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May 2013

Department of Mathematical Sciences

Chalmers University of Technology
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Abstract

Diabetes mellitus is a common disease where a person has high blood glucose levels. The

disease has two main causes. The first one is inability of the pancreas to produce enough

insulin. The second one is the inability of cells to respond to the insulin produced by the

pancreas. In type 2 diabetes patients, the body fails to respond to insulin which results

in low “insulin sensitivity”. In this thesis, measurements from Intra Venous Glucose

Tolerance Test (IVGTT) for both healthy subjects and type 2 diabetes patients were

used together with Bergman’s deterministic minimal model (ODE) to estimate the insulin

sensitivity based on a nonlinear mixed effect model. In addition to the IVGTT data some

basic covariates were included and tested for significance. Type 2 diabetes patients are

shown to be less sensitive to insulin than healthy subjects and thus need larger amount

of insulin to lower blood glucose level. A linear regression model from the covariates was

used for estimating insulin sensitivity but did not give conclusive results. The covariates

were included in the nonlinear mixed effect model to achieve better parameter estimates.

By incorporating the covariates the estimated standard deviation for insulin sensitivity

decreased substantially. An attempt was made to extend the deterministic minimal

model to a stochastic differential equation (SDE) model to improve the performance and

to get better parameter estimates.
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Introduction

Diabetes is a common disease that increasingly affects many individuals worldwide.

When studying diabetes it is of interest to observe how an individual responds to

insulin in the process of transporting glucose to various tissues. That can be observed

by measuring the insulin sensitivity which is the main topic of this thesis. Different

individuals have different insulin sensitivity levels and type 2 diabetes patients tend

to have substantially lower insulin sensitivity than healthy individuals. To model the

interplay between insulin and glucose and be able to estimate the insulin sensitivity, the

minimal model with nonlinear mixed effect model is used.

An introduction to diabetes and insulin sensitivity is presented in the first chapter.

Insulin sensitivity can be modeled using the minimal model. Description of how to

estimate insulin sensitivity by using the deterministic minimal model is illustrated in

the second chapter. A nonlinear mixed effects model approach was chosen to estimate

the parameters for the minimal model, including the insulin sensitivity parameter. A

nonlinear mixed effect models with population approach allows for variation both within

groups and between groups and is described in details in chapter three. A dataset

from an Intra Venous Glucose Tolerance Test (IVGTT) was used to model the insulin

sensitivity. The dataset included measurements both for healthy subjects and type 2

diabetes patients and results from the model are presented in chapter four. In chapter five

a linear regression model for insulin sensitivity was developed both for healthy subjects

and type 2 diabetes patients based on known covariates before IVGTT test. This was

done in order to see if a proper estimate of the insulin sensitivity could be described

from known variables since IVGTT test is extensive. Covariates were included in the

minimal model in order to get a better estimate of the insulin sensitivity in chapter six.

An attempt was made to use a stochastic version of the minimal model to improve the

model performance and a SDE version of the minimal model is presented in chapter

seven. Unfortunately some computational difficulties occurred so a simple example is

presented to show that a SDE version obtains better parameter estimation.
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Chapter 1

Background

1.1 Diabetes

Diabetes mellitus is a metabolic disease where a person has high blood glucose level.

Diabetes is caused by two main factors, the pancreas not being able to produce enough

insulin or the cells not responding to the insulin produced by the pancreas. It is about

quantity and quality of insulin that the pancreas produces. There are three main types

of diabetes mellitus; [1]

• Type 1 Diabetes Mellitus: The body fails to produce insulin at all. People

with diabetes type 1 will need to take insulin injections for the rest of their life and

ensure proper blood glucose levels by doing regular blood tests.

• Type 2 Diabetes Mellitus: The body fails to use insulin properly, the cells in

the body do not react to insulin or not enough insulin is produced. This type is

characterized by insulin sensitivity and is the most common type. Overweight and

obese people have higher risk of developing type 2 diabetes.

• Gestational Diabetes: Affects woman’s during pregnancy. High levels of glucose

is in the blood and the body is unable to produce enough insulin to transport all

of the glucose into the cells.

Type 2 diabetes mellitus (T2DM) is the only type of diabetes considered in this thesis.

T2DM disease is characterized by insulin sensitivity and loss of β-cell functions resulting

in hyperglycemia. The usual process is that the pancreas produces insulin, which moves

glucose from the blood into the cells and is there converted into energy. This glucose

disposal fails in T2DM patients since either there is not enough insulin or the insulin is

not good enough. To explain this process the following factors, insulin sensitivity, glucose

efficiency and pancreas responsiveness, are defined. Insulin sensitivity, SI , is defined as

the capability of insulin to increase glucose utilization to peripheral tissue as muscles
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1.2. Insulin Sensitivity Chapter 1. Background

and liver. Glucose efficiency, SG, is defined as the ability of glucose to enhance its own

disposal independently of the insulin level. Finally, pancreas responsiveness is defined as

the ability of the pancreatic β-cells to secrete insulin in response to glucose stimuli.

1.2 Insulin Sensitivity

Insulin sensitivity indicates how the body responds to insulin or the capability of insulin

to increase glucose efficiency to cells or tissues such as muscles and liver as described

before. Insulin sensitivity describes how sensitive the body is to the effects of insulin.

An insulin sensitive person requires smaller amount of insulin to lower the blood glucose

level than someone who has low sensitivity. A person with low sensitivity requires

larger amount of insulin either from the pancreas or from injections in order to keep

blood glucose stable. Insulin sensitivity varies from individual to individual and every

individual needs to be tested to determine how sensitive they are to insulin. Low

insulin sensitivity is also referred to as insulin resistance. From a dataset that includes

glucose and insulin concentration measurements one can measure and model the insulin

sensitivity.

1.3 Aim

The aim of this thesis is to investigate how good estimates of insulin sensitivity can be

obtained. The idea is to model insulin sensitivity for healthy subjects and type 2 diabetes

patients. More precisely, the aim is to explore an Intra Venous Glucose Tolerance Test

(IVGTT) dataset from AstraZeneca which includes measurements for glucose and insulin

concentrations in the blood at different time points, both before and after injection of

glucose in to the blood.

The type of mathematical model used to model the insulin sensitivity is based on a

compartment model thinking, similar to what is commonly used for modeling within

Pharmacokinetics (PK). The model is called the minimal model and is a compartment

model based on ordinary differential equations (ODEs). Nonlinear mixed effect (NLME)

models will be applied to the minimal model to estimate parameters. The dataset also

includes basic covariates and the aim is to obtain if including the covariates in the

minimal model will give better results. By knowing more about each individual more

accurate results should be obtained. An attempt will also be made to make a stochastic

version of the deterministic minimal model in order to obtain an even better estimate of

the insulin sensitivity and a better performance of the minimal model.
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Chapter 2

Modeling Insulin Sensitivity

2.1 Modeling in Pharmacokinetics/Pharmacodynamics

Pharmacokinetics/pharmacodynamics (PK/PD) modeling aims to describe the process

that occurs when a drug is injected in the body. PK/PD models are in general semi-

mechanistic mathematical and/or statistical models used to describe and/or predict

parameters from a dataset from the underlying experiment or trial. The purpose is

to use prior knowledge and physiological interpretation of parameters to model a specific

process. Pharmacokinetics describe the relationship between the drug inflow and resulting

concentration and pharmacodynamics describes drug effects over time and relates the

concentrations to drug effects. To describe this process compartment models are often

used [2].

Compartment models function in such a way that the body or a part of the body is

represented as a compartment. This is a simplification of the body structure and the

compartments are used to describe the dynamics of a drug in the body. In the case

of modeling insulin sensitivity the glucose or the insulin that is entering and leaving

the model is of interest to measure. A remote insulin compartment is introduced to

control the amount of glucose and insulin in the model [3]. The compartment model is

specified using ordinary differential equations that describe the change in the model and

this compartment specification enables statistical test to determine the functional form

of the process. The model is shown in Figure 2.1.

