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Abstract
To be able to guarantee safe navigation through an unknown environment, objects in
the three dimensional surroundings of the ego vehicle, including their velocities, have
to be detected accurately and robustly at different weather and lightning conditions.
This work deals with the sensor fusion of two complementary sensor modalities radar
and camera using deep machine learning within autonomous driving. The goal is
to combine the advantages of both sensor modalities and to compensate for their
disadvantages. Common sensor fusion algorithms often use well-researched algo-
rithms such as Kalman filters. However, with the increasing popularity of machine
learning algorithms, the interest in deep learning based fusion of different sensor
modalities is deepened. After an extensive literature research, this work motivates,
implements, and evaluates two major modifications to a state-of-the-art network
within deep learning camera radar sensor fusion. The proposed adaptions are a
sub-network that learns from a selected part of a point cloud as well as the intro-
duction of early fusion to the network. The training runs of all proposed architec-
tures are performed on the popular nuScenes dataset [1]. The code is available at
https://github.com/brandesjj/centerfusionpp.

Keywords: deep machine learning, sensor fusion, camera, radar, 3D object detection,
point cloud based network, proposal-based fusion, frustum proposal, multi-stage
fusion
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1
Introduction

This chapter introduces the reader to the research performed in this work, consid-
ering its motivation and goals alongside ethical, social and sustainability aspects.

1.1 Motivation
The origins of self-driving vehicles being a vision in industry and science reach far
back [2]. Zenseact AB is a company founded to bring software products tackling
the challenges of autonomous driving (AD) and advanced driver assistance sys-
tems (ADAS) to the global market. In AD and ADAS one of the main tasks is
the perception of the surroundings of the ego vehicle. Perception is based on the
measurements of sensors scanning the environment. Objects in the ego vehicle’s
proximity need to be detected and localized reliably.

In recent years, multiple sensor modalities have been proposed and further de-
veloped to help perceiving objects. Two sensors are especially promising, namely
camera and radar, since they complement each other well and are both relatively
cheap. A camera is typically good at distinguishing features in the visual space
because of their higher spatial resolution [3], while being of poor quality in harsh
environmental conditions as rain, fog or darkness [4]. In addition, they lack the
ability of estimating the depth and velocity of objects without the use of temporal
information [3]. A radar provides data that is relatively sparse in spatial dimensions
while not being affected by rain, fog or darkness and can measure both – distance
and velocity of reflecting objects in the environment [5].

As a consequence, new methods to fuse the data of camera and radar arouse,
increasing interest within the automotive industry [3, 4]. Sensor fusion is usually
performed using classical methods such as Kalman filters, but there are multiple
strong assumptions to be made on the data in those methods. Due to the complexity
of the problem, deep learning is introduced to learn the underlying correspondences
from data. By approximating the relationship between data and object detection,
deep learning networks solve the problem of sensor fusion. In this work, we propose
a neural network that handles both camera and radar data and outputs 3D objects
detections.

1.2 Research question
The main research question of this work is how to fuse radar and camera data
effectively. In short, the problem is to explore the fusion of 2D camera and 3D
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1. Introduction

radar data in a deep learning based architecture. Therefore, we focus on improving
the state-of-the-art use of deep learning in sensor fusion of camera and radar. A
promising approach described in Chapter 4 is CenterFusion which is a proposal-
based camera and radar fusion network for 3D object detection. Our contribution
should improve the performance in object detection as well as velocity estimation
w.r.t. the baseline and other approaches using sensor fusion of camera and radar,
and especially approaches only using either of the two.

1.3 Ethical and social aspects
The ethics of autonomous vehicles (AVs) is a topic widely discussed recently in
our society. Whilst most papers describe the challenges companies, engineers and
developed algorithms are facing [6, 7, 8, 9, 10] some also consider the role of society
and individuals w.r.t. the usage of self-driving cars [11, 12]. Autonomous driving
requires a system that is as safe as possible since it directly involves humans in a
high dynamic environment with potentially great casualties. As a consequence, the
perception of the environment has to be as reliable as possible.

Since this work tackles the problem of sensor fusion for camera and radar data,
there is a need to handle ethical and social aspects and include the reliability of
the system in the evaluation of the results. Some challenges on the way towards
autonomous driving are summarized in [7]. In this work, the need for safety is met
by evaluating the reliability of the developed object detection algorithms as a final
step. One has to ensure to capture and perceive at least all objects and obstacles
within the environment of the car that are relevant for the safety of the passengers
and fellow humans and animals. Equally strict requirements apply for security of
the systems used which also includes the accessibility of the data even in case of
accidents.

Privacy concerns come up when dealing with data collection and recording.
Whenever data is used that might contain sensitive information of pedestrians this
information should be protected. In this work, only data provided by the nuScenes
dataset [1] is processed, where privacy concerns are tackled by blurring faces and
license plates.

1.4 Sustainability aspects
With global warming in mind, sustainability becomes increasingly important to
the automotive industry and personal transportation as well. The authors of [13]
analyze the impact of self-driving automobility on carbon emission and compare
them to conventional modes of transportation by conducting various simulations. By
creating eight different scenarios for the future of personal transport, [13] compares
modes of transportation including as well as excluding full self-driving vehicles. Both
of the scenarios providing the biggest positive impact on carbon emissions involve
autonomous driving.

Since the potential effects of AVs on greenhouse gasses are not certain yet, [14]
summarizes the current state in literature. The use of AVs allows easy and fast travel
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1. Introduction

to all people, especially the elderly or disabled, which results in an increasing vehicle
mile travel overall. Nevertheless, a positive effect on emission reduction is to be
expected whose peak might be at 60–80% of AV penetration into the transportation
network [14]. However, in [15] the authors conclude that there is still a lack of
research regarding the sustainability aspects of AVs, especially compared to the
amount of research performed on technological level.

The proposed work does not affect sustainability in a direct manner since it deals
with the perception part of the autonomous driving software. In spite of that, one
could argue that an increased performance in environment perception, especially
regarding more robust detections at long distance, can also lead to more energy-
efficient driving in AVs and lower risk of accidents, e.g. through early breaking and
early sensor failure detection. Fewer accidents also result in less material loss due to
broken cars and infrastructure and can contribute to a positive effect on the carbon
footprint. In conclusion, a robust and well performing algorithm can have a positive
impact on the sustainability of autonomous cars.
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2
Theory

Machine learning has become of increasing interest in literature and research over
the last decade. This especially applies to image based object detection. Recently,
machine learning has also been applied to sensor fusion of different sensor modalities.
Since this is the main goal of this work, this chapter first gives a brief introduction
into machine learning and the sensors modalities radar and camera used in the scope
of this work. Additionally, Section 2.3 introduces the general principles of sensor
fusion using machine learning. Section 2.3.2 summarizes current approaches for the
fusion of camera and radar data using deep learning in literature.

2.1 Machine Learning
This work deals with supervised deep learning which is a subarea of machine learn-
ing, see [16, 17, 18, 19] for further reading. In supervised deep learning a multi-layer
artificial neural network (NN) receives a multi-dimensional input and computes an
output. The output is compared to a target set by the supervisor. The NN is op-
timized w.r.t. a loss function, taking the error from the output to the target into
account.

An NN consists of multiple elements that contribute to the learning mechanism.
Firstly, the input to an NN is forwarded through nodes. Computing the output
of a node given an input is called a forward-pass. Nodes can also take the output
of another node as input. The concatenated forward-pass through all nodes12 can
approximate any function from a finite-dimensional space [19]. In these nodes,
weights are stored that are optimized with the following machine learning elements.
The loss function computes the error to the corresponding target for the given
input. The gradient of the loss function w.r.t. the weights of the nodes is used in the
optimizer where the weights of the nodes are updated in a specific pattern. With a
small enough learning rate and enough data, the loss function converges to a local
minimum while iterating over the dataset multiple times. A fully trained network
can be used at inference to evaluate a given input and give a prediction.

2.1.1 Node
Nodes consist of a main computation function that in the most cases are either a
linear function or a convolutional function. Networks that use the node type with
linear functions are called fully connected networks. Convolutional networks [20]
use convolutional functions that are designed to share the weights of the node over
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2. Theory

iterative calls of the forward-pass for a single input.
The output of each main computation is fed through an activation function. The

value of the activation function is the output of the entire node.

Fully Connected

The input for nodes with linear functions as the main computation is weighted and
added to a bias. The weights and bias are the learnable parameters. Note, formally
one would address the bias when needed but most of the time all parameters are
summarized by the term “weights” for simplicity.

A fully connected node receives the input x “
“

x1 x2 ... xn

‰T which is weighted
by the weights w “

“

w1 w2 ... wn

‰T added to a bias b. The output y is the value
of the activation function f

y “ f

˜

ÿ

i

wixi ` b

¸

. (2.1)

Convolutional

Convolutional nodes stride over a 3D pixel grid applying a local 2D filter for a
subset of the input at each stride. The filter multiplies all pixel values in the first
two dimensions from the input with the corresponding pixel from the kernel and
sums the results over the third dimension. Finally, a bias is added to all results
of the convolution. The number of image-like slices in the third dimension of the
pixel grid is called “channels”. Convolutional nodes include hyperparameters in
contrary to nodes with linear functions that need to be set in prior to training.
The parameters are the kernel size, stride in pixel and number of filters as well as
padding and dilation factors. The padding parameter is the amount of additional
zero valued pixel that are added at each border of the input. The dilation factor is
the distance in pixel of two neighboring kernel pixels.

Deformable Convolutional

Deformable convolutional nodes [21] are a special type of convolutional nodes where
the offset between each kernel pixel is defined as an additional degree of freedom
and therefore a learnable parameter.

Activation Function

A node contains an activation function additional to the main computation. The
computed result for the given input to a node is the input to the activation function.
The activation function is used to introduce nonlinearity to the node such that
nonlinear functions can be approximated. There are many proposals of activation
functions and the research into them is still an active field. Although, in the most
cases one of the following functions is used. The sigmoid function is primarily used
at the final nodes of a network for predicting the class of an object due to its mapping
between 0 and 1. Its output can be interpreted as a probability of the input object
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Figure 2.1: ReLU activation function.

to be in a given class. The rectified linear unit (ReLU) function is very common
since it was shown to yield better performance [22, 23].

2.1.2 Layer
A layer in an NN combines multiple nodes that receive the same input. A convo-
lutional layer typically only contains one node but fully connected layers are often
build up from many nodes. The depth of the network is defined by the number of
layers of the network. There are also other layers such as pooling layers.

Pooling layers are used after convolutional layers and they are typically used
to reduce the shape of the tensor that is outputted from the convolutional node.
There are different types of pooling, e.g. maximum, global or average. Maximum
pooling is the most common one and it takes the maximal value in a local region
of the tensor and yields a tensor with compressed information for each filter of the
convolutional layer. Global pooling is the same as maximum pooling but over the
whole tensor and it outputs only one value for each filter. The average pooling take
the average of all local elements of the input tensor and returns a tensor with slightly
less compressed information.

2.1.3 Loss function
The entire forward-pass through all layers in an NN results a prediction x̂. The
loss function fpx̂, xq computes the error from the prediction to the annotation x.
The annotation x is the ground-truth which needs to be labeled before training the
NN. The NN learns to minimize the loss function and therefore the error from the
prediction to the ground-truth. There are many loss functions proposed in literature
such as the mean absolute error – or L1 –, mean squared error – or L2 –, smooth-L1,
focal loss [24] and cross-entropy. The loss functions are summarized in Table 2.1.
For the focal loss α and β are hyperparameters. The cross-entropy loss can be either
in binary or categorical version where the difference is that x is in t0, 1u in the binary
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case and a one-hot encoding vector in the categorical – or multi-label – case. All
loss functions are usually averaged over a batch. Further research into loss functions
is still ongoing.

Table 2.1: Popular loss functions.

Name fpx̂, xq

L1 ∥x̂ ´ x∥1

L2 ∥x̂ ´ x∥2
2

Smooth-L1
#

0.5 ∥x̂ ´ x∥2
2 , if ∥x̂ ´ x∥1 ă 1

∥x̂ ´ x∥1 ´ 0.5, otherwise

Focal [24]
#

p1 ´ x̂q
α log px̂q if x “ 1

p1 ´ xq
β x̂α log p1 ´ x̂q otherwise

Cross-entropy ´
řC

c“1 xc log
´

ex̂c{
řC

j“1 e
x̂j

¯

2.1.4 Optimizer
In general, loss functions are functions depending on the weights and therefore highly
dimensional. During backpropagation the gradients of the loss function w.r.t. the
weights in the NN are calculated. The essence of machine learning is to minimize
the loss function by iterating over optimization steps of a numerical optimizer. The
optimizer updates all trainable weights by following an update scheme. There are
many optimizers in literature. [25] gives an overview of the most used optimizers.
In this work, the Adam optimizer – first presented in [26] – is used and we are not
looking into the effect of other optimizers. To speed up training, the data is usually
grouped into batches after which an optimization step is applied. Note, numerical
optimizers only guarantee to approximate local minima but not necessarily global
ones.

When an NN is trained all weights that are set to be trainable are updated by
the optimizer. Weights – or entire layers – that are not updated are called frozen.

2.1.5 Network architecture
On a high level there exists, especially in object detection NNs, three main compo-
nents. Firstly, the backbone is usually designed to extract a rich representation of
the input called feature map FM . For an NN that receives an image as an input
the backbone usually downscales the size of the image but keeps the ratio for the
feature map FM the same. Secondly, the head receives the feature map FM and
extracts in multiple parallel shallow subnetworks a set of parameters for regression
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or classification. Lastly, the neck is the link between the backbone and the head
and usually upsamples the feature map FM in a learnable fashion. The output of
the neck is the input of the head.

While training a network the backbone and neck are usually trained for a large
amount of epochs since they are often very deep. The head is then often modified
iteratively to achieve the best performance while the trained backbone and neck are
used for its input. For this step, the backbone and neck are often frozen and only
the head is trained. When the subnetworks in the head are converged, the entire
network is usually fine-tuned over a small amount of epochs. The weights of any
part of the network that are already trained can be saved at different points and
loaded in for other experiments. A model used for this concept is called pretrained
model.

For measuring how well the network is performing not only the loss function but
also evaluation metrics are needed. For this work the mean average precision (mAP)
and the nuScenes detection score (NDS) are used, see Section 3.4 for more details.

2.2 Sensor Technology

With increasing popularity and interest in autonomous driving in both, industry
and research, the question on the choice of a reliable and precise sensor setup for
environmental perception arises. The three most popular sensors are camera, radar
and light detection and ranging (LiDAR). Table 2.2 compares the three modalities
using different criteria. Choosing both, the camera and radar modality, one achieves
the highest score for all the criteria with at least one of the sensors. In consequence,
this sensor setup is a sensor setup with promising properties that will be investigated
further in the following.

Table 2.2: Comparison of the sensor modalities camera, radar, and LiDAR for the
use within the automotive industry according to [27, 28]. The valuation ranges from

being the worst to as the best score for the respective criteria.

Camera Radar LiDAR
Spatial Resolution
Distance estimation
Velocity measurement
Range
Weather robustness
Lighting robustness
Cost
Amount of data
Color estimation
Lane Detection
Obstacle Edge Detection
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2. Theory

2.2.1 Radar
Frequency modulated continuous wave (FMCW) radars are the most popular type
of radar sensor in the automotive industry. A radar sensor emits electromagnetic
waves using at least one transmitter antenna [29]. When the waves hit an object,
they are reflected and received by (at least one) receiver antenna. Comparing both
signals, the transmitted and received waveforms allows one to calculate distance,
radial velocity, azimuth angle and elevation of the reflector. For a more detailed
explanation, please refer to [29]. The output of the radar sensor used in the scope of
this thesis consists of a point cloud. Each of the points in the point cloud contains
a measurement for the values in Table 2.3.

Table 2.3: Measurements of a single radar point in the radar point cloud for the
data used in this work.

Value Description
x X-component of the position
z Z-component of the position
vx X-component of the radial velocity
vz Z-component of the radial velocity
RCS Radar Cross Section value

Radar cross section

Alongside with the distance and radial velocity, each radar point contains a measure-
ments called the radar cross section (RCS) value. It is a measure for the detectabil-
ity of the reflecting object displays how well the object reflects the electromagnetic
waves. In consequence, this allows to draw conclusions on the material and size of
an object in the environment.

2.2.2 Camera
One major advantage of the camera sensor is its high spatial resolution which enables
it to capture small objects and objects at a great distance. However, a mono-camera
setup does not allow for any direct measurement in the 3D space but is restricted to
the 2D image plane. To link the 2D camera measurement and the 3D space, one can
use a model of the camera. The most common model used is the so-called pinhole
camera model which will be briefly described in the following. For more information
on this and other camera models please refer to [30, 31].

Pinhole camera model

The pinhole camera model links the coordinates of a point in the 3D space to
the corresponding point in the 2D image plane. The camera aperture is modeled
as a single point, the so called pinhole which represents the origin of the camera
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coordinate frame C. A scene point x1
C in the 3D space, expressed in the camera

frame C, is defined as
x1

C “
“

x1
C y1

C z1
C

‰T (2.2)

where x1
C, y1

C, and z1
C describe the X, Y , and, Z components of the 3D scene point

respectively.
This 3D scene point can then be projected into the image plane resulting in an

image projection
x̄ “

“

x̄ ȳ 1
‰T
. (2.3)

This projection is the intersection of the line from the scene point to the camera
center to the plane with z “ 1, i.e. the image plane. To account for rotation
and translation of the cameras regarding a fixed frame, a rotation matrix R, see
Section 2.3.2, and translation vector t are introduced. They transform the scene
point x1

C from the camera frame into a scene point x1
F in the fixed frame F as

x1
F “ rR ts

„

x1
C
1

ȷ

. (2.4)

where rR ts is a 3ˆ4 transformation matrix. Details on coordinate transformations
are given in Section 2.3.2. In the scope of this work, the camera coordinate frame
C corresponds to the fixed frame F , since we regard each of the cameras of the ego
vehicle separately and only transform the detected objects back into the ego vehicle
frame. Therefore, we neglect the sub-index F in the following.

Figure 2.2 visualizes the projection of a scene point x1 into the image plane
z “ 1, resulting in the projected point x̄. In the pinhole camera model, the image
plane projections are given in the length unit R. The center of the image plane
corresponds to the coordinate p0, 0, 1q, which is not the case for the actual image
of the camera given in the pixel dimension. Typically, the origin is placed in the
upper left corner of a camera image. The mapping between the image plane and
the camera image is done using a 3 ˆ 3 matrix K, termed the inner or intrinsic
parameters of the camera. The inner parameters include the focal length f , the
principal point px0, y0q describing the center of the image, the aspect ratio γ and
the skew s such that

K “

»

–

γf sf x0
0 f y0
0 0 1

fi

fl . (2.5)

For more information on the inner parameters, please refer to Chapter 11 of [30].
Together with the transformations described earlier, the camera intrinsics com-

plete the so called camera equation:

λx̃ “ K rR ts x1

“ P̃x1
(2.6)

where x̃ is the projected point in the camera image, λ is the projective depth of the
scene point and P̃ is termed the camera matrix.
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Figure 2.2: Visualization of the camera pinhole model. xs represents a scene point
in the 3D surroundings of the camera, xp the corresponding point in the image
plane. The origin C represents the camera center, also called pinhole. The cameras
coordinate system is depicted through the arrows.

3D to 2D projection

The derived camera equation can be used to project a 3D scene point x1 into the
image plane. This is achieved by first calculating

x̃i “ P̃x1 (2.7)

where the sub-index i states that the coordinates are in-homogeneous. To receive
homogeneous coordinates, x̃i has to be divided by its third coordinate x̃i,3:

x̃ “
x̃i

x̃i,3
(2.8)

The resulting projection x̃ in homogeneous coordinates is not uniquely defined since
all scene points on the line between the camera center and the projected point
correspond to this projected point. Additionally, one can determine whether a given
3D scene point is in the field of view (FoV) of the camera. If the third coordinate x̃i,3
of the in-homogeneous coordinates is negative, the scene point does not lay within
the FoV and therefore can’t be projected into the image.

2D to 3D projection

Assuming the projective depth λ of the scene point is known, the 3D scene point can
be reconstructed from the projected point in the image using the camera equation.
For easier notation, the first 3 columns of P̃ are denoted as P̃3ˆ3 and the last column
as P̃4. The 3D scene point x1 is reconstructed by

x1
“ λRTK´1x̃ ´ P̃´1

3ˆ3P̃4 (2.9)

where R is the rotation matrix and K the camera intrinsics matrix. For a derivation,
please refer to the literature mentioned above.
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2.3 Sensor fusion
Traditionally, sensor fusion in object detection for different kinds of sensors is per-
formed on object-level, i.e. each of the sensor modalities has its own detection
pipeline. The resulting object detections are then combined, classic fusion meth-
ods like Kalman filters have been used to tackle this [32].

While object detection on a single sensor modality has already shown promising
results, recent research also focuses on multi-modal object detection using deep
machine learning. The results of multi-modal object detection are often not only
more precise, but also more robust due to the complementary properties of different
sensor modalities [4]. Since this work tackles the fusion of camera and radar sensors,
the following summary also focuses on this part of the research field and only gives a
brief summary on different modalities where camera-radar fusion could benefit from
concepts used with these sensors. The concepts introduced in the following, e.g.
in Section 2.3.1 also apply for sensor modalities different from camera and radar.

2.3.1 Fusion Depth
In general one can distinguish between three levels of sensor fusion – sensor fusion
on data-level, on feature-level, and on object-level [33]. This classification is based
on the location of the fusion operation in the fusion network architecture, see Fig-
ure 2.3. Fusion on data-level is also referred to as early fusion, similarly fusion on
object-level is referred to as late fusion. This subsection gives an overview over the
different fusion depths and discusses the advantages and drawbacks of each of them.
However, authors in literature comparing architectures with differing fusion depths
do not find evidence for one method being superior to others in general. The perfor-
mance depends on a great deal on sensors, the dataset and the rest of the network
architecture itself [4].

Early fusion

Early fusion outlines the fusion of sensor data at a stage in the pipeline where the
data has not been processed by a neural network yet. The data of the different
sensor modalities can be pre-processed based on their physical properties, e.g. to
handle noise or different sensor coordinate frames. Some papers, e.g. [34], propose
the calculation of regions of interest (ROIs) using the radar data before applying
a neural network to the corresponding parts in the camera image. Merging the
raw data instead of extracted features however enables the network to fully exploit
its information [28]. In addition, the reduction of the network size due to the joint
processing of multiple sensor modalities results in lower computational requirements
as well as a low memory budget [4].

