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Abstract

Recent developments in experimental techniques have made it possible to use
magnetic fields to tune interactions between trapped cold atoms with different
spin components allowing for detailed experimental investigations of the prop-
erties of quantum mechanical few-body systems. In this thesis we investigate
the properties of two-component cold atoms trapped in a harmonic oscillator
potential with a zero range interaction of arbitrary strength between the differ-
ent species. In the limit of infinite interaction the atoms will tend to avoid each
other. This is reminiscent of the Pauli principle and we will address differences
and similarities to a system of identical fermions. Exact diagonalization of the
Hamiltonian in a harmonic oscillator basis is used to obtain the eigenvectors and
eigenvalues of the system and we also employ numerical methods borrowed from
nuclear physics to generate effective interactions using unitary transformations.
This method proves to be very effective for improving the convergence and the
computation time is significantly decreased even for very strongly interacting
systems.
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Chapter 1

Introduction

In recent years the development of new experimental tools has made it possible
to cool down atoms to temperatures very close to zero kelvins. When atoms
are at such low temperatures they exhibit very interesting properties since their
quantum mechanical properties become significant. In particular, the atoms
statistics becomes relevant. For atoms obeying Fermi-Dirac statistics the Pauli
principle would become important meaning that two atoms can not be in the
same quantum state. For atoms obeying Bose-Einstein statistics, atoms will
instead tend to all occupy the same lowest quantum state. This phenomenon
is called a Bose-Einstein condensate[11] and was discovered experimentally in
1995[1]. This was the starting point of the new field of ultracold atoms,
which has recently been under intensive study. These systems are very interest-
ing since they are easy to control experimentally, especially because of the so
called Feshbach resonance which allows for the experimenter to basically tune
the interaction strength to any desired value, see appendix A or [4]. This al-
lows for detailed investigations of quantum mechanical phenomena and one can
study fundamental properties of few-body physics with possible applications in
molecular physics, condensed matter physics and nuclear physics. In this thesis
we will investigate properties of a special type of system of trapped cold atoms
consisting of two separated groups of atoms obeying Fermi-Dirac statistics in-
side each group and with an arbitrarily strong interaction between atoms from
different groups.

1.1 Experimental techniques

For the quantum mechanical behaviour of atoms to become important the atoms
must typically be cooled down to temperatures at the order of µK . The first
step is usually laser cooling[8], where a laser is tuned to match an excitation
level of the atom. Since the laser is Doppler shifted in the atoms’ reference
frame, it is possible to make the laser’s frequency match a resonance frequency
only when the atom is moving towards the laser and then the absorbed pho-
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tons momentum will always slow down the atom instead of speeding it up. To
reach even colder temperatures other methods must be employed. The atoms
vibrational energy will have a distribution and thus there will be some atoms
that are more energetic than others. Evaporative cooling utilizes this fact[7],
where one makes the more energetic atoms escape the trapping potential and
since their energy is above the average energy of the atoms the mean energy of
the atoms will decrease.

1.2 Two particles with short-range interaction

The system of two distinguishable particles in a harmonic trap potential and
with a short range interaction, where the interaction is modelled as a delta
function (zero range) interaction gδ(x1−x2), has been well studied both experi-
mentally and theoretically[15, 3]. This system is particularly interesting since it
can be solved analytically both in one, two, and three dimensions. This model is
often called the Busch model after the seminal paper by Thomas Busch[3]. The
energies of the even parity states are given by the solutions to the transcendental
equation

Γ(−e/2 + 1/4)

Γ(−e/2 + 3/4)
= −2

g
, (1.1)

where g is the interaction strength and e is in the units of h̄ω. Since the
interaction is zero range the odd parity states are not affected and will be given
by the odd parity eigenstates of the non-interaction part of the Hamiltonian.
The energy spectrum as a function of g is shown in Fig. 1.1. The energy here is
given in harmonic oscillator quanta h̄ω and thus the energy spectrum without
interaction is at half-integer values.
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Figure 1.1: Energy spectrum of a system of two distinguishable fermions with a
zero-range interaction. The odd parity states are not affected by the interaction.
Only intrinsic excitations are considered, i.e. we assume that the center of mass
is stationary.

Moreover, this is the intrinsic energy spectrum where the center of mass mo-
tion is considered static so thus an extra energy shift of h̄ω

2 is omitted. The

interaction strength is given in units of [bh̄ω] where b =
√

h̄
mω is called the

oscillator length. These conventions are used throughout the thesis. At first,
this was just an interesting example of an analytically solvable quantum system,
but this system has now been realized in experiments by trapping cold lithium
atoms using lasers and magnetic fields. The two particles are distinguishable by
having different spin components. By applying an external magnetic field the
two particles will be in two different hyperfine states with different magnetic
moments. This gives rise to a Feshbach resonance which can be used to tune
the interaction strength to any desired value, see appendix A or [4]. The parti-
cles are in a trapping potential that can be well approximated with a harmonic
potential, see appendix B for more details. Furthermore, the trap is asymmetric
and thus the potential has two different frequencies: ω‖ and ω⊥. The harmonic
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potential consequently has the form

V (x) =
mω2
‖

2
x2

1 +
mω2
⊥

2
(x2

2 + x2
3). (1.2)

The energy spacings in a quantum harmonic oscillator are given by h̄ω, thus
if ω⊥ � ω‖ the energy spacings in the perpendicular direction will be much
greater and we could effectively consider the dynamics of the system as being
one dimensional. In other words, the full Hilbert space is spanned by the prod-

uct states |ψ(‖)
n 〉 ⊗ |ψ(⊥)

m 〉 where |ψ(‖)
n 〉 are eigenstates for the longitudinal part

of the potential and |ψ(⊥)
m 〉 are eigenstates of the transverse part. We will work

in the smaller space spanned by |ψ(‖)
n 〉 ⊗ |ψ(⊥)

0 〉. This approximation should be
valid when finding the eigenstates (to the full Hamiltonian including the inter-
action) corresponding to the lower eigenenergies since the expansion coefficients
with m > 0 should be negligible. However when looking at higher excited states
with energies at the same order of magnitude as the energy spacing in the per-
pendicular direction these three-dimensional effects has to be taken into account.

When the interaction goes to positive infinity, the particles will tend to avoid
each other. This is also what the Pauli principle states will happen in a system of
identical fermions and one might ask the question how similar this system is to a
system of two identical fermions. Indeed, the energy spectrum coincides with the
energy spectrum of two identical fermions and this can be shown analytically[3].
This is called fermionization. The main topic of this thesis will be to address
the differences and similarities of a fermionized few-body system and a system
of an equal number of non-interacting identical fermions. It is also interesting
to note in Fig. 1.1 that also when g → −∞ the energy spectrum coincides with
the energy spectrum of two identical fermions (except for an additional state
with energy diverging to −∞) which is not as easy to explain. In Fig. 1.2 the
probability density of the ground state (on the repulsive side) as a function of
the two particles absolute position is plotted for several different values of g and
compared to the probability density of the non-interacting state. It is evident
that the probability density approaches the density of the non-interacting state.
When studying systems with more particles we will study the pair correlation
function which is a function of two variables and which measures the correla-
tions between the two subsystems. The pair correlation function reduces to the
total probability density in the case of two particles.

In Fig. 1.3 the relative coordinate wavefunction is shown for different values
of g for the ground state on the repulsive side. Here we note that the wave-
function does not approach the non-interacting state as g → ∞. Indeed, the
non-interacting state is the totally antisymmetric state for two particles while
the ground state, being the ground state of two distinguishable particles, is a
bosonic (symmetric) state. However, in Fig. 1.4 the absolute square of the
wavefunction is shown and indeed this one approaches the probability density
for the non-interacting state. This is not unexpected since it is the probability
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density that is directly observable, not the wavefunction itself.
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Figure 1.2: Total probability density of the two-particle system in absolute
coordinates for the (repulsive side’s) ground state as it changes through the
spectrum as a function of g. At g → ±∞ it coincides with the probability
density fo the lowest non-interacting state which is shown in the middle.
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Figure 1.3: Relative wavefunction for the two-particle system for the (repulsive
side) ground state as it changes through the spectrum as a function of g. The
dashed lines are for the first non-interacting state.
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Figure 1.4: Relative probability density for the two-particle system for the
ground state at strong repulsive interaction (−1/g = 0.05). The dashed lines is
for the first non-interacting state.

In this thesis we will consider a generalization of this two-particle system
which consists of two separate groups of fermions. In each group the fermions
are indistinguishable but particles from different groups are considered distin-
guishable. This system is realized in experiments by using cold atoms in more
or less the same settings as the two-particle system. Since the experiments are
carried out with particles which are distinguished by having different spin com-
ponents we will denote the number of particles in each subsystem n↑ and n↓,
respectively. The total number of particles will thus be nt = n↑+n↓. Moreover,
there is an interaction between particles from different groups but no interaction
between the indistinguishable particles. The interaction arises though a Fesh-
bach resonance in the same way as the interaction in the two-particle system.
The applied magnetic field will put particles with different spin components
in different hyperfine states. Only particles in different hyperfine states will
interact. The interaction will be the same short range interaction as in the an-
alytically solvable two-particle case. There is also the same external harmonic
trapping potential for all particles. Thus the Busch model is the special case
n↑ = n↓ = 1. We will focus on the case where n↑ > n↓ = 1 since this is the con-
figuration most relevant for experiments. A major difference to the two-particle
case is that this system can not be solved analytically except in the extreme
cases where g ∈ {∞,−∞, 0}.
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1.3 Units and conventions

We will work in harmonic oscillator units where energies are given in units of h̄ω

and lengths are given in units of the oscillator length b =
√

h̄
mω . Momentum is

then given in units of h̄
b =
√
h̄mω. In these units, the Hamiltonian for a simple

harmonic oscillator looks like

H =
p2

2
+
x2

2
. (1.3)

The energy spectrum would be

1

2
,

3

2
,

5

2
, . . . (1.4)

and the creation and annihilation operators are simply

a =
x+ ip√

2

a† =
x− ip√

2
.

