
Statistics Monitor Design for Data Flow
and Performance Analysis of an AMBA-
Based SoC System

Master’s thesis in Embedded Electronic System Design

Rongpeng Zheng
Vinaykumar Maramahalli Kemparaju

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Statistics Monitor Design for Data Flow and
Performance Analysis of an AMBA-Based SoC

System

Rongpeng Zheng
Vinaykumar Maramahalli Kemparaju

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Statistics Monitor Design for Data Flow and Performance Analysis of an AMBA-
Based SoC System
Rongpeng Zheng, Vinaykumar Maramahalli Kemparaju

© Rongpeng Zheng, Vinaykumar Maramahalli Kemparaju, 2022.

Supervisor:
Per Larsson-Edefors, Department of Computer Science and Engineering

Industrial Supervisor:
Faruk Sande, Ericsson

Technical Supporting Team:
Jing Li, Ericsson
Moazzam Fareed Niazi, Ericsson

Examiner:
Lena Peterson, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2022

iv

Statistics Monitor Design for Data Flow and Performance Analysis of an AMBA-
Based SoC System
Rongpeng Zheng, Vinaykumar Maramahalli Kemparaju
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Today’s advanced system-on-chip (SoC) contains multiple intellectual properties
(IPs) and technology with billions and billions of transistors all packed in an ultra-
small form factor. All of it needs to perform flawlessly meeting demanding power
and performance goals on tight schedules. Hence the complexity of SoC is sharply
increasing. However, the performance of the system is not scaling linearly with the
number of gate count. Henceforth, understanding the internal, dynamic behavior
and having a constructive utilization of resources is critical in SoC design. In this
thesis, we present a statistics monitor which is capable of monitoring data flow and
performance metrics of AMBA-based SoC systems. The study considers different
performance parameters such as system-level throughput, latency, bus efficiency,
etc. The statistics monitor outputs such statistics data. The data obtained from
the monitor unit provide insights into the SoC design, by assisting in the detection
of performance bottleneck of the system.

Keywords: AMBA, SoC, Statistics Monitor, Performance Analysis, Data Flow, AXI,
APB, AXI Interconnect.

v

Acknowledgements
We appreciate our supervisor, Professor Per Larsson-Edefors as well as our examiner,
Professor Lena Peterson for their guidance and reviewing of this master thesis. We
would like to appreciate our supervisor at Ericsson, Faruk Sande, for proposing this
thesis and providing professional technical suggestions throughout the process to
guide us through the completion of the project. We also want to thank our line
manager at Ericsson, Tomas Larsson for his administrative support. We would also
like to thank the technical supporting team, Jing Li and Moazzam Fareed Niazi for
providing technical suggestions and introduction of EDA tools.

Rongpeng Zheng, Vinaykumar Maramahalli Kemparaju, Lund, November 2022

vii

Contents

Abstract v

Abbreviations xi

1 Introduction 1
1.1 Related Works . 2
1.2 Thesis Goals . 3
1.3 Challenges . 4
1.4 Thesis Outline . 5

2 Technical Background 7
2.1 AXI4 Protocol . 7
2.2 AXI Interconnect . 9
2.3 APB Protocol . 10

2.3.1 AMBA APB Components and Interconnection 11
2.3.2 APB Protocol Operating Modes 12

3 System considerations 13
3.1 Monitor Placement . 13
3.2 Microarchitecture . 13
3.3 Memory . 15
3.4 AXI Monitor Unit . 16

4 Implementation 17
4.1 Overall View of a Simple SoC . 17

4.1.1 Microarchitecture of the Statistics Monitor 18
4.2 Communication Mechanism . 20

4.2.1 The Data Flow of the Control Signal 20
4.2.2 The Data Flow of the Statistics 22

4.3 Sub-monitors . 23
4.4 Main Monitor . 25
4.5 A List of Statistics . 27
4.6 Address Mapping for All Register Files 31

5 Verification 35
5.1 Verification for the microarchitecture 35
5.2 Verification of the Logic Functionality of the Monitor Unit 42

ix

Contents

5.2.1 Block Level Verification . 43
5.2.2 Subsystem Level Verification 43

6 Results 45
6.1 Dashboard . 45

6.1.1 Overall Statistics . 46
6.1.2 Statistics Per Time Unit . 49

7 Conclusion 53
7.1 Summary Features of the Statistics Monitor 53
7.2 Limitations of the Statistics Monitor 54
7.3 Applications of the Statistics Monitor 55

Bibliography 57

x

Acronyms

AHB AMBA advanced high-performance bus. 11
AHB-Lite AMBA advanced high-performance bus lite. 11
AMBA advanced microcontroller bus architecture. 1, 2, 10, 16
APB advanced peripheral bus. 2, 10–12, 23, 31, 54, 55
APB M IF APB manager interface. 18
APB Sub IF APB subordinate interface. 4, 11, 13, 15, 16, 18–22, 24, 40
AR channel read address channel. 8, 23, 29, 30, 32, 48, 50, 54
ASIC application-specific integrated circuit. 1, 2, 16
AW channel write address channel. 8, 23, 29–32, 54
AXI advanced eXtensible interface. 2–5, 7, 10, 11, 15, 16, 18, 21–24,
26, 29–32, 35, 37–43, 49, 53–56
AXI Manager IF AXI manager interface. 3, 8, 13, 14, 16, 20, 21, 36, 37
AXI NIC AXI network interconnect. 2–4, 11, 13–15, 18, 20–22, 24, 29,
31, 32, 36–38, 54–56
AXI Sub IF AXI subordinate interface. 8, 18
AXI VIP AXI verification intellectual property. 5
AXI4-Lite advanced extensible interface lite. 11

B channel write response channel. 8, 23, 29–32

DECERR decode error. 30
DFE digital front-end. 1, 2, 16
DP data processing unit. 35, 36, 38, 41, 42
DP/SW data processor or software. 1, 3, 4, 14–16, 18–22, 24–26, 30, 35,
54, 55

EDA electronic design automation. 18
EXOKAY exclusive access okay. 30

FPGA field-programmable gate array. 2

IP intellectual property. 1–3, 14, 20, 56

M IP manager intellectual property. 2, 3, 13, 14, 16–20, 23, 26, 29–31,
43, 44, 54–56

OKAY normal access okay. 30

QoS quality of service. 55, 56

xi

Acronyms

R channel read data channel. 8, 23, 29–32, 40, 42, 48, 50, 51
RTL register-transfer level. 3–5, 16, 24, 32, 49, 53

SLVERR slave error. 30
SM statistics monitor. 17–19, 23, 25, 35, 36
SM_MM main monitor of the statistics monitor. 18, 21, 24–27, 35–42,
54
SM_SUB sub-monitors of the statistics monitor. 25, 26, 35, 38, 41, 54
SM_SUB0 sub-monitor 0 of the statistics monitor. 37, 39, 40
SM_SUB1 sub-monitor 1 of the statistics monitor. 37, 39, 40
SoC system-on-chip. 1–5, 8, 11, 13–20, 25, 31, 53–56
Sub IP subordinate intellectual property. 2, 3, 17, 18, 29, 55, 56

W channel write data channel. 8, 23, 30–32

xii

1
Introduction

The semiconductor industry commends system-on-a-chip (SoC), as it is a way to
combine all major functional elements such as a microprocessor, DSP, ASIC, mem-
ory, interfaces, peripherals, and analog components needed for a finished product
onto a single die [1] [2]. Unifying all these components on a single chip provides the
best possible outcome in a die size, unit cost, form factor, power, performance, and
reliability [3]. In a race to fit as many functionalities on to a single chip, electronic
components have overpopulated the chip area [4].
As the number of transistors in system-on-chip (SoC) increases, their complexity
increases [5]. For effective SoC design, it is critical to understand the behavior of
the internal SoC interactions. On-chip communication architecture accommodates
all inter-component communication in an SoC (for example advanced microcon-
troller bus architecture (AMBA), Wishbone, Qsys Interconnect, CoreConnect). It
allows multiple manager intellectual propertys (IPs) and multiple subordinate IPs
to communicate with each other. The communication backbone of the SoC is being
strained as application complexity grows. In modern SoCs, performance and power
consumption are heavily influenced by the on-chip system bus communication archi-
tecture. Communication delay between two prime components on chip will result in
a major bottleneck in the chip design [6]. Selection of suitable interconnect structure
for a hard real-time system is the most complex task. Debugging system behavior
at the board level, such as probing signals with logic analyzers, is impossible.
To debug internal system behavior, performance monitors are introduced inside the
SoC. The purpose of the performance monitor is to measure clock accurate infor-
mation of performance metrics like system-level throughput, latency, bus efficiency,
etc. There are different types of performance monitoring systems. Generally, per-
formance monitoring systems can be classified into two categories: software- and
hardware-based systems. The software-based monitor provides high-level informa-
tion (instruction level or above). Normally software monitors are supplemented by
underlying hardware support [7]. It is safe to use software monitors in systems with
soft deadlines especially if the system is not operating at full capacity else it has
a major impact on system behavior [7]. In contrast, hardware-based monitoring
fetches low-level information (clock accurate information) without affecting system
behavior and timing [8]. The thesis presents hardware-based monitoring system.
The monitor watches, gathers, stores, and outputs data to the the data processor
or software (DP/SW) of the application-specific integrated circuit (ASIC).
This thesis study is carried out for a Ericsson’s modern digital front-end (DFE)

1

1. Introduction

ASIC digital radio. There are important parts in Ericsson’s DFE ASICs that oc-
cupy a considerable area on the chip. Roughly ranging from two to five percent of
the chip area, there are many such blocks in Ericsson’s current ASICs. advanced
eXtensible interface (AXI) Interconnect is the backbone of connectivity between var-
ious IP subsystems. AXI is a dominant protocol in the interactions between CPU
subsystem, PCIe, CPRI, manager IP subsystems, and multiple subordinate subsys-
tems. Additionally, there are other AMBA-based protocols used in the design such
as the advanced peripheral bus (APB) protocol. The exploration in this thesis is car-
ried out in accordance with design and document specifications of Ericsson’s DFE.
The hardware implementation of the statistics monitor is devised in SystemVerilog,
verified on Cadence Incisive tools and synthesized using Design Compiler.
In this report, we present the statistics monitor unit designed for monitoring the
performance and data flow of on-chip communication architecture. The statistics
monitor is intended to embed inside Ericsson’s DFE ASICs. The statistics monitor is
capable of monitoring each transaction flowing through the interconnect structure in
the SoC and uses the monitored data to analyze and validate the performance of the
system. The analyzed results consist of information related to system bus latency,
throughput, bandwidth, bus efficiency, and error rate. Studying these results will
provide insights in selecting optimal constraints for designing interconnect such as
arbiters scheme, clock speed for managers and subordinates, nodes, buffers, size,
frequency converters or even moving the position of the block in a floorplan. The
most likely outcome of the result is not to reconfigure the entire system, but rather
to highlight the areas where tiny modifications have the greatest impact on the
whole system’s performance.

1.1 Related Works
Xilinx has developed an AXI performance-monitor IP which focuses on monitoring
up to eight AXI interfaces for the AMBA AXI system [9]. Kyung et al. designed and
implemented a performance analysis unit for AXI-based SoC [10]. These two mon-
itors have different architectures and different definitions of performance metrics.
However, these two monitors only consider a simplified AXI network interconnect
(AXI NIC) of one level and implement their design on the field-programmable gate
array (FPGA).
In actual ASIC SoCs, the top AXI NIC normally consists of multiple levels of AXI
NIC components instead of only one level. For example, if one manager intellectual
property (M IP) want to access a subordinate intellectual property (Sub IP), its
transactions may go through several levels of AXI NIC to reach the destination
Sub IP. The one-level AXI NIC enables these two monitors can simply be placed
adjacent to the one-level AXI NIC, ignoring the long latency caused by the long wire
connection. Moreover, M IPs and Sub IPs are placed at different locations of the
floorplan and routing is very restricted in ASIC. For FPGA, it is easy to connect one
interface in one specific location with an integrated performance monitor by direct
wire connection since FPGA owns an abundant routing resource while ASIC needs
to route carefully and do not allow an integrated performance monitor to directly

2

1. Introduction

connect all IPs by wires.