Since insulin sensitivity is an important risk factor for development of type 2 diabetes it

is of great interest to measure the insulin sensitivity and hopefully be able to predict if

a person has high risk of developing type 2 diabetes. To measure the insulin sensitivity

it is necessary to assess insulin action in the pancreas and to be able to measure the

glucose or insulin entering and leaving the system. To measure this the minimal model

is used to describe the behavior of the drug and the part of the body needed [4].
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2.2. The Minimal Model Chapter 2. Modeling Insulin Sensitivity

2.2 The Minimal Model

Using the minimal model is one way to measure insulin sensitivity [4]. The model

describes the glucose production and disposal with an remote insulin compartment which

is insulin dependent. This insulin dependance can be described with one compartment

model as well. The structure of the minimal model makes it possible to uniquely identify

model parameters that determine a best fit to glucose disappearance during the Intra

Venous Glucose Tolerance Test (IVGTT).

Figure 2.1: The Minimal Model. Glucose leaves and enters the glucose space, G(t), at a rate
proportional to the difference between plasma glucose concentration, G(t), and basal plasma
concentration, Gb. Glucose also disappears from the glucose space at a rate proportional to
insulin concentration in the remote insulin compartment, X(t) [3].

The minimal model in Figure 2.1 can be described with a set of differential equations,

both for the glucose space and for the remote insulin compartment with respect to time.

The equations are coupled and can be expressed mathematically as,

dG(t)

dt
= −(p1 +X(t))G(t) + p1Gb, G(0) = G0 (2.1)

dX(t)

dt
= −p2X(t) + p3(I(t)− Ib), X(0) = 0 (2.2)

where

G(t) : Plasma glucose concentration [µU/ml] at time t.

I(t) : Plasma insulin concentration [µU/ml] at time t.

X(t) : Insulin concentration in remote compartment at time t.

Gb : Basal plasma glucose concentration, before injection [µU/ml].

Ib : Basal plasma insulin concentration, before injection [µU/ml].
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2.2. The Minimal Model Chapter 2. Modeling Insulin Sensitivity

The parameters p1, p2, p3, G0 and I0, are unknown parameters in the model and will be

uniquely identified from the IVGTT. SI and SG will be identified as

SI : Insulin sensitivity, SI = p3/p2

SG : Glucose effectiveness, SG = p1

The minimal model is insulin dependent, I(t), which can be described as one compartment

model. The model assumes that the insulin enters the compartment at a rate proportional

to the product of time passed from glucose injection and the concentration of glucose

above threshold h. If the plasma glucose level drops below the threshold h the insulin is

not secreted by β-cells any more. The insulin is cleared from the plasma compartment

at a rate proportional to its own amount emphasizing the ability of pancreatic cells to

control insulin production independently of the glucose concentration. The insulin model

can be described by the differential equation

dI(t)

dt
= −n(I(t)− Ib) + γ(G(t)− h)t, I(0) = I0 (2.3)

where

n : first order decay rate for insulin in plasma.

h : threshold value of glucose above which pancreas cells secrete insulin [mg/dl].

γ : rate of the pancreatic cells release of insulin when glucose concentration above

threshold h.

Ib : Basal plasma insulin concentration, before injection [µU/ml].

Pancreas responsiveness is also defined to explain the process, as well as insulin sensitivity

and glucose efficiency. Though it is not of interest to analyze the pancreas responsiveness

at this moment it follows from the biological meaning of the insulin model parameters

that the pancreas first phase responsiveness can be defined as

φ1 =
Imax − Ib
n(G0 −Gb)

(2.4)

where Imax is the maximum insulin response. The pancreas second phase responsiveness

can be defined as

φ2 = γ · 104 (2.5)

Combining both glucose and insulin kinetics the model can then be rewritten in terms

of SG and SI . The equations 2.1, 2.2 and 2.3 are all coupled together and interact with

each other. The following nonlinear system of equations will be used to measure the

insulin sensitivity, SI [5].
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2.2. The Minimal Model Chapter 2. Modeling Insulin Sensitivity

dG(t)

dt
= −(SG +X(t))G(t) + SGGb (2.6)

dX(t)

dt
= −p2(X(t) + SI(I(t)− Ib)) (2.7)

dI(t)

dt
= −n(I(t)− Ib) + γ(G(t)− h)t (2.8)

This is the deterministic minimal model. A stochastic version of the minimal model is

introduced and described in chapter 7. The difference between the deterministic and

the stochastic minimal model is that a diffusion term and a Wiener process is added to

the system which allows for variation and an error in the model which can give better

parameter estimation.

As already mentioned, the main interest of these coupled equations is to identify and

estimate the insulin sensitivity parameter, SI , and explore how the insulin sensitivity

behaves for both healthy subjects and type 2 diabetes mellitus (T2DM) patients. SI is

thus our primary focus. Conclusions will be formulated in terms of the insulin sensitivity,

SI , and how it differs between individuals.
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Chapter 3

Parameter Estimation

When applying a statistical model to a PK/PD dataset the model must allow variation

both within groups and between groups. Mixed effect models allow for such variation

and a population based approach of nonlinear mixed effect models will be applied to the

glucose and the insulin concentration time data which can provide information about

insulin sensitivity [6].

3.1 The Population Approach

To estimate the parameters of the model a dataset from Intra Venous Glucose Tolerance

Test (IVGTT) will be used. The population approach allows for simultaneous estimation

across individuals and this joint estimation enables a more robust parameter estimation.

The theory of population modeling comes from the statistical mixed effects models, where

responses of repeated measurements are modeled using fixed and random effects [2]. The

fixed effects are used to describe the the population parameters but the random effects

are used to account for the population variation on parameters for each individual. In

general it is of interest to obtain not only individual parameters but also a quantitative

description of the parameter distribution across a population.

Nonlinear mixed effect models will be applied to the minimal model described in chapter

2 as the proposed expectation function is nonlinear [6].

3.2 Nonlinear Mixed Effect Models

A mixed effect model is a statistical model containing both fixed effects and random

effects where the fixed effects account for fixed parameters for every individual and

the random effects account for individual deviation. Nonlinear mixed effect (NLME)

models are useful in describing a nonlinear relationship between a response variable

and parameters whereas the parameters estimates are allowed to vary among groups
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3.2. Nonlinear Mixed Effect Models Chapter 3. Parameter Estimation

and the parameter variation is modeled by some underlying distribution. The NLME

gives information about variation of parameter values between groups and they are

commonly used in PK/PD modeling because their flexible covariance allows for non-

constant correlation among observation and unbalanced data. Since in our case it is

expected to have both variability within individuals and between individuals, NLME

model is a good choise. Using NLME model within the population approach is a way to

describe variability within the population [6].

A nonlinear mixed effect model can be defined as

yij = f(φi,xij) + εij (3.1)

for the j’th observation from the minimal model on the i’th individual where

yij : j’th glucose or insulin concentration observed in individual i.

xij : time point of observation j and individual i.

f : expected glucose G(t)/insulin I(t) amount.

φi : parameter vector of individual i.

εij : εij ∼ N(0,σ2Σ), a noise term.

The population model for individual i can be defined as

φi = β +Bbi (3.2)

where

β : vector of fixed population parameters.

B : matrix to determine which parameters have random effects.

bi : bi ∼ N(0,σ2Ω), σ2Ω is the covariance matrix of random effects.

For the i’th individual the model can be written as

yi = ηi(φi) + εi (3.3)

where

yi =


yi1

yi2
...

yini

, ηi(φi) =


f(φi,xi1)

f(φi,xi2)
...

f(φi,xini)

, εi =


εi1

εi2
...

εini
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3.2. Nonlinear Mixed Effect Models Chapter 3. Parameter Estimation

and εi ∼ N(0,σ2E), the noise distribution for individual i. Define for all M individuals

y =


y1

y2
...

yM

, φ =


φ1

φ2
...

φM

, η(φ) =


η1(φ1)

η2(φ2)
...

ηM (φM )

, b =


b1

b2
...

bM



Then the model is

y | b ∼ N(η(φ),σ2Λ) (3.4)

φ = β +Bb (3.5)

b ∼ N(η(φ), σ2Ω̃) (3.6)

where Λ=diag(E,E, . . . ,E), Ω̃ = diag(Ω,Ω, . . . ,Ω) and B = diag(B,B, . . . ,B).