These advantages however also come with some downsides: the merging of raw
data introduces inflexibility to the model, especially when it comes to integrating
new sensors into the setup. New modalities or even updated sensor technology of
the same modality might result in the necessity to retrain the whole network from
scratch due to adapted input channels. Moreover, misalignment between sensors in
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(a) Early fusion (b) Feature fusion

(c) Late fusion

Radar / Camera Input
Radar / Camera NN Layer
Fusion NN Layer
Output
Fusion operator

Figure 2.3: Overview over the three levels of fusion depth used in sensor fusion
using deep machine learning. The network architecture is not further specified since
it varies between different approaches.

the form of calibration errors, sampling rates or sensor defects has a greater negative
influence on the results in early fusion [4]. The authors of [35] combine minimally
processed radar data with camera images in an early fusion approach for ADAS,
the authors of [36] propose a low level fusion scheme for camera, radar and LiDAR
sensors.

Late fusion

Late fusion combines the detected objects of each individual sensor modality at the
end of their pipelines. In a pure late fusion approach, there is no neural network
layer after the fusion operator is executed. Late fusion is done on object-level, i.e.
in the scope of object detection, each individual sensor unit estimates objects in its
surroundings before they are jointly associated and combined. This enables stan-
dardizing interfaces between different fusion algorithms which in turn requires no
in-depth understanding of the signal processing involved [28] and makes it easier to
introduce new sensors since only parts of the network have to be retrained. Also,
existing architectures for individual sensors can easily be evaluated.
On the downside, late fusion can’t take potentially information-rich, intermediate
features of individual sensors into account [4]. Further, it suffers from high computa-
tional cost and memory requirements [4]. Regarding Camera-Radar-Fusion, [37, 38]
propose two fusion architectures using a late fusion approach.

Feature fusion

Feature fusion, also termed middle fusion, combines the information at a stage in
between early and late fusion using the feature representations that result from
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applying NNs to the occurring modalities. This introduces the possibility to learn
across different sensors’ information-rich features at several depths in the pipeline.
Feature fusion does not constrain itself to the fusion on one particular layer in the
network but can also apply a fusion operator multiple times. Some variants of this
are displayed in Figure 2.4. Feature fusion can also contain elements of early and

(a) Deep feature fusion (b) Short-cut feature fu-
sion

(c) Early feature fusion

Figure 2.4: Some variants of Feature level Fusion. For a legend, please see Fig-
ure 2.3. Figure 2.4a combines the information of the two modalities at different
stages of the fusion pipeline. Figure 2.4b introduces the extracted features of an
early stage at a later point in the pipeline again. Last, Figure 2.4c combines early
fusion with feature fusion.

late fusion in the architecture, see Figure 2.4c. This may lead to less rich feature
extraction from at least one modality but can introduce some of the advantages of
early and late fusion. Feature fusion is highly flexible with the biggest potential
for precision whilst the complexity makes it difficult to find the optimal way to
fuse intermediate feature layers together. Most networks can not be classified as a
definite member of either early fusion or late fusion due to some intermediate layers
and are therefore rated among feature fusion. The authors of [39] introduce a feature
fusion approach as a single shot detection network, [40] introduces CenterFusion,
which is explained in detail in Chapter 4. CRF-Net [36] combines an early fusion
approach with fusion layers reaching deeper into the network, similar to the concept
visualized in Figure 2.4c.

2.3.2 Data Association
One key element of a fusion algorithm is the association of data from different sen-
sors. In the scope of this work, this involves the incorporation of a two dimensional
camera image and the corresponding points in the point cloud of the radar, ex-
pressed in coordinates of the 3D space. Data association is especially important in
early fusion since the raw sensor data has to be combined such that the associated
data corresponds to the same object in the ego vehicles surroundings. However, this
issue also matters in feature fusion approaches since the features extracted from the
data have to be combined as well. After a brief description of essential coordinate
transformations, the following Section describes and analyzes different methods to
perform this association.
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Coordinate systems

To simplify the understanding of the data association and further chapters, the
coordinate systems used in this work are introduced in the following. They are
heavily based on the coordinate systems introduced in the nuScenes dataset, see
Section 3.1. All of the coordinate systems used follow the right-hand rule, hwever
their orientation differs.

The coordinate system of the ego vehicle is a right hand system whose Y -axis
points towards the forward driving direction of the car. In contrast, the camera is
represented with the Z-axis facing in the main viewing direction while the radar data
is given in a coordinate frame with the X-axis facing forward. The three differing
coordinate systems are displayed in Figure 2.5, each facing in the same direction.
When rotating a camera or a radar, e.g. when dealing with sensors facing backwards,
their coordinate system rotates w.r.t. the ego-vehicle’s frame.

(a) Ego vehicle coordinate
system

(b) Camera coordinate
system

(c) Radar coordinate sys-
tem

Figure 2.5: Orientation of the ego-vehicle, camera, and radar coordinate systems.
All coordinate systems are facing forward in this figure. A point encapsulated by
a circle represents an arrow pointing towards the reader, a cross encapsulated by a
circle an arrow in the opposite direction.

Most of the computations in this work are performed in the camera coordinate
system since the outputs of the developed fusion architecture are expressed in this
frame. These object detections then can easily be transformed to the ego-vehicle
frame or even a global frame assuming the pose of the car is known.

Coordinate transformation point cloud

To associate data from different sensor modalities, one has to ensure they are rep-
resented in the same coordinate system. Consequently, the point cloud first has to
be transformed into the sensor coordinate frame of the camera to make sure there
is no spacial misalignment between the data. The matrix

P̂R “
“

p̂1,R, p̂2,R, . . . , p̂N,R
‰

P R4ˆN (2.10)

represents the homogeneous coordinates of N P N points, where R expresses the
coordinate frame of the radar and the i-th column of p̂1,R denotes the coordinate
vector

p̂i,R “

»

—

—

–

x
y
z
1

fi

ffi

ffi

fl

P R4 (2.11)
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of the i-th point. The transformation is expressed as

P̂C “ TCRP̂R (2.12)

where C denotes the coordinate frame of the camera and

TCR “

„

R t
01ˆ3 1

ȷ

P SEp3q (2.13)

is a matrix describing the transformation between the coordinate frames of radar and
camera consisting of a rotation R P SOp3q and a translation t “

“

tX , tY , tZ
‰T

P R3.
TCR is a 4 ˆ 4 matrix out of the special euclidean group SE p3q while R is a matrix
of size 3 ˆ 3 in the special orthogonal group SO p3q, see [41], Chapter 3. The radial
velocities in the point cloud of the radar do not have to be translated but only rotated
into the correct coordinate system using the rotation matrix R in Equation (2.13).

In general, a point in the radar point cloud consists of additional information
like the RCS value ρ, see Section 2.2.1, which does not have to be transformed in
the same manner. In addition, most radar sensors only output a planar point cloud,
such that one dimension in Equation (2.11) consists of zeros only.

Projection of point cloud to 2D

Subsequently to the transformations described above, the data from the point cloud
and the image are expressed in the same coordinate system which allows a 3D to
2D projection as introduced in Section 2.2.2.

Since the radar point cloud lacks information in height its points will not get
projected to the exact position in the image plane of the reflection when only pro-
jecting a single point. Therefore, [36] assumes a fixed object-height assigned to each
radar point. A single radar point is projected onto a 2D-line in the image plane
starting on the ground of the bird’s-eye view (BEV) plane.

Figure 2.6 illustrates this concept using two separate radar points in the 3D-
plane. One of the radar detections is closer to the camera frame than the other.
Although both have the same artificial height in the 3D-plane, they appear to be of
different size in the image plane. This difference is intentional and represents the
height of a typical object in the environment of autonomous driving regarding its
distance to the sensors.

To complete the association of camera and radar data, the projection is per-
formed for all of the radars point cloud features, specifically RCS and radial velocity.
The resulting features-images have the same resolution as the original input images
and contain the value of a point cloud feature at the projected 2D-lines and zero
elsewhere. These radar feature images are then concatenated with the 3 existing
RGB-channels of the original image resulting in the association of radar and cam-
era. Figure 2.7 shows an example for this method, where Figure 2.7a is the original
image from the camera and Figure 2.7b shows the projection of one radar channel
into the 2D image along with the original RGB image. Notice that the 2D-lines
corresponding to radar points are smaller the further away the radar points are.
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x

Y

Z

Figure 2.6: Projection of planar radar points into the image plane. The radar
points (green dots) on the ground of the 3D plane are associated with a fixed height
and projected into the green image plane. The coordinate system represents the
camera’s origin.

Frustum based association

The authors of [40] follow a different approach to associate the data of the two
sensor modalities. Objects are initially predicted using an image-based detection
network architecture. The outputs of the network are the 2D- and 3D-bounding
boxes (BBs). The 2D-BB is predicted in the image plane while the 3D-BB also
contains the depth and orientation information of the object. In contrast to the
method described earlier, the association between camera and radar is done in the
camera’s XZ-plane.

To make up for the missing height information of the radar point cloud explained
earlier, the authors of [40] extend the points not only into lines but into pillars. Fig-
ure 2.8 illustrates the pillar expansion. The pillars have a square cross section of
20 cm ˆ 20 cm with a height of 1.5 m [40]. The radial velocity and RCS measure-
ments are assigned equally to the whole pillar. The points are extended to pillars
and not just lines because of the uncertainty in the measurement of radar points.
Their position can differ from their corresponding objects, especially since they are
aggregated over time. The expansion to pillars makes the association more robust
against such inaccuracies [42].

Using the corners of the 3D-BB, a region of interest encapsulating its whole
surface is created. This ROI is depicted in BEV in the cameras XZ-plane as the
dark blue polygon in Figure 2.9. In the following, the ROI is termed frustum in
consequence of its geometrical shape in a three dimensional space. In general, the
geometric object of a frustum is by definition the basal part of a cone formed by
cutting off the top by a plane parallel to the base.

The frustum is created by casting the camera projection lines into the 3D space
such that the 3D-BB is tangent to the projection lines. The planes limiting the
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(a) Original camera image in RGB from
nuScenes dataset [1].

(b) Radar point cloud projected into the
2D image plane (RGB+radar features).

Figure 2.7: Visualization of the projection of radar information into a 2D image.
For Figure 2.7b red lines represent close radar points, lighter colors display points
with increasing distance.

Z

XY

Z

XY

Figure 2.8: Radar points are expanded into pillars due to the lack of height infor-
mation in the radar measurement.

frustum along the projection lines are defined by the minimal and maximal depth of
the BB. Both the base and the top surface of the frustum are parallel to the image
plane.

The pillars are considered to be associated to the frustum if any part of the
pillar is inside the area of the frustum. The radar point corresponding to the pillar
is therefore associated to the same preliminary object detection the frustum is con-
structed from. Finally, the authors of [40] propose to select the closest pillar of all
associated pillars to be used for the fusion step. This is determined by the depth
only, not by the euclidean distance. The association is therefore done object-wise,
in contrast to the raw-data association through the projection of the point cloud to
the image plane described earlier. Figure 2.9 visualizes the association.

Checking if the pillars are inside the frustum is computationally expensive. This
motivates why the creation of the frustum is only for demonstration and is not used
in the implementation. To determine whether a pillar can be associated to an object
or not, the pillars can also be projected into the image using the camera projection
matrix as explained in Section 2.2.2. In the projected plane they are checked for
intersection with the 2D-BB that is predicted by the detection network. The pro-
jected pillars are approximated by axis-aligned BBs to easily check for intersection
with the axis-aligned 2D-BB of the object. Figure 2.10 illustrates the projection
of the pillars. Brighter color corresponds to greater depth regarding the camera’s
coordinate system. The object’s 2D-BB is shown in red in Figure 2.10. If multiple
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000

Figure 2.9: BEV of a 3D-BB (red rectangle) from mono-vision. The dark blue
polygon displays the frustum which is defined depth-wise by the threshold τd, the
light blue polygon is the frustum extended by a factor δ. The radar pillars within
the cameras FoV are depicted as squares with different color. The green square
represent the radar pillars not associated to the object, the orange squares overlap
with the frustum and are therefore associated to the object. Associated means here,
the pillars and the frustum share the object they are assumed to belong to. The
black square is the closest pillar – the one with the smallest depth – and is therefore
the only pillar used for the fusion itself. The displayed coordinate system is from
the camera.

pillar’s BBs overlap in the image the closest one, i.e. the one with the smallest depth,
dominates. If any part of each pillar’s BB is intersecting with the object’s BB this
pillar is stored but not yet associated.

So far, the pillars have been filtered by their angle to the camera. If the filtered
pillars additionally match with the object depth-wise, they can be associated to
the object. The depth of the pillars is the Z-coordinate and is extracted from the
measurement of distance and angle. In contrast, the depth estimation to the object
has to be learned by the image-based object detector. All radar pillars within a
threshold τd are associated to the object. This threshold represents the depth of the
frustum. The threshold τd can be constructed with the predictions of the network
by using the 3D-BB. The minimum and maximum values of the BB corners c3D-BB
in the depth or Z-dimension are taken to calculate the threshold

τd “
max pc3D-BBZ

q ´ min pc3D-BBZ
q

2 . (2.14)

The depth boundary for association starts from the center of the 3D-BB reaching
towards the positive and negative Z-direction in magnitude of the threshold τd. If
there are multiple candidate pillars the one with the smallest depth, i.e. the one
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Figure 2.10: Projection of radar pillars into the image. The projection would be a
distorted rectangle which is enclosed by an axis-aligned BB. The BBs of the pillars
are shown in the image. The darker the pillar is the closer it is to the coordinate
system origin. The red rectangle is the 2D-BB predicted by the network. The image
is displayed again on the left side to make the overlapping of the pillar BBs better
visable.

with the smallest Z-coordinate, is used for the fusion step.
Due to uncertainty in the depth estimation by a monocular camera, the predic-

tion of the 3D-BBs from the network is inaccurate. Therefore, a relaxation factor
δ is introduced to enlarge the frustum and generally associate more points to the
object. Figure 2.9 displays this parameter δ which increases the depth threshold
τd proportionally. It controls the size of the frustum to robustly associate correct
radar pillars to the object even if the estimated depth of the 3D-BB is imprecise.
However, this parameter can also cause false positive associations when an object is
occluded by another. Thus, it has to be chosen carefully.

Out of the radar pillars in the frustum, in CenterFusion the one with the smallest
depth is the only pillar to be further processed. This is a simple approach on
extracting information from the associated pillars. We propose to extract more
information by using a neural network that receives the associated points as input,
which is further explained in Section 5.1. The process of fusing the multi-modal
information is explained in detail in Chapter 4.

Point-Painting association

The authors of [43] introduce the approach of fusing a camera image with a point
cloud involving semantic segmentation and 3D object detection called FusionPaint-
ing. The framework consists of three main parts: first, the 2D image and 3D point
cloud are processed using semantic segmentation networks. The 3D semantic seg-
mentation classifies each point in the point cloud as part of an object in a class
occurring in the cars environment, e.g. a car, truck or pedestrian, directly. This
results in the segmentated point cloud shown in Figure 2.11b, red points represent
misclassified areas.
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(a) 2D point cloud segmen-
tation.

(b) 3D point cloud segmen-
tation.

(c) FusionPainting results.

Figure 2.11: Overview over segmentation and results in FusionPainting [43]. 2.11a
shows the point cloud segmentated using the 2D segmentation method. The orange
points are segmentated as part of the truck, the blue points correspond to other
objects. 2.11b displays the point cloud segmentated using the 3D segmentation
method. Misclassified points are colored red. Finally, 2.11c shows the results of
FusionPainting [43]. 3D-BBs are colored in green, ground truth BBs in red. Images
are taken from [43] © 2021 IEEE, Figure 1.

To improve the accuracy and precision in the classification of the point cloud,
the image corresponding to the point cloud is segmentated as well. The results are
projected into the 3D space using the camera’s intrinsic properties, see Section 2.2.2,
which results in a frustum-like shape in 3D-space. All points in this volume are
classified using the result of the 2D camera segmentation, the projection is displayed
in Figure 2.11a.

The segmentated point clouds of both sensor modalities come with their own
pros and cons. The 2D segmentation generally achieves better performance due to
the detailed textural structure but suffers from the boundary blurring effect, due to
which points in a frustum behind the objects are segmentated as well. This effect is
a result of the 2D-3D projection. The 3D segmentation in contrast performs much
better on the boundary of obstacles but gives worse results in category classification
due to sparsity in the point cloud.

The segmentated point clouds of both, 3D and 2D segmentation are then the in-
put of a neural network termed Adaptive Attention Module. This module is designed
to suppress the disadvantages of both segmentations and combine their advantages.
The architecture is based on an attention mask masking voxels in the point cloud.
A detailed explanation is available in [43].

As the last step, the fused and segmented point cloud serves as the input to
a state-of-the-art 3D detector which outputs the pose and category of detections.
Figure 2.11 shows the detections and the annotations for one example.

Although this approach results in promising scores for the fusion of camera and
LiDAR point clouds, it is questionable whether it is adequate when using radar
point clouds instead due to their sparseness. With the dataset used in this work,
see Section 3.1, the segmentation and especially detection of objects on the point
cloud only would suffer from the lack of data. However, assuming improvement
in radar sensor technology and available datasets, this approach could become of
higher interest in the future.
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The data used in a machine learning approach plays a crucial role in the performance
of the network. This chapter gives an overview of the data that has been chosen for
this work as well as the preprocessing and augmentation it is handled with.

3.1 Dataset
With the increasing popularity of machine learning algorithms in the automotive sec-
tor, more public datasets are released and contributed to in recent years. However,
most of the datasets available currently focus on a sensor-setup involving camera
and LiDAR and do not include radar data. Examples are the popular datasets from
the University of Karlsruhe KITTI [44] and the Waymo dataset [45]. Since this
work depends on radar data, these popular datasets are not included in the follow-
ing comparison. Table 3.1 gives an overview of the public datasets which contain
both, camera and, radar data and compares them by several categories.

Table 3.1: Comparison of publicly available datasets including radar and camera
data. # is an abbreviation for number in this context, Res for Resolution.

Dataset Size Radar Cameras Sensors Annotations
# Doppler Res Type # annotated images # Categories

nuScenes [1] ++ 5 ✓ 0 6
IMU,
GPS,
LiDAR

3D 240 000 23

Oxford Radar RobotCar [46] + 1 ✗ + 4
IMU,
GPS,
LiDAR

– – –

CARRADA [29] - 1 ✓ + 1 – Spectral 7 193 3
CRUW [47] + 2 ✗ + 2 – Spectral 76 000 3

Zendar [48] + 1 ✓ + 1
IMU,
GPS,
LiDAR

2D 11 000 objects 1

RADIATE [49] + 1 ✗ + 1 LiDAR 2D 44 000 8

Several requirements are imposed on a dataset for deep learning. First of all,
there has to be a big amount of data to be able to train a robust network. Out of
the six datasets in Table 3.1, nuScenes [1] is the biggest dataset by far, containing
about 1 400 000 images and radar sweeps. CRUW [47], the Oxford Radar RobotCar
dataset [46], Zendar [48] and RADIATE [49] still contain a reasonable amount of
data in varying scenarios while CARRADA [29] is too small for the purposes of
this work. Additionally, CARRADA is recorded on a test track and therefore lacks
varying, realistic scenarios including different weather conditions. In this regard,
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the other datasets are more diverse although nuScenes and the Oxford dataset in
contrast to RADIATE do not contain any data recorded in fog or snow [49].

Besides the pure size of the dataset, the amount and quality of available annota-
tions is vitally important. The Oxford dataset does not come with any annotations,
Zendar only contains 11 000 annotated cars in the whole set. Both datasets are
therefore not considered further. To make use of the complementary properties
of radar and camera, both sensors have to be of sufficient quality. The radars in
nuScenes are sensors used in the automotive industry that output a pre-processed
point cloud directly. This point cloud is sparser compared to the data provided by
other datasets, but since five sensors are placed around the car, this disadvantage
is partly compensated for. Neither CRUW nor RADIATE contain velocity mea-
surements based on the Doppler effect that are crucial for the Camera-Radar sensor
fusion approach of this work and therefore also have to be crossed off for our work.

To sum up, the nuScenes dataset matches the requirements on a dataset in the
best manner and is therefore selected for this work.

nuScenes
The nuScenes dataset [1] is currently one of the most popular datasets in literature
regarding the fusion of camera and radar data, see e.g. [36, 39, 40]. In total, it
provides nscenes “ 1000 scenes from Boston and Singapore, where every scene is of
the length of ∆t “ 20 seconds. Within the dataset, 23 different object classes are
annotated with 3D-BBs at a rate of fann “ 2Hz. The rest of the data is also available
but not annotated. In total, the dataset therefore contains

nkeyframes “ nscenes ¨ ∆t ¨ fann

“ 1000 ¨ 20 ¨ 2 “ 40 000
(3.1)

keyframes. One keyframe contains the data of all the sensors, i.e. six camera images,
for one timestamp. Out of the 1000 scenes available to public, only 850 are intended
to be used for training and validation. For the remaining 150 scenes, only the
data, excluding the annotations, is available to public. These scenes are used in the
nuScenes Object detection task [50], see below.

Sensors

Figure 3.1 shows the position and coordinate system used in the nuScenes dataset.
Both, the five radars and six cameras are from the same type each, however the
lenses differ between the camera facing backwards and the five other cameras. The
camera facing backwards has a FoV of 110˝ while the other cameras work with a
FoV of 70˝. The technical details of the said sensors and the inertial measurement
unit (IMU) are given in Table 3.2.

Sensor calibration

To obtain precise object detections within the ego vehicle’s surroundings, the cal-
ibration of both, intrinsic and extrinsic sensor parameters is essential. Extrinsic
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Figure 3.1: Sensors used and their corresponding coordinate systems in the
nuScenes dataset[1]. The ego vehicle coordinate systems X-axis points towards
the forward driving direction and is located at the midpoint of the rear axle pro-
jected onto the ground. The top-down view of the car is from [51].

parameters describe the transformation, rotation and translation, between a sensor
and the reference, in this case the midpoint of the rear axle of the ego vehicle. In-
trinsic calibration is important for the camera and describes the calibration of the
camera matrix K, see Section 2.2.2. The calibration is described in the supplemen-
tary material of [1] and summarized in the following.

The radar is mounted horizontally on the vehicle to obtain the translation of the
extrinsic calibration. After collecting data from driving on public roads, the yaw an-
gle respective to the ego coordinate system is computed using a brute force approach
to minimize the compensated range rates for static objects in the environment of
the car to obtain the rotation matrix.

The camera extrinsics are computed using a cube-shaped calibration target in
front of the camera using the LiDAR reference measurements. The camera intrin-
sics are obtained using a calibration target board. Further details are described in
Chapter 7 of [31]. All of the calibration is done by the authors of nuScenes, the
calibration matrices are available for each measurement.

