
Document Embeddings
for Scientific Publications
Master’s thesis in Software Engineering

FLORIAN SCHÄFER

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Document Embeddings
for Scientific Publications

FLORIAN SCHÄFER

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

© FLORIAN SCHÄFER, 2018.

Supervisor: Hang Yin, CSE
Supervisor: Alessia Knauss, CSE
Advisor: Victor Botev, Iris AI AS
Examiner: Robert Feldt, CSE

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The embeddings for ten different topics of scientific documents have been
projected into an two-dimensional vector space. Each topic is indicated both by its
color as well as its number which is placed at the center of the topic’s cluster. For
more details on the figure, see section 4.4.

iv

Abstract
While more and more research gets published today, it is consequentially getting
harder for humans to keep up with new results at the pace at which they emerge.
Even traditional computational methods cannot sufficiently handle such large amount
of information which motivates us to utilize state-of-the-art research in order to find
such a method that is first and foremost accurate enough to aid researchers in find-
ing relevant literature while at the same time being computationally efficient enough
to handle the increasingly larger amounts of data.

In this work, we specifically focus on vector space models since they enable us to
utilize several efficient geometric computations. We first establish an evaluation
framework including several metrics to be able to make a sounds assessment. Then,
we explain and evaluate several neural network-based vector space models in the
context of scientific publications using our framework. We thereby assembled two
novel datasets for both the large-scale multi-domain corpus of Iris AI AS, as well as
for the systematic mapping study on autonomous vehicles conducted by Chalmers
University of Technology, which serves as an example for a single domain. Lastly,
we analyze how well our retrieved vector space models can aid researchers in con-
ducting systematic mappings studies compared to traditional methods.

We thereby found that the evaluated approaches strongly vary in their quality. Some
performed barely above the random baseline, indicating either a lacking suitability
of the method or being due to a lack of sufficient data or optimal hyperparame-
ters. Especially sequential approaches and autoencoders, as well as the combination
of the two, yielded surprisingly good results, which make these approaches worth
considering for future studies. Apart from the quantitative results of our eval-
uation framework, we also provided a qualitative solution demonstrating for the
autonomous vehicles mapping study how vector space models can provide benefits
over traditional topic models.

v

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Statement of the problem . 2
1.3 Research Questions . 3
1.4 Purpose of the study . 3

2 Theory 5
2.1 Vector Space Models . 5

2.1.1 Properties of Vector Spaces 5
2.1.2 BoW Vectors . 6
2.1.3 Distributed Vectors . 6

2.2 Neural Networks . 7
2.2.1 Feed-forward NNs . 7
2.2.2 RNNs . 8
2.2.3 CNNs . 9
2.2.4 Autoencoders . 10

2.3 Metrics . 11
2.3.1 Intrinsic vs Extrinsic Metrics 11
2.3.2 Supervised Metrics . 12

2.3.2.1 Topic Prediction . 12
2.3.2.2 Information Retrieval 13
2.3.2.3 kNN Error . 13
2.3.2.4 Triplets . 13
2.3.2.5 Curating Datasets 14

2.3.3 Unsupervised Metrics . 14
2.3.3.1 Perplexity . 14
2.3.3.2 Embedding-based metrics 15
2.3.3.3 EMD-based metrics 17

3 Method 19
3.1 Applied Cases . 19

3.1.1 Systematic Mapping Study . 19
3.1.2 Iris AI . 19

vii

Contents

3.2 Evaluation Framework . 19
3.2.1 Evaluation Methodology . 20
3.2.2 Metrics . 20

3.2.2.1 WISDM-based Distances 21
3.2.2.2 NTM-based Topics 22
3.2.2.3 Datasets . 22
3.2.2.4 Preprocessing . 24

3.2.3 Hyperparameters . 25
3.2.3.1 Embedding Dimensionality 25
3.2.3.2 Number of Epochs 25
3.2.3.3 Batch Size . 25
3.2.3.4 Learning Rate . 25
3.2.3.5 Optimizer . 26
3.2.3.6 Drop Out . 26
3.2.3.7 Hyperparameter Optimization 26

3.3 Experiments . 28
3.3.1 Approaches . 28

3.3.1.1 Doc2Vec (Paragraph Vector) 28
3.3.1.2 Doc2Sent2Vec . 31
3.3.1.3 Topic-LSTM . 31
3.3.1.4 Topic-CNN . 32
3.3.1.5 Naive Autoencoder 33
3.3.1.6 Recurrent Autoencoder 33

3.3.2 Setting . 33

4 Results 35
4.1 Hyperparameter Optimization . 35
4.2 CORE Dataset . 38

4.2.1 Topic Prediction . 38
4.2.2 Triplets . 39
4.2.3 Ranks . 39
4.2.4 Cluster Analysis . 40

4.3 Autonomous Vehicle Dataset . 41
4.3.1 Topic Prediction . 41
4.3.2 Triplets . 41
4.3.3 Ranks . 42
4.3.4 Time . 42

4.4 Mapping Study Application . 43

5 Discussion 47
5.1 Research Questions . 47
5.2 Alternatives . 48
5.3 Threats to Validity . 48
5.4 Future Work . 49

6 Conclusion 51

viii

Contents

Bibliography 53

A Appendix I

ix

Contents

x

List of Figures

2.1 The feed-forward and backpropagation passes of a neural network. . . 8
2.2 The basic RNN and its unfolded visualization as sequential steps. . . 9
2.3 A general CNN architecture with one convolutional layer, one pooling

layer and a fully connected layer at the end. 10
2.4 An autoencoder for word sequences using a one-layer feed-forward NN. 11

3.1 This figure shows the different steps in our framework as well as the
respective information flow. 21

3.2 The distributed memory variant of PV. Both context and the para-
graph token are used as input to the NN. [57] 30

3.3 The distributed bag-of-words variant of PV. Only the paragraph to-
ken is used as input. [57] . 30

3.4 The architecture of Doc2Sent2Vec, using three types of embeddings
(blue for words, red for sentences and green for the document) [44]. . 31

3.5 The CNN architecture used by Kim for several textual classification
tasks [49]. 32

4.1 The number of epochs used by the models to train before reaching
their maximum number or early stopping over all five generations. . . 35

4.2 The test (red) and validations metrics (blue) used during model train-
ing grouped by generation. 36

4.3 Change of hyperparameters during PSO for each model of the five
generations. For the optimizer graph the y axis has to be read as
follows: 0 = SGD, 1 = Adam, and 2 = AdaGrad. 37

4.4 Change of the weighted sum of metrics for all approaches grouped by
generation. 38

4.5 The accuracy on the topic prediction metric measured for different
word embedding (left) and document embedding sizes (right). 39

4.6 The accuracy on the triplets metric measured for different word em-
bedding (left) and document embedding sizes (right). 39

4.7 The accuracy@10 on the ranks metric measured for different word
embedding (left) and document embedding sizes (right). 40

4.8 The document vector spaces for three selected models, reduced from
several hundred to two dimensions using the t-SNE algorithm. 41

xi

List of Figures

4.9 The topic clusters from the NTM (left) and our Topic LSTM model,
reduced in dimensionality using the t-SNE algorithm. While the clus-
ters of the NTM are represented as circles based on their averaged
distribution in the two-dimensional space, for the Topic LSTM, we
show all documents, colored by the topic which they belong to. 43

A.1 The confusion matrices for predicting topics using the Core10k10
dataset. I

A.2 The document vector spaces for the Core10k10 dataset reduced from
several hundred to two dimensions using the t-SNE algorithm. IV

A.3 The document vector spaces for the AV5k10 dataset reduced from
several hundred to two dimensions using the t-SNE algorithm. IV

xii

List of Tables

3.1 The four datasets created for the evaluation framework. 23

4.1 Top 5 terms for the 10 most frequent topics of the AV dataset with
manually added interpretations of the computationally retrieved topics. 44

A.1 Experiment results from using the Core10k10 dataset. II
A.2 Experiment results from using the AV5k10 dataset. III

xiii

List of Tables

xiv

1
Introduction

1.1 Background

In today’s world, large amounts of research get published on a daily basis. This is es-
pecially true in the case of software engineering (SE). While the field was rather small
in the beginning, it recently saw the advent of many new domains (e.g. autonomous
systems, Internet of Things, smart systems) and conferences for specialized research
areas (e.g. ASE for automated software engineering [1] or SSBSE for search-based
software engineering [5]). A search for "software engineering" on the CORE online
journal and research database [3] for example yields 1,121,115 articles (last accessed
23.02.17) out of which about 50,000 have been published in 2016 alone. As a conse-
quence, single researchers and even teams can at best keep track of a rather small
subdomain by continuously following that area. This makes it hard for people new
to the field to get a general understanding of the topic based on the most eminent
research results. Even harder is the challenge of connecting new findings across area
borders.

Nonetheless, such challenges need to be dealt with when conducting systematic lit-
erature reviews [22, 52, 53] or mapping studies [71] in SE. If these limitations would
not exist, people could surely perform such research or at least parts of it faster and
more efficient. Furthermore, when getting insights into fields apart from the ones
of the subjects main expertise, new interdisciplinary results might be retrieved that
would not have been possible using traditional research approaches.

To be able to find relevant documents beyond the described human limitations, com-
puters need to be able to aid researchers in the task of navigating through the large
amount of potentially interesting research. Luckily, recent advances in the field of
artificial intelligence and more specific machine learning have started to yield meth-
ods to compute the similarity between textual documents which potentially enables
the goals described above. On the other hand and since this field is rather new,
these methods are still not fully understood nor generally applicable.

The start-up Iris AI AS was founded in late 2015 to address the limitations de-
scribed above, making use of these technological advancements. More specifically
they work on creating a Science Assistant [6] that helps researchers to find relevant
research amongst a large number of publications. Iris AI’s Science Assistant can
thus aid in finding and structuring the relevant literature as for example required

1

1. Introduction

by a systematic mapping study [71]. Even though a preliminary version of Iris AI’s
systems already exists, this thesis aims for improving the system by applying the
latest state of the art methods in the field, leading to even more relevant results,
while at the same time being able to retrieve those results fast among the millions
of documents available. Furthermore, those methods might lead to insights on how
documents are connected to each other, a feature not available in the current version
of the Science Assistant.

1.2 Statement of the problem
While many approaches to compute textual similarity already exist, most of them
focus on comparing documents in a pairwise manner. This way, when trying to
find similar documents to a given document, the similarity between this document
and each other document in the corpus has to be computed. Needless to say, this
pairwise comparison does not scale to the millions of research papers mentioned in
the introduction. A much more efficient approach lies in using nearest neighbor
search [4](NNS) for which documents need to be projected into the vector space in
such a way that any given document lies closer to similar documents and further
away from unrelated documents (for more details see section 2.1.1). These vectors,
obtained from the projection, are called document embeddings since they embed
the textual information of the document in a semantic vector space. Document
embeddings (also synonymously called document vectors or more general document
representations in the following) are the foundation of vector-based document re-
trieval.

To obtain such document representations, Iris AI uses a heuristic function based
on a number of methods including TF-IDF [76], NTM [23] and Word2Vec embed-
dings [63]), which are combined and weighted. While this approach is already quite
effective, it still ignores many characteristics of the considered documents like word
order or the document’s structure which potentially could aid in better grasping a
text’s underlying semantics.

An alternative way of generating the required vector representations is using neural
networks (NN) to create entire document embeddings at once [57]. Today many dif-
ferent approaches using various NN architectures exist (see section 2.2 for details),
each with their own strengths and weaknesses. For many of them, it is unclear how
well they perform on the task of creating document embeddings that aid in finding
relevant research articles. Furthermore, the performance of NNs heavily depends
on the structure of the input data as well as on the chosen hyperparameters which
usually have to be determined empirically using a combination of expertise and ex-
tensive experimentation.

Another problem then lies in evaluating the quality of the previously mentioned
approaches. While all publications describing such methods come with an evaluation
part, it is still hard to compare approaches against each other. This is mainly because
methods are rarely evaluated on the same task or the same metric using the same

2

1. Introduction

dataset. Needless to say, certain evaluation methods or datasets might favor the
results of certain approaches over others, thus rendering them useless for a sound
comparison.

1.3 Research Questions
RQ1How can embedding methods be compared in a qualified and fair manner?
RQ1.1 What metric allows for a sound assessment of document embedding?
RQ1.2 What dataset(s) should be used that is not biased towards any method or
task?
RQ2 How can scientific publications be transformed into document embeddings
that work best for computing their semantic relation without being biased towards
specific metrics or datasets?
RQ2.1 How well do different state of the art NNs for document embeddings perform
on scientific publications?
RQ2.2 How do parameters like the length of the text to be transformed or the
document vector dimensionality affect the quality of the resulting embeddings?
RQ2.3 In what chunks (characters, words, etc.) should text be fed into the NN?

1.4 Purpose of the study
The purpose of this study is to methodologically determine the best method to
find meaningful vector space embeddings for scientific publications. The resulting
embeddings will then allow using the usual location properties of a vector space.
This mainly means that similar documents can efficiently be retrieved using their
coordinates. Furthermore, analyzing the clustering of document embeddings within
the vector space will most likely give insights into how documents, as well as groups
of documents, are related to each other. This can for example aid researchers in
conducting systematic mapping studies, where not only relevant literature needs to
be found but also classified and structured [71]. One such mapping study is for
example currently being conducted at the Department of Computer Science and
Engineering at Chalmers University of Technology in Gothenburg, Sweden in the
area of autonomous vehicles.

This will first of all benefit Iris AI AS’s process of finding relevant literature since
document embeddings are not utilized by them at the moment. If an effective
vector space model can be found, it could replace their method to compute similar-
ity by simply using the distance between document vectors. Furthermore, Iris AI
AS right now represents documents as matrices rather than vectors. Moving from
a matrix representation to a vector representation would thus enable considerable
performance improvements and also enable methods like the earlier mentioned NNS.

Additionally, the created evaluation framework can be generally used for assessing
the quality of document embeddings for other cases than the ones depicted in the
case study of this work (see the design section for details) by providing both the

3

1. Introduction

methodology as well as the associated dataset.

Ultimately, the results of this work, when applied, will benefit SE researchers in
conducting systematic literature reviews and mapping studies regardless of whether
they mainly stick to one domain like the automotive mapping study or connect
multiple domains like the broad corpus of Iris AI allows for.

4

2
Theory

2.1 Vector Space Models
As briefly mentioned in section 1.2, current research has been able to utilize vector
space models for various fields within the area of natural language processing (NLP).
Since they enabled achieving superior performance compared to previous methods,
they quickly became the predominant group of approaches in the field. At the
same time, they are easier to comprehend than other methods like graph-based
approaches, heuristic, etc. Consequently, we will limit the scope of this work on
vector space models rather than older methods, as the former seems more promising
to us with regards to performance and scalability.

