
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Using QuickCheck to verify Erlang
implementation of GTPv2

Master of Science Thesis

JOHAN EMILSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science & Engineering
Gothenburg, Sweden, July 2011

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and
in a non-commercial purpose make it accessible on the Internet. The Author
warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about
this agreement. If the Author has signed a copyright agreement with a third
party regarding the Work, the Author warrants hereby that he/she has ob-
tained any necessary permission from this third party to let Chalmers Uni-
versity of Technology and University of Gothenburg store the Work electron-
ically and make it accessible on the Internet.

Using QuickCheck to verify Erlang implementation of GTPv2

JOHAN EMILSSON

c© JOHAN EMILSSON, July 2011

Examiner: JOHN HUGHES

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2011

Abstract

In this master thesis project, Quviq QuickCheck is used in order to
perform unit testing of a stateless subsystem of Ericsson’s MME, which
is a central node in the 4G network. During the project, errors that
have not been found in previous testing are discovered, QuickCheck
test code is found to be cheap to maintain, and the specific environ-
ment is found to be ideal for QuickCheck testing.

i

Acknowledgments

I would like to thank my examiner and supervisor of this master thesis,
John Hughes, for his expertise and the advice during the project. I would
also like to thank my Ericsson supervisors, Jonas Hadin and Martin Nylin,
for their help in guiding me through the Ericsson infrastructure as well as
the system that has been tested. I would like to show my appreciation to
Ericsson managers, Anne-Lie Börjesson and Christer Nilsson, for allowing
me to perform this project and consume the time of their team members.
I would also like to give a general thank you to everyone who has, in one
way or another, participated in the project. Finally, a big thank you to my
friends and family for all the love and support.

ii

Nomenclature

GPRS General Packet Radio Service
A platform for mobile networking services.

GTPv2 Second version of the GPRS Tunneling Protocol
The communication protocol that is used between SGWs and
MMEs in the LTE network.

GTS GTPv2 Translation Subsystem
A subsystem of the MME that is responsible for GTPv2 com-
munication.

IE Information Element
The building blocks of which GTPv2 messages consist.

LTE 3GPP Long Term Evolution
The fourth generation of mobile networks, commonly referred to
as 4G.

MME Mobility Management Entity
A central node in the LTE network.

PBT Property Based Testing
A software testing method in which the expected behavior of a
software system is defined by properties.

SBT Scenario Based Testing
A software testing method in which the expected behavior of
a software system is ensured by execution of one or more sce-
nario(s).

SGW Serving Gateway
A node in the LTE network.

UE User Equipment
Any mobile equipment that is used in a mobile network. Usually
a mobile phone.

iii

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Limitations . 2

2 Software quality and testing 3
2.1 Scenario based testing . 3
2.2 Property based testing . 4
2.3 Negative testing . 4

3 QuickCheck 6
3.1 Properties . 6
3.2 Generators . 7
3.3 Validation . 8
3.4 Collect . 9

4 Environment 11
4.1 Mobility Management Entity (MME) 11
4.2 GTPv2 Translation Subsystem (GTS) 12
4.3 GTPv2 - Messages and Information Elements 13

5 Method 14
5.1 Preparation and pre-studies 14
5.2 Implementation and measurements 14

6 Results 16
6.1 Current development environment 16
6.2 Previous use of QuickCheck 16
6.3 Implementation . 17

6.3.1 IE generation and validation 18
6.3.2 Message validation and sanitation 19
6.3.3 Message modules . 20

6.4 Time consumption . 21
6.5 Code complexity . 22
6.6 Discovered errors . 22
6.7 Maintainability . 23

iv

7 Analysis 24
7.1 Effort . 24
7.2 Efficiency . 25
7.3 QuickCheck in the specific context 26

8 Conclusions 28

9 Future work 29

References 30

A Source code 31
A.1 IE generation and validation 31
A.2 Message validation and sanitation 37
A.3 Message modules . 40

A.3.1 Create Session Request 40
A.3.2 Create Bearer Request 42
A.3.3 Delete Bearer Request 45

v

1 INTRODUCTION

1 Introduction

This master thesis project has been performed on behalf of Ericsson Lindhol-
men in Gothenburg, Sweden. One of the major products that is being devel-
oped at these facilities is the Mobility Management Entity (MME), which is
a central node in the 3GPP Long Term Evolution (LTE, commonly referred
to as 4G) network. During the course of this project, property based testing
(PBT) is performed on one of the subsystems of the MME.

PBT is a concept that is related to the concepts of specification and model
based testing. Test methods based on these concepts (such as QuickCheck, see
section 3) are widely used in the academic community, and several studies
have suggested that QuickCheck offers a number of benefits compared to
conventional testing when used in the software development industry [2, 3,
4, 5, 6].

This section describes the purpose, scope and limitations of the work
performed in the thesis.

1.1 Purpose

The purpose of this thesis is to study the potential benefits and drawbacks
of using QuickCheck for unit testing on a software module that implements
a data communication protocol (see section 4). The commissioner is also
interested in gaining an understanding of how QuickCheck would work in
their organization, in what situations the use of this tool would be beneficial
and where/how QuickCheck could be efficiently implemented in the current
development organization.

1.2 Scope

The scope of this thesis contains a number of deliverable items that together
will constitute a foundation on which an analysis regarding the matter at
hand can rest.

• Implementation

– QuickCheck unit testing of the protocol module described in sec-
tion 4.

– QuickCheck unit testing of a legacy version of the same module.

• Analysis

1

1.3 Limitations 1 INTRODUCTION

– Time consumption needed in order to accomplish QuickCheck unit
testing that gives the same (or higher) degree of confidence regard-
ing the correctness of the code, compared to the currently used
SBT method.

– Complexity of the QuickCheck implementation in terms of the
amount of learning that is needed in order perform QuickCheck
unit testing as described above.

– Importance of detected defects (if any), compared to defects dis-
covered by the currently used SBT method.

– The thesis will also contain an analysis regarding how well suited
QuickCheck is for use in the environment at hand. It is possible
that QuickCheck is better suited for testing in other environments
and/or for different purposes than the unit testing that will be
implemented during the course of this thesis. This part of the
analysis will involve topics such as what level of support the use
of QuickCheck offers the developers, besides from finding bugs,
compared to the currently used SBT method.

1.3 Limitations

The practical work performed in this thesis is limited to a stand alone im-
plementation of QuickCheck unit testing of the protocol module described
in section 4. The implementation is not to be integrated with existing test
environment.

The theoretical work will be focused on the organization surrounding the
development of the relevant subsystem. The results and conclusions of the
thesis will be applicable to development organizations similar in size and
environment. The thesis is not aiming at reaching conclusions about the use
of QuickCheck in a wider perspective.

2

2 SOFTWARE QUALITY AND TESTING

2 Software quality and testing

Correctness1 and stability2 are important measures of quality for any soft-
ware developer. For some software, such as for safety- and performance
critical systems, correctness and stability might even be considered as the
most important measures of quality.

In order to achieve software that meets high quality demands with respect
to these measures of quality, developers test the software they produce in
order to discover failures, errors and faults. Software testing is generally
regarded as an expensive and demanding activity, and usually consumes a
large portion of the total budget of any software project. It is therefore
relevant and interesting to perform research in this topic and to evaluate
alternative approaches of software testing.

Conventionally, testing in software projects is performed at a number of
different levels of abstraction. This thesis is focused on a unit testing level,
where a unit is the smallest testable object in a software system (usually a
function). This means that programmers write tests that ensures the cor-
rectness of the code they produce.

2.1 Scenario based testing

The most common way of performing unit testing is by an approach that in
this report will be referred to as scenario based testing (SBT). This approach
includes an initialization of test data, an execution of the software that is to
be tested, and a statement of what the result of the execution is expected
to be. In other words, the programmer creates scenarios (also known as test
cases) that are used in order to ensure the behavior of the software. Consider
a function date_to_day that is supposed to calculate the day number from a
date, such that if the function is applied on the date the first of January, the
result should be the day number 1. Similarly, applying the function to the
last of December would result in the day number 365. For simplicity, assume
that the function does not take in consideration whether the current year is
a leap year or not.

test_date_to_day() ->

Date = {1,1},

DayNumber = date_to_day(Date),

DayNumber == 1.

1Correct software is software that behaves according to a predefined specification.
2Stable software is software that does not crash unexpectedly.

3

2.2 Property based testing 2 SOFTWARE QUALITY AND TESTING

In the first line, some test data is set up. In the second line, the call to
the function that is being tested is made and the results are stored. The last
line contains an assertion that controls that the results are as expected. In
SBT, tests like these are commonly grouped together in so called test suites
that are used to ensure the behavior of some software using several scenarios.
In this case, it would probably be a good idea to also test the function with
the last date of the year and with one or more dates in between. Please note
that the example above is written as an Erlang function that results in a
boolean value. The example is not meant to constitute an actual example of
some SBT tool, but rather to describe the basic principles behind SBT.

SBT is generally accepted as a good practice and it comes with a number
of benefits besides finding errors in the code. For instance, a test case can
serve as design specification for the function, and if test cases are set up to be
executed automatically, SBT ensures that change and refactoring does not
compromise the integrity of the software. There are however drawbacks with
SBT. In order to cover all execution paths in a function, the programmer will
have to write a large number of scenarios, something that is both tiresome
and time consuming.