Sensor synchronization

Besides accurate sensor calibration in spacial dimensions, the synchronization in
time is crucial for good cross-modality data alignment. In nuScenes, the synchro-
nization between LiDAR and cameras is performed by triggering the exposure of a
camera when the LiDAR sweeps across the center of the camera’s FoV. However,
since the dataset does not use a sweeping radar, this is not possible for synchro-
nization between radar and camera. Instead, all sensor measurements within one
keyframe contain individual timestamps. Therefore it is possible to compensate for
some errors induced by ego-vehicle motion in the radar point cloud, see Section 3.2.
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Table 3.2: Technical details of the sensors used in the nuScenes dataset. Source:
[52, 53, 54].

Camera Radar IMU / GPS
Capture frequency rHzs 12 13 1000
Model Basler acA1600-60gc Continental ARS 408-21 Advanced Navigation Spatial

Sensor details

Resolution: 1600 ˆ 1200
cropped to 1600 ˆ 900 ROI

Backwards facing: 110˝FoV,
others: 70˝FoV

77GHz FMCW radar

Measures distance and
velocity independently
in one cycle

Up to 250m distance

Vel. accuracy of ˘0.1km h´1

120˝ FoV near range,
18˝ FoV far range

Position accuracy of 20mm

Heading accuracy of 0.2˝

with GNSS

Roll and pitch
accuracy of 0.1˝

Data diversity and splits

Diversity of data is an important factor for a generalized and robust NN. In the
context of autonomous driving, this imposes the requirement of a dataset consisting
of measurements and annotations in different weather conditions, e.g. sun, rain,
snow, night, fog, diverse driving scenarios and locations. Although nuScenes does
not consist of data for all the mentioned weather conditions, the 1 000 scenes open to
public are selected to cover rare classes, e.g. animals, ambulances or police vehicles,
difficult driving maneuvers and multiple environmental conditions.

The dataset is divided into three splits: training, validation and test set. This
is common practice in machine learning to avoid testing on the same data that is
used for training. Table 3.3 shows the division for the nuScenes dataset. Out of
the 1 000 scenes, 70% are used for training, while 15% of the data is used for each
– validation and testing. Considering the number of annotated images each split
contains, the division is reasonable and follows good practices. The validation set
consists of 36 000 images in total, i.e. 6 000 images for each of the six cameras. The
division was performed by the nuScenes team by hand, therefore the percentage of
scenes in difficult environmental conditions such as night or rain are close for the
training and validation set, see Table 3.3.

Table 3.3: Division of the dataset into training, validation and test set. Since the
test set is used in the nuScenes detection task, environmental information is not
available to public.

Training Validation Test
Number of scenes 700 150 150
Number of images 168 000 36 000 36 000
Night scenes 12% 10% –
Rain scenes 19.7% 18% –
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Field of View 
Camera

Field of View Radar
Near Range

Field of View Radar
Far Range

Figure 3.2: Sensors and their corresponding FoVs in the nuScenes dataset. The
coordinate systems correspond to the ones introduced in Figure 3.1. The FoV of
the radar sensors changes between measurements in near and far range. The sizes
of the cones do not represent the range at which the sensors operate but are chosen
such that the Figure illustrates the overlapping of different sensor modalities. The
source for the top-down view of the car is [51].

Data annotations

The objects in nuScenes are annotated in the 3D space. Each annotation consists
of a three dimensional BB, a global pose, a semantic category, e.g. car, pedestrian,
and an attribute, e.g. moving, parked, see Table A.2 for more details. To obtain a
2D-BB in the image, the 3D-BB of the annotation can be projected into the image
plane using the camera-specific camera matrix, see Section 2.2.2.

In total, nuScenes provides 23 different categories, out of which the ten most
relevant are extracted, see Table A.1. Figure 3.3 shows the frequency of annotated
objects among the ten categories for both, training and validation. Note that val-
idation and training are scaled on a different Y -axis. One can conclude that the
distribution between validation and training set is consistent even when it comes to
annotated categories.

In order to develop and analyze the results of a deep learning network, it is
crucial to understand the data used for training. Figure 3.4 shows the average
number of radar points that overlap with 3D-BBs of objects within the ten categories
introduced, analyzed over both training and validation split.

Large objects like buses, trailers or trucks have a larger surface and therefore
reflect more radar points compared to smaller objects as pedestrians or traffic cones.
The annotations for the categories motorcycle, bicycle, barrier, pedestrian and traffic
cone consist of less than one radar point in average. Due to the lack of data, it is
harder for the sensor fusion to profit from the radar input in these categories which
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Figure 3.3: Occurrences of object categories in the annotations of both, validation
and training set. The validation set is colored in orange, the training set in blue.
Note that the Y -axis is different for the two subsets.

has to be kept in mind when analyzing the results.

nuScenes object detection task

The authors of the nuScenes dataset provide a detection task on their website [50].
The detection task makes use of the 150 scenes in the test-split and evaluates the
network using the metrics mAP and NDS, see Section 3.4. The detection task also
includes a leader-board for various sensor setups allowing an easy comparison with
state-of-the-art fusion algorithms in literature.

3.2 Data preprocessing

Before inputting the data of both, camera and radar, into the training and validation
process, some preprocessing has to be performed on it. This sub-chapter explains
these steps along with the format of the ground truth annotations used in this work.

Since nuScenes nominates all the data of one time stamp (six camera images,
five radar point clouds) as a sample, in the following we will refer to the smallest
data unit as a mini-sample. Each mini-sample used for the training consists of one
camera image, the radar points in the FoV of this camera and the corresponding
annotations for the objects captured in the image. Additional information such as
the camera calibration matrix is stored in each mini-sample as well. In the following,
a radar sweep is defined as the point cloud corresponding to a radar measurement
at a single timestamp tR.
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Figure 3.4: Mean number of radar points within object annotations in the nuScenes
dataset for each category. All annotations further than 60 meters away from the
center of the car are disregarded.

Camera preprocessing
To reduce the computational time and the amount of weights in the neural network,
the image provided by the dataset is down-scaled from its original resolution of
1600 ˆ 900 to an input resolution of 800 ˆ 448 where the first value corresponds to
the width and the second to the height of the image.

Since the network architecture of CenterNet, see Section 4.1 and specifically the
backbone deep layer aggregation (DLA)-34, requires the image to be completely
divisible by 32 the input image height of 448 is used, although this results in a
slight distortion of the image. The effect however is minimal and therefore can be
disregarded.

Radar preprocessing
A single point p̄i,R out of the radar point cloud with the index i in the radar’s
coordinate frame R can be expressed as

p̄i,R “
“

p̃T
i,R v̄X v̄Y ρ ∆t

‰T

“
“

x̄ ȳ z̄ v̄X v̄Y ρ ∆t
‰T

P R7,
(3.2)

where p̃i,R “
“

x̄ ȳ z̄
‰T describes the euclidean coordinates of the radar point in

the radar frame, v̄X and v̄Y are the projection of the radial velocity in their X- and
Y -components respectively and ∆t “ tC ´ tR is the difference in time between the
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capturing of the image at time tC and the radar sweep at time tR. As mentioned
earlier, the trigger for the cameras is not time-synchronized with the radar sweeps
and therefore ∆t ‰ 0 for most cases. Since the output of the radar is only 2-
dimensional, the height information in the coordinate z of the radar frame is not of
relevance. However it is not removed from p̄i,R since it is relevant in the following,
e.g. in the transformations regarding early fusion.

Spatio-temporal error compensation

To precisely match radar points with features or a position in the image plane, the
radar points have to be expressed in the cameras coordinate frame. Further, since
the sensor modalities are not time-synchronized, the ego vehicles movement during
the time-frame ∆t introduces a spatio-temporal error between the measurements
of camera and radar that can be compensated for using the transformations pro-
vided by the nuScenes dataset. Both of these problems can be tackled with the
transformations described in the following.

Each sensor measurement comes with the pose of the ego vehicle at the time
instance t the measurement was triggered. The pose is calculated using the ego
vehicles GPS and IMU sensor units and is subsequently transformed into a transfor-
mation matrix TEG,t, see Section 2.3.2, that describes the rotation and translation
of the ego vehicle frame E towards a fixed, global coordinate frame G at the time
instance t of the sensor measurement. Since the global frame is fixed in time, the
transformation of the ego vehicle coordinate system describing its movement during
∆t is

TE,∆t “ TEG,tCTGE,tR P SEp3q (3.3)

where TGE,tR
refers to the inverse transformation from global to ego vehicle coordi-

nates. In consequence, the spatio-temporal compensation is performed via

TE,∆tTER

„

p̃i,R
1

ȷ

(3.4)

for the euclidean coordinates p̃i,R of the radar point p̄i,R. The calculation of the
euclidean coordinates corresponding to the radar point p̄i,C in the cameras frame
matching the image in both euclidean transformation between the sensors themselves
as well as in spatio-temporal compensation due to the ego vehicles movement, is
expressed as

„

p̃i,C,tC

1

ȷ

“ TCETE,∆tTER

„

p̃i,R,tR

1

ȷ

P R4ˆ1 (3.5)

where TCE describes the transformation from the ego vehicle’s coordinate frame to
the camera’s frame.

Besides the euclidean coordinates of the radar points, the components of the
radial velocity have to be transformed as well. However, the spatio-temporal trans-
formation of the radial velocities v̄ “

“

v̄X v̄Y v̄Z

‰T reduces to a rotational com-
pensation for time as

v̄C,tC “ RCERE,∆tRERv̄R,tR P R3ˆ1 (3.6)
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where R is the rotation matrix out of a transformation matrix T, see Equation (2.13),
v̄C,tC are the radial velocities of the radar points expressed in the camera frame com-
pensated for the spatio-temporal error and v̄R,tR expresses the radial velocities in
the radar frame at the time-stamp of the radar sweep. Since the radial velocity is
captured on a 2D plane as well, the velocity component in Z-direction expressed in
the radar frame is 0 at all times. Due to the different coordinate systems, see Fig-
ure 2.5, in the camera frame the Y -axis velocity component becomes 0 and can be
neglected.

An error-compensated and transformed radar point in the cameras coordinate
frame therefore is expressed as

p̄i,C “
“

x̄C,tC ȳC,tC z̄C,tC v̄X,C,tC v̄Z,C,tCρ ∆t
‰T

P R7 (3.7)

In the following, the indices C and tC will be removed for the purpose of read-
ability and the point in Equation (3.7) will be represented as:

p̄i “
“

x̄ ȳ z̄ v̄X v̄Z ρ ∆t
‰T

P R7 (3.8)

Further, the radial velocities should be compensated for the ego vehicle’s velocity
as well since the radar sweep does not account for this. In consequence the radar
measures a velocity for static objects if the ego vehicle is moving. This compensation
is performed by the nuScenes dataset and radial velocities compensated for ego-
vehicle movement are used.

Camera-radar matching

The FoV of every camera in the nuScenes dataset overlaps only with some of the five
radars FoVs. The overlapping areas are displayed in Figure 3.2. Each mini-sample
consists of one image and the radar points

P “
“

p0,p1, . . . ,pi, . . . ,pN

‰

P R7ˆN (3.9)

in the camera coordinate frame overlapping with the camera’s FoV. To further filter
for these points, the points r̄ are projected into the 2D image plane and removed if
they do not lie in the cameras FoV, see Section 2.2.2 for a detailed explanation. As
a last step the radar points with z ą dmax “ 60m are removed due to less precise
measurements with increasing distance.

Radar aggregation over time

The radar point cloud in the nuScenes dataset is extremely sparse. Smaller but
safety critical objects like motorcycles contain less than one radar point on average,
see Figure 3.4, even cars are often represented by one or two points only.

To partly compensate for this lack in data the point clouds are aggregated over
time. The decision upon how many radar sweeps to add up has to be made as
a trade-off between the increase in data points one gets and the error introduced
by doing so. The merging introduces two main errors introduced by ego vehicle
motion and external object’s motion. The ego vehicle motion error describes the
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translational and rotational errors between the points of two radar sweeps introduced
through the ego vehicles movement. This error can be compensated for as described
above.

However, the external object’s motion error refers to the error in measurement
that occurs due to movement of objects in the surroundings of the ego vehicle. This
error can not be compensated for in consequence of the lack of information on the
velocity of surrounding objects and has to be kept in a reasonable value by choosing
a small ∆tsweeps over which to merge the radar data.

In the experiments performed in the scope of this work, the radar data of
nsweeps “ 3 radar sweeps is aggregated while compensating for the spatio-temporal
error as described above. With a radar capture frequency of fradar “ 13Hz, see Ta-
ble 3.2, ∆tsweeps is approximately

∆tsweeps “
nsweeps

fradar
“

3
13Hz « 0.23s (3.10)

which is still a reasonable time frame.
Figure 3.5 visualizes the aggregation of radar sweeps over time for one exam-

ple from the nuScenes dataset. While the objects enumerated in the Figures are
represented by around 2 radar points only for nsweeps “ 1, more radar points get
associated with each object when aggregating radar sweeps from the past. However,
this also introduces radar points that can not be associated to the object anymore.
These points occur due to the external vehicles movement and are encapsulated
by yellow ellipses in Figure 3.5c. While other authors choose ∆tsweeps “ 1s [42], a
smaller number and therefore a smaller error is more suitable for the sensor fusion
approach of this work.

Annotation preprocessing

Besides the input data of radar and camera, the annotations provided by nuScenes
have to be converted into the format necessary for the network structure of this work.
The nuScenes object annotations include the information displayed in Table 3.4.

To be able to calculate the metrics introduced in Section 3.4 and the regressions
described in Chapter 4, the annotations need to provide the information listed in
Table 3.5.

The 3D object center is transformed into the camera frame using a simple trans-
formation matrix TCG P SEp3q from the global to the camera frame. The local
orientation θl is calculated as explained in Section 4.1. The 2D object center is
obtained by projecting the 3D object center into the camera plane using the camera
matrix, see Section 2.2.2. Similarly, the 2D dimensions are calculated by projecting
the corners of the 3D-BB into the image plane and calculating its width and height.

The ground truth velocity vk of the annotation with index k is calculated by a
centered difference between the previous k ´ 1 and next frame k ` 1 of the dataset
as
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(a)
nsweeps “ 1,
∆tsweeps « 0.08s

(b)
nsweeps “ 3,
∆tsweeps « 0.23s

(c)
nsweeps “ 13,
∆tsweeps “ 1s

Figure 3.5: Visualization of the radar sweep aggregation over time for an example
from the nuScenes dataset. The radar points are displayed with green dots, ground
truth object annotations using red rectangles. The red arrows visualize the absolute
value and direction of the object’s velocity. Three of the objects are enumerated
with indices 1, 2 and 3 for easier comparison. All radar points are compensated
for spatial-error due to ego vehicle motion. Figure 3.5a shows a single radar sweep,
Figure 3.5b the aggregation of 3 and Figure 3.5c the aggregation of 13 radar sweeps
from the past. The yellow ellipses in Figure 3.5c encapsulate the error induced by
the external object’s motion.

vk “

»

–

xk`1
yk`1
zk`1

fi

fl ´

»

–

xk´1
yk´1
zk´1

fi

fl

tk`1 ´ tk´1
(3.11)

where
“

xk yk zk

‰T expresses the 3D center point of the annotation with index k
and tk the corresponding time stamp. If there is no annotation for the next/previous
time stamp, the velocity is approximated using the previous/next annotation only.

3.3 Data augmentation

The performance of deep neural networks heavily depends on big datasets to avoid
overfitting the network, see Section 2.1. A common method applied to further en-
hance the size of the dataset is data augmentation. Literature shows that data
augmentation can help to avoid overfitting and make the network more robust to-
wards unknown input data, see [55] and, Section 7.1 of [19].

The type of data augmentation has to be chosen according to the data it is
applied to. In the context of this work, e.g. scaling an image is trivial while scaling
a radar point cloud changes the 3D measurements which makes it hard to guarantee
the same radar points are still matched to the same features in the transformed
input image [40, 56].
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Table 3.4: Information contained in a single nuScenes object annotation.

Information Description Data type

3D Object Center Euclidean coordinates of the
3D-BB center in global frame R3

3D Dimensions Dimensions of the 3D-BB
as width, length, height R3

Rotation Quaternion describing the orientation
relative to the global frame R4

Category ID corresponding to the category
according to Table A.1 N

Attribute ID corresponding to the attribute assigned to
annotation, IDs are described in Table A.2 N

Number of radar
points

Number of radar points within
the dimensions of the annotation N

Number of LiDAR
points

Number of LiDAR points
within the dimensions of the
annotation.

N

Flipping
Flipping the image refers to a flip around the vertical axis. This augmentation
can easily be applied to the radar point cloud by inverting the sign of both, the
X-component of the euclidean position and radial velocity expressed in the camera
coordinate system. The flipped image is visualized in Figure 3.6b. Flipping during
training occurs with a default probability of 50%.

Scaling
For scaling, the image pixel coordinates are multiplied with a random scalar saug P

p1 ´ smax, 1 ` smaxq where smax P r0, 1q can be specified as a hyperparameter. For
saug ă 1 the image is zoomed out, see Figure 3.6e, for saug ą 1 the contrary occurs,
see Figure 3.6f. Scaling is only applied when no radar data is used in the network,
e.g. when training the backbone only.

Shifting
Augmentation by shifting describes an offset in both, X- and Z-direction of the
image. The offset is applicable in both, negative and positive direction and limited
by a hyperparameter as well. The offset calculates as:

caug “ w cr cmax, (3.12)

where w refers to the width of the original or not augmented image, cmax P r0, 0.5s is
a hyperparameter defining the amount of possible offset and cr P p´2, 2q is a random
number sampled from the cropped standard normal distribution. The offset in X
and Z is determined separately.
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Table 3.5: Object annotations required to calculate the metrics and regressions
within this work.

Information Description Data type

3D Object Center Euclidean coordinates of the
3D-BB center in camera frame R3

3D Dimensions 3D Dimensions of the 3D-BB
as width, length, height R3

θl Rotation Local orientation θl of the object,
explained in Figure 4.7 R4

2D Object Center Coordinates of the 3D object center
projected into the image plane R2

2D Dimensions 2D Dimensions of the 3D-BB
projected into the image plane R3

Velocity
Velocity of the 3D-BB in
X, Y and Z expressed in the
camera frame

R3

Category ID corresponding to the category
according to Table A.1 N

Attribute ID corresponding to the attribute assigned to
annotation, IDs are described in Table A.2 N

Color augmentation

Brightness, contrast and color saturation of the input image are adapted as an
augmentation method. The amount of color augmentation is randomly selected
within a predefined range. An example of a color augmented image is displayed
in Figure 3.6d.

(a) Original image. (b) Flipped (c) Shifted

(d) Color augmentation (e) Negative Scaling (f) Positive Scaling

Figure 3.6: Different types of data augmentation applied to the original image in
Figure 3.6a.
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3.4 Evaluation metrics
To evaluate the performance of object detection models, several metrics have been
introduced in the past. The most popular evaluation metric is the mAP, which is
explained alongside others used in this work in the following.

The mAP metric is based upon the concepts of precision and recall. Precision
describes the fraction of true positives among the output of a network while recall
is the fraction of true positives over all positives in the annotations [19], Chapter
11.1. They can be expressed as

precision “
TP

TP ` FP , (3.13)

and
recall “

TP
TP ` FN . (3.14)

where TP is the number of true positives, FP the number of false positive and FN
the number of false negatives. To distinguish between a true positive and false
positive detection, the intersection over union (IoU) is widely used as the matching
criterion in object detection [57]. The IoU describes the extent of overlap between
two bounding boxes. It is expressed as

IoU “
|A X B|

|A Y B|
(3.15)

where A is the annotated and B the estimated BB. If A and B perfectly match in
size and position, the IoU is equal to 1. Two BBs A and B match if their IoU exceeds
a certain threshold P r0, 1s. However, in the context of a 3D detection task, this
approach comes with a major downside since it heavily depends on the size of the
regarded object. For the same absolute error in translation, the IoU for a car’s BB is
bigger compared to a pedestrians 3D-BB. This issue is visualized in Figure 3.7. The

Figure 3.7: Visualization of IoU in BEV for a car (on the left side) compared
to a pedestrian (on the right side). Although the centers of the bounding boxes
are equally far away from each other, the cars IoU is greater than zero while the
pedestrians IoU is 0.0. The overlapping areas are colored in yellow, the predicted
BB is depicted in green and the ground truth annotation in blue.

authors of the KITTI dataset [58] tackle this deficit by setting the IoU threshold for
larger objects like vehicles to 70% and for smaller objects to 50% [59]. In contrast,
the authors of [1] introduce a new matching condition purely based on the 2D BEV
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distance between two BBs. This makes the matching independent of object size. The
same matching condition is used in this work for a variety of matching distances.

The precision/recall curve describes the curve obtained when plotting precision
over recall. The authors of [60] express the average precision (AP) metric as the
average over 11 specific recall levels r P t0, 0.1, . . . , 1u such that

AP “
1
11

ÿ

rPt0,0.1,...,1u

pinterp prq (3.16)

where pinterp prq describes the interpolated precision for that recall.
The authors of [1] build upon this definition but calculate the AP as the nor-

malized area under the precision recall curve for recall and precision over 10%. The
boundaries of 10% are introduced in order to remove the noise in areas of low pre-
cision and recall. This definition of the AP is also used in this work since it outputs
more precise values. To obtain the final metric mAP, the AP is averaged over dif-
ferent matching thresholds d P D “ t0.5, 1, 2, 4u in meters and the classes c P C
described in Table A.1 as

mAP “
1

|C| |D|

ÿ

cPC

ÿ

dPD
APc,d. (3.17)

The mAP metric however comes with two major downsides. First, it does not
account for the exact localization error as long as the matching threshold is met.
Second, it does not consider the errors in orientation, velocity, BB size and attribute.
To evaluate the precision of a network regarding these measures, [1] introduces
the NDS metric. It combines the popular mAP metric with five True Positive
metrics accounting for translation, scale, orientation, velocity and attribute errors,
see Table 3.6.

Table 3.6: Overview of the True Positive metrics [1]. All TP metrics are calculated
using a matching threshold of 2m and a recall threshold of 10% and are averaged
over all classes.

