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Abstract
Natural selection makes it possible for biological populations to adapt to their local
environmental conditions. A species living in habitats with contrasting conditions
may evolve differences in biological traits in the different habitats. If gene flow exists
between two differently adapted populations a biological trait that is under selection
may exhibit a gradual change in space. This gradual change in a biological trait over
space is commonly referred to as cline in the trait. Examples include clines in size
or thickness of shell of individuals of the marine snail Littorina saxatilis. Empirical
studies of clines in different traits in L. saxatilis have found that the midpoint of the
cline in size is significantly shifted from the geographic position of the environmental
change, whereas no significant shift is found in other clines. This is puzzling since
typically theoretical studies find that on average the midpoint of a cline coincides
with the geographic position of environmental change. The shift occurs in the same
direction in three independent populations. Therefore it is unlikely that it is detected
by chance. The aim of this Master thesis is to investigate whether such a shift
could result from sexual selection. To this end, two models with different types of
sexual selection are presented. One model is based on assortative mating, and the
other on that the reproductive success of males depends on size. The use of these
models is motivated by data from recent laboratory experiments performed within
the Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg
(data obtained and analysed with permission from Kerstin Johannesson). In this
thesis it is found that assortative mating does not produce a shift of the midpoint
of a cline. By contrast, it is shown in this thesis that the model in which the
reproductive success of males increases with increasing size gives rise to a shift of
the midpoint of the resulting size cline. The shift appears during a transient state
which lasts for up to 105 generations under the parameters tested here. The shift,
however, disappears when the system reaches a steady state. Considering that
Littorina saxatilis colonised its current habitat after the last glacial period, which
ended about 10000 years ago, L. saxatilis is likely to be in the transient state. If
so, a shift caused by sexual selection is expected to be observed today. It remains
to be understood whether the midpoint of the clines in other traits is affected by a
physical linkage of the genes underlying them to the genes underlying the trait that
is under sexual selection.

Keywords: hybrid zone, assortative mating, size dependent fecundity, natural selec-
tion, dispersial, genetic drift
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1
Introduction

All living individuals have genes. Genes encode for the properties and behaviours
of an individual. The total set of genes in an individual is called the genotype. The
genotype in combination with environmental factors determines the set of traits,
referred to as the phenotype of the individual. A cline in a biological trait is a
gradual spatial change of the average trait value in a population. An illustration of
the cline in size of the marine snail Littorina saxatilis is shown in Figure 1.1.

Figure 1.1: An illustration of the clinal pattern in the size trait in L.saxatilis. On
the left side of the blue dashed line the population is exposed to crab predation and
natural selection favours large individuals. On the right side of the blue dashed line
the population is exposed to waves and small individuals are favoured by natural
selection. Due to migration there is a region in the middle where large and small
individuals meet and mate. This region is called a hybrid zone and is inhabited by
intermediate sized snails, (so called hybrids).

Clines are frequently observed in natural populations, and they typically indicate
that natural selection is at work. Two main hypotheses on how clines are estab-
lished and maintained have been presented earlier (reviewed by Felsenstein, 1976;
Fife, 1979). The first theory suggests that a cline is established and maintained
by natural selection towards different optimal phenotypes in different parts of the
habitat. The second theory suggests that a cline emerges due to a secondary con-
tact between two species that can interbreed. This type of clines are maintained by
selection against hybrids. The reason why selection acts against hybrids is that the
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1. Introduction

two interbreeding species have been separated from each other for a long time and
accumulated different mutations. Some mutations that are accumulated in one of
the species are likely to be incompatible with some mutations in the other species.
When the individuals from the different species breed, incompatible mutations are
combined and the fitness of the offspring is ,therefore, low (Johnson, 2008).

Both these hypotheses stem from mathematical theories that build on the work of
Fisher (1937). The first theory originates from the works of Haldane (1948) and
Slatkin (1973) while the second theory is based on the work by Bazykin (1969).
Fisher (1937) proposes a diffusion model of selection and migration in a population,
to investigate how an advantageous allele spreads in the population. The solutions
to the diffusion model have the form of travelling waves. To explain the behaviour of
clines, Haldane (1948) extends the diffusion model used by Fisher (1937) and adds
spatial dependent selection, where the optimal trait value abruptly changes in the
centre of the habitat. With this model Haldane (1948) study how different selective
pressures on the two different sides of the centre affect the shape and slope of the
cline that is formed under these conditions. Furthermore Slatkin (1973) continues
on the work of Haldane (1948) and generalised the diffusion model. In the model
that Slatkin (1973) presents, individuals are diploid and have one locus. The locus
can carry one of the two alleles A or a. With this model Slatkin (1973) shows that
there is a solution to the diffusion equation if the selection pressure is the same on
both sides of the centre of the habitat. This model is described in further detail in
appendix A.1. Slatkin (1973) finds that the steady state frequency of allele A at
position x is given by

p(x) =


1
2

(
−1 + 3tanh2

(√
s
2lx+ arctanh

(√
2/3

)))
, when x > 0,

1
2

(
3− 3tanh2

(√
− s

2lx+ arctanh
(√

2/3
)))

, when x < 0.
(1.1)

Here l is the average squared dispersal distance and s is the selection parameter that
controls the strength of the natural selection.

In contrast to the work of Haldane (1948) and Slatkin (1973), Bazykin (1969) has
studied a model of a cline with low hybrid fitness. Bazykin (1969) starts from the
same diffusion equation as Fisher (1937) but instead of assuming that one allele is
advantageous, (as Fisher (1937) does), Bazykin (1969) assume two alleles, denoted
A and a, that are incompatible with each other so that heterozygotes are less fit than
homozygotes. Bazykin (1969) found that this model has five steady states, three
of which are stable. The two unstable steady states have the form of the tangens
hyperbolicus function. Denoting the steady state frequency of allele A at position
x by q(x), the five steady states and their stability are as follows Bazykin (1969)
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1. Introduction

q(x) =



1, stable state,

1
2 , stable state,

0, stable state,

1
2

(
1 + tanh

(√
s(x+ξ)√

l

))
, unstable state,

1
2

(
1− tanh

(√
s(x+ξ)√

l

))
, unstable state.

(1.2)

Here l is the average squared dispersal distance, s is the selection parameter that
controls the strength of the natural selection, respectively as explained above and ξ
is an arbitrary constant that determines the midpoint of the cline.
While both hypothesises for the formation and maintenance of clines (described
above) are relevant for biological populations, this thesis focuses on clines that form
and are maintained by selection towards different optimal phenotypes, because this
is a likely scenario in L. saxatilis in Sweden. However it is important to be aware of
the second hypothesis and the results of Bazykin (1969), since most clines in nature
are believed to have formed due to secondary contact and maintained by low hybrid
fitness (Barton and Hewitt, 1989). Furthermore, the tangens hyperbolicus function
is also often used in empirical studies, (due to its simplicity,) when parameters of
clines are estimated (Fitzpatrick, 2013). Empirical studies often consider the slope
at the midpoint of the cline and not the shape of the cline (Barton and Hewitt,
1989). At the midpoint where x � 1 the slope of the two solutions presented by
Slatkin (1973) and Bazykin (1969) is proportional to each other. Finally, note that
the solution derived by Slatkin (1973) (see Equation (1.1)) and the solution derived
by Bazykin (1969) (see Equation (1.2)) are qualitatively similar (Slatkin, 1973; May
et al., 1975). Therefore, clines emerging under the two scenarios are very difficult
to distinguish using empirical data.
As mentioned above, an example species where cline patterns are observed is the
marine snail Littorina saxatilis. In this species cline patterns are formed between
two different morphs which lives in two different types of habitats. One of the
morphs lives in sheltered bays with high crab predation while the other morph
lives on wave exposed rocks (Janson, 1983). By removing some individuals from
their native habitat and placing them in the habitat of the other morph, Janson
(1983) shows that native individuals have a larger chance of survival than individuals
from the opposite habitat. Thus it is likely that selection towards different optimal
phenotypes is at work in this populations. Indeed, for protection against crab attacks
it is beneficial to be large, have a thick shell and a small aperture (Janson, 1983).
Thus in crab-exposed habitats natural selection favours snails with these traits. The
opposite is true for the other morph that lives on wave exposed rocks where crab
predation is very rare. Here it is beneficial to be small, have a thin shell and a
large aperture, since these traits minimise the risk of getting swept out to sea and
drown (Janson, 1983). In the junction of these two habitats the two morphs meet
and interbreed and hybrids with intermediate traits form. In these hybrid zones,
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1. Introduction

no significant differences in the likelihood of survival between hybrids and the two
different morphs has been observed in L. saxatilis (Janson, 1983).