To estimate the parameters the maximum likelihood function is defined with respect to

the marginal distribution of y

p(y) =

∫
p(y|b)p(b)db (3.7)

The difficulty in estimating the parameters based on maximum likelihood lies in the

fact that exact calculations of the integral is very difficult. This is due to the fact

that the expectation function η is nonlinear in b so there is no closed form expression

for this density. Instead the conditional distribution of y is approximated for b near b̂

by a multivariate normal distribution with expectation that is linear in b. Thus, first

linearization is applied to the residual

y − η(β +Bb) ≈ y − [η(β +Bb̂) + Ẑb− Ẑb̂] (3.8)

where

Ẑi =
∂ηi

∂bTi

∣∣∣∣
β̂,b̂

=

(
∂ηi
∂φT

∣∣∣∣
β̂,b̂

)
Bi

and

Ẑ = diag(Ẑ1, Ẑ2, . . . , ẐM ) =
∂η

∂bT

∣∣∣∣
β̂,b̂

Then

y − η(β +Bb̂) + Ẑb− Ẑb̂ | b ∼ N(0,σ2Λ)
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3.2. Nonlinear Mixed Effect Models Chapter 3. Parameter Estimation

and the approximate conditional distribution of y is

y | b ∼ N(η(β +Bb̂) + Ẑb− Ẑb̂, σ2Λ)

The marginal distribution of y can then be approximated, from this expression along

with the distribution of b, as

y ∼ N(η(β +Bb̂)− Ẑb̂, σ2V̂ ) (3.9)

where V̂ = Λ + ẐΩ̂ẐT . The log-likelihood function corresponding to the approximate

marginal distribution in equation 3.9 is

lF (β, σ, b | y) = −1

2
log|σ2V̂ |− 1

2
σ−2[y−η(β+Bb̂)+Ẑb̂]T V̂ −1[y−η(β+Bb̂)+Ẑb̂] (3.10)

The log-likelihood function 3.10 is then optimized in order to get the parameter estimates

in the minimal model. The add-on package nlme in R was used to get parameter

estimation [6]. The nlme package uses the first order condition linearization method to

maximize the likelihood function [7].

The NLME model will be applied to the minimal model in order to estimate the parameters

SI , p2 and SG. It is of interest to not only obtain individual parameters but also a

quantitative description of the parameter distribution across the population.
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Chapter 4

Modeling Data

4.1 Data

It is important to estimate the parameters from a reliable dataset. A dataset with

Intra Venous Glucose Tolerance Test (IVGTT) is used in this thesis to model the insulin

sensitivity, SI . The dataset includes measurements of glucose and insulin concentration

which were frequently measured after glucose injection. In the study the usefulness

of glucose stimulation for assessment of dynamic cell function was evaluated in young

T2DM patients, with different disease duration and treatments, as well as in healthy

subjects.

The study included 19 healthy subjects and 46 T2DM patients. The T2DM patients were

15-34 years old, had disease duration two to ten years, classified as having T2DM by the

reporting physician and HbA1c < 10% 1. The healthy subjects were 25-50 years old, had

a BMI 19-40 kg/m2 and no diabetes. Each individual was measured before injection of

the glucose and after 3, 4, 5, 7, 10, 15, 20, 25, 30, 60, 115 and 120 minutes. The amount

of glucose injected to both healthy subjects and T2DM patients was 0.3 g/kg. Both

insulin and glucose concentration are measured at each time point and µU/ml was the

measure unit. The dataset also included gender and BMI for both healthy subjects and

T2DM patients as well as disease duration and different treatments for T2DM patients.

The model’s parameters were estimated using the above described dataset.

4.2 Parameter Estimation

The parameters were estimated using the dataset described earlier, both for healthy

subjects and T2DM patients. The results were as follows.

1HbA1c is the amount of glucose that sticks to the red blood cells [8].
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4.2. Parameter Estimation Chapter 4. Modeling Data

4.2.1 Healthy Subjects

An analysis was conducted for the healthy subject data, which is shown in Figure 4.1.

Time 
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1 2

Figure 4.1: Plot of the insulin and glucose concentration for each healthy subject, were
the glucose concentration is shown in blue and the insulin concentration is shown in pink
[µU/ml].

To start estimating it is important to have good initial values. The initial values were

chosen assuming that the reported values were within a normal range for healthy subjects

[5]. A convergence of the optimization method used to maximize the log likelihood

function depends on the assumed initial values, therefore it is vital that reliable values

are used.

Parameter SGi p2i SIi I0i G0i ni γi hi

Initial Value 0.014 0.074 0.00035 88 292 0.1 0.0007 90

Table 4.1: Initial values for healthy subjects.

Random effects were assumed for the key parameters, Sg, Si, I0 and G0. The reason for

not having random effects for p2 is that the standard deviation was so small which implies

that the parameter is not random. Parameter values for the population estimates, means

13



4.2. Parameter Estimation Chapter 4. Modeling Data

and standard deviations, are shown in Table 4.2.

SG [10−2] p2 [10−1] SI [10−4] I0 G0

σlog(SG) σlog(SI) σlog(I0) σlog(G0)

Mean 2.096110 8.174785 1.926484 89.64738 306.2856

SD 0.576273 0.2254188 0.1546452 0.5028193

Table 4.2: Parameter values for the population estimates, means and standard deviations
for healthy subjects.

Insulin Sensitivity - Healthy Subjects

Insulin Sensitivity

Fr
eq
ue
nc
y

0.00010 0.00015 0.00020 0.00025 0.00030

0
1

2
3

4
5

Figure 4.2: Histogram of the values for SI for healthy subjects.

A histogram of the insulin sensitivity values, SI , for each individual is shown in Figure 4.2.

The values vary from 0.0001 to 0.0003 and follow in some way the normal distribution.

To further analyze the results residual plots for both glucose and insulin concentration

and observed data are plotted.
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Figure 4.3: Plots for the Insulin concentration for healthy subjects.

By looking at Figure 4.3 (b) one can see that the residuals form a slight curved pattern

and that there are few outliers. Moreover, one can see that the points are always above

or below the real values. The reason for the observed curved pattern in Figure 4.3 (b)

is that the observed values are either higher or lower than the predicted values at each

point in time. Figure 4.3 (c) shows that the most variation is for high values of insulin

concentration and a curved pattern is observed for the same reason as in the residual

plot.

An Anderson-Darling hypothesis test was used to test if the observed residuals of the

insulin concentration were normally distributed. The Anderson-Darling test is a statistical

test of whether a given sample of data is drawn from a given probability distribution, in

this case normal distribution. Before using the hypothesis test, one can visually inspect

from Figure 4.3 (b) in the attempt to determine if the observed residuals are seemingly

randomly scattered or if they form a structured pattern, which would imply that they

are less likely to follow a normal distribution. The hypothesis are
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H0 : The residuals follow a standard normal distribution, ε ∼ N(0,1).

HA : The residuals do not follow the standard normal distribution.

The resulting p-value was 2.2·10−16 with the test statistic 10.5738. Since the p-value is

so small it is not possible to reject the null hypothesis, H0, i.e the residuals are standard

normally distributed.
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Figure 4.4: Plots for the Glucose concentration for healthy subjects.

From Figure 4.4 (b) one can see that the residuals form a obvious curved pattern. The

curve pattern occurs for the same reason as for the insulin concentration but since it is

far more noticeable and stronger the residuals are not likely to bee standard normally

distributed. Figure 4.4 (c) has an even better fit than the insulin concentration but still

has the curved pattern.

The Anderson-Darling test was performed again to test if the residuals follow a standard

normal distribution and one can visually inspect from Figure 4.4 (b) in the attempt

to determine if the observed residuals are seemingly randomly scattered or if they

form a structured pattern as before. The hypothesis were the same as for the insulin
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concentration. The resulting p-value was 0.4603 with the test statistic 0.3539. For

significance level 0.05 the null hypothesis, H0, is rejected and the residuals are less likely

to follow the standard normal distribution.