Error Description Unit

mean average translation error (mATE) Euclidean center distance
error in 2D m

mean average scale error (mASE)
3D IoU after aligning
orientation and translation
p1 ´ IoUq

–

mean average orientation error (mAOE) Yaw angle error rad

mean average velocity error (mAVE) L2 norm of the velocity
difference in 2D m{s

mean average attribute error (mAAE) 1 minus attribute classification
accuracy p1 ´ accq

–

The overall NDS score is then calculated as

NDS “
1
10

«

5mAP `
ÿ

mTPPTP
p1 ´ min p1, mTPqq

ff

(3.18)
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where TP “ tmATE,mASE,mAOE,mAVE,mAAEu includes all True Positive met-
rics.
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4
CenterFusion

When fusing camera and radar data it is difficult to combine the features because
it is unclear to which object either information corresponds. The camera could
detect one object while the radar only provides data for another. Subsection 2.3.2
gives an overview of approaches tackling this problem. Under these candidates the
frustum association is proposed in the work of [40]. The entirety of the architecture
in [40], called CenterFusion, is a novel solution to fusing camera and radar using deep
learning. The authors of CenterFusion solve the association problem by creating a
proposal with the camera and adjusting it with the point cloud of the radar. For that,
the authors introduce the frustum association which is the key idea in this method.
It associates a single radar point directly to the detected object. This is important
since the learning of the network can then be concentrated on extracting as much
information as possible from a single point representing the object and not the whole
point cloud. When learning from the entire point cloud, as in [36, 42, 61], there are
many measurements from other objects and the surroundings of the ego vehicle on
top of the information from the detected object. The additional information makes
it harder for the network to extract the important parts about the object that should
be detected.

Figure 4.1 shows the high-level network architecture of CenterFusion. The idea is
to first propose detections by a powerful camera-based object detector that predicts
the center points of objects. The detector also predicts a 2D and a preliminary 3D
bounding box for each object. The boxes are defined relative to the common center
point. This object detection approach is based on the work in CenterNet [56]. Both
bounding boxes are then used for associating a single radar point from the entire
radar point cloud to the object. The associated radar point is used as an additional
input to the network’s second stage. The 3D-BB proposal is adjusted in the second
stage with the information the associated radar point introduces.

The fusion method in CenterFusion is on feature level since it uses the predic-
tions of the camera pipeline to influence the radar pipeline. The main drawback of
CenterFusion is that the detection is reliant on the camera. If the camera does not
detect any object in the first stage, e.g. due to environmental conditions or sensor
errors, the radar is not used at all. This is because radar points are only used for
the prediction when they lie inside the proposal from the camera. When the camera
fails to deliver the proposal, none of the radar points are used. The radar only
functions as an adjustment of the already detected predictions by the camera. This
approach is not robust w.r.t. external interference and does not use the full extent
of the fusion potential.

Generally, radar data is relatively sparse compared to camera data. Therefore
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Figure 4.1: Overview of CenterFusion where a backbone extracts features to create
a 2D-BB and 3D-BB proposal in the primary regression heads [40]. In parallel, the
radar points in the camera’s FoV, depicted in the lower left image, are expanded
over the height information into pillars. The bounding boxes are used in the radar
association to find a single radar point that originates from the detected object.
The association is based on creating an ROI in the shape of a frustum and only
associating pillars that lie inside the frustum to the object. Of the pillars inside the
frustum only the closest pillar is used in the rest of the pipeline. The chosen radar
pillar introduces additional information to the image-based feature map. The 3D-
BB proposal is then fine-tuned in the secondary regression heads with the enriched
feature map. Furthermore, additional properties such as velocity and attribute are
added as well. The predictions of the primary and secondary regression heads are
combined into the final 3D-BB prediction. Results of the pretrained CenterFusion
model are shown on the right. The upper image shows the projected 3D-BBs while
the lower image depicts the BEV of the predictions. In the BEV perspective the
red boxes are ground truth, the blue boxes are predictions and the green dots are
radar points. The ground truth and predicted velocities are shown as arrows – in
the respective color – on all BBs along their axis of orientation.
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in CenterFusion, the radar data is aggregated in three radar sweeps over time. The
position of the points are compensated for ego motion. The aggregation of data
increases the chance in finding a radar point for each object and generally improves
the radar point association.

The two main ideas of CenterFusion – object detection by its center point as
in CenterNet and frustum based radar point association – are described in this
section. First, the method of CenterNet is presented in Section 4.1 with which the
feature map of the image is created. Second, the regression of the parameters for
the 2D-BB and preliminary 3D-BB in the primary heads is explained in Section 4.2.
Both bounding boxes are necessary for the frustum association which is explained
in detail in Section 2.3.2. Building upon the association, the fusion of the associated
radar point to the feature map is explained in Section 4.3. Finally, the secondary
regression based on the fused data is presented in Section 4.4.

4.1 CenterNet

CenterFusion builds upon a camera-based 2D and 3D object detector to propose
bounding boxes for the frustum creation. For that purpose the work of [56], namely
CenterNet, an image-based object detector, is used. CenterNet can fulfill different
tasks such as human pose estimation, tracking as well as 2D and 3D object detection.

The key concept of CenterNet is to represent an object as a single point and
to predict its center point. In contrary, the classical approach for object detection
is to directly regress the object’s bounding box such as in classical sliding window
approaches [62, 63, 64, 65, 24]. CenterNet and sliding window approaches come
together in the specific form of anchor-based one-stage detectors where the anchor in
CenterNet could be seen as a fix shaped 1 pixel anchor. But due to this extreme case
of anchor size some parts of the sliding-window approaches are not needed anymore
in CenterNet. Firstly, the anchors in CenterNet are defined only on location and
not on overlap and thus there are no manual thresholds that need to be set for
classification. Secondly, there is only one anchor per object, due to which there
is no need for non-maximum suppression (NMS) in the training process. NMS is
first introduced in [66]. Not relying on these parts gives CenterNet an advantage in
computing speed and enables it to be end-to-end trainable, thus promising higher
performance.

For 2D and 3D object detection the network of CenterNet is trained to predict
a heatmap of the input image I P RW ˆHˆ3 where every pixel in the heatmap has a
certainty value of being an object’s center point. W and H are the width and height
of the input image respectively. The heatmap Ŷ P r0, 1s

W
K

ˆ H
K

ˆC has C channels to
predict the center point of objects in C classes. K determines the output stride w.r.t.
the input image I which downsamples the image size by a factor of K. The result
of downsizing is the smaller image resolution |Ĩ| “ W

K
ˆ H

K
compared to the original

size |I| “ W ˆ H. In literature the default output stride is K “ 4 [67, 68, 69]. A
prediction of Ŷx,y,c “ 1 means that the object of class c has been detected at the
pixel location

“

x y
‰T. When the network predicts Ŷx,y,c “ 0 it assumes this pixel

is not an object of class c. If it assumes that for all classes, the pixel is predicted to
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be background.
The ground truth center points, called keypoints, p “

“

x y c
‰T

P N3 in pixel
coordinates are used in a unique way in training as proposed in [70]. They are anno-
tated in the input image with size |I|. The ground truth heatmap Y P r0, 1s

W
K

ˆ H
K

ˆC

is generated by laying a 2D Gaussian kernel over the downscaled keypoint image.
Figure 4.2 illustrates the Gaussian kernel over a pixel grid for two center points of
one class displayed in dark orange and dark green. The rest of the pixels are colored
depending on the center point they correspond to and have an opacity proportional
to the Gaussian value of either kernel. The downscaled keypoint equivalents are
p̃c “ t

pc

K
u “

“

x̃ ỹ
‰T

P N2, where t¨u is the floor function. Therefore, the ground
truth heatmap value at the pixel position

“

x̃ ỹ
‰T in channel c is

Yx̃,ỹ,c “ exp
˜

´
px̃ ´ p̃x̃,cq

2
` pỹ ´ p̃ỹ,cq

2

2σ2
c

¸

, (4.1)

where σc is a standard deviation that depends on the typical size of objects in class
c. The Gaussian kernel is limited by a variable radius around the corresponding
keypoint. If there are multiple objects of one class in an image I the Gaussian
kernels of the keypoints overlap. The heatmap value Yx̃,ỹ,c is then computed to be
the element-wise maximum of all Gaussian kernels. The overlapping of two Gaussian
kernels is displayed in Figure 4.2 as well. Laying a Gaussian kernel over the keypoint
image helps the network learn the concept of a heatmap while still providing the
necessary information about the actual keypoints.

Figure 4.2: The ground truth heatmap Y shows a grid of pixels with two center
points of one class in dark orange and dark green. The rest of the pixel grid is
displayed in the color of the center point whose corresponding Gaussian kernel has
the maximum value at each pixel.

The advantage of regressing center points of objects is that it enables the network
to train without the numerous anchors that are used in sliding window approaches,
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this greatly reduces the computational complexity of the training process. Further-
more, the search for center points gets rid of the need to perform NMS. NMS is a
post-processing step to determine which anchor gives the best prediction. It uses
the IoU of the anchors to each other to pick the prediction that is the likeliest to
be true. Although, the calculation of IoU is hard to differentiate and to train the
network on. CenterNet does not need NMS and thus is end-to-end trainable. This
makes CenterNet fast in runtime and enables it to achieve a high accuracy [56].

Building upon predicting the center point of objects, other properties of objects
such as bounding box dimensions, offset due to striding, depth, orientation, joint
locations, etc. can be estimated. The difference between CenterNet and sliding
window approaches is that the learned properties are parameterized and only the
parameters get regressed relative to the common center point and trained in contrast
to regressing the whole bounding box at once. In CenterFusion the structure of
CenterNet is used as a 2D and 3D object detector by using a carefully designed
head architecture.

In CenterNet different encoder-decoder networks are used to extract the fea-
ture map which is the input to the head architecture. The authors of CenterNet
investigated a stacked hourglass network [68, 70], an up-convolutional residual net-
work [71, 72], as well as a DLA network [73]. In CenterFusion, as well as in this
work, only the latter architecture is used for experiments because it shows the best
compromise between speed and accuracy [56]. The DLA architecture is presented
in the following section. Since this work is based on DLA, detailed explanations of
other candidates are omitted. However, they could be part of further research.

Deep Layer Aggregation
CenterNet needs a powerful encoder-decoder network that can extract rich features
out of an image. deep layer aggregation [73] is a deep convolutional image recognition
network with specialization on far reaching – or deep – skip connections over multiple
layer blocks and even stages. In CenterNet as well as in this work only the type
DLA-34 will be used. There are two versions of DLA-34, one for classification
and one for image-to-image tasks. CenterNet uses the latter one that consists of
a backbone depicted in Figure 4.3 and a neck shown in Figure 4.4. The backbone
extracts features by hierarchically connecting – or aggregating – blocks of layers and
forming larger scale stages. These stages are connected iteratively to each other.
The output of each stage is downsampled w.r.t. the preceding stage by a factor of
K “ 2. The neck part of the network builds on top of the backbone to iteratively
retrieve the input size of each stage by using a learned bipolar linear interpolation.
The result is that the output of the neck is only downsampled by K “ 2 w.r.t. the
original image size |I|.

DLA-34 learns to extract the local as well as global information from an input
due to the deep aggregation functions. The deep iterative connections help to learn
the spatial features and the numerous hierarchical connections improve the semantic
learning while also forwarding gradients better to avoid vanishing gradients. The
representation of the input is progressively aggregated and condensed inside the
network starting from the smallest stride factor iteratively up to the largest.
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Hierarchical Deep Aggregation (Stage)
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Iterative Deep Aggregation

Convolutional Block

Figure 4.3: The backbone of the DLA-34 network consists of multiple convolutional
blocks – depicted as dark blue boxes – which are aggregated hierarchically as well
as iteratively [73]. The network therefore learns semantic as well as spatial features
from the input image. The nodes in the network that aggregate two streams of
data are depicted as green boxes independent on which aggregation type is used.
The input image is downsampled by a stride factor of K “ 2 between each stage
– depicted as blue arrows. The hierarchical aggregations are assembled in tree
structures that have various depths. These tree structures are defined as stages –
depicted as red boxes. The stages are numbered 0 through 5. Note that stage 0 and
1 consist of only a single convolutional block. The iterative aggregations – depicted
as yellow arrows – are connecting the hierarchically aggregated stages.

The authors in CenterNet use the DLA-34 network and adapt the neck structure
by omitting the upsampling to the stride factor of K “ 2 and thus retrieving the
image size until a factor of K “ 4 w.r.t. the original image size |I|. Furthermore,
they replace the convolutional layers in the neck by deformable convolutional layer
(DCL) [21] and add deeper skip connections. The final network used in CenterNet
is depicted in Figure 4.5.

The concept of the DLA-34 network allows it to work with many different imple-
mentations of the backbone and does not restrict it to one specific structure. Note,
we refer to the DLA-34 network as a whole in this work by backbone although this
is not consistent with the definition of the network.

4.2 Primary regression

In the framework of CenterFusion the heads of the network play an important part
in training the key parameters regressed from the camera and fused – camera and
radar – data. They are divided into two stages, primary and secondary regression
heads. The primary regression heads extract the parameters for the 2D-BB detection
and 3D-BB proposal only from the image and the secondary regression heads adjust
and enrich the proposal by using the information from the radar as well.

The primary regression heads are a part of the architecture already proposed in
CenterNet. The primary heads list the head for the center point heatmap, local offset,
size of the 2D-BB as well as the amodal offset, depth, dimensions and rotation of the
3D-BB. Figure 4.6 gives an overview over the primary heads. In this section each
head with its regressed parameters and its loss function is presented. The primary
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Figure 4.4: The neck of the DLA-34 network builds upon the backbone [73]. The
backbone consists of stages numbered 0 through 5 depicted as red boxes. For image-
to-image tasks such as object detection the resolution of the downsampled features
is retrieved by learned bipolar interpolation. The upsampling is depicted as cyan
arrows. The features are then aggregated iteratively – depicted as yellow arrows –
with the features of the same resolution from the previous stage. The data streams
are aggregated in the nodes depicted in green. The number in each box states the
stride K of the input into the node or stage w.r.t. the network input.
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Figure 4.5: In CenterNet the neck of the DLA-34 network is modified where
the upsampling to the stride factor of K “ 2 is omitted [56]. The convolutional
layers used in the neck are replaced by deformable convolutional layer [21] layers
– depicted in dotted arrows. Furthermore, additional skip connections from deep
layers to shallow ones are introduced as well.

regression heads all consist of a 3 ˆ 3 convolutional layer with 256 channels followed
by a 1 ˆ 1 convolutional layer with as many channels as regressed parameters.

The backbone outputs an image-like feature map FM P RW
K

ˆ H
K

ˆCF M , with
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Figure 4.6: The architecture of the primary heads where every head consists of
a 3 ˆ 3 convolutional layer with 256 channels followed by a 1 ˆ 1 convolutional
layer with the number of channels CH equal to the number of parameters each head
H P rY , O, S,Ω, D,Γ, As regresses. The feature map FM has CF M channels, which
is set to 64, and is the output of the backbone as well as the input for all primary
heads. The image size of the feature map is |Ĩ| which is the same as the dimensions
of the images in and out of the convolutional layers in all heads. At inference the
heatmap, local offset and size head are used to assemble the 2D-BB while the amodal
offset, depth, dimension and rotation complete the 3D-BB.

CF M “ 64, for which each head predicts a set of parameters per pixel. During
training the predictions are compared to the ground truth values. But only those
predictions are used that are located at the same pixel in the image-like output as
the downscaled keypoints p̃. In this context, location refers to the pixel position
“

x̃ ỹ
‰T in the image from the backbone which is downsampled by a factor of K

compared to the original input image I. Thus, for every keypoint location p̃k with
k P r1, N s in the image Ĩ only one prediction per parameter is used in training
while all other locations are ignored. N is the number of objects in the image Ĩ.
Every image I from the dataset contains a fixed number of objects M P N for com-
putational reasons. For many images however, the number N P N of annotated
objects is smaller than M . The difference M ´ N is filled up with so-called default
annotations. The heatmap head is the only head trained to not predict an object
if there is none since its prediction is compared over all pixels in the output Ŷ to
the ground-truth heatmap Y . Only predictions for which there are corresponding
ground truth parameters present are used for all other loss functions, except for the
rotation loss.
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Center point heatmap
The head for the center point heatmap has CY “ C channels for simultaneously
locating the center point in the image Ĩ as well as classifying the object. The
heatmap head outputs the heatmap Ŷ P r0, 1s

W
K

ˆ H
K

ˆC . The heatmap represents the
confidence value Ŷx̃,ỹ,c for each pixel

“

x̃ ỹ c
‰T in the image Ĩ to be a center point

of an object. In training, the heatmap is regressed with the focal loss LY [24]

LY “ ´
1
N

ÿ

c

ÿ

ỹ

ÿ

x̃

$

&

%

´

1 ´ Ŷx̃,ỹ,c

¯α

log
´

Ŷx̃,ỹ,c

¯

if Yx̃,ỹ,c “ 1

p1 ´ Yx̃,ỹ,cq
β Ŷα

x̃,ỹ,c log
´

1 ´ Ŷx̃,ỹ,c

¯

otherwise
(4.2)

where α and β are hyperparameters of the focal loss [24]. With the normalization
by N all positive losses are normalized to 1. In CenterNet the authors chose α “ 2
and β “ 4 as did the authors of [70].

Local offset
The head for the local offset is introduced to make up for the influence from down-
sizing the image I inside of the backbone. The reduction of the resolution from |I|

to |Ĩ| means that any feature at the lowest point in resolution covers a relatively
large area in the input image I. The difference of the discrete downscaled keypoint
p̃k,ck

P N2 to the continuous keypoint pk,ck

K
P R2 is called local offset. The predic-

tion of distances in the image plane is due to the local offset error-prone. To help
improve the prediction of the center point the local offset ô P RW

K
ˆ H

K
ˆCO is learned

additionally. The loss LO for the local offset head is chosen to be the L1-loss

LO “
1
N

N
ÿ

k“1

∥∥∥∥ôx̃k,ỹk
´

´pk,ck

K
´ p̃k,ck

¯

∥∥∥∥
1
, (4.3)

which is dependent on the keypoint pk,ck
and its downsampled counterpart p̃k,ck

.
The head thus tries to predict the error that is introduced by applying the floor
function t¨u. Note, the shift of the center point

“

x̃ ỹ c
‰T by the local offset at

inference is therefore not in pixel coordinates anymore. There can be an error in
two dimensions, therefore CO “ 2.

Size of the 2D-BB
For the radar association, the 2D bounding box is needed additionally to the 3D
bounding box. Therefore, the head for predicting the size ŝ P RW

K
ˆ H

K
ˆCS of the 2D

bounding box is regressed additionally. The size ŝ can be interpreted as the relative
width and height to the center of the 2D-BB, thus CS “ 2. An axis-aligned 2D-BB
can efficiently be stored with only two corners. By convention it is chosen to be the
lower left and upper right corner. Thus

”

x̃
p1q

k ỹ
p1q

k x̃
p2q

k ỹ
p2q

k

ıT
P R4 represents the

ground truth 2D-BB of object k P r1, N s, where x̃plq
k and ỹplq

k represent the Cartesian
coordinates of the corner l P r1, 2s in the X-Y plane. Note, the 2D-BB is not defined
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in pixel coordinates. The size of this BB is sk “

”

x̃
p2q

k ´ x̃
p1q

k ỹ
p2q

k ´ ỹ
p1q

k

ıT
P R2. The

loss for the size head LS is chosen to be the L1-loss as well

LS “
1
N

N
ÿ

k“1
∥ŝx̃k,ỹk

´ sk∥1 . (4.4)

Amodal offset
As the local offset ô introduces a learnable shift of the center point the amodal
offset ω̂ also represents a shift of the center point. While the local offset ô is applied
because of the downsizing of the image, the amodal offset ω̂ is needed because in
certain situations objects can only be partially observed by the camera. Amodal
perception is the detection of entire objects that can only be partially perceived
by each individual sensor in a system. Instead of being directly observed by either
sensor the object’s physical structure is reconstructed. In the context of machine
learning, the actual structure is predicted by the network. The reason for not being
totally observable by the camera are occlusion by other objects or the environment
and the image size restriction – objects can for example extend outside of the image
frame. The amodal offset ω̂ P RW

K
ˆ H

K
ˆCΩ is trained to fix this issue by learning the

offset of the predicted center point to the actual center point. The offset is predicted
for the image plane, therefore CΩ “ 2. The amodal offset is trained with the L1-loss

LΩ “
1
N

N
ÿ

k“1
∥ω̂x̃k,ỹk

´ ωk∥1 (4.5)

where ωk P R2 is the ground truth amodal offset of the object k.

Depth
For the 3D object detection the image-based network needs to predict depths of
objects. The depth head adds the third dimension to the center point predicted in
the heatmap head. The depth d̂ is generally hard to regress directly which is why
the authors of [74] propose an inverse exponential output transformation to

d “
1

σpd̂q
´ 1 “ e´d̂, (4.6)

where σp¨q is the sigmoid function. The transformation has a normalizing effect.
The domain of both is RW

K
ˆ H

K
ˆCD but the range of values is smaller for d̂. The

inverse sigmoidal mapping is applied as the final activation layer which is unique
for the depth head. The loss is predicted after the transformation is in the domain
where it can be compared to ground truth depths. For the loss of the primary depth
head LI

D the L1-loss is used

LI
D “

1
N

N
ÿ

k“1

∥∥∥dx̃k,ỹk
´ dk

∥∥∥
1

(4.7)

with the ground truth depth dk P R. Because the depth is scalar also the number
of channels is CD “ 1.
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Dimensions of the 3D-BB
The dimensions of the 3D bounding box are regressed relative to the 3D center point
in the X-,Y - and Z-direction with 3 parameters. The dimensions γ̂ P RW

K
ˆ H

K
ˆCΓ

can be interpreted as the height, width and length of the object, thus CΓ “ 3. The
loss for the dimensions head LΓ uses the L1-loss as well

LΓ “
1
N

N
ÿ

k“1
∥γ̂x̃k,ỹk

´ γk∥1 (4.8)

where γk P R3 are the ground truth dimensions.

Rotation of the 3D-BB
The orientation of a 3D bounding box is hard to regress to with camera images.
To simplify, only the planar orientation gets predicted, thus it is assumed that all
objects are parallel to the ground and that the ground is flat. The authors of [75]
divide the orientation into the local orientation θl and global orientation θ shown
in Figure 4.7. The latter one can be interpreted as the yaw angle of the object
or the object’s rotation around the camera’s Y -axis while the local orientation θl is
regressed in training. The local orientation θl is the angle from the “Ray”-axis, shown
in gray in Figure 4.7, to the Z-axis of the object’s body fixed coordinate system.
Both orientations can be converted from one to another by the angle θray, which
represents the angle between the object’s center point

“

x y
‰T and the principal

point ψ of the camera and is computed by

θray “ arctan
ˆ

x ´ ψ

f

˙

,

where f is the focal length of the camera. With the ray angle θray the global
orientation is

θ “ θl ` θray.