Xilinx’s AXI performance monitor and performance analysis unit from Kyung et
al. define some normal performance metrics for the AXI manager interface (AXI
Manager IF) of M IPs such as transaction count, latency, byte count etc. Some
statistics in this thesis are referring to the definition from these two monitors [9] [10].
Kyung et al. propose some metrics about contention events to detect the latency
casing by the AXI NIC. For example, transactions generated by several managers
access the same subordinate at the same time. However, since the monitor needs to
connect with the subordinate port inside the AXI NIC to get the contention metrics
and there are multiple levels of AXI NIC and many Sub IP in SoC, it is unrealistic
to obtain these contention metrics for our statistics monitor.

1.2 Thesis Goals
The primary goal of this thesis is to design a statistics monitor as a register-transfer
level (RTL) solution in SystemVerilog from scratch for the AMBA-based Connect
Subsystem. The statistics monitor will be placed at the manager interfaces of all M
IPs in SoC to tap their AXI signals since all M IPs initiate the most transactions in
the SoC. By tapping the AXI Manager IF of all M IPs, the statistics monitor not
only can accumulate and calculate some performance metrics to know the actual
performance of the whole connect subsystem, but it also can study the data flow
from one specific M IP to all the Sub IPs of the SoC. When the statistics monitor logs
all statistics into its memory after receiving a report signal from the DP/SW, the
DP/SW will generate AXI read transactions to read all statistics from the statistics
monitor to the DP/SW. The software will further process the statistics and generate
a dashboard for a more intuitive visual display.

The desired functionality of the statistics monitor is as follows:

• Tapping AXI signals from the manager interfaces of all manager IPs in SoC

• Accumulating and calculating some actual performance statistics in rtl design
solution. Those actual performance statistics would be such as round trip
time, response latency, data amount, throughput, bus efficiency, error rates,
etc. However, Since there is no multiplication and division IPs provided in the
rtl design, some actual performance statistics would be accumulated as com-
putational molecules which would be finally be further multiplied or divided
by software.

• Storing all performance statistics into its register file.

• Comparing performance statistics from different monitor units in rtl hardware
solution to get some comparison results about which tapped M IP has max-
imum or minimum performance such as max/min round trip time, max/min
response latency, max/min throughput, etc.

• Interrupting the DP/SW to inform all statistics in the statistics monitor are
ready to read.

3

1. Introduction

• Having APB subordinate interface (APB Sub IF) as a subordinate IP in SoC
so that the DP/SW can access it such as configuring its programmable control
registers and reading statistics by AXI NIC.

1.3 Challenges
Before developing the statistics monitor, we may encounter some design and verifi-
cation challenges as shown below:
Design challenges:

• Microarchitecture: There are a total of 16 manager IPs with AXI manager
interfaces in the SoC, and these IPs are placed in different locations on the
floorplan. It is impossible to only design one monitor for monitoring all man-
ager IPs since all manager IPs are placed at different floorplan locations of the
SoC and the monitor needs to be placed next to all manager IPs. Thus, one
of the challenges is to design the microarchitecture of the statistics monitor
with a communication mechanism between the DP/SW and the monitors at
all the manager IP interfaces. The communication mechanism includes the
data flow of control signals, an interrupt signal and statistics by which the
communication protocol interface between the DP/SW and all monitors.

• Design Requirements: There are only a few papers, [5] and [8], related to
SoC performance monitoring related to AXI, and their parameters are rela-
tively simple, which cannot provide the detailed performance analysis of the
entire SoC and analyse the performance bottlenecks of the data transferring.
It is necessary to discuss with the Ericsson team about the application of the
statistics and make a list of relevant statistics from scratch to confirm the
design requirements.

• RTL Design: The AXI protocol is a high-performance and complex commu-
nication protocol. There are many protocol specifications designed to improve
throughput and performance, such as multiple outstanding addresses, out-of-
order transaction completion, etc. How to parse the complex AXI protocol
and determine the RTL design solution according to the design requirements
is a big challenge. In addition, the statistics monitor should not use multi-
pliers and dividers to save area and reduce the design complexity since there
are no such two existing IPs in company for the RTL design and these two
mathematical operations in hardware consume much area and take more clock
cycles to finish.

• Memory: Determining which kinds of memory for the statistics monitor and
how to intelligently log in the statistics into memory over a period of time are
also two design challenges.

• Area and Power: The net-list design should try to occupy small area and
consume low power. It is necessary to apply some low power design techniques
at the RTL level and use some methods to save resource such as reusing coun-
ters, reusing registers, using fewer-bit compactors, reducing unnecessary data
width, etc.

4

1. Introduction

• Clock Frequency: Since manager IPs are running at 491.00 MHz, the statis-
tics monitor also needs to run at the same high-speed clock frequency so the
RTL design should meet the high-speed timing constraint, increasing the de-
sign complexity.

Verification challenges:
• Too many possible AXI stimulus: It is challenging to make a compre-

hensive verification plan to verify the statistics monitor at the block level and
subsystem level verification since it is hard to generate comprehensive stim-
ulus of AXI traffic for one manager IP interface and multiple manager IP
interfaces. There are too many AXI stimulus such as outstanding read/write
transactions, interleaving read transactions, out-of-order read/write comple-
tion transactions for a transaction of single data item or multiple data items,
and so on.

1.4 Thesis Outline
This master thesis report is organized as follows:

• Chapter 2 Technical Background: It describes the technical background
needed for the statistics monitor, including the AXI4 protocol, the AXI inter-
connect, the APB protocol and the AXI VIP.

• Chapter 3 Method: Some system considerations are necessary to be re-
searched to bridge the gap between the thesis goal and the implementation of
the statistics monitor. These considerations are about the monitor placement
around the SoC, microarchitecture of the statistics monitor, memory and the
reusable RTL code of the monitor unit.

• Chapter 4 Implementation: It presents the implementation details of the
statistics monitor, including the microarchitecture and the data flow of the
whole statistics monitor in the SoC, the block diagram description of the main
monitor, sub-monitors and a list of the statistics.

• Chapter 5 Verification: It presents the verification details of the statistics
monitor, which verifies the connectivity and functionality of the AXI controller.
Later it presents the verification plan for verifying the monitor unit for different
statistics like overall statistics and statistics per unit time.

• Chapter 6 Results: This chapter presents the output results obtained from
the statistics monitor graphically on the dashboard. It also presents the ap-
plication of dashboard.

• Chapter 7 Conclusion: This chapter summarizes the content of the thesis.
It presents the features and limitations of the statistics monitor. It also lists
some of the use cases in which statistics monitoring can be used.

5

1. Introduction

6

2
Technical Background

This chapter provides a technical background on AMBA-based protcols such as
AXI4 protocol, AXI interconnect and APB protocol. Each section introduces the
basic concept and their key features which are used to carry out this master thesis.

2.1 AXI4 Protocol
AXI is a burst-based communication protocol which is a part of Advanced Mi-
crocontroller Bus Architecture (AMBA). It is suitable for high-performance, high-
bandwidth and low-latency chip design [11].

AXI
Manager
Interface

AXI
Subordinate

Interface

Read Address (AR) channel
Address

and
control

Read
data

Read
data

Read
data

Read
data

Read Data (R) channel

Write Address (AW) channel
Address

and
control

Write
data

Write Data (W) channel

Write
data

Write
data

Write
data

Write Response (B) channel

Write
response

Figure 2.1: AXI channel architecture of reads and writes

7

2. Technical Background

There are five individual channels which are read address channel (AR channel),
read data channel (R channel), write address channel (AW channel), write data
channel (W channel) and write response channel (B channel) in the AXI protocol
as shown in Fig. 2.1 [11]. AR, AW and W channels are driven by AXI Manager IF
but R and B channels are driven by AXI subordinate interface (AXI Sub IF). All
the channels confirm to exchange data by the handshake mechanism whose VALID
means the current data is valid from the driver interface and READY means the
current data can be received by the driven interface. On the one hand, when AXI
Manager IF initiates a read transaction, it sends an address with burst length, burst
size, burst type etc. on the AR channel to AXI Sub IF. Then, AXI Sub IF fetches
read data items from the requested address to the AXI Manager Interface on the
R channel. On the other hand, AXI Manager IF initiates a write transaction, it
sends an address with burst length, burst size, burst type etc. on the AW channel
and write data items on the W channel to AXI Sub IF. Once AXI Sub IF complete
sending all the data items to the target address, it responds with a transaction state
such as okay or error on the B channel to AXI Manager IF.

There are some key features improving bandwidth and latency of data transfers [12]:

• Separate write and read channels: This feature can simultaneously ini-
tiate write and read transactions so that write and read transactions do not
block each other.

• Multiple outstanding addresses: The AXI manager can initiate multiple
transactions on AW channel or AR channel in sequence and does not need to
wait for the completion of earlier transactions from B channel or R channel.
This feature can issue the write or read requests as soon as possible to make
full use of the parallel processing of the system.

• No strict timing relationship between address and data operations:
For example, when the AXI manager issues a write address on the AW chan-
nel, it can provide corresponding write data items on the W channel before
or after issuing the write address without the timing requirement. Further,
when the AXI manager issues a read address on the AW channel, it can re-
ceive corresponding read data items on the R channel only after issuing the
read address without the timing requirement. This feature enables early issu-
ing of the write or read request from the AXI manager considering the data
transactions with a high priority and processing latency in the SoC.

• Out-of-order transaction completion: There are transactions identifiers
in AXI so that the AXI transaction with different identifiers are possible to
be completed out of order. For example, a fast-response transaction can com-
plete before a slow-response transaction even if the fast-response transaction
initiated by the AXI manager is slower than the slow-response transaction.
This feature improves the throughput of an AXI manager because the com-
pletion of a fast-response transaction would not be blocked by a slow-response
transaction.

• Burst transactions based on start address: When an AXI manager issues
a burst-based transaction for writing or reading multiple data items, it only

8

2. Technical Background

needs to issue one address for the first data item rather than issue multiple
addresses for all the data items. This feature helps an AXI manager save the
number of issuing addresses and process the data items in batches.

2.2 AXI Interconnect
Since the AXI protocol is a point-to-point communication protocol which defines
the signals with timing between managers and subordinates, an AXI interconnect in
Fig. 2.2 is necessary to enable integration of all IPs for an SoC, involving multiple
managers and subordinates [12].

AXI
Interconnect

Manager_0

Manager_1

Subordinate_3

Subordinate_2

S

S

M

M

M S

Subordinate_0

Subordinate_1

Manager_2

AXI Manager Interface

M S

Legend

SM

M S

M S

M S

AXI Subordinate Interface

Figure 2.2: AXI Interconnect

The AXI interconnect is a full crossbar structure between managers and subordinates
in Fig. 2.2 so that multiple managers can communicate with one subordinate or
multiple subordinates at the same time [5]. An AXI interconnect has three main
responsibilities as follows [13]:

• The AXI interconnect receives all transactions from managers or subordinates
since it has AXI subordinate interfaces to connect with the managers and has
AXI manager interfaces to connect with the subordinates.

9

2. Technical Background

• After receiving transactions, the AXI interconnect routes those transactions
to their destination subordinates according to the issuing addresses on AW or
AR channels.

• Once a manager or subordinate receives multiple transactions, there is an ar-
biter inside the AXI interconnect to organize the sequence of those transactions
for resolving access contention.

Moreover, there are some other features supported in the AXI interconnect [12]:
• Protocol Converters: The AXI interconnect receives all transactions from

managers or subordinates since it has AXI subordinate interfaces to connect
with the managers and has AXI manager interfaces to connect with the sub-
ordinates.

• Clock Converters: Since different IPs inside the SoC may run on different
clock frequencies, it is necessary to have clock converters to meet the require-
ments of clock domain crossings.

• Bus-width Converters: Since different IPs inside the SoC may have different
bus widths, bus-width converters play a significant role in adjusting different
bus widths from other managers or subordinates to a specific manager or
subordinate for ensuring correct data transmission.