4.2.2 T2DM Patients

The same analysis was conducted for the T2DM patients data, which is shown in Figure

4.5.
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Figure 4.5: Plot of the insulin and glucose concentration for each T2DM patient, were
the glucose concentration is shown in blue and the insulin concentration is shown in pink
[µU/ml].

The same initial values were used for the T2DM patients as for the healthy subjects and
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are shown in Table 4.1. To have the T2DM patients comparable to healthy subjects it is

suitable to have the same initial values. Random effects were put on the key parameters,

Sg, Si, I0 and G0. Parameter value for the population estimates, means and standard

deviations, are shown in Table 4.3.

SG [10−2] p2 SI [10−5] I0 G0

σlog(SG) σlog(SI) σlog(I0) σlog(G0)

Mean 1.759684 459780.7 2.78773 44.57617 342.5570

SD 0.2322227 2.403692 0.6410483 0.1276996

Table 4.3: Parameter values for the population estimates, means and standard deviations
for T2DM patients.

The value of p2 explodes since the value of SI is much smaller than for the healthy

subjects. From Table 4.3 it can bee seen that the estimated standard deviation for SI is

much higher for the T2DM patients then for healthy subjects. Each individual is really

different and they vary a lot.
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Figure 4.6: Histogram of the values for SI for T2DM patients.

The histogram of the insulin sensitivity values, SI for each individual is shown in Figure

4.6. The values vary from 0.000001 to 0.00017. Here the values are much lower than

for healthy subjects, T2DM patients are seemingly less sensitive to insulin than healthy

people. The values do not seem to follow the normal distribution as clearly as for the

healthy subjects. The T2DM patients are thus more unpredictable then the healthy

subjects.

To further analyze the results, residual plots for both glucose and insulin concentration

and observed data versus fitted data were plotted as for the healthy patients.
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Figure 4.7: Plots for the Insulin concentration for T2DM patients.

The residuals are more randomly spread in Figure 4.7 (b) for T2DM patients than for

healthy subject. The values vary more since the estimated standard deviation for T2DM

patients is higher than for healthy subjects as can be seen in Table 4.3. Figure 4.7 (c)

shows that there is much difference between the observed values and the fitted values.

An Anderson Darling test was used to test if the residuals follow a normal distribution

as for the healthy subjects. Before using the hypothesis test, one can visually inspect

from Figure 4.7 (b) in the attempt to determine if the observed residuals are seemingly

randomly scattered or if they form a structured pattern, which would imply that they

are less likely to follow a normal distribution. The resulting p-value was 2.181·10−12

with the test statistic 5.005. For all significance levels the null hypothesis, H0, cannot

be rejected and the residuals thus follow the standard normal distribution.
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Figure 4.8: Plots for the Glucose concentration for T2DM patients.

From Figure 4.8 (b) one can see that the residuals form a slight curved pattern. As

before the reason is because the model depends on ordinary differential equations and

the observed values are either higher or lower than the predicted values at each point in

time. Figure 4.8 (c) shows one outliner but otherwise there is a good fit.

As before an Anderson Darling test was used to test if the residuals follow a normal

distribution as for the healthy subjects. Before using the hypothesis test, one can visually

inspect from Figure 4.8 (b) in the attempt to determine if the observed residuals are

seemingly randomly scattered or if they form a structured pattern, which would imply

that they are less likely to follow a normal distribution. The resulting p-value was

2.181·10−12 with the test statistic 5.005. For all significance levels the null hypothesis,

H0, cannot be rejected and the residuals thus follow the standard normal distribution.
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4.2.3 Comparing Healthy Subjects and T2DM Patients

From Figures 4.3, 4.4, 4.7 and 4.8 one can conclude that the minimal model performs

better for glucose concentration than insulin concentration both for healthy subjects

and T2DM patients. Also better parameter estimates are obtained for healthy subjects

than for T2DM patients as was expected since the estimated standard deviation is

substantially lower for healthy subjects than for T2DM patients. An evident difference

can be seen in healthy subjects and T2DM patients, the insulin sensitivity is much

lower for T2DM patients which confirms that T2DM patients need more insulin or

glucose to maintain the appropriate level needed. The curved pattern that forms on

the residuals can be seen more obvious for the healthy subjects than for T2DM patients.

One explanation that the T2DM patients vary much more in how sensitive they are to

insulin. The healthy subjects are more similar to each other than the T2DM patients.

4.3 Grouping Data

The dataset was divided into groups and tested if there was a significant difference

between groups. For both healthy subjects and T2DM patients BMI and gender were

tested for significance and for T2DM patients the significant difference for different

treatments and disease duration was also tested. The groups were tested using ANOVA

and pairwise comparison to see if there was a significant difference between all groups

and pairs of groups respectively.

4.3.1 BMI

For both healthy subjects and T2DM patients it is of interest to see if insulin sensitivity

is different dependent on BMI. Four BMI groups were created, normal weight with BMI

18-25, overweight with BMI 25-30, obese with BMI 30-35 and extremely obese with BMI

>35.

Healthy Subjects

First consider the four BMI groups created for the healthy subjects. Box plots of the

insulin sensitivity for each BMI group are shown in Figure 4.9.
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Figure 4.9: Box plots of insulin sensitivity for BMI groups, healthy subjects.

The mean of insulin sensitivity for each BMI group was calculated and is shown in Table

4.4.

# individuals Mean [10−4]

Normal weight: BMI 18-25 2 2.407681

Overweigh: BMI 25-30 2 2.17021

Obese: BMI 30-35 9 1.916665

Extremely Obese: BMI >35 6 1.839679

Table 4.4: The means of insulin sensitivity for different BMI groups, healthy subjects.

Analysis of variance (ANOVA) test was performed with the hypothesis:

H0 : The means of the groups are equal, µ1 = µ2 = µ3 = µ4.

HA : The means of the groups are not equal, i.e µi 6= µj for at least one

choice of i and j.

Studying the output of the ANOVA test the F-statistic is 3.603 with p-value equal to

0.0748. With significance level 0.05 the null hypothesis, H0, cannot be rejected i.e. the

means for BMI groups are equal.

T2DM patients

Next consider the four BMI groups created for the T2DM patients. Box plots of the

insulin sensitivity for each BMI group are shown in Figure 4.10.
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Figure 4.10: Box plots of insulin sensitivity for BMI groups, T2DM patients.

The mean of insulin sensitivity for each BMI group was calculated and is shown in Table

4.5.

# individuals Mean [10−5]

Normal weight: BMI 18-25 2 9.049418

Overweight: BMI 25-30 11 7.857276

Obese: BMI 30-35 20 6.588098

Extremely Obese: BMI >35 13 4.978387

Table 4.5: The means of insulin sensitivity for different BMI groups, T2DM patients.

Analysis of variance (ANOVA) test was performed with the same hypothesis as for

healthy subjects. Studying the output of the ANOVA test the F-statistic is 8.757 with

p-value equal to 0.0495. With significance level 0.05 the null hypothesis, H0, can be

rejected, i.e. the means are not equal. The ANOVA test is only testing if there is

difference between BMI groups as a whole but does not tell which BMI groups differ

form one and other. It was obtained that the means differ significantly across the insulin

sensitivity with significance level 0.05 but not which pairs are significantly different from

each other. To test which pairs differ significantly a pairwise comparison using t-test was

conducted.
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BMI 18-25 BMI 25-30 BMI 30-35

BMI 25-30 0.575 - -

BMI 30-35 0.233 0.224 -

BMI >35 0.057 0.014 0.107

Table 4.6: P-values for pairwise comparison of different BMI groups using t-test, T2DM
patients.

As can be seen from Table 4.6 only overweight differs significantly from extremely obese

with significance level 0.05. If significance level were to be 0.1 normal weight would also

differ significantly from extremely obese.

4.3.2 Gender

For both healthy subjects and T2DM patients it is of interest to see if insulin sensitivity

is different dependent on gender.

Healthy Subjects

For the healthy subjects insulin sensitivity was measured for 9 males and 10 females.

