has been proposed.
The first one is where two hydrogen atoms adsorb on a surface, move around
and meet to form H2. This process is called the Langmuir-Hinshelwood (LH)
mechanism. The second one is where one hydrogen atom first adsorb at a fix
site on a surface. A second atom outside the surface then combines directly
with the atom already adsorbed and forms H2. This is called the Eley-Rideal
(ER) mechanism. Both these processes rely on the fact that one hydrogen atom
is first adsorbed on the surface of a dust grain.

In the LH case the the atoms needs to be able to move around the surface.
This suggests that the binding of hydrogen to the surface must be a weaker
van der Waals bond, a physisorption well with very low corrugation (and a
vanishing site preference). If there is a physisorption well it is also probable
that atoms caught here might combine with atoms in the gas phase through
the ER mechanism. It is central to study the physisorption (or van der Waals
binding) of hydrogen atoms to a graphitic surface.
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1.1.3 Applicability of computational studies

For the physisorption studies there is strong need to provide a physics based
account of dispersive (vdW) interactions. The extreme computational cost of
quantum chemical methods obviously affects the scope of system sizes in the
computational studies. Theoretical investigations have often centred on the
adsorption of hydrogen on poly-aromatic hydrocarbons (PAHs), for example
the molecule coronene (see figure 1.2(c)) as a model for the graphene surface.
For the physisorption of hydrogen on PAH molecules there have been previous
theoretical studies using the far more efficient density functional theory (DFT)
method, for example [4] see section 1.3. The advantages of DFT is that it can
address extended systems like adsorption on graphene. Jacobson et al. [5] gives
an example which also discusses inconsistencies that arise when using the old
state-of-the-art approximations of DFT.

The traditional approximations used in the core of the DFT method assumed
that a local or semi-local form was sufficient to approximate the correlations in
electronic behaviour produced by many-body interactions. It is clear however
that this procedures fails in the account of dispersive interactions which can act
across regions with low or vanishing electron density, see [6] and [7]. This work
takes off from a recent and successful formulation of a new standard approxi-
mation in DFT, the van der Waals density functional (vdW-DF) method which
for example can describe the vdW binding and physisorption on both molecules
and extended systems [7] like graphitic grains.

Since the spacing between the layers in graphite is large one may assume
that calculations including a single graphene sheet (one layer in graphite) should
give good results. Several computational studies have taken yet another step
and used the molecule coronene (C24H12) as a model for the graphene surface.
Pictures of these three models, graphite, graphene and coronene, can be seen in
figure 1.2.

(a) Graphite (b) Graphene (c) Coronene

Figure 1.2: Three possible models of the surface of interstellar carbon grains.
Figure (a) shows the layered structure of graphite (picture from Wikimedia
Commons, CC BY-SA 2.5 license), figure (b) shows graphene i.e. one single
layer from graphite (Picture from Wikimedia Commons, Public), and (c) shows
the molecule coronene (picture from Wikimedia Commons, Public).
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1.2 van der Waals forces
Atoms can bind together in different ways. What is meant by van der Waals
forces varies in literature depending on the context. In this thesis the van der
Waals forces refers to the forces which arise from long-range coupling of elec-
trons. These are often also called London dispersion forces. This interaction is
the principal interaction between inert atoms and molecules without permanent
dipole moments. Their existence was first deduced by the investigation of inert
gases by Johannes D. van der Waals in the late 19th century. For his work
related to the van der Waals equation of state he was awarded the 1910 Nobel
prize in physics. The reader further interested in Johannes van der Waals own
views on his work may find his Nobel lecture [8] from 1910 interesting.

The van der Waals forces are attractive and relatively long ranged. In con-
trast to ionic bonds (which involves an electron transfer) and covalent bonds
(which involves a lowering of total energy by sharing of electrons) van der Waals
forces does not require any exchange of electrons between atoms. This means
forces can arise between atoms over large distances. The strength of the van
der Waals interaction is known to be proportional to 1/r6 for large separation
distances r.

Since the forces arise over longer distances they, like gravity, increase with
system size. Above extended systems like large surfaces the total force on an
atom or a molecule can be comparatively large, even if the binding energy per
atom is small. The Gecko is a famous example believed to make use of van der
Waals forces to walk on walls or on a ceiling as in figure 1.1(c). Millions of tiny
hairs cover the climbing tools that are the Gecko’s feet. It is believed that when
all these hairs come close to a surface the van der Waals forces becomes strong
enough to make the Gecko stick to the surface [3].

1.2.1 The Lennard-Jones potential

The total potential energy of two rare-gas atoms or charge neutral molecules
at separation r is often written on an approximate form called the Lennard-
Jones potential. This potential consists of two terms: one including attractive
forces, and one including repulsive forces. The attractive term includes an
account of approximate van der Waals forces described by the asymptotic 1/r6

behaviour. There are also repulsive forces that becomes important mainly for
small distances. Experimental data on inert gases can be fitted well by an
empirical potential proportional to 1/r12. The repulsive effect arise from the
Pauli exclusion principle, the fact that electrons are fermions and cannot have
all quantum numbers the same (see for example the book by Martin [21]).

The resulting expression for the Lennard-Jones potential is then (see [9]
chapter 3)

V (r) =
C12

r12
− C6

r6
(1.1)

Other potentials are also used, although this nicely illustrates that both ex-
change effects (due to the Pauli exclusion principle) and correlation effects (such
as van der Waals forces) are important.

The presented Lennard-Jones description also serves to introduce the semi
empirical DFT-D method. In this type of computational scheme the empirical
C6 coefficient is included as an extra term to describe long-range interactions.
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1.3 A brief survey of the field

The interest in hydrogen on graphitic surfaces has grown in recent years. As far
as I know only one experimental investigation has been published, namely [10]
done by Ghio et al in 1980. In this experiment the physisorption energy of a
hydrogen atom on a graphite (0001) surface was measured to be 39.2±0.5meV.
However, there are a lot of published computational studies investigating differ-
ent properties of atomic and molecular hydrogen on graphitic surfaces.

This thesis is focused around my application of and calculations by the van
der Waals density functional method. This is a new possibility for which the
first paper only came out this spring, while I was working with this thesis. To
complete the picture and provide the background this brief summary will focus
on the work that has been published concerning hydrogen on graphitic surfaces
where one have tried to account for van der Waals forces in some way.

1.3.1 Computational studies

The first study using density functional theory to investigate the formation of
molecular hydrogen appears to be the work by Jeloaica and Sidis in 1999 [4].
The idea was to investigate the binding of hydrogen to a graphite-like surface.
The molecule coronene (C24H12) was used as a model for a single layer of the
dust grain graphitic surface. The calculations show that hydrogen prefer to
physisorb directly above a carbon atom with an adsorption energy of 74meV.
Also, if the closest surface carbon atom is allowed to relax, a chemisorption
well is found around 1.5Å with adsorption energy of 600meV. Between the
chemisorption well and the physisorption well a barrier of height ≈200meV is
found. This study [4] by Sidis et al uses the Local Density Approximation (LDA)
to calculate densities and they do also include added corrections calculated in the
Generalised Gradient Approximation (GGA). However, the LDA has no genuine
van der Waals component but is known to erroneously predict physisorption
wells (also commented on by Sidis et al). The study acknowledges that the
approximations used (the LDA as well as the GGA) do not describe van der
Waals forces. There exists a number of related articles following this one (e.g.
the study by Sha and Jackson from 2002 [11]) but neither of them try to describe
the van der Waals forces.

There exists, to my knowledge, four published computational studies trying
to include van der Waals forces in DFT. The first by Bonfanti et al from 2007
[12] observes that the old standard DFT methods are unreliable in describing
van der Waals forces. Lacking a physics based account of van der Waals inter-
actions instead standard quantum chemical methods are used to investigate the
physisorption binding energy of hydrogen on a graphitic surface. The surface
was also here modelled as a coronene molecule. The calculations predict hydro-
gen to adsorb above the middle of a carbon ring with an adsorption energy of
39.7meV at a distance of 2.9Å from the coronene surface.

The second van der Waals related study was performed by Psofogiannakis
and Froudakis in 2009 [13]. The semi-empirical DFT-D method is used, where a
correction term is added to model dispersion forces. The dispersion corrections
were of the type proposed by Grimme [14] and [15]. The graphitic surface is
modelled as a coronene molecule. They find that the preferred physisorption
site for hydrogen on coronene is the hollow site (above the middle of a carbon
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ring). This site has a physisorption energy of 30.4meV at a distance of 3Å from
the coronene surface. A chemisorption well was also found with an adsorption
energy of 720meV at a distance of 1.1Å from the coronene surface.

The third van der Waals related DFT study is by Ferullo et al from October
2010 [16]. They summarise earlier non-vdW studies [4], [11], [12] and [13] as that
hydrogen can bind through chemisorption with an adsorption energy of about
800meV or through physisorption with adsorption energy of about 40meV. Be-
tween these two wells there is a barrier of around 200meV. The investigation by
Ferullo et al also uses the coronene molecule as a model for the graphitic grains.
Here one includes van der Waals interactions through the addition of a semi-
empirical correction to the total energy calculated in the PW91 [17] version of
GGA. They find that the preferred physisorption site for hydrogen on coronene
is the hollow site (above the middle of a carbon benzene ring). This site has an
adsorption energy of 38.1meV at a distance of 2.81Å from the coronene surface.