(1.5)

The eigenfunctions corresponding to the energy h̄ω(k + 1
2 ) of a harmonic os-

cillator will always be denoted by φk(x). For n non-interacting particles in a
harmonic oscillator potential the energy spectrum would be

E(k1, . . . , kn) =
n

2
+ k1 + . . .+ kn. (1.6)

for all possible kj ≥ 0. However, we will consider only the intrinsic spectrum
where the center of mass motion has been factored out, and thus the ground
energy will instead be E0 = n−1

2 .

We will let n↑ and n↓ denote the number of particles of the respective spin
species and nt = n↓ + n↑.
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Chapter 2

Theoretical Background

In this chapter the theory of the system will be discussed. We will start with
the two-particle system and work out the eigenstates and energies analytically
then continue by describing the general case.

2.1 Two particle case

In this section we will find the analytic formulas of the energies and eigenvectors
for the two-particle case. These will turn out to be crucial when computing the
effective interaction for systems with more than two particles, see section 2.8.

2.1.1 Point-interaction matrix elements

To model a short-range interaction we will use a delta function interaction which
essentially is an interaction with zero range. In the subspace of two particles it
is defined by its matrix elements in relative coordinate space as

〈x|V |x′〉 = gδ(x− x′)δ(x), (2.1)

where x = x1 − x2 and x′ = x′1 − x′2 are the relative coordinates of the two
particles for the two different states in the matrix element. We will compute
this interaction in the harmonic oscillator basis |n〉, which are eigenstates of the
Hamiltonian

Hω =
p2

2µ
+ µω2x

2

2
(2.2)

We thus have

〈n|V |n′〉 =

∫
dx

∫
dx′〈n|x〉〈x|V |x′〉〈x′|n′〉

= g

∫
dx

∫
dx′〈n|x〉δ(x− x′)δ(x)〈x′|n′〉

= g〈n|0〉〈0|n′〉 = gψn(0)ψn′(0)

(2.3)
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where ψn(x) = ψn(x)∗ are the eigenfunctions of the Hamiltonian (2.2) in
position space[13]

φn(x) =
1√

2nn!

(µω
πh̄

) 1
4

exp(−µωx
2

2h̄
)Hn(

√
µω

h̄
x) (2.4)

where Hn are the Hermite polynomials. These can be obtained via their
standard generating function which is

exp(2xt− t2) =

∞∑
n=0

Hn(x)
tn

n!
. (2.5)

We are only interested in their value at the origin, so letting x = 0 we obtain

∞∑
n=0

Hn(0)
tn

n!
=

∞∑
k=0

t2k

k!
(−1)k (2.6)

From which we see that H2k+1(0) = 0 and H2k(0) = (−1)k (2k)!
k! . For the matrix

elements we thus obtain
〈n|V |n′〉 = 0 (2.7)

if n or n′ are odd, and

〈2m|V |2m′〉 =
g√
h̄
ωµ

(−1)m+m′
2−m−m

′ 1

m!m′!

√
(2m!)(2m′!)

π
. (2.8)

Here we can identify
√

h̄
ωµ as the natural unit in “oscillator coordinates“ for the

interaction strength g.

2.1.2 Energy spectrum

We recall from section 2.1.1 that the delta function interaction V (x) = h̄ωgδ(x)
in the harmonic oscillator basis is

〈n|V |m〉 = gh̄ωφn(0)φm(0) (2.9)

where φn is the eigenfunction of the harmonic oscillator. Let |ψ〉 be an eigen-
function to the total Hamiltonian and E be its corresponding eigenvalue and
denote cn = 〈n|ψ〉. Then we get, assuming that E 6= En for all n where En is
the eigenvalue to the harmonic oscillator eigenstate |n〉

(Hosc + V )|ψ〉 = E|ψ〉 ⇒En〈n|ψ〉+
∑
m

〈n|V |m〉〈m|ψ〉 = E〈n|ψ〉

⇒cn = h̄ωgφn(0)
∑
m

φm(0)cm
E − En

≡ h̄ωgφn(0)
A

E − En
,

(2.10)
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where the non-zero constant A is defined as A ≡
∑
m φn(0)cn. Now we multiply

both sides by φn(0) and sum over n and then cancel A from both sides to get

1 = h̄ωg
∑
m

φm(0)2

E − Em
=
g

2

∑
m

φm(0)2

(e/2− 1/4)−m/2
, (2.11)

where E = h̄ωe and Em = h̄ω(m+ 1/2). Now we use

1

z
=

∫ ∞
0

dy

(1 + y)2

(
y

1 + y

)z−1

, (2.12)

with z = −(e/2− 1/4) +m/2, to get

1 = −g
2

∫ ∞
0

dy

(1 + y)2

(
y

1 + y

)−e/2−3/4∑
m

φm(0)2

(
y

1 + y

)m
2

. (2.13)

We also have the following generating function for the squares of the Hermite
polynomials[12]:∑
n

Hn(x)2

2nn!
zn = (1−z2)−1/2 exp[2x2z/(1+z)]⇒

∑
n

Hn(0)2

2nn!
zn = (1−z2)−1/2.

(2.14)
Together with the explicit formula for the eigenfunctions evaluated at zero

φn(0) =

√
1

2nn!

(mω
πh̄

)1/4

Hn(0), (2.15)

we obtain

1 =−G
∫ ∞

0

dy

(1 + y)2

(
y

1 + y

)−e/2−3/4

(1−
(

y

1 + y

)
)−1/2

=−G
∫ ∞

0

dy

(1 + y)2

(
y

1 + y

)−e/2−3/4(
1

1 + y

)−1/2

=−G
∫ ∞

0

dy

(1 + y)3/4−e/2 y
−e/2−3/4.

(2.16)

where G = g
2

(
mω
πh̄

)1/2
. Now we use the relation (z = 0,a = −e/2 + 1/4,b = 1/2)

for the confluent hypergeometric function[10]

Γ(a)U(a, b, z) =

∫
e−ztta−1(1 + t)b−a−1, (2.17)

to get
−GΓ(−e/2 + 1/4)U(−e/2 + 1/4, 1/2, 0) = 1. (2.18)

Using the identity

U(a, b, 0) =
π

sinπb

(
1

Γ(1 + a− b)Γ(b)

)
, (2.19)
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we finally obtain (remembering that Γ(1/2) =
√
π)

−GΓ(−e/2 + 1/4)

Γ(−e/2 + 3/4)

√
π = 1

⇒Γ(−e/2 + 1/4)

Γ(−e/2 + 3/4)
= − 2

g

( h̄
mω )

1/2

⇒Γ(−e/2 + 1/4)

Γ(−e/2 + 3/4)
= − 2

g′
,

(2.20)

which is the Busch formula (g′ is the dimensionless coupling constant).
If E = En we can see that n has to be odd and that |ψ〉 = |n〉, which follows
from the fact that the interaction commutes with the parity operator and that
the matrix elements for the interaction is zero for odd n (odd parity) and thus
the odd parity states and energy levels remain unchanged by the interaction.

2.1.3 Eigenstates

We will now compute the expansion coefficients 〈n|ψ〉 = cn of the wavefunction.
To do this we return to the expression (2.10).

cn = h̄ωgAφn(0)
1

E − En
(2.21)

To find A we need to use the normalization condition
∑
c2n = 1, and by using

exactly the same expression for the sum before we get

1 =
A2g2

4

∑
m

φm(0)2

((e/2− 1/4)−m/2)2
= −A2g

d

de

[
g

2

∑ φm(0)2

(e/2− 1/4)−m/2

]
= A2gG

d

de

[
Γ(−e/2 + 1/4)

Γ(−e/2 + 3/4)

√
π

]
= A2 g2

2
(
h̄
mω

)1/2 d

de

[
Γ(−e/2 + 1/4)

Γ(−e/2 + 3/4)

]
= A2gg′/2

d

de

[
Γ(−e/2 + 1/4)

Γ(−e/2 + 3/4)

]
(2.22)

The derivative can be expressed in the digamma function ψ = Γ′/Γ by using
the quotient rule and the energy constraint (2.20)
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d

de
(Γ/Γ) =

−1

2

(
Γ′(−e/2 + 1/4)Γ(−e/2 + 3/4)− Γ′(−e/2 + 3/4)Γ(−e/2 + 1/4)

Γ(−e/2 + 3/4)2

)
=
−1

2

(
ψ(−e/2 + 1/4)(− 2

g′
)− ψ(−e/2 + 3/4)(− 2

g′
)

)
=

1

g′
(ψ(−e/2 + 1/4)− ψ(−e/2 + 3/4)) .

(2.23)

So the expression for the constant A (chosen real and positive) is

A =

√
2

g(ψ(−e/2 + 1/4)− ψ(−e/2 + 3/4))
, (2.24)

and the expansion coefficients for the eigenstate in the harmonic oscillator basis
is

cn =

√
2g

ψ(−e/2 + 1/4)− ψ(−e/2 + 3/4)
φn(0)

1

e− n− 1/2
. (2.25)

2.1.4 Odd parity states

The odd parity states are not affected by the interaction, thus these are just
harmonic oscillator eigenstates for the non-interacting part of the Hamiltonian.
This will be shown later for the general case in Section 2.6. Odd parity means
odd harmonic oscillator quantum number and gives a totally antisymmetric
state. Thus the energy spectrum for the odd parity states are

h̄ω
3

2
, h̄ω

7

2
, h̄ω

11

2
, . . . (2.26)

and the corresponding eigenvectors are

〈n|ψm〉 = δn,2m+1 (2.27)

where m is the m:th odd parity state starting at zero.

2.2 General case

Now we will go on and study the general case. The Hamiltonian of the system
is

H =

n↑∑
k=0

(
p2
↑,k

2m
+
mω2

2
x2
↑,k

)
+

n↓∑
k=0

(
p2
↓,k

2m
+
mω2

2
x2
↓,k

)
+

n↑∑
k↑=0

n↓∑
k↓=0

Vk↑,k↓

=H0 + V.

(2.28)
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where n↑ and n↓ are the number of particles in the two subsystems, Vk↑,k↓ are
interaction terms and H0 is the non-interacting part of the Hamiltonian. The
interaction terms are only between particles from different subsystems and pj,k
and xj,k are the momentum and coordinate operators for particle k in subsystem
j ∈ {↑, ↓}, so p↑,k = pk ⊗ I and p↓,k = I ⊗ pk.