Box plots of the insulin sensitivity for each gender are shown in Figure 4.11.
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Figure 4.11: Box plots of insulin sensitivity for gender, healthy subjects.

The mean of insulin sensitivity for each gender was calculated and is shown in Table 4.7.
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# individuals Mean [10−4]

Male 9 1.755752

Female 10 2.164208

Table 4.7: The means of insulin sensitivity for male and female, healthy subjects.

Analysis of variance (ANOVA) test was performed with the hypothesis:

H0 : The means of the groups are equal, µ1 = µ2.

HA : The means of the groups are not equal, µ1 6= µ2.

Studying the output of the ANOVA test, which in fact is the same as t-test in this case,

the F-statistic is 5.881 with a p-value equal to 0.0267. With significance level 0.05 the

null hypothesis, H0, can be rejected, i.e. the means for males and females are not equal.

T2DM patients

For the T2DM patients insulin sensitivity was measured for 29 males and 17 females.

Box plots of the insulin sensitivity for each gender are shown in Figure 4.12.
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Figure 4.12: Box plots of insulin sensitivity for gender, T2DM patients.

The mean of insulin sensitivity for each gender was calculated and is shown in Table 4.8.
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# individuals Mean [10−5]

Male 29 6.108149

Female 17 7.286679

Table 4.8: The means of insulin sensitivity for male and female, T2DM patients.

Analysis of variance (ANOVA) test was performed with the hypothesis:

H0 : The means of the groups are equal, µ1 = µ2.

HA : The means of the groups are not equal, µ1 6= µ2.

Studying the output of the ANOVA test the F-statistic is 1.798 with a p-value equal to

0.187. With significance level 0.05 the null hypothesis, H0, cannot be rejected. There is

not significant difference between males and females.

4.3.3 Treatment

For the T2DM patients it is of interest to test if insulin sensitivity is different between

treatments. Four groups were created based on different treatments, diet, tablets,

tablets+insulin and insulin. Box plots of the insulin sensitivity for each treatment group

are shown in Figure 4.13.
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Figure 4.13: Box plot of insulin sensitivity for different treatment, T2DM patients.

The mean of insulin sensitivity for each treatment group was calculated and is shown in

Table 4.9.
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# individuals Mean [10−5]

Diet 5 11.41128

Tablets 21 6.678019

Tablets+Insulin 11 5.00363

Insulin 9 5.408348

Table 4.9: The means of insulin sensitivity for different treatment, T2DM patients.

Analysis of variance (ANOVA) test was performed with the hypothesis:

H0 : The means of the groups are equal, µ1 = µ2 = µ3 = µ4.

HA : The means of the groups are not equal, i.e µi 6= µj for at least one

choice of i and j.

Studying the output of the ANOVA test the F-statistic is 6.336 with a p-value equal

to 0.0155. With significance level 0.05 the null hypothesis, H0, can be rejected i.e the

means for different treatment are not equal. The ANOVA test is only testing if there

are differences between treatments as a whole but does not tell which treatment differ

from one other. It was obtained that the means differ significantly across the insulin

sensitivity but not which pairs are significantly different from each other. To test which

pairs differ significantly a pairwise comparison using t-test was conducted.

Diet Tablets Tablets+Insulin

Tablets 0.00017 - -

Tablets+Insulin 6.3 · 10−6 0.05742 -

Insulin 3.0 · 10−5 0.17368 0.69774

Table 4.10: P-values for pairwise comparison of different treatments using t-test, T2DM
patients.

As can be seen from Table 4.10 the Diet group differs significantly from every other

group. With significance level 0.05 pairs of other groups do not differ significantly but if

the significance level were to be 0.1 Tablets and Tablets+Insulin would differ significantly.

That means that the null hypothesis, H0, can be rejected for the Diet group paired with

any other group, i.e. the mean of the Diet group is not the same as in any other group

but for the means of the other groups compared to one and other the null hypothesis,

H0, cannot be rejected.

27



4.3. Grouping Data Chapter 4. Modeling Data

4.3.4 Disease Duration

For the T2DM patients it is of interest to see if insulin sensitivity is different dependent

on disease duration. Three groups were created for disease duration, less than 5 years,

5-8 years and 8-10 years. Box plots of the insulin sensitivity for each disease duration

group are shown in Figure 4.14.
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Figure 4.14: Box plots of insulin sensitivity for disease duration, T2DM patients.

The mean of insulin sensitivity for each disease duration group was calculated and is

shown in Table 4.11.

# individuals Mean [10−5]

<5 years 6 6.800414

5-8 years 19 6.562657

8-10 years 21 6.453186

Table 4.11: The means of insulin sensitivity for disease duration, T2DM patients.

Analysis of variance (ANOVA) test was performed with the hypothesis:

H0 : The means of the groups are equal, µ1 = µ2 = µ3.

HA : The means of the groups are not equal, i.e µi 6= µj for at least one

choice of i and j.

Studying the output of the ANOVA test the F-statistic is 0.033 with a p-value equal to

0.968. With significance level 0.05 the null hypothesis, H0, cannot be rejected.
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Chapter 5

A Linear Regression Model

A Linear regression is an approach to model the relationship between a dependent

variable and a vector of regressors. In this case the dependent variable is the insulin

sensitivity, SI , and the regressors are some covariates. The relationship between the

dependent variable, SI , and the regressors is assumed to be linear and the data is modeled

using linear prediction functions and unknown model parameters are estimated. The

model also includes an error variable, εi, which is an unobserved random variable that

adds noise to the linear relationship between the dependent variable and the regressors.

5.1 A Linear Regression Model

A linear regression model of insulin sensitivity was created with all appropriate variables

for both healthy subjects and T2DM patients. The model included all variables that are

known with the aim to make some conclusions about insulin sensitivity from the known

variables.

5.1.1 Healthy Subjects

A linear regression model for insulin sensitivity was created for healthy subjects. The

known predictor variables for healthy subjects are BMI and gender. The linear regression

model is defined as

SI = β0 + β1(BMIi) + β2(Genderi) + εi (5.1)

where εi is the error, εi ∼ N(0,s2).

A t-test was performed to see if the parameters are significant.
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Coefficient Estimate Std. Error t-value p-value

BMI -2.919·10−6 1.824·10−6 -1.600 0.12910

Gender 3.370·10−5 1.673·10−5 2.014 0.06110

Table 5.1: T-test for linear regression model, healthy subjects.

Studying the output of the t-test, the p-value for the BMI coefficient, β1, is 0.12910

and for the Gender coefficient, β2, the p-value is 0.06110. With significance level 0.05

neither coefficients is significant but if significance level is 0.1 the Gender coefficient is

significant. R2
adjusted was also calculated for the model and was 0.2795. That means that

the linear regression model only explains 27.95% of the data and the rest is covered by

the error. Analysis of variance (ANOVA) test was performed to see if the variables were

significant. The hypothesis are

H0 : β0 = β1 = β2 = 0.

HA : β0 6= β1 6= β2 6= 0.

The F-statistic is 4.491 with p-value 0.02832. For significance level 0.05 the null hypothesis,

H0, can be rejected i.e. the variable values are not the same. After the model is

fitted residuals diagnosis was done and the following was investigated: if errors are

uncorrelated, outliers, constant error variance, symmetric errors and if the linear model

is adequate.
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Figure 5.1: Residual diagnosis of the linear regression model for healthy subjects.

Figure 5.1 (a) and (c) show that the residuals tend to have almost constant variance and

although there is some variation, there seems to be no correlation between residuals and

the fitted values and the residuals do not form a pattern. Figure 5.1 (b) shows that the

residuals seem to follow a normal distribution except for two outliers. The parameter

estimation is not conclusive as was expected, the insulin sensitivity estimate is mostly

covered by the error term. More information about each individual is needed to estimate

the insulin sensitivity.

5.1.2 T2DM Patients

A Linear regression model of insulin sensitivity was created for T2DM patients. The

known predictor variables for T2DM patients are BMI, disease duration, different treatments

and gender. The linear regression model is defined as

SI = β0 + β1(BMIi) + β2(Durationi) + β3(Treatmenti) + β4(Genderi) + εi (5.2)

where εi is the error.