The fourth and most recent study is by Jie Ma et al from April 2011 [18].
This article was published during the final stage of this thesis work. In [18]
calculations were performed both on a coronene molecule and on a graphene
surface. Several different computational techniques were compared, amongst
them the first version of the van der Waals density functional (vdW-DF) method
that has been developed within a long-standing Chalmers-Rutger collaboration.
The calculations for vdW-DF1 were performed using the software VASP with
an implementation of the PAW method. This recent study and my investigation
supports each other. It is very interesting to compare the results in this thesis
obtained using the code GPAW with those obtained using the code VASP in
[18] and see how the results of different codes compare.

The VASP calculations with vdW-DF1 in [18] show that hydrogen is ph-
ysisorbed with an adsorption energy of 75meV at a distance of 3.0Å from
the coronene surface. In [18] it is also predicted that vdW-DF1 overestimates
the binding energy by around 30meV compared to accurate quantum chemical
calculations (done with second order Møller–Plesset Pertubation theory, often
abbreviated MP2). With a graphene surface the vdW-DF1 calculations show
physisorption with an adsorption energy of 81meV at a distance of around 3.0Å
from the graphene surface.

My present investigation provides an accurate description of the hydrogen
physisorption as described in both the first and second version of the vdW-DF
method. It was performed independently of [18]. Unlike [18] my study presents
a first discussion of the role of spin in the calculations.
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1.4 Purpose and overview
In this work I focus on the problem of H and H2 interactions with a graphite-like
surface using the vdW-DF method, a new framework for non-local density func-
tional approximations. Theoretical simulations using density functional theory
have in almost all previous cases either neglected the van der Waals interac-
tion or employed a semi-empirical approach which does not include effects of
adsorption inducing a charge transfer.

Recent publications (see the brief survey; section 1.3) show promising re-
sults for physisorption energy and physisorption distance which are in excellent
agreement with the single experiment that I am aware of [10]. However, none
of them (except for the recently published study by Jie Ma et al [18]) use a
pure first-principle density functional theory approach. In the recent years a
group at Chalmers have developed such a density functional with the ambition
of describing van der Waals forces in a better way without the need of empiri-
cal corrections. This so called van der Waals density functional (or vdW-DF1
for short) was first developed in 2004. A second version of the functional was
proposed in 2010 and called vdW-DF2 for short.

The purpose of thesis is to investigate how both versions of the so called van
der Waals density functional perform when describing hydrogen adsorption on
graphene and coronene. As far as I know there has been no calculation (except
Jie Ma et al [18]) using a pure first-principle density functional trying to include
van der Waals forces in the studies of hydrogen - graphite binding and Jie Ma et
al [18] only use the first version vdW-DF1. It is therefore of interest to compare
the results for vdW-DF1 and vdW-DF2 with results from other related studies
mentioned in section 1.3. Finally this thesis also contains a first discussion on
the role of spin in the transition region between chemisorption and physisorption
configurations.

The rest of this thesis is organised as follows. Chapter two describes the
underlying theory of density functional theory (DFT) and the van der Waals
density functional. Chapter three describes the calculations done in this work;
the hardware, the software and the atomic systems and related topics. Chapter
four contains the results and a discussion of the results in relation to other
related studies. The final chapter contains a short summary and an outlook.



Chapter 2

Theory

This chapter provides a brief theoretical background for the methods used in this
thesis. The focus is on density functional theory (DFT) and different concepts
related to the practical use of DFT. A brief description of the van der Waals
density functional (vdW-DF) method and the projector augmented wave (PAW)
method is also included. Formulae are written in Hartree atomic units (~ =
me = e = 4π/ε0 = 1) if not stated otherwise.

2.1 Density functional theory

The problem of calculating properties for a piece of material can in many cases
be reduced to the problem of calculating properties of the electrons in the ma-
terial. To get accurate results one needs to consider that electrons live in the
world of quantum mechanics. Hence the problem is: solve the Schrödinger equa-
tion for the system. Unfortunately the Schrödinger equation cannot be solved
analytically except for a single hydrogen atom.

Naturally one tries to solve the equation numerically with help of computers.
But, the full many-particle wave function is a very complicated thing. (For a
description of exactly how complicated, see for example the book by Fetter
and Walecka [19]). The complexity grows very badly with system size, and
therefore solving the full many-particle wave function directly is too hard (even
with numerical methods except for very simple model systems with very few
electrons). It simply takes too much time and too much memory, thus for
relevant materials problems it is impossible. But if we are satisfied with knowing
the electronic structure (i.e. we do not care about other special properties of the
wave function) then we do not really need the full many-particle wave function.
In fact, the electronic structure can be described by a much simpler quantity:
the electron density in space.

The density only requires one value for each point in space regardless of
the number of particles involved. This is computationally much simpler to
represent compared to the full many-body wave function. This is the idea
of density functional theory: to reformulate the many-particle problem into
another problem in terms of the electronic density.

Density functional theory is based on two theorems first proved by Hohen-
berg and Kohn in 1964 [20]. Loosely speaking these theorems state that it is



10 CHAPTER 2. THEORY

possible to express the energy of an interacting many-body system as a func-
tional of the density, and that all properties of the system are completely deter-
mined from only the ground state density. Later, Levy and Lieb came up with a
more general formulation of DFT which amongst other things makes the theory
valid also for degenerate ground states. For a detailed discussion of differences
between the Hohenberg-Kohn and Levy-Lieb formulations see for example [21]
chapter 6. In this section I want to show one way of deriving the expression for
the energy in terms of a universal functional. Since I find the Levy-Lieb formu-
lation more clarifying and intuitive I follow their reasoning here, as outlined in
[21].

It is helpful to first point our a number of choices that I have made in my
presentation. In DFT the Born-Oppenheimer approximation is used, i.e. the
atomic nuclei are fixed and can be treated classically. The classical Coulomb
interaction between the nuclei is included in DFT. However, I chose to not
include the term describing the nuclei-nuclei interaction, it is easily added to
the final expressions. Note also that the Hamiltonian obviously depends on spin
(and spin is sometimes important), but I have dropped the spin dependence in
this brief derivation to make the expressions clearer. A further discussion about
spin-dependent DFT is left to section 2.4.

2.1.1 The universal energy functional
To describe the quantum mechanical system completely it is sufficient to know
the Schrödinger equation for the system. The complete many particle Schrödinger
equation for a non-relativistic system can be written in compact form by use of
Dirac’s bra-ket notation as

Ĥ |ψ〉 = ε |ψ〉 (2.1)

where the Hamiltonian operator Ĥ is defined as

Ĥ = T̂ + V̂int + Vext(r) (2.2)

The three terms in Ĥ represent kinetic energy, potential energy due to internal
forces, and potential energy due to external forces. From quantum mechanics
we know that the density is defined in terms of the wave functions as

n(r) = |ψ(r)|2 (2.3)

and the total energy for a system in the state ψ can be written

E = 〈ψ| Ĥ |ψ〉 = 〈ψ|T̂ |ψ〉+ 〈ψ|V̂int|ψ〉+
∫
d3rVext(r)n(r) (2.4)

The energy of the ground state can, in principle, be found by minimising the
expression for the total energy with respect to all possible states |ψ〉. But
suppose that one first minimises the energy only for the set of states |ψ〉 having
the same density n(r). In this case we can write the lowest energy for that
density as a functional (i.e. a function of a function, in this case a function of
the density)

E[n] = min
ψ→n(r)

[
〈ψ|T̂ |ψ〉+ 〈ψ|V̂int|ψ〉

]
+

∫
d3rVext(r)n(r)

≡ F [n] +
∫
d3rVext(r)n(r).

(2.5)
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If we know the external potential Vext and the universal functional F [n], then
2.5 gives us the minimum energy for a specific density n(r). To obtain the
ground state energy of the system we must also minimise 2.5 with respect to
all possible densities n(r). The functional F [n] is independent of the external
potential Vext.

The central question is now: what is the universal functional F [n]? There is
no easy answer to this question, because finding an explicit expression for F [n]
corresponds to solving the full many-particle Schrödinger equation. Because of
this, density functional theory might have remained a mere curiosity were it not
for the approach taken by Kohn and Sham.

2.1.2 The Kohn-Sham approach

In 1965 Kohn and Sham [22] proposed a way to attack the problem of finding
an expression for the unknown universal functional F [n]. It is obvious that
each electron have kinetic energy, and also energy due to classical Coulomb
repulsion between all electrons, but it is not possible to state exact expressions
for these quantities because of complicated many-body effects. However, the
kinetic energy and Coulomb energy must contribute to the internal energy of
the system, and F [n] should incorporate these quantities in some way.

It is not easy to see how the quantum mechanical many-body effects (ex-
change and correlation) affect the energy. Kohn and Sham thought that the
complicated many-body effects of the interacting system (contained in F [n])
can be seen as a small correction to the total energy of a similar auxiliary sys-
tem without difficult many-body effects. Therefore in the Kohn-Sham approach
one replaces the original interacting system with a similar system that can be
solved more easily. This simpler auxiliary system is chosen to have the same
number of electrons as the original system, and it also has the same external
potential.