2.2 Property based testing

Another way of achieving unit testing is by a method called property based
testing (PBT). This concept is related to specification and model based testing
and is based on formal specification of software. In PBT, the desired behavior
of the software is described with properties. A property is, in other words, a
rule that describe how the software that is being tested is allowed to behave.
Different PBT tools are likely to utilize and test properties differently, the
fundamental idea behind PBT is however likely to be similar regardless of the
tool that is being used. The primary idea of PBT is to use the properties that
are defined in order to generate test cases, and to verify that the property
holds for every test case. The advocates of PBT claims that this approach
comes with many advantages compared to conventional SBT, for instance
that it enables thorough testing with less effort[2]. In this project the PBT
tool QuickCheck has been used (see section 3).

2.3 Negative testing

The SBT example in section 2.1 is a typical example of positive unit testing, a
function is being applied to correct input. In general, positive testing means
testing that is performed with non-faulty test data. The opposite is called
negative testing, faulty data or faulty states are used in order to assure that

4

2.3 Negative testing 2 SOFTWARE QUALITY AND TESTING

the software that is being tested creates and handles errors correctly. In order
to fully test the behavior of a system, both positive and negative testing is
necessary. The concepts of positive and negative testing are separated from
those of property and scenario based testing.

5

3 QUICKCHECK

3 QuickCheck

QuickCheck is a PBT tool that was originally developed by Claessen and
Hughes as a lightweight testing tool for programs written in Haskell[1]. Quviq
AB has since developed a version of the tool for Erlang programs, called
Quviq QuickCheck[2]. This section describes the idea behind QuickCheck
testing, and shows how QuickCheck can be used in practice. Besides the
concepts that are described in this section, QuickCheck also has support for
testing stateful systems and C code. However, these aspects of QuickCheck
have not been used during the course of this thesis and are thus left out of
this section.

3.1 Properties

A property in QuickCheck is basically a logical statement that defines how
the software that is being tested is expected to behave. Consider the example
from section 2.1 that tests the function date_to_day. To ensure the behavior
of this function using QuickCheck one needs to consider how to specify the
behavior of a function that calculates the day number from a date. An
oracle3 could be used, but one could also specify the behavior manually. In
this simple example it is not difficult to catch the behavior of the function
using a simple property. Consider the following example, that also makes use
of the inverse function of date_to_day, day_to_date, that calculates a date
given a day number:

prop_day_number() ->

?FORALL(D, date()),

D == day_to_date(date_to_day(D))).

This property states that every date D, that is generated by date() (see
section 3.2), is equal to the result of applying both date_to_day and its
inverse to D. QuickCheck will use the generator date() to generate random
dates and check that the property holds for every generated test case. This
kind of a property is, in this report, referred to as a round trip property. This
kind of property might give a false security regarding the correctness of the
functions, if they have a common misunderstanding of how the conversion
between date and day numbers are supposed to work.

3An oracle, in this context, is an equivalent function that is known to be correct.

6

3.2 Generators 3 QUICKCHECK

3.2 Generators

QuickCheck offers a number of built in generators, such as int() that gener-
ates a small random integer. QuickCheck also enables the user to combine the
built in generators in order to generate more complex data. The generator
date() might look something like this:

date() ->

{choose(1,12), choose(1,31)}.

The built in generator choose(N,M) generates a random value that is
inclusively bounded by N and M. This means that date() would generate a
tuple of two elements where the first element is an integer between 1 and
12 (a month), and the second element is an integer between 1 and 31 (a
day). This generator would generate correct dates in most cases, but there is
also a possibility that it generates an incorrect date. The month of June for
instance, can have at most 30 days. The tuple {6,31} would, in other words,
be an incorrect date.

As described in section 2.3, both positive and negative testing is needed
in order to fully determine the correctness of a software system. The recom-
mended approach to achieve this in QuickCheck is to design generators that
can produce both correct and incorrect test data, and to write a validating
function for the data in order to be able to determine the correctness of the
system, regardless of the correctness of the input data. One of the reason
behind this recommendation is the simple fact that generators like these are
less complex. If the generator date() was to generate only correct dates it
would have to be more complex. However it is also desirable to be able to
control the distribution of faulty data, therefore two simple date generators
could be used; one that mostly generates correct dates, and one that mostly
generates incorrect dates. These generators can be combined into a complete
date generator that also gives the user control over fault distribution in the
following way:

date() ->

fault(bad_date(), good_date()).

bad_date() ->

{int(), int()}.

good_date() ->

{choose(1,12), choose(1,31)}.

7

3.3 Validation 3 QUICKCHECK

The generator fault() is used to give the user control over fault distri-
bution, bad_date() will mostly generate incorrect dates and good_date()

will mostly generate good dates. The generator can now be used in the fol-
lowing way: fault_rate(1,5,date()), which tells QuickCheck that one in
five dates should be generated using the faulty generator, which is the first of
the two arguments of the generator fault(). This approach renders simple
generator code, and gives the user a possibility to control fault distribution.

3.3 Validation

In order to determine that a function works as intended, there is a need to
determine whether an error was caused by incorrect input and that there are
no errors in input that does not result in errors. In order to achieve this,
there is a need for validation. To determine whether a date is incorrect or
not, the following validation function could be used:

valid_date({M,D}) when D >= 1 ->

if

lists:member(M, [1,3,5,7,8,10,12]) -> D =< 31;

lists:member(M, [4,6,9,11]) -> D =< 30;

M == 2 -> D =< 28;

true -> false

end;

valid_date(_) ->

false.

This function returns a boolean value, and states that a valid date has a
day that is greater to or equal to one, and that if the month has 31 days - the
day should be smaller than or equal to 31, and so on. Recall the property
from section 3.1, this property now needs to be slightly updated in order fully
capture the behavior of the function date_to_day:

prop_date() ->

?FORALL(Date, fault_rate(1,5,date()),

case date_to_day(Date) of

bad_date -> not valid_date(Date);

Day -> Date == day_to_date(Day) and

valid_date(Date)

end).

In this property, it is assumed that the atom bad_date is returned by the
function in case of a bad date. If that happens, the property states that the

8

3.4 Collect 3 QUICKCHECK

generated date should not be a valid date. That is, the validation function
should return false. If no error is discovered, the property states that the
same round trip property as in the previous version of the property should
hold and that the generated date shall be valid. This property does not fully
capture the behavior of the function day_to_date, as its error handling is
not being utilized.

An execution of the property would, assuming that the functions it tests
work as intended, looks like this:

1> eqc:quickcheck(prop_date()).

...

.....................................

OK, passed 100 tests

true

QuickCheck generates 100 test cases by default, the number of tests can
easily be adjusted manually. If QuickCheck manages to find input that falsi-
fies the property, this input will be displayed for the user. The input will also
be simplified by a process that is called shrinking. In this process, numbers
are reduced, lists are shortened and so on, in order to find the smallest pos-
sible case that causes the same error. The shrunken input is also displayed.
The concept of shrinking is not widely used in this project, and will thus not
be described in any more detail in this report.

3.4 Collect

In order to visually display the fault distribution of the generated data,
QuickCheck has a built in property collect(Data, prop()) that collects
statistics of the generated data Data, and then runs the property prop().
Collect can be used in order to gather statistics of the data produced by the
generator date():

prop_collect() ->

?FORALL(Date, fault_rate(1,5,date()),

collect(valid_date(Date), true)).

This property does not test anything, it just gathers statistics. The result
would look something like this:

1> eqc:quickcheck(prop_collect()).

...

.....................................

9

3.4 Collect 3 QUICKCHECK

OK, passed 100 tests

82% true

18% false

true

This output shows that about 20% of the dates that are generated are in-
correct. The use of the property collect(Data, prop()) during this project
is not described in this report, however the full implementation can be seen
in the appendix.

10

4 ENVIRONMENT

4 Environment

In order to provide the reader with an understanding of the context of the
thesis work, this section describes the environment of the software that is
tested.

The 3GPP Long Term Evolution (LTE, also commonly referred to as
4G) network is a network that allows mobile devices to communicate and to
use the internet in accordance with the 4G standards. This thesis project
includes PBT of one of the subsystems of the Mobility Management Entity
(MME) node.

4.1 Mobility Management Entity (MME)

The MME is a central node in the LTE network; it is connected to a large
number of base stations and a number of other MMEs. It keeps track of the
location of all User Equipment (UE, e.g. mobile phones) that is connected
to any of the base stations. The MME is also responsible for setting up data
communication bearers between the base stations and the Serving Gateway
(SGW). A simple LTE network is depicted in figure 1, the MME uses the
second version of the GPRS Tunneling Protocol (GTPv2) for communication
with the SGW and other MMEs. The other protocols in the figure will not
be relevant for this thesis.

Figure 1: A simple sketch of the relevant parts of an LTE network.