A t-test was performed to see if the model is significant.
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Coefficient Estimate Std. Error t-value p-value

BMI -2.029·10−6 7.364·10−7 -2.756 0.00869

Duration 1.091 ·10−7 1.699·10−6 0.064 0.94911

Treatment -1.074·10−5 4.464·10−6 -2.405 0.02075

Gender 2.366·10−6 8.386·10−6 0.282 0.77928

Table 5.2: T-test for linear regression model, T2DM patients.

Studying the output of the t-test, the p-value for the BMI coefficients, β1, is 0.00869,

Duration coefficient, β2, 0.94911, Treatment coefficient, β3, 0.02075 and Gender coefficient,

β4, 0.77928. With significance level 0.05 BMI coefficient and Treatment coefficient

are significant but not Duration coefficient and Gender coefficient. R2
adjusted was also

calculated for the model and was 0.2005. That means that the linear regression model

only explains 20.05% of the data and the rest is covered by the error. ANOVA test was

performed to see if the parameters were significant. The hypothesis are the same as for

the healthy subjects. The F-statistic was 2.985 with p-value 0.0221. For significance

level 0.05 the null hypothesis, H0, can be rejected, i.e the parameter values are not the

same. After the model is fitted residuals diagnosis was performed and analyzed as for

the healthy subjects.
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Figure 5.2: Residual diagnosis of the linear regression model for T2DM patients.
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By looking at Figure 5.2 (b) the residuals are approximately normally distributed. Figure

5.2 (a) and (c) show that the residuals to not tend to have constant variance, there is a

big variation between the insulin sensitivity for each individual. There seems to be no

correlation between the residuals and the fitted values. The linear regression model is

not a good fit so an improvement was done by only including the significant parameters

in order to try to get a conclusive model.

5.2 An Improved Linear Regression Model

An improved version of the linear regression model for T2DM patients is proposed. Since

the parameters β2 and β4 were not significant the model was redefined as

SI = β0 + β1(BMIi) + β2(Treatmenti) + εi (5.3)

T-test was performed to see if the model is significant.

Coefficient Estimate Std. Error t-value p-value

BMI -2.066·10−6 7.088·10−7 -2.915 0.00563

Treatment -1.107·10−5 4.180·10−6 -2.648 0.01126

Table 5.3: T-test for improved linear regression model, T2DM patients.

Studying the output of the t-test the p-value for the BMI coefficient, β1, is 0.00563

and the Treatment coefficient, β2, is 0.01126. With significance level 0.05 both of the

coefficient are significant. R2
adjusted was also calculated for the model and was 0.2361.

That means that the linear regression model explains 23.61% of the data and the rest is

covered by the error. That is a better result than for the first linear regression model so

this model explains the insulin sensitivity more accurate. ANOVA test was performed

to see if the parameters were significant. The hypothesis are the same as for the healthy

subjects. The F-statistic was 7.955 with p-value 0.001149. For significance level 0.05 the

null hypothesis, H0, can be rejected, i.e the parameter values are not the same. After

the model is fitted residuals diagnosis was done and investigated as before.
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Figure 5.3: Residual diagnosis of the improved linear regression model for T2DM patients.

Figure 5.3 (a) and (c) imply that the residuals for the improved linear regression model

have more constant variance than before but not completely constant. The residuals

do not seem to be correlated to the fitted values and forms no pattern which makes

the model more adequate then original linear regression model. From Figure 5.3 (b)

it can be seen that the residuals do not strictly follow the normal distribution but are

closer to follow it than before. The linear regression model represents insulin sensitivity

better than before but the fit is not good enough for the model to be conclusive. More

information about each individual is needed to estimate the insulin sensitivity.
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Chapter 6

Covariates in the Minimal Model

6.1 Covariates in Nonlinear Mixed Effect Models

As described in Chapter 3, nonlinear mixed effect (NLME) models are useful when

there is both variability within individuals and between individuals. In addition, NLME

models can be very useful in describing nonlinear relationship between a response variable

and parameters and are covariates in the data grouped according to a classification

factor. Some of the parameters are allowed to vary with groups through the random

effects and covariates are common to all groups. By associating common random effects

to observations in the same group, NLME flexibly represents the covariance structure

induced by the grouping of the data. As described before the random effects account

for individual deviation in the parameters among groups but these deviations can be

explained in some way by difference in covariate values among groups [9].

Including covariates in the NLME model to explain the group variation often leads to

simplification in the random effects and allows for better understanding of the mechanism

producing the response.

A nonlinear mixed effect model is defined as

yij = f(φij ,xij) + εij (6.1)

as in chapter 3. The population model for the individuals is now defined as

φij = Aijβ +Bijbi (6.2)

for the j’th observation from the minimal model and the i’th individual where the

covariates are included through the Aij matrix. The most promising covariates are

included in the model by adding the corresponding columns to Aij , with resulting

estimated fixed effects being tested for significance. Thus,
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Aij : matrix to determine which parameters have fixed effects.

β : vector of fixed population parameters.

Bij : matrix to determine which parameters have random effects.

bi : bi ∼ N(0,σ2Ω), σ2Ω is the covariance matrix of random effects.

To estimate the parameters the NLME models are used as before. The description of the

NLME models are in chapter 4. The maximum likelihood function with respect to the

marginal distribution of y is defined as in equation 3.7 and the log likelihood function is

optimized.

6.2 Modeling Data with Covariates

Including covariates in the minimal model can hopefully give a better estimate of the

insulin sensitivity parameter. The same dataset is used and the parameters were estimated

both for healthy subjects and T2DM patients. Initial values for both healthy subjects

and T2DM patients are shown in Table 4.1. The model is first solved with no covariates

to evaluate which covariates should be incorporate. Plots of the estimated random effects

versus candidate covariates are used to identify interesting patterns and which covariates

should be included in the model. Since the random effects accommodate individual

variation from the population mean, plotting the estimated random effects against the

candidate covariates provides useful information. A systematic pattern in given random

effects with respect to candidate covariate would indicate that the covariate should be

included in the model [9].

The only random effect parameter of interest is insulin sensitivity, SI , and thus is only

considered which candidate covariates should be included in the model with respect to

insulin sensitivity.

6.2.1 Healthy Subjects

For healthy subjects the candidate covariates are BMI and gender. To explain the plots,

the numbers on the vertical axis represent:

BMI Gender

1 : Normal weight, 18-25 1 : Male

2 : Overweight, 25-30 2 : Female

3 : Obese, 30-35

4 : Extremely obese >35
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(a) Plot of insulin sensitivity vs BMI.
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(b) Plot of insulin sensitivity vs Gender.

Figure 6.1: Plots of insulin sensitivity, SI , against candidate covariates for healthy subjects,
BMI and gender.

Both Figure 6.1 (a) and Figure 6.1 (b) show a systematic pattern. The relationship

between insulin sensitivity and BMI is such that, the higher the BMI the lower is the

insulin sensitivity is. Between insulin sensitivity and gender the insulin sensitivity tends

to be lower for males but higher for females. From the candidate covariates both BMI

and gender will be included in the model. It is interesting to note that both when

the data was grouped and a linear regression model was created gender and BMI were

significant parameters with significance level 0.1 for healthy subject.

The model was updated and both candidate covariates included as a covariates in the

minimal model for healthy subjects. Same initial values were used and initial value for

BMI and gender was set to zero. By including covariates the standard deviation for

insulin sensitivity went from 0.2254188 to 0.1395728, indicating that variation in insulin

sensitivity for healthy subjects can be explained in some way by BMI and gender.
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Insulin Sensitivity with Covariates - Healthy Subjects
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Figure 6.2: Histogram of insulin sensitivity after including candidate covariates, healthy
subjects.

From Figure 6.2 it can be seen that the variation of insulin sensitivity values is less than

in Figure 4.2. Since the standard deviation is smaller when including covariates the

minimal model gives better estimate of insulin sensitivity when covariates are included.
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(a) Plot of insulin sensitivity vs BMI after
including candidate covariates.
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(b) Plot of insulin sensitivity vs Gender
after including candidate covariates.