2.1.1 Properties of Vector Spaces
With all textual units represented as points within a vector space, calculating the
distance between two units can be done by using trivial mathematics. The two most
common distance measures for pairwise comparison are thereby euclidean distance
and cosine distance.

The cosine distance (see equation 2.1) measures angle from center between two
points.

cos(~a,~b) = ~a ∗~b
| ~a || ~b |

(2.1)

The euclidean distance (see equation 2.2) on the other hand measures how strong
the semantic goes into a certain direction.

‖~a,~b‖ = ‖~a−~b‖ (2.2)

Based on the distance functions described above, vector space models can be used
to both create clusters using algorithms like k-nearest neighbors (kNN) and retrieve
related vectors using nearest neighbor search [4](NNS) utilizing algorithms like ball
trees [69], locality-sensitive hashing [13, 17](LSH) or the Fast Library for Approxi-
mate Nearest Neighbors (FLANN) [66].

5

2. Theory

2.1.2 BoW Vectors
The arguably simplest way to create embeddings for words is by using one-hot
vectors. These vectors contain as many rows as the vocabulary has words and, e.g.
to represent the first word of the vocabulary, have the first row set to 1 and all other
rows to 0. This kind of representation also generalizes easily to larger textual units
like sentences or documents where each row is either set to 1 if a document appears
in the unit or its number of occurrences. Because documents are only represented by
the set of words they contain, regardless of their order and other features, this model
is mainly referred to as the bag-of-words model (BoW). Since rows of words that do
not occur in the textual unit are set to 0, BoW vectors tend to be really sparse. They
also have to deal with the so-called curse of dimensionality as embeddings can easily
grow to a few hundred thousand dimensions for corpora with large vocabularies. To
deal with this issue, many approaches for dimensionality reduction like SVD [32] or
feature hashing [75] have been applied to embeddings. Furthermore, they are not
able to capture the semantic similarity of words or deal with synonyms. E.g. house
and mouse have the same Euclidean distance as house and building even though the
latter ones are semantically much closer. Regardless of those issues, one-hot vectors
have still been able to achieve considerable results in practice and thus been the
industry standard for many years.

2.1.3 Distributed Vectors
For some time, researchers have started looking at a words context rather than sim-
ply its occurrence. The main idea was already defined by Harris in 1954 to "know
a word by the company it keeps" [39]. While some more or less effective methods
have been proposed thereafter, only recently so-called neural word embeddings have
become the state of the art where representations are learned by a NN [19, 30, 63].

The main benefits of distributed vectors are that they can indeed deal with syn-
onyms or generally semantically related words and furthermore have a much lower
dimensionality. On the downside, the fact that they place words, that appear in
similar contexts, close to each other in the vector space, also treats opposites like
hot and cold as semantically similar. Also, embedding size is a hyperparameter
that can lead to drastic variances in performance on different downstream tasks
like predicting the topic of a document. While the basic intuition is that higher
dimensional embeddings can capture more semantic nuances, this does not mean
that they perform better in a practical setting. This means that the embedding size
usually has to be empirically chosen which can easily lead to embeddings that only
perform well on certain specific tasks. Nonetheless, a higher dimensionality results
in both increased training and inference times and furthermore requires more data
if overfitting is to be avoided.

Until now, the two most popular methods for creating embeddings on a word level
are Word2Vec [63, 64, 65] and GloVe [70]. While the later released GloVe claims to
produce embeddings superior to Word2Vec, the experiments of Levy et. al. actually
show the opposite [59]. Generally, both methods are widely applied nowadays, espe-

6

2. Theory

cially since both provide pre-trained embeddings on large vocabularies, thus saving
the effort to run the computationally expensive training to start with.

As the next bigger lexical units, sentences also created interest to represent them
as embeddings. While some approaches simply treat them as an arbitrary number
of words [57, 47, 51], others utilize certain grammatical features like parse trees [79,
40]. In the following, a number of neural approaches to creating vector spaces
for documents are introduced. Baroni’s evaluation shows that neural presentations
perform generally better on a wide range of tasks compared to BOW vectors [16]
which motivates our choice to only include neural approaches. They are mainly
selected because they seem particularly promising for our case of dealing with large
amounts of scientific publications. We thereby make the assumptions that no parse
trees like used by Socher et al. [79] or Hermann et al. [40] nor other kinds of target
labels like used by Tang et al. [80] or Wang et al. [82] may be utilized even though the
latter claim that such labels improve their models’ performance. The main reason
to not include target labels it that for the larger scale datasets used in this work,
no sufficient amount of labeled data exists.

2.2 Neural Networks

2.2.1 Feed-forward NNs
While already many sources exist that explain neural networks in great detail, we
will nonetheless give a brief explanation of how feed-forward neural networks work
as they can be seen as the foundation of all approaches used in this work.

Loosely inspired by the human brain, artificial neural networks are made of cells
which are grouped into sequential layers whereby mathematically every later is a
matrix that is multiplied by its predecessor. While each network has an input layer
as its first layer and an output layer as its last, it furthermore contains a number
of so-called hidden layers which can range from one to arbitrary many, only being
limited by computational power (see Figure 2.1). Each hidden layer can thereby
be imagined as a number of neurons, which in mathematical terms can be referred
to as one weight matrix. While the number of layers can have a major impact on
the model’s performance, it has to manually be chosen by the developer, making it
a so-called hyperparameter. And while the size of the input and output layers are
determined by the kind of data that is used, the size of each hidden layer is also a
hyperparameter.

To compute an output using the network, a simple feed-forward pass is utilized. The
input will thereby be multiplied with the weight matrix H of the first hidden layer
with usually some bias term b being added as well. The results of this computation
will then be fed into an activation function f, determining the ultimate output of
the first hidden layer. The same process will then be repeated for all subsequent
hidden layers until the output of the last hidden layer can be regarded the model’s
final output.

7

2. Theory

Figure 2.1: The feed-forward and backpropagation passes of a neural network.

While these weights are being somewhat randomly initialized for a new model, they
will perform poorly unless they are tuned in the right way which is referred to as
the model’s training. The training of a neural network generally happens in two
phases: In the first phase, the output for some training example is computed given
its input data by using the previously described feed-forward process. In the second
phase, the produced output is compared to the examples With the exact math be-
ing out of scope for this work, the error each weight has made with regards to the
prediction is computed using a method called backpropagation [73]. The gradients
computed in this process can then be used to make the necessary adjustment of the
model’s weights. This process is then repeated for a number of training examples
until the model converges to an acceptable performance. When the training process
is completed the network can predict the targets of additional inputs not contained
in the training set by using the feed-forward procedure.

A high number of parameters might easily lead to overfitting which means that the
neural network simply uses its weights to remember inputs and their respective tar-
get. While this behavior obviously leads to a good performance on the training set,
it won’t allow the network to generalize well, thus leading to a poor performance
when being evaluated on the test data.

Another way to avoid overfitting is regularization. For this an additional term also
referred to as regularization term, is added to the loss function of a model. This term
imposes a penalty on the complexity of the model, thus making less complex models
which tend to generalize better preferable. While many sophisticated regularization
methods exist, the most fundamental and also most widely applied regularizers are
L1 and L2 [68].

2.2.2 RNNs
Rather than feeding all words of a document into the network at once, recurrent
neural networks (RNN) read document word by word. While reading a document
this way, the network keeps track of an internal state that gets updated with each
word that it reads. This provides the network with some notion of memory which

8

2. Theory

enables the RNN to process every word it observes given a context based on earlier
observed words.

Long-Short Term Memory (LSTM) models [42] are a special variant of recurrent neu-
ral networks (RNNs). The general idea behind RNNs for the creation of document
embeddings is that they read through the document word by word while continu-
ously accumulating a hidden state which memorizes the topical context based on
the words read before (see figure 2.2).

Figure 2.2: The basic RNN and its unfolded visualization as sequential steps.

While regular RNNs usually have to deal with the so-called "vanishing gradient
problem" where the impact of previous time steps quickly fades for the current state
of the NN, LSTMs are able to handle long-range dependencies much better. This
makes them especially attractive for our case of producing embeddings for scientific
publications of larger text length which might require the NN to remember the
topical contexts across several sentences or even paragraphs. Also, Ghosh et al. [37]
have applied this kind of architecture on the sentence topic prediction task (amongst
others) with considerable success using both documents from Wikipedia as well as
news articles from Google News, which makes their approach likely to also work for
scientific publications.

2.2.3 CNNs
Another popular NN architecture is concurrent neural networks [58] (CNNs). CNNs
became hugely popular in the area of computer vision (CV), especially after their
successful application in the ImageNet LSVRC-2010 contest1 by Krizhevsky et
al. [54]. On the other hand, they are not that commonly utilized for NLP prob-
lems. One reason might be that for the visual tasks in CV they abstractly mimic
the behavior of the human visual cortex which can be intuitively visualized [84]. For
textual perception, on the other hand, the human reading behavior of looking at one
word after another from one direction to the other (left to right in western culture)
while remembering previously read words strongly equals how RNNs process input
and thus makes it quite intuitive. CNNs on the other hand, which process informa-
tion by sliding over the input data as explained below, appear way less intuitive.

1www.image-net.org/challenges/LSVRC/2010/

9

www.image-net.org/challenges/LSVRC/2010/

2. Theory

Nonetheless, a considerable amount of research for CNNs in the area of NLP exist.

Apart from common NN layers like the common softmax layer for classification
tasks, CNNs are mainly based on two special types of layers, also shown in Fig-
ure 2.3: Convolution layers and pooling layers.

Convolution layers utilize a filter which is applied to the input data. The weights
of the filter are thereby learned during the NNs training phase while the size of the
filter and its stride (in what steps it is applied to the input) have to be defined as
hyperparameters. Input data for CNNs can be either in form of the ordinal numbers
of characters or embeddings for larger textual units like words or theoretically even
sentences.

After convolutional layers, it is also common practice to use one or many pooling
layers. This kind of layer subsamples its input, usually by taking the regional max-
imum or average. The main motivation of pooling is to reduce the layers output
dimensionality in order to force the NN to only keep the most important information
at this stage of the network.

Figure 2.3: A general CNN architecture with one convolutional layer, one pooling
layer and a fully connected layer at the end.

Some advantages of CNNs are that they are usually faster than recurrent neural net-
works (RNNs) and backpropagation is generally easier to implement. A considerable
downside of CNNs, on the other hand, is the increased number of hyperparameters
including the number and sizes of the convolution filters as well as pooling strategies.

Also, interesting variations have been proposed like Lai et al. [56] whose approach
called RCNN combines both convolutional and recurrent NN architectures.

2.2.4 Autoencoders
While all neural network architectures presented above do usually rely on labeled
training data, autoencoders take a somewhat different approach. Their way of work-
ing can be split into an encoding and a decoding phase (see Figure 2.4). For the
encoding phase, they use a number of hidden layers to transform the input data
into some intermediate representation. Thereafter, in the decoding phase, the model

10

2. Theory

tries to recreate the input from the intermediate representation. The model’s loss
to be minimized is, therefore, the difference between the original and the recreated
input.

Figure 2.4: An autoencoder for word sequences using a one-layer feed-forward NN.

Since the intermediate representation is usually of lower dimensionality than the
input, the autoencoder can be seen as a way to achieve compression or dimensionality
reduction. Also, the hidden layers used for en- and decoding can be feed-forward
NNs as well as CNNs, or RNNs.

2.3 Metrics
When assessing the quality of the document embeddings produced by the approaches
described above, a sound metric is essential. Apart from enabling a fair assessment
of different approaches, it also needs to be fast enough to evaluate a number of ap-
proaches within a reasonable amount of time. This can usually be achieved due to
the fact that metrics are less computationally expensive than the actual embeddings
methods as they do not need to learn a whole vector space model but only need to
be able to pairwise compare embeddings.

The following section introduces some of the most popular as well as relevant metrics
for our case of evaluating document embeddings.

2.3.1 Intrinsic vs Extrinsic Metrics
When assessing the neural language models described earlier, generally, two types
of metrics exist:

Intrinsic metrics focus on comparing embeddings from a linguistic perspective. In
the case of word embeddings, for example, it became quite popular to assess word
similarity, where the semantic relation between words is compared [38]. Common
datasets like WordSim-353 [35] or SimLex-999 [41] are manually curated and thus

11

2. Theory

provide only a few hundred examples each. Le et al. [57], Dai et al. [31] and many
others evaluate their methods based on "coherence", for which they check if a candi-
date vector lies closer to a manually picked related vector than to an unrelated one.
The same procedure was also proposed by Schnabel et al. [77]. More generally the
field of Semantic Textual Similarity (STS) [11, 12, 9, 8, 10] exists which aims for
determining the semantic distance between two textual units. Unfortunately, most
work in that field focuses on sentences which are usually represented by the average
of their word vectors, while document-specific features are not considered.

Extrinsic metrics, on the other hand, assess the embeddings based on some down-
stream task like document class prediction. Since embeddings are usually created
to be used in such tasks, it seems reasonable to also evaluate embeddings on down-
stream tasks, especially since Chiu and others claim that intrinsic metrics are poor
predictors for an embeddings downstream performance [27, 60, 34]. Additionally,
Nayak and Manning [67] propose a "Representative Suite of Practical Tasks" which
promises a more thorough evaluation by applying several downstream tasks instead
of only one specific task.

2.3.2 Supervised Metrics
Supervised methods are based on a definitive ground truth. Technically this means
that for document embeddings, every document has to be labeled with its associated
ground truth data also referred to as the target. The methods under assessment can
then be evaluated based on how well it is able to infer the target based on the related
document as input.

2.3.2.1 Topic Prediction

The possibly most popular downstream task in machine learning is the one of classifi-
cation. In the case of scientific publications, this could, for example, mean predicting
the category of a paper.

One example dataset for this kind of task is the Citation Network Dataset (CND) [25]
which contains full scientific publications from the field of computer science includ-
ing their abstracts. Each of the document was manually assigned one out of eight
possible classes. Other examples are the Classic3 and Classic4 datasets created
by the Cornell University [2] of which the later contains 7095 scientific documents
manually labeled to four classes. Both of these datasets are suboptimal to evaluate
approaches in the context of large datasets like the one Iris AI deals with, as the
small number of classes will easily be exceeded in those scenarios.