Each single electron has a single-particle kinetic energy (free from many-
body effects), and it also feels the Coulomb repulsion from all other electrons.
So the Hamiltonian of this auxiliary system must consist of the kinetic energy,
the classical Hartree energy and the external potential. Using the DFT formalism
we can rewrite the expression for the ground state energy of the auxiliary system
as functional of the density

Eaux[n] = Ts[n] + EHartree[n] +

∫
d3rVext(r)n(r). (2.6)

The first two terms here can be calculated provided that one knows the one-
electron wave functions φi of the auxiliary system as

Ts =−
1

2

N∑
i=1

〈φi|∇2|φi〉

EHartree =
1

2

∫
d3rd3r′

n(r)n′(r)

|r− r′|

n(r) =

N∑
i=1

|φi|2



12 CHAPTER 2. THEORY

Now, in the Kohn-Sham approach to DFT one assumes that the auxiliary
system can be chosen to have the same ground state density as the original
interacting system. To make this possible one must change the auxiliary system
in some way to represent many-body effects that exist in the actual physical
system. A new term must express the difference between the original and the
auxiliary systems, and it must in the DFT formalism be defined as a functional
of the density. Kohn and Sham called this extra term the exchange-correlation
functional. All difficult many-body effects are incorporated in this exchange-
correlation functional Exc[n]. Formally this can be written in terms of an ex-
pression for the universal functional F as

F [n] = Ts[n] + EHartree[n] + Exc[n]. (2.7)

The beauty of this procedure is that Exc[n] is also universal and can be evaluated
- or realistically approximated (for example by many-body theories or from
quantum Monte Carlo methods) - once and for all. If we can find an exact
expression for the last term Exc[n] then we can actually calculate the exact
energy of the original interacting system! The expression for the total energy
becomes

E[n] = Ts[n] + EHartree[n] +

∫
dr3Vext(r)n(r) + Exc[n]. (2.8)

Here Ts is the kinetic energy of the independent particles, EHartree is the self
interaction energy of the (classical) electronic density and Exc is the exchange-
correlation energy. Two problems must be solved before one may actually cal-
culate physical properties of materials and systems.

One is to obtain the single-particle wave functions φi needed to construct the
kinetic energy and the density of the auxiliary system. For any given nonzero
exchange-correlation the original auxiliary Hamiltonian is no longer valid. Be-
fore one can obtain the single-particle wave functions the auxiliary Hamiltonian
must be modified to incorporate the effect of the exchange-correlation term.
To find this modification one may use the powerful tool of variational calculus.
This is discussed further in section 2.1.3.

The other is to find an actual approximate expression for Exc. It is not
possible to find an exact expression, but there are many good approximate
expressions available. This is discussed further in section 2.3.

2.1.3 The Kohn-Sham equation
The tool of variational calculus can be used to find an equation which solutions
minimise the energy functional (equation 2.8). If one minimises with respect to
the density one gets the so called Kohn-Sham equation. For the actual derivation
I refer to standard textbooks, e.g. [21]. The resulting equation turns out to be
a Schrödinger-like equation for the auxiliary system where the potential has an
extra term due to exchange-correlation effects

Heff |φi〉 =
[
−∇

2

2
+ VHartree(r) + Vext(r) + Vxc(r)

]
|φi〉 = εi |φi〉 (2.9)

The solutions to this equation are the so called Kohn-Sham orbitals φi for the
auxiliary system with the approximated many-body corrections present in the
form of the exchange-correlation term.
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2.2 Solving the Kohn-Sham equation
The Kohn-Sham equation is in practise solved numerically by an iterative pro-
cedure called the self-consistency loop. The procedure is as follows:

1. Make an initial guess for the electron density n(r).

2. Construct the Kohn-Sham Hamiltonian based on this density.

3. Solve the Kohn-Sham equation to get the Kohn-Sham orbitals.

4. Construct a new density from the Kohn-Sham orbitals.

5. Calculate the total energy of the input and output densities using 2.8. If
the difference between these two energies is smaller than some threshold
then the final energy is taken as the ground state energy for the system.
If the energy difference larger than the threshold go to step 6.

6. Add a little of this new density to the old one to get a new input density
and go back to step 2.

Finding the best way to mix the new and old densities in step 6 is not trivial.
There are several different techniques available. A detailed discussion is beyond
the scope of this thesis and I refer the interested reader for example to [21]
chapter 9.

2.2.1 Numerical problems with the Kohn-Sham equation
The basic result of density functional theory is that one may rewrite the prob-
lem of the many-particle Schrödinger equation in terms of a functional of the
electronic density. Kohn and Sham then found a way to practically divide the
functional into an exact (but incorrect) part describing an auxiliary system,
and a correction part to account for the missing many-body effects. The equa-
tion governing the auxiliary system is called the Kohn-Sham equation and it
describes independent electrons in an effective potential. The effective potential
includes the (approximated) many-body effects of the system. This simplifi-
cation is a great achievement, but the resulting Kohn-Sham equation is still
difficult to solve numerically close to the atomic nuclei.

The reason is that in the region of space close to the atomic core the wave
functions of the valence electrons oscillate very rapidly. This rapid oscillation
happens because the valence states are required to be orthogonal to the core
states. To represent these rapid oscillations with sufficient numerical accuracy
a very fine grid is required. To use a fine enough grid in the whole space region
is not computationally feasible, but since we want to do calculations anyway we
need to find a way around this. In this thesis I use software based on one of
several ways around this problem: the projector augmented wave method.

2.2.2 The projector augmented wave method
One way of treating the problem of rapidly oscillating wave functions is the so
called projector augmented wave method or PAW for short. In short the PAW
method uses a coarse grid for the region between atoms in a system, and a
finer grid in the close vicinity around each atomic core. The PAW method was
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presented by P. E. Blöchl in 1994 [23] and has been implemented several times
since, for example in the softwares GPAW and VASP. All calculations in this
thesis were performed with the PAW implementation GPAW (see section 3.2).
The key reason for choosing GPAW was that the van der Waals functional is
implemented and ready to be used with GPAW. I also wanted to learn more
about the PAW method, and GPAW seemed like a comparatively user friendly
implementation. In the following section I will very briefly discuss the basic
ideas behind the PAW method.

2.2.3 Creating a PAW model of an atom

The basic assumption in the PAW method is that the innermost bound electrons
are not affected by atomic interactions such as chemical bonding. Thus one may
treat the inner (core) and outer (valence) electrons differently. When doing
calculations with the PAW method one actually does calculations not on real
atomic configurations, but on models that are very similar in a well defined way.
When creating these atomic models one uses the assumed differences between
the core and the valence electrons. The major concepts of the PAW method
are all present in the creation of these atomic models (called atomic setups in
GPAW). Therefore I find it convenient to explain the PAW method in terms of
how to create such an atomic setup. One may divide the process of creating an
atomic setup into three broad steps.

The first step is to define an augmentation sphere around the atomic core.
The radius of the augmentation sphere is chosen so that the problematic parts
of the valence electron wave functions are inside the sphere. This means that
the sphere cannot be too small. But, inside the sphere we want to be able to
represent the wave functions in a local basis of atomic orbitals. This means that
the sphere cannot be too big, because far out the wave functions cannot be well
represented in a basis of atomic orbitals. In practise one has to check carefully
so that the choice of radius works well for all calculations of interest.

The second step is to freeze the core-electrons so they are not allowed to
change during calculations. This restriction may in principle be lifted but is
imposed for various reasons [23]. The core state information is used to calculate
a core electron density (and to restrict the basis set of the valence functions to
a set orthogonal to the core states). This is only done once, after the creation
of an atomic setup the core states will not change during DFT calculations.

The third step is a transformation of the valence states. Far from the atomic
cores the valence wave functions are smooth and a course grid gives good results.
Close to the atomic core the electronic wave functions can be well represented
(locally) in a basis of atomic orbitals. The projection of valence states onto
atomic orbitals is done with help of so called projector functions. When the
valence states are represented in atomic orbitals we may do a change of basis
to another more convenient locally good basis in which one gets smooth wave
functions close to the atomic core. This change of basis defines a transformation
of the valence states.

The calculations can now be done on smooth functions both close to the
atomic core and far away from the core. Note the difference compared to the
core states: The valence states are allowed to relax everywhere (also in the core-
region) during the calculation. But even though the valence states change during
the calculation, the basis sets will not change. Therefore the transformation will
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continue to be valid during all iterations. However, as in the case of the core
charge density, the transformation will be different for different elements.

If one had to transform back and forth between the different basis sets at
every iteration the PAW method would not be good at all. But it turns out
that the PAW method allows for solving the Kohn-Sham equations iteratively
without the need of transforming back to the true wave functions. When the
solution has converged one may use the transformation to return to the true
wave function in all of space if desirable. The important point here is that the
true wave functions are not needed to calculate the wanted electronic density.
This means that we may solve the Kohn-Sham equations in a computationally
efficient way.

A more detailed discussion of the PAW method is beyond the scope of this
thesis. There is (of course) a lot more to learn about the PAW method for the
interested reader. The original article by Blöchl from 1994 [23] contains a lot of
information but can be hard to digest. For a detailed discussion of the theory
behind the PAW method I recommend reading the masters thesis of Ask Hjort
Larsen [24].