2.3 APB Protocol
The APB protocol is a communication protocol that is part of the AMBA protocol
family. The objective of this protocol is to establish a standardized communication
interface, which enables different entities to communicate with each other without
having to deal with other entities present in a system, which supports modularity in
system design. Unlike AXI, APB is a non-pipelined protocol used for communication
with low-bandwidth peripheral which do not need high performance [14]. The APB
protocol allows to access programmable control register of peripheral devices [14].
APB protocol is a low-cost interface hence it uses low area and power in the design.
In the implementation of the statistics monitor, APB protocol is used to access
register files.

Figure 2.3: AMBA Bus including AHB/ASB and APB with APB connect to
UART, Timer, Keypad and PIO slaves [15].

10

2. Technical Background

A typical APB-based interface in SoC can be seen in Fig. 2.3. APB protocol is
compatible with AMBA advanced high-performance bus (AHB), AMBA advanced
high-performance bus lite (AHB-Lite), AXI and advanced extensible interface lite
(AXI4-Lite) [14]. AXI NIC has an APB bridge inside it as the APB manager
controller to actively initiate transfer while APB Sub IF can only passively receive
transfer. This bridge acts as communication interface between high performance
bus(like AHB, ASB) and other peripheral devices.

2.3.1 AMBA APB Components and Interconnection
A typical AMBA APB design contains the following components:

APB Master
APB facilitates Write, Read, and Idle exchanges by providing an address and control
signals. Due to the nature of APB protocol, only one master can access the bus at
any time. Hence there is no need for an arbiter-like AXI protocol. The interface
of an APB master is presented in Fig. 2.4. APB performs combinational decode to
select the slave via PSELx pin. It is also responsible for driving PENABLE and
PDATA onto the system bus.

APB Slave
The APB slave shown in Fig. 2.4 is very basic, yet flexible interface. APB slave re-
sponds to requests made from an active master interface. PWRITE decides whether
the APB slave is in reading or write mode. When the PWRITE signal is set high,
the APB slave is in write mode else in the read mode provided that PSELECT and
PENABLE are set high. It is also capable of informing the master if the transaction
was successful or not via PSLVERR pin.

Figure 2.4: Interfacing of APB Master and Slave [16].

11

2. Technical Background

2.3.2 APB Protocol Operating Modes
Fig. 2.5 shows the different operating states of an APB protocol. It has three defined
states Idle, Setup, and Access. The APB protocol takes at least two cycles to com-
plete a transaction although it takes three cycles to complete the first transaction.

Transfer

IDLE
PSELx = 0

PENABLE = 0

SETUP
PSELx = 1

PENABLE = 0

ACCESS
PSELx = 1

PENABLE = 1

PREADY = 0

PREADY =1
and transfer

PREADY = 1
and No transfer

No transfer

Figure 2.5: Operating states of APB protocol

• Idle state: This is a default state in which there will be no data transfer.
• Setup state: When the transaction starts PSELx is asserted. The bus moves

into the setup state. In the next clock cycle, the bus unconditionally moves to
the access state. If the bus remains in the setup phase in the next clock cycle
it will run into protocol violation.

• Access: The enable signal, PENABLE is asserted in the ACCESS state. Dur-
ing the transition from setup to access the address, write and data signals
should remain stable. Else, it will run into protocol violations. The bus
remains in an access state until PREADY is zero. When the PREADY is
asserted, the bus moves into either an idle state or the setup state. If there is
no subsequent transaction the bus remains in the idle state. If there is another
transaction the bus moves into a setup state.

12

3
System considerations

In this chapter, some system considerations are necessary to be researched to bridge
the gap between the thesis goal and the implementation of the statistics monitor.
These considerations are about the monitor placement around the SoC, microarchi-
tecture of the statistics monitor, memory and the reusable RTL code of the monitor
unit.

3.1 Monitor Placement

The main monitor and 15 sub-monitors are individually and strategically placed
at all the manager IP interfaces, since manager IP is responsible for generating
AXI traffic in the AXI interconnect system. Thus the placement of the monitor
is coherent. The advantage of monitoring the Manager IP interface is that all the
manager interfaces are using AXI protocol. Even if the subordinate is APB protocol,
APB bridge inside the interconnect structure takes care of the protocol conversion.
Therefore, all the monitors are AXI-based protocols. The SoC with the monitor
placement is shown in Fig. 3.1.

3.2 Microarchitecture

The microarchitecture of the statistics monitor in Fig. 3.1 includes one main monitor
and 15 sub-monitors with AXI Manager IF and APB Sub IFs, connected with the
AXI NIC. It is impossible to design only one monitor using a direct wire link for
monitoring all M IPs in the SoC. The reason is that 16 M IPs in the SoC are placed
in different locations on the floorplan, and routing the connection between the only
one monitor and 16 M IPs would cross the whole floorplan which is an extremely
expensive operation in the SoC. Based on these two reasons, the statistics monitor
is divided into 16 monitors, placed at AXI Manager IFs of all 16 M IPs in the SoC
for close and immediate acquisition of AXI signals.

13

3. System considerations

AXI
Interconnect 0

Manager_IP_0
DP 0

Manager_IP_1

AXI
Interconnect 2

Subordinate_IP_3

Subordinate_IP_2

AXI Main Monitor

M

S

M

S

M

S

M

S

AXI Sub-Monitor_1

M

S M

S

Subordinate_IP_0

Subordinate_IP_1

Manager_IP_15

AXI bus APB bus

SM

AXI Sub-Monitor_15

AXI
Interconnect 1

M

S M

S

Legend

M

SM

S

Figure 3.1: The microarchitecture of the statistics monitor for the SoC of 16
manager IPs

One of the 16 monitors is a main monitor and the remaining 15 are sub-monitors.
The reason why the statistics monitor needs a main monitor is that the main monitor
is a bridge of communication between a DP/SW and 15 sub-monitors. The main
monitor is responsible for obtaining statistics from the neighbour M IP, broadcasting
control signals from the DP/SW to sub-monitors, collecting statistics from sub-
monitors, comparing results and reporting all statistics to the DP/SW. However, 15
sub-monitors does not have such many function as the main monitor but they are
capable to obtain statistics from their neighbour M IPs and report their all statistics
to the main monitor.

Since the distributed statistics monitor is divided into one main monitor and 15
sub-monitors, the communication mechanism is necessary for the communication
between the DP/SW, the main monitor and 15 sub-monitors. It is based on the
AXI NIC and protocol interfaces of the main monitor and 15 sub-monitors. Firstly,
the AXI NIC is responsible for the communication between all IPs inside the SoC and
routing the transactions to destination IP. Since the distributed statistics monitor
is divided into 16 separate monitors which needs to communicate with the DP/SW
or the main monitor by the AXI NIC. Secondly, the main monitor has two protocol
interfaces. The first one is the AXI Manager IF which is used to actively broadcast
control signals to all sub-monitors and read statistics from all sub-monitors. The

14

3. System considerations

second protocol interface of the main monitor is APB Sub IF which communicates
with the DP/SW for passively receiving control signals and sending all statistics.
Thirdly, each sub-monitor have only one communication interface, which is the
APB Sub IF. This interface serves two purposes. The first purpose is to receive the
control signal from the main monitor and the other purpose is to passively send its
statistics to the main monitor or the DP/SW. More detailed explanation about the
microarchitecture and the communication mechanism will be given in section 4.1.

3.3 Memory

The memory of the statistics is the register file. There are some reasons as shown
below:

• Memory in the SoC: Since the statistics monitor is designed for the current
tape-out SoC which has allocated specific memory to its current IPs, there is
no extra free memory in the SoC that can be allocated to a new IP of the
statistics monitor.

• Disadvantage of using outside memory: If the statistics monitor wants
to use memory other than itself, it needs to actively initiate transactions from
time to time, which requires the main monitor and 15 sub-monitors to have
AXI manager controllers, increasing the design complexity, area and power
consumption. In addition, the fact that the data monitor actively initiates
transactions from time to time can reduce the performance of the running AXI
NIC. The statistics monitor should avoid affecting the normal data transmis-
sion. However, the register file inside the main monitor and sub-monitors can
temporally store their statistics which avoid actively initiating transactions
and affecting the AXI NIC from time to time.

• Memory capacity requirement: From the statistics parameters of the de-
sign, since the statistics are reported after accumulating for a period of time,
the required storage capacity is not large, and the register file can provide
suitable storage space without complex storage control.

• APB Sub IF: The register file only needs an APB Sub IF which can passively
receive the read or write transactions from the DP/SW or the main monitor.
Thus, it does not need a complex AXI manager controller to communicate
with AXI NIC.

• Various register types: There are many register types in the register file.
For example, read-only registers can store statistics and be read by the APB
Sub IF; write-only registers allows the APB Sub IF to assert their values for
control signals; interrupt register can generate an interrupt signal informing
the DP/SW that the statistics monitor has prepared all statistics. Those
various register types satisfy the design requirement of the statistic monitor.

15

3. System considerations

3.4 AXI Monitor Unit
The AXI monitor unit is a configurable, reusable and flexible RTL design for tapping
AXI signals and obtaining performance statistics. Firstly, the RTL of the monitor
unit can configure its parameters such as burst length width, address width, id
width to monitor different AXI Manager IFs. The configuration of the AXI monitor
unit enables its RTL design to adjust any AXI Manager IFs. Secondly, the AXI
monitor unit is also an reusable IP because it can be duplicated or instantiated as
the number of M IPs in the SoC as the sub-monitors and perform the same monitor
function. Thirdly, each sub-monitor, instantiated from the AXI monitor unit could
be regarded as an individual subordinate IP and be individually accessed through
its APB Sub IF by the DP/SW or the main monitor. The DP/SW is possible to
only activate one sub-monitor and observe the performance of one M IP instead of
activating all the monitors of the statistics monitor, so the AXI monitor unit is also
flexible to be activated. Hence, the monitor unit will be compatible with future
Ericsson’s DFE ASICs and other SoC designed on an AMBA-based interconnect
system with appropriate parameter configuration.

16

4
Implementation

In this chapter, the implementation of the statistics monitor is introduced. It in-
cludes the microatchitecture of the statistics monitor with the data flow explanation,
the functional description of the main monitor and sub-monitors with their block
diagrams and a list of statistics which would be obtained by the statistics monitor.

4.1 Overall View of a Simple SoC

AXI Interconnect

DP

M

Manager IP 0

M

Manager IP 1

M

Manager IP 2

M

DP/SW

Subordinate IP 0 Subordinate IP 1 Subordinate IP 2

M

AXI manager interface APB bus

Legend

Figure 4.1: An simple SoC has 3 manager IPs and 3 subordinated IPs with AXI
interconnect

Since the target SoC has at least 16 M IPs and many more than 16 Sub IPs, it is
not necessary for the statistics monitor (SM) to monitor all 16 M IPs. Thus, the

17

4. Implementation

master thesis proposes only monitor a simple SoC which has basic elements such
as three M IPs and three Sub IPs with corresponding AXI NIC to demonstrate the
data flow and working mechanism of the design. The simple SoC is shown Fig. 4.1

4.1.1 Microarchitecture of the Statistics Monitor

Main Monitor

M

AXI IC

Sub-Monitor 1Sub-Monitor 0DP/SW

M

Interrupt Controller
IRQ

M

AXI manager interface APB bus

Legend

Manager IP 0

M

Manager IP 1

M

Manager IP 2

M

Figure 4.2: The microarchitecture of the statistics monitor inside the simple SoC

An SM is a hardware solution to monitor the AXI signals from three M IPs, con-
nected to the AXI Interconnect in Fig. 4.1. Since M IPs are the originating sources
of most transactions flowing through the AXI Interconnect inside SoC, an SM is
only placed at the manager interface of three M IPs. An SM placed at the mas-
ter interface tracks all the information going through the interface to calculate the
performance and data flow statistics of the SoC.
The microarchitecture of the statistics monitor in the SoC without Sub IPs is shown
in Fig. 4.2. It has one main monitor and two sub-monitors, which are connected
with the AXI manager interfaces of three M IPs respectively while it also has its
own AXI NIC which includes one AXI Sub IF for the DP/SW, one AXI Sub IF
for main monitor of the statistics monitor (SM_MM), one APB manager interface
(APB M IF) for SM_MM and one APB M IF for sub-monitor 0 and one APB M
IF for sub-monitor 1. The paths in the AXI NIC are from the DP/SW to SM_MM
and from SM_MM to all sub-monitors. This AXI NIC is generated by an electronic
design automation (EDA) tool, ARM Socrates [17].
The sub-monitor 0 and 1 in Fig. 4.2 are instantiated by one AXI monitor unit
and one register file with APB Sub IF. A monitor unit is a generic RTL design for