Another unrealistic assumption is the existence of a fixed number of concrete topics.
In contrast to clustering methods like k-nearest neighbors (kNN), the clusters in a
vector space model are usually not bound by a specific number. This is mostly be-
cause documents are not clustered into concrete real-world topics but rather abstract
dimensions learned by the model.

12

2. Theory

2.3.2.2 Information Retrieval

The information retrieval (IR) task takes one query document to then find the n
most related documents to that one. This makes it particularly relevant for the use
case of finding related publications.

Over the past decades, the IR community has developed several metrics to eval-
uate the effectiveness of retrieval algorithms. Those include Precision, Recall, F-
measure, Mean Average Precision (MAP) and Normalized discounted cumulative
gain (NDCG) to name some of the most popular ones [61].

The main problem with these rank-based metrics is that they require a manually
curated ranked list of results for each query document to be tested. This cre-
ates an even larger effort then assembling a classification dataset as not only one
ground truth label needs to be assigned but n ones instead. Also, the labels need
to be ranked which introduces a certain subjectiveness when manually done by hu-
mans.

2.3.2.3 kNN Error

The k-nearest neighbors (kNN) error is similar to some of the IR metrics like pre-
cision and recall but more relaxed since the k most similar documents do not need
to be ranked. Instead, it simply calculates the percentage of correctly retrieved
documents out of the k candidates with the k-nearest neighbors from the dataset as
the corresponding baseline. The main benefit compared to IR is that it somewhat
removes the effort and subjectiveness introduced by the ranking.

2.3.2.4 Triplets

Another approach, also quite similar to the ones described before, is the triplets
metric used by Le [57] and Dai [31] amongst others. Each of those triples consists
of one "query" document, one "positive" document similar to the query and a third
"negative" document different from the query. The goal is then for a given "query"
document to compute a smaller distance to the positive document than to the neg-
ative one.

Like with the other supervised metrics, all triples have to be manually curated.
While creating such triples is easier than n or k ranked or unranked neighbors, it
might still not be feasible for large datasets.

What makes this metric especially appealing is that it assesses embeddings indepen-
dent of any real downstream task, but rather focuses on inspecting single embeddings
and their relation to another. On the other hand, the effectiveness of the metric
again heavily depends on the subjective human judgment based on which the triples
are assembled.

13

2. Theory

2.3.2.5 Curating Datasets

Unfortunately, supervised metrics also come with several downsides. To start with,
they need to be curated manually. This inevitably introduces some degree of sub-
jectivity originating from the person creating the data.

Also, this means creating larger evaluation sets can result in a considerable and of-
ten even unfeasible amount of work. For corpora in the size of 30M documents, this
means to make a significant assessment at least 1.5 million documents need to be
labeled with their respective ground truth. Needless to say, curating such datasets
can quickly become unreasonably expensive, even when using services like Amazon
Mechanical Turk 2.

Also, it needs to be guaranteed that the data is both comprehensive (i.e. covering
as many words in the vocabulary as possible) as well as balanced (i.e. containing
different types of documents in equal numbers).

As these downsides make using supervised metrics a large effort, not taking that
effort means producing evaluation results of questionable quality, which nonetheless
can be frequently seen in publications in the field.

Furthermore, it is questionable whether supervised metrics sufficiently assess the
general quality of an embedding or rather its suitability for a specific task. One
possible solution to this problem is, of course, to combine several metrics to an
ensemble, resulting in a more general assessment but on the other hand increasing
the effort even more.

2.3.3 Unsupervised Metrics
One possibility when sufficient ground truth data is not available is using unsuper-
vised metrics instead of supervised ones. Rather than assessing documents based
on their target labels, the method is given or learns some kind of distance function,
based on which it regards documents more or less similar to each other.

2.3.3.1 Perplexity

The perplexity measure has its roots in information theory and is one of the oldest
and most commonly used metrics when assessing language models. This is mostly
because perplexity is intuitively easy to understand and can at the same time be
computed efficiently.
Jurafsky defines perplexity as "the inverse probability of the test set, normalized by
the number of words" [46] (see equation 2.3):

PP (w1...wN) = N

√
1

P (w1...wN) (2.3)

Where:
2https://www.mturk.com/

14

https://www.mturk.com/

2. Theory

• P (w1...wN) is the probability of the words w1...wN to appear in sequence
• N is the total number of words

Yet, in recent literature perplexity is broadly considered a bad measure. This is
mainly due to its insufficient correlation to downstream tasks, which the assessed
language model is developed for in the first place. It was even shown that the correla-
tion between perplexity and human judgment is quite low as well [26]. Nonetheless,
it remains widely used, possibly due to the lack of other more appropriate unsuper-
vised metrics.

One attempt to specifically improve the correlation to downstream tasks is called
Contrastive Entropy [14]. Unfortunately, the effectiveness of this approach is ques-
tionable and requires further evaluations which are beyond the scope of this work.

2.3.3.2 Embedding-based metrics

An intuitively more suitable approach for assessing document embeddings based on
their distance is approximating that distance by comparing it to other embeddings.
As the only purpose of such embeddings is to compute their pairwise distance, they
do not need to form a vector space.

The easiest way to do so is by simply taking the average of all word embeddings
of a document. In a second step, the Pearson correlation coefficient (PCC) (2.4)
between two averaged vectors can then be computed.

ρX,Y = cov(X, Y)
σXσY

(2.4)

Where:
• cov is the covariance
• σX is the standard deviation of X
• σY is the standard deviation of Y

The biggest problem of simply taking the average is that words that generally appear
in various documents are considered equally important as words that are higher
specific for certain documents only. One common way to deal with this issue is
weighting terms using the term frequency-inverse document frequency (TF-IDF)
statistic (2.5). This way terms are considered less significant the more documents
they appear in. In case of document representations, this means that each word
embedding for a document is weighted using the TF-IDF statistic of its term before
all weighted embeddings are summed up in the end. Finally, the PCC can be
calculated as for the averaged vectors.

wt,d = tft,d ∗ log(
N

dft

) (2.5)

Where:
• wt,d is the weight of term t occurring in document d
• tft,d is the number of occurrences of term t in document d
• N is the total number of documents
• dft is the number of documents containing term t

15

2. Theory

One general advantage of TF-IDF-based approaches is that they are really effi-
cient to compute. When using well pre-trained embeddings, costly training can be
avoided. Also, they are historically proven to work and are successfully applied in
many NLP scenarios. Alternatively euclidean distance (equation 2.2) and cosine
distance (equation 2.1) can also be used with TF-IDF vectors.

One downside of this approach is that it yields very high dimensional vectors of the
size of the vocabulary, where most entries do not provide any useful information but
only the absence of words in the respective document.

A similar yet slightly different approach Iris AI AS is using is their so-called Word
importance-based similarity of documents metric (WISDM). Instead of accumulat-
ing the word vectors to one single vector to represent the document, they keep the
vectors for all words within the document to then form a document matrix. To both
save computational effort but even more, to filter out irrelevant terms, only words
above a certain TF-IDF value are taken into account. For the resulting matrices,
their pairwise RV3 coefficient can then be calculated using equation 2.6. Since the
RV coefficient can be seen as the multivariate generalization of the squared Pearson
correlation coefficient, both methods are distinctly similar.

RV (X, Y) = Tr(X ∗ Y T)√
Tr(X ∗XT) ∗ Tr(Y ∗ Y T)

(2.6)

Where:
• Tr is the trace

On the downside, TF-IDF is not able to capture certain relations between words
like word order. Nonetheless, Arora, Liang, and Ma report their TF-IDF-weighted
GloVe embeddings to perform better than many more complex methods based on
RNNs or LSTMs [15].

Yet, Wieting’s experiments show that especially for tasks where the domain is not
specified, these simpler unsupervised methods perform better than more complex
ones like LSTMs [83].

Also, since most of these approaches are built on word vectors, it will in many cases
be preferable to use pre-trained embeddings in order to save to computationally
expensive training of those. One popular example for pre-trained word vectors is
provided by Stanford, built using their GloVe algorithm, resulting in 300-dimensional
embeddings which are trained on the 840 billion token Common Crawl corpus4.
Another set of pre-trained vectors based on Word2Vec comes directly from Google
itself and is trained on parts of their Google News dataset which contains about 100
billion words. The resulting model contains 300-dimensional vectors for 3 million
words and phrases5. A third option, more specific to this work and also not publicly
available, is the Word2Vec model from Iris AI. Their model was trained on 8 million

3https://en.wikipedia.org/wiki/RV_coefficient
4http://nlp.stanford.edu/projects/glove/
5https://code.google.com/archive/p/word2vec

16

https://en.wikipedia.org/wiki/RV_coefficient
http://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec

2. Theory

random documents from their corpus containing a vocabulary of about 240.000
unique words.

2.3.3.3 EMD-based metrics

A somewhat more sophisticated approach is the so-called word mover’s distance [55].
Unlike the previously explained methods, it skips the step of creating additional
embeddings beyond the word level but instead considers document distance an op-
timization problem called earth mover’s distance [72]. Extending this idea with
supervision learning, Huang and others propose the supervised word mover’s dis-
tance (S-WMD) improving test results even further [43].

With a complexity of O(p3 log p), where p denotes the number of unique words in the
documents, the WMD can be expected to scale rather bad for corpora with larger
vocabularies like the ones Iris AI AS are dealing with. Similarly, solving the optimal
transport problem for corpora with many documents will most likely be unfeasible
as well.

17

2. Theory

18

3
Method

3.1 Applied Cases
The main goal of this study is to determine what methods to create document
embeddings work best in the case of finding related documents from a collection of
scientific publications. A number of potentially suitable methods will, therefore, be
evaluated for two cases:

3.1.1 Systematic Mapping Study
The first and very specific case is an ongoing systematic mapping study on au-
tonomous vehicles conducted by Chalmers University of Technology. The goal of
this case is to find the most relevant literature within a fixed domain. It can thus
be assumed that documents in this domain are generally quite similar for example
regarding their vocabulary.

3.1.2 Iris AI
The second and much more general case is Iris AI’s Science Assistant to find related
literature in a broad variety of fields. In this case, documents will show a much
greater variety in topics and vocabulary. Also, computational efficiency will become
an important factor here since the methods under assessment have to scale to a
corpus of several million documents. This case is more representative for literature
studies that involve more than one domain like in the area of search-based software
engineering where regularly research from non-SE fields like for example genetic
programming is incorporated [18].

3.2 Evaluation Framework
To be able to make a sound and fair assessment of the quality of vector space models
we need a unified framework. Only such a framework will allow a reasonable compar-
ison of different models, much unlike the current status quo in research where most
publications base their results on a broad variety of different datasets and metrics,
making comparisons impossible without further self-conducted experiments. This
section will, therefore, introduce our novel framework for the evaluation of vector
space models in the area of scientific publications as well as an experiment using
this framework to evaluate the performance of several state of the art models.

19

3. Method

3.2.1 Evaluation Methodology
First, the effect of those parameter selections on the embedding quality will be
assessed within each case individually. Thereafter, a cross-case analysis will be per-
formed to see how findings from the individual analyses compare and generalize.
Ultimately, it needs to be assessed how these insights can be used to obtain the
highest quality document embeddings for both smaller single-domain cases as well
as cases with large multi-domain corpora.

Instead of running ad-hoc experiments that are hard to compare or reproduce, we
base our framework on a well-defined evaluation methodology. Hence, our framework
is based on the following five steps, also shown in figure 3.1:

1. Select Approaches
2. Select Metrics
3. Select Data
4. Optimize Hyperparameters
5. Run Experiments

Unsurprisingly the first step lies in determining the approaches (i.e. vector space
models) under evaluation. In the second step, one has to decide what metrics
to use. To be able to compare experiments, we strongly recommend using our
proposed metrics described in section 3.2.2. Nonetheless, further metrics can be
added if the use case requires so. For step three a dataset to train and test the
vector space model(s) on has to be appointed. Again we recommend using one of
our datasets specifically curated for this framework. If the processed documents
should come from another domain than scientific publications, it is also possible
to operate on those datasets by applying our preprocessing pipeline, explained in
detail in section 3.2.2.4. This way new datasets in the same format can be curated to
then be used without making technical changes to the framework. One example use
case for this could be the creation of a dataset specialized on medical publications
taken from the PubMed repository 1. In the fourth step, the hyperparameters of
the model will be optimized. While this step is optional and might be skipped
for the rare case of models without hyperparameters or the assumption that the
hyperparameter space has already been sufficiently explored, it is usually necessary
since most models strongly vary in performance based on their hyperparameter
choices. Section 3.2.3 describes our preselection of common hyperparameters to be
optimized. Needless to say, additional hyperparameters can be added based on the
approaches under evaluation. At last, in the fifth step, the actual experiment(s) will
be conducted by measuring the defined metrics on the approaches trained on the
previously determined dataset.

3.2.2 Metrics
Rather than relying on a single metric, a small ensemble of conceptually different
metrics is used to provide more sound and unbiased evaluation results. The challenge
hereby lies mainly in finding an ensemble that can sufficiently assess document

1https://www.ncbi.nlm.nih.gov/pubmed/

20

https://www.ncbi.nlm.nih.gov/pubmed/

3. Method

Figure 3.1: This figure shows the different steps in our framework as well as the
respective information flow.

embeddings while at the same time being feasible with regards to computational
efficiency. Also, while chapter 2 already gave some background on the applied
metrics, this section goes more into detail how exactly those metrics have been
implemented in our framework.

3.2.2.1 WISDM-based Distances

As a first metric, the triplets as used by Le [57] and Dai [31] will be applied. There-
fore, a number of random document embeddings will be sampled from the vector
space under evaluation. For each vector representing a document, another random
point below a defined maximum distance and one above some minimum distance are
sampled as well. Since this would mean that for every sampled document we would
have to compute the distances to (approximately) all other documents within the
dataset, we use precomputed distances based on the earlier mentioned WISDM sim-
ilarity metric. Because this metric takes no other data than the learned document
vectors under comparison into account, it can be seen as task-agnostic. It, therefore,
aids especially in assessing embeddings in an isolated manner only based on some
similarity function rather than measuring its performance on some downstream task.

Another metric where the WISDM distances can be used is the information retrieval
task. For this, a number of documents are sampled from the test dataset and their
n nearest neighbors are retrieved from the vector space model under assessment
using NNS. In analogy to the triplets metric, we use precomputed WISDM dis-
tances to make the evaluation computationally feasible. Unlike the task-agnostic
triplets, this metric is more related to the later application of the document embed-
dings where related scientific publications have to be retrieved ranked and in limited
numbers.