11

4.2 GTPv2 Translation Subsystem (GTS) 4 ENVIRONMENT

4.2 GTPv2 Translation Subsystem (GTS)

The subsystem in the MME that has been tested in this thesis will in this
report be referred to as the GTPv2 Translation Subsystem (GTS). This sub-
system is more or less a protocol module that implements the protocol GTPv2
according to 3GPP’s specifications[7]. The GTS is responsible for processing,
packing and unpacking data traffic that is being sent and/or received to/from
the SGW and/or other MMEs. The subsystem receives binary GTPv2 mes-
sages (see section 4.3), validates the data and unpacks it into Erlang records4

that are passed on to the receiving internal subsystem, see figure 2. The GTS
is also capable of doing the reversed task; receiving Erlang records from in-
ternal subsystems of the MME, translating them into GTPv2 compatible
data packets and sending the data to the receiver according to the GTPv2
standard, see figure 3.

Figure 2: Binary GTPv2 messages are validated and unpacked into Erlang
records by the GTS.

Figure 3: Erlang records are received by the GTS and gets packed into binary
GTPv2 messages.

4A record is an Erlang construct that enables named access to data objects, similar to
associative arrays in Python or structs in C.

12

4.3 GTPv2 - Messages and Information Elements 4 ENVIRONMENT

4.3 GTPv2 - Messages and Information Elements

In order to give the reader of this report a chance to understand the de-
tails of the QuickCheck testing (section 6.3) that is performed in this thesis,
this section contains a description of GTPv2 messages according to 3GPP’s
specifications[7].

A message consists of one or more information elements (IEs). The 3GPP
specification[7] states which IEs can be contained in a specific message, which
IEs are mandatory for a message and so on. An IE that is considered manda-
tory for a certain message needs to be included in the message in order for
the message to be considered valid. A GTPv2 message is in other words a
string of binary IEs. A typical IE is coded in the following way:

<<ID, Length:16, Spare:4, Instance:4, Data:Length/bytes>>

The above syntax is Erlang bit syntax5, something that is frequently used
in the QuickCheck testing that is performed in this project. The meaning of
each field of the bit string is described in table 1.

Name Size Comment
ID 8 bits A unique identifier, the type of the IE
Length 16 bits The length of the Data field contained in the IE,

this value is interpreted as bytes
Spare 4 bits These bits are not used, nor evaluated. Commonly

set to 0000
Instance 4 bits If more than one IE of the same type is used in

a message, the Instance value is used to tell them
apart

Data Length bytes The actual data content of the IE

Table 1: The contents of an IE.

The specification also contains information regarding how the data con-
tained in a specific IE should be coded. If the data is not coded according to
the specification, the IE is considered invalid. IEs that are mandatory for a
specific message needs to be valid in order for the message to be considered
valid.

The full GTS implementation consists of validation, unpacking and pack-
ing of 33 GTPv2 messages. In these messages, there are a total of 41 IEs.

5Erlang bit syntax was built into Erlang in order to make it easier to handle binary
data.

13

5 METHOD

5 Method

In order to achieve the goals of this thesis a number of activities are per-
formed.

5.1 Preparation and pre-studies

The current testing environment and the relevant development chain at large
are studied in order to assess how the use of QuickCheck could be beneficial.
The results of these studies are also useful for interpreting the results of the
actual QuickCheck unit testing.

The thesis also contains studies of previous use of QuickCheck at Erics-
son, in other companies and in academia, in order to gain an understanding
of how QuickCheck has worked in similar environments, how QuickCheck is
beneficially utilized, and how to avoid mishaps that might have been per-
formed by others in the past.

5.2 Implementation and measurements

In order to study the benefits and drawbacks of QuickCheck unit testing,
QuickCheck is used to perform unit testing of the GTS (see section 4.2). In
order to attain valuable results from the testing, measurements of some sort
need to be made.

The most straightforward measurement that is made is the time con-
sumption that is needed in order to achieve a thorough unit testing with
QuickCheck. This measurement is compared to an estimation of the time
consumption needed in order to achieve similar results with the current unit
testing techniques that are used in the relevant organization. The estimation
is based on informal interviews with developers from the concerned organi-
zation.

The complexity of the test code is also an interesting measurement, how-
ever it is not a trivial thing to measure. In order to assess the amount of effort
that is needed to learn how to write the properties and test data generators
necessary in order to conduct QuickCheck unit testing, informal interviews
with experienced Erlang developers from the concerned organization are con-
ducted.

The thesis also contains an adaptation of the QuickCheck code for testing
of a legacy version of the GTS. Measurements and estimations of the overall
effort and in particular time consumption needed in order to achieve this
adaptation are used in order to study the maintainability of QuickCheck

14

5.2 Implementation and measurements 5 METHOD

test code, compared with the test code produced by the currently used SBT
environment.

Whether there is a difference in criticality between the defects that are
detected by the currently used SBT technique and those that are discovered
by QuickCheck is yet another matter that is difficult to measure. The critical-
ity of errors might be even harder to value than the previous measurements,
especially at a unit testing level since there is no saying about the failure
that a unit level error might cause in the system that the unit belongs to.
However, an analysis of this issue is conducted by comparing the methods of
the currently used SBT method and PBT with QuickCheck with respect to
code coverage and other factors that are related to certainty of correctness.

As mentioned in section 2.1, SBT can be used for other purposes than
finding errors. By conducting informal interviews with members of the con-
cerned development organization, these purposes are determined. By simply
using QuickCheck for unit testing in the affected environment, it is possible
to determine whether QuickCheck testing offers the same support.

15

6 RESULTS

6 Results

This section describes the findings of the project, as well as the QuickCheck
test code that has been produced.

6.1 Current development environment

The software developers and designers at the concerned department of Er-
icsson use a number of testing strategies and tools in order to ensure the
quality of their products. Besides unit testing and code reviews, simulated
and actual environments are used for system and integration testing of the
systems.

This project is focused on a unit testing level, and uses the unit testing
environment at the concerned department as a benchmark in order to put
the results of the QuickCheck testing in context. The current unit testing
consists of an SBT tool that is developed internally at Ericsson, the testing
is divided into test suites that are set up to be run automatically when code
is committed to the code base. The SBT tool also has support for displaying
the code coverage of tests suites, and helps with cross system dependencies.
Some of the developers that have, in one way or another, been involved in
this project, say that the main purpose of the unit testing environment is to
evaluate the design of different components rather than to find actual coding
errors. The SBT tool however, seem to be used by developers mainly for the
specific purpose of ensuring the correctness of the code.

The current unit testing environment seem to be appreciated for the sup-
port it gives to the developers, but there also seem to be some drawbacks.
The majority of the developers that have participated in the pre-studies of
this thesis say that the test code produced by the tool often becomes complex
and hard to understand. They also have problems with having to spend large
amounts of time in order to maintain the test code, due to the inherent tight
coupling with the code that is being tested.

6.2 Previous use of QuickCheck

The benefits and drawbacks of QuickCheck testing have been studied on
several occasions.

Arts et al.[2] used QuickCheck for testing of an Ericsson media proxy and
were able to find several faults that had not been detected during previous
testing of the proxy. They were also able to discover that the specification of
the protocol that was used in the media proxy included several unclarities.

16

6.3 Implementation 6 RESULTS

During a master thesis project at Linköping University, Granberg and
Jernberg[4] preformed QuickCheck testing on Ericssons radio base stations
that are used for mobile communications. They found that QuickCheck was
able to find faults that conventional testing would not find, that QuickCheck
code is easier to maintain and that QuickCheck testing requires slightly higher
effort and has a higher learning threshold than conventional testing.

In a case study performed at Erlang Training and Consulting Ltd., Boberg[3]
used QuickCheck for system testing of a message gateway product. He con-
cluded that QuickCheck testing increased the number of faults that were
discovered during system testing.

In more recent studies, Koral and Hoffmann[5] were able to conclude that
QuickCheck testing requires more thinking and less work when they used the
tool to test Motorola mobile network products. Crowe[6] used QuickCheck
to test radio base station C code and stated that QuickCheck is highly ap-
propriate for testing of concurrent systems.

These examples all give reasons to think that QuickCheck is a powerful
testing tool, and that property based testing is a concept that might become
a well used testing approach in the software industry.

6.3 Implementation

This section describes the test code that has been written in order to perform
QuickCheck unit testing of the GTS. The test code has a modular design
that consists of one module that generates and validates individual IEs, one
module that validates and sanitizes entire messages, and one module per
message that is being tested. As described in section 4.3, different messages
consist of different combinations of IEs. Each message also has a different
set of mandatory IEs. The modular design of the test code allows for reuse
of generation and validation of IEs, as well as validation and sanitation of
entire messages while still leaving room for the individual differences of the
different messages. A diagram of the test code design is depicted in figure 4.

Validation is performed in order to evaluate error messages from the GTS.
If the GTS returns an error message saying that a mandatory IE is missing or
is incorrect in the generated message, the test code needs to verify that such
an error is indeed present in the message. There is in other words a need to
be able to validate whether a message and/or an IE is correct or incorrect.

Sanitation is performed in order to be able to check that round trip prop-
erties hold. The round trip properties that are being studied are those of
a generated messages, and the result of applying both the unpack and pack
functions of the GTS to that generated messages. When the GTS unpacks
a message, unnecessary data is removed as well as incorrect IEs that are not

17

6.3 Implementation 6 RESULTS

Figure 4: The modular design of the test code.

mandatory (mandatory IEs that are incorrect would provoke an error). This
sanitation needs to be performed by the test code in order to check the round
time properties.