18

4. Implementation

tapping AXI signals and calculating performance statistics while a register file with
its APB Sub IF could assign the control signal, store statistics and report those
statistics to Main Monitor. According to tapped AXI signals, the AXI monitor unit
will accumulate statistics which are explained in more detail in section 4.5.
Main Monitor in Fig. 4.2 is the highest level module of the statistics monitor which
not only instantiates an AXI monitor unit for tapping the AXI signals from Man-
ager_IP_2 in Fig. 4.2, but also acts as the control centre of the statistics monitor
between the DP/SW and two Sub-Monitors. The data flow of the control signal and
statistics for the SM is shown in section 4.2. The DP/SW could only communicate
with Main Monitor instead of all Sub-Monitors to control the whole SM. In brief,
Main Monitor is able to monitor the performance of a M IP, broadcast the con-
trol signals to all sub-monitors, collect all statistics from all sub-monitors, obtain
comparison results between different monitor units, generate an interrupt signal to
trigger the DP/SW to read statistics from the Main Monitor and report all statistics
to the DP/SW.
In the end, the DP/SW will use those statistics from the main monitor and compute
averages, using multiplication and division, such as throughput, bus efficiency, aver-
age round trip time, etc. Since division and multiplication are resource consuming in
hardware, the software helps with those arithmetic calculation operations. The final
statistics will be used for generating a dashboard with statistics charts and figures
for data visualization so that it would be easier to find the performance bottleneck
of the SoC.

19

4. Implementation

4.2 Communication Mechanism
Since the statistics monitor consists of one main-monitor and two sub-monitors,
which are located in different floor plan near their tapping M IPs, the distributed
statistics monitor need to communicate internally between the main monitor as well
as two sub-monitors and communicate externally with the DP/SW. Fig. 4.3 and
Fig. 4.4 respectively shows the data flow of control signals and statistics between
the DP/SW, the main monitor and two sub-monitors. These two data flows are the
communication mechanism of the DP/SW.

4.2.1 The Data Flow of the Control Signal

Main Monitor

M

AXI IC

Sub-Monitor 1Sub-Monitor 0DP/SW

M

Interrupt Controller
IRQ

M

AXI manager interface APB bus

Legend

M

AXI manager interface APB bus

Legend

M

AXI manager interface APB bus

Legend

M

AXI manager interface APB bus

Legend

2. enable & report signals 3. enable & report signals

4. enable & report signals 4. enable & report signals1. enable & report signals

Figure 4.3: The data flow of the control signal in the statistics monitor

Inside the SoC, if an IP wants to communicate with the other IPs, its interfaces need
to be connected with AXI NIC rather than directly linking to the destination IP.
Thus, the DP/SW, the main monitor and sub-monitors all have their own interfaces
for communication. The DP/SW uses its AXI Manager IF to initiate AXI write
or read transactions to communicate with Main Monitor and Sub-Monitors. The
main monitor communicates with the DP/SW for receiving the control signals and
sending statistics by its APB Sub IF while it also communicates with Sub-Monitors
for broadcasting control signals and reading statistics by its AXI Manager IF. Fur-
thermore, each sub-monitor has an individual APB Sub IF to communicate with
Main Monitor for receiving control signals and sending statistics.
The control signal is a 32-bit programmable register, including 30 bit for configuring
time window scale, 1-bit report signal and 1-bit enable signal. The benefit of merging

20

4. Implementation

these three signals into one 32-bit signal is that one AXI write transaction is enough
to transfer a 32-bit data instead of initiating three transactions for assigning these
three signals.

Regarding the control signal of enable and report in Fig. 4.3, if the enable signal is
high but the report signal is low, Main Monitor and Sub-Monitors start monitoring
and accumulating their statistics; if the enable signal is low but the report signal is
high, Main Monitor and Sub-Monitors stop monitoring, and calculate some statistics
requiring further processing and wait for read requests. In addition, the time window
scale in the control signal is used to configure the time window scale for each sub
window so that the DP/SW could determine what time scale for each sub window
enables SM_MM to get a detailed and desirable performance analysis on a smaller
time scale.

In Fig. 4.3, there are four steps for the data flow of the control signal:

1. The DP/SW initiates a write transaction from its AXI Manager IF to APB
Sub IF of Main Monitor to assign the control signal for assigning the time
window scale and asserting the enable or report signals high.

2. The control signal from the DP/SW goes through AXI NIC and finally reaches
Main Monitor.

3. Main Monitor receives the control signal, and then broadcast the control signal
to two Sub-Monitors by initiating two AXI write transactions to AXI NIC.

4. The sub-monitor 0 and sub-monitor 1 receive the control signal respectively
from AXI NIC.

Moreover, after the DP/SW sends the report signal to Main Monitor, the DP/SW
needs to initiate another write transaction to enable the interrupt signal in Main
Monitor. Else the interrupt signal in Main Monitor would not be triggered by Main
Monitor when Main Monitor has prepared all statistics for the DP/SW.

21

4. Implementation

4.2.2 The Data Flow of the Statistics

Main Monitor

M

AXI IC

Sub-Monitor 1Sub-Monitor 0DP/SW

M

Interrupt Controller
IRQ

1. statistics_submonitor 1. statistics_submonitor

M

AXI manager interface APB bus

Legend

4. statistics_mainmonitor

3. statistics_mainmonitor 2. statistics_submonitor

Figure 4.4: The data flow of statistics in the statistics monitor

There are some differences in quantity and kind for statistics inside Main Monitor
and Sub-Monitors. More detailed statistics are given in section 4.6.
Regarding the statistics flow in Fig. 4.4, there are four steps for the data flow of the
statistics:

1. Once Main Monitor gets a write response signal of sending the report signal
to sub-monitor 0, it would initiate AXI read transactions to read all statistics
from APB Sub IF of sub-monitor 0. Then, the statistics would be read out
from sub-monitor 0 to AXI NIC. The flow is also same for sub-monitor 1.

2. AXI manager interface of Main Monitor receives the statistics one by one from
sub-monitor 0 and sub-monitor 1 by AXI NIC. Once Main Monitor finishes
the statistics collection from all Sub-Monitors, it compares its statistics with
all Sub-Monitors’ statistics to get some comparison results. Then, it would
generate an interrupt signal to the DP/SW for informing all statistics in Main
Monitor are ready.

3. Once the DP/SW receives the interrupt signal, it would initiate an AXI write
transaction to clear the interrupt signal and then initiates multiple AXI read
transactions to read out all statistics in Main Monitor. Statistics from Main
Monitor would be read from APB Sub IF of Main Monitor to AXI NIC.

4. AXI manager interface of the DP/SW finally receives the statistics one by one
from Main Monitor. Those statistics could be used to draw some performance
bottleneck conclusion and create a dashboard for data visualization.

22

4. Implementation

4.3 Sub-monitors
Fig. 4.5 shows the block diagram of a sub-monitor (SM_SUB). It consists of a
Monitor Unit, a Register File and an APB interface. Monitor Unit includes AXI
Watcher module, Statistics Calculator module and Time Window Trigger module.
When the statistics monitor (SM) want to monitor a new AXI M IP, Monitor Unit
can be directly instanced and port mapped the AXI signals from the new AXI M IP
while Register File only needs to modify its block address. Then, a new sub-monitor
is easily created. The following is an introduction to the functions of each module
in Fig. 4.5:

Sub-Monitor

AXI Watcher

Manager IP_0

AXI Interconnect

AXI M

AXI AW, W, B channel

Statistics
Calculator

Register File

Statistics
OR, TUR
OW,TUW

Control signal
enable, report

APB Interface

Time Window
Trigger

Clock and reset signals

Monitor Unit

M

AXI manager interface APB bus

Legend

AXI AR, R channel

Control signal
time window scale

Figure 4.5: The block diagram of a sub-monitor

• AXI Watcher module: It taps the necessary AXI signals of each transaction
from the manager interface of the nearby Manager IP and stores the AXI
information in registers. This module also acts as one-clock-delay registers to
ensure the timing closure. It can be triggered when the enable signal is high
and the report signal is low in Register File. The necessary AXI signals are
shown below:

– AW channel: awid, awlen, awbrust, awvalid and awready.
– W channel: wstrb, wlast, wvalid and wready.
– B channel: bid, bresp, bvalid and bready.
– AR channel: arid, arlen, arsize, arburst, arvalid and arready.
– R channel: rid, rresp, rlast, rvalid and rready.

23

4. Implementation

• Statistics Calculator module: Using the necessary AXI signal from AXI Watcher
module, it calculates four kinds of the statistics: (1) Overall Read Statistics
(OR) (2) Time Unit Read Statistics (TUR) (3) Overall Write Statistics (OW)
(4) Time Unit Write Statistics (TUW). Overall statistics mean the statistics
over the whole monitor window (e.g maximum 8 second) while time unit statis-
tics mean the statistics over one window scale (e.g maximum 1 second). The
RTL design has eight continuous time windows over the whole monitor window
so that the statistics monitor (SM) could get more detailed performance data
in different time windows. The list of statistics can be seen in section 4.5.
The Statistics Calculator module starts calculation when the enable signal
is high and the report signal is low and prepares reporting when the enable
signal is low and the report signal is high. Preparing reporting means there
are some statistics could be calculated by the accumulated statistics at the
end of the whole monitor window so that it would save power instead of keep
calculation when the accumulated statistics are updated over the whole moni-
tor window. Moreover, Statistics Calculator module includes many individual
RTL modules to calculate different statistics, so if some statistics are not nec-
essary to be obtained, the Statistics Calculator module could just remove the
corresponding statistics RTL instances.

• Time Window Trigger module: It is a counter based on the system clock
to count how many clock cycles have been passed over the whole monitor
window. In addition, according to the programmable control signal of time
window scale, this module would generate a trigger for Statistics Calculator
module to update Time Unit Read/Write Statistics to Register File.

• Register File module: It is a set of 32-bit registers, including read-only-type
registers and a write-only-type register. The read-only-type registers store the
OR, OW, TUR and TUW statistics while the write-only-type register includes
30-bit time window scale signal, 1-bit enable signal and 1-bit report signal.

• APB Interface module: It is the output interface of the sub-monitor which is
connected with AXI NIC outside the sub-monitor. It receives the broadcasting
control signal from SM_MM and reports its statistics to SM_MM. Further-
more, since the sub-monitor uses APB Sub IF, the standard protocol, any the
DP/SW port is possible to individually access the sub-monitor by AXI NIC
when the DP/SW port has been set the path to the sub-monitor in AXI NIC.

24

4. Implementation

4.4 Main Monitor
The main monitor is the control centre of the statistics monitor, since it communi-
cates with the statistics monitor (SM) and sub-monitors of the statistics monitors
(SM_SUBs). On the one hand, SM_MM receives the control signal as well as the
interrupt signal of enabling and clearing from the DP/SW and reports all its statis-
tics to the DP/SW. On the other hand, SM_MM broadcasts the control signal to
all SM_SUBs and receives all statistics from all SM_SUBs. In this method, the
DP/SW is able to communicate with the statistics monitor (SM) by initiating fewer
transactions only through SM_MM instead of initiating many more transactions
through all SM_SUBs one by one which achieves reducing the performance im-
pact on the original SoC. The detailed communication mechanism is described in
section 4.2.

Manager IP

AXI M
AXI signals

AXI Interconnect

Main Monitor

Register File

Statistics from
Monitor Unit

Control signal

APB Controller

Interrupt signal

Monitor Unit

Comparison

AXI Controller

Comparision
Results

AXI M

Statistics from
Sub-Monitors

M

AXI manager interface APB bus

Legend

Figure 4.6: The block diagram of the main monitor

Fig. 4.6 show the overall block diagram of the main monitor. It includes a Monitor
Unit module, a Register File module for SM_MM, an APB Controller module, an
AXI Controller module and a Comparison module. The following is an introduction
to the functions of each module in Fig. 4.6:

25

4. Implementation

• Monitor Unit module: It is same as Monitor Unit module for SM_SUB in
Fig. 4.5. It taps the AXI signals from the nearby M IP and calculates perfor-
mance statistics. Its output will be stored in Statistics from Monitor Unit of
Register File module for SM_MM.