2.3 The exchange correlation functional

One practical way to interpret this term is as the difference in energy between
the simple auxiliary system and the full interacting system. It includes exchange
effects of the Pauli-exclusion principle as well as other correlated corrections.
It is not feasible to find an exact expression for the term Exc because it would
again correspond to solving the full many-particle problem. But, it is reasonable
to assume that this term is small and therefore a good enough approximation
could work. This is indeed the case and numerous such approximations have
been developed. Much of the theoretical work within DFT has been about
finding better and better approximations for the term Exc under the condition
that the expressions must be computationally efficient.

2.3.1 The Local Density Approximation (LDA)

The first approximation for the exchange-correlation energy was proposed by
Kohn and Sham in the same paper [22] as the so called Kohn-Sham approach
described above. In this approximation, called the local density approximation
(LDA), one assumes that the exchange-correlation effects are the same as in
a system of a homogeneous electron gas. In LDA the effects of exchange and
correlation are local in character and the exchange correlation term is

ELDA
xc =

∫
drn(r)εLDAxc (n(r))

where εLDAxc is the exchange-correlation energy per electron of a homogeneous
electron gas at density n. This simple approximation works astonishingly well
and gives good results for a lot of atomic systems. Further discussion of the
LDA (and the spin-dependent version LSDA) is beyond the scope of this thesis
and I refer the interested reader to standard textbooks, for example [21].
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2.3.2 The Generalised-Gradient Approximation (GGA)
Following the success of the LDA many generalised-gradient approximations
(GGAs) has been developed. Such an approximation is a functional not only of
the density, but also of the magnitude of the gradient of the density |∇n|. GGA
functionals are chosen to be on the general form

EGGA
xc =

∫
drεLDAxc F (n, |∇n|, ...).

F is called the enhancement factor and numerous forms have been proposed.
In this thesis a GGA functional called revised PBE (or revPBE for short) [25]
has been used for all self-consistent calculations. Further discussion of GGA
functionals is beyond the scope of this thesis and I refer the interested reader
to standard textbooks, for example [21].

2.3.3 The van der Waals density functional method
In 2004 a new functional called vdW-DF or vdW-DF1 was proposed [6]. It
is actually two things. It is a specific new non-local approximation for the
exchange-correlation energy Exc. It is also a new framework (today called the
vdW-DF method) for extending the reach of DFT by account of dispersive or
vdW interactions. The advantage of the vdW-DF method is that it is physics
or constraint based and that it treats vdW forces at the same electronic level
as DFT treats other types of interactions (e.g. covalent, ionic, metallic and
hydrogen bonds) This functional has proven to give promising results for a wide
variety of systems, see for example the review article [7].

The total energy functional within the vdW-DF method is defined in terms
of the Kohn-Sham scheme outlined in section 2.1.2:

EvdW-DF[n] = TS [n] + EH[n] +

∫
r

Vext(r)n(r) + EvdW-DF
xc (2.10)

This expression includes the standard Kohn-Sham expressions for the the kinetic
energy of the auxiliary system TS , the electrostatic energy of the system EH
and the interaction with an external potential Vext (the atomic cores). What
is different in vdW-DF (compared to traditional functionals such as LDA and
GGA) is that the correlation part of the energy has a non-local dependence on
the density. The full expression for the exchange-correlation energy uses the
exchange part of a GGA functional and the correlation part of LDA but adds
also a non-local correlation term.

EvdW-DF
xc = ELDA

c + EGGA
x + Enl

c (2.11)

The functional vdW-DF1 uses the GGA functional revPBE [25] for exchange.
One should keep in mind that the standard Kohn-Sham expression for the

kinetic and electrostatic energy is also non-local. What is special about vdW-DF
is that there is a non-local part also in the expression for the correlation.

The expression for the non-local correlation in vdW-DF takes the form of a
six-dimensional integral

Enl
c [n] =

1

2

∫
r

∫
r′
n(r)φ(r, r′)n(r′) (2.12)
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with an interaction kernel φ(r, r′). In the asymptotic limit this kernel has the
well known 1/r6 behaviour characteristic for van der Waals interaction. Now,
what is the expression for this kernel function φ? The kernel function can be
expressed in the following way (see [6]):

φ(r, r′) =
2me4

π2

∫ ∞
0

a2da

∫ ∞
0

b2dbW (a, b)× T (v(a), v(b), v′(a), v′(b))

where

T (w, x, y, z) =
1

2

[
1

w + x
+

1

y + z

] [
1

(w + y)(x+ z)
+

1

(w + z)(y + x)

]
and

W (a, b) = 2[(3− a2)b cos b sin a+ (3− b2)a cos a sin b
+ (a2 + b2 − 3) sin a sin b− 3ab cos a cos b]/a3b3

The quantities v and v′ are defined as

v(y) = y2/2h(y/d) and v′(y) = y2/2h(y/d′)

where
d = |r− r′|q0(r) and d′ = |r− r′|q0(r′)

where the parameter q0(r) is defined as

q0(r) =
ε0xc(r)

εLDAx
kF (r). (2.13)

This quantity ε0xc is defined as the LDA expression for exchange and correlation,
but with a gradient correction term as

ε0xc ≈ εLDAxc −

[
Zab

9

(
∇n
2kFn

)2
]
. (2.14)

The LDA exchange used in equation 2.13 is defined as

εLDAx = −3e2kF /4π

where, finally, kF is defined as

k3F = 3π2n.

The parameter Zab introduced in equation 2.14 determines the contribution of
the gradient correction term. This quantity is obtained from first principles and
for the functional vdW-DF1 the value is Zab = −0.8491. In principle, Zab is
not a constant but rather a function of electronic density. For further details
about this gradient contribution in vdW-DF see [26] appendix B (and references
therein).

A derivation of kernel expressions is beyond the scope of this thesis. For the
interested reader a summarised derivation can be seen in [6] and for a detailed
derivation I recommend reading the licentiate thesis of Berland [27], chapter 3
and appendix A.
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2.3.4 vdW-DF2: a higher accuracy van der Waals density
functional

In 2010 a second version of the van der Waals functional was proposed [28].
This functional (abbreviated vdW-DF2) is of course interesting to use in this
thesis because it aims to improve the description of van der Waals forces. Since
vdW-DF2 is comparatively new it is also valuable to compare the results of this
second version to the results of the original functional vdW-DF1.

The full expression for the exchange-correlation energy uses the exchange
part of the functional PW86 (see [28] and references therein) instead of revPBE.
The correlation part is still LDA and similarly to vdW-DF1 a non-local corre-
lation term is added:

EvdW-DF2
xc = ELDA

c + EPW86
x + Enl

c (2.15)

However, the non-local correlation term is different from vdW-DF1 in that vdW-
DF2 has Zab = −1.887. In vdW-DF2 this value comes from a high-density
(instead of slowly varying density) many-body study.

2.3.5 Non-self consistent calculations
It is possible to do what is usually called non self-consistent calculations with
DFT. Here one converges the density self-consistently with respect to one func-
tional, and then uses this density to calculate the energy with another func-
tional. This is used for example in situations where one wants to do a full DFT
calculation with a certain choice of exchange-correlation functional, but the cal-
culations with this functional are hard to converge in a self-consistent way, or
are too time consuming.

For example one may want to do a calculation for a system with the func-
tional vdW-DF2. A self-consistent calculation with this functional is more de-
manding than a self-consistent calculation with, say, the revPBE functional.
Now, the goal of a DFT calculation is to get the ground state energy. This one
does by self-consistently iterating to find a density, see section 2.1.3. It has been
shown that in many cases the converged density is quite similar regardless of
whether one uses vdW-DF2 or revPBE. But, the ground state energy as a func-
tional of this density will differ. Here one may do a non self-consistent vdW-DF2
calculation based on revPBE. The idea is to first make a self-consistent calcula-
tion with revPBE to get a density. This revPBE density is then used as input for
the total energy expressions of the vdW-DF2 functional. The resulting energy is
called a non self-consistent vdW-DF2 energy based on a revPBE density. This
method have proven to provide good results [26] and will be used extensively in
this thesis.
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2.4 Spin density functional theory
So far I have not discussed how the quantum mechanical property of spin σ
enters the expressions derived within DFT. The ground state electron density
for a physical system might be spin polarised, i.e. n(r, σ =↑) 6= n(r, σ =↓).
This must happen in a system with a finite and odd number of electrons [21],
for example the hydrogen - coronene system used in this thesis. It may also
happen in an extended system like H on graphene. For many systems (such as
atoms with an even number of electrons) one does not need to keep track of
the spin-polarisation and such spin-paired calculations is generally a bit faster.
However, it is possible to rigorously generalise the arguments of DFT to include
two types of densities, the particle density n(r) = n(r, ↑) + n(r, ↓) and the spin
density sσ(r) = n(r, ↑)−n(r, ↓). The expression for the total energy is modified
to depend not only on the particle density but also on the spin density, see for
example [21]. A more detailed discussion of the derivation is beyond the scope of
this thesis. Spin dependent versions of several exchange-correlation functionals
have been derived, for example the local spin density approximation (LSDA), a
spin dependent version of the LDA approximation.

2.4.1 Spin polarised van der Waals calculations: an im-
portant assumption

Calculations with the vdW-DF method on systems which are guaranteed to be
spin polarised (e.g. hydrogen - coronene) must be seen as a first step in a more
systematic theory programme. No derivation of a spin-dependent form for the
non-local correlation in the vdW-DF method exist at present [29].