Empirical studies of clines in, for example size, shell thickness and size of aperture
have been preformed within the Linnaeus Centre for Marine Evolutionary Biology.
In these studies it is found that the midpoint of the cline in size does not coincide
with the midpoint of the clines in the two other traits (Johannesson and Butlin,
personal communication). In addition the the latter clines coincides with the centre
of the environmental change between the two habitats. The cline in size is found
to be shifted in three populations at different locations on the Swedish west coast.
All three shifts found are of a similar magnitude and to the same direction. The
populations sampled are far from each other and gene flow between them is very rare
(Johannesson and Warmoes, 1990). They are, therefore, essentially independent of
each other. This suggests that it is implausible that these shifts are observed by
chance. The occurrence of a shift of the cline in size is rather puzzling and intriguing,
but there are particular conditions under which a shift occurs. These conditions are
briefly explained next.

Firstly, Haldane (1948) propose a model where the optimal phenotype abruptly
changes in the centre of a habitat. With this model Haldane (1948) show that if the
selective pressure is not the same on the two sides of the centre, the cline is shifted
towards the side with weaker selection. Secondly, in a model presented by May et al.
(1975) the migration is much greater in a specific direction. This causes the cline
to be shifted in the direction where the migration is larger. This model applies to
multiple marine species that have a larvae stage where migration tends to be larger
in the same direction as the sea currents (Galindo et al., 2010). However L. saxatilis
does not have a larvae stage. Thirdly, Nagylaki (1978) presented a model where the
mobility of individuals is phenotype dependent. In this model individuals with a
high mobility spread at a higher rate than the less mobile phenotype causing the
cline to be shifted towards the habitat with the less mobile phenotype. Notably, both
the model with a higher migration in a specific direction (May et al., 1975) and the
model in which the mobility of individuals depends on their phenotype (Nagylaki,
1978) gives rise to an observable shift, with respect to the geographical midpoint, in
all all clines. However, this is not the case in L. saxatilis where only the size cline
is shifted. Finally, genetic drift is a process that may cause a cline to be shifted.
Indeed, Felsenstein (1975) and Slatkin and Maruyama (1975) showed that genetic
drift shifts a cline back and forth around the average midpoint and distorts its shape.
The average cline is wider than a cline without genetic drift, while every particular
cline that is affected by genetic drift is narrowed (Polechová and Barton, 2011). A
shift, in the same direction and similar magnitude, of the cline in size is observed in
three independent populations (Johannesson and Butlin, personal communication).
It is therefore unlikely that the shift solely is a consequence of random genetic drift.

However none of the studies mentioned above analyses how mechanisms beyond nat-
ural selection and dispersal influence cline patterns in natural populations. This is
important to understand since sexual selection are at work in biological populations.
This is explained below for the particular example species that this thesis focuses
on, namely for L. saxatilis (Johannesson et al., 1995; Erlandsson and Rolán-Alvarez,
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1. Introduction

1998; Hintz Saltin et al., in press; Johannesson and Butlin, personal communica-
tion).
Sexual selection is a type of selection where the reproductive or mating success
of an individual depends on its traits. Sexual selection can often be detected as
a deviation from random mating. Many studies have observed a deviation from
random mating in L. saxatilis (Johannesson et al., 1995; Erlandsson and Rolán-
Alvarez, 1998). In these studies it is suggested that sexual selection is related to size.
Indeed, the likelihood that a male mates with a given female is larger if the female
is slightly larger than the male (Johannesson and Butlin, personal communication).
In this thesis this type of sexual preference is referred to as assortative mating.
To simplify discussion, in this thesis assortative mating is interpreted as a type of
sexual preference (as in Lande (1981) and Kimura et al. (2015), but see Erlandsson
and Rolán-Alvarez (1998) for a different interpretation). Importantly, this does not
affect the results obtained under the assortative-mating model (see Chapters 2, 3).
Note that analysing a model for assortative mating Sadedin et al. (2009) showed that
it is more likely for a species to evolve into different morphs if assortative mating is
at work. Apart for assortative mating, Hintz Saltin et al. (in press) recently showed
that another type of sexual selection may be present in L. saxatilis, that is that
larger males give rise to more progeny than smaller males. Therefore to explain the
cline patterns emerging in populations of L. saxatilis it is necessary to understand
the effects of of sexual selection. The aim of this Master thesis is thus to examine
how the shape of the cline is affected by assortative mating and size dependent
fecundity in males. This is addressed by creating two separate models, the first with
assortative mating (see Section 2.3) and the second with size dependent fecundity of
males (see Section 2.4). These models is then studied with simulations and the result
from these simulations are shown in Chapter 3. These results are then interpreted
and discussed in Chapter 4.
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2
Model and Methods

In this chapter, the models and methods used in this thesis are presented. In Section
2.1 it is explained how the the midpoint and the slope at the midpoint of simulated
clines are measured. Then the two models that are used in this thesis, and differ
by the type of sexual selection considers, are presented. Before these models are
presented in detail the steps that they both have in common are described, Section
2.2. The two types of sexual selection modelled have been shown to be present in L.
saxatilis. One model assumes assortative mating, Section 2.3, and the other assumes
size dependent fecundity in males, Section 2.4.

2.1 Measuring the slope and midpoint of a cline

One property of clines that is often examined in empirical studies is the slope at
the midpoint of the cline (Barton and Hewitt, 1985). Due to stochastic effects and
because the habitat is divided into discrete patches, I have decided to adopt the
following criteria for the midpoint of a cline.

• The change of average phenotype between two demes is assumed to be linear.

• The midpoint of the cline is approximated as the position in the habitat where
the average phenotype is exactly between the maximal and the minimal value
of the local average phenotypes observed along the habitat.

• If multiple points fulfil this condition, the point at the smallest distance to the
environmental change is assumed to be the midpoint.

Slatkin (1973) and Slatkin and Maruyama (1975) derived an expression for the slope
dp
dx

∣∣∣
x→0

at the midpoint x→ 0 of a cline in a continuously distributed population in
the limits of weak selection (s� 1) and weak dispersal (l� 1), (see Appendix A.1
for a full derivation):

dp

dx

∣∣∣∣∣
x→0

=
√
s

3l . (2.1)

Here p(x) is the solution to the diffusion model presented by Slatkin (1973) (the
expression in Equation (2.1) is the derivative of Equation (1.1) that is presented in
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2. Model and Methods

the introduction), l is the average squared dispersal distance and s is the selection
parameter. Contrary to the population in the derivation of the slope by Slatkin
(1973) that is continuously distributed the population in the simulations preformed
within this thesis is divided into a finite number of discrete patches with unit distance
between them. In a discrete population, which is divided into demes, there is always
a finite distance between a given pair of demes. To be able to go to the limit of
x→ 0 in the discrete population the distance between two neighbouring demes must
be negligible in comparison with all other length scales of the system. One other
length scales in the system is the width of the cline, which is proportional to the
inverse slope. The width of the cline is thus proportional to

√
l
s
. So for the theory

to be valid in a population that is discretely distributed the condition l
s
� 1 and

thus selection must be smaller than dispersion (s� l), (but not too small).

2.2 Assumptions in the models

The two models used in this thesis are based on the following assumptions.

• A population is assumed to inhabit M patches (also referred to as demes).
These demes are ordered in a one dimensional array. For simplicity it is as-
sumed that M is an even number.

• The number of individuals, denoted N , is assumed to be equal in all demes at
the start of each generation.

• Individuals are diploid and assumed to have one locus under selection. The
phenotype that is under selection of an individual is solely determined by the
genotype at this locus. The phenotype of the individual i is denoted as zi.

• Each allele is assigned an allele-effect size by which it contributes additively
to the phenotype.

• The environmental conditions vary in the habitat. Between deme M
2 and deme

M
2 +1 there is an abrupt change of the environmental conditions. The optimal
phenotype on the left side of this change differs from the optimal phenotype
on the right side.

• The optimal phenotype of deme k (k = 1 . . .M) is denoted by θk. In all
simulations θk is set to

θk =

 2, when k < M+1
2 ,

−2, when k > M+1
2 .

(2.2)

• Generations are assumed to be discrete and non-overlapping.

• In each generation, it is assumed that the following process occurs:

1. birth and mutations,
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2. Model and Methods

2. maturation and migration,
3. selection,
4. sexual selection, mating and the production of offspring,
5. death and beginning of the next generation.

• All individuals are assigned a sex at birth. The sex is assumed to affect only
the sexual selection but not affect migration or natural selection.

• Mutations occur after birth at a rate of µ per allele, individual and generation.
The effect size of a mutation is assumed to Gaussian distributed with mean 0
and a standard deviation µsd.