2.2.1 Description of the many-body basis states

The many body basis states will be tensor products of the many body states
from each spin species. We will henceforth call the states for the full system
many-body states and the states from one subsystem few-body states.

For n distinguishable particles it is convenient to use a basis state which is a
product of n single-particle states.

|ψα〉 = |m1〉 ⊗ . . .⊗ |mn〉. (2.29)

As single-particle states we will use harmonic oscillator basis states with angu-
lar frequency chosen conveniently to be the angular frequency of the external
harmonic trap. The state |mk〉 here thus represents a harmonic oscillator eigen-

state corresponding to eigenvalue mk with respect to the number operator a†kak.
This is very convenient since it will make these few-body states eigenstates H0,
the non-interacting part of the Hamiltonian.

However, in each subsystem, the particles are identical fermions and it is nec-
essary to antisymmetrize the few-body states. Thus we write

|(m1,m2, . . . ,mn)〉 =
1√
n!

∑
σ∈Sym(n)

sign[σ]|mσ(1)〉 ⊗ . . .⊗ |mσ(n)〉, (2.30)

where we by convention choose m1 > . . . > mn and Sym(n) is the group of
permutations of n elements. These states also form an orthonormal set and we
will use this notation with regular brackets to denote antisymmetrized states.

The full Hilbert space for the two systems is now just the tensor product of the
two subsystems Hilbert spaces, thus we can write a complete basis for the full
system as

|(m1,m2, . . . ,mn↑)〉 ⊗ |(k1, k2, . . . , kn↓)〉. (2.31)

We will hencefourth omit the symbol ⊗ for the tensor product.

2.2.2 Matrix elements of the Hamiltonian

To represent the Hamiltonian as a matrix we will evaluate its matrix elements
in the many-body basis. The different parts of the Hamiltonian are either
only one-particle operators (the kinetic energy operators and the harmonic trap
operators) or operators coupling two particles (the interaction operators). Thus
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many matrix elements will vanish since the operators will be diagonal in many
of the single particle indices and we will be dealing with a sparse matrix. We
can write the Hamiltonian as

H = H0 + V (2.32)

where H0 includes the kinetic energy and the trap potential. By construction,
our many-body basis states are eigenstates of H0 and thus the contribution from
this part is trivial. The interaction part is more difficult. The interaction is a
sum of all possible interactions between a particle in one subsystem and one
particle in the other subsystem.

V =

n↑∑
k↑=0

n↓∑
k↓=0

Vk↑,k↓ , (2.33)

where Vi,j is the interaction operator between particle number i in subsystem
one and particle j in subsystem two. Of course, our particles are identical so we
can’t really separate an interaction between two particles from an interaction
between two other particles, but our antisymmetric states are constructed from
basis states of separable particles and thus it is convenient to first think of the
interaction operators as being between specific particles in the two subsystems.
However, all terms in the sum give equal values so the sum just gives a factor
n1 · n2. The matrix element from the interaction part thus is

M =n1n2〈(m1,m2, . . . ,mn1
)|〈(k1, k2, . . . , kn2

)|V00

|(m′1,m′2, . . . ,m′n1
)〉|(k′1, k′2, . . . , k′n2

)〉
(2.34)

where V00 now couples the quantum number indices in the first argument
of the bras and kets for the subsystems. The resulting matrix element in the
two-body subspace will be denoted 〈a, b|V |c, d〉 ≡ Vabcd. Now we write out the
antisymmetrization explicitly and use that the interaction operator is diagonal
in all other n1 + n2 − 2 indices to get

M =
1

(n1 − 1)!(n2 − 1)!

∑
σ,σ′∈Sym(n1),τ,τ ′∈Sym(n2)

sign[στσ′τ ′]Vmσ(1)kτ(1)m
′
σ′(1)

k′
τ′(1)

δmσ(2),m
′
σ′(2)

. . . δmσ(n1),m
′
σ′(n1)

δkτ(2),k
′
τ′(2)

. . . δkτ(n2),k
′
τ′(n2)

(2.35)

The delta functions restrict the possible many-body states that will give a
non-zero matrix element on the interaction part. Only states that differ with
at most one single particle quantum number in each subsystem will work. Fur-
thermore, the permutations will be restricted since they must put the quantum
numbers at the right place for the delta functions not to vanish. If the two states
differ with one single particle quantum number the permutations need to put
the different quantum numbers at the first position i.e mσ(1), m

′
σ′(1), kτ(1) and

k′τ ′(1) must be the different quantum numbers. We also need the permutations
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to make mσ(i) = m′σ′(i) and mτ(i) = m′τ ′(i) for i ≥ 2 for each delta function

not to vanish. Moreover, given a permutation σ, we can always fix σ′ such that
the delta functions don’t vanish (given that the criteria for σ(1) and σ′(1) are
satisfied. Thus we can only specify one of the permutations and this will give a
factor of (n1 − 1)!(n2 − 1)! to exactly cancel the prefactor and we get

M =sign[στσ′τ ′]Vmσ(1)kτ(1)m
′
σ′(1)

k′
τ′(1)

(2.36)

where the sign here is specific for the two many-body states and are not de-
pending on the specific permutations used as long as they satisfy the above
mentioned criteria. For states that differ with more than one quantum number
in any of the subsystems the matrix element vanishes completely. We also need
to include the diagonal matrix elements where either one or both of the few-
body states are equal. Efficient algorithms for locating states that differ with
at most one quantum number will be discussed in the implementation section.

2.3 Harmonic oscillator interaction

An important test case is the Harmonic oscillator interaction which is on the
form

V =
mω2

2
x2 (2.37)

where x is the relative coordinate between two particles and ω is the angular
frequency of the oscillations. This interaction is important since it can be solved
analytically for all particle systems and can thus provide a very good way to
test the numerical procedure. Note, however, that it is very different from the
delta function interaction (the interaction increases with increasing distance).
It is also very suitable since the basis states are harmonic oscillator eigenstates
which makes the numerics converge very quickly. This has the advantage that
we can test the correctness of the code and algorithms used although we can’t
test the convergence for other interactions.

Consider a Hamiltonian for n particles with some harmonic interaction be-
tween some of the particles

H =

n∑
i=0

(
p2
i

2m
+
mω2x2

i

2
) +

∑
i,j

mω2
i,j

2
(xi − xj)2. (2.38)

In our case the interaction is only between different species so ωi,j = ω′ if i and
j are indices from different spin species and zero otherwise. The solution for any
general kind of harmonic interaction can be found by expanding the interaction
squares and writing it as

V = XTMX (2.39)
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where X includes all coordinates of all particles and M is a symmetric matrix.
We can diagonalize M as M = UTDU for an orthogonal matrix U , so we can in-
vent new coordinates J = UX and T = UP . Since the non-interaction part can
be written on the same form, but with the identity matrix sandwiched between
X and P these terms will remain diagonal after the coordinate transformation
and we get

H =
∑
i

(
t2i

2m
+
mω2j2

i

2
)+

mω′2

2

∑
λij

2
i =

∑
i

(
t2i

2m
+
m(ω2j2

i + ω′2λi)

2
) (2.40)

We have now arrived at a Hamiltonian consisting of n independent harmonic
oscillators, with energy levels

E =
∑
i

Emii

, where

Emii = h̄
√
ω2 + λiω′2(mi +

1

2
)

.
For identical particles one then also needs to constraint the energy spectrum

to satisfy the required statistics.

2.4 Dealing with center of mass excitations

The motion of the center of mass of the system of particles is not very interesting.
One is mostly interested in the relative excitations of the system. In Jacobi
coordinates this is automatically taken care of where all the degrees of freedom
are relative coordinates, but since we are working with single particle coordinates
this is a bit more tricky. One method to deal with this problems is to shift the
Hamiltonian by the center of mass number operator

H → H + λN − 1

2
h̄ω (2.41)

where N = A†A which is the number operator for the center of mass excitations.
Thus all the interesting states which have eigenvalues zero with respect to N are
unaffected. By choosing λ adequately we can then shift the states with center of
mass excitations away from the part of the spectrum we are interested in. This
procedure works since the eigenstates will be product states of a relative motion
wavefunction and a center of mass wavefunction, ie |ψ〉 = |ψCM〉|ψrel〉. The extra
factor of 1

2 h̄ω is just to remove the ground level energy of the center of mass os-
cillator which would not be present when working in purely relative coordinates.

To be able to implement this we thus need the matrix elements of N in our
many-body basis. We have

N =
P 2

2M
+

1

2
Mω2X2 − 1

2
h̄ω (2.42)
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where X = 1
n

∑
j xj , P =

∑
j pj and M = ntm are the center of mass, total

momentum and total mass, respectively. We will now expand the center of mass
number operator in the single particle coordinates

X2 =
1

n2
t

nt

∑
j

x2
j −

∑
|xi − xj |2


P 2 =nt

∑
j

p2
j −

∑
|pi − pj |2

(2.43)

Thus the shifted Hamiltonian can now be written as

Hλ =H + λ
∑
i

(
p2
j

2m
+

1

2
mω2x2

i

)

− λ

nt

 1

2m

∑
i,j

|xi − xj |+
1

2
mω2

∑
i,j

|pi − pj |

− (λ− 1)
1

2
h̄ω

=H + λHosc + λVosc − (λ− 1)
1

2
h̄ω

(2.44)

Now the structure of this shift is clear. The first part is just like an external
harmonic oscillator potential and the second part is like an interaction. Note
that this is not the harmonic oscillator interaction mentioned earlier since also
the kinetic energy part is included. However, this is an interaction between all
particles, thus we can not use the earlier mentioned method to localize the non-
zero matrix element. But there is another property we can use, namely that the
matrix elements are zero unless the energy of the states are the same which is
not true for a general interaction (and particularly not for the point interaction
or the harmonic interaction). To see this, consider the interaction term in the
single particle coordinates