In GPAW, vdW-DF1 and vdW-DF2 are implemented in the form Exc =
EGGA
x + ELDA

c + Enl
c . When one asks for a spin-polarised calculation the spin-

polarised parts are really Ex and Ec. There are certainly spin-polarised expres-
sions for these first two terms of exchange and correlation. The last term, Enl

c ,
is the principal term separating vdW-DF from other functionals. One could as-
sume that the plasmon energy which enters in the non-local correlation part is
spin-independent. This approach is what has, for now, been coded into GPAW
although no formal discussion or argument has been presented.

One important question arises: if one did a proper spin-polarised derivation
of the vdW-DF kernel function, would the resulting expression still be invariant
under spin-polarisation? The only correct way to answer this question is of
course to do the derivation. Unfortunately this is a project far beyond the
scope of this thesis. Doing spin-paired calculations is no alternative, because it
cannot be done for systems with an odd number of electrons like the hydrogen-
coronene system.

In this thesis I have opted instead to illustrate the importance of spin (in
treatment of physisorption). In this illustration I have to make an assumption
of how the spin would affect the non-local correlation effects. Here I assume
that including spin-polarisation also in the derivation of the van der Waals
functionals will not change the final expression for the kernel function.



Chapter 3

Computational strategy and
schemes

This chapter first gives a short overview of the hardware and software used for
calculations in this thesis work. Thereafter follows a description of the systems
investigated in this thesis, and the calculations performed.

3.1 Hardware: the Beda cluster

All calculations in this thesis work were performed on the Beda cluster at
Chalmers University of Technology in Gothenburg, Sweden. The Beda cluster is
maintained by the Chalmers Centre for Computational Science and Engineer-
ing (C3SE) which is one of six centres for scientific and technical computing in
Sweden. C3SE is a part of the Swedish National Infrastructure for Computing
(SNIC). The Beda cluster has 268 nodes, 2144 cores and about 7TB of RAM
[30].

3.2 Software: ASE and GPAW

All calculations in this thesis work were performed with the software GPAW
(see [31] and [32]) and ASE (see [33]). GPAW stands for Grid-based Projector-
Augmented Wave method and is a python implementation of the PAW method.
ASE stands for Atomistic Simulation Environment and is a very useful python
framework developed closely together with GPAW. I will now briefly describe
ASE and GPAW to explain the relationship between these two softwares and
the underlying theory.

3.2.1 ASE

I want to emphasise that the Kohn-Sham approach to DFT is in principle exact
and parameter free. By using the Born-Oppenheimer approximation we focus
on solving the electron structure problem where the positions of the nuclei are
input parameters. In principle one could write a text file with the coordinates
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Figure 3.1: The hydrogen coronene system made with ASE. The hydrogen atom
is here at a distance of 2.0Å from the coronene surface.

of these nuclei and calculate the total energy with GPAW. However this is a
very cumbersome way to do calculations.

The purpose of ASE is to make life easy when doing atomistic simulations
with a calculator software like GPAW. Before using GPAW to calculate things
one needs to set up the wanted atomic system in the computer. ASE handles
the setup of atomic systems, and also external dynamics like relaxation using
Hellman-Feynman forces (see section 3.3.3). ASE has support for a wide range
of popular DFT-software codes like GPAW, DACAPO, SIESTA, VASP etc. I
used ASE to put certain atoms inside a cell with a certain size, select bound-
ary conditions and control the extent of atomic relaxation. As an example the
hydrogen-coronene system I built with ASE can be seen in figure 3.1. When ev-
erything is set for a calculation one may attach GPAW (or some other software)
to the atoms and ask for different physical quantities (like the total energy of
the system).

3.2.2 GPAW

I again want to emphasise that the Kohn-Sham approach to DFT is in principle
exact and parameter free. But the numerical implementation GPAW requires
that the user makes certain choices. I will briefly describe these choices.
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The first choice is whether one needs to do a spin-polarised calculation or
not. As described in section 2.4 one may do either spin-paired or spin-polarised
DFT. In my case I must use the spin-polarised DFT since the single hydrogen
atom ground state cannot be described accurately in spin-paired DFT.

As mentioned in my brief description of the PAW method (section 2.2.2)
one needs to create atomic setups for all elements in the calculation. The PAW
method rests on the expansion of the wave function in local basis sets close to
the atomic core. The choice of basis sets are made when creating the atomic
setups, as described in 2.2.2. Such setups have been created and tested by the
GPAW developers, and I used the latest official version 0.6.6300.

In the PAW method one also expands the valence wave functions on a sparse
grid in the inter-atomic regions where bonding takes place. The specification of
this grid is not included in the setup since the grid-spacing needed to achieve
good results will depend on the atomic system. Therefore the grid-spacing must
be specified when doing a GPAW calculation. I found that a grid spacing of
0.18Å was enough to get converged results for my systems.

As described in section 2.1.3 the Kohn-Sham equations are solved in an
iterative way. In GPAW there are several choices of eigensolvers available for
solving the Kohn-Sham equation in an efficient way on the computer. The choice
of eigensolver affects the number of iterations needed, and the stability of the
convergence procedure. For the coronene calculations I used the Conjugate
Gradient solver (or CG for short). For the graphene calculations I used the
Residual minimisation method - direct inversion in iterative subspace (or RMM-
DIIS for short).

As also described in section 2.1.3 one must set a threshold for when to con-
sider the solution converged. This is in GPAW set in terms of a threshold for the
total energy change between two iterations. I used a threshold of 10−6 eV/atom.

As described in section 2.1.3 one must also chose a good way of updating
the density as described in section 2.1.3, so that the solution converges with in
reasonable time. This is in GPAW implemented as a mixing parameter which
determines how much to add of the new density. Most of the points were
calculated with the default mixing of 0.1. In the barrier region for hydrogen on
graphene some points were tricky to converge and there a mixing of 0.01 was
used.

Another choice is to specify parameters for the Poisson solver used when
calculating the Hartree energy part of the Kohn-Sham Hamiltonian. I set it
to be more accurate than default in each iteration by specifying the parameter
eps=10−12.

Finally there are a couple of parameters that I did not change because the
default choices worked fine. Instead of describing all default parameters here
I chose to specify the version I used of ASE and GPAW for all calculations.
This should, in addition to my explicit choices (described above) be sufficient
information for anyone who wants to reproduce my results obtained using ASE
and GPAW. For more information about the GPAW implementation see [31]
and [32].
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3.3 Calculation of binding energies

In this work ASE and GPAW have been used to calculate binding energies for
different system configurations. When using DFT to calculate binding energies
one always works with differences between total energies. The binding energy
for a particular system is calculated as the difference between the total energy of
the bound system and the total energy of the non-bound system. For example,
the binding energy for a hydrogen atom at a certain distance d from a coronene
molecule is calculated as

Ebinding(d) = ECor+H(d)− [ECor + EH(d)] (3.1)

So, to obtain the binding energy for a hydrogen atom at a certain distance one
needs to do three separate calculations and combine them according to equation
3.1. As an illustration, hydrogen can be seen at a distance d above a graphene
layer in figure 3.2.

Figure 3.2: Hydrogen a distance d above graphene.

3.3.1 The reference energy for an isolated atom

In principle the reference energy of an isolated hydrogen atom (EH(d) in equa-
tion 3.1) should be independent of d, i.e. independent of where it is placed
in the cell. But, since a finite set of grid points is used to represent the wave
functions during calculations (and because of a finite convergence criteria) the
energy might differ a little (around one meV) for the isolated atom depending
on where it is. To correct for this I have calculated and used the reference en-
ergy for the isolated hydrogen atom at every d. The resulting binding energy
calculated according to the distance dependent formula 3.1 is thus corrected for
errors due to this distance dependence problem.
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3.3.2 Binding energy as a function of distance
I wanted to find out the binding energy for H and H2 as a function of the distance
to some surface. This is easily done by calculating the binding energy (according
to 3.1) for several distances. For each system I started by choosing a uniform
distribution of points from 1.0Å to 9.0Å. The resulting values for the binding
energy was plotted in Matlab as a function of distance. After inspecting the first
plot I did additional calculations if needed to get more data points. This was
done to get a finer resolution in regions of special interest. When I had obtained
enough data points a final plot was made to illustrate the binding energy as a
function of distance. Such a plot for the hydrogen - coronene system can be
seen in figure 3.3.
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Figure 3.3: The binding energy of H - Coronene as a function of distance.
This is a non-self consistent vdW-DF2 calculation based on an underlying self
consistent revPBE calculation. No relaxation of atomic positions was allowed.

By inspection of this plot I could now get information about the chemisorp-
tion and physisorption regions. The important information to get was the po-
sition of minima, if they existed, and the value of the binding energy at the
minima.



3.3. CALCULATION OF BINDING ENERGIES 25

3.3.3 Surface relaxation

Earlier studies (e.g. [4]) indicate that the chemisorption well changes if the
surface carbon atom closest to the hydrogen atom is allowed to relax. This is
a more realistic calculation because in nature the system will of course relax to
the lowest energy possible. To investigate the impact of relaxation the binding
energy for the top site was calculated as in 3.4.2 but with relaxation. The
relaxation was done with revPBE and the energies for vdW-DF1 and vdW-DF2
calculated non-self consistently using the relaxed electron density.