• Locally within each deme the number of surviving offspring to maternity is
assumed to be N . The chance to survive to maternity is assumed to be inde-
pendent of phenotype and location of an individual.

• Individuals may migrate from the habitat they are born in. Two different
migration patterns are used throughout this thesis. Firstly, individuals are
allowed to migrate only to nearest neighbouring demes. The probability to
migrate to the left neighbour is equal to the probability to migrate to the right
neighbour and the total probability to migrate is denoted by m. Secondly, the
migration distance is assumed to be Gaussian distributed with mean 0 and a
variance l. Individuals that migrate over the boundaries, (to the left of deme
1 and to the right of deme M), are pushed back to their native deme. This is
to keep the population size of all demes of roughly equal size.

• Natural selection is assumed to occur after migration. The natural selection
considered is viability selection, where the probability for an individual to
survive to mate is proportional to its fitness. The fitness of individual i, in
deme k is denoted by ωi,k and is assumed to be determine by the phenotype
and the location of individual i

ωi,k = e−
(zi−θk)2

2σ2 , (2.3)

where σ is the selection parameter that governs the strength of selection. Se-
lection is stronger the smaller the value of σ gets. This is the same fitness
function as used by Sadedin et al. (2009).

• Sexual selection determines the reproductive success of individuals. This step
differs between the two models presented in this thesis. In all models it is
assumed that individuals mate an infinite number of times. The two types of
sexual selection are described in Section 2.3 and Section 2.4.

2.3 A model with assortative mating

In this section it is described how assortative mating (one type of sexual selection)
is modelled. The model for assortative mating that is described in detail below, is
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2. Model and Methods

similar to the model analysed by Sadedin et al. (2009). Both stochastic simulations
with a population size of N = 100 and deterministic simulations with the population
size N → ∞ are conducted with this model. As mentioned in the introduction of
the thesis this model is tailored to mimic empirical observations (Johannesson and
Butlin, personal communication).
In the model analysed here, the probability that two individuals of given sizes mate
is referred to as the attractiveness between the two individuals. A stronger attrac-
tiveness between two individuals means that the probability for them to mate is
higher. In this thesis, it is assumed that the attractiveness ψi,j,k between a male
with size z(male)

i and a female with size z(female)
j in deme k is described by

ψi,j,k = e
−

(z(male)
i,k

−z(female)
j,k

+c)2

2σ2
s , (2.4)

where c is the optimal difference in size between a male and female, and σs is the
sexual selection parameter that sets the strength of the mating preference. If c
is positive, males prefer females that are larger than themselves, and vice versa
for negative values of c. For c = 0 both males and females prefer to mate with
individuals of the same size as themselves.
The probability probA(i, j, k) that a given male and female both survive the natural
selection in deme k and mate with each other is obtained by combining Equation
(2.3) and Equation (2.4):

probA(i, j, k) =
ω

(male)
i,k ω

(female)
j,k ψi,j

N
(m)
k∑
a=1

N
(f)
k∑
b=1

ω
(male)
a,k ω

(female)
b,k ψa,b

, (2.5)

where N (m)
k is the number of males and N

(f)
k is the number of females in deme k.

Equation (2.5) gives the contribution of the given male and female pair to the pool
of offspring in the next generation.
In the next section, a model for the other form of sexual selection, that this thesis
analysis, is described.

2.4 A model in which male fecundity depends on
size

In this section a model in which male fecundity depends on size is explained. This
this model is motivated by recent findings by Hintz Saltin et al. (in press) that
shows that larger males produce more offspring than smaller males. The laboratory
experiment conducted by Hintz Saltin et al. (in press) is described in Appendix B.
Similar but slightly different statistical analyses of the data found by Hintz Saltin
et al. (in press) are preformed in this thesis (see Appendix B). The statistical
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2. Model and Methods

analyses use χ2-tests and Pearson correlation-tests to show that it is likely that
male fecundity increases with size. In Appendix B parameter values are estimated
from the empirical data using maximal likelihood.
In the model where male fecundity increases with size the fecundity, φi of male i, is
assumed to depend on the size (zi) of this male:

φi = 1− d
(
θ1 − zi
θ1 − θM

)
. (2.6)

Here θ1 is the optimal phenotype in deme 1, θM is the optimal phenotype in demeM
and d is the male-size fecundity parameter that governs how much the fecundity is
affected by the size of the male. The parameter d is assumed to be in the range −1
to 1 where −1, and 1 are not included. A negative d value means that fecundity de-
creases with increasing size and a positive d value means that the fecundity increases
with increasing size. When d = 0 the fecundity is not affected by size. This thesis
considers positive values of d but a similar analysis can be preformed on negative
values of d. A estimated value of d in L. saxatilis is estimated in Appendix B. The
probability probF (i, j, k) that a given male i and a female j in deme k both survive
natural selection and mate with each other is obtained by combining Equation (2.3)
and Equation (2.6):

probF (i, j, k) =
ω

(female)
j,k

N
(f)
k∑
b=1

ω
(female)
b,k

ω
(male)
i,k φi

N
(m)
k∑
a=1

ω
(male)
a,k φi

. (2.7)

Here N (m)
k is the number of males and N

(f)
k is the number of females in deme k.

This is effectively the contribution to the pool of offspring in the next generation of
the given male and female pair.
Both models presented above reduce to the model used by Slatkin (1973) when the
following hold true:

• Selection is weak, σ is large.

• No mutation, µ = 0.

• There are two different alleles present in the population, allele A with allele-
effect size θ1

2 and allele a with allele-effect size θM
2 .

• No assortative mating, σs →∞.

• No increased fecundity of males with increasing size, d = 0.

The model with assortative mating can also be reduced to the model presented by
Sadedin et al. (2009) in the special case where c = 0 and σ2

s from the model presented
here is equal to σ2

a

(2c−1)2 in the model by Sadedin et al. (2009). All males in the model
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2. Model and Methods

by Sadedin et al. (2009) must have the same trait value c and this trait value must
be larger than 0.5 as well.
Note that in the plots shown in the next chapter, deme k k = (1, . . . ,M) is assigned
a position in the habitat, such that xk = k − M+1

2 . Using these notations, the
environment change in the habitat occurs at the origin. Finally, in the cases where
deterministic simulations are presented and shown the simulations are run until the
steady state is reached. The system is considered to be in a steady state if the total
change in allele frequency in all demes is less than 10−8.
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3
Results

This chapter describes the simulation results obtained for the models described in
Chapter 2. This chapter is divided into three different sections. In Section 3.1 the
analytical results for the slope of a cline derived by Slatkin (1973) is compared to
the slopes obtained using simulations. The effect of genetic drift on shape of a cline
is also shown. Section 3.2 shows how assortative mating affects the shape of a cline.
Finally Section 3.3 shows the results from the model in which male fecundity is
determined by the size of the male.

3.1 Comparison with existing theory

This section shows a comparison between analytical results and the simulated results
from the model used by Slatkin (1973) (described in Appendix A.1). Both models
presented in Chapter 2 can be reduced to this model in certain limits (see previous
chapter).
In this model no mutations occur and there are only two alleles present in the popu-
lation, allele A and a. It is furthermore assumed that allele A is favoured on the left
side of the environmental change and allele a is favoured on the right side. Simula-
tion results of how the frequency of allele A vary over space are depicted in Figure
3.1. This figure shows the results for six different parameter settings. In panels
shown on the left side in Figure 3.1 selection is stronger than the corresponding
panel on the right side. In the pair of panels on each row the fraction between the
migration rate, m, and the selection parameter, s is equal. According to the theory
by Slatkin (1973) the slope of the clines should therefore be the same in panels in
the same row.
The slope of a cline obtained using simulations agrees well with the corresponding
theory derived by Slatkin (1973). However when the three conditions, weak dispersal
(m � 1), weak selection (s � 1) and m sufficiently larger than s are not fulfilled
the theory fails (see Figure 3.2). This result agrees with the findings of Mallet
et al. (1990). Figure 3.2 shows the slope of many deterministic simulations with
a infinitely large populations in comparison with the expected slope given by the
theory derived by Slatkin (1973). The theoretical slope is presented in Equation
(2.1). In Figure 3.2 six different values of the fraction s

m
are selected. The reason

for keeping the fraction s
m

constant is that the theoretical slope is fixed when s
m

is
constant (see Equation (2.1)). For all simulations conducted the selection parameter

13



3. Results

s takes values from 10−4 to 10−2. For a given value of s the parameter m is chosen so
that s

m
is constant. To keep simulations biologically relevant, all simulations where

the migration rate m is larger than 0.5 are neglected. This is the reason for why
fewer simulations are conducted for smaller values of the fraction s

m
in Figure 3.2.