Figure 6.3: Plot of insulin sensitivity against covariates that were included for healthy
subjects, BMI and gender.

After covariates were included in the model, less systematic pattern occurs for insulin

sensitivity versus both BMI and gender as expected. The ratio between a random effects

standard deviation and an absolute value of the corresponding fixed effect gives an idea

of the relative group variability for the coefficient and is useful in testing which random
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effects should be tested for deletion from the model. Insulin sensitivity is only tested

in this case since that is the only parameter of interest. For the minimal model with

BMI and gender as covariates this ratio is 0.01% which is too small and will result in

highly significant p-value, indicating that the insulin sensitivity parameter needs to be

included as a random effect in the minimal model although BMI and gender are included

as covariates.
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(c) Observed Data vs Fitted Data for
Insulin with Covariates.

Figure 6.4: Plots for the Insulin concentration for healthy subjects with candidate
covariates included.
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Glucose with Covariates.
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(c) Observed Data vs Fitted Data for
Glucose with Covariates.

Figure 6.5: Plots for the Glucose concentration for healthy subjects with candidate
covariates included.

Comparing Figure 6.4 with Figure 4.3 and Figure 6.5 with Figure 4.4 it is evident that

both the residual plots and the observed data versus fitted data plot do not change much

by including covariates. That implies that by including covariates does not fix the curved

pattern in the residuals. The curved pattern occurs because the model is explained by

ordinary differential equations so to decrease the curve pattern further improvements

have do be made.
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6.2.2 T2DM Patients

For T2DM patients the candidate covariates are BMI, gender, different treatment and

disease duration. To explain the plots, the numbers on the vertical axis represent:

BMI Treatments Disease Duration Gender

1 : Normal weight, 18-25 0 : Diet 1 : <5 years 1 : Male

2 : Overweight, 25-30 1 : Tablets 2 : 5-8 years 2 : Female

3 : Obese, 30-35 2 : Tablets+Insulin 3 : 8-10 years

4 : Extremely obese >35 3 : Insulin
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(a) Plot of insulin sensitivity vs BMI.
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(b) Plot of insulin sensitivity vs Gender.
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Duration.
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(d) Plot of insulin sensitivity vs Different
Treatments.

Figure 6.6: Plots of insulin sensitivity, SI , against candidate covariates for T2DM patients,
BMI, gender, disease duration and different treatments.
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Figure 6.8 (a) shows a slight systematic pattern. It seems like if the higher BMI is,

the lower insulin sensitivity is. Figure 6.8 (b) and Figure 6.8 (c) show no systematic

pattern, which indicates that neither gender nor disease duration should be included in

the model. Figure 6.8 (d) shows a systemic pattern, T2DM patients on diet tend to have

higher insulin sensitivity than patients on other treatments. From candidate covariates

both BMI and different treatments are included in the model. It is interesting to note

again that both when the data was grouped and a linear regression model was created

BMI and different treatment were significant but not gender and disease duration for

T2DM patients.

The model was updated and BMI and treatments were included in the minimal model for

T2DM patients. Same initial values were used as before and initial value for both BMI

and different treatment was set to zero. By including BMI and different treatments as

covariates the standard deviation for insulin sensitivity went from 2.403692 to 1.215193,

indicating that variation in insulin sensitivity for T2DM patients can be explain in some

way by BMI and different treatments.
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Figure 6.7: Histogram of insulin sensitivity after including candidate covariates, T2DM
patients.

From Figure 6.7 it is evident that the variation of insulin sensitivity values is less than

in Figure 4.6. Since the standard deviation is smaller when including covariates the

minimal model gives better estimate of insulin sensitivity when covariates are included.

There are two individuals that tend to have much higher insulin sensitivity than other

individuals which shows how divergent the T2DM patients are.
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(a) Plot of insulin sensitivity vs BMI after
including covariates.
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(b) Plot of insulin sensitivity vs Different
Treatments after including covariates.

Figure 6.8: Plots of insulin sensitivity, SI , against covariates that were included for T2DM
patients, BMI and different treatments.

After covariates were included in the model the systematic pattern is much less than

before for insulin sensitivity versus both BMI and different treatments. The ratio between

a random effects standard deviation and an absolute value of the corresponding fixed

effect was used to see if deletion of the insulin sensitivity parameter was plausible.

The ratio was 0.2% which will also result in highly significant p-value. The insulin

sensitivity parameter needs to be included as a random effect in the minimal model

although covariates are added.

43



6.2. Modeling Data with Covariates Chapter 6. Covariates in the Minimal Model

0 20 40 60 80 100 120

-2
0

0
20

40
60

Residuals vs Time for Insulin with Covariates - T2DM patients

Time

R
es
id
ua
ls
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(b) Residuals vs Fitted Data for
Insulin with Covariates.
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(c) Observed Data vs Fitted Data for
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Figure 6.9: Plots for the Insulin concentration for T2DM patients with candidate covariates
included.
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(a) Residuals vs Time for Glucose
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(b) Residuals vs Fitted Data for
Glucose with Covariates.
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Figure 6.10: Plots for the Glucose concentration for T2DM patients with candidate
covariates included.

As before the by comparing Figure 6.9 with Figure 4.7 and Figure 6.10 with Figure 4.8

it is evident that both the residual plots and the observed versus fitted data plot do not

change much by including covariates. That implies again that by including covariates

does not fix the curved pattern in the residuals and further improvements have to be

implemented to fix the curved pattern.
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Chapter 7

Stochastic Minimal Model

7.1 Stochastic Modeling in Nonlinear Mixed Effect Models

When using nonlinear mixed effects model in PK/PD the general approach is to use

ordinary differential equations (ODEs). Extending to stochastic differential equations

(SDEs) is achieved by adding an additional Wiener noise component. This additional

noise allows handling of autocorrelated residuals originating from natural variation or

systematic model error. Autocorrelated residuals are often partly ignored in PK/PD

modeling although it violates the hypothesis for many standard statistical tests [10].

Since a curved pattern occurs in the residual plots for the deterministic minimal model

a stochastic approach could decrease this curve pattern and give more accurate results.

Nonlinear mixed effect models are described in details in chapter 3. As before a nonlinear

mixed effect model is defined to describe data with the structure

yij , i = 1, . . . ,M, j = 1,2

where yij is the j’th observation (glucose or insulin concentration) for the i’th individual

at time tij and M is the number of individuals. In a mixed effect model the variation

is split into variation between individuals and within individual, which is modeled by a

mixed effect model and a population model respectively.

The add on package PSM in R is used in order to estimate parameters but the package

provides functions for estimation of linear and nonlinear mixed effect models using SDEs.

The package allows for any multivariate nonlinear time-variant model to be specified,

handles multidimensional input, covariates and missing observations [11].
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7.2 Stochastic Minimal Model using NLME

The mixed effect model can be written in the form of a state space model that consists

of two parts. The continuous state equation defining the dynamics of the system, in this

case the minimal model, and a set of discrete measurement equations, which defines a

functional relationship between the states of the system and the obtained measurements.

The nonlinear form of the ODE state space model equations are defined as

dxt = f(xt,ut,t,φi)dt (7.1)

yij = g(xij ,uij ,tij ,φi) + eij (7.2)

but the nonlinear form of the SDE state space model equations are defined as

dxt = f(xt,ut,t,φi)dt+ σ(ut,t,φi)dωt (7.3)

yij = g(xij ,uij ,tij ,φi) + eij (7.4)

where

tij : continuous time variable.

xt : states of the model at time t.

ut : optional inputs at time t.

σ : diffusion term.

ωt : standard Wiener process such that ωt2 − ωt1 ∈ N(0,I|t2 − t1|).

φi : individual model parameter.

eij : Gaussian white noise measurement error, eij ∈ N(0,S(φi)).

The difference between equation 7.1 and equation 7.3 is that the diffusion part σ(ut,t,φi)

has been added. Equation 7.3 represents the dynamic system, the minimal model, and

equation 7.4 represents the nonlinear mixed effect model [11].