To further handle the regression, the authors in [76] propose to discretize the
planar angle space of the regressed local orientation θl into bins and to train with
these bins in a similar way as with anchors in sliding window approaches. The
relative angle of the bin j to its center angle, denoted by ∆θpjq

l,k , and the classification
score if the angle θpjq

l,k is in bin j, denoted by b̂
pj|1q

k , are learnable parameters. The
authors of [76] also propose to split up the relative angle into its sine and cosine
such that

â
pjq

k “

”

â
pj|1q

k â
pj|2q

k

ıT
“

”

sin
´

∆θ̂l,k

¯

cos
´

∆θ̂l,k

¯ıT

is regressed. Thus, each bin can be represented by 3 scalars. In CenterNet the
authors extend the representation to 4 scalars per bin by introducing another clas-
sification parameter b̂pj|2q

k which represents the angle θpjq

l,k not being in bin j. The
extension with b̂

pj|2q

k is useful in order to let the bins overlap. They also propose to
use two bins which amounts to CA “ 8 parameters to represent the local orientation
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C
Figure 4.7: The orientation of an object is divided into local orientation θl – shown
in cyan – and global orientation θ – shown in orange. They can be converted from
one to another by the ray angle θray – shown in black – which can be derived from
the predicted center point in the image plane as well as the camera properties. The
global orientation θ is the yaw angle of the object and is computed at inference.
In contrary, the local orientation θl is regressed in training. The exemplary object
shown has a local orientation of θl “ 5

3π fl ´1
3π. The picture of the car in the

background is from [51].

θl. The parameters are combined in the rotation map Â P RW
K

ˆ H
K

ˆCA . For the pixel
“

x̃k ỹk

‰T of the keypoint pk,ck
, the value of the rotation map is

Âx̃k,ỹk
“

”

â
p1|1q

k â
p1|2q

k b̂
p1|1q

k b̂
p1|2q

k â
p2|1q

k â
p2|2q

k b̂
p2|1q

k b̂
p2|2q

k

ıT
.

Figure 4.8 shows the discretized local orientation angle space r´π, πs and both bins.
The bin 1 is defined by the range

“

´7
6π,

1
6π

‰

and bin 2 by
“

´1
6π,

7
6π

‰

.
The ground truth angle targets are

a
pjq

k “
“

sin
`

θl,k ´ mpjq
˘

cos
`

θl,k ´ mpjq
˘‰T

for each bin j P r1, 2s, where the angle mpjq is the mean of the angle range of each
bin and θl,k denotes the ground truth local orientation of the object k. Note that
mpjq is not object dependent. mp1q “ ´π

2 and mp2q “ π
2 are the mean values for the

chosen bins. The primary rotation loss LI
A consists of the classification loss, where

the binary cross-entropy loss function is used, and the angle loss, which is regressed
by the L1-loss. The combined loss is

LI
A “

M
ÿ

k“1

2
ÿ

j“1
´

1
M

log
˜

b̂
pj|ξq

k
ř2

i“1 b̂
pj|iq
k

¸

`
1
N
c

pjq

k

∥∥∥âpjq

k ´ a
pjq

k

∥∥∥
1
, (4.9)
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Figure 4.8: The angle space r´π, πs of the local orientation θl is discretized by two
bins j P r1, 2s. Bin 1 is defined by the range

“

´7
6π,

1
6π

‰

and is displayed in yellow.
Bin 2 ranges

“

´1
6π,

7
6π

‰

and is shown in blue. The bins are overlapping and the
part of the angle space they overlap on is shown in a mixed color. The “Ray”-axis
is the line from the origin of the camera coordinate system to the center point of
the object and is displayed in gray. The local orientation θl is counted from the
“Ray”-axis to the Z-axis of the object. Note that the angle θl is counted clockwise
in this perspective because the Y -axis of the camera is pointing into the plane of
projection. An exemplary 3D-BB with its body fixed coordinate system is shown in
light blue which has a local orientation of θl “ ´1

3π.

where the index ξ “ 1 ` c
pjq

k specifies which bin classification should be penalized.
The classification targets are cpjq

k “ 1 if the angle θl,k is inside bin j and c
pjq

k “ 0
if it is not. Note, the loss is computed here over all possible objects M in the
image. Although, for all objects k that have default annotations as ground-truth,
the outputs as well as the targets are masked by zeros.

Inference
The value for each pixel in the heatmap represents the probability of the correspond-
ing pixel in Ĩ to be a center point. At inference the heatmap Ŷ is condensed to its
points with highest center point certainty. Firstly, the pixel at position

“

x̃ ỹ c
‰T

with the highest heatmap value Ŷx̃,ỹ,c in every 3 ˆ 3 region in channel c of the
heatmap is saved as a “peak” p̂ “

“

x̂ ŷ c
‰T

P N3. Secondly, the K peaks p̂ with
the highest certainty values over all classes are considered as center point predic-
tions. In CenterNet the authors chose K “ 100 peaks. Thirdly, only peaks with a
certainty value Ŷp̂ ě τY are used as actual outputs of the network. The prediction of
center points by using a heatmap is of special importance since all other regression
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parameters for the object detection, human pose estimation or tracking are defined
relative to the center point and are only given as an output if the corresponding
center point has a certainty above the chosen threshold τY . The peak center point
filtering is constructed in this way to be able to implement it efficiently with a
3 ˆ 3-max-pooling operation.

Let Pc be the set of all nc used peaks Pc “

!

“

x̂i ŷi

‰T
)nc

i“1
in class c. The sum

over all objects nc in each class is the total number of objects in the image I, i.e.
ř

c nc “ N . The regressed parameters are combined at inference to a 2D-BB and a
3D-BB for each predicted center point

“

x̂i ŷi

‰T.
The 2D-BB is constructed by using the parameters from the head for the heatmap,

local offset and size. For each peak p̂i that the heatmap head predicts, the local off-
set head estimates ôx̂i,ŷi

“
“

δx̂i
δŷi

‰T and the size head outputs ŝx̂i,ŷi
“

“

ŵi ĥi

‰T.
Note that here the value of the output maps ô and ŝ are extracted at the pixel posi-
tion of the predicted peak p̂ and not at the keypoint p̃ as in training. The 2D-BB of
object i has its center point at

“

x̂i ŷi

‰T shifted by
“

δx̂i
δŷi

‰T extending
“

ŵi ĥi

‰T

in each dimension. Calculating the four corners yields

B2Di
“

”

x̂i ` δx̂i
´ ŵi

2 ŷi ` δŷi
´ ĥi

2 x̂i ` δx̂i
` ŵi

2 ŷi ` δŷi
` ĥi

2

ıT
. (4.10)

The 3D-BB is similarly assembled by using the parameters from the head for
the amodal offset, depth, dimensions and rotation. For each peak p̂i all these heads
predict their set of parameters. Firstly, the amodal offset ω̂x̂i,ŷi

“
“

∆x̂i
∆ŷi

‰T shifts
the center point of the 2D-BB such that it is no longer dependent on the image size
or occlusions. The shifted center point is

µi “
“

x̂i ` δx̂i
` ∆x̂i

ŷi ` δŷi
` ∆ŷi

‰T
.

Secondly, the depth head predicts dx̂i,ŷi
“ ϵi which introduces the third dimension to

the object’s center point µi. This is done by projecting the 2D center point µi into
the 3D space as explained in Section 2.2.2. The 3D center point is c3Di

“ P pµi, ϵiq.
Thirdly, the dimensions of the 3D-BB are predicted by the dimensions head

γ̂x̂i,ŷi
“

“

γ̂Xi
γ̂Yi

γ̂Zi

‰T. The eight preliminary corners of the 3D-BB B1
3Di

P R3ˆ8

are

B1
3Di

“

»

–

»

–

´1
2 γ̂Xi

γ̂Yi
1
2 γ̂Zi

fi

fl

»

–

1
2 γ̂Xi

γ̂Yi
1
2 γ̂Zi

fi

fl

»

–

1
2 γ̂Xi

γ̂Yi

´1
2 γ̂Zi

fi

fl

»

–

´1
2 γ̂Xi

γ̂Yi

´1
2 γ̂Zi

fi

fl ...

»

–

´1
2 γ̂Xi

0
1
2 γ̂Zi

fi

fl

»

–

1
2 γ̂Xi

0
1
2 γ̂Zi

fi

fl

»

–

1
2 γ̂Xi

0
´1

2 γ̂Zi

fi

fl

»

–

´1
2 γ̂Xi

0
´1

2 γ̂Zi

fi

fl

fi

fl .

The rotation head predicts the classification score b̂pjq

i and transformed angle âpjq

i

for each bin j. The predicted local orientation θ̂li can be reconstructed from these
eight parameters

θ̂li “

$

&

%

atan2
´

â
p1|1q

i , â
p1|2q

i

¯

` mp1q, b̂
p1|2q

i ą b̂
p2|2q

i

atan2
´

â
p2|1q

i , â
p2|2q

i

¯

` mp2q, b̂
p1|2q

i ĺ b̂
p2|2q

i .
(4.11)
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Note that even though b̂
p1|1q

i and b̂
p2|1q

i are not used in inference they are still influ-
encing the training process. The reconstructed local orientation θ̂li is mapped to
the global orientation θ̂i, or yaw angel, by

θ̂i “ θ̂li ` θ̂rayi
,

with the ray angle θ̂rayi
. Then the preliminary corners of B1

3Di
can be rotated around

the Y -axis by θ̂i

B2
3Di

“

»

–

cospθ̂iq 0 sinpθ̂iq

0 1 0
´ sinpθ̂iq 0 cospθ̂iq

fi

flB1
3Di
. (4.12)

Finally, the 3D-BB is constructed by shifting the origin of the preliminary BB B2
3Di

by the 3D center point c3Di

B3Dli
“ B2

3Dli
` c3Di

.

Here each corner l P r1, 8s is translated.

4.3 Radar association
In this section the association of a single radar point from the point cloud to the
preliminary camera proposal is described. The frustum association is explained
in detail in Section 2.3.2. The input to the frustum association are the 2D-BB,
3D-BB and the point cloud. The bounding boxes are computed as they would be
at inference. This means the training process includes the computational effort of
inference. In the frustum association the points in the ROI around the 3D-BB are
associated to the object. If there are multiple associated points only the closest
point is chosen for the fusion. The fusion is explained in detail in the following.

The chosen point r has the characteristics depth dprq, velocity in X-axis vprq

X

and in Y -axis vprq

Y . These characteristics are mapped as a bounding box heatmap
Υ P RW

K
ˆ H

K
ˆCΥ into the image plane. Since three characteristics of the radar mea-

surement are chosen it follows CΥ “ 3. Figure 4.9 shows the depth channel of
the bounding box heatmap Υ on the right 4.9b and the 2D-BB on the left 4.9a.
The depth dprq of the detected objects in the images is represented through color-
mapping, where a lighter color corresponds to a bigger depth value. The white areas
represent areas where no objects were detected by the camera, and their correspond-
ing heatmap values are set to zero. Note that Figure 4.9 is generated by hand to
illustrate the concept and does not contain all objects in the image for the purpose
of clarity. The 2D-BBs are shrunk by a scaling factor η and then filled with the
radar point’s characteristics. The scaling factor η is applied to shrink the area the
bounding boxes are covering because the bounding boxes in practice often exceed
the objects limits. The shrunken bounding boxes are then filled with the information
from the selected radar point. Therefore, the pixels of the bounding box heatmap
Υ consisting of the shrunken bounding boxes are set to the chosen point’s charac-
teristic dprq, vprq

X and vprq

Y . Each characteristic is filled into a different channel of the
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bounding box heatmap Υ. The mapping of the features f “

”

dprq v
prq

X v
prq

Y

ıT
for

the object j can also be formulated by

Υj
x,y,i “

1
Mi

#

fi,
ˇ

ˇx ´ cj
X

ˇ

ˇ ĺ ηwj and
ˇ

ˇy ´ cj
Y

ˇ

ˇ ĺ ηhj

0, otherwise
(4.13)

where
“

x y
‰T is the pixel position in the image-like bounding box heatmap Υ. wj

and hj are the width and height of the 2D-BB of object j. The center of the 2D-BB is
“

cj
X cj

Y

‰T. The parameter Mi is a normalization factor for each channel i P r1, 2, 3s.
When there are multiple BBs covering a pixel the closest one – the one with the
smallest depth – dominates because closer objects are prioritized. The bounding
box heatmap Υ is forwarded to the secondary heads.

(a) RGB image with 2D-BBs. Source of
the picture is the dataset [1].

(b) Camera-radar associated bounding
box heatmap Υ representing the depth
of the object. Lighter color corresponds
to larger depth.

Figure 4.9: Visualization of the camera-radar bounding box heatmap Υ association
using the frustum approach. Note that this figure is generated by hand to illustrate
the concept.

Because it is generally better to train neural networks by normalizing the inputs
of a layer [77] the bounding box heatmap Υ is also normalized since it is an input
for the secondary heads. But only the depth channel of the bounding box heatmap
Υ is normalized by the maximal depth M1 “ dmax allowed for the point cloud, i.e.

dprq
norm “

dprq

dmax
.

Points that have a higher depth value than the maximal depth are discarded from the
point cloud. Thus, the normalization by this threshold dmax is advantageous over
batch normalization [77] since it depends on a dataset wide constant in contrast
to batch wide constant. The velocity channels are not normalized at all since there
exist no boundary on them as with the depth channel and batch normalization would
possibly discard important information about the velocities. Therefore, M2 “ M3 “

1.
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The generated bounding box heatmap Υ is then concatenated channel-wise with
the features of the image, creating a feature map and are further processed in the
secondary heads. Figure 4.10 shows the concatenation of the image feature map
channels with the radar bounding box heatmap Υ channels.

The fusion of the backbone features and the chosen radar point enables the pre-
liminary proposal from the object detector to be adjusted and additional properties
such as velocity to be regressed. This is done in the secondary regression heads.

The procedure presented for the association until here is using the prediction of
the network. This holds for inference and therefore validation and testing. When
using the network’s outputs the predicted 2D- and 3D-BB are possibly not precise
which is why the relaxation factor τd is introduced. In contrary, while training the
ground truth 2D- and 3D-BB are used for association which are accurate. Therefore,
in training the relaxation factor τd is set to zero to avoid false positive associations.

4.4 Secondary regression
The secondary regression heads are only used in CenterFusion. They contain the
head for the velocity and attribute as well as the secondary stage of the depth and
rotation heads. The depth and rotation heads have the same output and loss function
– LII

D and LII
A – as in the equivalent primary stage. These two heads are adjusting

the preliminary 3D-BB prediction by using the radar information. A depth and
rotation head needs to be in the primary stage as well, because they are necessary
in the frustum association. The Figure 4.10 shows the structure of the secondary
stage including the head architecture. The secondary regression heads all consist of
a 3 ˆ 3 convolutional layer with 256 channels followed by three consecutive 1 ˆ 1
convolutional layers. The two first also have 256 channels and the last layer has as
many channels CH as parameters regressed in each head H P rV, T,D,As. Note that
in the publication of CenterFusion [40] the authors defined the head architecture
to be three consecutive 3 ˆ 3 convolutional layers and a single 1 ˆ 1 layer. But the
model they achieved the benchmark performance with is the version with three 1ˆ1
layers.

Velocity
The velocity head adds a new dimension to the prediction since velocity can hardly
be predicted by the camera network without temporal information. In contrary, the
radar directly measures velocity due to the Doppler effect in a single measurement.
The head predicts the velocity v̂ P RW

K
ˆ H

K
ˆCV of the 3D-BB in all three spatial

coordinates and thus CV “ 3. The fused radar information is especially useful for
the prediction. The loss function of the head is the L1-loss

LV “
1
N

N
ÿ

k“1
∥v̂x̃k,ỹk

´ vk∥1 (4.14)

where vk P R3 is the ground truth velocity.
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Attribute
The attribute head predicts additional attributes of objects specific to the dataset
used. The dataset worked with in CenterFusion is nuScenes [1] which is explained in
detail in Section 3.1. Attributes describe, among other things, whether a vehicle is
moving or standing or if a person is standing, sitting or laying down. A complete list
of all possible attributes in nuScenes each class of objects has, is given in Table A.2.
The head predicts a classification score for the object to be in each class t̂ P RW

K
ˆ H

K
ˆC .

The number of classes in the nuScenes dataset is C “ 8. The loss for the attribute
head is the multi-label cross-entropy loss

LT “ ´
1
N

N
ÿ

k“1

C
ÿ

c“1
tk,c log

˜

et̂x̃k,ỹk,c

řC
i“1 e

t̂x̃k,ỹk,i

¸

` p1 ´ tk,cq log
˜

1 ´
et̂x̃k,ỹk,c

řC
i“1 e

t̂x̃k,ỹk,i

¸

(4.15)

with the ground truth tk,c being 1 if the class of object k is c and zero otherwise. This
loss function combines the cross-entropy loss with a sigmoid layer σp¨q as activation
function of the output of the head.

Inference
The prediction of the 3D-BB from both the primary and secondary heads are com-
bined in a 3D box decoder. The decoder uses the secondary rotation and depth
prediction combined with the amodal offset and 3D-BB dimensions of the primary
heads to estimate the complete 3D-BB for every detected object. Additionally, the
prediction is enhanced by the velocity and attribute of the object. The velocity is
projected onto the orientation axis of the object

v̂projX,Z
“ ∥v̂X,Z∥2

„

cospθ̂q

´ sinpθ̂q

ȷ

(4.16)

for all predicted velocities v̂ P R3. Since the orientation is only a planar angle, only
the X- and Z-components are projected while the Y -component is not modified, i.e.
v̂projY “ v̂Y .

Total Loss
The total loss is the weighted sum of all partial losses from all heads

L “ λYLY ` λOLO ` λSLS ` λΩLΩ ` λD

`

LI
D ` LII

D

˘

` λΓLΓ

` λA

`

LI
A ` LII

A

˘

` λVLV ` λTLT . (4.17)

The weighting factors λH with H P rY , O,Ω, D,Γ, A, V, T s are set to 1. For the size
loss the weighting factor is λS “ 0.1 which has resulted in the best performance [56].
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Figure 4.10: Overview of the fusion step and the head architecture of the second
stage. For the fusion step, the camera FM is concatenated channel-wise with the
radar bounding box heatmap. The camera FM is the output of the image backbone
which has CF M “ 64 channels. The radar bounding box heatmap Υ is the result of
the frustum association and mapping of radar data into the image plane and thus
has three channels d, vX and vZ . The secondary heads take the fused camera-radar
feature map as input. The heads are set up with one 3 ˆ 3 convolutional layer and
two consecutive 1 ˆ 1 convolutional layers with 256 channels. They have a final
1 ˆ 1 convolutional layer with CH channels where H P rV, T,D,As at the end. All
image-like maps as well as inputs and outputs of the convolutional layers have the
resolution |Ĩ|. At inference the predictions of the secondary heads for depth and
rotation adjust the 3D-BB proposal from the primary heads. The heads for velocity
and attribute provide additional information for the 3D-BB.
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CenterFusion++

The deep learning sensor fusion network CenterFusion [40], explained in detail
in Chapter 4, successfully merges the data of the complementary sensor modalities
camera and radar using a novel approach. It is a state-of-the-art network within
3D object detection resulting in promising scores in the metrics introduced in Sec-
tion 3.4 while also leading the nuScenes 3D detection task [50] using camera and
radar considering submissions with published papers.

In this work we propose three main improvements that modify the architecture
of CenterFusion:

1. RCS: CenterFusion does not include the additional information contained in
the RCS channel of the radar. Since it has potential to draw conclusions on
the material and shape of a detected object, this might lead to more accurate
predictions since false positive detections might be corrected. The inclusion
of the RCS feature channel was also experimented with in [78] and resulted in
improvements in mAP.

2. Radar association: The authors of CenterFusion propose to choose the
radar point with the smallest depth to the camera in the detected ROI for
the fusion step. In the case that multiple radar points are inside the ROI, the
information of the remaining points is lost. The association can be improved
by considering all radar points in the ROI. To achieve this, a neural network
can be designed to handle the information of all points and create an artificial
radar point that optimally represents the rest of the points.

3. Robustness: The 3D detections of CenterFusion depend on a preliminary
detection using the camera input only. The complementary information con-
tained in the radar modality is therefore not used for the primary detection
but only to adjust the camera’s prediction. Although CenterNet is a reliable
image-based detection network, weather conditions as rain or fog make de-
tections depending on camera less reliable. To tackle the lack of robustness,
the radar information can additionally be introduced at an earlier stage of
CenterFusion.

The proposed ideas motivate the two main adaptions LFANet and EarlyFusion,
bundled under the name “CenterFusion++”. They are integrated in the architecture
of CenterFusion and explained in the following.
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5.1 LFANet
In this section we first motivate a new approach to learning from the associated
radar points in the frustum. Secondly, the input of the proposed NN is constructed
and finally the chosen architecture for the NN itself is explained.

5.1.1 Motivation
The approach of CenterFusion is to choose the closest radar point r1 for the fusion
step which is a rules-based system for association. To compare whether the artificial
radar point r˚ from LFANet improves this rules-based system or not, we analyze
their performance w.r.t. the ground-truth depth d of the center point and projected
radial velocity vrad. The metrics for this comparison are the depth error epr1q

d and
velocity error epr1q

v for the chosen radar point r1, which are computed by

e
pr1q

d “

ˇ

ˇ

ˇ
dpr1q

´ d
ˇ

ˇ

ˇ
(5.1)

epr1q
v “

∥∥∥vpr1q
´ vrad

∥∥∥
2
. (5.2)

The relative errors to the best alternative of all points r in the frustum are

∆epr1q

d “ e
pr1q

d ´ min
r
e

prq

d (5.3)

∆epr1q
v “ epr1q

v ´ min
r
eprq

v . (5.4)

The errors are then normalized by setting them into contest w.r.t. the best alterna-
tive over all points r in the frustum. The relative errors e are

|e|
pr1q

d “
∆epr1q

d

maxr ∆eprq

d

(5.5)

|e|pr1q
v “

∆epr1q
v

maxr ∆eprq
v

. (5.6)

The choice of the closest radar point r1 results in the performance as presented
in Figure 5.1, where the histogram of all frustums – that have at least one point
inside them – is shown. For every frustum the relative errors ∆epr1q

d and ∆epr1q
v as

well as the normalized errors |e|
pr1q

d and |e|pr1q
v are computed. It is obvious to see that

the method of choosing the closest point r1 is not always the best option w.r.t. the
errors. Especially for scenarios where the closest point is a measurement failure or
outlier, for example detections of the environment or other objects. Indeed the peaks
at 1 in Figure 5.1c and Figure 5.1d show the cases where the choice of r1 was the
worst choice that could be made of all possible frustum points r. Additionally, the
outliers in Figure 5.1a and Figure 5.1b at around 6-8 m in depth error and 6-10 m

s
in

velocity error indicate the severity of the choice in extreme situations. The Figure 5.2
shows special cases where the choice of r1 leads to bad representations of the object
even though with the majority of other points r inside the frustum a more accurate
representation is possible. This validates the motivation for another rules-based
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Figure 5.1: Histograms of the relative depth and velocity errors as well as normal-
ized depth and velocity errors. The errors are indicating the optimality of choosing
the closest point r1 as proposed in CenterFusion compared to all alternative points
r in the frustum.
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Figure 5.2: Special cases where the choice of the closest radar point r1 leads to
wrong representation of the object’s depth and velocity even though the majority of
the alternative points r in the frustum leave a better conclusion to be made. In the
figures the dots are the radar points, while special points such as the selected point
is marked by a square and the optimal point w.r.t. the error metrics |e|

prq

d and |e|
prq

d

is marked by a plus. The color of the markers are set by a scale over the RCS values.
The velocity vectors extend from the markers. The object’s 3D-BB in BEV is shown
in turquoise with its center point. The directional velocity v and radial velocity vrad
are depicted in black and blue respectively. The frustum with an expansion ratio of
τd “ 0.5, as chosen in CenterFusion, is shown in yellow. For readability the velocity
vectors are at some cases not fully shown in the figures.
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system as well as the use for a neural network, namely LFANet, to extract the most
accurate information possible out of the frustum.