In a relaxation process the atoms move because of forces calculated from
the total energy. But, in DFT the Born-Oppenheimer approximation is used
which means the atoms are stationary - so how can they move? Well, the atoms
doesn’t move during a DFT calculation. But after finding the total energy of
the system with atoms in certain positions it is possible to calculate the forces
on the atoms using the derivative of the total energy with respect to atomic
positions. When the forces are known it is possible to move the atoms a small
distance according to the forces on each atom. This new atomic configuration
can now be used as input for a new DFT calculation.

The calculation of forces rests on the force theorem, often also called the
Hellman-Feynman theorem (see for example [21] chapter 3). In the naive appli-
cation of the force theorem the nuclei moves relative to all electrons. However,
in actual calculations it is more appropriate to move a part of the density (es-
pecially the core electrons) along with the nuclei. A more detailed discussion of
forces is beyond the scope of this thesis, and I refer the interested reader to [21]
chapters 3 and 9.

Relaxation is thus an iterative procedure where one iteration consists of
finding the total energy with DFT, calculate the forces and then move the
atoms a small distance. Some threshold is needed to stop this procedure, and
usually the threshold is set in terms of the magnitude of the calculated forces.
When the forces are smaller than some value the system is considered to have
relaxed.

ASE supports several algorithms for structure optimisation. I used the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm and required the optimisa-
tion to run until the forces on all atoms were less than 0.0001 eV/Å. In each step
the total energy and forces were calculated using GPAW. The same versions and
parameters were used as in the non-relaxed H-coronene case, see section 3.4.2.
ASE also provides functions for fixing some atoms while relaxing others. To
reduce the computational time required, and to be able to compare with similar
studies e.g. [4] I kept all atoms fixed except the carbon atom closest to the
adsorbed hydrogen atom.

3.3.4 Convergence with respect to k-points

Calculations of energies in programmes like GPAW are often performed with
help of integrals in k-space (Fourier space). To evaluate integral expressions over
the full k-space is very computationally demanding. In practise the integrals
are approximated with a sum of values at special points. The number of points
needed for the approximation to work well enough depends on the material.
For many materials a good enough approximation can be obtained by using
only one point. But for metals one usually needs more points. The number of
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Figure 3.4: The binding energy of H - Graphene as a function of the number of k-
points. This is a spin-polarised non-self consistent vdW-DF2 calculation based
on revPBE. The hydrogen atom was placed at the vdW-DF2 chemisorption
distance of 1.2Å over the surface.

points is related to the cell size, so it is not possible to determine a number for
a specific material. Using more points means the calculation takes longer to
finish. Therefore it is desirable to know how many points are required to get a
good result for the system under investigation. For the interested reader a more
detailed discussion of integration over k-space using special points can be found
in [21] section 4.6.

A practical way of determining the number needed for the setup with graphene
used in this thesis is to plot the binding energy for one specific distance as a
function of the number of k-points. The quest is to find the lowest number of
k-points that gives a sufficient accuracy. Such a convergence test was carried
out for the system H on graphene, and the results are assumed to be valid also
for the calculations of H2 on graphene in this thesis. The hydrogen atom was
placed at the top site at a distance of 1.2Å from the surface. The binding energy
was calculated using different numbers of k-points: 1, 4, 9, 16, 25, 36, 49, 64,
81 and 100. The resulting convergence plot (using non-self consistent vdW-DF2
based on revPBE) can be seen in figure 3.4. The calculation was considered to
be converged when using 64 or more points. In this thesis 64 points were used
for all calculations with graphene.
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Figure 3.5: The three adsorption sites; Top (T), Bridge (B) and Hollow (H).

3.4 Atomic systems and adsorption sites
In this section I describe the coronene and graphene systems that I have used
in calculations as models of a graphitic surface. I start with describing three
adsorption sites and thereafter describe each atomic system in detail.

3.4.1 The Top, Bridge and Hollow sites
A graphitic surface has a regular pattern in the x and y directions. To investigate
the binding energy as a function of x, y position relative to the surface earlier
studies have chosen a few different adsorption sites relative to the surface. For
each of these sites the binding energy is calculated as a function of height over
the surface (the separation distance d in formula 3.1). I follow the approach
used in [4] and use three sites: Top, Bridge and Hollow. The Top site is directly
above a carbon atom, the Bridge site is above the middle point between two
adjacent carbon atoms, and the Hollow site is above the middle of a carbon
ring, see figure 3.5.

3.4.2 The H - Coronene system
Coronene (C24H12) is a planar molecule. In this thesis work the molecule was
used as one model of a graphitic surface. Therefore the C-C bond length in
the coronene molecule was kept at 1.42Å. This value is used by ASE to create
graphite and graphene structures. The C-H bond length was kept at 1.084Å as
done in previous studies e.g. [4]. The coronene molecule was constructed with
help of ASE3 and placed together with a single hydrogen atom in a unit cell
with non-periodic boundary conditions in all directions. The cell was a cuboid
measuring 15 × 15 × 20Å in the x × y × z directions. The coronene molecule
was placed at a height of 5Å so that the space above the coronene molecule
was a cube with side 15Å. The hydrogen atom was placed at different heights
(different values of the z-coordinate) above the coronene molecule. For each
site the binding energy was calculated according to equation 3.1. The coronene
molecule with a hydrogen atom adsorbed at the Top position can be seen in
figure 3.6.
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Figure 3.6: The coronene molecule used in calculations. Here a hydrogen atom
is adsorbed at the Top site.

Versions and parameters

The H-coronene system was built using ASE 3.4.1.1765. The energies for vdW-
DF1 and vdW-DF2 were calculated in a non-self consistent way based on revPBE,
see section 2.3.5. The underlying self consistent revPBE calculation was a spin-
polarised calculation performed using GPAW 0.7.2.6974. The calculator grid-
spacing was specified as h = 0.18, the eigensolver was set to cg and con-
vergence criteria total energy change was set to 10−6 eV/atom. The non-self
consistent vdW-DF1 calculation was performed using GPAW 0.7.2.6974. The
non-self consistent vdW-DF2 calculation was performed using GPAW develop-
ment build r7883.

3.4.3 The H - Graphene system

Another model of a graphitic surface is a graphene sheet. A graphene sheet
was constructed with help of the function graphene_nanoribbon in ASE. As in
the coronene case the cell height was set to 20Å and the graphene sheet was
placed at a height of 5Å. The graphene cell contained 24 carbon atoms giving
resulting side lengths of 8.52Å × 7.37853644Å in the planar directions. One
cell of graphene with a hydrogen atom adsorbed at the Top position can be seen
in figure 3.7.

Figure 3.7: One cell of graphene used in calculations. Here a hydrogen atom is
adsorbed at the Top site.
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Versions and parameters

The H - graphene system was built using ASE 3.4.1.1861. The energies for
vdW-DF1 and vdW-DF2 were calculated in a non-self consistent way based
on revPBE, see section 2.3.5. The calculator grid-spacing was specified as
h = 0.18, the eigensolver was set to rmm-diis and the convergence criteria
total energy change was set to 10−6 eV/atom. The number of k-points were
8 in periodic directions parallel to the plane and 1 in the non periodic direction
perpendicular to the plane giving a total of 64 k-points. For this system all
calculations were performed using GPAW development build r7883.

3.4.4 The H2 - Coronene system

This system was set up very similar to the H - Coronene system described in
section 3.4.2, but with a H2 molecule instead of a single hydrogen atom. The
cell size and bond lengths were the same as in the hydrogen case. The system
can be seen in figure 3.8.

Figure 3.8: The cell with coronene used in calculations. Here a hydrogen
molecule is adsorbed at the Top site. The direction of the molecule axis was the
same also for placement at the Bridge and Hollow sites on coronene.

Versions and parameters

The H2 - coronene system was built using ASE 3.4.1.1765. The energies for
vdW-DF1 and vdW-DF2 were calculated in a non-self consistent way based on
revPBE, see section 2.3.5. The underlying self consistent revPBE calculation
was a spin-polarised calculation performed using GPAW 0.7.2.6974. The calcu-
lator grid-spacing was specified as h = 0.18, the eigensolver was set to cg and
convergence criteria total energy change was set to 10−6 eV/atom. The non-
self consistent vdW-DF1 calculation was performed using GPAW 0.7.2.6974.
The non-self consistent vdW-DF2 calculation was performed using GPAW de-
velopment build r7883.
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3.4.5 The H2 - Graphene system
This system was set up very similar to the H - Graphene system described in
section 3.4.3, but with a H2 molecule instead of a single hydrogen atom. The
cell size and bond lengths were the same as for H - graphene. The adsorbed
molecule can be seen in figure 3.9.

Figure 3.9: One cell of graphene used in calculations. Here a hydrogen molecule
is adsorbed at the Top site. The direction of the molecule axis was the same
also for placement at the Bridge and Hollow sites on graphene.

Versions and parameters

The H2 - graphene system was built using ASE 3.4.1.1861. The energies for
vdW-DF1 and vdW-DF2 were calculated in a non-self consistent way based on
revPBE, see section 2.3.5. For this system all calculations were performed using
GPAW development build r7883. The number of k-points were 8 in periodic
directions parallel to the plane and 1 in the non periodic direction perpendicular
to the plane giving a total of 64 k-points.