〈n1, n2|Vosc|n′1, n′2〉 =
∑

N,n,N ′,n′

〈n1, n2|N ;n〉〈N ;n|Vosc|N ′;n′〉〈N ′;n′|n′1, n′2〉

=
∑
N,n,n′

〈n1, n2|N ;n〉〈n|Vosc|n〉〈N ;n|n′1, n′2〉

(2.45)

since it is diagonal in the relative harmonic quantum number n and diagonal
and independent of the total harmonic quantum number N . Now, since the
overlap brackets are zero unless n1 +n2 = N +n and n′1 +n′2 = N +n, we have
n1 + n2 = n′1 + n′2, see section 2.5. This will immensely reduce the number of
possible states required when searching for non-zero matrix elements.
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2.5 Jacobi to single particle coordinate transfor-
mation

Since the Hamiltonian will be written out in single particle coordinates using
harmonic oscillator basis states, we need to transform from the relative coordi-
nates in which the interaction is given. Recall that the single particle states are
eigenstates of the Hamiltonian

H =
p2

1

2m
+

1

2
ω2mx2

1 +
p2

2

2m
+

1

2
ω2mx2

2. (2.46)

Doing a change of variables to normalized Jacobi coordinates X = x1+x2√
2

and x = x2−x1√
2

one obtains

H =
p2

2m
+

1

2
ω2mx2 +

P 2

2m
+

1

2
ω2mX2, (2.47)

where the conjugate momenta are P = p1+p2√
2

and p = p2−p1√
2

. Thus we can

define harmonic oscillator eigenstates in Jacobi coordinates as |N〉|n〉 = |N ;n〉
where |N〉 and |n〉 are eigenstates to the center of mass part and the relative
part of equation (2.47), respectively. It is in these coordinates the two-particle
interactions are given (and they are independent of the center of mass coordi-
nate). The transformation between the Jacobi coordinates to the single particle
coordinates is in the two-particle subspace

|N ;n〉 =
∑
n1,n2

|n1, n2〉〈n1, n2|N ;n〉, (2.48)

so the interesting quantity is the overlap matrix element. Now recall the defini-
tions of the annihilation operators

a1 =

√
mω

2h̄

(
x1 +

i

mω
p1

)
,

a2 =

√
mω

2h̄

(
x2 +

i

mω
p2

)
,

a =

√
mω

2h̄

(
x+

i

mω
p

)
,

A =

√
mω

2h̄

(
X +

i

mω
P

)
,

(2.49)

from which we see that

a =
a2 − a1√

2
,

A =
a2 + a1√

2
.

(2.50)
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Now we can compute the overlap matrix element

〈N ;n|n1, n2〉 =
1√
N !n!

〈0; 0|
(
a2 + a1√

2

)N (
a2 − a1√

2

)n
|n1, n2〉

=
1√
N !n!

2−(N+n)/2〈0; 0|
N∑
k=0

n∑
j=0

ak+j
1 aN+n−k−j

2 (−1)j(
N
k

)(
n
j

)
|n1, n2〉,

(2.51)

where we used the binomial theorem. Now only terms that have exactly n1

powers of a1 and n2 powers of a2 will contribute since we need to annihilate
exactly n1 oscillator quanta for particle one and n2 oscillator quanta for particle
two. Thus by forcing k + j = n1 and N + n − k − j = N + n − n1 = n2 and
using a|n〉 =

√
n|n− 1〉 for the annihilation operators we obtain

〈N ;n|n1, n2〉 =δN+n−n1,n2

√
n1!n2!

N !n!
2−(N+n)/2

N∑
k=0

(−1)n1−k
(
N
k

)(
n

n1 − k

)

=δN+n,n1+n2

√
n1!n2!

N !n!
2−(N+n)/2

min{N,n1}∑
k=max{0,n1−n}

(−1)n1−k

(
N
k

)(
n

n1 − k

)
≡ m(N,n1, n2)δN+n,n1+n2 .

(2.52)

Thus, given a matrix element 〈N ;n|V |N ′, n′〉 in Jacobi coordinates this will
in the single particle coordinates be

〈n1, n2|V |n′1, n′2〉 =
∑

N,N ′,n,n′

〈N ;n|V |N ′, n′〉m(N,n′1, n
′
2)m(N,n1, n2)

δN+n,n1+n2
δN ′+n′,n′

1+n′
2
.

(2.53)

In the case of transforming the two-particle potential the matrix element
will be diagonal in and independent of the Jacobi oscillator coordinate N , thus
we obtain

〈n1, n2|V |n′1, n′2〉 =

min{n1+n2,n
′
1+n′

2}∑
N=0

〈n1 + n2 −N |V |n′1 + n′2 −N〉

m(N,n′1, n
′
2)m(N,n1, n2).

(2.54)

2.6 Description of non-interacting states

In section 2.1.1 we noticed that the matrix elements in relative coordinates of
the interaction operator for the contact interaction is zero when any of the two
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states are oscillator eigenstates with odd quantum number. This has interesting
consequences for the energy spectrum. From Eq. (2.51) we have the expression

〈N ;n|n1, n2〉 =
1√
N !n!

〈0; 0|
(
a2 + a1√

2

)N (
a2 − a1√

2

)n
|n1, n2〉. (2.55)

If we would switch n1 and n2 in this expression we would get the same final
result except for a minus sign coming from switching a1 and a2. Thus we have

〈N ;n|n1, n2〉 = (−1)n〈N ;n|n2, n1〉. (2.56)

Thus for the matrix element of a completely anti-symmetric state |(n1, n2)〉
we would obtain

〈N ;n|(n1, n2)〉 =
1√
2
〈N ;n| (|n1, n2〉 − |n2, n1〉) = [1− (−1)n]〈N ;n|n1, n2〉.

(2.57)
Thus

〈N ;n|(n1, n2)〉 = 0, (2.58)

if n is even. But from section 2.1.1 we have that

〈n|V |n′〉 = 0 (2.59)

if n or n′ is odd. This also implies V |n′〉 = 0 if n′ is odd. This together with
Eq. (2.58) implies that

V |(n1, n2)〉 =
∑
N,n

V |N ;n〉〈N ;n|(n1, n2)〉 = 0. (2.60)

Now consider again a harmonic oscillator basis state for the whole system

|ψ〉 = |(n1, . . . , nk)〉|(m1, . . . ,m`)〉, (2.61)

satisfyingH0|ψ〉 = E|ψ〉 whereH0 is the non-interacting part of the Hamiltonian
and E = h̄ω(

n↑+n↓
2 +n1 +. . .+nn↑ +m1 +. . .+mn↓). Thus if we form the totally

antisymmetric state |(ψ)〉 which is antisymmetric in all particles (basically a
state corresponding to all particles being identical fermions) we will get

H|(ψ)〉 = H0|(ψ)〉+ V |(ψ)〉 = H0|(ψ)〉 = E|(ψ)〉, (2.62)

since the interaction will now act in antisymmetric two-particle subspaces which
makes this term become zero. Thus all states for a system of nt = n↑+n↓ iden-
tical non-interacting fermions will also be eigenstates of the total Hamiltonian
of this system (and in particular independent of g). This is not surprising since
totally antisymmetric wavefunctions are zero when two particles are at the same
point which is exactly where the point-interaction acts. So in the energy spec-
trum there will be some states that are independent of the interaction strength
g and these are precisely these that coincides with the energy states of identical
non-interacting fermions.
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2.7 Observables

In this section some of the relevant observables will be described.

2.7.1 Occupation numbers

Some simple quantities that are relevant for describing the structure of the
eigenstates are the occupation numbers. They basically measure the occupation
of every harmonic oscillator state. For one of the subsystems, to calculate the
occupation 〈k〉 of the harmonic oscillator state |k〉 we will go through all basis
states |n1, . . . , nn↑〉 and add |〈ψ|n1, . . . , nn↑〉|2 to 〈k〉 if k = nj for any j. Thus

〈k〉 =
∑

(n),k∈n

|〈(n1, . . . , nn↑)|ψ〉|2. (2.63)

Since we are dealing with fermions there will be no states with the quantum
number occurring more than once (the contributions should then be multiplied
by the number of times it occurs in the basis state). The occupation numbers
for the total system are then simply the sum of the occupation numbers in each
subsystem.

In experiments it is possible to decrease one of the walls of the trapping potential.
This will cause particles to tunnel out from the trap and it is possible to relate
the tunnelling frequency to the occupation numbers. Thus this is a particularly
interesting observable since it can be measured in experiments.

2.7.2 Density profiles

In this section we will derive expressions for the particle densities. We will start
by considering nt identical fermions. The fundamental definition is the expec-
tation value of the number of identical particles found in the neighbourhood
at some position x0. In the second quantization formalism, this would be the
expectation value of the number operator at position x0, namely[2]

N(x0) = a†(x0)a(x0). (2.64)

Here a†(x0) creates a particle at position x0 and a(x0) annihilates a particle at
position x0. The expectation value of this quantity is now

ρ(x0) = 〈ψ|N(x0)|ψ〉 = 〈ψ|a†(x0)a(x0)|ψ〉. (2.65)

The annihilation operator will annihilate one particle so this is really a scalar
product of two nt − 1 particle states since (a(x0)|ψ〉)† = 〈ψ|a†(x0).

A general annihilation operator for a state χ acts on a many particle basis state
|α1, . . . , αnt

〉 as

a(χ)|α1, . . . , αnt
〉 =

nt∑
j=0

〈χ|αj〉ξj−1|α1, . . . , αj−1, αj+1, . . . , αnt
〉, (2.66)
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where ξ = 1 for bosons and ξ = −1 for fermions and the remaining state is a
sum over nt− 1-particle states with the state αj removed. In our case the basis
states are the harmonic oscillator eigenstates and ψ will be a linear combination
of these states,

|ψ〉 =
∑
(n)

Cn|(n1, . . . , nnt)〉, (2.67)

where the brackets now emphasizes that this is an antisymmetrized state and
the sum is thus only over states with n1 > . . . > nnt . n is here a collective index
representing the set {n1, . . . , nnt

}. Inserting this expansion into equation (2.65)
and using equation (2.66)

ρ(x0) =
∑
nn′

C∗nCn′

nt∑
i=1,j=1

〈nj |x0〉ξj−1〈x0|n′i〉ξi−1

〈n1, . . . , ni−1, ni+1, . . . , nnt |n′1, . . . , n′j−1, n
′
j+1, . . . , n

′
nt
〉.