The population model for the individuals is defined as before

φi = β +Bbi (7.5)

The state concept is essential to the understanding of the model setup. In this case

the state vector represents the glucose concentration, the remote insulin concentration

and the insulin concentration or xt = [G(t), X(t), I(t)], and is only observable through

measurement noise. Equation 7.4 defines the actual relation between measurement and

states.

The minimal model is redefined as a set of stochastic differential equations by the
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following nonlinear coupled system of equations

dG(t) = (−(SG +X(t))G(t) + SGGb)dt+ σ1dω1 (7.6)

dX(t) = (−p2(X(t) + SI(I(t)− Ib)))dt (7.7)

dI(t) = (−n(I(t)− Ib) + γ(G(t)− h)t)dt+ σ2dω2 (7.8)

where σ1 and σ2 are diffusion constants and ω1 and ω2 standard independent Wiener

processes. Diffusion constants are only added to the glucose and insulin concentration

since the measurements are based on those variables. To estimate the parameters good

initial values are needed as before. Same initial values were used as for the ODE minimal

model and are shown in Table 4.1. The initial values for the diffusion constants was

calculated as the mean of the residuals from the deterministic minimal model since the

goal of using SDE version is to decrease the curved pattern that forms in the residuals

as can be seen in Figure 4.4 (b) for example.

The model is nonlinear and it is more complicated to set a nonlinear model up for

the PSM package than a linear model. Unfortunately, it was really time consuming and

some computational difficulties occurred during the process. The optimization procedure

proposed was unable to converge. Instead a simple linear model was set up to show that

the stochastic approach should give a better estimate of the insulin sensitivity.

7.2.1 Simple Example

The simplest compartment model is the one that only includes one compartment. The

same dataset as in the previous chapters was used to solve the model but only glucose

concentration was included and only healthy subjects. The model assumes that the body

constantly produces glucose that is distributed into the blood and at the same time the

body is absorbing an amount of blood glucose that is proportional to the concentration

in the compartment G(t) .

Figure 7.1: The simple compartment model included a dose input, p, one compartment,
G(t), and disposal rate output, k.

The model can be described by one ordinary differential equation

dG(t) = (−kG(t) + p)dt, G(0) = G0 (7.9)
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where

G(t) : Glucose concentration at time t [mM].

k : a constant, when multiplied with G(t), gives rate of glucose disposal at time t.

p : constant rate of glucose production in the body.

To estimate the parameters k and p, mixed effect model will be used. The mixed effect

model for this compartment model can be defined as

yi(tij) = G(tij) + εij (7.10)

The initial estimates used for the model can be seen in Table 7.1. These initial estimates

were published as good initial estimates for this model [4].

Parameter k p G0

Initial Value 0.0294 0.136 17.4

Table 7.1: Initial values for the simple example.

The parameter values for the population estimates, means and standard deviations, are

shown in Table 7.2.

k p G0

σ(k) σ(p) σ(G0)

Mean 0.013136 0.13598 17.3984

SD 0.00201 0.017559 0.85829

Table 7.2: Parameter values for the population estimates, means and standard deviations
for the simple example.

It is of interest is to see how the residuals are and if the curved pattern appears on the

residual and the observed data versus fitted data plots.
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Figure 7.2: Plots for the Glucose concentration for the ODE model.

From Figure 7.2 the residuals form a curved pattern for the same reason described in

chapter 4, the ODE model makes the best line trough the observed points and is thus

always above or below the observed point. A SDE version of the model allows for

variation of this line, the Wiener process adds an error to the line which makes the

line vary. Anderson-Darling test was performed to see if the residuals follow a standard

normal distribution. The hypothesis were the same as for the deterministic minimal

model. The p-value was 0.2039 with the test statistic 0.5024. For significance level 0.05

the null hypothesis, H0, is rejected and the residuals do not follow the standard normal

distribution.

When expanding the model to stochastic differential equation a diffusion term is added.

The model can be defined as

dG(t) = (−kG(t) + p)dt+ σdω, G(0) = G0 (7.11)

where σ is the diffusion constant and ω a standard Wiener process. The same initial

values were used as for the ODE model and are shown in Table 7.1 and initial value for

the diffusion constant was calculated as the mean of the residuals from the deterministic

minimal model. The parameter values for the population estimates, means and standard

deviations, are shown in Table 7.3.
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k p G0

σ(k) σ(p) σ(G0)

Mean 0.0147267 0.13567 17.3984

SD 0.00132 0.011539 0.85829

Table 7.3: Parameter values for the population estimates, means and standard deviations
for the simple example.

The standard deviations for k and p have decreased when the stochastic version is applied.

The implies that an improved parameter estimations is obtained. The residual were

plotted again to see if the curve pattern had decreased with the SDE version.
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Figure 7.3: Plots for the Glucose concentration for the SDE model.

By looking at Figure 7.3 the curved pattern has decreased which implies that the

stochastic version of the model gives better results. Anderson-Darling test was performed

again to see if the residuals follow a standard normal distribution. The hypothesis were

the same as before. The p-value was 0.0981 with the test statistic 0.6075. For all

significance level 0.05 the null hypothesis, H0, is rejected and the residuals do not follow

a standard normal distribution but for significance level 0.1 the null hypothesis, H0, is

not rejected and the residuals do follow the standard normal distribution.

7.2.2 Comparing ODE and SDE Models

From the simple example it can be established that the stochastic version allows for

variation in the model and the curved pattern that forms in the residuals decreases. The

model is more accurate and gives better result by including the diffusion term and allows

for a systematic model error as was expected.
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Chapter 8

Conclusions and Discussion

Insulin sensitivity stands for the capability of insulin to increase glucose utilization to

peripheral tissue such as muscles and liver. Insulin sensitivity is thus an important

factor when scrutinizing how an individual responds to insulin. As well as looking at

each individual, it is interesting to look at the whole population and groups within the

population and distinguish difference in insulin sensitivity. When attempting to improve

the models that are used to estimate insulin sensitivity it is plausible to include covariates

and allow for model deviation and random errors.

T2DM patients clearly had lower insulin sensitivity than healthy subjects. That means

that T2DM patients are less sensitive to insulin than healthy subjects and require larger

amount of insulin to lower blood glucose levels. It is possible to draw the conclusion that

T2DM patients are less sensitive to insulin than healthy subjects and it is easer to predict

insulin sensitivity for healthy subjects than T2DM since the standard deviation of insulin

sensitivity is extensively smaller for healthy subject. The deterministic minimal model

gave better results for healthy subjects than T2DM patients in general but included a

curved pattern in the residuals which indicates that the model can be improved. The

dataset was divided into groups and tested if there were a significant difference between

the groups. The groups tested were BMI and gender for all subjects and in addition for

T2DM patients different treatment and disease duration were tested. For significance

level 0.05 there was a significant difference in insulin sensitivity with respect to gender

for healthy subjects and in BMI and different treatment for T2DM patients. A linear

regression model for insulin sensitivity was created based on the same covariates that

were tested in the groups. For both healthy subjects and T2DM the model did not

explain the insulin sensitivity well.

Covariates were included in the deterministic minimal model and a better result occurred

by including them. The standard deviation for insulin sensitivity decreased substantially

indicating that insulin sensitivity can be explained in parts by the covariates. However

the curved pattern still occurred in the residuals. An attempt was made to decrease
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or even eliminate the curved pattern by defining a stochastic version of the minimal

model. Unfortunately, it was really time consuming and some computational difficulties

occurred but a simple example supported that a SDE version decreases the curve pattern

and gives better results.

8.1 Future Work

Since computational difficulties occurred during the implementation of the stochastic

version of the minimal model it is of interest to continue solving that model. The

parameter estimation procedure did not converge and may potentially be because the

PSM package requires very specific setup. There is a possibility that a small error is

in the setup which results in the model not converging. To improve the SDE model

even more covariates can be included and since the diffusion term is an constant it can

be allowed to vary dependent on each individual. In addition to improving the model,

another dataset can be used to see if the parameter estimations changes or if different

results are obtained.
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