The radar association implemented in CenterFusion can be improved by adjust-
ing the way the point for the fusion step is chosen out of the constructed frustum
ROI. When considering only the closest point to the camera a lot of information is
lost while using all points inside the frustum can lead to a more robust use of the
radar measurements. The method for filtering the point cloud and associating all
points that lie inside the frustum is explained in Section 2.3.2.

Extracting information from all associated points can be achieved in several
ways, e.g. with a rule-based system, a stochastic approach or a neural network that
predicts the information. We propose to design a neural network that receives a
snapshot of the frustum and its points as input and outputs an artificial radar point
r˚ that combines the information of all the radar points contained in the frustum.
The snapshot generation is explained in Section 5.1.2. The artificial radar point r˚

can be interpreted as the ideal radar measurement of the object, given the actual
measurements. Ideal in this context refers to a radar point that represents the depth
of the center of the object and is not affected by measurement noise. Therefore, the
secondary stage of the CenterFusion network can extract more information out of
the radar point cloud ROI and adjust the preliminary 3D-BB accordingly.

The network predicting the artificial radar point r˚ is termed “Learned Frustum
Association Network”, in short LFANet, which is a novel approach to extract features
from a point cloud. Its network architecture is presented in Section 5.1.3.

In the big picture, LFANet replaces the Frustum Association block in Figure 4.1.
The adapted CenterFusion network is visualized in Figure 5.3.

BACKBONEBACKBONE

3D BOX
ENCODER

PRIMARY REGRESSION

Heatmap Offset

Width/Height Dimension

Depth Rotation

SECONDARY
REGRESSION
SECONDARY
REGRESSION

RotationRotation

DepthDepth

VelocityVelocity

AttributeAttribute

PILLAR EXPANSION Camera,Radar
Features

RADAR

CAMERA

LFANet

Figure 5.3: CenterFusion network architecture including the changes introduced
by LFANet.

5.1.2 Snapshot
The input to LFANet contains all radar points in the ROI, namely the frustum
generated by projecting the 2D image detection into the 3D space. Since the network
consists of 2D convolutional layers, the radar points in the frustum are expressed
as an input image X P Rκˆκˆnfeat,LFA in BEV comprising nfeat,LFA channels, where
nfeat,LFA is the number of radar features used for LFANet and κ is the channel
resolution in both dimensions.
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Figure 5.4 shows the visualization of the snapshot generation. The initial frus-
tum, displayed in dark blue, is calculated by encapsulating the 3D bounding box
of the 2D image object detection by its four corners. The boundaries on the bot-
tom and top are parallel to the X-axis of the camera’s coordinate system. The
boundaries on the left and right direct towards the origin of the camera’s coordinate
system. To compensate for uncertainties in the initial estimation, the frustum is
enlarged in depth by a factor δ, see Section 2.3.2, Figure 2.9 corresponding to the
light blue frustum.

(a) Frustum in BEV. (b) Single snapshot channel displaying
the depth feature

Figure 5.4: Visualization of the snapshot generation. Figure 5.4a shows the BEV
of the frustum ROI in the camera’s coordinate frame, the gray, dashed lines meet in
its origin. The red rectangle corresponds to the 3D object estimation obtained from
the 2D image detection. The dark blue frustum expresses the initial ROI obtained
through the BEV corners of the detection. This initial frustum is further enlarged
by applying the distance threshold expansion δ, see Section 4.3, resulting in the
light blue frustum. The reverse pillar expansion, explained in Section 5.1.2, results
in the final frustum defining the ROI displayed in yellow color. The yellow arrows
correspond to half the pillar width wpillar. The dots display the radar points, their
colors correspond to the frustum they are assigned to. The green radar points are
outside of all frustums and therefore not associated to the object.
Figure 5.4b shows the generated snapshot for a resolution of κ “ 16. The yellow
squares are the pixels matching the radar points in dark blue, light blue and orange
visualized in Figure 5.4a. Their brightness displays the value assigned to the pixel
location, brighter pixels corresponds to bigger depth, i.e. bigger Z-coordinate in
the camera’s coordinate frame. The yellow frustum is not contained in the actual
snapshot but included for visualization only.

Additionally, the authors of [40] introduce three dimensional pillars to account for
noise in the measurement of points in the radar point cloud. Analogously, reverse
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pillar expansion is introduced to the frustum for the generation of the snapshot.
Instead of expanding the radar points to pillars, the size of the frustum is adapted
in two dimensions such that a radar pillar with width wpillar corresponding to a
specific radar point next to the boundaries of the frustum would still be included.
The small yellow arrows in Figure 5.4a visualize the extension of the light blue
frustum by a distance of wpillar

2 describing the width of the 3D pillar used within
CenterFusion.

The final frustum, colored in yellow in Figure 5.4a, resembles the ROI used to
select the radar points associated with the 2D image object detection. The radar
points outside of this ROI are neglected in the further steps. To generate the input
image to LFANet, namely the snapshot X , the coordinates associated with the radar
points rf have to be transformed from euclidean coordinates in the camera frame,
described as

“

xC zC

‰T
P R into pixel coordinates

“

xs zs

‰T
P N.

The coordinates representing the radar points are firstly translated towards the
origin such that the center of the frustum, in both width and height, lays in the
center of the generated snapshot as well using a transformation matrix

TsC “

»

–

1 0 xsC

0 1 zsC

0 0 1

fi

fl . (5.7)

The translated coordinates are then scaled by a factor ssf describing the scaling
from the euclidean frustum dimensions into snapshot dimensions of resolution κˆκ
as

ssf “
κ

lfrustum
, (5.8)

where lfrustum is the absolute maximum of width and height of the euclidean frustum.
In total, the translation and scaling can be expressed as

»

–

xs

zs

1

fi

fl “ ssf

»

–

1 0 xsC

0 1 zsC

0 0 1

fi

fl

»

–

xC

zC

1

fi

fl P N (5.9)

describing the pixel coordinates of the radar points rf in the frustum.
The nfeat,LFA channels of the the snapshot are then filled at the pixel coordinates

with the corresponding information from the radar points within the frustum. To
further enlarge the data-density in the snapshot and therefore simplify the train-
ing process, we introduce an artificial pillar corresponding to a radar point with
ŵpillar P N describing the width of a pillar in pixels. If two pillars overlap, the values
corresponding to the closer radar point are dominant.

Figure 5.5b shows a snapshot comprising nfeat,LFA “ 5 input features, namely the
euclidean Z-coordinate in the camera’s coordinate frame, the components vX and
vZ in X- and Z-direction of the radial velocity expressed in the camera’s coordinate
frame, the RCS value ρ and the time difference ∆t between the radar sweep and the
time stamp of the corresponding camera image. The latter is included to allow the
network to put different focus on the latest radar measurements in order to reduce
the effect of errors introduced by external objects movement.

65



5. CenterFusion++

Input normalization

The input channel d corresponding to the depth measurement is normalized by the
radar’s maximum range dmax such that

Xd,xs,zs “
dC

dmax
, (5.10)

where XZ,xs,zs corresponds to the value of the input channel Z at pixel coordinates
“

xs zs

‰T and dC is the corresponding depth value of the radar point in the camera’s
coordinate system. The time difference channel ∆t is normalized by a factor

∆tmax “
nsweeps

fradar
“
nsweeps

13 (5.11)

describing the biggest time frame possible due too the aggregation of radar sweeps.
The other snapshot input channels are not normalized.

(a) Single snapshot channel with
κ “ 16 and wpillar “ 3

(b) Snapshot with nfeat,LFA “ 5 channels.

Figure 5.5: Visualization of the snapshot corresponding to the frustum and snap-
shot channel displayed in Figure 5.4 with nfeat,LFA “ 5 input channels and a resolu-
tion of κ “ 16. Figure 5.5a shows the radar points enlarged by the pillar pixel size
wpillar “ 3. Note that the values corresponding to radar points with smaller depth
are dominant in case pillars overlap each other.
Figure 5.5b visualizes the complete snapshot used as input for LFANet, the 5 chan-
nels are concatenated to one single input image.

5.1.3 Network architecture
LFANet receives the snapshot X of the frustum and outputs the features of the
artificial radar point r˚. The structure chosen to process the snapshot is a staged
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convolutional network that downsamples the snapshot with the resolution κ to a
single pixel with ntargets channels. The artificial radar point r˚ is defined by the
predicted scalars in the ntargets channels. In CenterFusion the radar point r used
for fusion had the characteristics depth dprq, velocity vprq

X in X-axis and velocity vprq

Z

in Z-axis, thus ntargets “ 3. The artificial radar point r˚ tries to represent the ideal
radar point originating from the detected object. Therefore, its properties are the
depth d˚ of the object’s center point as well as the object’s radial velocity v˚ split
up in its X- and Z-component, thus ntargets “ 3 as well.

The snapshot X contains semantic as well as global information about the point
cloud. Additionally, it inherits a high amount of noise in the set of associated radar
points. The noise either comes directly from the uncertainty of the radar or from the
approximation of the object by a frustum. The frustum covers a larger area than
the object such that points that originate from other objects or the environment
around the object are also part of the set. Therefore, the network has to distinguish
the outliers and only use information from those points that are close to the object,
i.e. center point, and have a velocity vector coherent with the other points in the
set.

We propose two approaches that deal with the semantic as well as with the global
importance of the radar points in separate ways. The first consists of concatenated
convolutional layers that extract features from the snapshot X as if it would be
an image. This approach is focused on extracting semantic features. It iteratively
uses convolutional together with pooling layers to downsample the snpashot X to a
single pixel. The second version of LFANet is on the contrary focused on extracting
global features. It applies two convolutional layers that downsample the snapshot
X in only two steps.

The output of both versions is the prediction for the artificial radar point r˚

that represents the set of associated points optimally. The artifical radar point
r˚ is used in the rest of CenterFusion’s pipeline as presented in Section 4.3 by
projecting the radar properties to the point cloud bounding box heatmap Υ. The
regressed properties of the LFANet is therefore fused to the feature map FM from
the backbone and forwarded as the input to the secondary heads which regress the
depth, rotation, velocity and attribute of the detected object.

All convolutional layers used are DCL [21], which means the offset between the
kernel pixels are additional learnable parameters.

Iterative approach

The following describes the first approach mentioned above. The iterative setup
is inspired by classical image-recognition networks, e.g. [79], therefore it is termed
LFANet IMG. The architecture of the image-based version LFANet IMG is shown
in Figure 5.6. It downsamples the resolution κ of the snapshot to a single pixel with
ntargets channels. The network consists of blocks which – except for the two last
blocks – are set up by a 3 ˆ 3 convolutional layer, a ReLU activation function and a
q ˆ q max-pooling operation. A block downsamples the input image exponentially
depending on the network depth l. The first size reduction is by a factor of q “ 2.
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All following blocks reduce the size of the input into each block by

qplq “

[

min
˜

κ

Πl´1
j“12j

, 2l

¸_

, l ą 1,

starting with l “ 2 for the second block. The network’s maximal depth lmax is
therefore in turn dependent on the size κ of the snapshot X . There are as many
blocks as downsampling steps are necessary such that the output is a single pixel in
size. Therefore, the snapshot size κ can be chosen arbitrarily, although it is practical
to choose a resolution that is a power of two. When the final downsizing stage is
defined, the output has dimensions of 1 ˆ 1 ˆ nf , where nf are the number of filters
used in the convolutional layers. Motivated by multilayer perceptrons, see [17], the
final stages of LFANet IMG are two fully connected linear layers. The first one has
nf nodes while the second maps the number of filters nf to the ntargets parameters
needed to predict the artificial radar point r˚. The first layer is additionally followed
by a ReLU activation layer.

Note, the convolutional layers are set up in a way that the input size is equal to
the output size. They have the parameters given in Table 5.1 where “ConvLayer”
followed by the index of network depth and ended by the network version specifies
the layer. For LFANet IMG every convolutional layer at block depth l has the same
parameters.

Figure 5.6: The LFANet IMG consists of lmax blocks – depicted in red – that are
build up from a 3 ˆ 3 convolutional layer, a ReLU activation function and a max-
pooling layer, or by a linear layer in the case of the last two. The first fully con-
nected layer also is followed by a ReLU activation function. The max-pooling layers
in dark green. Each block downsamples the size of its input by qplq. The amount
of downscale increases with the network depth l until the last convolutional block
downsamples it to a scalar with nf channels. The fully connected blocks extract the
ntargets parameters to predict the artificial radar point r˚. The depicted downsam-
pling is not to scale but for demonstration purposes only.
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Table 5.1: Hyperparameters of the convolutional layers in each version of the
LFANet. The layers are named by “ConvLayer” followed by the depth of the block

the layer is in and its version. The padding is applied with zeros.

Convolutional Layer nr. filters nf kernel size padding stride dilation
ConvLayer-l-IMG 64 3 ˆ 3 1 1 1
ConvLayer-1-PC 256 7 ˆ 7 2 3 2
ConvLayer-2-PC 256 8 ˆ 8 0 1 1

Hierarchical approach

The second version of LFANet is using two well-defined convolutional layers for
downsampling the snapshot X . It condenses the information in the set of associated
points by covering the snapshot X with a relatively large kernel and striding in
relatively large steps along the image to reduce the output size of each layer. This
version is motivated by the fact that LFANet extracts information from a sparse
point cloud. The snapshot X contains widespread radar points that together contain
information about the object they are assumed to originate from. Therefore, the
convolutional layers should cover a large area and extract relative information from
each point to the others. The network should learn to weigh the importance of points
relative to each other, therefore hierarchically differentiating them. Based on this
principle this approach is titled LFANet PC. This version only works for the fixed
snapshot resolution of κ “ 32. The architecture of LFANet PC is shown in Figure 5.7.
The layers are carefully designed such that the first kernel downsamples the snapshot
X to a reduced size that can be completely covered by a second kernel. Therefore
with no padding applied, the output of the second layer is scalar. To achieve this,
the layers “ConvLayer-1-PC” and “ConvLayer-2-PC” are set up with the parameters
given in Table 5.1. The first layer reduces the input size from 32 ˆ 32 to 8 ˆ 8 due
to the high stride and dilation. The padding is chosen to be 2 to allow the highest
coverage of the most pixel in the input while maintaining the given output size. The
high dilation enables the kernel to have a larger receptive field without needing a
high number of parameters. The dilation still allows the kernel to always match
with at least one pixel of the pillars in the snapshot X , even when the pillars have
the minimal pixel width of wpillar “ 3. Some points may be covered more often from
the kernel and thus creating an imbalance in weighting of the pillars. The second
layer has a kernel the same size as its input, thus – without padding the input –
it results in a scalar with nf channels. After both convolutional layers is a ReLU
activation function.

The output of the second layer has the dimensions 1 ˆ 1 ˆ nf . Therefore, the
same concept inspired by multilayer perceptrons can be applied as in the iterative
approach. Two fully connected linear layers are added to the pipeline such that
the LFANet PC extracts the ntargets parameters of the artificial radar point r˚ as
well. The fully connected layers are set up in the same manner as in the iterative
approach.
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Figure 5.7: The LFANet PC contains two convolutional layer and a ReLU activation
function. The first layer has a kernel size of 7ˆ7, striding of 3, zero-padding of 2 and
dilation of 2. The second convolutional layer has the same kernel size as its input
size. Therefore, it returns a scalar with nf channels which are fed through a fully
connected layer including a ReLU activation function. The last linear layer outputs
the regressed ntargets parameters. The depicted downsampling is not to scale but for
demonstration purposes only.

Target & Loss

The LFANet is trained by supervised learning where the network makes a prediction
for each snapshot given and a loss is computed for these predictions. The loss
function returns the error between the predictions and the ground-truth targets.
In the training process, the snapshots are created for each labeled object in the
dataset. The objects have their 3D location as well as velocity annotated. The
velocity of an object is computed in nuScenes by comparing its center point over
two consecutive keyframes, where only the X- and Z-components are used for the
targets. The Z-component of the 3D location is the ground-truth depth dk of object
k. The ground-truth velocity vk is directed into the object’s axis of movement. The
LFANet would have a straining challenge to predict this velocity vector given only
the snapshot of the point cloud. Therefore, we propose that it predicts the projected
radial velocity vradk

instead. The projection of a vector onto an radial axis is shown
in Figure 5.8 and is given by

vradk
“
OCk ¨ vk∥∥∥OCk

∥∥∥2

2

OCk ,

where OCk is the vector of direction from the camera’s origin to the center point of
the object k and ¨ expresses the dot product.

The loss function for the LFANet is chosen to be the L1-loss function for all
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Figure 5.8: Projection of ground truth velocity v into the target velocity vrad.

three parameters, if not mentioned otherwise. The total loss is

LLF A “

Nsnap
ÿ

k“1
λLF A

D |d˚
k ´ dk| ` λLF A

V ∥v˚
k ´ vradk

∥1 , (5.12)

where Nsnap ĺ N is the number of snaps that contain a radar point and v˚
k “

“

v˚
Xk

v˚
Zk

‰T. The weighting of the velocity error is chosen to be λLF A
V “ 10 if not

mentioned otherwise, while λLF A
D “ 1.

5.2 Early Fusion
The outputs of a sensor fusion architecture should ideally not rely on a single sensor
modality since this approach does not make use of the full potential of comple-
mentary modalities. The radar is more robust regarding challenging environmental
conditions, e.g. rain, fog and snow, in which a camera might have difficulties gener-
ating robust sensor outputs, see Section 2.2.

The lack of robustness regarding sensor failure and difficult weather conditions
in CenterFusion described in the introduction to Chapter 5 implies the need for
changes in the sensor fusion architecture. Although the term “early fusion” describes
a general fusion scheme, see Section 2.3.1, the changes described in the following are
referred to as Early Fusion within the scope of this work.

To not rely on the camera only for the initial object detection in CenterNet,
the information contained in the radar point cloud can be projected into the image
plane and added as additional channels to the input of CenterNet. By doing so, the
backbone of the fusion architecture providing the initial object detections is more
robust regarding environmental conditions or sensor failure [78].

We get inspiration from [42] and implement a similar Early Fusion approach.
Compared to the camera image, the radar point cloud is very sparse in data. To
partly compensate for this problem, we take several measures. First, the point cloud
consists of several radar sweeps, see Section 3.2. Second, after projecting the 3D
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radar point cloud into the 2D image plane, the points are further enlarged in both
dimensions, height and width.

Figure 5.9 shows the comparison of projecting radar points to points or vertical
lines in the 2D image plane. By projecting the points to vertical lines, the radar
image features become denser in data while not loosing precision in the X-coordinate
of the image. The size of the lines is specified in meters such that the height of the
lines decreases the further the radar points are from the cameras origin.

The line starts on the ground in the 3D space and ends with the height hproj.
The value of hproj assigns a Y value to the radar measurements and therefore also to
the associated objects. Bigger values for hproj result in a less sparse input image but
also in an increase in imprecision in the Y -coordinate. The authors of [78] found a
height of hproj “ 3m to be the best compromise between a sparse input image and
precise associations. Furthermore, an object height of 3m is a reasonable choice for
the dynamic objects that have to be expected in the surroundings of an AV.

In addition, the width of each line in the image can be directly specified in pixels
which is introduced as a hyperparameter for training, see Chapter 6 for further
details. Figure 5.10 visualizes the integration of the Early Fusion method into the

(a) Projected radar points (b) Projected radar lines

Figure 5.9: Visualization of radar points projected into the 2D image plane. In Fig-
ure 5.9a the radar points are projected to a single point in the 2D image only. For
visualization, the radius of the points is slightly enlarged, lighter green corresponds
to bigger depth. In Figure 5.9b, the radar points are projected onto a line to partly
compensate for the sparsity in the radar point cloud, lighter colors correspond to
bigger depth. Note that the 2D lines become smaller in height the further the radar
points are away from the cameras origin.

CenterFusion architecture.
In order to make use of all the measurements provided in the radar point cloud,

namely information on depth, radial velocity and RCS, we introduce a number of
nfeat,EF feature layers that are concatenated to the RGB input image I as additional
image channels. Each image channel contains the corresponding sensor measurement
value at the pixel coordinates corresponding to the 2D vertical lines. Analogously to
the pre-processing described in Section 5.1.2, the depth values in the Z-coordinate
image channel are normalized by the radars maximum range dmax. Figure 5.11 visu-
alizes the input IEF image comprising the RGB- feature channels from the camera
image as well as the radar feature channels.
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Figure 5.10: Overview of the CenterFusion architecture including the changes
introduced through the implementation of Early Fusion. Since the remaining fusion
parts are not adapted, they are not included in this Figure for better readability.

The newly introduced input IEF replaces the RGB input image in CenterFu-
sion. Apart from the size of the input tensor, the network architecture described
in Section 4.1 is not further adapted.

Image BlackIn
Dropout is a regularization method for the use in large neural networks in order
to reduce overfitting on the training set [80]. The idea is to omit parts of the
neural net by randomly deactivating single neurons in the network with a pre-defined
probability on every training step. Dropout has proven to make many different kinds
of networks more robust [81] and has become a widely used regularization method
in the machine learning field.

Inspired by dropouts, the authors of [42] introduce a training strategy that deac-
tivates all input neurons in the input layer, namely BlackIn. Effectively, BlackIn sets
the input data of specific layers to zero for random training steps with a probability
of pBI P r0, 1s.