6.3.1 IE generation and validation

The module that generates and validates IEs is capable of generating correct
and incorrect IEs of each type that can be present in any of the messages that
are used for testing of the GTS in this project. The module is also capable
of validating each of the IEs. The complexity of the IEs, both in terms of
generation and validation, varies heavily. The following is an example of
generation code for one of the more simple IEs:

ie_cid(Instance) ->

fault(bad_ie(?IE_CHARGING_ID, Instance), good_cid(Instance)).

good_cid(Instance) ->

?LET(CID, binary(2),

<<?IE_CHARGING_ID, 2:16, 0:4, Instance:4, CID/binary>>).

The ?LET macro is generally used when the data that is generated de-
pends on previously generated data. In this case it is needed because Erlang
does not allow function calls in bit syntaxes. The macro ?IE_CHARGING_ID

represents the ID of the IE. The generation of IEs is performed in the same
manner as in the example of section 3.2 when it comes to faulty data. The

18

6.3 Implementation 6 RESULTS

generator bad_ie(Id, Instance) is a generator that is used for faulty cre-
ation of all IEs in the module.

Validation of IEs also includes some sanitation, this is needed since there
is some information in an IE that is not being evaluated or read by the GTS.
Some IEs are allowed to be longer than they need to be. In this situation,
data that comes after the needed data is discarded. The following is an
example of simple validation of an IE that illustrates this matter:

valid_mei(<<?IE_MEI, _:16, Spare:4, Instance:4, Data:8/bytes,

_Rest/binary>>) ->

case valid_bcd(Data) of

true -> {ok, <<?IE_MEI, 8:16, Spare:4, Instance:4,

Data:8/bytes>>};

false -> nok

end;

valid_mei(_) ->

nok.

What this validator states is basically that every IE that has the correct
ID, that is long enough, and from which it is possible to get 8 bytes of valid
data (according to the function valid_bcd(Data)) is a correct IE of this
type. All other IEs are considered invalid. The function valid_bcd(Data)

validates that binary data is encoded according to a specific notation that is
frequently used in the GTPv2 protocol for the purpose of encoding decimal
digits.

The validator also performs some sanitation, unnecessary data is dis-
carded. In the case of a valid IE, a sanitized version of the IE is returned.

The way an IE is validated and generated has been determined by refer-
encing the 3GPP specification[7] as well as some internal Ericsson documents
that specify which parts of the relevant protocol that the products in ques-
tions comply to.

6.3.2 Message validation and sanitation

The module that validates and sanitizes messages uses the IE generation and
validation module in order to validate and/or sanitate the individual IEs of
the messages it validates and/or sanitizes.

Validation of messages is performed in order to evaluate whether or not
an error that is returned from the GTS is correct. An error message from the
GTS contains information about the error that has occurred, in particular it
contains the ID of the causing IE and the type of error that has occurred.

19

6.3 Implementation 6 RESULTS

This is all the information that is needed in order to determine the validity
of the error. For example, one type of error occurs when a mandatory IE is
not included in a message. This error is validated by checking that the IE is
indeed mandatory for the message in question and that it is not included in
the generated message.

Sanitation of messages is performed by using the validators in the IE
generation and validation module to exclude incorrect IEs and unnecessary
data from the message. The exact nature of how validation and sanitation
is performed in this module has, as in section 6.3.1, been determined by
referencing the 3GPP specification[7] and internal Ericsson documents.

6.3.3 Message modules

In order to test the way the GTS handles different GTPv2 messages a message
module has been implemented for each message that is tested in this project.
A message module contains information about which IEs that are mandatory
in the message, for validation purposes. A message module also contains a
generator that utilizes the IE generation and validation module in order to
generate the IEs that constitute the specific message.

Naturally, the message modules also contain the round trip property that
is used for the actual testing. These properties basically states that unless
there is an error, a generated message that has been sanitized should be equal
to the result of applying the pack and unpack functions of the GTS to the
generated message. If there is an error, the error should be valid for the
property to hold. The following code is a slightly simplified version of such
a property:

prop_sym() ->

?FORALL({Message, MandatoryIEs}, gen(),

try

sanitate(Message) == gts:pack(gts:unpack(Message))

catch

throw:Response ->

{CausingIE, ErrorID} = get_error(Response),

validate_error(CausingIE, Error, Message,

MandatoryIEs)

end).

The variables Message and MandatoryIEs are bound to the values gen-
erated by the generator gen(). Message is the binary message that has been

20

6.4 Time consumption 6 RESULTS

generated, and MandatoryIEs is a list of the IDs of the IEs that are manda-
tory in the message. If an exception is thrown, the error message is parsed,
and then the error is evaluated.

6.4 Time consumption

The time used for creating the test code used in this project has been mea-
sured throughout the course of the project. All of the work has been per-
formed by one person.

The total time consumption of the programming is 128h. The test code
tests the GTS’ behavior in four different messages, which are listed in ta-
ble 2. These messages requires 23 different IEs. The measurement of time
consumption has been divided into the time needed in order to achieve gen-
eration and validation of IEs (shown as Generation in table 2), and the time
needed in order to create properties, validation of errors, and sanitation of
messages (shown as Properties in table 2). Time consumption has been mea-
sured with respect to the message the test code appertain to. The messages
in table 2 are listed in order of implementation.

Message Generation Properties
Create Session Request 69h 32h
Create Bearer Request 3h 11h
Delete Bearer Request 0h 2h
Downlink Data Notification Failure Indication 0h 1h
Total 72h 56h

Table 2: Time consumption of the implementation of the QuickCheck testing
that has been performed in this project.

As seen in table 2, the time consumption needed in order to implement
testing for a message dramatically decreased after the implementation of the
message Create Session Request. This is partly due to the fact that many
messages contains the same type of IEs, and partly because Create Session
Request contains a large number of IEs. The decrease in time consumption
is also due to that all message modules follow the same pattern, and much
of the code created for the first message could be reused. Naturally, one also
gets an increased understanding of both the system that is being tested as
well as of QuickCheck after some time.

The messages that have been selected for testing was chosen in consulta-
tion with supervisors at Ericsson.

In order to put this measurement in context, a number of developers of
the concerned organization were asked to estimate the amount of time that

21

6.5 Code complexity 6 RESULTS

would be needed in order to achieve unit testing with the currently used SBT
tool that would fully cover the behavior of the GTS in terms of the messages
that have been tested using QuickCheck. Three answers were recieved; one
developer estimated the time consumption of this task to somewhere between
20h and 40h. Two other developers both estimated the time consumption to
160h.

6.5 Code complexity

Measuring code complexity is not trivial. In this report, a highly non-
scientific attempt of measuring code complexity is made by showing the
QuickCheck test code to experienced Erlang developers of the concerned
organization. All developers that participated in this aspect of the thesis
project found the test code to be fairly simple and straightforward. The
concepts of QuickCheck testing are somewhat challenging due to the differ-
ences between PBT and the SBT technique that is currently being used by
the organization. However, all developers that looked at the test code were
able to understand how the concepts of generation, validation, sanitation and
properties are used in order to achieve a thorough unit testing of the GTS.
Some developers were even able to suggest improvements to the test code.

Another interesting angle regarding the complexity of QuickCheck test
code is the fact that the author of this report, with very limited experience
with Erlang and QuickCheck, and with no previous knowledge of the GTS
or indeed any telecommunication software system, was able to implement
QuickCheck unit testing for a significantly large part of the code of the GTS.
This was done in a matter of months (including preparations, pre-studies
etc.) and resulted in the discovery of errors that had not previously been
found with the currently used SBT technique (see section 6.6).

6.6 Discovered errors

For obvious reasons, the errors that were discovered during the course of this
thesis will not be covered in detail in this report.

As one might expect when it comes to testing of a relatively mature
product that is currently being used in the LTE network, not a great deal
of errors were discovered. However, at least two errors were found. The first
of these errors could be considered a major flaw, it has to do with the way
the GTS handles multiple instances of mandatory IEs in a message. The
error can cause the GTS to treat messages that, according to the protocol
specification[7] are correct, as incorrect. This error is present in each of the

22

6.7 Maintainability 6 RESULTS

messages that have been tested during this project. The other errors consist
of a few minor deviations from the specification of specific IEs.

6.7 Maintainability

In order to make an attempt of determining the maintainability of QuickCheck
unit test code, an adaptation of the QuickCheck test code of this project was
made for testing of a legacy version of the GTS. The legacy version of the
system is from 2009, and is significantly different from the current version.
The legacy version of GTS uses lists instead of Erlang bit syntax in order to
handle and manipulate the binary data of GTPv2 messages. There are also
some differences in the protocol specification of the different versions of the
GTS.

The adaptation of the test code went surprisingly smoothly, mainly due to
the fact that the QuickCheck test code is separated from the code of the GTS
except from the two function calls that are performed in order to unpack and
pack a binary GTPv2 message (calls that are made in each of the message
modules, as described in section 6.3). The vast majority of the test code
was not changed at all; the only changes that needed to be made was a to
account for some minor differences in the protocols of the different versions
of the system and the structure of the data that is passed on to the GTS
was changed from bit syntaxes to lists. The concepts of generating binary
messages, sanitizing messages and validating errors were possible to preserve
in the testing of the legacy version of the GTS.