21

3. Method

3.2.2.2 NTM-based Topics

The goal of the topic prediction metric is to correctly infer the topic of a document
given its full text or abstract. The main motivation for this metric is to present
an alternative to the previously described word vector-based metric, avoiding its
inherited bias from the pre-trained embeddings. While a generally superior vector
space model is expected to perform best in both this metric as well as the previous
one, divergences can give hints certain metrics are biased towards certain approaches.

Instead of manually labeling the documents, the target topics are taken from the
Neural Topic Model [24] (NTM) of Iris AI which itself is trained in an unsupervised
fashion and only refines its results using manually labeled documents. The benefit
from not using the manually labeled data to start with is that the NTM can be
utilized to label an arbitrary number of documents and thus allows to scale the
test set size according to the size of the corpus that the approach under assessment
should be later used on. The report results will then simply be the percentage of
correctly classified documents using logistic regression for classification. While non-
linear models might perform better on the classification task itself, linear ones are
faster and still fair when used for all approaches.

To obtain the topics necessary for the supervised class prediction metric, the NTM
from Iris AI will be used. In case of the Automotive dataset, it will assign one out of
200 topics to each document. For the Iris AI dataset, a document can be assigned
to one of 100 topics. The number of topics was determined experimentally based on
the best perplexity of the used NTM.

3.2.2.3 Datasets

Since the quality of any statistical model heavily relies on the data it is based on,
we took special care of curating a number of datasets to be used in our evaluations.
The fact that we created several datasets instead of one has several reasons: First,
we obviously needed at least two datasets based on our two applied cases described
in the beginning of this chapter. Second, while many NN models are too compu-
tationally expensive to be run on larger datasets, they might only be feasible when
evaluated on a smaller dataset. Third and last, with only small datasets available in
many practical applications, it makes a lot of sense to evaluate vector space models
on a comparably small dataset for the fairest possible assessment. Similarly, for
cases where the dataset can be expected to be of a larger size, evaluating models on
a respectively larger dataset only makes sense.

The documents to evaluate the Iris AI case, are retrieved from the aforementioned
CORE repository. Similar to before a NTM has been utilized to label X documents
of the corpus with topics. This time, the best perplexity was achieved by using 100
topics.

To be able to evaluate the vector space’s behavior on various kinds of datasets, we
created three different datasets from the CORE repository:

22

3. Method

Core10k10 Core250k10 Core1M+100 AV5k10
Documents 10000 250000 1022008 5018
Sentences 77637 1957206 7935477 34463
Words 969736 24326659 100033132 409080
Labels 10 10 100 10

Table 3.1: The four datasets created for the evaluation framework.

Core10k10
First, the smallest Core10k10 dataset consists of 10000 documents, equally dis-
tributed to the ten most frequent topics. We reduce the number of topics from
100 to 10 including the following topics IDs: 44, 99, 94, 19, 85, 93, 97, 49, 30,
20. While 6 is the x most frequent topic, we manually removed it since this topic
produced by the NTM appears to mainly capture documents of short nature. This
results in the issue that many of this topic’s documents cannot be used by models
like Doc2Sent2Vec which require a certain document length or generally decrease
the amount of information when being padded in order to guarantee a minimum
number of words for a document or sentence.

Core250k10
Second, the medium-sized Core250k10 dataset which draws from the ten most fre-
quent topics, but this time 25000 documents each. Just like the Core10k10 dataset
all topics are balanced.

Core1M+100
Third and last, the Core1M+100 which - like the name suggests - contains over a
million documents from all 100 topics. More precisely, it is made of all 1022008
topic-assigned documents available in the corpus. Unlike the earlier two, the last
dataset is not balanced with regards to the documents’ topic distribution because
of the small number of documents assigned to the least common topics.

AV5k10
Additionally, we curated another type of dataset for the autonomous vehicle case
to which we refer as AV5k10. The study examines a total of 11414 research papers
- or more precise - the papers’ abstracts. While no human-labeled topics for those
papers exist, a neural topic model (NTM) has been used to assign latent topics to
the documents. The best perplexity and efficiency, when applied to mapping stud-
ies, were thereby reached with a number of 200 topics.

For the evaluation part of this work, we created one dataset composed of 5000 doc-
uments from the 10 most frequent topics. It is thereby worth mentioning that even
for only 10 topics, those are not balanced mainly due to the fact that the documents
are so widely spread over 200 topics, which leaves only a few hundred to thousand
documents per topic.

23

3. Method

3.2.2.4 Preprocessing

Our preprocessing approach can be divided into two passes:
In the first pass, a preliminary vocabulary is built by extracting all unique tokens
from all documents within the corpus. Before going through all documents, the
corpus gets shuffled to avoid any bias from the order in which documents were
indexed in the repository. Then, for each document the following steps will be
applied:

1. Clean title and text body.
2. Discard documents with empty title or body.
3. Discard duplicates (= documents with the same cleaned title).

The cleaning step is itself made of several finer-grained steps which are explained in
the following: First, documents will be tokenized into sentences. This step is mainly
necessary for the Doc2Sent2Vec approach that processes documents on a sentence
level. Second, all previously retrieved sentences will be further tokenized into single
words. These words will then be lemmatized in order to reduce semantically equal
words like synonyms to the same base token. In step four, non-alphanumeric char-
acters will be removed from the tokens. The purpose of this measure is mainly to
remove for example markup which contains no semantic information as well as all
kinds of punctuation. This is desirable in our case since certain types of punctuation
like exclamation signs or questions marks which can provide valuable information for
tasks like sentiment analysis, are generally rare in scientific publications and further-
more do not aid in capturing the topic or content of a document. At last, we remove
empty or single character tokens, as we make the assumption that single characters
or letters contain no information regarding their respective document.
Furthermore, for each token in our corpus we

1. Collect the number of total occurrences,
2. Collect the number of documents containing a specific word,

which can be understood as building an inverted index like it is common practice
for most textual information retrieval tasks.

Since the complexity of most language models heavily depends on the vocabulary
size, we further reduce the vocabulary while at the same time removing tokens that
do not provide information regarding a document’s content: First, we remove all
tokens that appear in 10 documents or less. We argue that these tokens are too
specific with regards to certain documents while not being helpful to compare such
documents to others. Second, we remove all tokens that appear in at least 10% of
all documents. The motivation behind this reduction step is that such tokens are
too generic, again not contributing to capturing a document’s content. We chose
this method over the usual stopword removal technique using general stopword lists
like the Stopword Corpus by Porter et al.2 because scientific publications contain a
lot of words like study, research or result that are generally common within the field
of scientific publications and while being helpful in a common knowledge setting
where they would indicate a document being a scientific publication, we already
make this assumption based on our corpus, thus gaining no information from such

2http://snowball.tartarus.org/algorithms/english/stop.txt

24

http://snowball.tartarus.org/algorithms/english/stop.txt

3. Method

words. At last, all tokens will be checked if they exist in the reduced vocabulary
and if so replaced by their respective position in the vocabulary (i.e. a numerical
ID). Out-of-vocabulary words will be substituted with a shared UNK token. So
when the whole vocabulary was built, we ended up with a total of 131873 unique
tokens.

3.2.3 Hyperparameters
Apart from the hyper-parameters specific to each approach, a couple of general
parameters have to be considered for the experiment as they are expected to have
a considerable influence on the quality of the produced embeddings.

3.2.3.1 Embedding Dimensionality

While some sources claim that a higher dimensionality will yield more expressive
embeddings, others show that after a certain number of dimension performance will
decrease. Also, using higher dimensional embeddings results in both longer training
and inference times as well as larger space for the model to be saved on hard disk.
When using the model in memory it can even become unfeasible once the model
size exceeds the memory capacities. Therefore we should always aim for smaller
embedding sizes as long as the performance does not suffer.

3.2.3.2 Number of Epochs

An epoch is defined as the amount of training in which the model sees every example
of the training data. After each epoch, the examples are shuffled to avoid fitting
the model to the order in which examples appear. In our experiments, we generally
use a high number of epochs combined with a technique called early stopping which
stops the training when the model does not improve over a couple of epochs in order
to reduce overfitting. Since stochastic optimization methods tend to sometimes
stagnate or even become wo but then return to improving after, we utilize a patience
count that will continue the training for n epochs without improvement until the
maximum patience is reached.

3.2.3.3 Batch Size

The batch size determines how many training examples are looked at before the
gradients are applied to the model’s weights. A small batch size, therefore, results
in many inaccurate updates, while a bigger batch size results in fewer updates but
since more examples are taken into account, those updates can be expected to be
more accurate.

3.2.3.4 Learning Rate

The learning rate determines how much of the calculated error gradients are applied
to the model weights. While a too high learning rate might miss minima, a too
small learning rate might get stuck in local minima or not converge in time at all.

25

3. Method

For the models in this work, we chose 0.0001 as the lower and 0.1 as the learning
rate’s upper bound.

3.2.3.5 Optimizer

We have selected three of the most widely used optimizers:

First, Stochastic Gradient Descent (SGD) can be considered to most basic opti-
mization method for neural networks. The stochastic term is based on the fact that
the gradient is not computed for the whole number of training examples at once
but rather in small batches where each batch already takes into account gradient
updates made by prior batches.

Second, Adagrad [33] uses an adaptive learning rate that unlike the static one of
SGD gets reduced for large gradients and increased for small gradients, thus avoid-
ing the problems resulting from an inappropriate learning rate.

Third, ADAM [50] is also adaptive like Adagrad but additionally uses momentum
where every batch does not produce a completely new gradient but rather adjusts
the previous gradient into a certain direction.

3.2.3.6 Drop Out

One common trick to improve a model’s accuracy is the usage of so-called drop out
layers [36] which simply ignore a certain percentage of the previous layer’s weights.
The intuition behind this method is to improve generalization by forcing the net-
work to not rely on single neurons for prediction.

In our experiments, we use drop out for all models except Doc2Vec and Doc2Sent2Vec.
Our lower bound is thereby 0.0 which means no dropout and 1.0 which results in
dropping all weights.

3.2.3.7 Hyperparameter Optimization

While selecting hyperparameters by hand is a long and tedious process, it seems
only logical to automate this process. The most obvious solution is a method called
grid search where certain combinations of hyperparameters will be evaluated. Un-
fortunately, when aiming to be exhaustive and working with more than just a few
hyperparameters, this process will create a huge number of permutations which are
almost always unfeasible to completely train the model on. More practical is an
alternative called random search. Much like the name suggests, it simply tries out
a number of random hyperparameter combinations and is widely accepted to pro-
duce much better results than grid search while only needing fractions of its time
to compute [20]. One downside of the random search though is that it does not
remember which prior combinations perform better or worse and thus might spend
unnecessarily much time exploring parts of the hyperparameter space which can be

26

3. Method

expected to be futile after a few combinations.

Instead, we are using the particle swarm optimization (PSO) algorithm [48, 29] pro-
vided by the aforementioned Optunity framework. PSO optimizes a given function
by trying out a number of candidate solutions also called particles. All particles
are referred to as a swarm which iteratively moves towards the global minimum by
following the best particles. While Bayesian Optimization [78] follows a similar ap-
proach, this method works best when good priors are available which is not the case
for our scenario. Also, Bayesian Optimization implementations are much harder to
execute in parallel, while Optunity proves a highly concurrent PSO implementation.

The function we chose to maximize is a weighted combination of the metrics de-
scribed earlier (see Equation 3.1). Needless to say, while the topic prediction and
triplets metrics are weighted with a third each, the accuracy and precision of the
ranks metric are weighted a sixth each, making for a total third for the ranks metric,
thus weighting all metrics equally.

scoretotal(m,h, d) = 1
3scoretp + 1

3scoretr + 1
6scorera + 1

6scorerp (3.1)

Where:
• m is the model under evaluation.
• h are the model’s hyperparameters.
• d is the dataset used for evaluation.
• scoretp is the accuracy of the topic prediction metric.
• scoretr is the accuracy of the triplets metric.
• scorera is the accuracy of the ranks metric.
• scorerp is the precision of the ranks metric.

As this score is rather abstract and thus not intuitively easy to interpret regarding
the quality of the assessed model, we will establish a simple baseline based on random
guessing and compared to which a model should improve. In case of the triplet
metric, there are only two options to choose from which gives us a 50/50 chance
of guessing the correct result. For the topic prediction metric, we have 10 equally
balanced topics and therefore a chance by guessing of 10%. The chance of guessing
the correct rankings, however, is negligibly small and can thus be assumed zero in
our case. This gives us a random baseline of 0.18 as shown in equation 3.2.

scorebaseline = 0.3 ∗ 0.5 + 0.3 ∗ 0.1 = 0.18 (3.2)

In order to find an optimal combination of hyperparameters using PSO, we will run
5 generations with 7 particles each. While more particles and generations might
be able to find better combinations of hyperparameters, this is unfortunately not
feasible in our case considering the time restrictions of this work.

To keep the comparison fair, we keep the hyperparameter boundaries the same for
all models: For the document embeddings size, we chose to sample from a range

27

3. Method

of 20 to 200, mainly because most publications report optimal embeddings sizes in
that area. As it is rather hard to get an intuition for an appropriate batch size, we
chose a rather wide range from 20 to 500. As optimizers, we limit our choices to the
previously introduced three most common ones, namely SGD, ADAM and Adagrad.
For the learning rate, we chose 0.0001 as the lower and 0.1 as the upper bound. The
minimum delta for no improvement with regards to early stopping is 0.001 together
with a patience count of 3. For the models that use dropout, we sample from the
full range of values between 0.0 (keep all the weights e.g. no drop out) and 1.0 (drop
all weights).

3.3 Experiments
In this section, we describe our experiment on the assessment of vector space mod-
els. The purpose of this experiment is mainly to understand how some popular
approaches perform given certain datasets and hyperparameters. This will then
help to decide what approach to use in practice and what hyperparameters to chose
for them. Furthermore, it serves as a proof of concept for the feasibility and prac-
ticability of the framework and its underlying research methodology. Ultimately, it
can even be seen as a blueprint for future experiments in this area.

3.3.1 Approaches
This section will introduce the used artificial neural network approaches utilized to
create document embeddings. We provide both an explanation of how the respective
algorithms work as well as a rationale why these approaches were chosen.
Rather than including the code for our implementations here, we aim to explain
our models as detailed as possible. Since the landscape of deep learning frameworks
is in rapid and constant change, source code written for a specific version of the
framework is usually outdated and thus not working anymore within only a few
months. Instead, we believe that our detailed descriptions can be used as more
timeless blueprints that enable others to reproduce our results in any language or
framework.