We use the BlackIn training method for Early Fusion, in the scope of this work
the layers affected by BlackIn are the channels corresponding to the RGB image
of the camera. Consequently, the network trains in the absence of camera input
while still receiving the projected radar image channels as input which forces the
network to rely more on the input from the radar modality and in turn become
less dependent on the camera [42]. This also helps to overcome the bias towards
the camera input introduced by transfer learning on a pre-trained, camera-based
backbone, see Section 4.1.

5.3 Combination
The two main adaptions to CenterFusion, namely LFANet and Early Fusion, moti-
vated and explained in Section 5.1 and Section 5.2, are combined to use the advan-
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Figure 5.11: Features of the input image IEF used in Early Fusion for nfeat,EF “ 4.
The additional image channels displayed correspond to the depth, the radial velocity
components vX and vZ and the RCS value ρ. For all additional image channels,
lighter colors correspond to larger values, white displays zeros in the input channels.

tages of both approaches.
The combined network is termed CenterFusion++ and its fusion scheme is visu-

alized in Figure 5.12.
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Figure 5.12: CenterFusion++ overview including the changes introduced by
LFANet and Early Fusion.
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6
Results

In this chapter we compare the performances of the adaptions made in Center-
Fusion++ to the baselines CenterNet and CenterFusion separately, to show their
standalone effect. Furthermore, we combine the three parts together and validate
the complete pipeline, extracting the final performance. The process for all of the
following training runs as well as model validations is explained in Section 6.1.

To make sure that we can reach the performances of the original networks Cen-
terNet and CenterFusion without any modifications, we train them from their cor-
responding base models as well. The goal is to reproduce the pre-trained benchmark
performances of CenterNet and CenterFusion, which are presented in Section 6.2
and Section 6.3. Assuming we can reproduce the benchmark performances, we can
modify the networks and analyze the effect of the modifications.

The introduction of Early Fusion mainly increases the robustness of CenterNet
as well as CenterFusion which is further investigated in Section 6.5. The proposed
LFANet focuses on increasing the accuracy of the pipeline of CenterFusion by the
revised fusion concept. The analysis of the LFANet is given in Section 6.4. Addi-
tionally, further ablation studies are provided in Section 6.7.

In the rest of this work, we use the following naming convention, models that
were pre-trained by other authors and loaded into the architecture of this work are
printed in bold letters, e.g. CenterFusion60. Models that are trained within the
scope of this work are printed in regular letters, e.g. CenterFusion60. The subscript
corresponds to the number of epochs the model was trained for upon the respective
baseline. For example, CenterFusion60 was trained for 60 epochs on the pre-
trained CenterNet170 model. Furthermore, in tables comparing models by their
metrics, “Ò” indicates a higher score is better, while “Ó” shows a lower score is better.

6.1 Training and validation process
All training runs for the named models are executed in one of the following modes.
The corresponding model can either be trained in mode 1, mode 2, mode 3 or mode 4
while building upon a pre-trained models that often was trained in a different mode.
The different modes and the hyperparameters used are summarized in Table 6.1.

Mode 1 is used in the training of the primary heads and the backbone. The
authors of CenterNet [56] only use mode 1. Mode 2 is divided into two stages: in
the first stage, the primary and secondary heads are trained while the backbone
is frozen. In the second stage, the backbone is trained as well and therefore the
entire model is fine-tuned. CenterFusion uses mode 2 while building on top of a
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Table 6.1: Differences in the number of epochs and learning rate drops used in
the training modes. The table also shows the network architectures for which the
individual modes were first constructed.

Mode # of epochs learning rate
drop at epoch First proposed for

1 140 90, 120 CenterNet

2
#

Stage 1: 50
Stage 2: 10

50 CenterFusion

3 25 20 LFANet
4 63 21, 45 CenterFusion++

pre-trained model trained in mode 1. Mode 3 describes the training of the LFANet
architecture on top of a pre-trained model that was trained in mode 2. In mode 4
all heads as well as the LFANet are trained together.

The validation of a model means running it at inference over the validation
split of the nuScenes dataset. We use data augmentation in most validations. The
type of validation with data augmentation we use is called “flip-testing”. Validating
with “flip-test” corresponds to feeding the original and flipped validation split to
the network and merging the outputs into one. The images are flipped around the
Y -axis, the point clouds around the Z-axis.

6.1.1 Hardware
The training runs described in this chapter were performed on work group stations
of the type NVIDIA DGX A100 [82] using up to four NVIDIA A100 GPUs [83].

Apart from the training hardware, some validation and inference test runs were
executed on a computer powered by a Intel Core i9-9880H CPU and a NVIDIA
Quadro T2000 Mobile GPU termed as the local configuration in this chapter.

6.1.2 Hyperparameters

The default hyperparameters used in the training runs are accessible in the opts.py1

script provided in the source code.

6.1.3 Implementation
The implementation of the thesis work is performed in Python3 using the machine
learning framework PyTorch [84]. The code is published on GitHub2.

1Default hyperparameters are explained and specified here: https://github.com/brandesjj/
centerfusionpp/blob/main/src/lib/opts.py

2The code is available on this GitHub repository: https://github.com/brandesjj/
centerfusionpp. Some of the models trained within the scope of this thesis work are also available
for download.
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6. Results

6.2 Reproducing CenterNet
In CenterFusion++ we proposed three design changes to the whole architecture, one
of them being Early Fusion. To evaluate the influence of Early Fusion, first we
need to validate if we are able to train the original CenterNet architecture to the
baseline performance. The training of the architecture adapted with Early Fusion
replaces the CenterNet baseline, therefore it is essential to be able to reproduce
CenterNet’s performance. The baseline is the pre-trained model3 provided by the
authors of CenterNet. The authors train on top of the pre-trained DLA-34 network4

with weights initialized from training 120 epochs on the ImageNet dataset [85]. Our
network meant to achieve the same performance as the baseline is trained with
the code5 from CenterNet and the same hyperparameters, except we trained with
only two GPUs to save resources and thus with a quarter of the batch size to keep
the same batch size per GPU. Following the linear relation between batch size and
learning rate [86], we also set the learning rate to a quarter of its original value.
The deviating parameters are summarized in Table 6.2. Because of the number of
epochs trained, namely 140, we term the baseline CenterNet140.

Table 6.2: Overview of the parameters used in the pre-trained CenterNet140
training and our reproduction.

Model # GPUs batch size learning rate
CenterNet140 8 128 5 ¨ 10´4

CenterNet140 (Ours) 2 32 1.25 ¨ 10´4

The pre-trained model CenterNet140 and our trained model were both trained
in mode 1. They achieve the performances in the metrics mAP and NDS given
in Table 6.3 when validated with flip-test. Our training, aiming to reproduce the
performances of the baseline CenterNet140, is slightly worse in the mAP but nearly
identical to the baseline at the NDS. The mATE and mAP are closely correlated due
to the measurements they are representing. Therefore, our training is slightly worse
in detecting the correct 3D location of the objects. This discrepancy most likely
can be explained due to numerical fluctuations and that the assumed linear relation
between batch size and learning rate is not perfect for this architecture. Note,
the architecture of CenterNet does not contain a head for velocity and attribute.
Therefore, default values for the velocity and attribute of an object are returned.
Every prediction has a zero velocity vector and the same attribute for each class.
Therefore, the metrics mAVE and mAAE do not display CenterNet’s performance.

To achieve the result in Table 6.3 we needed to make a key adjustment to the
orientation loss function LI

A. Without it especially the benchmark performance in
the mAOE metric could not be reached. The adapted rotation loss is described in

3Available at https://github.com/xingyizhou/CenterTrack/blob/master/readme/MODEL_
ZOO.md named as “nuScenes_3Ddetection_e140”, accessed: 2022/02/24.

4The pre-trained model DLA-34 is available at https://dl.yf.io/dla/models/imagenet/dla34-
ba72cf86.pth, accessed: 2022/05/23.

5The code implementation of CenterNet we used is provided at https://github.com/
xingyizhou/CenterTrack under the project name CenterTrack, accessed: 2022/05/23.
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the following and is used in all other training runs as well. In summary, we matched
the pre-trained result and we compare the result of our modifications to our baseline
model CenterNet140.

Table 6.3: Results of the pre-trained CenterNet140 and our model CenterNet140.
The trained models are validated with flip-test.

Error Ó

Model mAP Ò NDS Ò mATE mASE mAOE mAVE mAAE
CenterNet140 0.3167 0.3374 0.6886 0.2600 0.6045 1.4048 0.6569
Ours 0.3044 0.3373 0.7133 0.2582 0.5170 1.3869 0.6603
Difference -0.0123 -0.0001 0.0247 -0.0018 -0.0875 -0.0179 0.0034

Rotation loss

In the original loss function for the rotation loss LI
A in CenterNet, given in Equa-

tion (4.9), the error between the prediction and the ground-truth is computed over
all M potential objects in the image I. This includes all objects k that are default
annotations. The outputs and targets are masked by zeros for all M ´ N default
annotations. However, the bin classifications b̂pj|1q

k “ b̂
pj|2q

k “ 0 masked by zero for
both bins j P r1, 2s does not result in a suppressed output. Instead, the rotation
head is forced to predict with 0% certainty that the angle is in either bin. Crucially,
setting the ground-truth classification c

pjq

k “ 0 corresponds to the statement that
the angle is in neither bin. The cross-entropy loss function enforces this discrepancy
since

´ log
ˆ

e0

e0 ` e0

˙

“ ´ logp0.5q « 0.301 ‰ 0. (6.1)

The resulting problem in the backward propagation is that the head is optimized
by the fact that its classification b̂

pj|2q

k “ 0 is not correct. For the ground-truth
c

pjq

k “ 0 the optimal prediction would be b̂pj|2q

k “ 1. Since this represents the greatest
error that the network can produce the optimization focuses on reducing this error,
obviously without success. Therefore, the head is trained to mainly predict that the
angle is in neither of the two bins. On the other hand, the predicted classifications
b̂

pj|1q

k for the angle being in bin j are thus relatively small. At inference, the decision of
the network whether the angle is in bin 1 or in bin 2, as presented in Equation (4.11),
is in some cases decided by numerical fluctuations. The head can still be trained
to robustly predict the correct bin but the training process is very sensitive to the
choice of hyperparameters and the training process. Our contribution is to skip the
loss computation for the default annotations instead of masking their corresponding
outputs and targets. The adapted rotation loss

LI
A “ LII

A “
1
N

N
ÿ

k“1

2
ÿ

j“1
´ log

˜

b̂
pj|ξq

k
ř2

i“1 b̂
pj|iq
k

¸

` c
pjq

k

∥∥∥âpjq

k ´ a
pjq

k

∥∥∥
1

(6.2)
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enables the rotation head to train more robustly and increase its performance on
the mAOE metric. Note, ξ “ 1 ` c

pjq

k . Not only the mAOE benefits from this
adaption but also the mAVE, because at inference the velocity is projected onto the
orienation axis of the object, as shown in Equation (4.16).

6.3 Reproducing CenterFusion
The pre-trained model CenterFusion60 needs to be replaced by the training of
CenterFusion++ ’s architecture which critically changes the point cloud bounding
box heatmap Υ. Therefore, the network model must be trained again such that it
adapts to the changes in the heatmap Υ. However, we first have to validate that we
are able to replicate the CenterFusion model, in order to improve it by modifying
the association using LFANet.

CenterFusion’s pre-trained model is trained on top of the CenterNet baseline in
mode 2. To compare the results of CenterFusion to CenterNet the authors addi-
tionally trained the baseline CenterNet140 for 30 more epochs in mode 1 with an
additional velocity and attribute head. Therefore, the velocity and attribute predic-
tions can be compared reasonably. The resulting model is termed CenterNet170

6.
This pre-trained model is then trained for another 60 epochs in mode 2 on result-
ing in the CenterFusion baseline termed CenterFusion60

7. Note, for the training
of CenterFusion in mode 2 the velocity and attribute heads of CenterNet170 are
discarded.

To validate that we are able to reproduce the baseline performance of the original
architecture of CenterFusion, we train starting from CenterNet170. We train the
network with the same hyperparameters8 as the authors of CenterFusion, although
we use only a single GPU. As in Section 6.2 the batch size and the learning rate
are divided by two assuming linear dependence between the two [86]. We train the
network in mode 2 and therefore in two parts, a first stage for 50 epochs to train
the newly initialized secondary heads and the already pre-trained primary heads
with a larger learning rate while freezing the backbone and a second stage with 10
epochs to fine-tune the whole network with a smaller learning rate. For the smaller
learning rate we choose half of the learning rate of the first stage, unlike the authors
of CenterFusion who use a tenth after 50 epochs instead. The parameters that differ
are summarized in Table 6.4. The results of validating the baseline and our trained
model with flip-test is given in Table 6.5.

The results in Table 6.5 show that our training CenterFusion60 managed to re-
produce the CenterFusion60 model, although the mAP and mATE are sightly
worse. The difference likely leads from the reduction in the number of GPUs used,
specifically the corresponding change in learning rate w.r.t. the batch size as well as
from numerical fluctuations. Note that, similar to the reproduction of the results

6The corresponding model “centernet_baseline_e170” is available for download at https://
github.com/mrnabati/CenterFusion#pre-trained-models, accessed: 2022/03/01.

7The pre-trained model of CenterFusion called “centerfusion_e60” is available at https://
github.com/mrnabati/CenterFusion#pre-trained-models, accessed: 2022/02/24.

8The training parameters are given at https://github.com/mrnabati/CenterFusion/blob/
master/experiments/train.sh, accessed: 2022/05/23.
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Table 6.4: The hyperparameters differing from the baseline CenterFusion60 and
our training CenterFusion60. The learning rate is denoted by lr, while lr50 represents
the learning rate used for fine-tuning after 50 epochs.

Model # GPUs batch size initial lr lr50
CenterFusion60 2 32 2.5 ¨ 10´4 2.5 ¨ 10´5

CenterFusion60 1 16 1.25 ¨ 10´4 6.25 ¨ 10´5

Table 6.5: Results of validating the pre-trained CenterFusion60 and our repli-
cated model CenterFusion60 with flip-test.

Error Ó

Model mAP Ò NDS Ò mATE mASE mAOE mAVE mAAE
CenterFusion60 0.331 0.452 0.6478 0.2631 0.5396 0.5418 0.1426
CenterFusion60 0.3223 0.4502 0.6588 0.2623 0.5008 0.5403 0.1475
Difference -0.0087 -0.0018 0.0110 -0.0008 -0.0388 -0.0015 0.0049

from CenterNet, the mAOE and mAVE is improved because of the modifications on
the rotation loss. In conclusion, we were able to approximate the pre-trained result
and we will compare the performance of our modifications to our baseline model
CenterFusion60.

6.4 LFANet

The introduction of LFANet to the architecture of CenterFusion++ for an optimized
frustum association should enable the whole network to increase its performance in
mAP and NDS compared to CenterFusion especially in the location accuracy of the
prediction.

The LFANet outputs the artificial radar point r˚ that represents the depth of
the object’s center point instead of the closest point as in CenterFusion. Although,
the secondary heads in CenterFusion60 are trained to receive a different informa-
tion about the object than the LFANet provides. Therefore, we need to train a
parallel model to CenterFusion60 where the adapted heatmap Υ is forwarded to the
secondary heads.

During training, the output of LFANet is not accurate – in the beginning sim-
ply random – and should not be used as the input for the secondary heads while
training them. In turn, also the output of the primary heads, which is used for
constructing the frustum in the snapshot generation, is not ideal. Therefore, we
separate the training of the heads presented in Section 6.4.1 and LFANet, presented
in Section 6.4.3. During the training process, only the ground-truth information of
the object is used as an input for LFANet and only the ground-truth bounding box
heatmap Υ is forwarded into the secondary heads. When evaluating the model with
the ground-truth information as well we get the upper limit of performance for the
LFANet, which is presented in Section 6.4.2.
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6.4.1 Training of secondary heads

For the first part of training CenterFusion architecture with the LFANet, the sec-
ondary heads are trained using an adapted bounding box heatmap Υ. It contains
ground-truth radar information of the depth dGT of the object’s center point and
its projected radial velocity vGT

rad “
“

vGT
radX

vGT
radZ

‰T. The difference to the original
CenterFusion pipeline is that it uses the information of the closest radar point r1 in
the frustum, which lies most of the times on the edges of the frustum. The heatmap
Υ is created as described in Section 4.3, filled in with the ground-truth features.
The altered model is trained in mode 2 with the parameters as in CenterFusion.

6.4.2 Proof of concept

To evaluate whether the optimized frustum association can indeed improve the net-
work architecture CenterFusion, we analyze the network using ground-truth infor-
mation. The study is based upon the training described in Section 6.4.1. The
secondary heads are trained using ground-truth values from the annotations. The
ground-truth heatmap Υ can therefore also be used to validate the approach. This
can interpreted as measuring the theoretical limit if the LFANet would perform op-
timally. It also functions as a “proof of concept” that the LFANet can improve the
architecture if trained perfectly. We assume that the optimal LFANet always out-
puts the exact depth of the center-point dGT and radial velocity vGT

rad of any object,
i.e. we assume the LFANet to perform with a loss of zero. Table 6.6 shows the result
for the ground-truth evaluation of the training described in Section 6.4.1, termed as
CenterFusionGT

60 .
All metrics except the scale error mASE show large improvements. The mAP

is improved by 30.90%, the NDS by 18.94%. The largest improvement in the er-
ror metrics is observed in the mATE which decreases to 62.86% of the error in the
baseline model. The ground-truth study shows that there is high potential to im-
prove the CenterFusion network in the stage of the frustum association. We did not
highlight the numbers because we are assuming unrealistic circumstances.

6.4.3 Training of LFANet

The training of LFANet builds up on the training of the secondary heads in the model
CenterFusionGT

60 . For LFANet, both network architectures described in Section 5.1.3
are implemented and compared to each other. LFANet IMG and LFANet PC are
trained standalone in mode 3.The input of the network in training are the ground-
truth values for the object’s dimension γGT, location cGT

3D and global rotation θGT

as well as the entire point cloud. For validation, the predictions from the primary
heads are forwarded instead. The loss LLF A is computed on the regressed depth d˚,
projected radial velocity v˚

radX
in X- and velocity v˚

radZ
in Z-direction. The input to

the secondary heads are the feature map FM concatenated with the bounding box
heatmap Υ, where the regressed features are filled in.
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6.4.4 LFANet results
Table 6.6 compares the results of the LFANet training runs for both network ar-
chitectures LFANetIMG and LFANetPC as well as the “proof of concept” model
CenterFusionGT

60 with the baseline model CenterFusion60. All models were trained
multiple times to minimize the effect of numerical fluctuations on the training results.
With a mAP value of 0.3343, the IMG architecture outperforms the PC architec-
ture of LFANet by 6.98% which allows the conclusion, that this architecture works
better in our use-case. In consequence, we only use the IMG-based architecture in
the following.

Even more important however, the model LFANetIMG,60 is able to outperform the
baseline CenterFusion60 with an increase in the mAP metric by 3.73% from 0.3223 to
0.3343. Additionally, the obtained mAP value of 0.3343 is even slightly higher than
the score obtained through the validation of the model CenterFusion60 trained
by the authors of [40]. However, since we were not able to reproduce these results
with the training procedure provided, we take our own training CenterFusion60 as
a baseline for the performance improvements obtained through the modifications of
the network architecture.

However, the results of the LFANetIMG,60 also show a decreased performance
in the orientation and velocity errors mAOE and mAVE compared to both, the
CenterFusion60 baseline and the LFANetPC,60 model. The reason behind this phe-
nomenon is not completely investigated yet and part of future work. With an in-
creased mAP value, the network detects more objects than the baseline CenterFusion60.
Some of these objects might contain sparse or inaccurate information from the radar
point cloud. While the new network architecture might be able to successfully locate
these objects with improved precision, the imprecise information could lead to an
overall decreased average precision in some of the errors metrics. To further evaluate
this, one could calculate and compare the error metrics for the objects detected by
both architectures. Furthermore, we expect the errors especially mAVE to decrease
greatly when the backbone is unfrozen in training.

Table 6.6: Comparison of CenterFusion60 and the entire LFANet training of both
versions with the models LFANet IMG,60 and LFANet PC,60. All models are evaluated
the validation split.

Error Ó

Model mAP Ò NDS Ò mATE mASE mAOE mAVE mAAE
CenterFusion60 0.3223 0.4502 0.6588 0.2623 0.5008 0.5403 0.1475
LFANet IMG,60 0.3343 0.4392 0.6539 0.2621 0.5584 0.6603 0.1450
LFANet PC,60 0.3125 0.4307 0.6933 0.2617 0.5074 0.6406 0.1522

CenterFusionGT
60 0.4219 0.5355 0.4072 0.2708 0.5067 0.4304 0.1393

Figure 6.1 shows six output examples of the LFANetIMG model from the vali-
dation split of the dataset. While most examples (see Figure 6.1a to Figure 6.1d)
show very promising results, some predictions are not as precise, see Figure 6.1e and
Figure 6.1f. Figure 6.1a to Figure 6.1d show examples of the output where both,
velocity and depth information of LFANet match almost perfectly with the ground
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truth values in different scenarios and for different object sizes. In Figure 6.1e the
velocity estimation is not correct although the radar points contain correct infor-
mation, in Figure 6.1f the depth prediction for a small object is off by about 1.5m.
Most of the bad examples only contain a single radar point within the frustum. This
makes it hard for the network to predict a precise output in general. In the future,
a radar point cloud of higher density could improve these scenarios. Figure 6.1e

6.5 Early Fusion
As described in Section 5.2, the focus on the implementation of Early Fusion in
CenterFusion++ lays on improving the robustness of the network, especially w.r.t.
challenging environmental conditions. We therefore introduce a new validation split
including scenes that are captured in rain or during the night only, termed as rain-
night-val. The split contains 39 scenes and 9 420 camera images, none of which
have been used in the training process. Additionally, we introduce a validation split
termed night-val that only contains the 602 camera images and their corresponding
radar data recorded during night.

We train the Early Fusion approach from “scratch” and compare it to our own
CenterNet training runs presented in Section 6.2. To train from scratch here cor-
responds to a training starting from the weights obtained by training the DLA-34
network for 120 epochs on the ImageNet dataset [85]. From the secondary heads,
only the velocity and attribute heads are trained to compare their metrics with the
velocity and attribute estimations based on CenterNet. The authors of [40] therefore
trained the mentioned heads for 30 epochs on top of the CenterNet140 baseline,
described in Section 6.2, to obtain CenterNet170. We performed the equivalent
training on our own CenterNet140 baseline resulting in the model CenterNet170.

Alongside the standard Early Fusion training, termed as EarlyFusion140, another
run is trained with a BlackIn rate of pBI “ 20%, see Section 5.2, we refer to this
training as EarlyFusionBI175.