Chapter 4

Results and discussion

In this chapter the results of the calculations carried out in this work are pre-
sented. The results are discussed in the context of related studies. Binding
energies are always calculated as the difference between total energies for the
system under investigation and reference values, see section 3.3.

4.1 Chemisorption energies

Calculations with atomic hydrogen above unrelaxed coronene (figure 3.3) along
with other studies (e.g. [4]) indicate that H can chemisorb at the Top site but
not at the Bridge or Hollow sites. To compare different surface models the
chemisorption well was calculated for hydrogen at the Top site above coronene,
relaxed coronene and graphene. The resulting three curves can be seen in figure
4.1(a). The extreme values for the chemisorption are summarised in table 4.1.
No chemisorption well was found for molecular hydrogen H2.

Table 4.1: Chemisorption results for hydrogen at the Top site. The numbers
for vdW-DF1 and vdW-DF2 are from non-self consistent calculations based on
underlying self consistent revPBE (GGA) calculations.

System revPBE vdW-DF1 vdW-DF2
E [meV] d [Å] E [meV] d [Å] E [meV] d [Å]

H - Coronene 155 1.2 15 1.25 3 1.25
H - Cor w/relax 361 1.5 542 1.5 488 1.5
H - Graphene 567 1.2 347 1.2 294 1.2

4.1.1 Relaxation of a surface carbon atom

From figure 4.1(a) and table 4.1 it is clear that the chemisorption well for the
H-coronene system changes if relaxation of the closest surface carbon atom is
allowed. This behaviour is in agreement with the calculations performed by
Jeloica and Sidis [4]. The relaxation process was done with revPBE and the
values for vdW-DF1 and vdW-DF2 were calculated in a non self-consistent
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way. At the chemisorption minimum the hydrogen atom was positioned 1.5Å
above the coronene plane, and the closest carbon atom moved 0.36Å towards
the hydrogen atom. No calculations including relaxation was performed for
graphene.

4.2 The barrier between the wells

There is a barrier between the physisorption well and the chemisorption well for
all three surface models; coronene, relaxed coronene and graphene. The barriers
are visible in figure 4.1(a) and the barrier heights are summarised in table 4.2.

The relaxed coronene calculations show a barrier around 200meV, which
is in good agreement with earlier studies summarised in [16]. In the case of
spin-polarised H-graphene calculations the barrier seems to be much higher, up
to 597meV. However, this number is preliminary in the sense that I have not
included atomic relaxations. I expect that inclusion of the morphology changes
which arise in and near the chemisorption region will significantly lower this
barrier.

The barrier region is where the system changes from a spin-paired (total
magnetic moment = 0) to a spin-polarised (total magnetic moment = 1) state.
The degree of spin-polarisation as a function of separation distance can be seen
in figure 4.5(b). In the physisorption region (to the right of the barrier) the
system is almost fully spin-polarised. In the chemisorption region (to the left
of the barrier) the system is spin-paired, i.e. the total magnetic moment is 0.
Since the system is partially spin-polarised in the barrier region it is important
to use spin-polarised calculations to get accurate results.

Table 4.2: Barrier heights between the chemisorption and physisorption wells
for hydrogen at the Top site. The numbers for vdW-DF1 and vdW-DF2 are
from non-self consistent calculations based on revPBE. The barrier height is cal-
culated relative to the bottom of the physisorption well. The results for revPBE
are given relative to the energy at an infinite separation distance because there
is no physisorption well with GGA (and in particular revPBE) calculations.

System revPBE [meV] vdW-DF1 [meV] vdW-DF2 [meV]
H - Coronene 555 472 525
H - Cor w/relax 337 214 228
H - Graphene 824 508 597

4.3 Physisorption energies

The standard GGA functional revPBE does not show any physisorption well
for H or H2. When dispersion forces are included in the model (as in vdW-
DF and vdW-DF2) there is a clear physisorption well for both H and H2. This
qualitative behaviour is in agreement with other studies including van der Waals
forces described in section 1.3.
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The physisorption energy varies less than 10meV for H when comparing three
different adsorption sites (figure 4.2(b)). Site independence is also supported by
the calculations performed over a coronene molecule (figure 4.4(a)) where the
adsorption energy varies very little inside the central benzene ring.

Since the physisorption energies are about the same for H and H2, and
H-atoms seem to be mobile on the surface, this indicate a possibility of form-
ing molecular hydrogen on the graphitic surface via the Langmuir-Hinshelwood
mechanism (see section 1.1.2). However, all results in this thesis are valid at
temperature 0 and although the interstellar medium is cold it is possible that
even small temperatures might cause atoms to desorb from the surface before
they form H2. To investigate the actual formation rates the binding energies
computed in this thesis could be used to calculate probabilities for adsorption
and desorption. A thermodynamic rate equation based on these probabilities
can yield formation rates for H2 that could be compared to experiments and
observations, but this is beyond the scope of this thesis.

4.3.1 H2 above a surface
As expected there is no chemisorption well for H2, but there is a physisorption
well around 3Å. The binding energy for H2 on a graphitic surface is around
60meV which is about 10meV less than for atomic hydrogen. The extreme
values for the physisorption well are summarised in table 4.3.

Table 4.3: Non self-consistent calculations based on revPBE for molecular hy-
drogen above a graphitic surface.

System Site vdW-DF1 vdW-DF2
E [meV] d [Å] E [meV] d [Å]

H2 - Coronene Hollow 71 3.25 59 3.0
H2 - Graphene Hollow 75 3.25 61 3.0

In the case of unrelaxed coronene the physisorption energy was calculated
for the Top, Bridge and Hollow sites. The graphs for all three sites can be seen
in figure 4.2(a). The preferred adsorption site was Hollow (E = 59meV), second
preferred site was Bridge (E = 51meV) and the least preferred site was Top (E
= 50meV).

In the case of graphene the physisorption energy was also calculated for the
Top, Bridge and Hollow sites. The preferred adsorption site was Hollow (E =
61meV), second preferred site was Bridge (E =53meV) and the least preferred
site was Top (E = 52meV).

4.3.2 H above a surface
The physisorption well was calculated for three different surface models: coronene,
relaxed coronene and graphene. The three resulting binding energy graphs can
be seen in figure 4.3. The extreme values for the physisorption well are sum-
marised in table 4.4.

In the case of unrelaxed coronene the physisorption energy was also calcu-
lated for the Hollow and Bridge sites. The graphs for all three sites can be seen
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Table 4.4: Physisorption results for atomic hydrogen. Non self-consistent cal-
culations based on revPBE. For unrelaxed coronene where all three sites were
compared the Hollow adsorption energy was always lowest. Therefore the Hol-
low site values are presented here for unrelaxed coronene. For relaxed coronene
and graphene only the values for the top site were calculated and therefore these
are shown here.

System Site vdW-DF1 vdW-DF2
E [meV] d [Å] E [meV] d [Å]

H - Coronene Hollow 73 3.0 70 2.85
H - Coronene w/relax Top 69 3.0 68 2.85
H - Graphene Top 76 3.0 70 3.0

in figure 4.2(b). The preferred adsorption site was Hollow (E =70meV), second
preferred site was Bridge (E =68meV) and the least preferred site was Top (E
=67meV).

A surface plot of the binding energy

To further investigate the coronene physisorption site independence the binding
energy was also calculated at 1600 different points on a regular grid over the
coronene molecule. The grid covered a square area of 10×10 = 100Å2 around
the centre point of the coronene molecule. The binding energy was calculated
at each point when the hydrogen atom was positioned 2.85Å over the coronene
plane. This distance was chosen since the three sites in figure 4.2(b) all have a
minimum at 2.85Å. The resulting surface plot can be seen in figure 4.4(a). The
surface plot indicates that the physisorption of atomic hydrogen on coronene is
essentially site independent provided the adsorption site is close to the central
carbon ring.

Comparison with other studies

Table 4.5 shows a comparison of calculations for atomic hydrogen on coronene:
accurate quantum chemical MP2 calculations by Bonfanti et al [12], calculations
by Jie Ma et al [18] and calculations performed in this thesis work. Table 4.6
shows a comparison for atomic hydrogen on graphene: an experiment by Ghio
et al [10], Jie Ma et al [18] and results from this thesis work. MP2 calcula-
tions are considered very accurate but cannot be used for infinite systems like
graphene. Diffusion MonteCarlo (DMC) calculations are also considered to be
good, but clearly cannot handle the graphene system. Density functional theory
using vdW-DF1 and vdW-DF2 works for both finite and infinite systems, but
overestimates the binding energy by almost a factor of two. This is when com-
paring to MP2 calculations (for coronene) and an experiment for graphite. The
fact that the results are close for vdW-DF1 calculations performed by Jie Ma
et al [18] and in this thesis suggests that vdW-DF1 calculations work equally
well in the softwares VASP and GPAW. Unfortunately [18] do not present any
values for the chemisorption or barrier regions.
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Table 4.5: Comparison of physisorption results for atomic hydrogen on coronene.