The total time consumption of the adaptation was measured to 12h.

23

7 ANALYSIS

7 Analysis

This section contains a discussion of the results found during this master
thesis project, as well as reflections regarding the overall user experience of
QuickCheck in the specific context of this project.

7.1 Effort

The high initial time consumption points towards a high initial cost of imple-
menting QuickCheck unit testing. In order to get started with QuickCheck
testing in this specific context, a large number of generators and validators
of IEs have to be written. However, the total time consumption of the test-
ing should be considered as reasonable. Once full QuickCheck testing of the
first message has been implemented, the cost of creating test code for other
messages drops dramatically. This is caused by the fact that many messages
share the same IES, and the tests can reuse the generators and validators
that already exist. It should also be taken into account that the use of any
new tool will cause a high initial cost as it demands for the developers to get
to know and understand the tool.

The QuickCheck unit testing performed in this project included four mes-
sages and 23 IEs. The total number of IEs that is handled by the GTS is
41. A reasonable estimation for a QuickCheck unit testing of the GTS is the
double effort of the testing performed in this thesis, 256h. This estimation
might be slightly excessive since the rate at which testing for new messages
can be produced increases as more and more IEs are included in the code
base.

As for the complexity of QuickCheck testing, no scientific conclusions can
be reached. However, the results that were found at least give some indication
that QuickCheck testing might be a relatively simple tool for unit testing.
However, this does not mean that unit testing per se becomes easy with
the use of QuickCheck. Thorough unit testing demands fully covering test
data, which demands developers to write generators that supply them with
all variations of data that is needed in order to cover all possible execution
paths. In other words, you still need to use your brain in order to achieve
good unit testing, even with QuickCheck.

In terms of maintainability, QuickCheck seems to have a very low cost.
A likely cause of this is the fact that QuickCheck test code is largely inde-
pendent of the code that is being tested. The developers that work within
the concerned organization have reported that the test code of the currently
used SBT tool requires large efforts in maintenance. This cost seems to be
significantly reduced with the use of QuickCheck. However, it should be

24

7.2 Efficiency 7 ANALYSIS

noted that the QuickCheck testing of this project only uses one property per
message in order to ensure the behavior of the GTS. If this number is bigger,
it is possible that the maintenance cost will increase. No further analysis of
this matter is performed in the report. Theoretically, it should be possible to
use the discovered errors of the legacy version of the system to perform some
sort of analysis of the efficiency of the QuickCheck test code. Unfortunately
this is not performed in this report, due to time constraints.

7.2 Efficiency

As mentioned in section 6.4, an attempt of estimating the time consumption
needed to perform equally thorough unit testing with the currently used SBT
tool was performed in this project. Unfortunately, not enough answers were
received in order to be able to reach any scientific conclusions. However, the
estimations that were received at least gives some reason to think that the
time consumption of the two different tools are of the same magnitude.

Code coverage might be used as a measure of the efficiency of test code,
in the terms of how much code coverage is produced by some unit of effort.
However, in terms of QuickCheck testing, the measurement of code coverage
is only useful for determining whether or not the generators produce the data
that is needed in order to fully cover all execution paths in the software that
is being tested (under the assumption that the code that is being tested does
not contain unreachable code). In other words, even though the QuickCheck
unit testing would have a similar code coverage as that of the currently
used SBT tool, it results in a considerably larger number of test cases being
executed, which might imply a more thorough unit testing.

One might, however, argue that it is difficult to fully assure the expected
behavior of the GTS by formulating properties such as the round trip proper-
ties that have been used in this project. The concept of round trip properties
is useless in the case when there is a mutual misunderstanding of the speci-
fication in both the packing and unpacking functionality of IEs in the GTS,
this case has to be considered as rather unlikely.

Out of the errors found during this project, one is of the type that is
not likely to have been discovered by common testing techniques. The er-
ror causes a failure that only occurs when certain combinations of IEs are
received by the GTS, combinations that were generated by the QuickCheck
test code. Naturally, it is impossible to say if that a person never would come
up with a test case that would constitute such a combination, but it is at
least safe to say that no such combination is currently a part of the existing
test suites. The other discovered error is likely to be caused by sloppy reading
of the specifications, this error should have been discovered by any testing

25

7.3 QuickCheck in the specific context 7 ANALYSIS

technique.
During this project, no indication that suggests that QuickCheck testing

would be less capable than the currently used SBT tool in terms of finding
coding errors has been found.

7.3 QuickCheck in the specific context

Not surprisingly, QuickCheck performs very well when used for testing func-
tional, stateless software. The specific context has to be regarded as ideal
for QuickCheck testing as it is stateless and purely functional. This does
not imply that it is in any way impossible to perform QuickCheck testing
in different environments, the available literature shows that this is not the
case [2, 3, 4, 5, 6]. But the environment in which this thesis project is per-
formed enables the QuickCheck test code to be almost as simple as the basic
examples that are contained in this report in order to explain the concepts
of QuickCheck testing, see section 3.

As described in secion 6.1, the currently used SBT tool offers some sup-
port for the developers besides actual execution of scenario based test cases.
This support includes such things as visualization of code coverage. This
kind of support is however not an inherent capacity of the testing technique
per say, but a result of the shell that has been built around the technique
in order to form the actual tool. The code coverage part of the SBT tool is
actually a utilization of the code coverage functionality that is part of Erlang.
QuickCheck is a lightweight testing tool, and has as such not any support for
visualizing code coverage, for instance. QuickCheck does however have the
capability to display statistics of the test data that is being generated, by
the use of the property collect (that has not been discussed in detail this
report). In other words, this kind of comparison between the different tools
is rather deceptive, since the tools are built for different purposes. With that
said, there is no denying that the currently used SBT tool contains more
functionality. One could argue that it is possible to overcome this matter by
integrating QuickCheck and the currently used SBT tool, or by building a
similar shell around QuickCheck.

During this project, QuickCheck tests have been executed from command
line. No kind of integration with the existing test environment of the con-
cerned organization has been made. If QuickCheck is to be successfully used
for testing in the organization, one needs to make the developers embrace
the tool. This requires both that developers gets a chance to realize the
advantages of property based testing, for instance by education and time to
play around a bit with the tool. It also requires that QuickCheck is easy
to use, both in terms of integration with the existing environment, and in

26

7.3 QuickCheck in the specific context 7 ANALYSIS

terms of general usage. During the project, Quviq QuickCheck’s procedures
for verifying licenses have caused some minor difficulties. These problems
are easy to overcome by some manual hacking, but if QuickCheck is to be
used in some kind of integration with the existing development environment,
problems like these needs to be permanently solved. Reoccurring issues like
these are likely to make developers dislike the tool.

QuickCheck does not need to be fully integrated into the testing en-
vironment to work successfully. However, for a successful implementation
of QuickCheck testing, the organization need to make sure that the use of
QuickCheck does not imply additional work for the developers, that devel-
opers somehow can create QuickCheck test suites and that the QuickCheck
tests are run automatically, just as the test suites of the currently used SBT
tools are. There is no indication that these matters should pose any technical
difficulties, however they do require effort and determination.

27

8 CONCLUSIONS

8 Conclusions

The major benefits of PBT in general, and QuickCheck in particular in-
clude the ability to quickly generate large amounts of test cases. The major
drawbacks of these concepts include the difficulties of writing test data gen-
erators, and formulating properties that fully assure the wanted behavior of
some software. In the case of this project, these difficulties have been some-
what experienced. In order to assure the correctness of software, one needs
to carefully think about the test data that is used as input. This is true for
all testing techniques, including QuickCheck.

In terms of benefits, the results of this project can be used to conclude that
the random test data input of QuickCheck makes it possible to find errors
that is not being found by the currently used testing tools of the concerned
organization. The results of the project can also be used to argue that the
environment of this study is ideal for QuickCheck testing, that the effort
needed in order to achieve unit testing with QuickCheck seem to be of the
same magnitude as that of the currently used SBT technique, and that the
QuickCheck test code imply lower maintenance cost than that of the code
produced by the currently used unit testing tool.

The project also shows no indications that implementation of full QuickCheck
testing of the GTS should pose any technical or organizational difficulties,
assuming that the implementation is carefully planned and executed.

One can also conclude that the currently used SBT tool and Quviq
QuickCheck are tools that have been built for different purposes. QuickCheck
is a rather lightweight testing tool, however highly capable of finding errors,
and the currently used SBT tool is a larger and heavier tool with a graphical
interface and support for code coverage visualization. Comparing the the
two tools as equals is thus rather misleading.

To summarize, QuickCheck seems to be a highly appropriate and capable
tool for unit testing of the relevant software. With some effort, it would be
possible to use QuickCheck in such a way that its benefits clearly outweigh
its drawbacks.

28

9 FUTURE WORK

9 Future work

Recommended future work for the concerned organization at Ericsson include
such things as extending the existing QuickCheck test code in order to fully
cover the GTS, this would imply more reliable data that can be used in order
to assess the efficiency of QuickCheck testing on a larger scale. The product
of this project can, besides being used for thorough unit testing of the GTS,
also be used to perform system testing of the MME. The generators and
validators of the existing test code can be utilized in order to generate large
amounts of GTPv2 traffic that can be used to trigger execution of all software
in the MME that makes use of the GTPv2 protocol. Even though it is hardly
mentioned in this report, QuickCheck contains a state machine for testing
of stateful systems, and an interface for testing of C code. One could argue
that these concepts need to be used in order to evaluate the full potential of
QuickCheck testing.