The reason for why deterministic simulations are used when simulation results are
compared to the theory in Figure 3.2 is to be able to make a direct comparison
between simulation and analytical results (the latter being derived upon neglecting
genetic drift). Genetic drift and other stochastic effects shift a cline back and forth
around the average midpoint. The effect of genetic drift and how it affects the
midpoint of a cline in dependence of selection strength is shown in Figure 3.3. The
effect of genetic drift is larger for smaller populations, weaker selection or smaller
migration rate (Felsenstein, 1975; Slatkin and Maruyama, 1975) (see Figure 3.3).
The results presented in Figures 3.1 - 3.3 confirmed the validity of the simulations
preformed in this study. In the next sections, the simulation results obtained under
the two models of sexual selection (presented in Chapter 2) are shown.
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Figure 3.1: The frequency of allele A in each deme (favoured in demes on the
left side of the environmental change and disfavoured on the right). These clines
are obtained by simulating the model presented by Slatkin (1973), with different
values of s and m. The clines shown are obtained 5000 generations after the start
of the simulations. At the start of each simulation both alleles A and a have the
same frequency in all demes. The cline at the end of each simulation (grey lines)
is plotted together with the average of all these clines (green line) a deterministic
simulation of a cline (red line) the theory by Slatkin (1973) (blue line) the tangens
hyperbolicus function (pink line) and the expected steady state in the case of no
migration (black dashed line). Each panel consists of 500 independent simulations
of 50 demes, each with 100 individuals.
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Figure 3.2: The slope of a cline as a function of selection strength s. Each sim-
ulation is shown as a point and the theoretical slope is shown with a dashed line.
Different colours denote different values of s

m
used (see the legend). The effect of ge-

netic drift is ignored in these simulations (the population is assumed to be infinite).
The starting condition for all simulations is that both the A and a allele have the
same frequency in all demes. For a given value of s, the parameter m is chosen so
that the fraction s

m
is kept constant. The number of demes used in each simulation

is 100.
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Figure 3.3: The effect of genetic drift on the midpoint position of a cline in rela-
tion of the environmental change as a function of selection strength, s. A cross in
the plot is the midpoint of a cline obtained 5000 generation after the start of the
corresponding simulation. At the start of each simulation the frequency of allele
A and a is equal in all demes. The average midpoint position over 100 indepen-
dent simulations (for each parameter set) as a function of s is shown by a blue line
and the red lines in the plot shows the 10% (bottom) and 90% (upper) quantiles.
The dashed purple line shows the expected average midpoint position. The reason
that the average midpoint position does not coincide with the expected midpoint
position for small s is because the effect of genetic drift is much stronger and thus
the variance of the observed samples, the sample size therefore to small to capture
the real mean. In all simulations the migration rate is set to 0.1. The population
consisted of 50 demes, each with 100 individuals.
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3.2 The effect of assortative mating

Simulation results obtained under the model of assortative mating, (described in
Section 2.3,) show that the midpoint on average coincides with the position of en-
vironmental change, (see Figure 3.4) To explain the results shown in Figure 3.4 the
gene flow, between the two sides of the change in the environments is considered for
two types of assortative mating, as explained next.
Firstly, in the case where individuals prefer to mate with individuals of the same
size as themselves (c = 0) the gene flow between the two sides of the environments
decreases and heterozygote individuals is rarer. However the gene flow of females
and males is the same in both directions. This agrees with Kirkpatrick (2000) who
shows that sexual preference for individuals of similar size results in a strengthened
barrier to gene flow between the two sides of a cline.
Secondly, if males prefer to mate with females larger than themselves (c > 0) the
gene flow of females, from the side where larger individuals are favoured to the
side where smaller individuals are favoured, is increased. However the gene flow of
males from the side where smaller individuals are favoured to the side where larger
individuals are favoured, is increased. This occurs since mating preference is mutual
(see Equation (2.4)). The gene flow of males and females thus balances each other
so that the total gene flow, between the two sides, is symmetric.
There is no need to consider the third case of c < 0 since similar arguments as in
the previous case of where c > 0 apply but with males substituted by females and
vice versa.
The difference in the gene flow between males and females can be observed by
studying the differences in the distribution of genotypes among males and females
that contributes to the next generation (see 3.5).
The results presented in Figure 3.4 and Figure 3.5 show that the assortative mating
model presented in this thesis can not produce a shift in the average midpoint
position as observed shift in L. saxatilis. In the next section the results obtained
from the other type of sexual selection (size dependent fecundity of males) considered
in this thesis is presented.
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(a) Parameters: σ = 8, σs = 4 (b) Parameters: σ = 8, σs = 8

(c) Parameters: σ = 8, σs = 16

Figure 3.4: The average frequency of allele A (favoured in demes on the left side
of the environmental change and disfavoured on the right) as a function of deme
position for σ = 8 and three different values of the strength of attractiveness σs
(see above). At the start of each simulation the frequency of allele A and a is equal
in all demes. The clines shown are obtained 5000 generations after the start of
the simulation and is the average of 500 independent simulations. Three different
mating preferences for assortative mating is presented in the plot: c = 0 (green
lines), c = 2 (blue lines), c = 4, (orange lines). The case where individuals do
not have any mating preferences, random mating, is represented by red lines. The
expected steady state in the case of no migration and no assortative mating is shown
as a black dashed line. The migration rate m is set to 0.1 in all simulations. There
are 80 demes, each with 100 individuals in each simulation. There are no mutations
in the simulations, µ = 0.
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Figure 3.5: The contribution of individual genotypes of males and females, locally
within each deme, to the next generation. This figure illustrates the differences in
gene flow between males and females as well as the symmetries explained in the
text. The results are obtained using deterministic simulation with 50 demes and
an infinite number of individuals in each deme. The frequency of allele A and a is
equal in all demes at the start of the simulation. Parameters used: σ = 8, σs = 8
and m = 0.1, c = 4, µ = 0.
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3.3 The effect of size dependent male fecundity

In this section the simulation results obtained under the model described in Section
2.4 is presented.
The first result is obtained by studying multiple demes with an environmental change
in the middle where different alleles are favoured on different sides of the change.
Still there are only two alleles in the population, allele A and a. Assuming that
sexual selection favours males with allele A, due to an increased fecundity, a stable
polymorphism may be obtained on the side of the environmental change where the
a allele is favoured by natural selection (see Appendix A.2 for the conditions under
which a stable polymorphism forms). This polymorphism causes a shift in the
cline (see Figure 3.6). However if the sexual selection of males, through increased
fecundity, is much stronger than the natural selection the allele A fixates in the
whole population and no cline is obtained.
The same model is then simulated with mutations. An example of a typical time
evolution of this model is shown in Figure 3.7. The simulation starts from a pop-
ulation where all individuals have a phenotype equal to the average value of the
optimal phenotypes set by natural selection in the two different environments. In
the transient state of the simulation the average midpoint position of the cline is
shifted to the right of the environmental change. The reason a shift occurs during
the transient state is that males that are larger have higher fecundity and thus the
effective male gene flow from the side of the cline where individuals are larger to the
side of the cline where individuals are smaller is increased. However the effective
gene flow of females are not affected. Surprisingly, this shift of the average midpoint
position decreases over time and when the system reached the steady state no shift
in the average midpoint can be observed. The time evolution of the model is shown
in Figure 3.8.
A qualitative study is then conducted to find of how each parameter affects the
average magnitude of the maximum shift and the number of generations until the
steady state is reached. The result is presented in the text below and a summary is
presented in Table 3.1. A list of all parameter values that are used in this analysis is
shown in Table 3.2. All results are concluded from simulations with the parameter
sets from Table 3.2 and thus other effects than the one described below can occur
for different parameters.
The first parameter that is studied is σ. An increase in σ decreases the strength of
natural selection. When natural selection is weak, the effects of sexual selection is
greater. This makes the magnitude of the maximum shift larger. A weaker natural
selection also increases the time it takes for an advantageous allele to spread and
thus the time until the steady state is reached is increased.
If the average squared dispersal distance l is increased the gene flow between demes
is increased. This increases the maximum magnitude of the shift. For the parameter
values tested the time to reach the steady state decreased when the value of l
increased. This is probably due to that an advantageous mutation spreads faster if
the average dispersal distance is larger.
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When considering how the male-size fecundity parameter d affects the system two
extreme cases is first studied. If d = 0 (that is, no increased fecundity with size),
there is no shift of the average midpoint position. If d is large and the sexual
selection is much stronger than the natural selection it is beneficial for individuals
in both types of the environment to become ever larger. Therefore no cline forms
(and no shift either). Finally, when d > 0, (but not to large) and natural selection is
sufficiently strong a shift in the cline is observed. Thus the maximum magnitude of
the shift first increases with an increasing d and then after some critical d value the
maximum magnitude of the shift decreases with an increasing d. In the same way
as a stronger natural selection decrease the time until the steady state is reached,
sexual selection decreases the time until the steady state is reached.
For the parameter values that are tested an increase in the population size N de-
creased the average magnitude of the maximum shift. This is probably due to that
an increase in the population size decreases the effect of genetic drift. An increase in
the population size N does also decrease the time until the steady state is reached
since there is more mutations in each generation the bigger the population is since
the mutation rate µ is the mutation rate per allele. Changing the mutation rate µ
or the standard deviation of the average mutation effect size µsd does not effect the
maximum magnitude of the shift or the average allele-effect size at the steady state.
Finally, note that due to sexual selection the phenotype values obtained at the the
steady state are larger than the optimal phenotype set by natural selection. As
a consequence of this effect, the shift observed during a transient state disappears
when the system reaches the steady state. This is further explained in Chapter 4.
In this chapter the results from simulations of the models described in Chapter 2 are
presented. To conclude this chapter, it is found that the first model with assortative
mating does not produce a shift. However the second model where male fecundity
depends on size produced a shift during the transient state. The results from both
these models are further discussed and interpreted in the next chapter.
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Increase in:

Effect on the
maximum
magnitude
of the shift

Effect of time
until the
steady state
is reached

σ Increase Increases
l Increase Decreases

d
First increases
then decreases Decreases

N Decrease Decreases
µ Unchanged Decreases
µsd Unchanged Decrease

Table 3.1: The qualitative change of the system then a given parameter is increased.
See text above for further description.

Parameter Values
σ 6, 8, 12, 16
l 0.5, 1, 2
d 0, 0.1, 0.25, 0.5, 0.8
N 50, 100, 200
µ 0.0002, 0.0004, 0.001
µsd 0.01, 0.05, 0.1

Table 3.2: Parameters used to determine the qualitative behaviour of the model.
Each parameter is varied one at a time. Values shown in bold font is the default
value that is used when other parameters are varied.
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(c) d = 0.15
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(d) d = 0.2
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(f) d = 0.3

Figure 3.6: The average frequency of allele A (favoured in demes on the left side
of the environmental change and disfavoured on the right) as a function of deme
position. Results from simulations are presented with black points and the midpoint
of the cline is shown as a red star. The effect of genetic drift is ignored in these
simulations since the population is assumed to be infinite and these simulations are
thus deterministic. The starting condition for all simulations is that both the A and
a allele have the same frequency in all demes. The expected steady state in the case
of no migration and size independent fecundity (d = 0) is shown with a red dashed
line. There are 50 demes in each simulation. The population size N is infinitely
large and the mutation rate µ = 0. In all panels the natural selection parameter
σ = 8, and the migration rate m = 0.1. The d value is varied between 0.05 and 0.3,
the d value used is presented under each panel.
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(a) Generation 20000 (b) Generation 30000

(c) Generation 40000 (d) Generation 50000

(e) Generation 60000 (f) Generation 75000

Figure 3.7: Average allele-effect size as a function of deme position under the model
in which fecundity of a male is larger when the male is larger. This is a typical time
evolution of a population. The red line is the trace of midpoints through time
and the midpoint at the current generation is represented with a red star. The
expected steady state in the case of no migration and size independent fecundity
(d = 0) is shown as a blue dashed line. The black dotted line show the centre of
the population where the environmental shift occurs. Parameters: σ = 8, l = 2 and
d = 0.1,µ = 0.0002, µsd = 0.05, M = 80 and N = 100.
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Figure 3.8: The shift in the midpoint of the average cline as a function of time.
Each point is the average over 25 independent simulations. The purple dashed
represent no shift at all from the environmental change in the habitat. The red lines
in the plot shows the 10% (bottom) and 90% quantiles (top). Parameters: σ = 8,
l = 2 ,d = 0.1, µ = 0.0002, µsd = 0.05, M = 80 and N = 100.
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Discussion and Conclusions

Different forms of sexual selection are present in biological populations. An exam-
ple is L. saxatilis where both assortative mating and size-dependent fecundity of
males are observed (Johannesson et al., 1995; Erlandsson and Rolán-Alvarez, 1998;
Hintz Saltin et al., in press; Johannesson and Butlin, personal communication).
This thesis aims to investigate the effects these types of sexual selection have on
clines. To this end, two models are created to resemble the empirical data presented
by Johannesson and Butlin (personal communication) and Hintz Saltin et al. (in
press).
The first results presented in this thesis are obtained by simulating the model anal-
ysed by Slatkin (1973) but with a finite population size. Note that the two models
presented in this thesis reduce to the model by Slatkin (1973) in following limits:
selection is weak (σ is large), no mutations occur (µ = 0), no assortative mating
(σs → ∞), and fecundity of males is independent of size (d = 0). To validate the
simulated results and evaluate in which limits the theory is valid, the slope of sim-
ulated clines is compared to the theoretical slope derived by Slatkin (1973). In this
derivation by Slatkin (1973) it is assumed that both selection and migration are
weak and that the local population size is infinitely large (N →∞) as well as that
the population is continuously distributed. As expected this thesis finds that when
the population is divided into discrete demes and ordered in a one dimensional array
the theory for the midpoint of the cline is valid, provided that the limits mentioned
above are fulfilled, as well as the selection is sufficient weaker than migration (but
not too weak).
The model by Slatkin (1973) is then extended to a model with assortative mat-
ing. However no shift in the average midpoint position of the cline is observed in
this model. This is because the model is perfectly symmetric since the preference
of females among males is exactly the opposite of the preference of males among
females.
In addition to assortative mating there is another type of sexual selection present
in L. saxatilis: size-dependent male fecundity. The use of this model is motivated
by recent findings by Hintz Saltin et al. (in press), that are confirmed in this thesis
(see Appendix B). In this model a shift of the midpoint of a cline occurs during a
transient state, which lasts for up to 105 generations. This is a longer time period
than the time that has past since the end of the last glacial period, when L. saxatilis
started to spread in Sweden. Thus it is likely that L. saxatilis is in a transient state
and the shift of the midpoint of a cline may be significant according to the model
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results shown in this thesis.

Indeed, in the transient state the effective selection for larger individuals is effectively
stronger in the environment where both natural and sexual selection favours large
individuals, than selection for smaller individuals in the opposite part of the habitat.
Thus the model results are effectively captured by a model with asymmetric selec-
tion pressure in the two parts of the habitat, such as the model by Haldane (1948).
However, the model studied here allows for understanding the temporal dynamics
of the interplay between natural and sexual selection, resulting in an intriguing evo-
lution of cline patterns over time. Indeed, as this thesis shows the midpoint of the
cline is shifted from the geographical position of the environmental change but only
during a transient state. The shift grows initially in its magnitude, reaching a maxi-
mum value, and thereafter it progressingly decays towards zero. The reason for why
the shift decays towards zero is the following. Recall that, due to sexual selection
favouring large individuals, the phenotype values obtained at the steady state are
larger than the optimal phenotype values set by natural selection. Therefore natu-
ral selection against small individuals in the environment, where large individuals
are favoured becomes weaker than natural selection against large individuals in the
opposite environment. However, sexual selection increases the effective selection
pressure against small individuals in their disfavoured environment, and decreases
the effective selection pressure against large individuals in their disfavoured envi-
ronment. This joint effect of natural and sexual selection of the system, gives rise
to effectively similar selection pressures in the two environments in the steady state.
As a result, effective gene flow in the steady state becomes symmetric between the
opposite environments, and so the shift of the position of the average midpoint of a
cline from the geographic position of the environmental change becomes negligible.