(2.68)

The last bracket is a scalar product of two orthonormal many-body basis states
so they have to be equal, meaning that these two nt − 1-particle many-body
states has to contain exactly the same single particle states. Thus the only
contributing terms in the double sum over the collective indices n and n′ are
over the products where n and n′ have nt − 1 identical oscillator states. Note
however that for the terms where n = n′ the sum over i, j will not vanish but
give nt contributions, one time for each i = j. Denoting the condition that n
and n′ has exactly nt− 1 identical single particle states by |n−n′| = 1 we have

ρ(x0) =
∑

|n−n′|=1

C∗nCn′φ∗ni(x0)φn′
j
(x0)ξj−i +

∑
n

|Cn|2
nt∑
i=0

|φni(x0)|2, (2.69)

where i and j in the first sum now are the indices for the states that are not
among the nt − 1 oscillator states in n and n′ that are forced equal by the
orthonormality condition. Formula (2.69) is the final expression for a density
of a system of identical system and we can use that to calculate the density of
the subsystems. The sum over n, n′ should then be over all pairs of many-body
states that differ with one quantum number in the part of the basis in the par-
ticular subsystem. The total density is then the sum of the densities of the two
subsystems. Efficient ways of locating pairs of states that differs with one single
particle state will be discussed in section 3.

2.7.3 Momentum space

The momentum space densities can be obtained by using that the Hermite
functions are eigenfunctions under the Fourier transform, i.e. we have

1√
2πh̄

∫ ∞
−∞

exp(−ikx/h̄)φn(x) = (−i)nφn(k). (2.70)
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Thus the expression (2.69) changes to

ρ(x0) =
∑

|n−n′|=1

C∗nCn′φ∗ni(x0)φn′
j
(x0)ξj−i(−i)ni−n

′
j +

∑
n

|Cn|2
nt∑
i=0

|φni(x0)|2.

(2.71)
The imaginary unit might look a bit troublesome but the result is definitely still
real. Let nrel = n1 − n′1. Then we have

nrel mod 4 0 1 2 3
(−i)nrel 1 −i −1 i

Now we see that the imaginary terms will not cause any trouble because the term
with nrel would be cancelled by the one with −nrel since one will be multiplied
with −i and the other by i and the expression is otherwise symmetric. In
conclusion, the only modification needed when going from the coordinate space
density to the momentum space density is to change sign of the terms that have
nrel ≡ 2 mod 4.

2.7.4 Pair correlation function

The pair correlation function measures the probability of finding a particle at
position x2 given we have one at position x1. For systems with translational
symmetry this could be written as a function of x2 − x1 but this is not the
case in this system because of the trapping potential. Thus we will be dealing
with a function of two variables. For two particles this would just be the total
probability density for the two particles in single particle coordinates. For a
1 +N particle system this could be interpreted as the density of the N -particle
system given that the lonely particle is found at some position x1. We will only
look at correlations between two particles from different subsystems. In the
formalism of second quantization, the pair correlation function is[2]

g(x1, x2) = 〈ψ|a†(x1)b†(x2)b(x2)a(x1)|ψ〉. (2.72)

Here a and b are annihilation operators for particles of different spins. Now
we expand |ψ〉 in the complete many-body basis

|ψ〉 =
∑
n,m

Cn,m|n1, . . . , nn↑〉|m1, . . . ,mn↓〉. (2.73)

This gives

b(x2)a(x1)|ψ〉 =
∑
n,m

Cn,m

n↑∑
i=1

m↓∑
j=1

〈x1|ni〉〈x2|mj〉ξi+j

|n1, . . . , ni−1, ni+1, . . . , nn↑〉|m1, . . . ,mj−1,mj+1, . . . ,mn↓〉.
(2.74)
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Inserting this into equation (2.72) we will obtain the expression

g(x1, x2) =
∑

φniφn′
i′
φmjφm′

j′
Cn,mCn′,m′ξi+j+i

′+j′ , (2.75)

where the sum goes over all configurations (n, n′,m,m′) where m,m′ are col-
lective indices for one subsystem and n, n′ are collective indices for the state in
the other subsystem. Only configurations which differ with at most one quan-
tum number in both systems are summed over and i, j, i′, j′ are the indices of
the differing states. The terms where n = n′ or m = m′ are understood to be
inside the sum and in these cases the indices i = i′ and j = j′, respectively, are
summed over.

2.8 Effective interaction

A very common problem in physics is handling strongly coupled systems. Here it
arises in the sense that the matrix elements of the interaction for high harmonic
oscillator basis states are very big. Thus we need to include many basis states
to reach convergence in the eigenvalues when truncating the Hilbert space to
represent the Hamiltonian as a matrix. The subspace spanned by the truncated
basis will be denoted M and its complement is M c. To solve this problem
we will do a unitary transformation on the Hamiltonian to obtain an effective
interaction which will make the results converge faster. The idea is that this
transformation should remove all the couplings between M and M c (i.e off block
diagonal matrix elements 〈α|H|β〉 where |α〉 ∈ M and |β〉 ∈ M c). This would
split the Hamiltonian into a product of two operators HM ⊗ HMc acting on
the Hilbert space M ⊗ M c, and these could then be diagonalized separately
and one could then just focus on the model space which will include the lowest
energy values. However, finding such a unitary transformation would be just as
troublesome as diagonalizing the matrix itself so this is where an approximation
comes in. Assuming that we start with a Hamiltonian on the form

H = H0 + V eff2 (2.76)

where H0 includes the external potential and kinetic energy terms and V in-
cludes all two-particle interactions. However, when doing a unitary transfor-
mation on this Hamiltonian it will not be possible to keep it on this particular
form but rather

Heff = H0 + V eff2 + V3 + . . .+ Vn (2.77)

where Vj is a j-particle interaction and n are the number of particles in the
system. The approximation we will do is to neglect all the induced many-body
interactions and force the Hamiltonian on the form Heff = H0 + V eff2 . This
is equivalent to doing the unitary transformation in the two-body subspace (i.e
on a two-particle Hamiltonian) that decouples the model space from its comple-
ment and then just use the effective interaction obtained here in the many-body
Hamiltonian. In the limit of a very large model space this will be an exact uni-
tary transformation since then the bare interaction is the same as the effective
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interaction. Now there is only one degree of freedom (the relative motion) in
the two-particle subsystem so this is a great simplification. We also have exact
analytical solutions available in the two-body subsystem which turns out to be
very advantageous.

Let P denote the projection operator to the model space and Q the projection
operator to the complement such that P+Q = 1. We thus wish to find a unitary
transformation, written as U = eS where S is antihermitian, that transforms
the Hamiltonian to

Heff = e−SHeS (2.78)

The condition of removing the couplings is then

QHeffP = 0 (2.79)

which is equivalent to saying that matrix elements of H between a state from
M and one from M c will vanish.

The following equation is an explicit formula for the unitary transformation
used[9]

Heff =
P + PξQ√
P + ξ†ξ

H
QξP + P√
P + ξ†ξ

. (2.80)

When restricting ourselves to a two-particle subspace we get[9]

H
(2)
eff = (A−†A−1)−1/2A−†EA−1(A−†A−1)−1/2 (2.81)

where E is the diagonal matrix with eigenvalues from the two-particle subspace
and A is a matrix containing the corresponding eigenvectors.

2.8.1 Convergence properties

When doing the unitary transformation in the two-particle subspace we specify
a model space cutoff nmax on the relative harmonic oscillator coordinate. When
doing the transformation the correlations are moved from the full matrix into
this smaller model space and all matrix elements higher than this nmax are taken
to be zero. In the two-particle system, if we are working in relative coordinates,
it is then obvious that diagonalizing this effective Hamiltonian in the model
space gives the same eigenvalues as diagonalizing it in a larger space (since all
extra matrix elements are zero anyway). However, when solving the many-body
problem in single particle coordinates it is not as obvious how many oscillator
states we need to include. Lets say our unitary two-body cutoff is nmax and the
cutoff on the total energy (in harmonic oscillator units) is ntot. The we recall
equation 2.54 of the transformation from relative coordinates to single particle
coordinates
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〈n1, n2|V |n′1, n′2〉 =

min{n1+n2,n
′
1+n′

2}∑
N=0

〈n1 + n2 −N |V |n′1 + n′2 −N〉

m(N,n′1, n
′
2)m(N,n1, n2).

(2.82)

The potential is zero for Here we see that high values of n1, n2, n
′
1, n
′
2 will still

give non-zero contributions since the sum is over interaction matrix elements
with relative quantum numbers less than min{n1 + n2, n

′
1 + n′2}. More specifi-

cally, for terms in the sum to be non-zero, N must satisfy

max{n1 + n2, n
′
1 + n′2} − nmax ≤ N ≤ min{n1 + n2, n

′
1 + n′2}. (2.83)

Then we see that if the difference between bra’s and the ket’s energies is suffi-
ciently big compared to the two-body cutoff nmax, namely if |n1+n2−n′1−n′2| >
nmax, all terms will be zero. Thus the couplings between low energies and high
energies is still small so to obtain the lowest eigenenergies we should not have to
include that many states above the two-body cutoff. As we see in Fig. 2.1 the
correction of including states with total energy above nmax is very small. The
energy seems to decrease linearly below the two-body cutoff but above nmax it
converges very fast. This is expected since below this cutoff there will be some
matrix elements in the potential that will not be included at all. In numerical
simulations we will typically have ntot − nmax ∈ [2, 10].
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Figure 2.1: Convergence of energy with respect to increased model space where
ntot − nmax = 2 is kept fixed for the ground state of the 1+3 particle system at
g = 100. The small plot shows energy convergence as a function of ntot − nmax

while ntot = 60 is kept fixed.
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Chapter 3

Implementation

In this section some parts of the implementation will be discussed. The main
focus for this project has been on developing a fast and effective algorithm to
generate the matrix representation of the Hamiltonian.