• Register File module for SM_MM: It is a set of 32-bit registers, including read-
only-type registers, a write-only-type register and an interrupt-type register.
The read-only-type registers stores statistics from sub-monitors, from monitor
unit and comparison results. The write-only-type register includes 30-bit time
window scale signal, 1-bit enable signal and 1-bit report signal, same as the
control signal in SM_SUB. The interrupt-type register firstly needs to be en-
able by the DP/SW, then triggered by Comparison module, finally be cleared
by the DP/SW.

• APB Controller module:
– Receiving the control signal from the DP/SW and storing it in Register

File module.
– Sending out the statistics from SM_MM to the DP/SW, which are Statis-

tics from sub-monitors, Statistics from Monitor Unit and Comparison
Results.

– Enabling the interrupt signal and clear the interrupt signal from the AXI
write transactions, initiated by the DP/SW.

• AXI Controller module: Since it needs to broadcast the control signal and
read statistics according to the number of monitor units which is a configurable
parameter of the AXI Controller module. Its functions are as follow:

– Broadcast the control signal: Once the report signal and enable signal
in the control signal updates, AXI Controller will initiate two AXI write
transactions to two SM_SUBs for broadcasting the latest control sig-
nal. The control signal will be synchronous between SM_MM and two
SM_SUBs after these two SM_SUBs all successfully received the broad-
casting control signal.

– Statistics collection: When AXI Controller module receives the response
signal of broadcasting the report control signal for sub-monitor 0, it will
initiate AXI read transactions to sub-monitor 0 so that AXI Controller
collects all the performance statistics from sub-monitor 0 and store them
one by one in Register File module for SM_MM. Then it will repeat the
same process for sub-monitor 1.

– Collection finished flag: Once the AXI Controller module receives all the
statistics from all SM_SUBs, it would generate a collection finished flag
to trigger Comparison module to start comparison.

• Comparison module: It compares the statistics from SM_MM and SM_SUBs
to get the comparison results such as maximum or minimum latency with
the corresponding M IP index; maximum or minimum throughput with the
corresponding M IP index; maximum or minimum bus efficiency with the
corresponding M IP index, and so on. Since there is only one the comparison

26

4. Implementation

operand hardware for one comparison result, the Comparison module is a
pipeline comparison whose pipeline stage is the number of monitor units, which
is three in the current design. In addition, the number of monitor units is a
parameter so that this module is configurable. Finally, when Comparison
module finishes the comparison, it will generate a comparison finished flag to
trigger the interrupt signal in Register File module of SM_MM.

4.5 A List of Statistics

This sub-section provides list of performance metrics obtained from the statistics
monitor. Figs. 4.7, Figs. 4.8, Figs. 4.9 and Figs. 4.10 provide reference to the statis-
tics mentioned below:

Read latency Active R channel period

The start of a read transaction The end of a read transaction

Overlapping read round trip time

Figure 4.7: Timing diagram of read statistics a single read transaction

27

4. Implementation

Overlapping
write lag

Active W Channel
period Overlapping write latency

Start of a write transaction End of a write transaction

Overlapping write round trip time

Figure 4.8: Timing diagram of write statistics for a single write transaction

Overlapping Read Latency

Overlapping Read Round Trip Time

Active R Channel Period

Read Latency A

Read Latency B

Read Latency C

Overall Read Latency = Read Latency A + Latency B + Latency C

Figure 4.9: The timing diagram of read statistics definition for outstanding read
transactions

28

4. Implementation

Overlapping Write Latency

Overlapping Write Round Trip Time

Active W Channel Period

Write Latency A

Write Latency B

Write Latency C

Overall Write Latency =
Write Latency A +
Write Latency B +
Write Latency C

Overlapping Write Lag

Figure 4.10: The timing diagram of write statistics definition for outstanding write
transactions

• The number of transactions: This statistic records the number of trans-
actions using the handshake signals from AW channel and AR channel. The
monitor records the number of transactions over the entire time window which
is throughout the simulation time and records the number of transactions in
each sub-window. The period of each sub-window is configurable.

• Burst length: This statistic captures the exact number transaction issued
by an M IP interface over an entire time window and separate sub-windows.
It also captures the maximum and minimum burst length issued by a M IP.

• Burst size: The AXI protocol, has the following burst sizes 1, 2, 4, 8, 16,
32, 64 and 128 bytes which specifies the maximum number of data bytes to
transfer in each beat. This statistic records the maximum and minimum burst
size over an entire monitor window. It also records the number of transactions
of different burst sizes for showing the proportion of different burst sizes.

• Burst type: The AXI protocol, all the burst types of transactions are fixed-
address burst (FIXED), incrementing-address burst (INCR) and wrap-address
burst (WRAP). This statistic records the number of transactions of different
burst types for showing the proportion of different burst types.

• Response latency: The AXI protocol, there are two response channels, R
channel and B channel. The response latency at M IP includes the round trip
latency in AXI NIC and the processing latency at the destination Sub IP. For
read transactions, we define the read response latency counts the clock cycles
when a read transaction is initiated on AR channel until the read transac-
tion receives the first read data item with a handshake and the read response

29

4. Implementation

on R channel. For write transactions, we define the write response latency
counts when the last handshake on AW channel or W channel happens in a
write transaction until the write transaction receives a write response signal
with a handshake on B channel. For outstanding transactions in Fig. 4.9 and
Fig. 4.10, overlapping latency is the response latency for three outstanding
transactions so average overlapping latency is defined as overlapping latency

number of transactions
.

However, since overlapping latency hides the actual latency for each transac-
tion because of the AXI outstanding capacity, the monitor unit introduces av-
erage overall latency, overall latency

number of transactions
, presenting the actual latency for each

transaction. The latency for each transaction would be individually recorded
and finally accumulated into overall latency.

• Throughput: Throughput is defined as transfer data amount
a monitor period

where transfer data
amount records the transfer amount of actual data during the corresponding
monitor period. For example, there are 64-byte data going through a AXI port
over 10 clock cycles, the throughput is 64 bytes

10 clock cycles
is defined as 6.4 byte/cycle.

There are three different kinds of throughput in the design:

– Overall Throughput: Over the entire monitor time window, the moni-
tor unit records the overall data amount, so overall throughput is defined
as overall data amount

the entire monitor time window
.

– Time Unit Throughput: To get a more accurate throughput estimate
to know the trend of throughput over time, the entire monitor window is
divided into 8 fixed sub-monitor time windows. the monitor unit would
records 8 separate time unit data amounts for 8 fixed sub-monitor time
windows. Thus, the throughput for each sub-monitor time window is
defined as time unit data amount

each sub−monitor time window
. In addition, the sub-monitor time

window scale could be programmed by the DP/SW.

– Active Throughput: Since there are some M IPs maybe idle for a long
time during the entire monitor time window, overall throughput would
be meaningless to obtain the useful performance statistics. Thus, active
throughput only considers the active AXI channel period without the
idle time so the monitor unit could extract valid throughput information.
Active Throughput is defined as overall data amount

overlapping active round trip time
.

• Valid transfer data item and valid bus efficiency: The AXI protocol,
there are four responses such as normal access okay (OKAY), exclusive access
okay (EXOKAY), slave error (SLVERR) and decode error (DECERR). OKAY
means an AXI write transaction successfully sends all write data items to the
destination IP or an AXI read transaction successfully receives a read data
item. The slave can also return slave and decoder error messages. Valid data
transfer records the total number of transactions that returned an OKAY
response which means successful data transfer. Thus, valid bus efficiency is
defined as valid transfer data length

the entire monitor window
.

• Overlapping round trip time: For the read transaction, round trip time
(RTT) is defined as the duration from when the manager IP initiates a read
transaction on the AR channel channel to when it receives an acknowledgment

30

4. Implementation

signal for the last data item on R channel. For the write transaction, round
trip time is defined as the duration from when the manager IP initiates a
write transaction on the AW channel to when it receives the response signal
on the B channel. RTT is influenced by the following factor interconnect
traffic, distance, and subordinate response time. Overlapping round trip time
is also the active period of the whole AXI port. Fig. 4.9 and Fig. 4.10 show
an example of the overlapping round trip time for outstanding read and write
transactions, respectively.

• Bus efficiency: Similar to throughput, bus efficiency has different definitions
for different statistics parameters.

– Overall bus efficiency: It is defined as number of data items
the entire monitor time window

, where
the number of data items flows through the monitored AXI port during
the entire monitor data time window.

– Time unit bus efficiency: It is defined as number of data items in each window
each sub−monitor time window

,
where the number of data items flows through the monitored AXI port
during each sub-monitor time window.

– Active bus efficiency: It is defined as number of data items
overlapping active round trip time

. where
the number of data items flows through the monitored AXI port during
the overlapping round trip time.

• Write lag: On the W channel, write data items can appear before or after the
address is issued on the AW channel. As can be seen from Fig. 4.8. The time
difference between data and address channel is going to add extra clock cycles
to the processing latency of AXI NIC. This parameter is going to determine
which manager is going to add extra clock cycles delay in the design.

• Total simulation time: As the name suggests this statistics is going to
record the entire monitor window of the statistics monitor. As can be seen
from Fig. 4.7 and Fig. 4.8.

4.6 Address Mapping for All Register Files
In the demo implementation of one main monitor and two sub-monitors, their reg-
ister files with corresponding APB interface need to preset their address so that
M IPs are able to access those register files. In Table 4.1, SM_MU_SUB0 and
SM_MU_SUB0 are two similar register files for sub-monitor 0 and sub-monitor 1
respectively. Their necessary decoded address bit is 12 and they both own the mem-
ory size of 4.00 kB, which is the minimum size for each block in the current SoC. The
only difference between these two register files is the address, since they should own
unique addresses in SoC and their start addresses are selected by the unreserved
address in the address mapping of its tapping M IP. Additionally, SM_MM means
the register file for the main monitor whose necessary decoded address bit is also 12
and size is 12.00 kB. Since the main monitor needs to store all statistics for its mon-
itor unit and two sub-monitors, it needs at least 4.00 kB × 3 = 12.00 kB. According
to Table 4.1, any M IP in SoC is able to read or write to those three register files

31

4. Implementation

when it initiates transaction with corresponding address and its path is connected
to those three register files through AXI NIC.

Table 4.1: Address mapping for the register files of the main monitor and two
sub-monitors

Block Addr Bits Size Start addr (Byte) End addr (Byte)
SM_MM 12 12 kByte 0x80030000 0x800032FFF

SM_MU_SUB0 12 4 kByte 0x80033000 0x800323FFF
SM_MU_SUB1 12 4 kByte 0x80034000 0x800324FFF

Table 4.2 shows more detailed registers in the register files for the main monitor and
two sub-monitors. Here are the details of different register types:

• Control signal: The control signal consists of 30 bits for the window scale
configuration, one bit for the report signal and one bit for the enable signal.
The main monitor and two sub-monitor all have one control signal to configure
the time window scale and control the states of the statistics monitor such as
enable monitoring and start reporting.

• Interrupt signal: It has four 32-bit registers which are IRQ status/clear reg-
ister, interrupt enable register, test register and type control register. The IRQ
status/clear register is used to trigger the interrupt and clear the interrupt.
The interrupt enable register is used for enabling the interrupt.

• Write statistics: These are the performance statistics, coming from the mon-
itor unit from tapping AXI AW channel, W channel as well as B channel. In
the current RTL design, there are 160 32-bit registers storing the write statis-
tics per sub-monitor and 480 32-bit registers storing the write statistics for the
main monitor.

• Read statistics: These are the performance statistics, coming from the mon-
itor unit from tapping AXI AR channel as well as R channel. In the cur-
rent RTL design, there are 128 32-bit registers storing the read statistics per
sub-monitor and 384 32-bit registers storing the read statistics for the main
monitor.