In terms of academia, it would certainly be interesting to see more studies
of the use of QuickCheck and PBT in general. It would be particularly
interesting to see a successful comparison of PBT using QuickCheck and
traditional SBT. It is the firm opinion of the author of this report that PBT,
or possibly another concept related to model or specification based testing,
is the wave of the future in software testing. However, a reliable comparison
of the two different approaches is difficult to achieve. It would require large
efforts in terms of finding suitable projects and developers. To carry out such
a study in a commercial organization is probably difficult, assuming that the
two approaches are not proven to be equally efficient, due to the nature of
commercial businesses.

29

REFERENCES REFERENCES

References

[1] Koen Claessen and John Hughes, QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. ICFP ’00, Montreal, Canada.
ACM, 2000.

[2] Thomas Arts, John Hughes, Joakim Johansson and Ulf Wiger, Testing
Telecoms Software with Quviq QuickCheck. Erlang ’06, Portland, USA.
ACM, 2006.

[3] Jonas Boberg, Early Fault Detection with Model-Based Testing. Proceed-
ings of the 2008 SIGPLAN workshop on ERLANG. ACM, 2008.

[4] Andreas Granberg and Daniel Jerberg, NBAP message construction using
QuickCheck. Master thesis report. Linköpings University, 2007.

[5] Raghav Karol and Torben Hoffmann, Mission Critical with Erlang and
QuickCheck - Quality Never Sleeps. Talk given at Erlang User Conference
2010, Stockholm. Erlang Solutions Ltd, 2010.

[6] Graham Crowe, Using Erlang for Testing non-Erlang Products. Talk given
at Erlang User Conference 2011, San Fransisco. Erlang Solutions Ltd,
2011.

[7] 3rd Generation Partnership Program, 3GPP TS 29.274 V9.4.0. 3GPP,
2010.

30

A SOURCE CODE

A Source code

In this section, the source code is displayed. The code has been somewhat
altered in order to protect the implementation details of the actual GTS.
In some cases, removed code is denoted as [---]. The concept of Bearer
Contexts have not been discussed in the report but can be seen in the code
frequently, a Bearer Context is an IE that consists of one or more IEs. A
Bearer Context, as a message, can have mandatory IEs.

A.1 IE generation and validation

This module has been stripped of most code. A selection of generation and
validation of some IEs can be seen below, the selection describes the logic of
the different kinds of IEs that are part of the test code of this project.

-module(eqc_ie_gens).

-export([ie_imsi/1, ie_ebi/1, ie_mei/1, ie_paa/1,

ie_serving_network/1, valid_ie/1, valid_b_context/2]).

-include_lib("eqc/include/eqc.hrl").

%%%%%%%%%% BAD_IE %%%

% This generator is used for generation of faulty IEs of all sorts.

% The frequency of the different types of fault that can occur can

% be discussed.

bad_ie(Id, Instance) ->

frequency([{5, bad_ie_data(Id, Instance)},

{5, <<>>},

{2, bad_ie_length(Id, Instance)}]).

bad_ie_data(Id, Instance) ->

?LET(Length, choose(1,30),

?LET(Data, binary(Length),

<<Id, Length:16, 0:4, Instance:4, Data/binary>>)).

bad_ie_length(Id, Instance) ->

?LET({Length, Data}, {choose(1,30), binary()},

<<Id, Length:16, 0:4, Instance:4, Data/binary>>).

%%%%%%%%%% IE_IMSI %%

ie_imsi(Instance) ->

fault(bad_ie(?IE_v2_IMSI, Instance), good_imsi(Instance)).

31

A.1 IE generation and validation A SOURCE CODE

good_imsi(Instance) ->

?LET(NoOfDigits, choose(6,15),

?LET({Length, Data}, get_bcd(NoOfDigits),

<<1, Length:16, 0:4, Instance:4, Data/binary>>)).

valid_imsi(<<Length:16, Spare:4, Instance:4, Data:Length/bytes,

_Rest/binary>>) when Length >= 3, Length =< 8 ->

case valid_bcd(Data) of

true -> {ok, <<?IE_v2_IMSI, Length:16, Spare:4,

Instance:4, Data:Length/bytes>>};

false -> nok

end;

valid_imsi(_) ->

nok.

%%%%%%%%%% IE_EBI %%%

ie_ebi(Instance) ->

fault(bad_ie(?IE_v2_EBI, Instance), good_ebi(Instance)).

good_ebi(Instance) ->

?LET(Data, bin_digit(4, 5, 15),

<<?IE_v2_EBI, 1:16, 0:4, Instance:4, 0:4,

Data/bitstring>>).

% Value not checked at unpack.

valid_ebi(<<_:16, Spare:4, Instance:4, 0:4, Data:4,

_Rest/binary>>) ->

{ok, <<?IE_v2_EBI, 1:16, Spare:4, Instance:4, 0:4, Data:4>>};

valid_ebi(_) ->

nok.

%%%%%%%%%% IE_MEI %%%

ie_mei(Instance) ->

fault(bad_ie(?IE_v2_MEI, Instance), good_mei(Instance)).

good_mei(Instance) ->

?LET(Mode, oneof([imei,imeisv]),

?LET(Data, get_mei(Mode),

32

A.1 IE generation and validation A SOURCE CODE

<<?IE_v2_MEI, 8:16, 0:4, Instance:4, Data/binary>>)).

get_mei(imei) ->

?LET({_,Data}, get_bcd(14), <<Data/binary, 16#F0>>);

get_mei(imeisv) ->

?LET({_,Data}, get_bcd(16), <<Data/binary>>).

valid_mei(<<_:16, Spare:4, Instance:4, Data:8/bytes,

_Rest/binary>>) ->

case valid_bcd(Data) of

true -> {ok, <<?IE_v2_MEI, 8:16, Spare:4, Instance:4,

Data:8/bytes>>};

false -> nok

end;

valid_mei(_) ->

nok.

%%%%%%%%%% IE_PAA %%%

ie_paa(Instance) ->

fault(bad_ie(?IE_v2_PAA, Instance), good_paa(Instance)).

good_paa(Instance) ->

?LET(IpType, choose(1,3),

?LET({Length, Data}, get_paa(IpType),

<<?IE_v2_PAA, Length:16, 0:4, Instance:4, 0:5,

Data/bitstring>>)).

% IPv4

get_paa(1) ->

?LET(IPv4, binary(4),

{5, <<1:3, IPv4/binary>>});

% IPv6 (including prefix length)

get_paa(2) ->

?LET(IPv6, binary(16),

{18, <<2:3, 64:8, IPv6/binary>>});

% Both IPv6 (including prefix length) and IPv4

get_paa(3) ->

?LET({IPv6, IPv4}, {binary(16), binary(4)},

{22, <<3:3, 64:8, IPv6/binary, IPv4/binary>>}).

33

A.1 IE generation and validation A SOURCE CODE

valid_paa(<<5:16, Spare:4, Instance:4, _:5, 1:3, IPv4:4/bytes>>) ->

{ok, <<?IE_v2_PAA, 5:16, Spare:4, Instance:4, 0:5, 1:3, IPv4:4/bytes>>};

valid_paa(<<18:16, Spare:4, Instance:4, _:5, 2:3, _:8, IPv6:16/bytes>>) ->

{ok, <<?IE_v2_PAA, 18:16, Spare:4, Instance:4, 0:5, 2:3, 64:8,

IPv6:16/bytes>>};

valid_paa(<<22:16, Spare:4, Instance:4, _:5, 3:3, _:8, IPv6:16/bytes,

IPv4:4/bytes>>) ->

{ok, <<?IE_v2_PAA, 22:16, Spare:4, Instance:4, 0:5, 3:3, 64:8,

IPv6:16/bytes, IPv4:4/bytes>>};

valid_paa(_) ->

nok.

%%%%%%%%%% IE_SERVING_NETWORK %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ie_serving_network(Instance) ->

fault(bad_ie(?IE_v2_SERVING_NETWORK, Instance),

good_serving_network(Instance)).

good_serving_network(Instance) ->

?LET(Data, get_mcc_mcn_digits(),

<<?IE_v2_SERVING_NETWORK, 3:16, 0:4, Instance:4,

Data/binary>>).

valid_serving_network(<<_:16, Spare:4, Instance:4, Data:3/bytes,

_Rest/binary>>) ->

{ok, <<?IE_v2_SERVING_NETWORK, 3:16, Spare:4, Instance:4,

Data:3/bytes>>};

valid_serving_network(_) ->

nok.

%%%%%%%%%% IE_B_CONTEXT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This IE is composed of a number of other IEs, the second argument

% of this generator is supposed to be the list of generators for

% the IEs that you want in your bearer context.

ie_b_context(Instance, IEs) ->

fault(bad_ie(?IE_v2_BEARER_CONTEXT, Instance),

good_b_context(Instance, IEs)).