3.1 Representation of the many-body states

A many-body basis state in our truncated Hilbert space basis will be labelled by
indices. As a consequence, we can represent an arbitrary state as a vector where
the elements are the expansion coefficients for the many-body states. There is
no obvious way to index the states because each state is a set of unordered
quantum numbers, see section 2.2.1, but the way that the states are indexed is
not important. However the way the states are indexed can matter for efficient
computer implementations. The states will at least be ordered in energy so that
a state with higher energy has a higher index making truncation in the Hilbert
space easier.

3.2 Creating the Hamiltonian

As was explained in section 2.2.2, the non-zero elements originating from the
interaction are those where the bra and ket have at most two quantum numbers
different, one from each spin species (due to the fact that the interaction only
acts between particles with different spin). To find all such pairs, we can first
consider basis states for each spin species separately and find all pairs that
differ by at most one single particle quantum number. All possible pairs of
basis states for the full system can then be obtained by combining pairs in the
two subsystems. Thus we will focus on basis states for one subsystem. To find
all pairs of states that differ by at most one single particle quantum number by
just going through all basis states would be very slow and inefficient. A better
way is to, for each basis state, generate all other basis states that satisfy this
criteria and then find the indices for these states.
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3.2.1 Single particle jumps

To generate all required states, one can systematically change each of the single
particle quantum numbers to generate all other states that differ with at most
one number. This is done separately within each spin species and the full many-
body states are then given by all tensor product combinations of few-body states
from each spin species. For example consider the three particle few-body state
(for one spin species)

|(7, 5, 2)〉 (3.1)

We would start by changing the first index to generate all states of the form

|(m, 5, 2)〉 (3.2)

To fulfill the Pauli principle, m takes the values 1, 3, 4, 6, 7,. . .. We also need to
reorder the quantum numbers in decreasing order to be consistent with our sign
convention and this will result in a possible sign change equal to the sign of the
permutation needed to perform this reordering. After this all states resulting
from changing the other two indices (5 and 2) will be generated. The next
problem is then to find the index of these new states, since the mapping from
index to many-body state is very hard to invert. For this it is very convenient
to use hash tables. All such pairs of few-body states, together with a possible
sign change, will then be stored to be used later when generating the matrix.

3.2.2 Hash tables

A hash table is a way to look up the index of an ordered collection of objects.
The idea is to compute the so called hash function of the object. The hash func-
tion is a function that takes as it’s argument an object (in this case a few-body
state or a many-body state) and gives back a single number (called the key)
that can be used as an alternative index. Thus we can now store the states in
a new table, with indices that are very easy to compute. One might ask the
question why we can’t just use this number to index our states in the first place.
The reason is that the whole point of the hash function is that it should be fast
to compute, and that comes with the price that it is not one-to-one. There is no
guarantee that it will be surjective and there is also very likely that two objects
can have the same key. Thus it is necessary to deal with collisions where two
states have the same key.

The easiest way is just to loop through all states with the same key and then
compare with the states one is looking for. This search algorithm is of course
very inefficient, but if the hash function is chosen in a smart way collisions will
not appear very often and the time required for this search is very small. In
other words, we would like the hash function to be as ”random“ as possible to
minimize the frequency of collisions. To reduce the risk of periodic behaviour
in the hash function which could result in collisions it is beneficial to make the
size of the table a prime number.
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3.3 Precomputed coordinate transformation ma-
trix elements

The overlap matrix elements 〈N,n|n1, n2〉 will be precomputed and stored on
disk to save computation time. However, if we saved the matrix elements for
each quantum number in {0, 1, . . . , ntot} this would scale as n4

tot, where ntot is
the highest used single particle quantum number induced by the many body
cutoff. Thus it is relevant to try to use the properties of these matrix elements
to only store non-zero elements. First of all, these matrix elements are only non-
zero if N +n = n1 +n2. Thus we only need to specify N,n1, n2 when specifying
a matrix element. Furthermore, since n ≥ 0 we need to have N ≤ n1 + n2.
Thus, we only need to store matrix elements for n1, n2 ∈ {0, 1, . . . , ntot} and
N ∈ {0, 1, . . . , n1+n2} for each n1, n2. Now the next problem is how to calculate
the position of a matrix element in a one-dimensional list. If we would have
generated elements for all N ∈ {0, 1, . . . , ntot} the index is just

i = n1(ntot + 1)2 + n2(ntot + 1) +N

assuming that n1 is looped over in the outermost loop, n2 in the second outer-
most and N in the innermost and the list index starts at zero. Instead we will
have the following expression

i =

n1−1∑
n′

1=0

ntot∑
n′

2=0

(n′1 + n′2 + 1) +

n2−1∑
n′

2=0

(n1 + n′2 + 1) +N

=ntotn1(n1 − 1)/2 + n1ntot(ntot + 1)/2 + n1(ntot + 1)

+ n1n2 + n2(n2 − 1)/2 + n2 +N

(3.3)

3.4 Diagonalization

To diagonalize the matrix we have used the Lanczos algorithm which is essen-
tially an extension of the power method. In the power method one notes that
if x0 is a random vector, then xn/||xn|| defined by xn+1 = Axn converges to
the eigenvector v1 corresponding to the largest eigenvalue λ1 of A (unless x0 is
orthogonal to v1 but this should almost never happen). This comes from the
fact that the eigenvectors of A form a complete basis, thus we can expand x0 as

x0 =
∑
i

civi (3.4)

Thus the vectors defined by xn+1 = Axn are equal to

xn =
∑
i

ciλ
n
i vi (3.5)

Thus for large n this approaches the eigenvector corresponding to the largest
eigenvalue.
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In this method the vectors in each step are discarded. The idea with the Lanczos
method is to improve this algorithm by using information from these discarded
vectors. Thus we form the so called Krylov matrix

Kn = [x0 Ax0 A2x0 . . . An−1x0] , (3.6)

whose column vectors span the Krylov subspace Kn. From these vectors we can
use the Gram-Schmidt process to extract an orthogonal basis and these eigen-
vectors will then approximate the eigenvectors corresponding to the n largest
eigenvalues of A. To motivate this, consider

xn−2 =
∑
i

ciλ
n−2
i vi (3.7)

In the Gram-Schmidth process, we will make this ortogonal to v̂1 = An−1x0 and
create v̂2. Since v̂1 approximates v1 we expect this step to be roughly equal to
removing the term λn−2

1 from (3.7). Thus the most important contribution to
v̂2 will be λn−2

2 v2 and thus this vector approximates v2 (up to a normalization).
By the same argument we can obtain approximate solutions v̂3, . . . , v̂n to the
rest n − 2 eigenvectors as well. However, we expect that the approximation of
vj will get worse for higher j.

The problem with the above method is that is is not numerically stable and
one will have to refine this algorithm by using the stabilized Gram-Schmidth
process. This algorithm is called the Arnoldi method and the Lanczos method is
this algorithm specialized to symmetric matrices.For a more detailed description
of the Lanczos algorithm see [6, 5].
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Chapter 4

Results

In this section some of the results will be presented. We will start by looking at
the analytical results of the occupation numbers of the two-particle system since
they are easier to interpret than for systems with more particles. We will then
continue to results of systems with more particles obtained form the numerical
simulations.

4.1 1+1 system

In Fig. 4.1 the total occupation numbers of the 1+1 system as a function of
interaction is shown. The energy is also plotted in the same graph. This is
basically an analytic result, except that there is a cutoff when transforming
from the analytic formula for the wavefunctions in relative coordinates to single
particle coordinates. On the repulsive side it starts in the ground state with
both particles in the lowest harmonic oscillator eigenstate thus the energy is h̄ω

2

(remember that the center of mass ground energy of h̄ω
2 is removed). It then

evolves to a state with energy 5h̄ω
2 and thus we need to move the particles in

total two levels up in the harmonic oscillator potential (which is also consistent
with parity conservation). However, looking at the occupation numbers it is
clear that the eigenstate is a linear combination of the state with both particles
in the second oscillator level and the (symmetrized1) state with one in the lowest
level and one in the third level, namely

|0〉|2〉+ |2〉|0〉
2

+
|1〉|1〉√

2
. (4.1)

Tensor products of single particle states are in general not the eigenstates of the
interacting Hamiltonian when g → 0. The degenerate energy levels will split
up when the interaction is turned on, but there is no guarantee that they will

1If it would be the antisymmetrized state, then by symmetry also the state where we change
the sign on this state would be an eigenstate, leading to |1〉|1〉 also being an eigenstate which
is not possible.
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split up into the product states of single particle states. In fact, the eigenstates
(to non-degenerate energy levels) must be eigenstates of the center of mass
number operator (see section 2.4). Thus this can not happen since the product
states are not eigenstates of the center of mass number operator. The correct
eigenstates at the g → 0 limit for a certain degenerate energy level can be
obtained by zeroth order perturbation theory and are exactly the set of states
that diagonalize the interaction operator in the subspace spanned by the states
at this energy level[13].
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Figure 4.1: Total occupation numbers and energy for the ground state on the
repulsive side in the 1+1 system as it evolves through the resonance.

4.2 2+1 system

In this section we will carefully study the system where one subsystem contains
one particle and the other subsystem contains two particles. In Fig. 4.2 the
energy spectrum as a function of the interaction is shown. There are both dif-
ferences and similarities with the system of two distinguishable fermions. First
of all, we note that the energy spectrum at infinite interaction coincides with
the energy spectrum for three indistinguishable fermions, although every energy
level is degenerate. On the attractive side, we have infinitely many states that
diverge to minus infinity, which should be compared to the two particle case
where there was only one such state. This is reasonable since we can imagine
a state composed of the diverging state in the 1+1 case and then a spectator
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particle which can be in any oscillator level. Thus we should have one diverging
state for every energy which is exactly what we see. Although this gives the
correct number of states it is not a completely correct description since all three
particles are interacting.

There are also many states that connect at infinite interaction, and since they
also connect at zero interaction it is possible to follow a state arbitrarily high
up in the spectrum. As explained earlier it is possible to connect these states in
experiments. By mapping g to the finite interval [−π, π] by g → arctan(g) it is
possible to visualize this on a cylinder, see Fig. 4.3. Here the ground state and
its evolution up in the spectrum has been boldfaced. It is not obvious which
state it connects to at zero interaction and to determine this it is necessary to
demand continuity in the wavefunction.