Method Binding energy [meV] Binding distance [Å]
Quantum chemical MP2 [12] 39.5 2.93
Diffusion Monte Carlo (DMC) [18] 26 2.95
vdW-DF1 (VASP) [18] 75 2.99
vdW-DF1 (GPAW) [This work] 73 3.0
vdW-DF2 (GPAW) [This work] 70 2.85

Table 4.6: Comparison of physisorption results for atomic hydrogen on
graphene. The values for Diffusion Monte Carlo are in parenthesis because
the authors express doubt about the validity of these numbers.

Method Binding energy [meV] Binding distance [Å]
Experiment for graphite [10] 39.2 -
Diffusion Monte Carlo (DMC) [18] (5) (3)
vdW-DF1 (VASP) [18] 81 3.0
vdW-DF1 (GPAW) [This work] 76 3.0
vdW-DF2 (GPAW) [This work] 70 3.0

4.4 Coronene as a model of graphene
In the physisorption region there is very small difference between coronene and
graphene results, see tables 4.4 and 4.3. This suggests that coronene is a good
model for physisorption on a graphitic surface and can be used to obtain ph-
ysisorption energies for both H and H2 (and possibly also other small molecules).
Figure 4.4(a) implies that the coronene molecule is a good model for physisorp-
tion on a graphitic surface only locally in the region close to the central carbon
ring. For computational investigations where a larger surface area is required it
is therefore important to either use a larger coronene-like molecule, or preferably
a periodic graphene or graphite surface.

Since the binding energy might change a lot in the chemisorption region if
relaxation is allowed (see figure 4.1(a) for relaxed coronene) it is not possible
to conclude whether or not coronene is a good model or not for graphene in
the chemisorption region. The relaxation performed for coronene in this thesis
was limited only to one carbon atom and was only performed for hydrogen on
coronene. To get a more complete picture of the relation between coronene and
graphene in the chemisorption region relaxation must also be done for hydrogen
above graphene, and the relaxation must include more carbon atoms. Including
more atoms is important because it is unnatural to alter just one atom in an
infinite graphene sheet.
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4.5 Spin-paired vs spin-polarised calculations
The free hydrogen atom is spin-polarised in its ground state since it has only 1
electron and will therefore have a total magnetic moment of 1. When hydrogen
interacts with other atoms it is possible that the total system will have a different
magnetic moment. To investigate this behaviour both spin-paired and spin-
polarised calculations were done for the system atomic hydrogen at the Top site
above a graphene surface. The resulting binding energy curves can be seen in
figure 4.5(a).

The curve called Spin-polarised is the result of doing a spin-polarised cal-
culation i.e. allowing the system to change its magnetic moment. This is the
curve used to obtain the binding energies for atomic hydrogen on graphene pre-
sented in this thesis. The curve called Spin-paired is the result of doing the
same calculation in a spin-paired way, i.e. forcing the total magnetic moment
to be zero.

It might seem strange that that the spin-paired curve does not approach zero
as the separation distance becomes large. But, this is not surprising because
the reference energy is taken to be the spin-polarised hydrogen atom and not
a spin-paired hydrogen atom. Since the spin-paired system will never be able
to reach the energy of the spin-polarised reference state, there will be an offset
even at an infinite separation distance.

The calculations suggest that atomic hydrogen can form a strong chemical
bond close to the graphene surface at a distance between 1Å and 1.5Å, see
figure 4.1(a). As can be seen in figure 4.5(b) the system is spin-paired in the
chemisorption region (to the left of the barrier), i.e. the total magnetic mo-
ment is 0. This is physically meaningful since a strong chemical bond means a
charge rearrangement which also enables pairing of electrons. Here one expect
a spin-paired calculation to give the same result as a spin-polarised calculation
(provided that one uses the same reference). It is clear that the curves in figure
4.5(a) indeed do give the same result in the chemisorption region.

In the barrier region around 2Å the system is in a mixed state with a mag-
netic moment shifting from 0 to 1 as visible in figure 4.5(b). In this region it is
hard to make the calculations converge. High convergence thresholds and small
mixing parameters are required compared to other separation distances.

In the physisorption well and at larger separation distances the system is
spin-polarised with a total magnetic moment of 1. It is interesting to see that
the system is indeed spin-polarised in the physisorption region which indicates
that binding in this region is not due to a charge rearrangement.

As a final remark about spin polarisation I again want to discuss the vdW-
DF1 calculations of Jie Ma et. al [18]. In this article the PAW method is
used through the implementation VASP to calculate vdW-DF1 binding energies.
Jie Ma et. al writes that spin-polarised calculations are used in their DFT
calculations. However, they do not provide any reference to a spin-polarised
derivation of the van der Waals density functional. It is possible that spin
polarised vdW-DF1 calculations are implemented the same way in VASP as in
GPAW. Although it is possible to use the assumption of a spin-independent
kernel (described in section 2.4.1) it is important to emphasise that at the
moment there exists no true extension of vdW-DF for spin-polarised cases. A
derivation built upon a fully spin-dependent van der Waals density functional
theory would certainly be appreciated if published.
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(a) The chemisorption and barrier regions for atomic hydrogen above three surfaces.
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Figure 4.1: Atomic hydrogen adsorbed on three surfaces. Panel (a) shows the
binding energy as a function of separation distance for a single hydrogen atom
over three different surfaces: coronene, relaxed coronene and graphene. The
hydrogen atom is positioned at the top site in all three cases. These are non-self
consistent vdW-DF2 calculations based on revPBE. In the barrier region the
system changes from a spin-paired to a spin-polarised state, see also panel (b)
and figure 4.5(a). Panel (b) shows the magnitude of the total magnetic moment
for a single hydrogen atom over both coronene and graphene as a function of
separation distance.
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(a) The physisorption well for H2 above coronene.
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(b) The physisorption well for H above coronene.

Figure 4.2: Non-self consistent vdW-DF2 calculations based on revPBE for H
and H2. Panel (a) shows the physisorption well for H2 over a coronene molecule
surface for three different sites. Panel (b) shows the physisorption well for a
single hydrogen atom over a coronene molecule surface for three different sites.
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Figure 4.3: The physisorption well for a single hydrogen atom over a surface
for three different surfaces. Non-self consistent vdW-DF2 calculations based on
revPBE. The hydrogen atom is positioned at the top site in all three cases. The
curves for unrelaxed coronene and relaxed coronene are almost identical.
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Figure 4.4: Atomic hydrogen adsorbed above a coronene molecule. Panel (a)
shows the binding energy (in meV, see colorbar) calculated on a 1600 points
grid over a square area of 100Å2 covering the coronene molecule. The binding
energy was calculated at each point when the hydrogen atom was positioned
2.85Å over the coronene plane. The six outer hollows (rings) in the coronene
molecule is clearly visible. The innermost hollow ring is in the centre. Panel
(b) shows a surf (3D) version of panel (a).
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Figure 4.5: A comparison between spin-paired and spin-polarised calculations
for atomic hydrogen above graphene. Panel (a) shows the binding energy from
both a spin-paired and a spin-polarised calculation for atomic hydrogen ad-
sorbed at the Top site above graphene. These are both non-self consistent vdW-
DF2 calculations based on revPBE. In the barrier region the system changes
from a spin-paired to a spin-polarised state, see also figure 4.5(a). Panel (b)
shows the magnitude of the total magnetic moment for a single hydrogen atom
over a graphene surface as a function of separation distance. This data is taken
from the calculations presented in panel (a).



Chapter 5

Summary and outlook

The functionals vdW-DF1 and vdW-DF2 do describe dispersive forces behind
physisorption in a better way than the traditional GGA functional revPBE.
However both vdW-DF1 and vdW-DF2 overestimates the physisorption energy
by almost a factor of 2 compared to experiment and accurate quantum chem-
ical calculations. The results in this thesis predict a physisorption energy for
atomic hydrogen on a graphitic surface of 70meV whereas experiment and ac-
curate quantum chemical (MP2) calculations predict a physisorption energy of
≈40meV.

The molecule coronene seems to be a good model of a graphene surface in
the case of hydrogen physisorption, provided that the physisorption site is inside
(or close to) the middle carbon-ring.

Calculations with vdW-DF1 and vdW-DF2 predict that hydrogen can bind
to a graphitic surface both through chemisorption and physisorption, and that
there is a barrier between these two wells. Physisorption of atomic hydrogen
on a graphitic surface seems to be essentially site independent with changes in
binding energy less than 10meV for atoms moving around on the surface. A
site-independent physisorption is consistent with other related computational
studies.

The results also suggest that it is important to do spin-polarised calcula-
tions when investigating atomic hydrogen above a graphitic surface. This is
partly because a single hydrogen atom cannot be described correctly within
spin-paired DFT, but also because the atomic hydrogen - graphene system is
partially polarised in the barrier region.

There are several interesting ways to extend the work done in this thesis.
One way is to learn more about convergence and mixing in GPAW and redo
the calculations in this thesis using self-consistent vdW-DF1 and vdW-DF2.
It would be interesting to see if the difference actually is small also for these
systems compared to the results presented in this thesis.

It would also be interesting to do another calculation for H on graphene
where the closest carbon atom would be allowed to relax similarly to what has
been done for H on coronene in this thesis.

At the moment there exists no spin-dependent derivation of the van der
Waals density functional method. A derivation built upon a fully spin-dependent
van der Waals density functional theory would be valuable for anyone interested
in describing systems where both van der Waals forces and spin-polarisation play
an important role.
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