34

A.1 IE generation and validation A SOURCE CODE

good_b_context(Instance, IEs) ->

?LET({Length, Data}, get_b_context(IEs),

<<?IE_v2_BEARER_CONTEXT, Length:16, 0:4, Instance:4, Data/binary>>).

get_b_context(IEs) ->

?LET(Data, get_bctx_elems(IEs, []),

{size(Data), Data}).

get_bctx_elems([], Acc) ->

list_to_bitstring(lists:reverse(Acc));

get_bctx_elems([IeGen | Tail], Acc) ->

?LET(Data, IeGen, get_bctx_elems(Tail, [Data | Acc])).

valid_b_context(<<?IE_v2_BEARER_CONTEXT, Length:16, _:4, _Instance:4,

IEs:Length/bytes>>, Mandatory) ->

valid_b_context_content(<<IEs:Length/bytes>>, Mandatory);

valid_b_context(_,_) ->

nok.

% Validates that mandatory IEs are valid and that all mandatory

% IEs are present in the bearer context. Unlike the other

% valid_<name> functions, this does not sanitate data.

valid_b_context_content(_,[]) ->

ok;

valid_b_context_content(<<>>,_) ->

nok;

valid_b_context_content(<<ID, Length:16, _:4, Instance:4,

Data:Length/bytes, Next/binary>>, Mandatory) ->

case (lists:member(ID, Mandatory)) and (Instance == 0) of

true ->

case valid_ie(<<ID, Length:16, 0:4, Instance:4,

Data:Length/bytes>>) of

{ok, _} ->

valid_b_context_content(<<Next/binary>>,

lists:delete(ID, Mandatory));

nok ->

nok

end;

false ->

valid_b_context_content(<<Next/binary>>, Mandatory)

end;

35

A.1 IE generation and validation A SOURCE CODE

valid_b_context_content(_,_) ->

nok.

%%%%%%%%%% HELPERS_gen %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generates a bit string of length Length representing a decimal

% value between Low and High (inclusive).

bin_digit(Length, Low, High) ->

?LET(D, choose(Low, High), <<D:Length>>).

% Generates a bit string consisting of NoOfDigits*4 bits where each

% sequence of 4 bits represents a decimal digit (0-9). If NoOfDigits

% is an odd number, a 16#F is inserted before the last digit.

get_bcd(NoOfDigits) when NoOfDigits rem 2 == 0 ->

?LET(V, vector(NoOfDigits, bin_digit(4,0,9)),

{length(V) div 2, list_to_bitstring(V)});

get_bcd(NoOfDigits) ->

?LET(V, vector(NoOfDigits, bin_digit(4,0,9)),

{length(V) div 2 + 1, set_odd_end(NoOfDigits,

list_to_bitstring(V))}).

% Inserts a 4 bit 16#F before the last 4 bits in the bit string B

% that consists of Size*4 bits.

set_odd_end(Size, B) ->

Size2 = Size*4-4,

<<Start:Size2, End:4>> = B,

<<Start:Size2, 16#F:4, End:4>>.

% Generates a binary consisting of 3 bytes representing six decimal

% digits (0-9) to be used as mcc and mcn numbers.

get_mcc_mcn_digits() ->

?LET(V, vector(6, bin_digit(4, 0, 9)), list_to_bitstring(V)).

%%%%%%%%%% HELPERS_valid %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Uses the correct validator to validate an IE.

% If you want to validate a bearer context,

% use valid_b_context(IE, BContexts).

valid_ie(<<?IE_v2_IMSI, Rest/binary>>) ->

valid_imsi(<<Rest/binary>>);

valid_ie(<<?IE_v2_EBI, Rest/binary>>) ->

valid_ebi(<<Rest/binary>>);

36

A.2 Message validation and sanitation A SOURCE CODE

valid_ie(<<?IE_v2_MEI, Rest/binary>>) ->

valid_mei(<<Rest/binary>>);

valid_ie(<<?IE_v2_PAA, Rest/binary>>) ->

valid_paa(<<Rest/binary>>);

valid_ie(<<?IE_v2_SERVING_NETWORK, Rest/binary>>) ->

valid_serving_network(<<Rest/binary>>).

% Validates a bcd string.

valid_bcd(<<16#F:4, D2:4>>) when D2 =< 9 ->

true;

valid_bcd(<<D1:4, D2:4>>) when D1 =< 9, D2 =< 9 ->

true;

valid_bcd(<<D1:4, D2:4, Rest/binary>>) when D1 =< 9, D2 =< 9 ->

valid_bcd(Rest);

valid_bcd(_) ->

false.

% Validates a sequence of mcc and mcn digits.

valid_mcc_mcn_digits(<<>>) ->

true;

valid_mcc_mcn_digits(<<Data:4, Rest/bitstring>>)

when Data >= 0, Data =< 9 ->

valid_mcc_mcn_digits(Rest);

valid_mcc_mcn_digits(_) ->

false.

A.2 Message validation and sanitation

Some of the code of this module has been removed. However most functions
are still present in order to give the reader a chance to understand how the
code is used.

-module(eqc_common).

-export([packed_to_list/1,

sanitate_message/2,

get_error/1,

validate_error/5,

get_ie/3]).

% Module comments:

% This module contains some of the functions that are used

37

A.2 Message validation and sanitation A SOURCE CODE

% by the properties of each message. It is mainly functions

% for validation of errors and sanitation of messages.

% Converts a packed binary GTPv2 message into a sorted list of

% binary IEs.

packed_to_list(Packed) ->

[---].

% Removes faulty IEs from a binary GTP message, returns a

% sorted list of binary IEs.

sanitate_message(Message, BContexts) ->

[---].

% Extracts relevant information from an exception that is

% thrown when a message contains an invalid mandatory IE, or

% when a message lacks a mandatory IE. Returns a tuple with

% the integer values {Error, CauseIE}.

get_error([---]) ->

case PayLoad of

[---] ->

{Error, CauseIE};

[---] ->

{Error, CauseIE}

end.

% Validates an error. Returns true or false, true if the error

% is actually found in the message and false otherwise.

validate_error(?MANDATORY_IE_MISSING, CauseIE, Message,

MandatoryIEs, _) ->

% CauseIE is mandatory and not in the message.

lists:member(CauseIE, MandatoryIEs) and

case get_ie(CauseIE, 0, list_to_binary(Message)) of

not_found -> true;

bad_ie -> true;

_ -> false

end;

% Special case for bearer context errors.

validate_error(?MANDATORY_IE_INCORRECT, ?IE_v2_BEARER_CONTEXT,

Message, MandatoryIEs, BContext) ->

% BContext is mandatory, but incorrect.

lists:member(?IE_v2_BEARER_CONTEXT, MandatoryIEs) and

38

A.2 Message validation and sanitation A SOURCE CODE

case get_ie(?IE_v2_BEARER_CONTEXT, 0,

list_to_binary(Message)) of

bad_ie -> true;

not_found -> false;

IE ->

case eqc_ie_gens:valid_b_context(IE, BContext) of

nok -> true;

_ -> false

end

end;

validate_error(?MANDATORY_IE_INCORRECT, CauseIE, Message,

MandatoryIEs, _) ->

% CauseIE is mandatory, but incorrect.

lists:member(CauseIE, MandatoryIEs) and

case get_ie(CauseIE, 0, list_to_binary(Message)) of

not_found -> false;

IE -> case eqc_ie_gens:valid_ie(IE) of

nok -> true;

_ -> false

end

end;

validate_error(_, _, _, _, _) ->

false.

% Returns a binary IE, not_found or bad_ie, based on whether the

% IE is found in the message or not.

get_ie(ID, Instance, <<ID, Length:16, Spare:4, Instance:4,

Data:Length/bytes, _Rest/binary>>) ->

<<ID, Length:16, Spare:4, 0:4, Data:Length/bytes>>;

get_ie(ID, Instance, <<_DifferentID, Length:16, _:4, _:4,

_:Length/bytes, Rest/binary>>) ->

get_ie(ID, Instance, <<Rest/binary>>);

% This case will occur when the ie has a stated length that is

% longer than the rest of the message.

get_ie(ID, _, <<ID, _Rest/binary>>) ->

bad_ie;

get_ie(_,_,_) ->

not_found.

39

A.3 Message modules A SOURCE CODE

A.3 Message modules

The module of the message Downlink Data Notification Failure Indication
has been removed as it serves no educational purpose.

A.3.1 Create Session Request

-module([---]).

-export([prop_sym/0, prop_collect/0]).

-include_lib("eqc/include/eqc.hrl").

%%%%%%%%%%%%%%%% PROPERTIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

prop_sym() ->

?FORALL({Message, MandatoryIEs, BContexts}, gen(),

try

% Pack and unpack Message.

Unpacked =

[---](list_to_bitstring(Message)),

Packed = [---](Unpacked),

SortedPacked = eqc_common:packed_to_list(Packed),

% Clean message from faulty IEs (that will be

% discarded during unpacking).

CleanMessage =

eqc_common:sanitate_message(list_to_binary(Message),

BContexts),

% No crash (all mandatory IEs present and correct),

% compare sorted lists of IEs.

SortedPacked == CleanMessage

catch

throw:Response ->

{Error, CauseIE} = eqc_common:get_error(Response),

% Mandatory IEs are assumed to have instance 0.

{_, BContext} = lists:keyfind(0, 1, BContexts),

eqc_common:validate_error(Error, CauseIE, Message,

MandatoryIEs, BContext)

end).