In Fig. 4.2 the spectrum of two particles plus a constant energy shift of 5h̄ω
2

is displayed. One can observed that this resembles some of the curves in the
2+1 spectrum. This is because if the main interaction energy comes from only
two particles forming a molecular-like state, while the third one is far away
and thus its interaction energy is low, the energy spectrum should look like
the two particles system’s spectrum plus the potential energy of the spectator
particle. However, for excited states, we see a discrepancy between the two-
particle spectrum and the energy levels of the three-particle spectrum and thus
all three particles interact with each other.
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Figure 4.3: Energy spectrum of the 2+1 system wrapped on a cylinder.
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The density profiles of the spin-separated particle subsystems and the total den-
sity of the lowest odd parity state and the lowest even parity state for different
interactions are shown in Fig. 4.4 and Fig. 4.5, respectively. In Fig. 4.6 the
momentum space densities of the lowest odd parity state are shown. In all
plots the non-interacting second lowest odd parity state is also shown and when
g → ∞ these all have the same energy. The densities are normalized to equal
the number of particles in the system. It is interesting that the total coordinate
space densities all converge to the same value when g → ∞, even though the
densities of the subsystems do not but in momentum space none of the densi-
ties converge to the non-interacting state. This is perfectly fine, since the short
range repulsion will cause particles to avoid each other in position space only
and thus should resemble the Pauli principle in position space. Nothing can
really be said about the distribution in momentum space form this argument.
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Figure 4.4: Coordinate space particle densities of the lowest odd parity state
of the 2+1 particle system for different interactions. Darker colored curves
represent stronger interaction and the blue curve is the density of the second
lowest odd parity state which is a non-interacting state, independent of the
interaction.
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Figure 4.5: Coordinate particle densities of lowest even parity state of the
2+1 particle system for different interactions. Darker colored curves represent
stronger interaction and the blue curve is the density of the second lowest odd
parity state which is a non-interacting state, independent of the interaction.
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Figure 4.6: Momentum space particle densities of the lowest odd parity state
of the 2+1 particle system for different interactions. Darker colored curves
represent stronger interaction and the blue curve is the density of the second
lowest odd parity state which is a non-interacting state, independent of the
interaction.

In Fig. 4.7 the occupation numbers for the two states are shown as a function
of g. We can see that the occupation numbers connect at infinite interaction.
However, the occupation numbers approach non-trivial values and can not be
matched with a state of identical fermions which again can be connected to the
fact that the strong repulsive interaction is like a Pauli principle in position
space only. Of course the wavefunctions of different states must be orthogonal
to each other so then the expansion coefficients can not be equal. The occu-
pation numbers show that the state starts out with two particles in the lowest
oscillator level and one in the second level. After the state has gone to through
the resonance the eigenenergy approaches 6h̄ω which means that there has to
be four excitations from the ground level and the resulting state is a linear com-
bination of all such states causing the non-trivial occupation numbers just as in
the 1+1 case.
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Figure 4.7: Occupation numbers for the 2+1 system as a function of g for the
lowest odd parity state.

In Fig. 4.8 and 4.9 the pair correlation functions for the two lowest states are
shown, compared with the non-interacting state. These shows the correlation
of the densities between the two subsystems. For a 1 + n particle system it
can be interpreted as the conditional density of the n particle system given
that the single particle is measured at a certain position. From these figures
one can also draw the same conclusion as before, that for the odd parity state
the single particle is pushed to the middle and the two particles are pushed to
the sides, while for the even parity state it is the opposite. However, the limit
of the two states correlation function is not the same as the non-interacting ones.
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Figure 4.8: Pair correlation function for the lowest even parity state on the
repulsive side followed through the resonance g →∞ in the 2+1 particle system.
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Figure 4.9: Pair correlation function for the lowest odd parity state on the
repulsive side followed through the resonance g →∞ in the 2+1 particle system.

When the interaction increases on the repulsive side the particles from different
subsystems get pushed away from each other which is seen as a band around
x1 = x2 where the correlation is zero. When we pass through the resonance, a
band along x1 = x2 starts to get present.
It is also interesting to look at the different energy contributions. In Fig. 4.10
the expectation values of the different parts of the Hamiltonian are shown as
a function of g for the lowest odd parity state on the repulsive side. When
the interaction starts to increase the interaction energy gets bigger and thus in-
creasing the total energy. The particles also get pushed away from each other to
reduce the interaction energy which can be seen in the pair correlation function
and from the fact that the potential energy part increases. At around g = 2
the potential and kinetic energy increases significantly. Now the particles sep-
aration increases fast enough to overcome the increase in g and thus making
the expectation of the interaction energy decrease in total. When g → ∞ the
interaction energy goes to zero meaning that the particles are now completely
separated from each other and fermionization has occurred. There is also an
interesting separation between the potential energy and the kinetic energy. For
a harmonic oscillator eigenstate these would be equal but when we increase the
interaction the particles get pushed to the sides thus increasing the potential
energy and not the kinetic energy. Then when the particles separation gets
bigger the short range interaction does not affect the particles anymore thus the
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state starts to resemble a harmonic oscillator eigenstate and at fermionization
the potential energy and kinetic energy are equal. On the attractive side similar
things happen.
In Fig. 4.11 the different energy contributions for the lowest odd parity state
on the attractive side are displayed. In this state the particles collapse as the
interaction gets stronger and stronger and the interaction energy and total en-
ergy diverges to minus infinity. It can also be noted that the potential energy
decreases which is expected since the particles collapse at the point x1 = x2 = 0,
see Fig. 4.12. The kinetic energy also increases. This could be interpreted as an
analogy to a classical system of two bodies with an attractive interaction (for
example two stars). If the interaction increases and the bodies move closer to
each other, their momentum must increase to sustain a stable bound system. It
is also interesting to note that the potential energy does not go to zero. Thus
the process should be interpreted as two particles collapsing in the potential
minimum causing a diverging interaction energy and a zero potential energy
while the third particle, which has to obey the Pauli principle with respect to
one of the other two particles, must be further away and thus has a non-zero
potential energy.
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Figure 4.10: Different energy contributions for the lowest odd parity state on the
repulsive side in the 2+1 particle system as they evolve through the resonance
and into the attractive regime.
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Figure 4.11: Different energy contributions for the lowest odd parity state on
the attractive side in the 2+1 particle system as g → −∞.
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Figure 4.12: Pair correlation function for the lowest odd parity state on the
attractive side for g → −∞ in the 2+1 particle system.

4.3 3+1 system

In Fig. 4.13 the energy spectrum of the 3+1 particle system is shown. This also
resembles the Busch model except there are many more states and in particular
more states diverging to minus infinity. The higher degeneracy is expected since
there are more combinations available with more particles. This makes it very
difficult to reach strong attractive interactions by means of numerical methods.
The main focus of our discussion will be on the four lowest states on the repul-
sive side.
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Figure 4.13: Energy spectrum of the 3+1 system.

In Fig. 4.14, Fig. 4.15 and Fig. 4.16 the coordinate space densities of the second
lowest odd parity state, lowest odd parity state and lowest even parity state are
shown compared to the densities of the second lowest even parity state which is
a non-interacting state. We can see, that just as in the 2+1 case, the total co-
ordinate space density approaches the non-interacting states density while the
subsystems densities do not.The ground states total density for both parities
seems to approach the non-interacting states density slower than the excited
odd parity state. This is consistent with Fig. 4.13 where their energy is further
away from their limit at g →∞ since they start out at a lower energy.
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Figure 4.14: Particle coordinate space densities of the second lowest odd parity
state of the 3+1 particle system for different interactions. Darker colored curves
represent stronger interaction and the blue curve is the density of the second
lowest even parity state which is a non-interacting state, i.e. independent of the
interaction.
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Figure 4.15: Particle coordinate space densities of the lowest odd parity state
of the 3+1 particle system for different interactions. Darker colored curves
represent stronger interaction and the blue curve is the density of the second
lowest even parity state which is a non-interacting state, i.e. independent of the
interaction.
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Figure 4.16: Particle coordinate space densities of the lowest even parity state
of the 3+1 particle system for different interactions. Darker colored curves
represent stronger interaction and the blue curve is the density of the second
lowest even parity state which is a non-interacting state, i.e. independent of the
interaction.
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Figure 4.17: Particle coordinate space densities of the ground state for the 5+2
system and the 6+1 system. (a) Density of the two-particle subsystem in the
5+2 system. (b) Density of the five-particle subsystem in the 5+2 system. (c)
Density of the one-particle subsystem in the 6+1 system. (a) Density of the
six-particle subsystem in the 6+1 system.
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Chapter 5

Conclusions and outlook

We have in this project used exact diagonalization to numerically solve a trapped
one-dimensional two-component fermionic system for arbitrarily strong contact
interaction. The convergence has been speeded up by using an effective interac-
tion which utilizes information from the two-body system to help solve the many
particle system. Altough the numerical procedure would in theory work for any
interaction and any potential, the available analytical solutions of the two-body
system with a contact interaction in a harmonic oscillator potential is a huge
advantage. The results of this seemingly unreal quantum mechanical system are
of high relevance for experiments on cold atoms where the atoms are trapped
in one-dimension effectively realizing this one-dimensional quantum mechanical
system. The interactions strength in these experiments can be tuned via a so
called Feshbach resonance allowing for very controlled experimental environ-
ments that allows for very precise comparison between theory and experiment.
The analytical solutions of the two-particle system have already been verified
with experiments and in the near future we will hopefully also see the results
for the many-particle systems verified in experiments.