• Comparison results: These are obtained by the comparison block in the
main monitor which compares the statistics between three monitor units to
get which monitor unit has maximum or minimum latency, which monitor unit
has highest throughput, and so on.

In Table 4.2, the addresses between different register types are discontinuous. Al-
though the continuous addresses could reduce the number of read transactions whose
maximum read item is 256 in AXI, discontinuous addresses for different different reg-
ister types can be used for future function extension and adding more statistics in the
register file. For example, for the register file of SM_MM, if there is some extended
write statistics need to be stored, the register file definition table only needs to add
those registers with address offset following the original last write statistics and does
not necessary to modify all the address offsets for read statistics and comparison

32

4. Implementation

results. Further, since the number of statistics is much larger than 256, continu-
ous addresses would not help a lot in reducing the number of read transactions.
Moreover, the register file in the main monitor reserves three 32-bit address spaces
for control signals and four 32-bit address spaces for interrupt signals to support
scalability.

Table 4.2: Address mapping for the register files of the main monitor and two
sub-monitors

Block Register type Start addr no of 32-bit registers
SM_MM Control signal 0x80030000 1

Interrupt signal 0x80030020 4
Write statistics 0x80030040 160*3
Read statistics 0x80031410 128*3

Comparison results 0x80032800 44
SM_MU_SUB0 Control signal 0x80033000 1

Write statistics 0x80033010 160
Read statistics 0x80033810 128

SM_MU_SUB1 Control signal 0x80034000 1
Write statistics 0x80034010 160
Read statistics 0x80034810 128

33

4. Implementation

34

5
Verification

This chapter introduces the verification for the microarchitecture of SM_MM for
verifying its connectivity and the functionality of the AXI controller in SM_MM.
Moreover, it briefly describes the verification environment of stimulus signals for the
monitor unit in SM_SUB and SM_MM.

5.1 Verification for the microarchitecture

In this section, the communication mechanism of the statistics monitor (SM) and
its connectivity are verified by a simple setup, which only transfers a few statistics
instead of all the statistics. Since the complete verification for the SM involved
more than 500 statistics for each SM_SUB and more than 1500 statistics for the
main monitor, it is very hard to display the waveform figures visibly and easily
understandable so the simple setup is displayed. Fig. 5.1 shows the microarchitecture
of the statistic monitor without manager IPs. The name of those ports are matching
the below waveform figures. To simulate the DP/SW excitation, the testbench
initiates AXI write transactions at the port DP AXI IF to enable SM to start
monitoring, start reporting, configure the clock cycles of each time window, enable
as well as clear the interrupt signal. In addition, after data processing unit (DP)
receives the interrupt signal, the testbench also initiates AXI read transactions at
the port DP AXI IF to read the read, write and comparision statistics in SM_MM.

35

5. Verification

Main Monitor

main monitor: axi_controller

M

AXI IC

Sub-Monitor 1

sub-monitor 1: RRGF APB IF

Sub-Monitor 0

sub-monitor 0: RRGF APB IF

DP/SW

DP AXI IF

M

main monitor: RRGF APB IF

Interrupt Controller
IRQ

M

AXI manager interface APB bus

Legend

Figure 5.1: The microarchitecture of the statistic monitor without manager IPs

From Fig. 5.2 to Fig. 5.12, we show the waveform figures to illustrate the complete
flow of the communication mechanism. The complete flow is displayed in sequence
of the numbers with a blue rectangle, which are explained below:

Figure 5.2: The DP sends the enable monitoring signal to SM_MM

1. The DP port initiates an AXI write transaction to send the control signal
to SM_MM for starting monitoring of SM. The awaddr signal is 0x80030000
which is the global address for the control signals of the main monitor. The
wdata signal is 0x00000065 which asserts the configurable time window scale,
the report signal and the enable signal in the SM_MM as 100 clock cycles,
low and high respectively.

2. The write transaction from DP goes through AXI NIC and finally reaches the
sub-monitor 0. When apb_psel, apb_penable and apb_pready are all high,
the control signal has been successfully transferred into the main monitor.
Furthermore, the monitor unit in SM_MM start to monitor its tapping AXI
Manager IF.

36

5. Verification

Figure 5.3: The SM_MM broadcasts the enable monitoring signal to two sub-
monitors

3. Once SM_MM receives the control signal of starting monitoring, it initiates
two AXI write transactions to two sub-monitors respectively for broadcasting
the same control signal to the two sub-monitors. The awaddr signal passes
0x80033000 and 0x80034000 which are the control signal addresses for sub-
monitor 0 and 1 respectively. Moreover, the number of the sub-monitors is a
configurable parameter for the main monitor. It could configure the number of
broadcast transactions as well as the comparison loop index in the comparison
module of the main monitor.

Figure 5.4: The sub-monitor 0 of the statistics monitor (SM_SUB0) and
SM_SUB0 successfully receive the enable monitoring signal

4. The enable broadcast transaction from SM_MM goes through AXI NIC and
reaches SM_SUB0 and sub-monitor 1 of the statistics monitor (SM_SUB1),
so they successfully receive the control signal of start monitoring respectively
and then they start monitoring their tapping AXI Manager IF.

37

5. Verification

Figure 5.5: The DP sends the report signal to SM_MM and enables the interrupt
signal of SM_MM

5. When the DP decides to make SM_MM stop monitoring and start reporting,
it initiates an AXI write transaction to assert the control signal as 0x00000065.
This data asserts the configurable time window scale, the report signal and the
enable signal in the SM_MM as 100 clock cycles, high and low respectively.
Then, the DP needs to initiate another AXI write transaction to enable the
interrupt signal so SM_MM can generate the interrupt signal to inform the
DP the accurate timing to read the statistics from SM_MM. By this interrupt
mechanism, the DP does not need to wait and be idle to waste the DP resources
since SM_MM needs to spend many clock cycles on collecting all the statistics
from all SM_SUB. The total collecting clock cycles depend on the number of
collecting statistics from SM_SUB and the timing of the data path in AXI
NIC from SM_SUB to SM_MM.

6. SM_MM receives the report signal so the monitor unit in SM_MM stops mon-
itoring and further processes its statistics. Next transaction, SM_MM receives
the enable the interrupt signal, so when SM_MM finishes the comparison, the
interrupt signal could be asserted. This write transaction transfers the awaddr
signal of 0x80030024 and the wdata signal of 32’hFFFFFFFE to enable the
interrupt signal in SM_MM.

Figure 5.6: The SM_MM broadcasts the report signal to two sub-monitors

38

5. Verification

7. SM_MM initiate two AXI write transaction to two sub-monitor for broadcast-
ing the report signal.

Figure 5.7: The SM_SUB0 and SM_SUB1 successfully receive the report signal

8. SM_SUB0 successfully receives the report signal and then it stops monitoring
and further processes its statistics.

9. SM_SUB1 successfully receives the report signal and then it stops monitoring
and further processes its statistics.

Figure 5.8: SM_MM starts to read statistics from SM_SUB0

10. Once SM_MM gets the write response signal from the write transaction, which
broadcasts the report signal from SM_MM to SM_SUB0, SM_MM initiates
an AXI read transaction to collect the read statistics from SM_SUB0. The
araddr signal for this read transaction is the initial address of read statistics
for the register file in SM_SUB0 while arlen signal should be the number of
read statistics in SM_SUB0 minus 1.

39

5. Verification

11. SM_SUB0 sends out its read statistics by its APB Sub IF, then SM_MM
continually collects the read statistics from SM_SUB0 by its AXI R channel.

12. Once SM_MM gets the read last response signal with the same rid as arid, it
initiates another read transaction to collect the write statistics from SM_SUB0.
The araddr signal for this read transaction is the initial address of write statis-
tics for the register file in the SM_SUB0 while arlen signal should be the
number of write statistics in SM_SUB0 minus 1.

13. SM_SUB0 sends out its write statistics by its APB Sub IF, then SM_MM
continually collects the write statistics from SM_SUB0 by its AXI R channel.

Figure 5.9: SM_MM starts to read statistics from SM_SUB1

14. Once SM_MM gets the write response signal from the write transaction, which
broadcasts the report signal from SM_MM to SM_SUB1, SM_MM initiates
an AXI read transaction to collect the read statistics from SM_SUB1. The
araddr signal for this read transaction is the initial address of read statistics
for the register file in SM_SUB1 while arlen signal should be the number of
read statistics in SM_SUB1 minus 1.

15. SM_SUB1 sends out its read statistics by its APB Sub IF, then SM_MM
continually collects the read statistics from SM_SUB1 by its AXI R channel.

16. Once SM_MM gets the read last response signal with the same rid as arid, it
initiates another read transaction to collect the write statistics from SM_SUB1.
The araddr signal for this read transaction is the initial address of write statis-
tics for the register file in the SM_SUB1 while arlen signal should be the
number of write statistics in SM_SUB1 minus 1.

17. SM_SUB1 sends out its write statistics by its APB Sub IF, then SM_MM
continually collects the write statistics from SM_SUB1 by its AXI R channel.

40

5. Verification

Figure 5.10: The generation of the interrupt signal from SM_MM

18. In Fig. 5.11, when SM_MM finishes collecting all statistics from all SM_SUB,
read_statistics_finished_flag would be asserted and the comparison module
starts to compare the statistics between different sub-monitors to get com-
parison results. Since the comparison module reuses one comparison RTL in-
stance for each necessary statistics, compare_index_cnt is the index to choose
the statistic from different sub-monitor as the input of the comparison RTL
instance. Once compare_index_cnt is equal to the number of sub-monitors
plus 1, compare_finished_flag would be asserted which is the trigger of the
interrupt signal mm_ir_istat.

Figure 5.11: The DP clears the interrupt signal and initiates read transactions to
read all statistics in SM_MM

19. The interrupt signal is finally asserted to inform the DP that all statistics in
SM_MM are ready and that it may initiate read transaction to read those
statistics.

20. DP initiates an AXI write transaction to clear the interrupt signal. The awaddr
signal of 0x80030020 is the clear bit address of the interrupt signal of the

41

5. Verification

register file in SM_MM. The wdata signal should be 1 to clear the interrupt
signal.

21. DP initiates at least three read transactions to collect the read statistics, write
statistics and comparison results respectively. The araddr signal should be
the initial addresses of the read statistics, write statistics and comparison
results in the register file of SM_MM. The arlen signal should be the total
number of the read statistics minus 1, total number of the write statistics
minus 1 and total number of the comparison results minus 1 in SM_MM.
Since the displayed waveform figures are created by a simple demo testbench,
the araddr and arlen signals could be replace by the definition of the register
file in SM_MM. Moreover, all statistics in the register file of SM_MM is not
contiguous in address. There are two reasons. One of the reason is that it
is recommended by company to have some unreserved global addresses for
future functional expansion and consistency of data types of read or write.
The another reason is that the final number of the read statistics or the read
statistics in SM_MM are both more than 256, which is the maximum read
items capability of AXI. Thus, it is not necessary to make statistics contiguous
in address without the benefit of initiate less read transactions.

Figure 5.12: DP reads all statistics by its AXI R channel

5.2 Verification of the Logic Functionality of the
Monitor Unit

To test the system design a comprehensive test case was written. Each module
was verified individually or as a part of a parent entity. The testbench consists
of tasks that are used to vary different bus functionalities. Different transaction
patterns were created to test and verify the design, starting with the single read
and write AXI transaction to a more complex back-to-back transaction. For module
which calculates overall and overlapping statistics like latency, round trip time,
throughput, and other performance metrics, AXI patterns with variable length, size,
burst, responses, and outstanding and interleaving patterns were generated. Module
modules that calculate statistics per time unit like latency distribution, throughput,
bus efficiency and other performance metrics, AXI patters with varying numbers of
the transaction, number of the data item, response, length and size were generated
in the different time windows. This allows us to verify predominate AXI patterns
in the design.

42

5. Verification

5.2.1 Block Level Verification
In block level verification, individual modules are integrated together (such as a
monitor unit, a register file and a APB interface) and functionality of combined
block is verified. To verify the functionality of the monitor unit, different test cases
were written to verify the metrics which calculate statistics for different time units
and also overall statistics. The following transaction is for different time windows
as can be seen in Fig. 5.13.