The models presented in this thesis can be modified further to account for more
complex and biologically relevant scenarios. For example, the model where male
fecundity depends on size that is analysed here, does not address the evolution of
clines in other traits that are under natural selection. To address this question it
is necessary to add more traits to the model. To this end, two extreme cases can
be considered. The first case is to assume that the additional trait is completely
unlinked to the size trait. In this case the cline in this additional trait and the
cline in size are completely independent and thus the cline in size is expected to be
shifted in relation to this new trait. The shifts of the two clines will therefore be
different. The second extreme case is when this additional trait is completely linked
to size trait. In this case the cline in size and the cline in this additional trait are
fully linked and no difference between them is expected (see Kruuk et al. (1999) and
Hare and Avise (1996) for models with multiple traits but without sexual selection).
It still remains to be explained what happens for arbitrary levels of genetic linkage
(between the two extreme cases mentioned above). It is especially important to
find at what level of linkage there will be a significant difference in the position of
the clines in the different traits. This will allow to make a direct comparison to
the corresponding linkage estimates from the soon-to-come empirical data, thanks
to the ongoing genetic studies within the Centre for Marine Evolutionary Biology,
University of Gothenburg. Finally, in the models analysed here it is assumed that
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the strength of selection and the optimal phenotypes are constant during time. This
is, however, not the case in nature where the environment is changing over time.
The effect of changes in environmental conditions on the evolution of clines remains
to be understood in further studies.
In conclusion, the model analysed in the thesis seems a good candidate to explain
the empirically observed shifts in the size clines in L. saxatilis, but as discussed
in this chapter the finding needs to be further supported by additional analyses of
clines in other traits tightly or loosely linked to the size trait. This remains to be
analysed in a future work.
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A
Mathematical derivations

A.1 Slope of a cline

In this section the theoretical slope of a cline for the model described by Slatkin
(1973) is derived. This work is derived following in a similar way as Haldane (1948)
derived the slope of a cline but with the model presented by Slatkin (1973). First
of all the model that is analysed in this section and is presented by Slatkin (1973)
is described. The assumptions that are made in the model are:

• The number of individuals, denoted N , is assumed to be equal in all demes at
the start of each generation.

• Individuals are diploid and assumed to have one locus under selection. This
locus have two possible alleles (A and a) so each individual have one of the
genotypes AA, Aa or aa.

• The environmental conditions vary in the habitat. At the midpoint of the
habitat there is an abrupt change of the environmental conditions. On the left
side of this change the allele A is beneficial and on the right side the allele a
is beneficial for individuals to have.

• Generations are assumed to be discrete and non-overlapping.

• In each generation, it is assumed that the following process occur:

1. maturation and migration,
2. selection,
3. death and beginning of the next generation.

• Locally within each deme the number of surviving offspring to maternity is
assumed to be N . The chance to survive to maternity is assumed to be inde-
pendent of genotype and location of an individual.

• Individuals may migrate from the habitat they are born in. The squared
average dispersal distance is denoted l and the dispersal is symmetric in both
directions.
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A. Mathematical derivations

• Natural selection is assumed to occur after migration. The natural selection
considered is viability selection, where the probability for an individual to
survive to mate is proportional to its fitness. The fitness of the different
genotypes at deme number k is given in Table A.1.

hhhhhhhhhhhhhhhhhhDeme position
Genotype

AA Aa aa

k < M+1
2 1 + s 1 1− s

k > M+1
2 1− s 1 1 + s

Table A.1: The selective pressure for the three genotypes in the different parts of
the population. Here s is the selection parameter that determines the strength of
selection.

Furthermore, in the mathematical analyses of the system the two additional as-
sumptions are made:

• The population lives in an infinite two dimensional space and the population
density is equal throughout this space.

• The local population size is infinitely large, N →∞.

The frequency of allele A at position x at time t is denoted by p(x, t) and Qx(δx) is
the probability that an individual migrates to the position x from x+ δx in time δt.
It is assumed that migration is not directional so Qx is symmetric around 0. Only
considering migration the frequency of allele A at time t at position x can then be
described by the equation:

p(x, t) =
∫ ∞
−∞

Qx(δx)p(x− δx, t− δt)dδx. (A.1)

Expanding p(x− δx, t− δt) in a Taylor series gives

p(x−δx, t−δt) = p(x, t)−δx∂p
∂x
−δt∂p

∂t
+ δx2

2
∂2p

∂x2 +δxδt ∂
2p

∂x∂t
+ δt2

2
∂2p

∂t2
+. . . . (A.2)

Inserting Equation (A.2) in Equation (A.1) and using the assumption that Qx is
symmetric gives

p(x, t) = p(x, t)− δt∂p
∂t

+ δt2

2
∂2p

∂t2
+ ∂2p

∂x2

∫ ∞
−∞

δx2

2 Qx(δx)dδx+ . . . . (A.3)

It is now assumed that Qx is a Gaussian distributed and defined as

Qx(δx) = 1√
l
√

2π
e−

δx2
2l , (A.4)
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where sigma is the standard deviation. Using this definition Equation (A.3) is
rewritten to

p(x, t) = p(x, t)− δt∂p
∂t

+ δt2

2
∂2p

∂t2
+ ∂2p

∂x2

∫ ∞
−∞

δx2

2
1√
l
√

2π
e−

δx2
2l dδx+ . . .

= p(x, t)− δt∂p
∂t

+ δt2

2
∂2p

∂t2
+ l

2
∂2p

∂x2 + . . . .

(A.5)

It is now time to focus on how selection affects the frequency of allele A. For x > 0
the change in frequency in time δt can be written as

p(x, t) = sp(x, t− δt)2 + p(x, t− δt)
1 + s(2p(x, t− δt)− 1) . (A.6)

Assuming s is small Equation (A.6) is approximated as

p(x, t) ≈ p(x, t− δt) + s(p(x, t− δt)− p(x, t− δt)2). (A.7)

The same is done for x < 0 giving the following approximation

p(x, t) ≈ p(x, t− δt)− s(p(x, t− δt)− p(x, t− δt)2). (A.8)

Inserting the change in frequency of allele A due to selection as described by Equa-
tion (A.7) in Equation (A.5) gives:

p(x, t) =p(x, t− δt) + s(p(x, t− δt)− p(x, t− δt)2)

− δt∂p
∂t

+ δt2

2
∂2p

∂t2
+ l

2
∂2p

∂x2 + . . . .
(A.9)

It is now assumed that the system is in an equilibrium where the frequency of allele
A is kept constant over time and thus p(x, t) = p(x, t − δt). Since the frequency
of allele A is kept constant all derivatives over time would be be 0. With this
assumption Equation (A.9) can be rewritten as

p(x, t) = p(x, t) + s(p(x, t)− p(x, t)2) + l

2
d2p

dx2 . (A.10)

The same approach is done for x < 0 and inserting Equation (A.8) in Equation
(A.5) gives:

p(x, t) = p(x, t)− s(p(x, t)− p(x, t)2) + l

2
d2p

dx2 . (A.11)
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Reordering Equation (A.10) and (A.11) gives the two differential equations:

∂2p

∂x2 = −2
l
s(p(x, t)− p(x, t)2), (A.12)

∂2p

∂x2 = 2
l
s(p(x, t)− p(x, t)2). (A.13)

To solve these equations the variable q = dp
dx

is introduced. Equation (A.12) is then
rewritten as:

q
dq

dp
= −2

l
s(p(x, t)− p(x, t)2), (A.14)

∫
qdq = −

∫ 2
l
s(p(x, t)− p(x, t)2)dp, (A.15)

1
2q

2 = −2
l
s(p(x, t)

2

2 − p(x, t)3

3 ) + C, (A.16)

q2 = −4
l
s(p(x, t)

2

2 − p(x, t)3

3 ) + 2C. (A.17)

The border condition that when x → ∞ p(x, t) → 1 and q → 0 is then used. This
gives that C = s

3l and

q2 = − 4
σ2 s

(
p(x, t)2

2 − p(x, t)3

3 − 1
6

)
, (A.18)

dp

dx
=

√√√√−4
l
s

(
p(x, t)2

2 − p(x, t)3

3 − 1
6

)
. (A.19)

The same is done for Equation (A.13) that is valid for x < 0 giving the equation

dp

dx
=

√√√√4
l
s

(
p(x, t)2

2 − p(x, t)3

3

)
. (A.20)

At x = 0 (the midpoint of the cline) Equation (A.19) and Equation (A.20) must
have the same value so

− 4
l
s

(
p(0, t)2

2 − p(0, t)3

3 − 1
6

)
= 4
l
s

(
p(0, t)2

2 − p(0, t)3

3

)
, (A.21)

1
6 =

√√√√2
(
p(0, t)2

2 − p(0, t)3

3

)
. (A.22)
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Equation A.22 has exactly one solution where p(0, t) is between 0 and 1 and that
is p(0, t) = 1

2 . Using this value in Equation (A.19) the slope of the midpoint of the
cline becomes

dp

dx
=

√√√√−4
l
s

(
(1/2)2

2 − (1/2)3

3 − 1
6

)
,

=
√
s

l
(2
3 + 1

6 −
1
2),

=
√
s

3l .

(A.23)

As expected this is the same theoretical slope as found by Slatkin (1973). A com-
parison between the result in from Equation (A.23) and simulated results are shown
and discussed in the main text.