Table 6.7: Results of the Early Fusion training runs, evaluated on the val split.
The metrics mAOE and mAVE were evaluated using the secondary heads with a
BlackIn rate of pBI “ 0%.

Error Ó

Model mAP Ò NDS Ò mATE mASE mAOE mAVE mAAE
CenterNet170 0.3044 0.3373 0.7133 0.2582 0.5170 1.3869 0.6603
EarlyFusion140 0.3074 0.4446 0.7056 0.2615 0.4779 0.5016 0.1446
EarlyFusionBI175 0.2914 0.4300 0.7216 0.2649 0.5352 0.4875 0.1474

The results for the standard Early Fusion training run EarlyFusion140 are similar
to the results obtained from the CenterNet170 model in every metric except the
orientation, velocity, and attribute errors mAOE, mAVE, and mAAE.

The model EarlyFusionBI140 shows a slightly improved mAP value compared
to the other two networks. The difference to CenterNet170 can be explained by
numerical fluctuations in the training progress but also shows that the introduction
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(a) Good prediction, multiple radar
points.

(b) Good prediction, single radar point,
small object.

(c) Good prediction, single radar point,
big object.

(d) Good prediction, multiple radar
points, big, rotated object.

(e) Bad velocity prediction, single radar
point, big object.

(f) Bad depth prediction, single radar
point, small object.

Figure 6.1: Examples for the output of the LFANetIMG model in BEV. The
turquoise rectangle depicts the ground truth BB of the object in BEV, the turquoise
“+” its center point. The black arrow starting at the center of the BB is the ground
truth velocity of the object, the dark blue arrow the radial component of the ground
truth velocity towards the camera. The light blue arrows correspond to the velocities
measures for each individual point in the radar point cloud. They start at the depth
of the corresponding radar point and the center of the BB in X. The red arrow is
the velocity prediction as the output of LFANet. The blue, horizontal lines depict
the depth information of a single radar point. It it depicted by a line since the
LFANet architecture does not depend on the X component of a radar point. The
green, horizontal line is the depth estimation predicted by LFANet.
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of Early Fusion does not lead to any performance decreases. However, the mAP
shows slightly worse results for the EarlyFusion training with a BlackIn rate of
pBI “ 20% trying to force the network towards the radar data. Since 20% of all
images are not available as an input to the network during training, the network is
trained for more epochs to allow it to learn from the same amount of input images.
Assuming a linear dependency, the training is expanded to 175 epochs to comply
with the 175 ¨ 8

10 “ 140 epochs used in the training runs of CenterNet. However,
the strict focus on the sparser radar data still leads to a decreased performance
in the mAP metric. In general, the EarlyFusion140 leads to big improvements in
the velocity and attribute errors compared to the CenterNet170 model. While the
orientation error mAOE is improved by 7.56%, the velocity error mAVE is improved
by 63.83% and the attribute error by 78.1$. This implies that the Early Fusion
actually profits from the radar data introduced through projection in an early step.
The improvements also show in a bigger NDS value.

Robustness
To evaluate the robustness improvements gained through the additional radar chan-
nels in the input image of CenterNet, two validation scenarios are regarded. First,
we evaluate the performance on the night-val split to investigate potential improve-
ments in difficult environmental conditions. Second, we test the robustness towards
sensor failure by introducing artificial camera BlackIns with a rate of pBI “ 50%. In
the following, the EarlyFusionBI175 model is used for all validations. We therefore
have to account for the slightly worse, overall performance of the model, especially
in mAP, when regarding different splits of the validation set.

Table 6.8 shows the results for the first test case. The attribute and velocity
heads are used in the BlackIn training for this comparison.

Table 6.8: Comparison of CenterNet170 and EarlyFusionBI175 evaluated on the
night-rain-val split with a BlackIn rate of pBI “ 0%.

Error Ó

Model mAPÒ NDSÒ mATE mASE mAOE mAVE mAAE
CenterNet170 0.2784 0.3104 0.7677 0.2748 0.5512 1.3737 0.6945
EarlyFusionBI175 0.2629 0.3997 0.7803 0.2791 0.6474 0.5008 0.1098

Table 6.9: Comparison of CenterNet170 and EarlyFusionBI175 evaluated on the
night-val split with a BlackIn rate of pBI “ 0% regarding the car category only.

Error Ó

Model mAPÒ NDSÒ mATE mASE mAOE mAVE mAAE
CenterNet170 0.159 0.375 0.463 0.116 0.05 3.395 0.418
EarlyFusionBI175 0.168 0.440 0.491 0.111 0.06 0.623 0.152

The mAP of EarlyFusionBI175 is around 5% smaller than the mAP of CenterFu-
sion170 on the complete val split of the dataset. Evaluated on the night-rain-val split
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of the dataset, the relative difference is almost the same around 5%. However, when
evaluated on the night scenes only, the difference reduces to « 3% which implies
that EarlyFusionBI175 can handle night scenes slightly better. This also shows in
some examples from the dataset, see Figure 6.2.

Additionally, when regarding the car category only, there is an improvement of
the mAP metric through the introduction of Early Fusion, see Table 6.9.

Table 6.10: Comparison of CenterNet170 and EarlyFusionBI175 evaluated on the
night-val split with a BlackIn rate of pBI “ 0%.

Error Ó

Model mAPÒ NDSÒ mATE mASE mAOE mAVE mAAE
CenterNet170 0.0646 0.1418 0.9087 0.5155 0.6995 2.4809 0.7812
EarlyFusionBI175 0.0624 0.1669 0.8608 0.5252 0.6560 1.0082 0.6008

(a) Detection using CenterNet (b) Detection using EarlyFusion140

Figure 6.2: Example of the improvements obtained through Early Fusion. Fig-
ure 6.2a shows a car in a night scene that is not detected by the CenterNet network
based on camera only. However, the same input image along with the corresponding
radar data results in a detection using Early Fusion, see Figure 6.2b.

Table 6.11 compares CenterNet and EF BlackIn with a BlackIn rate of pBI “ 50%
in order to simulate temporary sensor failure.

Table 6.11: Comparison of CenterNet170 and EarlyFusionBI175 evaluated on the
val split with a BlackIn rate of pBI “ 50%.

Error Ó

Model mAPÒ NDSÒ mATE mASE mAOE mAVE mAAE
CenterNet170 0.1415 0.2054 0.6866 0.4547 0.7041 1.3868 0.8076
EarlyFusionBI175 0.1529 0.2951 0.7443 0.4786 0.6320 0.6730 0.2849

In contrast to the evaluations performed above, the mAP for the EarlyFusionBI175
model is bigger than the mAP for the CenterNet170 by around 7.4% for the valida-
tions with a BlackIn rate of pBI “ 50%. This demonstrates the greater robustness of
the Early Fusion approach regarding sensor failure. In addition, EarlyFusionBI175
shows better detection results in some specific examples from the dataset, see Fig-
ure 6.3.
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(a) Radar depth feature channel. (b) Detection using EarlyFusionBI175

Figure 6.3: Example of the improvements obtained through EF BlackIn. Fig-
ure 6.3b shows the detections of the EarlyFusionBI175 model with a zero-valued
input image. The regular CenterNet140 network did not output any detections in
this scenario. However, due to the corresponding radar data, displayed in Fig-
ure 6.3a, the EarlyFusion network handles the simulated camera failure better and
still detects objects.

6.6 CenterFusion++

Section 6.5 and Section 6.4 reflect the results of the two main improvements within
CenterFusion++ and justify their use. This section compares the CenterFusion60
training, explained in Section 6.3 with a new model termed CenterFusion++60.

It is based upon the EarlyFusion140 model described in Section 6.5 to obtain more
robustness of the object detection in the primary heads. The further training process
matches with the one described in Section 6.4, where the CenterNet170 model is
replaced by the model EarlyFusion140. Table 6.12 shows the comparison of the
obtained model to CenterFusion60. Both models match each other in performance,
the differences are almost neglectable. We were not able to improve the results in a
similar manner as the improvements obtained through LFANet. One reason might
be the EarlyFusion140 that is outperformed by the pre-trained CenterNet170. As
described in Section 6.2, we were not able to reproduce the results presented in [56]
completely although using the described training procedure. However, we were able
to reach the level of performance of CenterFusion60 (based on CenterNet170) with
CenterFusion++60 suggesting that the introduction of the two main adaptions indeed
does improve the network architecture.

Additionally, for further improvements on the robustness of the network, a
CenterFusionBI++60 model based on the EarlyFusionBI175 model was trained, the
results are displayed in Table 6.12 too. The worse value in the mAP was to be
expected due to the results described in the previous sections.

Run-time analysis
To investigate whether the implemented changes have a large impact on the runtime
of the detection pipeline, a run-time analysis was performed. Table 6.13 shows the
run-time for three models introduced in this work: CenterFusion60 as introduced by
Nabati et al. [40], LFANetIMG trained on top of the CenterNet170 architecture, and
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Table 6.12: Comparison of the evaluation on the val split between the unadapted
CenterFusion60 architecture, introduced in [40] and the adapted network CenterFu-
sion++60.

Error Ó

Model mAPÒ NDSÒ mATE mASE mAOE mAVE mAAE
CenterFusion60 0.3223 0.4502 0.6588 0.2623 0.5008 0.5403 0.1475
CenterFusion++60 0.3209 0.4512 0.6756 0.2629 0.4758 0.5359 0.1423
CenterFusionBI++60 0.3031 0.4373 0.6869 0.2644 0.5070 0.5380 0.1461

CenterFusion++60 uniting the two main changes to the network: Early Fusion and
LFANet.

Table 6.13: Comparison of the run-times for three network architectures. All
evaluations were performed on the local configuration described in the introduction
of this chapter. The third column expresses the increase in runtime relative to the
CenterFusion60 model.

Network Architecture Runtime [ms] Runtime increase
CenterFusion60 244 –
CenterFusion + LFANetIMG 254 3.94%
CenterFusion++ 274 10.95%

Introducing LFANet to the network results in an run-time increase of less than
4% which is perfectly reasonable for the performance improvements gained. Addi-
tionally, introducing EarlyFusion to the network results in a total run-time increase
of about 11%. It is likely that further improvements on the implementation can be
made since this was not the main focus of the thesis work.

6.7 Ablation Studies
We experimented a lot with different setups of CenterFusion++ where we for example
trained with different hyperparameters for the shrinking factor η in the bounding
box heatmap Υ or the resolution of the snapshot κ. These experiments resulted
in worse performances than the ones shown above, although for completeness we
provide them in this section. Smaller ablation studies include deviations in the
relaxation factor τd of the frustum in both validation and training, the features
of the snapshot X , the pillar size w in the snapshot, the number of filters nf of
the LFANet and dilation factor in LFANet PC. More complex modifications are
explained in the following.

RCS input layer
As mentioned in Chapter 5, the authors of CenterFusion did not use the RCS
measurements provided by the radar sensor in the input to the secondary heads. To
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analyze the effects of doing so, we introduced an additional input channel containing
the RCS value of the associated radar point in the heat-map input for the secondary
heads. The Bounding box heatmap in Figure 4.10 therefore is appended by one
channel, see Figure 6.4, the rest of the secondary heads does not change.
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Figure 6.4: Bounding box heatmap as explained in Figure 4.10 extended by the
additional radar feature RCS depicted by ρ.

Table 6.14 compares the metrics of the CenterFusion60 training with the training
including the RCS input layer, termed CenterFusionRCS60.

Table 6.14: Comparison of CenterFusion60 and CenterFusionRCS60 using the
radar’s RCS feature as an additional input feature.

Error Ó

Model mAPÒ NDSÒ mATE mASE mAOE mAVE mAAE
CenterFusion60 0.3223 0.4502 0.6588 0.2623 0.5008 0.5403 0.1475
CenterFusionRCS60 0.3232 0.4438 0.6548 0.2604 0.5453 0.5723 0.1452

The results are very similar to each other. There are negligible differences in
mAP and the additional error metrics. This leads to the conclusion that the RCS
measurement can not lead to noticeable improvements in the architecture. This also
justifies the decision to not use the RCS value in the outputs of LFANet. However,
the RCS might still be useful for the construction of the artificial radar point r˚

since the RCS value might allow to detect outliers in a set of points within the ROI.

Frustum calculation
CenterFusion proposes to filter the point cloud by the depth bounds of the object
and thus creating a frustum that is limited in the Z-coordinate. We experimented
with changing that definition to using the distance from the origin to the corners
of each object instead. Therefore, the frustum is limited by the distance and only
points within these distance bounds are associated to the object. The results of
training CenterFusion with the modified frustum method are given in Table 6.15.

The values for the two association methods only differ slightly. Since only the
closest radar point is processed in CenterFusion, the selection method only makes
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Table 6.15: Comparison of the CenterFusion60 model using the regular, depth-wise
frustum association and CenterFusion60, dist using the distance frustum association
with a frustum expansion ratio of δ “ 0.5.

Error Ó

Model mAPÒ NDSÒ mATE mASE mAOE mAVE mAAE
CenterFusion60 0.3223 0.4502 0.6588 0.2623 0.5008 0.5403 0.1475
CenterFusion60, dist 0.3184 0.4364 0.6751 0.2611 0.5595 0.5897 0.1427

a difference in few cases. Therefore, the association was not changed from depth to
distance in this work.

Figure 6.5: Comparison of the frustums created by the depth and distance method.

Radar sweeps
The sparsity of the radar point cloud in the nuScenes dataset motivates the use
of more radar sweeps and therefore more radar data. As described in Section 3.2,
usually 3 radar sweeps are aggregated as a trade-off between point cloud sparsity
and suppression of errors introduced by external vehicle’s motion.

Table 6.16 compares the results of the regular EarlyFusion140 training with 3
radar sweeps to a training run aggregating the data of 6 radar sweeps, termed
EarlyFusion140,6S. Since this inevitable introduces a bigger error, an additional input
channel containing the time difference of the radar sweep to the camera image’s
capturing is concatenated to the input channels. However, introducing 6 radar time
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sweeps instead of 3 does not lead to significant improvements in the performance
metrics.

Table 6.16: Results of the Early Fusion training runs, evaluated on the val split.
The metrics mAOE and mAVE were evaluated without the use of the secondary
heads for better comparability.

Error Ó

Model mAP Ò NDS Ò mATE mASE mAOE mAVE mAAE
EarlyFusion140 0.3074 0.4445 0.7063 0.2617 0.4781 0.5017 0.1446
EarlyFusion140,6S 0.3029 0.4425 0.7149 0.2620 0.4856 0.4774 0.1494

Adapted head architecture
As described in Section 4.4, the authors of CenterFusion define the head architecture
of the secondary heads to consist of three consecutive 3 ˆ 3 convolutional layers
followed by a single 1 ˆ 1 layer. However, the model the authors achieved the
benchmark performance with use a single 3 ˆ 3 kernel and three consecutive 1 ˆ

1 layers instead. To evaluate the performance differences, the 3 ˆ 3 layers are
introduced to both, the primary and secondary heads. The resulting architecture
is trained analogously to CenterFusion60 and termed CenterFusion60,AH. Table 6.17
shows the differences in the mentioned training runs.

Table 6.17: Results of the regular CenterFusion60 run with three 1 ˆ 1 in the
heads compared to the adapted head architecture CenterFusion140,AH with three
consecutive 3 ˆ 3 heads followed by a single 1 ˆ 1 kernel.

Error Ó

Model mAP Ò NDS Ò mATE mASE mAOE mAVE mAAE
CenterFusion60 0.3223 0.4502 0.6588 0.2623 0.5008 0.5403 0.1475
CenterFusion60,AH 0.3130 0.4367 0.6883 0.2609 0.5275 0.5696 0.1514

Since their is no improvement of the metrics using the adapted head architecture,
it is not used in this work, instead the head architecture used in [40] is implemented.
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Conclusion

To guarantee the safety and reliability of autonomous vehicles, the perception of the
environment is of crucial importance. Our work discusses the current state of deep-
learning based sensor fusion regarding camera and radar. Furthermore, we suggest
multiple improvements to one state-of-the-art fusion architecture. Our work is a
fusion architecture that implements early fusion as well as extracts features from
proposals in an subnetwork called “Learned Frustum Association Network”.

Section 7.1 discusses the results presented in Chapter 6 and identifies the poten-
tial as well as problems of our contributions. Potential solutions to these problems
are presented in Section 7.2.

7.1 Discussion

After an extensive literature research, the network CenterFusion was chosen to be
the base of our work since it presents a novel approach to the fusion of camera and
radar in the environment of autonomous driving together with promising results on
the nuScenes dataset.

After improving the implementation of the rotation loss, see Section 6.2, we
were able to reproduce the results presented in [40] to a reasonable extend. Further,
two main issues with the network were examined. First, the architecture is not
robust w.r.t. camera failure or bad weather conditions since it heavily depends on
the camera-based detections in the primary heads. Second, the association of the
radar point within the detected ROI results in information loss since only the closest
point towards the camera is selected for the fusion to the camera features. We were
able to support this claim by analyzing the effectiveness of choosing the closest point
when evaluating over the nuScenes dataset in Section 6.4.

To tackle the lack of robustness, Early Fusion was introduced by projecting the
radar data into the image plane and concatenating it to the image input. During
training, we used BlackIn to enforce the network towards prioritizing radar data
in order to make it less dependent of the camera input. The introduced measures
result in slightly improved robustness properties, especially in night scenes and when
simulating camera sensor failure. However, we also experienced a small reduction
in the mAP metric when comparing the training run EarlyFusionBI140 involving
BlackIn with CenterNet140. Since we were able to reproduce the CenterNet140 results
using the EarlyFusion140 model without BlackIn, it is likely that the robustness-
measure BlackIn also creates the need for a longer training run or different training
strategies to compensate for the reduced amount of non-zero input images.
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The second improvement was the introduction of LFANet which extracts an
artificial radar point r˚ instead of choosing the closest point as in CenterFusion. We
were able to reach and even slightly outperform the results obtained by the authors
of CenterFusion [40]. This result shows that our approach is reasonable and we are
able to extract more of the data given in the radar point cloud. However, there is still
room for improvement, especially regarding objects that only contain a single radar
point. The high sparsity of the radar point cloud in the nuScenes dataset increases
the difficulty for LFANet to learn from the data, since often only a few or even a
single radar point can be associated to an object, see Figure 3.4. Further, we have
shown the pipeline can be improved a lot through the radar association by evaluating
the whole pipeline with ground-truth information into the secondary heads which
leads to an increase of 44.52% in mAP. Using different network architectures and
training procedures for LFANet might make use of more of the potential of the
approach.

7.2 Outlook

The outlook is split into two parts: first we investigate potential solutions to the
problems described in Section 7.1 before we give an outlook on further research
and alternative approaches for fusion of radar and camera data using deep machine
learning methods.

Improvements on CenterFusion++

The difference in the mAP metric for the Early Fusion approach can be resolved
using training runs comprising a bigger number of epochs. To avoid overfitting in
this process, learning rates and hyperparameter studies have to be performed.

Additionally, the authors of [42] fuse the radar data at different stages of the
image processing architecture. Since the architecture of the backbone DLA used
in this work is not restricted to one specific setup, this is definitely feasible in the
current architecture. The fusion on multiple network levels has potential to result
in slightly better scores while also increasing the networks processing time as a
downside. Furthermore, the fusion step is not optimized since the radar data is
concatenated directly to the image-based feature map FM and not raw data. This
could be improved for example by adding an additional subnetwork that processes
the radar data and which output is concatenated to the feature map FM . Currently
the backbone architecture used is optimized for image processing but since we use a
fused input of images and point cloud data the architecture chosen for the backbone
could be revised to handle point cloud data better.

To further improve the results of LFANet, the network design can be revised and
the training process can be optimized in areas such as the use of other loss functions –
L2 or smooth-L1 – and tuning of learning rate and other hyperparameters. It might
especially be worth investigating fully connected layers instead of a convolutional
layers as in PointNet++ [61] for extracting features from a point cloud. Additionally,
assuming the availability of a dataset including a high-resolution radar and camera

96



7. Conclusion

images, the investigation of the current network architecture’s performance is of
high interest since it is very sensitive to the resolution of the radar.

Further research
In current research regarding camera radar sensor fusion based on deep machine
learning one bottleneck is the availability of public datasets. While nuScenes is by
far the biggest and most diverse dataset in the field, it lacks radar point clouds in
high resolution. With the availability of datasets solving this issue in the future,
other fusion architectures currently used within the fusion of LiDAR and camera
will become increasingly interesting. For example, the Fusion Painting approach [43]
and others approaches heavily depending on a high density point cloud [61, 87] might
be worth investigating.

An alternative to radar data in point clouds is the processing of radar data in its
unprocessed form which looks promising in initial research papers [29, 88]. However,
there currently is no dataset of sufficient size and scene diversity that includes both,
unprocessed radar and camera data.

Recent machine learning networks for 3D object detection based on camera only
use temporal information, i.e. multiple camera images from past time stamps. This
does not only increase the detection accuracy but also allows the network to pre-
dict lateral velocities of objects in the images. Together with the radial velocities
provided by the radar, this would allow for a better estimation of velocity in the
network.
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A
Appendix

A.1 nuScenes information

Table A.1: Overview over categories within the nuScenes dataset. The first column
displays all categories that are assigned to the annotations without preprocessing.
The second column names the 10 categories remaining after filtering, these categories
are used within the nuScenes detection task, see section 3.1. Some of the categories
in the first column are neglected in this step, they are displayed with a ´ in the
second column. Finally, the third column contains the category ID for the detection
classes in the second column. The table is partly replicated from [1]

nuScenes object class Detection Class Category ID
car car 1
truck truck 2
bus.bendy bus 3bus.rigid
trailer trailer 4
construction construction_vehicle 5
adult

pedestrian 6child
construction_worker
police_officer
motorcycle motorcycle 7
bicycle bicycle 8
trafficcone traffic_cone 9
barrier barrier 10
personal_mobility ´ ´

stroller ´ ´

wheelchair ´ ´

animal ´ ´

debris ´ ´

pushable_pullable ´ ´

bicycle_rack ´ ´

ambulance ´ ´

police ´ ´

I



A. Appendix

Table A.2: Attributes within the nuScenes dataset. The first two columns contain
the Categories and their corresponding IDs to which the attributes in column three
and four are applicable. Column three contains the attribute name and the last
column its corresponding ID.

Category
IDs Categories Attribute Attribute

ID
9
10

traffic_cone
barrier ´ 0

7
8

motorcycle
bicycle

cycle.with_rider 1
cycle.without_rider 2

6 pedestrian
pedestrian.moving 3
pedestrian.standing 4
pedestrian.sitting_laying_down 5

1 car vehicle.moving 62 truck
3 bus vehicle.parked 74 trailer
5 construction_vehicle vehicle.stopped 8
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