3.3.1.1 Doc2Vec (Paragraph Vector)

The two main downsides of the BOW model described earlier in section 2.1.2 is that
it disregards both word order and semantics and thus loses a lot of textual informa-
tion. While considering pairs, triplets or generally n-grams of words incorporates
word order at least to some extent, the number of n-grams grows extremely fast for
larger vocabularies and n values and furthermore creates large sparsity as usually,
only a few n-grams occur within a given document.

To deal with this issue, Le and Mikolov, the main contributor behind the Word2Vec
papers, extend the idea of word embeddings to larger textual units like sentences or
even full documents [57]. To achieve this, they make use of an NN similar to the
one previously used by them to trained word embeddings. For their more general

28

3. Method

approach called Paragraph Vector (PV), they move from single words to sequences
of words which they refer to as paragraphs. A paragraph can thereby be a sentence
as well as an actual paragraph or even a whole document like a newspaper article
or a scientific publication.

The original Word2Vec method starts with transforming the variable-length words
of the training corpus into numerical vectors of fixed length. This is done using a
look-up matrix W with N columns where N is the size of the vocabulary and each
column contains a vector of size E, where is the size of the embeddings which has
to be chosen as a hyperparameter.

Furthermore, two variants of the algorithm exist: While the distributed bag-of-words
(DBOW) variant uses a word sequence of fixed length as input to predict the word
following that sequence, Skip-gram only uses a single word as input to predict the
word sequence following that word using in both cases the log-probability defined by
equation 3.3. For both variants, the weights of the NN are trained using stochastic
gradient descent (SGD), with backpropagation [73] being used to compute the
gradients. The resulting type of model is also commonly referred to as a neural
language model [19].

y = b+ Uh(wt−k . . . , wt+k;W) (3.3)

Where:
• U, b are the softmax parameters.
• h is constructed by a concatenation or average of word vectors extracted from
W .

• wt−k . . . , wt+k are all words of the trainings set T within the context of size k.
For the PV approach, not only a word matrix W but also a paragraph matrix D is
utilized. Similar to W, D holds an (usually randomly initialized) embedding of size
E (which is again to be determined as a hyperparameter) for every paragraph in the
training corpus. While h in Equation 3.3 was just computed from W in Word2Vec,
for PV h is computed from both W and D. The paragraph token from D can be
understood to memorize the context or topic of the current paragraph because of
which this variant of PV is also called Distributed Memory Model of Paragraph
Vectors (PV-DM).
To train the weights of the NN, each paragraph is split into contexts of fixed length,
which then together with the paragraph token are used as input to the NN. The
paragraph vector is thereby shared across all contexts. D, on the other hand, is not
shared across paragraphs but W is which means that for each word the same vector
is used across all paragraphs.

The context and paragraph tokens are then either averaged or concatenated and
sent to the softmax layer. Again, similarly to the original Word2Vec, the weights of
the NN are then trained by using SGD with backpropagation. When using the NN
to perform inference, the word and softmax weights are fixed. The gradient for the
unknown document vector is then computed to retrieve its embedding.

29

3. Method

Figure 3.2: The distributed memory variant of PV. Both context and the para-
graph token are used as input to the NN. [57]

Just like the Word2Vec method, a second variant exists that is trained on predicting
a sequence of words. Analogically this variant is called PV-DBOW and uses only
the paragraph vector to predict word vectors from the respective paragraph. Since
only the softmax weights and no word weights need to be stored, this variant needs
considerably less space.

Figure 3.3: The distributed bag-of-words variant of PV. Only the paragraph token
is used as input. [57]

PV is widely considered a strong baseline which is why we use it as our baseline
approach as well. It is applied to many downstream tasks which makes it a fair
baseline compared to more specialized approaches. Also, in their paper, Dai et al.
evaluate PV on 4,490,000 articles from the English Wikipedia using a vocabulary of
915,715 words [31] which suggests that the approach scales to larger datasets like
the one of Iris AI. Like many other publications that use PV, we also use the PV-
DBOW variant due to its higher efficiency while being comparable in performance
with PV-DM.

30

3. Method

3.3.1.2 Doc2Sent2Vec

Similar to how the PV method used by Dai et al. jointly learns word and para-
graph vectors [31], J et al. propose a variant that jointly learns word, sentence and
document embeddings (see figure 3.4) called Doc2Sent2Vec [44]. It thereby applies
specifically to documents rather than arbitrary textual units like PV.

Figure 3.4: The architecture of Doc2Sent2Vec, using three types of embeddings
(blue for words, red for sentences and green for the document) [44].

Doc2Sent2Vec can generally be described as a two-phase approach: In the first phase,
sentence embeddings are learned using a word-level language model with contexts
and a sentence token as input like in the original PV. The goal of that phase it to
capture the topic for every single sentence in a low-dimensional form. In the second
phase, the model learns document embeddings using a sentence-level language model
based on the embeddings learned in the first phase. The total log likelihood proba-
bility for the Doc2Sent2Vec method thus defined as the sum of the log likelihood of
both the words as well as the sentences occurring in a document:

L = Lword + Lsent

The fact that Dai et al. were able to show that jointly trained document embeddings
tend to perform better on longer texts [31] and J et al. even improves on their re-
sults [44], makes this approach particularly promising for our case where documents
can be expected to be of a rather large size.

3.3.1.3 Topic-LSTM

For the Topic-LSTM we use a basic LSTM architecture with the training objective
of predicting the document’s topic from a list of predefined topics. After reading all
words of the input, the state of the LSTM will be used to infer the most probable
topic of the observed document. Therefore, we consider this state as our document

31

3. Method

representation to be evaluated on the metrics described later in this chapter.

Similar to the Doc2(Sent2)Vec models, the Topic-LSTM takes word IDs from the
vocabulary as input and projects them into a vector space using an embedding
layer. This layer can be either initialized randomly or by using pretrained word
embeddings. Also, the word embeddings can be further adjusted during training or
kept static. One considerable difference though is that this type of NN can only
handle inputs of fixed length. In our case, that means that every document the NN
gets trained on has to have the same amount of words. As the average document
length within our later described datasets is 419, we chose 400 as our desired input
size. If a document happens to contain more than 400 words, all words beyond the
400th will be dropped. Should a document, on the other hand, contain less than
400, the missing number of words will be padded with <PAD> tokens.

3.3.1.4 Topic-CNN

The Topic-CNN uses the same topic prediction training objective as the Topic-
LSTM. Similarly, it also has an embedding layer as its first and classification layer
as its last layer. It furthermore uses same fixed-length inputs of 400 words.

The main design choice of this NN architecture, however, lies in the convolutional
layers. We decided to follow the same approach that Kim [49] uses in his work to
perform several textual classification tasks on different kinds of datasets (none of
which contains scientific publications). This network architecture uses three filters
of different sizes which consider 3, 4 and 5 words. While increasing the filter sizes
would intuitively provide a larger context and thus potentially better results, the
literature shows that increasing the filter size actually does not yield any noticeable
improvements [49]. These three filters will all slide over the matrix of word embed-
dings. The output of those filters are then concatenated (as shown in figure 3.5) and
for the input to our classification layer and just like for the Topic-CNN also serve
as document vectors to be evaluated on our metrics.

Figure 3.5: The CNN architecture used by Kim for several textual classification
tasks [49].

32

3. Method

3.3.1.5 Naive Autoencoder

As previously described in the theory section, the training objective of the autoen-
coder model is to reproduce the input document by encoding it into some lower
dimensional embedding and therefrom decoding it back into the original format.
While autoencoder architectures can be arbitrary complex, we decided to start with
a rather simplistic variant: We use two fully connected layers for the encoding stage
and another two fully connected layers for the decoding stage respectively. Ad-
ditionally, we apply dropout after both the first encoding and decoding layers for
regularization purposes.

As input to the NN, we use the mean of all word vectors of a document. These
word vectors will be retrieved by using pretrained word embeddings identically to
the models described above. This form of document representation will then be
encoded by the first two fully connected layers resulting in a latent representation
that we consider our document embedding. From this embedding, the decoding
layers will then try to reconstruct the same vector used as input to the network.
The loss function to optimize is, therefore, the mean squared error (MSE) between
the input vector and the output vector.

3.3.1.6 Recurrent Autoencoder

As our last model, we will use a recurrent autoencoder which can be seen as a combi-
nation of the previously introduced RNN and autoencoder architectures. The goal
of such NN is to reconstruct the input representation like the naive autoencoder
but rather than processing the whole input document at once, it processes it word
by word, changing its state and thereby taking into account information based on
previously read words.

The main motivation to include this variant is to combine the LSTM’s ability to
process input sequentially but in an unsupervised fashion like the naive autoencoder,
thus avoiding possible biases introduced by using the topic labels.

3.3.2 Setting
To be able to make a fair assessment regarding the performance of the evaluated
approaches, the technical settings for all experimental runs must be fixed. Thus, all
code will be run using the same machine configuration, to be precise a c4.4xlarge
cloud instance provided by Amazon’s AWS EC2 service3.

Since different programming languages and the respective frameworks built with
them usually show strong variances in performance, this factor shall also be fixed.
All algorithms should thus be implemented in version 3.5 of the Python program-
ming language, using Google’s Tensorflow framework [7] for optimized numerical
computations. One exception can hereby be made for the Keras framework [28]

3https://aws.amazon.com/ec2/instance-types/

33

https://aws.amazon.com/ec2/instance-types/

3. Method

which simply provides an abstraction layer over Tensorflow, using the same compu-
tational graph under the hood.

34

4
Results

While PV-DBOW has been evaluated on large corpora [31], Doc2Sent2Vec has only
been assessed on rather small text corpora [44] not representative for document
collections on the scale Iris AI works with. The RNN/LSTM and CNN approaches
furthermore have not been evaluated on such kind of data at all which makes those
two particularly interesting for our evaluation.

4.1 Hyperparameter Optimization
This section explains the results obtained for the conducted experiment described
in 3.2. The first aspect we thereby consider is the number of epochs the model was
trained on before stopping early due to a stagnation in its learning progress which
can commonly be seen as an indicator of overfitting.

1 2 3 4 5
Generation

0

20

40

60

80

100

120

140

E

po
ch

s

Doc2Vec
Doc2Sent2Vec
Topic LSTM
Topic CNN
Autoencoder
Recurrent Autoencoder

Figure 4.1: The number of epochs used by the models to train before reaching
their maximum number or early stopping over all five generations.

Topic LSTM mostly uses its maximum of 50 epochs as can be seen in figure 4.1.
This shows that the model has the potential to learn more. While we had to limit
the number of epochs to 50 due to the long training time of LSTMs. In future
experiments, this number should be increased by a considerable amount.

The naive autoencoder, as well as the recurrent autoencoder, show a decrease in the
number of epochs before early stopping. This shows that the particle swarm opti-
mization (PSO) indeed manages to find better hyperparameters combinations with
each generation. Furthermore, a higher number of generations might have actually

35

4. Results

resulted in even better models.

Doc2Vec, Doc2Sent2Vec and the Topic CNN, on the other hand, all start overfitting
within a few epochs. This, unfortunately, tells that the PSO is not able to improve
the combination of hyperparameters beyond random guessing.

1 2 3 4 5
Generation

0.0

0.1

0.2

0.3

0.4

0.5

Doc2Vec

loss
val_acc

1 2 3 4 5
Generation

0

2

4

6

8

10

12

Doc2Sent2Vec

loss
val_acc

1 2 3 4 5
Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Topic LSTM

loss
val_acc

1 2 3 4 5
Generation

0

100

200

300

400

Topic CNN

loss
val_acc

1 2 3 4 5
Generation

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19
Autoencoder

loss
val_loss

1 2 3 4 5
Generation

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Recurrent Autoencoder

loss
val_loss

Figure 4.2: The test (red) and validations metrics (blue) used during model train-
ing grouped by generation.

Figure 4.2 illustrates how both Doc2Vec and Doc2Sent2Vec show no significant im-
provement in either loss or accuracy with an increasing number of generations. The
trend line for the loss even increases in case of the Doc2Sent2Vec model. This
furthermore strengthens our suspicion that no sufficient combination of hyperpa-
rameters could be found by running the PSO.

Similarly, the naive autoencoder does not show much variation either. While the
training loss slightly decreases, the validation loss stays constant. This might be an
indication that this model quickly reaches its limits without the ability to process
text input sequentially like in case of RNNs (including LSTMs).

For the recurrent autoencoder, on the other hand, a general downward trend is vis-
ible. Analogous to our observation for the number of epochs, this shows us that the
PSO is indeed able to find better-suited hyperparameters with increasing genera-
tions and thus results in better recurrent autoencoder models.

A similar development can be observed for the topic LSTM except that it is vali-

36

4. Results

dated on accuracy which shows an upward trend, as a high accuracy is desirable.
Nonetheless, the accuracy barely exceeds 80%.

The Topic CNN unfortunately, while still somewhat decreasing in loss, does not
improve with regard to its validation accuracy.

1 2 3 4 5
Generation

0.00

0.02

0.04

0.06

0.08

0.10

Learning Rate

1 2 3 4 5
Generation

0

25

50

75

100

125

150

175

200
Document Embedding Size

1 2 3 4 5
Generation

0

100

200

300

400

500

600

Batch Size

1 2 3 4 5
Generation

0.0

0.2

0.4

0.6

0.8

Dropout

1 2 3 4 5
Generation

0.0

0.5

1.0

1.5

2.0

Optimizer

Doc2Vec
Doc2Sent2Vec
Topic LSTM
Topic CNN
Autoencoder
Recurrent Autoencoder

Figure 4.3: Change of hyperparameters during PSO for each model of the five
generations. For the optimizer graph the y axis has to be read as follows: 0 = SGD,
1 = Adam, and 2 = AdaGrad.

Figure 4.3 illustrates how the different hyperparameters change for each model over
the five generations. While only the Doc2Vec model moves towards a higher learning
rate, the majority of models tends to work better with smaller learning rates. For
the document embedding size, a general upward trend is observable with only the
Doc2Sent2Vec approach seemingly performing better with lower dimensional docu-
ment representations. When examining the batch size, two general groups can be ob-
served: First, the correlation-based approaches, namely Doc2Vec and Doc2Sent2Vec
tend to work better with larger batch sizes. Second, the rest of the approaches ap-
pear to perform better when trained in smaller batches. The dropout values stay
more or less constant, which indicates, given the wide variance of values being used,
that drop out does not have an essential influence on the models’ performances in
our case. Regarding the optimizer, it appears that for both of the LSTM models
the Adagrad optimizer works best, while for the other model the ADAM optimizer
leads to the best results.
When looking at figure 4.4, we notice that the scores for Doc2Vec and Doc2Sent2Vec
lie barely above the random baseline. This is again not surprising when remember-

37

4. Results

1 2 3 4 5
Generation

0.2

0.3

0.4

0.5

0.6

C
om

bi
ne

d
m

et
ric

 s
co

re

Doc2Vec
Doc2Sent2Vec
Topic LSTM
Topic CNN
Autoencoder
Recurrent Autoencoder

Figure 4.4: Change of the weighted sum of metrics for all approaches grouped by
generation.

ing the generally bad performance of those approaches from earlier.