A.2 Analyse of the polymorphic steady state

A.2.1 Conditions for the existence of a polymorphic steady
state

In this section the conditions for the existance of a polymorphism in the habitat of
small individuals in the model where male fecundity dependes on size (see Section
2.4) are analysed. Here it is also assumed that the population in the model consists
of one single well mixed population.
Let the frequency of gametes that carry genotype A and are produced in generation
t be denoted γm(t) for males and γf (t) for females. The frequency of the different
genotypes in male and females in generation t+ 1 is written as

pm(AA, t+ 1) =γm(t) ∗ γf (t),
pm(Aa, t+ 1) = (γm(t) ∗ (1− γf (t)) + (1− γm(t)) ∗ γf (t)) ,
pm(aa, t+ 1) =(1− γm(t) ∗ (1− γf (t)),
pf (AA, t+ 1) =γm(t) ∗ γf (t),
pf (Aa, t+ 1) = (γm(t) ∗ (1− γf (t)) + (1− γm(t)) ∗ γf (t))) ,
pf (aa, t+ 1) =(1− γm(t)) ∗ (1− γf (t)).

v (A.24)

From Equation (A.24) it is possible to see that the frequency of genotypes in the
next generation are the same in both males and females.
To have a polymorphic steady state selection and the increased fecundity of males
must work in opposing directions. From this observation the fitness ωz of phenotype
z is assumed to be:
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ωAA ωAa ωaa
1− s 1 1 + s,

and the fecundity ω(A)
z of males with phenotype z is assumed to be:

ω
(A)
AA ω

(A)
Aa ω(A)

aa

1 1− d
2 1− d.

In every generation individuals produce gametes that form the next generation. The
number of gamets an individual creates depends on the fitness of that individual.
The number of gamets males produce do also depend on their fecundity. The fre-
quency of male gametes with genotype A in generation t+ 1 is written as

γm(t+ 1) =
ωAAω

(A)
AApm(AA, t) + ωAaω

(A)
Aa

1
2pm(Aa, t)

ωAAω
(A)
AApm(AA, t) + ωAaω

(A)
Aa pm(Aa, t) + ωaaω

(A)
aa pm(aa, t).

(A.25)

The frequency of female gametes with genotype A in generation t+ 1 is written as

γm(t+ 1) = ωAApf (AA, t) + ωAapf (Aa, t)
ωAApf (AA, t) + ωAapf (Aa, t) + ωaapf (aa, t).

(A.26)

Combining Equation (A.24) with Equation (A.25) and Equation (A.26) gives the
recursive equations for how the frequency of male and female gametes with genotype
A changes over time:

γf (t+ 1) =
ωAAγmγf + ωAa

1
2 (γm(1− γf ) + (1− γm)γf )

ωAAγmγf + ωAa (γm(1− γf ) + (1− γm)γf ) + ωaa(1− γm)(1− γf )
,

(A.27)

γm(t+ 1) =
ωAAω

(A)
AAγmγf + ωAaω

(A)
Aa

1
2 (γm(1− γf ) + (1− γm)γf )

ωAAω
(A)
AAγmγf + ωAaω

(A)
Aa (γm(1− γf ) + (1− γm)γf ) + ωaaω

(A)
aa (1− γm)(1− γf )

.

(A.28)

The next step is to find the steady state where γ∗m(t+1) = γ∗m(t) and γ∗f (t+1) = γ∗f (t).
Assuming the system is in a steady state eqaution A.27 can be written as:

ωAAγ
∗
mγ
∗
f + ωAa

1
2

(
γ∗m(1− γ∗f ) + (1− γ∗m)γ∗f

)
ωAAγ∗mγ

∗
f + ωAa

(
γ∗m(1− γ∗f ) + (1− γ∗m)γ∗f

)
+ ωaa(1− γ∗m)(1− γ∗f )

− γ∗f = 0.

(A.29)
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Inserting values for ωz gives

(1− s)γ∗mγ∗f + 1
2

(
γ∗m(1− γ∗f ) + (1− γ∗m)γ∗f

)
(1− s)γ∗mγ∗f +

(
γ∗m(1− γ∗f ) + (1− γ∗m)γ∗f

)
+ (1 + s)(1− γ∗m)(1− γ∗f )

− γ∗f = 0.

(A.30)
Reordering equation A.30 gives

γ∗m = γ∗f
(
1 + 2s− 2γ∗f

)
. (A.31)

The expression for γ∗m from equation A.31 is inserted in equation A.28 giving

(
(1− s)

(
γ∗f
(
1 + 2s− 2γ∗f

))
γ∗f

+ (1− d

2)1
2
((
γ∗f
(
1 + 2s− 2γ∗f

))
(1− γ∗f ) + (1−

(
γ∗f
(
1 + 2s− 2γ∗f

))
)γ∗f

))/
(

(1− s)
(
γ∗f
(
1 + 2s− 2γ∗f

))
γ∗f

+ (1− d

2)
((
γ∗f
(
1 + 2s− 2γ∗f

))
(1− γ∗f ) + (1−

(
γ∗f
(
1 + 2s− 2γ∗f

))
)γ∗f

)
+ (1 + s)(1− d)(1−

(
γ∗f
(
1 + 2s− 2γ∗f

))
)(1− γ∗f )

)
−
(
γ∗f
(
1 + 2s− 2γ∗f

))
=0.

(A.32)

Equation A.32 is expanded in a Taylor series in s. With the assumption that s� 1
all terms of the second order or higher are neglected.

1
2
γ∗f
(
d− dγ∗f

)
1− d+ dγ∗f

+ 2γ∗f
(
γ∗f − 1

)
s+ · · · = 0 (A.33)

Equation A.33 has the three solutions for the frequency of female gamets at the
steady state

γ∗f,1 = 0,
γ∗f,2 = 1,

γ∗f,3 = 1− 4s− d
4sd .

(A.34)

Since 0 ≤ γ∗f ≤ 1 it is concluded that there exists a polymorphic steady state when
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d

4 ≤ s ≤ d

4− 4d. (A.35)

The Equation (A.31) is now used to find the frequency of male gametes carrying
allele A at the steady state

γ∗m =
(

1− 4s− d
4sd

)
∗
(

1 + 2s− 2
(

1− 4s− d
4sd

))
(A.36)

= d− 4s+ 4ds
8ds + 4d− 16s+ 16ds

8d2 (A.37)

With the frequency of gametes with genotype A, which both males and females con-
tribute with, the frequency of the genotype A in adult individuals can be calculated.

p(A) = γfγm + 1
2 (γf (1− γm) + (1− γf )γm)) (A.38)

= 3d− 12s+ 12ds
16ds + 4d− 16s+ 16ds

16d2 (A.39)

In this section the conditions for when a polymorphic steady state forms and the
frequency the allele A at this steady state is found. These results agree well with
simulations (not shown in this thesis). In the next section the stability of the steady
states that have been found is considered.

A.2.2 Stability analysis of the steady states

The stability of the three steady states found in the previous section is calculated
in this section. The first step in the stability analysis is to denote Equation (A.27)
and Equation (A.28) from the previous section by

γm(t+ 1) = f(γm(t), γf (t)) (A.40)
γf (t+ 1) = g(γm(t), γf (t)) (A.41)

The Jacobian matrix for this system at the stationary state (γ∗m, γ∗f ) is

A =


∂f
∂γm

∣∣∣
γ∗
m,γ

∗
f

∂f
∂γf

∣∣∣
γ∗
m,γ

∗
f

∂g
∂γm

∣∣∣
γ∗
m,γ

∗
f

∂g
∂γf

∣∣∣
γ∗
m,γ

∗
f

 . (A.42)

The stability of the system can be determined through the eigenvalues of the Jaco-
bian matrix in Equation (A.42). The eigenvalues of the steady state (γ∗m,1 = 0, γ∗f,1 =
0) are:
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λ1,1 = 0,

λ2,1 = 3d− 4
4(d− s+ ds− 1) .

(A.43)

Assuming that both s and d are positive and less than 1 it is concluded that steady
state (γm = 0, γf = 0) is stable when s > d

4−4d . For the next steady state (γm,2 =
1, γf,2 = 1) the eigenvalues is

λ1,2 = 0,

λ2,2 = d− 4
4s− 4 .

(A.44)

This steady state is stable when s < d
4 . The final non trivial steady state is analysed

in the same way. After the eigenvalues are computed they are expanded in a Taylor
series in s. Since it is assumed that s � 1 all non-linear terms are neglected. This
gives the following numerically the approxmated eigenvalues

λ1,3 ≈ 0.42 + s
(

2.38− 4.76
d

)
,

λ2,3 ≈ 1.22− s
(

0.88− 1.76
d

)
.

(A.45)

There exists a steady polymorphic state when the absolute value of both eigenvalues
is less than 1.