40

A.3 Message modules A SOURCE CODE

prop_collect() ->

?FORALL({Message, _, _}, gen(),

collect(

try

[---](list_to_bitstring(Message)),

ok

catch

throw:Response ->

eqc_common:get_error(Response)

end, true)).

%%%%%%%%%%%%%%%% GENERATOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gen() ->

{shuffle([

fault_rate(1,10,eqc_ie_gens:ie_imsi(0)),

fault_rate(1,10,eqc_ie_gens:ie_msisdn(0)),

fault_rate(1,10,eqc_ie_gens:ie_mei(0)),

fault_rate(1,10,eqc_ie_gens:ie_uli(0)),

fault_rate(1,10,eqc_ie_gens:ie_serving_network(0)),

fault_rate(1,10,eqc_ie_gens:ie_rat_type(0)),

fault_rate(1,10,eqc_ie_gens:ie_indication(0)),

fault_rate(1,10,eqc_ie_gens:ie_f_teid(0)),

fault_rate(1,10,eqc_ie_gens:ie_f_teid(1)),

fault_rate(1,10,eqc_ie_gens:ie_apn(0)),

fault_rate(1,10,eqc_ie_gens:ie_selection_mode(0)),

fault_rate(1,10,eqc_ie_gens:ie_pdn_type(0)),

fault_rate(1,10,eqc_ie_gens:ie_paa(0)),

fault_rate(1,10,eqc_ie_gens:ie_apn_restriction(0)),

fault_rate(1,10,eqc_ie_gens:ie_ambr(0)),

fault_rate(1,10,eqc_ie_gens:ie_ebi(0)),

fault_rate(1,10,eqc_ie_gens:ie_pco(0)),

fault_rate(1,10,eqc_ie_gens:ie_b_context(0,

[fault_rate(1,10,eqc_ie_gens:ie_ebi(0)),

fault_rate(1,10,eqc_ie_gens:ie_tft(0)),

fault_rate(1,10,eqc_ie_gens:ie_f_teid(0)),

fault_rate(1,10,eqc_ie_gens:ie_f_teid(1)),

fault_rate(1,10,eqc_ie_gens:ie_f_teid(3)),

fault_rate(1,10,eqc_ie_gens:ie_f_teid(4)),

fault_rate(1,10,eqc_ie_gens:ie_b_qos(0))])),

fault_rate(1,10,eqc_ie_gens:ie_b_context(1,

41

A.3 Message modules A SOURCE CODE

[fault_rate(1,10,eqc_ie_gens:ie_ebi(0))])),

fault_rate(1,10,eqc_ie_gens:ie_cc(0)),

fault_rate(1,10,eqc_ie_gens:ie_ue_timezone(0))]),

mandatory(),

bcontexts()}.

% List of mandatory IE IDs of this message

mandatory() ->

[

?IE_v2_IMSI,

?IE_v2_RAT_TYPE,

?IE_v2_F_TEID,

?IE_v2_APN,

?IE_v2_APN_RESTRICTION,

?IE_v2_BEARER_CONTEXT

].

% List of mandatory IE IDs of the Bearer Contexts of this message

bcontexts() ->

[

{0,[?IE_v2_EBI,

?IE_v2_BEARER_QOS]},

{1,[?IE_v2_EBI]}

].

A.3.2 Create Bearer Request

-module([---]).

-export([prop_sym/0, prop_collect/0]).

-include_lib("eqc/include/eqc.hrl").

%%%%%%%%%%%%%%%% PROPERTIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

prop_sym() ->

?FORALL({Message, MandatoryIEs, BContexts}, gen(),

try

% Pack and unpack Message.

Unpacked =

[---](list_to_bitstring(Message)),

Packed = [---](Unpacked),

SortedPacked = eqc_common:packed_to_list(Packed),

42

A.3 Message modules A SOURCE CODE

% Clean message from faulty IEs (that will be

% discarded during unpacking).

CleanMessage = pre_sanitate(list_to_binary(Message)),

CleanerMessage =

eqc_common:sanitate_message(CleanMessage, BContexts),

% No crash (all mandatory IEs present and correct),

% compare sorted lists of IEs.

SortedPacked == CleanerMessage

catch

throw:Response ->

{Error, CauseIE} = eqc_common:get_error(Response),

% Mandatory IEs are assumed to have instance 0.

{_, BContext} = lists:keyfind(0, 1, BContexts),

pre_validate_error(Error, CauseIE, Message) or

eqc_common:validate_error(Error, CauseIE, Message,

MandatoryIEs, BContext)

end).

prop_collect() ->

?FORALL({Message, _, _}, gen(),

collect(

try

[---](list_to_bitstring(Message)),

ok

catch

throw:Response ->

eqc_common:get_error(Response)

end, true)).

%%%%%%%%%%%%%%%% GENERATOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gen() ->

{shuffle([

fault_rate(1,5,eqc_ie_gens:ie_ebi(0)),

fault_rate(1,5,eqc_ie_gens:ie_pco(0)),

fault_rate(1,5,eqc_ie_gens:ie_b_context(0,

[fault_rate(1,5,eqc_ie_gens:ie_ebi(0)),

fault_rate(1,5,eqc_ie_gens:ie_tft(0)),

fault_rate(1,5,eqc_ie_gens:ie_f_teid(0)),

43

A.3 Message modules A SOURCE CODE

fault_rate(1,5,eqc_ie_gens:ie_f_teid(1)),

fault_rate(1,5,eqc_ie_gens:ie_f_teid(3)),

fault_rate(1,5,eqc_ie_gens:ie_b_qos(0)),

fault_rate(1,5,eqc_ie_gens:ie_pco(0))]))

]),

mandatory(),

bcontexts()}.

mandatory() ->

[

?IE_v2_EBI,

?IE_v2_BEARER_CONTEXT

].

bcontexts() ->

[

{0, [?IE_v2_EBI,

?IE_v2_EPS_BEARER_TFT,

?IE_v2_BEARER_QOS]}

].

%%%%%%%%%%%%%%%% HELPERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Special pre-validation for this message, it has some

% odd rules that cannot be displayed here.

% This validator only returns true if the message specific

% error is found.

pre_validate_error([---]) ->

[---].

% Special pre-sanitation for the same reason as above

pre_sanitate(Msg) ->

[---].

44

A.3 Message modules A SOURCE CODE

A.3.3 Delete Bearer Request

-module([---]).

-export([prop_sym/0, prop_collect/0]).

-include_lib("eqc/include/eqc.hrl").

% Module comments:

% Since this message contains no mandatory IEs, no valid

% crashes can occur, and thus - no crashes are checked,

% any crash is considered a failure.

%%%%%%%%%%%%%%%% PROPERTIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

prop_sym() ->

?FORALL({Message, BContexts}, gen(),

begin

% Pack and unpack Message.

Unpacked =

[---](list_to_bitstring(Message)),

Packed = [---](Unpacked),

SortedPacked = eqc_common:packed_to_list(Packed),

% Clean message from faulty IEs (that will be

% discarded during unpacking).

CleanMessage =

eqc_common:sanitate_message(list_to_binary(Message),

BContexts),

% Compare sorted lists of IEs.

SortedPacked == CleanMessage

end).

% Will only collect 100% ok.

prop_collect() ->

?FORALL({Message, _}, gen(),

collect(

try

{request, _} =

[---](list_to_bitstring(Message)),

ok

catch

45

A.3 Message modules A SOURCE CODE

throw:Response ->

eqc_common:get_error(Response)

end, true)).

%%%%%%%%%%%%%%%% GENERATOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gen() ->

{shuffle([

fault_rate(1,10,eqc_ie_gens:ie_ebi(0)),

fault_rate(1,10,eqc_ie_gens:ie_ebi(1)),

fault_rate(1,10,eqc_ie_gens:ie_b_context(0,

[fault_rate(1,10,eqc_ie_gens:ie_ebi(0)),

fault_rate(1,10,eqc_ie_gens:ie_cause(0)),

fault_rate(1,10,eqc_ie_gens:ie_pco(0))])),

fault_rate(1,10,eqc_ie_gens:ie_pco(0)),

fault_rate(1,10,eqc_ie_gens:ie_cause(0))

]),

bcontexts()}.

bcontexts() ->

[

{0, [?IE_v2_EBI,

?IE_v2_CAUSE]}

].

46

	Introduction
	Purpose
	Scope
	Limitations

	Software quality and testing
	Scenario based testing
	Property based testing
	Negative testing

	QuickCheck
	Properties
	Generators
	Validation
	Collect

	Environment
	Mobility Management Entity (MME)
	GTPv2 Translation Subsystem (GTS)
	GTPv2 - Messages and Information Elements

	Method
	Preparation and pre-studies
	Implementation and measurements

	Results
	Current development environment
	Previous use of QuickCheck
	Implementation
	IE generation and validation
	Message validation and sanitation
	Message modules

	Time consumption
	Code complexity
	Discovered errors
	Maintainability

	Analysis
	Effort
	Efficiency
	QuickCheck in the specific context

	Conclusions
	Future work
	References
	Source code
	IE generation and validation
	Message validation and sanitation
	Message modules
	Create Session Request
	Create Bearer Request
	Delete Bearer Request