Equally, the Topic CNN has not been able to comprehend the documents’ content
either. While one could argue that the small filter size is not able to capture context
sufficiently well, it seems more like the opposite is actually the case. Similar to
Doc(2Sent)2Vec the CNN is not able to pick up all the nuances contained in the
large vocabulary given the rather small training set.

While the Topic LSTM comes with quite high scores, we have to keep in mind that
its performance is biased by good results on the topic classification metric. It is
nonetheless interesting to see a general improvement during the PSO process.

The autoencoders perform surprisingly well considering they are completely unsu-
pervised. While some lower scores can occasionally be observed, they occur only
due to the insufficiently small learning rate in those cases. This indicates that we
did not give the model enough epochs as it would have needed more time to fit to
the training data.

4.2 CORE Dataset

4.2.1 Topic Prediction

Very unsurprisingly, the Topic LSTM performs best on the topic prediction metric
as it was specifically trained on that task. The naive autoencoder on the other
hand still scores reasonably high which was not to be expected considering it was
not implicitly trained on the notion of a topic. The recurrent autoencoder comes
in third, performing worse than both topic LSTM and the naive autoencoder. It is
thereby particularly interesting to see that it performs best with the smallest word
vector dimensionality. This gives rise to the suspicion that it would possibly need
more epochs to learn from higher dimensional word embeddings.

38

4. Results

50 100 200
Embedding Dimensionality

0.0

0.2

0.4

0.6

0.8

1.0
Topic Prediction (Word Embedding Size)

Doc2Vec
Doc2Sent2Vec
Topic LSTM
Topic CNN
Autoencoder
Recurrent Autoencoder

50 100 200
Embedding Dimensionality

0.0

0.2

0.4

0.6

0.8

1.0
Topic Prediction (Document Embedding Size)

Doc2Vec
Doc2Sent2Vec
Topic LSTM
Topic CNN
Autoencoder
Recurrent Autoencoder

Figure 4.5: The accuracy on the topic prediction metric measured for different
word embedding (left) and document embedding sizes (right).

4.2.2 Triplets

50 100 200
Embedding Dimensionality

0.5

0.6

0.7

0.8

0.9

1.0
Triplets (Word Embedding Size)

Doc2Vec
Doc2Sent2Vec
Topic LSTM
Topic CNN
Autoencoder
Recurrent Autoencoder

50 100 200
Embedding Dimensionality

0.5

0.6

0.7

0.8

0.9

1.0
Triplets (Document Embedding Size)

Doc2Vec
Doc2Sent2Vec
Topic LSTM
Topic CNN
Autoencoder
Recurrent Autoencoder

Figure 4.6: The accuracy on the triplets metric measured for different word em-
bedding (left) and document embedding sizes (right).

Again, for the triplet metric, the Topic LSTM performs best. Unlike in case of the
topic prediction, this can be once be regarded an actual success as the supervised
training with topics cannot be seen as a bias on this metric. Rather it is interesting
to note that training on topics seems to strongly improve the performance even with
no topics used for inference.

Similarly strong is the recurrent autoencoder which comes in second with its best
accuracy over 90%. Again this value has been achieved with the smallest word
embedding dimensionality available.

4.2.3 Ranks
Both accuracy and precision happened to be unfortunately rather low for all ap-
proaches in this metric (compare figure 4.7). We did not include a graph for the
precision here as its results do not differ significantly from the accuracy, but they
can still be found in table A.1. Nonetheless, the naive autoencoder performs best

39

4. Results

50 100 200
Embedding Dimensionality

0.00

0.01

0.02

0.03

0.04

Accuracy@10 (Word Embedding Size)

50 100 200
Embedding Dimensionality

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Accuracy@10 (Document Embedding Size)

Doc2Vec
Doc2Sent2Vec
Topic LSTM
Topic CNN
Autoencoder
Recurrent Autoencoder

Figure 4.7: The accuracy@10 on the ranks metric measured for different word
embedding (left) and document embedding sizes (right).

here. Also, we can generally observe that smaller embeddings both for words and
for documents lead to a better performance.

4.2.4 Cluster Analysis

After evaluating the numerical results from the experiment, this section will take
a deeper look at some characteristics of the created vector spaces. We, therefore,
used the popular t-SNE algorithm [81] to transform the high dimensional document
embeddings into two-dimensional space which is easier for humans to comprehend.

Out of our six approaches, we selected three examples that show interesting patterns
of how documents can be clustered and visualized them in Figure 4.8. First, the
dimensionally reduced vector space of documents for the Doc2Vec method shows
no visible clustering at all which means that the t-SNE algorithm was not able
to find any significant correlations in the original vector space. Second and in
total opposite, the two-dimensional vector space for the Topic LSTM shows clearly
separated clusters of topics with only a relatively small number of outliers. At
last, the Autoencoder appears as one big cluster in which documents of the same
topic still group together but without larger distances as observed for the Topic
LSTM.
One thing to keep in mind is that the topics are not labeled by humans but rather re-
trieved from an algorithmically topic model. Therefore some documents that appear
as outliers might actually be falsely assigned by the topic model in the first place.
Also, many documents might actually belong to more than one topic. From this
perspective, the more floating boundaries which can be observed for the (recurrent)
autoencoder make more sense than the clear separations seen for the Topic LSTM
which is trained on the assumption that each document belongs to exactly one topic.

Unfortunately, the clusters for the Doc2Vec, Doc2Sent2Vec and the Topic CNN, all
shown in figure A.2, once again give an indication that those models are not able to
capture the content of the documents.

40

4. Results

Doc2Vec Topic LSTM Autoencoder

Figure 4.8: The document vector spaces for three selected models, reduced from
several hundred to two dimensions using the t-SNE algorithm.

Doc2Vec

Doc2Sent2Vec

Topic LSTM

Topic CNN

Autoencoder

Recurrent Autoencoder
0

20

40

60

A
cc

ur
ac

y
(%

)

Topic Prediction Metric

(a) The accuracy measured on the topic
prediction metric.

Doc2Vec

Doc2Sent2Vec

Topic LSTM

Topic CNN

Autoencoder

Recurrent Autoencoder
0

25

50

75
A

cc
ur

ac
y

(%
)

Triplets Metric

(b) The accuracy measured on the
triplets metric.

4.3 Autonomous Vehicle Dataset
In the following, we present our experimental results for the AV5k10 datasets, mainly
in order to analyze how well the performance of our approaches translates to other
datasets.

4.3.1 Topic Prediction
When looking at the results for the topic prediction metric, shown in figure 4.9a, we
can clearly see that the accuracy of the Topic LSTM decreased by 20% and for the
Naive Autoencoder and the Recurrent Autoencoder it even decreased by over 30%.
After all the approaches do not change their order in performance.

4.3.2 Triplets
Similar to the topic prediction metric, all approaches that somewhat performed over
the baseline do perform considerably worse compared to Core10k10 (see figure 4.9b).
What is interesting to notice though, is that the naive autoencoder now performs

41

4. Results

Doc2Vec

Doc2Sent2Vec

Topic LSTM

Topic CNN

Autoencoder

Recurrent Autoencoder
0

2

4

6

A
cc

ur
ac

y
(%

)
Ranks@10 Metric

(a) The accuracy measured on the
ranks@10 metric.

Doc2Vec

Doc2Sent2Vec

Topic LSTM

Topic CNN

Autoencoder

Recurrent Autoencoder
0

1

2

3

P
re

ci
si

on
 (%

)

Ranks@10 Metric

(b) The precision measured on the
ranks@10 metric.

best of all approaches. This gives reason to suspect that neither topical nor sequen-
tial information is of significant importance when differentiating one document from
another or at least to a smaller degree than for the Core10k10 dataset.

4.3.3 Ranks
While the performance for the topic prediction and triplets metrics considerably
dropped, the ranks metric in contrast to that shows a slight increase in both accuracy
and precision when compared to the Core10k10 dataset (see figures 4.9a and 4.9b).
Similar to before, the naive autoencoder still scores best. In comparison to that,
the Topic LSTM performs slightly better while the recurrent autoencoder performs
worse. The reason for the increase in performance might thereby simply lie in the
fact that the AV5k10 dataset is only half the size of Core10k10. Thus, the chance
of choosing the right documents is naturally higher with fewer documents to choose
from.

4.3.4 Time
While the computational complexity (of the model) of the Doc2Vec and Doc2Sent2Vec
approaches grow with more (training) documents due to the size of the document
embedding look-up matrix, all other models described in this work stay constant.

Additionally, the measured times shown in table A.1 indicate that for the approaches
based on feed-forward NNs neither the size in word embeddings nor in document
embeddings makes a difference. For the Topic CNN we see that while training and
inference times increase with higher word embeddings, they actually stay constant
for the document embedding size. This is due to the fact that for larger document
embeddings the convolutional filters have to be applied a multitude of times. The
document embeddings, on the other hand, are only used in the fully connected layer
where having a matrix with 50, 100 or 200 rows makes no measurable difference. In
contrast to that, we can observe that both LSTM approaches do actually take much
longer with increasing embeddings sizes. The reason for this lies in the method’s

42

4. Results

recurrent nature where the model’s state, which has the same size as the resulting
document embeddings, gets used over and over again, thus resulting in a linear time
increase.

4.4 Mapping Study Application
After the previous sections have taken an in-depth look at the produced vector
space models, this section will evaluate how well those models actually relate to the
original problem of aiding in mapping studies. Currently, the automotive study uses
a classical topic model for helping in differentiating the topics as shown in figure 4.9.
Analogous to the ten most frequent topics we have used earlier, we also selected a
topic model limited to ten topics. While some vector space models discussed in the
previous sections build only very weak clusters (i.e. having a low perplexity), we
chose the Topic LSTM for the following discussion as it showed the clearest clusters
to be comparable with the clusters from the topic model.

Figure 4.9: The topic clusters from the NTM (left) and our Topic LSTM model,
reduced in dimensionality using the t-SNE algorithm. While the clusters of the NTM
are represented as circles based on their averaged distribution in the two-dimensional
space, for the Topic LSTM, we show all documents, colored by the topic which they
belong to.

For the sake of better visualizing both the topic model as well as the vector space
model, we reduced both into a two-dimensional space using the t-SNE algorithm [81]
as already described in the previous sections. When comparing those t-SNE visual-
ization, we can observe both similarities as well as several discrepancies, which are
explained in the following.

To start with, topics 2 and 3 share the same position in both two-dimensional
spaces. Also, they are really lying at the outer end of the two-dimensional space,

43

4. Results

showing a significant variance compared to the other topics.

On the other hand, for the mapping study, a lot of clusters are centered in the middle
which indicates little variance between the topics. In case of the document vector
space, topics are somewhat more spread which is not surprising since the underlying
neural network optimizes inter-cluster distances during its training process. For the
sake of the mapping study, clearly separated clusters can mostly be seen as preferable
since they give a less noisy overview of the topics than several overlapping clusters
like in case of the topic model.

Topic Top 5 Terms Interpretation
1 travel, travel time, times, travel times, re-

gression
Travel time/route estima-
tion

2 stability, adaptive, cruise, cruise control, pla-
tooning

Assisting with stability (e.g.
cruise control)

3 single, measurement, compensation, satel-
lite, receiver

Measurement sensors

4 spatial, temporal, flows, tree, estimation Spacial/temporal mathe-
matics

5 interacting, random, normal, distribution,
plants

Probability theory, statis-
tics

6 intersection, risk, exchange, infrastructure,
management, communication

Intersection/pedestrian
management

7 novel methods, detector, offline, investiga-
tion, macroscopic

Vehicle detection

8 road networks, microscopic, changes, road
network, sensitivity

Navigating on roads

9 fuzzy, logic, fuzzy logic, controller, hierarchi-
cal

Logical systems

10 decision, making, policy, decision making, in-
telligent

Decision making

Table 4.1: Top 5 terms for the 10 most frequent topics of the AV dataset with
manually added interpretations of the computationally retrieved topics.

One particularly interesting relation between two topics can be seen for 7 and 8:
Topic 8 focuses more on solely navigating on the road, thinking more in lanes, also
referred to as "microscopic". Topic 7, on the other hand, takes a more "macroscopic"
view in the world, focusing not only on static environments but rather on other
detecting other vehicles and their respective trajectory prediction. In case of the
topic model, they lie in the center of the two-dimensional space, overlapping with
other not particularly related topics. When considering the document vector space,
on the other hand, both of them share the same value on the y-axis, indicating a
semantic similarity. Furthermore, on the y-axis the are mirroring on 0, giving a
hint that one might be the opposite of the other, exactly like "macroscopic" is the
opposite of "microscopic".

44

4. Results

While topic clusters are usually subjective to some degree, with no ground truth data
available in most cases, we do still argue that our created document vector space
provides several benefits compared to the conventional topic models, as we have
demonstrated with the examples above. At last, even with an existing reliable topic
model, it can still serve as a helpful method to get another view on how different
topics relate to each other.

45

4. Results

46

5
Discussion

5.1 Research Questions

RQ1.1 What metric allows for a sound assessment of document embedding?
By using a weighted sum of three different metrics we assure a fair comparison in
which no method that only works well for one specific metric can succeed. The
three used metrics themselves are widely explored and applied in both research and
practice and can thus be assumed to provide a sound indicator for the quality of a
document vector space.

RQ1.2 What dataset(s) should be used that is not biased towards any method or
task?
To avoid bias towards specific domains, we used two inherently different datasets
for our evaluation. While one is assembled with a rather small and specific topic
in mind, the other one is much bigger and broader. This way we assure that our
evaluation results apply to a variety of scenarios rather than just one specific dataset.

RQ2.1 How well do different state of the art NNs for document embeddings perform
on scientific publications?
We found that the quality of the document vector space produced by the evaluated
NNs varies to a great degree. While some produce good results, others perform
barely better than the random baseline. Yet, the lack of good performance of the
worse models might be an indicator that we, regardless of our hyperparameter op-
timization process, could not find optimal hyperparameters that could considerably
boost the models’ performance. Using PSO with a larger number of generations
and over a larger number of hyperparameters will require a considerable amount
of computational resources, but given those, will most likely result in a drastically
improved performance.