IX



A. Mathematical derivations

X



B
Statistical analysis

B.1 Statistical analysis of data from laboratory
trials

The idea of a model where male fecundity depends on size originates from laboratory
experiments performed at the Linnaeus Centre for Marine Evolutionary Biology,
University of Gothenburg (Hintz Saltin et al., in press). In this experiment multiple
juvenile virgin males are captured and raised. Each matured female is placed in a
separate aquarium and assigned two, five or ten males to mate with. Males are kept
in aquari for three months and mate frequently with their assigned female. All males
are then removed and females are left to produce offspring for a year. The offspring
that are produced during this year are genotyped and assigned a father. From this
experiment data concerning the size of each male and female and the number of
offspring they produced are collected. Using this data Hintz Saltin et al., (in press)
found that larger males produced more offspring. This data are examined in this
thesis as well in a slightly different way compared to Hintz Saltin et al., (in press).
The results found with the statistical analyses preformed in this thesis corresponds
well with the result found by Hintz Saltin et al., (in press).
The data that are available from this laboratory trial consist of size of all males and
females in the trial and the number of offspring each female and male produced.
When using data regarding males only trials that started with ten males are con-
sidered in this analysis. The reason for this is to get a higher statistical power. All
data that concern females are kept. All males that did not produce any offspring
are discarded from the dataset. They are discarded since it can be other factors
than size that cause their inability to produce any offspring. Missing observations
are also discarded as well as all data that are derived from equations using missing
data (for example the calculation of proportional size).
Two different statistical tests are used to conclude if the number of offspring depends
on a given trait (see traits below) and the number of produced offspring. For all
traits a pooled χ2-test is conducted. An illustration of the χ2-test for the depen-
dency between female size and number of offspring is shown in Figure B.1 and an
illustration of the χ2-test for the dependency between male proportional size and
the number of offspring is shown in Figure B.2. The null hypothesis that are used
in all trials is that the given trait do not affect the number of offspring and thus the
number of offspring should only depend on the number of individuals in each group.
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The following traits are investigated:

• The size of female size. In this test females are divided into two groups de-
pending on their size, (small and large). This test resulted in a p-value 0.67.
This test is illustrated in Figure B.1.

• The number of males the female could mate with. This χ2 test gave a p-value
of 0.007 where females that had two males produced much fewer offspring than
expected and females with five males produced much more than expected. The
same test is then done with only the two groups of females that had either five
or ten males. This test resulted in a p-value of 0.053.

• The mean size of males the female mated with. Here females are divided into
two groups depending on the mean size of the males they mated. This test
resulted in a p-value of 0.70.

• The largest male the female mated with. In this test females are divided into
two groups depending on the largest male they mated with. This test resulted
in a p-value 0.15. Here females that had a largest male, which was smaller,
produced more offspring than expected.

• The largest male the female mated with. In this test females are divided into
two groups depending on the largest male they mated with. This test resulted
in a p-value 0.15. Here females that had a largest male, which was smaller,
produced more offspring than expected.

• The size of a male in proportion to other males in the group. In this test
males are divided into three groups depending on their size, (small, medium
and large). This test resulted in a p-value of 0.031. This test is illustrated in
Figure B.2.

This section presented the laboratory trial that were conducted at Linnaeus Centre
for Marine Evolutionary Biology, University of Gothenburg by Hintz Saltin et al. (in
press). Statistical tests are conducted and as expected it is found that the number
of offspring is not independent of size. The next section presents how the data are
used to estimate parameters to the model where male fecundity depends on males
size that are presented in the main text in Section 2.4.

B.2 Estimating parameters of the model

In this section the empirical data from the laboratory trials conduced by (Hintz Saltin
et al., in press) are used to estimate parameters to the model where male mating
fecundity increases with size (see Section 2.4 in the main text). The model that
determines the fecundity of male i is as follows

φi = 1− d θ̂
(crab) − ẑ(male)

i

θ̂(crab) − θ̂(wave)
. (B.1)
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Figure B.1: A graphical illustration of the χ2-test for the dependency between
female size and number of offspring. The null hypothesis is that the number of
offspring is independent of female size. Thus the number of offspring should be
equally distributed between large and small females. The χ2-test resulted in a p-
value of 0.67.
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(a) Number of offspring over male pro-
portional size. The black dashed lines
show the division between the three
groups in the test.
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Figure B.2: A graphical illustration of the χ2-test for the dependency between
male proportional size and number of offspring. The null hypothesis is that the
number of offspring is independent of male proportional size. Thus all males that
mated with a specific female should sire the same number of offspring. The χ2-test
resulted in a p-value of 0.031.
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Here ẑ(male)
i is the phenotype of male number i, d is the fecundity-size parameter

θ̂(crab) is the optimal phenotype in the habitats that are crab exposed and θ̂(wave) is
the optimal phenotype in the wave exposed habitat. In this equation there are three
unknown parameters: d, θ̂(crab) and θ̂(wave). The aim is to estimate these parameters
with the empirically observed data. The first step is to rewrite Equation (B.1) as
follows

φi = 1− d θ̂(crab) − ẑi
θ̂(crab) − θ̂(wave)

= d

θ̂(crab) − θ̂(wave)

 θ̂(crab) − θ̂(wave)

d
− θ̂(crab) + ẑi



∝ θ̂(crab) − θ̂(wave)

d
− θ̂(crab) + ẑi

= β + ẑi.

(B.2)

Here β = θ̂(crab)−θ̂(wave)

d
− θ̂(crab). The next step is to assume that the mating is a

multinomial process where each trial consist of the female in the group selecting
one male to mate and produce an offspring with. Here the probability of selecting
a given male depends on the size of that male. The probability to observe exactly
the same configuration of offspring as in the empirical data is

p(observed|β) =
N(f)∏
i=1

ni!
N

(m)
j∏
j=1

p
xi,j
i,j

N
(m)
j∏
j=1

p
xi,j
i,j . (B.3)

Here N (f) is the number of females (same as number of groups), N (m)
j is the number

of males female j has, ni is the number of offspring female i produced, xi,j is the
number of offspring female i and male j produced and pi,j is the probability for male
j to sire offspring from female number i under the given model. pi,j is defined as:

pi,j = φi
N

(m)
j∑
k=1

φk

(B.4)

Here φi is defined in Equation (B.2). The value on β that maximize Equation (B.3)
is then found. The obtained likelihood as a function of β is shown in Figure B.3.
Using the empirical data θ̂(crab) is defined as mean(ẑ(crab)

i ) where ẑ(crab)
i are all males

that are larger than the average phenotype, that is all ẑ(male)
i > mean(ẑ(male)

i ). In
the same way θ̂(wave) is defined as the mean of all individuals that are smaller than
the average phenotype, that is all ẑ(male)

i < mean(ẑ(male)
i ). With the estimated
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values of β, θ̂(crab) and θ̂(wave) the value of d is calculated. The estimated values are
β = 0.186,θ̂(crab) = 5.08 and θ̂(wave) = 4.08. These values give a d value of 0.194.
This d value is evaluated with a pooled χ2-test in a similar way as the previous
section. But here the null hypothesis is that the expected number of offspring a
given male contributes with is proportional to the fecundity of that male given by
Equation (B.1). The null hypothesis could not be rejected with a p-value of 0.085.
The χ2 is illustrated in Figure B.4.
The system is then transformed so it can be compared to the simulations conducted
in this thesis. The system is transformed so that ẑi = zi ∗α+ c. The values of θ̂(crab)

and θ̂(wave) are transformed in a similar way. Giving the follwin equation for φi,

φi = 1− d
θ(crab)+c

α
− zi+c

α
θ(crab)+c

α
− θ(wave)+c

α

= 1− d θ(crab) − zi
θ(crab) − θ(wave) .

(B.5)

Equation (B.5) shows that the optimal phenotypes can be transformed in any pos-
sible way while the value and the d value stays the same. The d value that is found
with the empirical data can therefore be used directly in simulations with different
values of θ̂.
In this section a value for the d parameter is estimated. It can be concluded that
the model presented where male fecundity depends on size can not fully explain the
observed data. However this model still gives a better explanation to the data than
random mating.
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Figure B.3: The probability to observe the empirical data under the model in
Equation (B.3) as a function of β.

0

5

10

15

20

25

0.10 0.15 0.20 0.25
Male size (% of group)

O
ffs

pr
in

g

Observed       Expected

(a) Number of offspring over male pro-
portional size. The black dashed lines
show the division between the three
groups in the test.
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Figure B.4: A graphical illustration of the χ2-test for the dependency between male
proportional size and number of offspring. The null hypothesis is that the expected
number of offspring is given by the mating model described in equation B.3 with
parameters d = 0.194, θ̂(crab) = 5.08 and θ̂(wave) = 4.06. The null hypotheses could
not be rejected with a p-value of 0.085.
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