The observed convergence rate when using the effective interaction is far su-
perior to the one encountered when using the bare interaction. This makes it
possible to reach regimes of strong interaction that are otherwise unreachable,
and it is possible to increase the number of particles before being limited by
computational power. It is also a huge advantage to have access to the analyti-
cal solutions. The convergence of the eigenvalues and eigenvectors with a bare
interaction is very bad and just solving the problem numerically in the two-
body case requires including a huge amount of basis states. With the analytical
solution we get the exact solution for the infinite basis which gives much better
convergence in the many-particle case compared to solving the two-body system
numerically. Thus if one would study a system with a more realistic external
potential, or with a different interaction (including a finite range for example)
where no analytic solution exists, it might be a good idea to still try to use the
effective interaction generated by the analytic solution and then afterwards try
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to correct for the new potential and interaction by e.g. treating the difference
with perturbation theory. However, it should be emphasized that the numerical
method can be used for an arbitrary interaction and arbitrary potential, altough
the convergence might be worse.

There are some interesting features of these systems at fermionization. The
phase separation of the spin is one of the more interesting ones. As can be seen
in Figs. 4.4 and 4.5 there is a separation in coordinate space of the spin-specific
densities. For the odd parity state the single particle has a high probability of
being in the center of the potential while the two particles are pushed to the
sides, while for the even parity state the opposite happens. The same happens
in the 3+1 particle system as shown in Figs. 4.14, 4.15 and 4.16. This can
be related to a phenomenon called Stoner ferromagnetism which was described
by Edmund Stoner in 1938[14]. This is a theoretical state of a two-component
quantum gas where a strong repulsive interaction creates two domains of parti-
cles with different spin. The phase separation observed in the few-body systems
studied here would thus be a few-body analog to Stoner ferromagnetism. This
phase separation also happens for more particles as shown in Fig. 4.17. How-
ever, even though Stoner ferromagnetism was predicted in the 1930s, this state
of matter has not yet been observed.

This work has been a purely numerical study and a possible continuation would
be to try to extract more analytical results. The simple values of the energy
values at fermionization suggests that this limit should be completely solvable
analytically for an arbitrary number of particles. This is something that is well
worth looking into. Which states that connect to each other at fermionization
and the structure of the diverging states is also something that might be possi-
ble to extract analytically. However, the numerical method discussed here can
access all interaction strengths and the fermionization limit is definitely not the
only interesting region. For example, there is a maximum in the interaction
energy expectation value at intermediate attractive interaction strength as indi-
cated in Fig. 4.10 so this particular region might be interesting to study further.

It might also be interesting to study corrections to the full potential expression
as given by Eq. B.1. This potential is not coordinate inversion invariant, so
the composition into different parity states is then not possible. The biggest
difference however would be the possibility for scattering states since the po-
tential wall on the right side has a finite size. The harmonic oscillator states
are all bound states, so a different basis would be needed to be able to include
scattering states.

An extension to three dimensions might also be relevant. The asymmetric po-
tential trap used in the experiment in [15] has a ratio between the oscillation
frequencies ω⊥/ω‖ ≈ 10 which is actually not that good. When solving for the
energy spectrum the cutoff used on the basis states includes states with energy
larger than 10h̄ω‖ indicating that one should also start including harmonic os-
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cillator states that are excited in the perpendicular direction.

In this thesis we have only considered systems with very few particles, but the
excellent convergence suggests that it should be possible to increase the num-
ber of particles. The good convergence rate of this method for all values of
the interaction strength, and the fact that this method makes it very easy to
extract relevant observables like the occupation numbers and particle densities,
also allows for very precise comparisons with future experimental results.
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Appendix A

Feshbach resonances

Close to a so called Feshbach resonance it is possible to experimentally alter the
interaction strength between atoms by just changing a magnetic field opening
up for great control over quantum mechanical systems. The precise mechanisms
behind the resonance are quite complicated but we will in this section give some
motivation and explain the physics of the resonance. For further reading, and
more thorough treatments of Feshbach resonances, see [4].

In scattering theory when dealing with spherically symmetric potentials, one
usually decomposes the incoming states in eigenstates of the angular momentum
operator. Since the angular momentum operator commutes with the Hamilto-
nian these different so called partial waves will not interact with each other.
Thus we will have a family of different potentials V`(r) corresponding to dif-
ferent partial waves. These come from the matrix elements 〈`, r|V |`′, r′〉 =
δ(r − r′)δ``′V`(r). One calls the subspace with a definite angular momentum `
a scattering channel. This is an example of multi-channel scattering where the
different channels do not mix. Since the different channels do not interact, the
result of the scattering event will be just a change in the phase (the phase shift)
of the expansion coefficients of the incoming state [13].

Consider, as the simplest example of a Feshbach resonance, a system considering
of two different channels with two different potentials. One channel, called the
open channel, only has scattering states among the states with positive energy.
The other channel, the closed one, has one bound state, see Fig. A.1. The
continuum of eigenstates starts at a higher value E0 than in the open channel.
The bound state’s energy is denoted Eb which is close to zero.

To describe this system we consider the Hilbert space being made up by two
subspaces A and B for the open and the closed channel, respectively. The
eigenstate can be written as |Ψ〉 = |ΨA〉 + |ΨB〉. If we let A and B be the
projection operators onto the respective subspaces (satisfying AB = BA = 0
and A + B = 1) we have |ΨA〉 = A|Ψ〉 and |ΨB〉 = B|Ψ〉. Consider the time

58



independent Schrödinger equation

H|Ψ〉 = E|Ψ〉 (A.1)

Here E is approximately equal to the threshold energy for the open channel,
since we are considering low-energy scattering. By applying A and B, respec-
tively, we can get two coupled equations

(E −HAA)|ΨA〉 = HAB |ΨB〉
(E −HBB)|ΨB〉 = HBA|ΨA〉.

(A.2)

where HAB = AHB and HBA = BHA are the off block-diagonal parts of
the Hamiltonian and HAA = AHA and HBB = BHB are the parts of the
Hamiltonian for the subspaces A and B, respectively. We can formally solve the
second equation |ΨB〉 = 1

E−HBBHBA|ΨA〉 and then substituting this into the
first yields

(E −Heff)|ΨA〉 = 0 (A.3)

where Heff = HAA +HAB
1

E−HBBHBA.

We can expand the operator 1
E−HBB in eigenstates of the closed channel Hamil-

tonian HBB

1

E −HBB
=

1

E − Eb
|Eb〉〈Eb|+

∫ ∞
0

1

E − E(λ)
|φλ〉〈φλ| (A.4)

where the integral is over all continuous states. Close to the resonance (when
Eb ≈ E) the term from the bound state diverges and thus we can neglect the
contributions from the continuous states.

1

E −HBB
≈ 1

E − Eb
|Eb〉〈Eb| (A.5)

The open channel Hamiltonian is given in relative coordinates by

〈x|HAA|x′〉 = δ(x− x′)∇
2
x′

2m
+ δ(x− x′)Vopen(|x− x′|) (A.6)

and now we see that the effective Hamiltonian will be

〈x|Heff |x′〉 = δ(x− x′)∇
2
x′

2m
+ δ(x− x′)Vopen(|x− x′|) +

〈x|HAB |Eb〉〈Eb|HBA|x〉
E − Eb

(A.7)
In the experimental systems, the different channels correspond to different hy-
perfine states of the atoms. The difference in magnetic moments makes it pos-
sible to change the energy spectrum of the closed channel with an external
magnetic field (and in particular the energy of the bound state). By the Zee-
man effect this change is ∆µB where B is the magnetic field strength and ∆µ
is the difference in magnetic moments. Thus close to the resonance we have
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E − Eb = ∆µ(B0 −B), where we defined B0 ≡ E
∆µ .

Assuming that the extra term in the Hamiltonian is a local interaction, namely
that 〈x|HAB |Eb〉 ∝ δ(x), this extra term has the form of a delta function inter-
action

〈x|HAB |Eb〉〈Eb|HBA|x′〉
E − Eb

= gδ(x− x′)δ(x) (A.8)

This can also be motivated by examining the scattering length of the system[4].
Close to the resonance this term will dominate and thus the whole system can
be modelled with a delta function interaction, where the interaction strength is
g ∝ 1

B0−B . In particular, the interaction strength goes to ±∞ at the resonance,
see Fig. A.2.

Open channel

Closed channel E0

Eb

r

V

Figure A.1: Illustration of the potentials of the different channels. Eb denotes
the energy of the bound state and E0 is the threshold energy of the continuum
spectrum for the closed channel.
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Figure A.2: (a) The real potential and the harmonic oscillator approximation.
(b) The coupling coefficients as a function of the magnetic field. Parameters are
taken from [15].
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Appendix B

Trapping potential

In the most relevant experiments[15] the trapping potential is created by a
tightly focused laser beam and a magnetic field gradient. In one dimension it
has the form[15]

V (z) = V0(1− 1

1 + (z/zr)2
)− µmBz (B.1)

where B is the magnetic field strength, zr is the Rayleigh range of the laser
beam and µm is the magnetic moment of the atoms. The potential is shown in
Fig. A.2. In this thesis we will only consider bound states trapped at the min-
imum of this potential. Therefore, we will approximate the trap as a harmonic
oscillator potential. Because of the linear magnetic field term, this potential
is not inversion invariant, thus parity is not a good quantum number (but will
be in the harmonic oscillator approximation). The linear term also shifts the
minimum of the potential well. To get some insight into the behaviour of the
harmonic oscillator we will derive the oscillator frequency expressed in the pa-
rameters of the original potential. Let us define µmBzr = C and work in units
of zr, so the potential looks like

V (z) = V0(1− 1

1 + z2
)− Cz (B.2)

The derivative is

V ′(z) = V0
2z

(1 + z2)2
− C. (B.3)

For small z ≈ 0 we have 1 + z2 ≈ 1 yielding z′0 = C
2V0

as our first approximation
to the minimum of the potential. Let z0 be the real minimum. To get the
oscillator frequency we take the second derivative

V ′′(z) =
2V0

(1 + z2)2
− 8V0z

2

(1 + z2)3
(B.4)

Using that V0
2z0

(1+z2
0)2 − C = 0 we obtain

mω2 = V ′′(z0) =
C

z0
− C

√
8Az0C (B.5)
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If we now use z0 ≈ z′0 we obtain the expression

mω2 = 2V0 − 2C2 (B.6)

Going back to the original parameters we have

mω2 =
2V0

z2
r

− 2µ2
mB

2 (B.7)

In the whole project we have assumed that we just have a harmonic oscillator

potential V (x) = mω2 x2

2 .
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