RQ2.2 How do parameters like the length of the text to be transformed or the doc-
ument vector dimensionality affect the quality of the resulting embeddings?
Our experiments show that it is not possible to make general claims on what values
should be used for hyperparameters like document vector dimensionality. Instead,
every method has its own set of optimal hyperparameters which have been rigorously
analyzed in section 4 of this thesis.
Even though we only use abstracts as input, using the full textual document would
also be an option which could unfortunately not be explored in this work due to the

47

5. Discussion

limited time frame. The higher number of words of a full document compared to an
abstract would result in increased model training times which make them subject
to future follow-up research.

RQ2.3 In what chunks (characters, words, etc.) should text be fed into the NN?
In this work, we only explored word-based models in order to provide a fair evalua-
tion where each model could use the same pre-trained word vectors. While character-
based models have also shown promising results, we leave their evaluation up to
future work.

5.2 Alternatives
Given the timeframe of this work, many alternative options could unfortunately not
be explored with our evaluation framework.

One quite popular model is so-called Skip-Thought Vectors [51] for which Google
recently open sourced an implementation 1, unfortunately not in time to be included
in this work.

Another common but non-neural option is the utilization of so-called centric ap-
proaches [74]. Like the name suggests, they build document representations as the
average (i.e. the geometric center) of a sentences or documents word embeddings.
This leads to the problem that such models are heavily dependent on the qual-
ity of the utilized word embeddings. On the other side, they usually possess no
or few hyperparameters which makes the tedious task of hyperparameter tuning
obsolete.

5.3 Threats to Validity
The arguably biggest threat to validity in this work is the fact that the proposed
metrics are all not based on human labeled ground truth but rather algorithmically.
Because manually labeled data on this scale could not be retrieved, we had to gen-
erate topics using the neural topic model and distances for the triplet and ranks
metrics based on the WISDM algorithm. On the other hand, we have to remember
that even human labeled data in this domain is subjective and therefore no ideal
solution. We, therefore, argue that while not being ideal, our ground truth is still
reasonably accurate to produce valid results when used in accordance with our eval-
uation framework. The fact that some models perform far better than the baseline
while barely match the baseline gives further indication of the validity of our claim.

Another point of critique our evaluation might have to take is its insufficient ex-
ploration of the hyperparameter space. This could as earlier described be solved
by having more time and computational resources. Given these resources, the per-
formance of Doc2Vec, Doc2Sent2Vec and the Topic CNN shown in other papers

1https://github.com/tensorflow/models/tree/master/skip_thoughts

48

https://github.com/tensorflow/models/tree/master/skip_thoughts

5. Discussion

might be reproducible on the CORE and autonomous vehicles datasets once the
right hyperparameters can be found.

5.4 Future Work
The first apparent step for future work should be running experiments using the
larger datasets. Since we already curated the Core250k10 and Core1M+100 datasets,
those would naturally be the ones to use. While the smaller datasets could be seen
as a first indication what approaches and respective hyperparameters for them to
work, the larger datasets will most likely give more practical insights on how the
vector space models perform on real-world-scale data, both in terms of metric per-
formance as well as time and space requirements.

One reason why the models did not perform so well might be the quality of the word
embeddings since all models represent their input as a list of words embeddings and
thus heavily rely on their quality. New methods to build improved word repre-
sentations by taking into account sub-word information, like done by Facebook’s
FastText [21, 45] or training the network on some translation task before the actual
task to compute the embeddings like the in case of Salesforce Einstein’s Context
Vectors (CoVe) [62] are therefore promising candidates to apply to document vec-
tor space approaches. Alternatively, word embeddings could be skipped in the first
place and substituted with character embeddings which pose an elegant way to deal
with large vocabularies for which a word embedding for every word would have to
exist.

Finally, there is currently a stream of new conferences and workshops on the topic
emerging. For example, the RepL4NLP (Workshop on Representation Learning for
NLP)2 was initiated in 2016, while the RepEval 3, a workshop on evaluating vector
space representations for NLP took place for the first time this year. This indicates
that there is a large amount of novel research to come in the future.

2https://sites.google.com/site/repl4nlp2017/home
3https://repeval2017.github.io/

49

https://sites.google.com/site/repl4nlp2017/home
https://repeval2017.github.io/

5. Discussion

50

6
Conclusion

As the first part of this thesis, we propose a novel evaluation framework for vector
space models in the domain of scientific publications. As part of this, we curated
four datasets for two substantially different cases. Furthermore, we created three
metrics for the models to be evaluated on. By publishing this framework, we invite
other researchers and practitioners to also evaluate their approaches in the future.

As the second part, we used the earlier described framework to run experiments
in order to evaluate six state of the art neural network based approaches to create
vector space models. For this to be possible we also implemented those approaches
in Python using Tensorflow and Keras. In addition, we included a detailed descrip-
tion of our models, from their architecture down to the choice of hyperparameters.
This makes it easy to reproduce our results and evaluate own approaches in any
programming language or framework. As a result, we could observe that LSTMs
perform really well, followed by autoencoders regardless of the lack of labeled data.
Especially the recurrent autoencoder should be further researched as it is especially
appealing due to its unsupervised nature which is really valuable in a domain where
no truly unbiased ground truth data exists. Also, both architecture and hyperpa-
rameters should be tuned further so that the approach matches the performance of
the naive autoencoder for the cases where the latter scores better. Doc2(Sent2)Vec
and CNN, on the other hand, were not able to capture document semantics in our
case of scientific publications. Nonetheless, these approaches might still be able to
perform considerably better in case better hyperparameters can be found or through
some modifications to the architecture that we are currently not aware of. Both of
the latter problems could most likely be solved by a more extensive hyperparameter
optimization, which was unfortunately not possible with our available resources, but
is strongly recommended for future work.
At last, we demonstrated how our vector space model can be utilized to aid in sys-
tematic mapping studies. Compared to classic topic models, it can help in discov-
ering more meaningful semantic relations between topics. Also, when used together
with such topics models, it will provide additional insights that might not have been
visible from the topic model.

51

6. Conclusion

52

Bibliography

[1] ASE 2017. http://www.ase2017.org/. Accessed: 2017-02-23.
[2] Classic3 and Classic4 DataSets. http://www.dataminingresearch.com/

index.php/2010/09/classic3-classic4-datasets. Accessed: 2017-02-19.
[3] CORE. https://core.ac.uk/. Accessed: 2017-02-23.
[4] Nearest Neighbor Search - Wikipedia. https://en.wikipedia.org/wiki/

Nearest_neighbor_search. Accessed: 2017-02-14.
[5] SSBSE’17. http://ssbse17.github.io/. Accessed: 2017-02-23.
[6] Vision – Iris AI - Your Science Assistant. https://iris.ai/vision/. Accessed:

2017-01-16.
[7] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B.
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems. CoRR, abs/1603.04467, 2015.

[8] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M. Cer, Mona T. Diab,
Aitor Gonzalez-Agirre, Weiwei Guo, Iñigo Lopez-Gazpio, Montse Maritxalar,
Rada Mihalcea, German Rigau, Larraitz Uria, and Janyce Wiebe. Semeval-2015
task 2: Semantic textual similarity, english, spanish and pilot on interpretabil-
ity. In SemEval@NAACL-HLT, 2015.

[9] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M. Cer, Mona T. Diab,
Aitor Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, and
Janyce Wiebe. Semeval-2014 task 10: Multilingual semantic textual similarity.
In SemEval@COLING, 2014.

[10] Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-
Agirre, Rada Mihalcea, German Rigau, and Janyce Wiebe. Semeval-2016 task
1: Semantic textual similarity, monolingual and cross-lingual evaluation. In
SemEval@NAACL-HLT, 2016.

[11] Eneko Agirre, Daniel M. Cer, Mona T. Diab, and Aitor Gonzalez-
Agirre. Semeval-2012 task 6: A pilot on semantic textual similarity. In
SemEval@NAACL-HLT, 2012.

53

http://www.ase2017.org/
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets
https://core.ac.uk/
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Nearest_neighbor_search
http://ssbse17.github.io/
https://iris.ai/vision/

Bibliography

[12] Eneko Agirre, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-Agirre, andWeiwei
Guo. *sem 2013 shared task: Semantic textual similarity. In *SEM@NAACL-
HLT, 2013.

[13] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. Commun. ACM, 51:117–122,
2006.

[14] Kushal Arora. Contrastive perplexity: A new evaluation metric for sentence
level language models. CoRR, abs/1601.00248, 2016.

[15] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat
baseline for sentence embeddings. 2016.

[16] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict!
a systematic comparison of context-counting vs. context-predicting semantic
vectors. In ACL, 2014.

[17] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. Lsh forest: self-tuning
indexes for similarity search. In WWW, 2005.

[18] Terry Van Belle and David H. Ackley. Code factoring and the evolution of
evolvability. In GECCO, 2002.

[19] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A
neural probabilistic language model. Journal of Machine Learning Research,
3:1137–1155, 2000.

[20] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13:281–305, 2012.

[21] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-
ing word vectors with subword information. arXiv preprint arXiv:1607.04606,
2016.

[22] David Budgen, Emilia Mendes, and Giuseppe Visaggio. Guidelines for perform-
ing systematic literature reviews in software engineering. 2007.

[23] Ziqiang Cao, Sujian Li, Yang Liu, Wenjie Li, and Heng Ji. A novel neural topic
model and its supervised extension. In AAAI, 2015.

[24] Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei. Improving multi-document
summarization via text classification. CoRR, abs/1611.09238, 2016.

[25] Tanmoy Chakraborty, Sandipan Sikdar, Vihar Tammana, Niloy Ganguly, and
Animesh Mukherjee. Computer science fields as ground-truth communities:
their impact, rise and fall. In ASONAM, 2013.

[26] Jonathan Chang, Jordan L. Boyd-Graber, Sean Gerrish, Chong Wang, and
David M. Blei. Reading tea leaves: How humans interpret topic models. In
NIPS, 2009.

[27] Billy Chiu, Anna Korhonen, and Sampo Pyysalo. Intrinsic evaluation of word
vectors fails to predict extrinsic performance. 2016.

[28] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[29] Maurice Clerc and James Kennedy. The particle swarm - explosion, stability,

and convergence in a multidimensional complex space. IEEE Trans. Evolution-
ary Computation, 6:58–73, 2002.

[30] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel P. Kuksa. Natural language processing (almost) from
scratch. CoRR, abs/1103.0398, 2011.

54

https://github.com/fchollet/keras

Bibliography

[31] Andrew M. Dai, Christopher Olah, and Quoc V. Le. Document embedding
with paragraph vectors. CoRR, abs/1507.07998, 2015.

[32] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Fur-
nas, and Richard A. Harshman. Indexing by latent semantic analysis. JASIS,
41:391–407, 1990.

[33] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159, 2010.

[34] Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and Chris Dyer. Prob-
lems with evaluation of word embeddings using word similarity tasks. CoRR,
abs/1605.02276, 2016.

[35] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin. Placing search in context: the concept
revisited. ACM Trans. Inf. Syst., 20:116–131, 2001.

[36] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. In NIPS, 2016.

[37] Shalini Ghosh, Oriol Vinyals, Brian Strope, Scott Roy, Tom Dean, and Larry
Heck. Contextual lstm (clstm) models for large scale nlp tasks. CoRR,
abs/1602.06291, 2016.

[38] Anna Gladkova and Aleksandr Drozd. Intrinsic evaluations of word embeddings:
What can we do better? 2016.

[39] Z. Harris. Distributional structure. Word, 1954.
[40] Karl Moritz Hermann and Phil Blunsom. The role of syntax in vector space

models of compositional semantics. In ACL, 2013.
[41] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating seman-

tic models with (genuine) similarity estimation. Computational Linguistics,
41:665–695, 2015.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9:1735–1780, 1997.

[43] Gao Huang, Chuan Guo, Matt J. Kusner, Yu Sun, Fei Sha, and Kilian Q.
Weinberger. Supervised word mover’s distance. In NIPS, 2016.

[44] Ganesh J, Manish Gupta, and Vasudeva Varma. Doc2sent2vec: A novel two-
phase approach for learning document representation. In SIGIR, 2016.

[45] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[46] Dan Jurafsky. Probabilis1c language models. In Stanford, 2017.
[47] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional

neural network for modelling sentences. In ACL, 2014.
[48] James Kennedy and Russell Eberhart. Particle swarm optimization - neural

networks, 1995. proceedings., ieee international conference on. 1995.
[49] Yoon Kim. Convolutional neural networks for sentence classification. In

EMNLP, 2014.
[50] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. CoRR, abs/1412.6980, 2014.

55

Bibliography

[51] Jamie Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel,
Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors.
In NIPS, 2015.

[52] Barbara A. Kitchenham, Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen G. Linkman. Systematic literature reviews in software en-
gineering - a systematic literature review. Information & Software Technology,
51:7–15, 2009.

[53] Barbara A. Kitchenham, Rialette Pretorius, David Budgen, Pearl Brereton,
Mark Turner, Mahmood Niazi, and Stephen G. Linkman. Systematic literature
reviews in software engineering - a tertiary study. Information & Software
Technology, 52:792–805, 2010.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In NIPS, 2012.

[55] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. From
word embeddings to document distances. In ICML, 2015.

[56] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural
networks for text classification. In AAAI, 2015.

[57] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and
documents. In ICML, 2014.

[58] Yann Lecun, L Eon Bottou, Yoshua Bengio, and Patrick Haaner. Gradient-
based learning applied to document recognition. 1998.

[59] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity
with lessons learned from word embeddings. TACL, 3:211–225, 2015.

[60] Tal Linzen. Issues in evaluating semantic spaces using word analogies. CoRR,
abs/1606.07736, 2016.

[61] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to information retrieval. 2008.

[62] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. arXiv preprint arXiv:1708.00107,
2017.

[63] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. CoRR, abs/1301.3781, 2013.

[64] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their composition-
ality. CoRR, abs/1310.4546, 2013.

[65] Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In HLT-NAACL, 2013.

[66] Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for
high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell., 36:2227–2240,
2014.

[67] Neha Nayak and Christopher D. Manning. Evaluating word embeddings using
a representative suite of practical tasks. 2016.

[68] Andrew Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invari-
ance. 2004.

[69] Stephen M Omohundro. Five balltree construction algorithms. 1989.

56

Bibliography

[70] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In EMNLP, 2014.

[71] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. System-
atic mapping studies in software engineering. In EASE, 2008.

[72] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distributions
with applications to image databases. In ICCV, 1998.

[73] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neurocom-
puting: Foundations of research. chapter Learning Representations by Back-
propagating Errors, pages 696–699. MIT Press, Cambridge, MA, USA, 1988.