• window 0 - single transaction - single data item
• window 1 - single transaction - multiple data item
• window 2 - single transaction - out of order transaction
• window 3 - multiple transaction - multiple data item
• window 4 - multiple transaction - outstanding transaction
• window 5 - multiple transaction - interleaving transaction
• window 6 - multiple transaction - varying size
• window 7 - multiple transaction - interleaving transaction

The following section provides the results obtained by simulating the above test
cases.

Figure 5.13: AXI transactions generated to verify different statistics per time unit
with different sets of transactions in different window

5.2.2 Subsystem Level Verification
In subsystem level verification, all the functional blocks are integrated (such as the
main monitor and sub-monitors). A simple AXI interconnect setup with three mon-
itor units, as shown in Fig. 5.1, was used in the verification. This test focuses on
testing block integration, connectivity, and the functionality of the whole monitor
unit. The output statistics results were verified manually. The main focus of the
design is to obtain the statistics results from different monitor units and compare the
best or worst performance between different monitor units. In subsystem verifica-
tion, we exercise that condition by generating three different AXI patterns for three
monitor units. The main monitor is connected to a M IP interface which generates
multiple single AXI read transactions flowing from a M IP to a subordinate IP. These
AXI patterns were captured by the monitor unit to calculate performance metrics.
Fig. 5.14 shows the AXI transactions at the main monitor interface. Similarly, sub-
monitor 0 was connected to a different M IP interface which generates multiple

43

5. Verification

outstanding read transactions as can be seen from Fig. 5.15, and sub-monitor 1 was
connected to the M IP interface which generates outstanding and interleaving read
transactions as can be seen from Fig. 5.16. The number of data items, size of trans-
action and latency are kept the same for all three monitor units. The total number
of data items for all the monitor units was 32 and the latency was twelve clock cy-
cles. Even though the data item and latency are kept the same in all three monitor
units the nature of the transaction patterns (outstanding, interleaving, out-of-order
patterns) generated makes the difference in performance which can be observed on
the dashboard as shown in the chapter 6.

Figure 5.14: Single transactions for overall statistics parameter simulated for main
monitor

Figure 5.15: Multiple outstanding read transactions for overall statistics parameter
simulated for sub-monitor 0

Figure 5.16: Multiple outstanding + interleaving read transactions for overall
statistics parameter simulated for sub-monitor 1

44

6
Results

The simulation output from the statistics monitor is presented in this section. The
results are plotted on the dashboard after the output has been carefully verified.

6.1 Dashboard
The statistics findings are shown on the dashboard that is created in Python. Results
from the statistics monitor throughout the system are presented on the dashboard
in a graphical format. The dashboard includes data for both overall statistics and
statistics broken down by time units. The main monitor and sub-monitors all pro-
duce the statistics results. The results of the overall statistics from different monitor
units are fed into the block called comparison, which outputs the results of the com-
parison. Statistics per time unit compares the outcomes from several time frames.
Details on every statistic that the monitor unit computes are provided in section 4.5.
Some of the significant performance indicators gleaned from the statistics monitor
are depicted in the figures below in section 6.1.1 and section 6.1.2. A screenshot of
a dashboard can be seen in Fig. 6.1. Users can select the statistics they want to plot
on the left side. The dashboard displays the chosen graph on the right-hand side.

Figure 6.1: The Dashboard

45

6. Results

6.1.1 Overall Statistics
The quantitative findings from the subsystem level verification are presented in this
section. The test case displayed in section 5.2 was executed to provide the results.
The findings from the three monitor units are plotted on the dashboard display.
Fig. 6.2 shows the overall latency per transaction of different monitor units. It was
expected that sub-monitor 0 and sub-monitor 1 have a little less latency compared
to the main monitor. However, sub-monitor 1 has a very high latency. This result is
anticipated because sub-monitor 1 lacks interleaving transactions, and the number
of outstanding transactions is very high. As a result, the reaction time is lengthy.
The red horizontal line represents the average latency of all the monitor units.

Figure 6.2: Overall read latency comparison

Fig. 6.3 shows the overall throughput of the different monitor units. As expected,
the main monitor has a significantly lower throughput, sub-monitor 0 has a slightly
higher throughput and sub-monitor 1 has a considerable higher throughput. This
is because sub-monitor 0 has outstanding transactions and sub-monitor 1 has both
outstanding and interleaving transactions.

Figure 6.3: Overall read throughput comparison

46

6. Results

The overlapping round trip times of the three monitor units are displayed in Fig. 6.4.
As previously noted, all transactions retain the same data items. However, sub-
monitor 0 and sub-monitor 1 create different numbers of transactions keeping num-
ber of data item same. In contrast to sub-monitor 1, which has 16 transactions of
length 2, sub-monitor 0 and main monitor has 32 single transactions. Hence the
overlapping round trip time of the main monitor is high because of single trans-
actions. Whereas it is considerably low in sub-monitor 1 because of outstanding
transactions, the round trip time is significantly higher in sub-monitor 1. It is be-
cause sub-monitor 1 has the least number of transactions compared to other monitor
units.

Figure 6.4: Overlapping read round trip time comparison

Fig. 6.5 shows the overall bus efficiency of the different monitor units. As expected
the main monitor has the least bus efficiency, sub-monitor 0 has significantly high
bus efficiency and sub-monitor 1 has a noticeably higher bus efficiency. It is be-
cause sub-monitor 0 supports outstanding transactions and sub-monitor 1 has both
outstanding and interleaving transactions.

Figure 6.5: Overall read bus efficiency comparison

Fig. 6.6 shows the overlapping read latency of different monitor units. Overlapping

47

6. Results

latency is the time difference between the AR channel handshake and the first R
channel handshake of the last data item. Overlapping read latency is not affected
in the main monitor because single transactions are present at the main monitor
interface. Sub-monitor 0 has the least overlapping latency because of outstanding
transactions and sub-monitor 1 has slightly higher overlapping latency because of
fewer transactions.

Figure 6.6: Overlapping read latency comparison

Fig. 6.7 shows the overall length captured from different monitor units. As men-
tioned earlier, the total number of data items is kept the same for all the monitor
units, as can be seen in the graph below.

Figure 6.7: Overall read length

48

6. Results

6.1.2 Statistics Per Time Unit
The per time unit statistics can show the trend of statistics in different time windows.
The design consists of eight time windows. The time scale of each time window
is configurable by the parameter in the RTL design. One of the monitor units
is selected to verify the functionality RTL design for statistics per time unit. As
mentioned in section 5.2, different sets of transactions were simulated in the different
time windows. The figures below show some of the dominant performance metrics
obtained from the design.
The plot of read throughput over eight-time frames is displayed in Fig. 6.8. Due to
the number of single transactions in the first three time windows, the chart demon-
strates a relatively low throughput. However, other windows with more transactions
and data items have significantly high throughput.

Figure 6.8: Read throughput per time window

Fig. 6.9 shows the read latency distribution. The graph shows details of the total
number of transactions distributed over a given latency range, so the latency char-
acteristic for the transactions going through the tapping AXI port can be analysed.
For example, the first candle shows six transactions fall in the latency distribu-
tion range of one to eight clock cycles and seven transactions fall in the latency
distribution range of nine to sixteen clock cycles, and so on.

Figure 6.9: Read latency distribution

49

6. Results

Fig. 6.10 shows the maximum, minimum, and average latency over different time
windows. The black lines indicate the maximum and minimum latency in a partic-
ular time window. The upper back line is the maximum latency and the lower black
line is the minimum latency. The horizontal red line indicates the average latency
over eight time windows.

Figure 6.10: Maximum, minimum and average read latency

The plot of read bus efficiency across eight time frames is shown in Fig. 6.11. The
first three windows have less than three transactions, indicating significantly low bus
efficiency for those time frames. In contrast, other windows with more transactions
and data items have significantly high bus efficiency.

Figure 6.11: Read bus efficiency per time window

Fig. 6.12 shows the plot of overlapping latency over eight time windows. Overlapping
latency is the time difference between the AR channel handshake and the first R

50

6. Results

channel handshake of the last data item. SinceR channel can accept interleaved read
data items from different read transactions, R channel does not need to receive a
read item from a new read transaction until the old read transaction is completed.
Thus, it improves the throughput and hides latency. Hence to identify the actual
latency issue in the design, overlapping statistics are used. As can be seen from
the figure, window 2 has significantly high overlapping latency since window 2 has
outstanding transactions and a significantly high response rate.

Figure 6.12: Read overlapping latency per time window

Fig. 6.13 shows the plot of read length over eight time windows. The graph indicates
the total number of read transaction initiated at different time windows. The first
three windows have less number of transactions, and the other windows have multiple
transactions.

Figure 6.13: Read length per time window

Fig. 6.14 shows the maximum and minimum transaction sizes issued in eight time

51

6. Results

windows. The window has a single dash if the maximum and the minimum transac-
tion sizes issued are the same. If the quantity of issued transaction sizes fluctuates,
the upper line indicates the maximum transaction sizes issued in the window, and
the lower line denotes the least transaction sizes issued in the window.

Figure 6.14: Maximum and minimum read size per time window

There are countless applications for the statistics monitor. To comprehend the
behaviour of the system, various performance metrics depending on the use case
must be examined. Unfortunately, the statistics monitor was not put to the test in
a real-world setting during the thesis study. However, the architecture is tested using
test cases that simulate real-world situations by adding extra delay, error messages,
etc. The dashboard displays and verifies the associated results from the stimulus
outcomes.

Applications of Dashboard
The applications of dashboards are as follows:

• Generating plots like latency distribution, length, size, throughput, and other
important parameters across the system.

• Comparing two comparable manager IP blocks aids in the work distribution
among each manager IP.

• Comparing the results from the different monitor units.
• Identifying the slaves contributing to more mistakes or idle cycles in a trans-

action by comparing the various manager-subordinate pairings.
• Assigning dashboard results can be used to assign priority to the systems

containing multiple bandwidths or latency-sensitive manager IPs.

52

7
Conclusion

In conclusion, the statistics monitor is a distributed monitor based on an RTL
solution and is suitable for a SoC with many manager IPs. It can obtain performance
statistics from the SoC, which is running either in a verification environment or
a real scenario. Those performance statistics can provide an inside view of data
transferring for us to analyse the performance bottleneck of the SoC and try different
alternative methods or fix setting errors to maximize the performance of the SoC.
This chapter will introduce some summary features, limitations, and applications of
the statistics monitor in more detail.

7.1 Summary Features of the Statistics Monitor
These are some features of the RTL design of the statistics monitor:

• Configurable:
– Hardware configuration (parameters): The statistics monitor can

configure the AXI width such as the address width, id width, size width
and write strobe width to make the monitor unit adjust to most AXI
interfaces. According to the number of sub-monitors, the AXI controller
module can initiate proper transactions to broadcast the control signal
to all sub-monitors and collect statistics from all sub-monitors, and the
comparison module can compare the statistics in a proper pipeline based
on the the number of sub-monitors plus one. The latency distribution
range is also configurable as a parameter in the RTL design to obtain an
expected latency range of several clock cycles for the latency distribution
dashboard.

– Software configuration (a programmable register): The statistics
monitor can configure the time scale for each time window by assigning
the desired value to the programmable register to obtain detailed infor-
mation from time unit statistics.

• Supporting all AXI transaction patterns: The statistics monitor is able
to monitor different AXI transaction patterns such as a maximum of 16 out-
standing read/write transactions, interleaving read transactions and out-of-
order completed transactions.

• Modular RTL design: For any AXI port, the monitor unit, including mod-
ules of AXI Watcher, Statistics Calculator and Time Window Trigger, can be

53

7. Conclusion

instanced without any modification. The register file with an APB interface
can be generated by allocating a new global address and modifying its block
name as well as area name. Thus, a sub-monitor instance for monitoring an
AXI interface is created.

• Accurate statistics: Since the tapping sources for the statistics monitor
are the AXI manager interfaces of manager IPs inside the SoC at the same
clock frequency, the precise granularity is based on the clock cycle level or
transaction level.