[74] Y. Liang S. Arora and T. Ma. A simple but tough-to-beat baseline for sentence
embeddings. In ICLR, 2017.

[75] Ruslan Salakhutdinov and Geoffrey E. Hinton. Semantic hashing. Int. J. Ap-
prox. Reasoning, 50:969–978, 2009.

[76] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic
text retrieval. Inf. Process. Manage., 24:513–523, 1988.

[77] Tobias Schnabel, Igor Labutov, David M. Mimno, and Thorsten Joachims.
Evaluation methods for unsupervised word embeddings. In EMNLP, 2015.

[78] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando
de Freitas. Taking the human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEE, 104:148–175, 2016.

[79] Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and
Christopher D. Manning. Semi-supervised recursive autoencoders for predicting
sentiment distributions. In EMNLP, 2011.

[80] Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding through
large-scale heterogeneous text networks. CoRR, abs/1508.00200, 2015.

[81] Laurens van der Maaten, Geoffrey Hinton, and Yoshua Bengio. Visualizing
data using t-sne. 2008.

[82] Suhang Wang, Jiliang Tang, Charu C. Aggarwal, and Huan Liu. Linked docu-
ment embedding for classification. In CIKM, 2016.

[83] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards
universal paraphrastic sentence embeddings. CoRR, abs/1511.08198, 2015.

[84] Jason Yosinski, Jeff Clune, Anh Mai Nguyen, Thomas Fuchs, and Hod Lip-
son. Understanding neural networks through deep visualization. CoRR,
abs/1506.06579, 2015.

57

Bibliography

58

A
Appendix

ld
a_

19

ld
a_

20

ld
a_

30

ld
a_

44

ld
a_

49

ld
a_

85

ld
a_

93

ld
a_

94

ld
a_

97

ld
a_

99

Predicted label

lda_19

lda_20

lda_30

lda_44

lda_49

lda_85

lda_93

lda_94

lda_97

lda_99

Tr
ue

 la
be

l

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Doc2Vec
ld

a_
19

ld
a_

20

ld
a_

30

ld
a_

44

ld
a_

49

ld
a_

85

ld
a_

93

ld
a_

94

ld
a_

97

ld
a_

99

Predicted label

lda_19

lda_20

lda_30

lda_44

lda_49

lda_85

lda_93

lda_94

lda_97

lda_99

Tr
ue

 la
be

l

0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Doc2Sent2Vec

ld
a_

19

ld
a_

20

ld
a_

30

ld
a_

44

ld
a_

49

ld
a_

85

ld
a_

93

ld
a_

94

ld
a_

97

ld
a_

99

Predicted label

lda_19

lda_20

lda_30

lda_44

lda_49

lda_85

lda_93

lda_94

lda_97

lda_99
Tr

ue
 la

be
l

0.8 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

0.0 0.7 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.1 0.8 0.0 0.0 0.0 0.0 0.1 0.0 0.0

0.0 0.1 0.0 0.7 0.0 0.0 0.0 0.0 0.1 0.0

0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.1 0.0 0.0

0.1 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.1

0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0

0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.8

Topic LSTM

ld
a_

19

ld
a_

20

ld
a_

30

ld
a_

44

ld
a_

49

ld
a_

85

ld
a_

93

ld
a_

94

ld
a_

97

ld
a_

99

Predicted label

lda_19

lda_20

lda_30

lda_44

lda_49

lda_85

lda_93

lda_94

lda_97

lda_99

Tr
ue

 la
be

l

0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0

0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

Topic CNN

ld
a_

19

ld
a_

20

ld
a_

30

ld
a_

44

ld
a_

49

ld
a_

85

ld
a_

93

ld
a_

94

ld
a_

97

ld
a_

99

Predicted label

lda_19

lda_20

lda_30

lda_44

lda_49

lda_85

lda_93

lda_94

lda_97

lda_99

Tr
ue

 la
be

l

0.5 0.1 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.1

0.0 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0

0.0 0.1 0.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0

0.0 0.4 0.1 0.2 0.0 0.0 0.0 0.0 0.3 0.0

0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.2 0.0 0.0

0.2 0.1 0.0 0.0 0.0 0.5 0.0 0.0 0.1 0.2

0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.1 0.0 0.0

0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.9 0.0 0.0

0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9

Autoencoder

ld
a_

19

ld
a_

20

ld
a_

30

ld
a_

44

ld
a_

49

ld
a_

85

ld
a_

93

ld
a_

94

ld
a_

97

ld
a_

99

Predicted label

lda_19

lda_20

lda_30

lda_44

lda_49

lda_85

lda_93

lda_94

lda_97

lda_99

Tr
ue

 la
be

l

0.3 0.0 0.0 0.0 0.0 0.3 0.1 0.0 0.1 0.1

0.0 0.6 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.2 0.4 0.1 0.1 0.0 0.0 0.2 0.1 0.0

0.0 0.3 0.1 0.3 0.1 0.0 0.0 0.0 0.1 0.0

0.0 0.0 0.0 0.0 0.7 0.0 0.1 0.1 0.0 0.0

0.2 0.0 0.0 0.0 0.0 0.5 0.1 0.0 0.1 0.2

0.1 0.0 0.0 0.0 0.1 0.1 0.8 0.0 0.0 0.0

0.0 0.1 0.2 0.0 0.2 0.0 0.0 0.6 0.0 0.0

0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.4 0.1

0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.7

Recurrent Autoencoder

Figure A.1: The confusion matrices for predicting topics using the Core10k10
dataset.

I

A. Appendix

M
odel

Topic
A
cc

Triplet
A
cc

R
anks@

10
A
cc

R
anks@

10
Prec

Average
Inference

T
im

e
Training

T
im

e
autoencoder-100w

v-100dv.json
58.88%

62.80%
3.90%

2.56%
41.64%

13
sec

56
sec

autoencoder-100w
v-137dv.json

62.76%
63.42%

2.00%
2.43%

42.80%
13

sec
62

sec
autoencoder-100w

v-200dv.json
62.12%

63.00%
3.40%

2.48%
42.69%

13
sec

68
sec

autoencoder-100w
v-50dv.json

52.85%
60.92%

2.80%
2.51%

38.81%
13

sec
54

sec
autoencoder-200w

v-137dv.json
60.61%

60.48%
3.60%

2.40%
41.36%

23
sec

95
sec

autoencoder-50w
v-137dv.json

64.55%
64.44%

4.60%
2.89%

44.24%
8
sec

46
sec

doc2sent2vec-100w
v-100dv.json

9.85%
50.65%

0.10%
0.09%

20.20%
0
sec

55.95
m
in

doc2sent2vec-100w
v-200dv.json

9.79%
49.76%

0.10%
0.05%

19.87%
0
sec

68.43
m
in

doc2sent2vec-100w
v-50dv.json

10.41%
49.89%

0.00%
0.07%

20.11%
0
sec

60.69
m
in

doc2sent2vec-100w
v-96dv.json

9.05%
49.93%

0.20%
0.13%

19.71%
0
sec

62.16
m
in

doc2sent2vec-200w
v-96dv.json

10.35%
49.23%

0.10%
0.06%

19.89%
0
sec

98.48
m
in

doc2sent2vec-50w
v-96dv.json

9.85%
49.52%

0.00%
0.11%

19.81%
0
sec

49.20
m
in

doc2vec-100w
v-100dv.json

10.09%
50.38%

0.00%
0.07%

20.17%
0
sec

8.55
m
in

doc2vec-100w
v-138dv.json

9.56%
49.46%

0.10%
0.09%

19.71%
0
sec

13.46
m
in

doc2vec-100w
v-200dv.json

9.82%
49.65%

0.00%
0.10%

19.84%
0
sec

10.18
m
in

doc2vec-100w
v-50dv.json

10.35%
50.06%

0.10%
0.16%

20.18%
0
sec

8.94
m
in

doc2vec-200w
v-138dv.json

9.76%
50.40%

0.00%
0.10%

20.07%
0
sec

10.74
m
in

doc2vec-50w
v-138dv.json

9.86%
49.75%

0.20%
0.06%

19.91%
0
sec

11.90
m
in

rae-100w
v-100dv.json

39.48%
87.88%

1.00%
0.68%

42.73%
112

sec
26.30

m
in

rae-100w
v-176dv.json

39.64%
87.08%

0.90%
0.63%

42.49%
4.01

m
in

38.13
m
in

rae-100w
v-200dv.json

37.24%
85.16%

1.10%
0.58%

41.08%
4.56

m
in

42.60
m
in

rae-100w
v-50dv.json

36.18%
86.36%

1.00%
0.59%

41.11%
75

sec
19.06

m
in

rae-200w
v-176dv.json

37.03%
86.10%

1.10%
0.67%

41.34%
4.65

m
in

58.54
m
in

rae-50w
v-176dv.json

47.45%
93.86%

1.50%
1.07%

47.53%
3.69

m
in

28.83
m
in

topic_
cnn-100w

v-100dv.json
10.18%

51.10%
0.10%

0.04%
20.45%

84
sec

69
sec

topic_
cnn-100w

v-126dv.json
9.94%

49.00%
0.10%

0.12%
19.68%

83
sec

70
sec

topic_
cnn-100w

v-200dv.json
9.88%

52.12%
0.10%

0.12%
20.70%

84
sec

70
sec

topic_
cnn-100w

v-50dv.json
9.70%

47.70%
0.00%

0.05%
19.14%

84
sec

59
sec

topic_
cnn-200w

v-126dv.json
10.64%

48.44%
0.00%

0.07%
19.70%

160
sec

91
sec

topic_
cnn-50w

v-126dv.json
9.64%

51.04%
0.20%

0.15%
20.28%

45
sec

45
sec

topic_
lstm

-100w
v-100dv.json

78.64%
97.38%

1.80%
1.92%

59.29%
100

sec
325.83

m
in

topic_
lstm

-100w
v-143dv.json

79.24%
97.24%

1.60%
2.02%

59.43%
139

sec
470.78

m
in

topic_
lstm

-100w
v-200dv.json

79.42%
96.48%

3.50%
2.09%

59.57%
4.41

m
in

679.42
m
in

topic_
lstm

-100w
v-50dv.json

77.24%
97.70%

2.30%
1.96%

59.02%
63

sec
163.78

m
in

topic_
lstm

-200w
v-143dv.json

79.67%
97.50%

1.90%
1.82%

59.68%
163

sec
560.75

m
in

topic_
lstm

-50w
v-143dv.json

77.76%
98.02%

2.80%
2.01%

59.39%
128

sec
428.82

m
in

T
able

A
.1:

Experim
ent

results
from

using
the

C
ore10k10

dataset.

II

A. Appendix

To
pi
c
A
cc

Tr
ip
le
t
A
cc

R
an

ks
@
10

A
cc

R
an

ks
@
10

Pr
ec

Av
er
ag
e

In
fe
re
nc
e
T
im

e
Tr

ai
ni
ng

T
im

e
av

-a
ut
oe
nc
od

er
-5
0w

c-
13
7d

v
32
.6
7%

85
.2
1%

6.
50
%

3.
41
%

40
.9
5%

7
se
c

36
se
c

av
-d
oc
2s
en
t2
ve
c-
10
0w

c-
10
0d

v
12
.2
3%

51
.8
7%

0.
20
%

0.
23
%

21
.4
4%

0
se
c

89
.1
9
m
in

av
-d
oc
2v

ec
-1
00
wc

-5
0d

v
12
.3
2%

52
.3
9%

0.
20
%

0.
24
%

21
.6
4%

0
se
c

4.
84

m
in

av
-r
ae
-5
0w

c-
17
6d

v
22
.2
2%

82
.6
6%

3.
80
%

1.
09
%

35
.7
8%

11
4
se
c

14
.5
2
m
in

av
-t
op

ic
_
cn
n-
10
0w

c-
20
0d

v
13
.2
9%

53
.5
7%

0.
10
%

0.
23
%

22
.3
4%

42
se
c

59
se
c

av
-t
op

ic
_
lst

m
-1
00
wc

-2
00
dv

58
.9
4%

82
.5
4%

6.
00
%

2.
36
%

48
.5
5%

11
0
se
c

37
2.
55

m
in

T
ab

le
A
.2
:
Ex

pe
rim

en
t
re
su
lts

fro
m

us
in
g
th
e
AV

5k
10

da
ta
se
t.

III

A. Appendix

Doc2Vec Doc2Sent2Vec Topic LSTM

Topic CNN Autoencoder Recurrent Autoencoder

Figure A.2: The document vector spaces for the Core10k10 dataset reduced from
several hundred to two dimensions using the t-SNE algorithm.

doc2vec-100wv-50dv doc2sent2vec-100wv-100dv topic_lstm-100wv-200dv

topic_cnn-100wv-200dv autoencoder-50wv-137dv rae-50wv-176dv

Figure A.3: The document vector spaces for the AV5k10 dataset reduced from
several hundred to two dimensions using the t-SNE algorithm.

IV

	List of Figures
	List of Tables
	Introduction
	Background
	Statement of the problem
	Research Questions
	Purpose of the study

	Theory
	Vector Space Models
	Properties of Vector Spaces
	BoW Vectors
	Distributed Vectors

	Neural Networks
	Feed-forward NNs
	RNNs
	CNNs
	Autoencoders

	Metrics
	Intrinsic vs Extrinsic Metrics
	Supervised Metrics
	Topic Prediction
	Information Retrieval
	kNN Error
	Triplets
	Curating Datasets

	Unsupervised Metrics
	Perplexity
	Embedding-based metrics
	EMD-based metrics

	Method
	Applied Cases
	Systematic Mapping Study
	Iris AI

	Evaluation Framework
	Evaluation Methodology
	Metrics
	WISDM-based Distances
	NTM-based Topics
	Datasets
	Preprocessing

	Hyperparameters
	Embedding Dimensionality
	Number of Epochs
	Batch Size
	Learning Rate
	Optimizer
	Drop Out
	Hyperparameter Optimization

	Experiments
	Approaches
	Doc2Vec (Paragraph Vector)
	Doc2Sent2Vec
	Topic-LSTM
	Topic-CNN
	Naive Autoencoder
	Recurrent Autoencoder

	Setting

	Results
	Hyperparameter Optimization
	CORE Dataset
	Topic Prediction
	Triplets
	Ranks
	Cluster Analysis

	Autonomous Vehicle Dataset
	Topic Prediction
	Triplets
	Ranks
	Time

	Mapping Study Application

	Discussion
	Research Questions
	Alternatives
	Threats to Validity
	Future Work

	Conclusion
	Bibliography
	Appendix