• Distributed monitors: Manager Intellectual Properties (M IPs) are located
in different locations in the floor plan in the SoC. Having only one monitor
instance monitoring all M IPs in the SoC would consume limited line resources
within the SoC, add many register slices to meet the timing constraint and in-
crease the pressure on placement and routing. Therefore, the statistics monitor
is a distributed monitor, based on monitor units with a dedicated AXI NIC. It
places the main monitor (SM_MM) and sub-monitors(SM_SUBs) near all M
IPs to reduce registers slices and wire resource consumption while the statis-
tics monitor has a dedicated AXI NIC to reduce pressure on placement and
routing, and to build the communication mechanism.

• Centralized interaction with the DP/SW: The DP/SW only needs to
communicate with the main monitor to achieve controlling the whole statis-
tics monitor. Since the main monitor can broadcast control signals to all
sub-monitors, collect statistics from all sub-monitors and get the comparison
results between sub-monitors and the main monitor, it is not necessary for the
DP/SW to communicate with sub-monitors individually.

• A standard APB interface with a global address map for every reg-
ister file: Since the statistics, the control signal and the interrupt signal are
inside the register file with the global addresses, the APB interface of the reg-
ister file can help a manager IP access those signals arbitrarily if the manager
IP has a path to access the register file in AXI NIC. Therefore, it is possible
for the DP/SW to only enable one of the sub-monitors and only monitor the
corresponding AXI port of a manager IP.

• Dashboard: The dashboard visualizes statistics from the statistics monitor,
making easier to identify performance bottlenecks of the SoC.

7.2 Limitations of the Statistics Monitor
There are some limitations of the statistics monitor below:

• Within the AXI protocol: First, since the monitor does not tap the signals
of LOCK, CACHE, PROT on AW channel and AR channel, it cannot get any statis-
tics from those signals. Second, the current statistics monitor only supports a
burst size for one AXI transaction less than or equal to 8 bytes. The reason is
that there is no multiplier block inside the monitor and thus the throughput
statistic uses a lot of 32-bit registers to store the number of items belonging

54

7. Conclusion

to which byte. For example, a maximum size of 8 bytes uses 8 32-bit regis-
ters for overall write throughput and 64 32-bit registers for time unit write
throughput.

• Performance impact on the original system: Although the interrupt
mechanism, the centralized interaction with the DP/SW and the dedicated
AXI NIC reduce the performance impact on the original system as much as
possible, the DP/SW port still needs to take a significant number of clock
cycles to read out the statistics inside the main monitor. The total number
of consumed clock cycles depends on the number of statistics inside the main
monitor and the reading limitation of the APB interface. There is a total of
908 statistics inside the main monitor and the APB interface takes at least 6
clock cycles to read out one statistic. There are two possible improvements to
this limitation. The first method is to use an AXI subordinate interface for the
main monitor to replace its APB interface. The DP/SW reads statistics via
this AXI subordinate interface would save a significant number of clock cycles
and read faster. The second method is that the DP/SW can only read some
particular or expected statistics instead of reading all statistics by initiating
many AXI read transactions with different read addresses and lengths.

• Reading specific statistics from sub-monitors: Since the current AXI
controller inside the main monitor is a fixed hardware design without pro-
grammable registers, it only can read some or all statistics inside all sub-
monitors but cannot read any particular statistic according to the commands
from the DP/SW. A possible improvement is optimizing the AXI controller
with programmable registers to read specific statistics from sub-monitors.

• Total run time: Since a 32-bit counter only counts 8-second data at a clock
frequency of 500.00 MHz, the statistics monitor can monitor 8 seconds when
the SoC is running. If the statistics monitor requires more monitoring time,
the clock cycle counter and the statistics registers should be larger than 32
bits.

• Data flow: The statistics monitor cannot study the data flow from a specific
M IP to all corresponding Sub IPs. However, it is possible to achieve the
function of data flow when the statistics monitor adds an address decoder of
all corresponding Sub IPs and allocates the register file for those statistics.
In this case, the statistics monitor can get the latency, throughput and bus
efficiency from the specific M IP to its corresponding Sub IPs.

7.3 Applications of the Statistics Monitor
Since the statistics monitor can gauge the performance and identify the performance
bottleneck for the SoC, there are some possible applications or scenarios below:

• Determining the optimal hardware priority in AXI: In the AXI4 specifi-
cation [11], there is a quality of service (QoS) signal, which assigns the priority
of transactions to AXI manager ports in the AXI NIC. According to the QoS
signal, the AXI NIC would choose the transaction with the higher QoS value to

55

7. Conclusion

process first when the AXI NIC process more than one transaction at the same
time. Regarding to determine the QoS signal for transactions or AXI manager
ports, the statistics monitor can monitor all AXI manager ports and get the
performance results of which QoS scheme can maximize the performance when
the SoC runs in a real scenario from different QoS schemes.

• Determining the optimal software strategy: When different software
programs are applied on the SoC in a specific use scenario, the statistics mon-
itor can help the software developer to determine which software program
performs better and is more suitable on the SoC.

• Checking the accurate latency from a specific M IP to its all Sub
IPs: The verification developers for integration need to get the latency from
a M IP to its relative Sub IPs to verify the integration connectivity, but they
only can get an approximate latency by software or from other teams. The
statistics monitor can help them to get the accurate latency at the system
clock level.

• Comparing performance when there is a change in the system: While
rearranging, adding, or removing some IP blocks from the system design, it is
important to check the compatibility of the system with the changes. In such
a scenario, the statistics monitor can provide insights into the change in the
system by comparing the old performance of the design with the new results.

56

Bibliography

[1] G. Martin and H. Chang, “System-on-chip design,” in ASICON 2001. 2001 4th
International Conference on ASIC Proceedings (Cat. No.01TH8549), 2001, pp.
12–17, doi: 10.1109/ICASIC.2001.982487.

[2] E. Davidson, “SoC or SoP? a balanced approach!” in 2001 Proceedings.
51st Electronic Components and Technology Conference (Cat. No.01CH37220),
2001, pp. 529–534, doi: 10.1109/ECTC.2001.927778.

[3] M. Mehendale, “SoC - the road ahead,” in 19th International Conference on
VLSI Design held jointly with 5th International Conference on Embedded Sys-
tems Design (VLSID’06), 2006, p. 1, doi: 10.1109/VLSID.2006.149.

[4] A. Hekmatpour, K. Goodnow, and H. Shah, “Standards-compliant IP-based
ASIC and SoC design,” in Proceedings 2005 IEEE International SOC Confer-
ence, 2005, pp. 322–323, doi: 10.1109/SOCC.2005.1554521.

[5] H. M. Kyung, G. H. Park, J. W. Kwak, T. J. Kim, and S. B. Park,
“Performance monitor unit design for an AXI-Based multi-core SoC platform,”
in Proceedings of the 2007 ACM Symposium on Applied Computing, ser.
SAC ’07. New York, NY, USA: Association for Computing Machinery,
2007, p. 1565–1572, doi: 10.1145/1244002.1244336. [Online]. Available:
https://doi.org/10.1145/1244002.1244336

[6] S. Sarkar, S. Chanclar G, and S. Shinde, “Effective IP reuse for high quality
SOC design,” in Proceedings 2005 IEEE International SOC Conference, 2005,
pp. 217–224, doi: 10.1109/SOCC.2005.1554498.

[7] A. Hopkins and K. McDonald-Maier, “Debug support for complex systems on-
chip: A review,” Computers and Digital Techniques, IEE Proceedings, vol. 153,
pp. 197 – 207, August 2006, doi: 10.1049/ip-cdt:20050194.

[8] R. S, K. Ezra, and K. Mallikarjun, “Design of a bus monitor for performance
analysis of AXI protocol based SoC systems,” pp. 6313 – 6324, 2014.

[9] Xilinx, “AXI Performance Monitor v5.0 LogiCORE IP Product Guide
(PG037),” vol. v5.0, pp. 5 – 22, October 2017, accessed on 2022-05-20. [Online].
Available: https://docs.xilinx.com/v/u/en-US/pg037_axi_perf_mon

[10] H. M. Kyung, G. H. Park, J. W. Kwak, T. J. Kim, and S. B. Park, “Design and
implementation of performance analysis unit (PAU) for AXI-based multi-core
System on Chip (SoC),” Microprocessors and Microsystems, vol. 34, no. 2,
pp. 102–116, 2010, doi: 10.1016/j.micpro.2010.03.001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933110000050

57

https://doi.org/10.1145/1244002.1244336
https://docs.xilinx.com/v/u/en-US/pg037_axi_perf_mon
https://www.sciencedirect.com/science/article/pii/S0141933110000050

Bibliography

[11] ARM, “AMBA® AXI™ protocol lec-pre-00490-v4.0 ARM AMBA specification
licence,” vol. Revision C, pp. 1–1 – 1–6, April 2010. [Online]. Available:
https://archive.alvb.in/bsc/TCC/correlatos/amba_axi4.pdf

[12] ——, “ARM Introduction to AMBA AXI,” vol. Issue 03, pp. 11–16, March
2021. [Online]. Available: https://developer.arm.com/documentation/102202/
0200/Atomic-accesses

[13] Z. Jiang, N. Audsley, D. Shill, K. Yang, N. Fisher, and Z. Dong, “Brief
industry paper: Axi-interconnectrt: Towards a real-time axi-interconnect
for system-on-chips,” in 2021 IEEE 27th Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2021, pp. 437–440, doi:
10.1109/RTAS52030.2021.00046.

[14] ARM, “AMBA® APB™ protocol lec-pre-00490-v4.0 ARM AMBA specification
licence,” vol. Revision C, pp. 1–1 – 1–6, April 2010, accessed on 2022-02-
01. [Online]. Available: https://developer.arm.com/documentation/ihi0024/c/
Introduction/About-the-APB-protocol

[15] K. Rawat, K. Sahni, and S. Pandey, “RTL implementation for AMBA ASB
APB protocol at system on chip level,” in 2015 2nd International Conference
on Signal Processing and Integrated Networks (SPIN), 2015, pp. 927–930, doi:
10.1109/SPIN.2015.7095347.

[16] P. Jain and S. Rao, “Design and verification of advanced microcontroller bus
architecture-advanced peripheral bus (AMBA-APB) protocol,” 2021 Third In-
ternational Conference on Intelligent Communication Technologies and Virtual
Mobile Networks (ICICV), pp. 462–467, 2021.

[17] ARM, “arm Developer: ARM Socrates,” accessed on 2022-07-01. [Online].
Available: https://developer.arm.com/Tools%20and%20Software/Socrates#
Technical-Specifications

58

https://archive.alvb.in/bsc/TCC/correlatos/amba_axi4.pdf
https://developer.arm.com/documentation/102202/0200/Atomic-accesses
https://developer.arm.com/documentation/102202/0200/Atomic-accesses
https://developer.arm.com/documentation/ihi0024/c/Introduction/About-the-APB-protocol
https://developer.arm.com/documentation/ihi0024/c/Introduction/About-the-APB-protocol
https://developer.arm.com/Tools%20and%20Software/Socrates#Technical-Specifications
https://developer.arm.com/Tools%20and%20Software/Socrates#Technical-Specifications

	Abstract
	Abbreviations
	Introduction
	Related Works
	Thesis Goals
	Challenges
	Thesis Outline

	Technical Background
	AXI4 Protocol
	AXI Interconnect
	APB Protocol
	AMBA APB Components and Interconnection
	APB Protocol Operating Modes

	System considerations
	Monitor Placement
	Microarchitecture
	Memory
	AXI Monitor Unit

	Implementation
	Overall View of a Simple SoC
	Microarchitecture of the Statistics Monitor

	Communication Mechanism
	The Data Flow of the Control Signal
	The Data Flow of the Statistics

	Sub-monitors
	Main Monitor
	A List of Statistics
	Address Mapping for All Register Files

	Verification
	Verification for the microarchitecture
	Verification of the Logic Functionality of the Monitor Unit
	Block Level Verification
	Subsystem Level Verification

	Results
	Dashboard
	Overall Statistics
	Statistics Per Time Unit

	Conclusion
	Summary Features of the Statistics Monitor
	Limitations of the Statistics Monitor
	Applications of the Statistics Monitor

	Bibliography

