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Multi-State Markov Model for Analysing Blood Glucose Changes
A Study Using Continuous Glucose Measurements From Patients With Type 1 Di-
abetes
VIKTOR INGEMARSSON, MARCUS SVENSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
A multi-state Markov model was adapted in order to model glycemic control, based
on continuous glucose measurements (CGM). A library was implemented, written
in Python, that allows for user-specific input in regards to modelling parameters
and analysis. The CGM-readings were collected during two previous clinical trials,
involving patients with type 1 diabetes and inadequate glycemic control. The clin-
ical trials involved the administration of dapagliflozin which together with insulin
improves glycemic control, compared with only administering insulin. The states of
the Markov model were defined based on blood glucose levels, where increased time
in the target range, normoglycemia, constituted better glycemic control. Based
on the CGM-readings collected, this Markov model was used to analyse how the
glycemic control of patients is affected by their kidney function as well as insulin
reduction. Results show that improvement in glycemic control due to dapagliflozin
is independent of kidney function in the range investigated. When modelling the in-
sulin reduction in patients, it was seen that an increased insulin usage corresponded
to increased glucose levels. There is a well established causal relationship between
insulin and decreased blood glucose levels. The opposite relation seen in the mod-
elling and data must mean that something is masking the effect. One explanation
would be that this is due to the fact that insulin is only a proxy for eating unevenly,
but the exact cause is unknown.

Keywords: logistic regression, longitudinal data, Markov process, multi-state model,
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1
Introduction

When eating, the human body will break down the carbohydrates in the food, which
are then distributed through the bloodstream to all cells. These carbohydrates are
then absorbed and used as energy. Glucose, a subcategory of carbohydrates, in the
bloodstream can be discretised into categories depending on its levels, where a tar-
get range, known as normoglycemia, has been identified. Levels above this target
range means a patient is in hyperglycemia and levels below target range is referred
to as hypoglycemia.

A healthy body regulates its glucose levels by the pancreas producing a sufficient
amount of a hormone called insulin. Insulin promotes the absorption of carbohy-
drates, especially glucose, into the cells which decreases the glucose levels in the
blood again after an increase from eating. Prolonged periods of hyperglycemia have
been linked to heart disease [1, 2, 3], stroke [4, 5], kidney disease [6], vision problems
[7], and nerve problems [8, 1]. Hyperglycemia is also commonly seen in the case of
the serious acute complication of diabetic ketoacidosis (DKA) which is caused by
insulin doses or levels that are much lower than that needed. The response from the
body is to switch to burning fatty acids for energy which produces ketone bodies
lowering the pH of the blood which, if left untreated, leads to coma and death.
Conversely, an excess of insulin might lower the amount of glucose in the blood to
critical levels, leading to hypoglycemia. This state may lead to nausea, headaches,
unconsciousness and, in occasional cases when not treated, death.

Diabetes mellitus, commonly known as diabetes, is a group of metabolic diseases in
which the body lose part of its ability to regulate glucose levels. There are mainly two
kinds of diabetes: T1DM and type 2 diabetes (T2DM). T2DM is characterised as a
combination of failure by the body to produce enough insulin and the cells growing
resistant to insulin leading to risk of entering hyperglycemia and other complications
of diabetes. People suffering from T1DM lose all, or almost all, ability to produce
insulin. Because of this, the body cannot transfer energy to cells efficiently which
leads to that these individuals risk becoming hyperglycemic. To mitigate the risk
of entering a hyperglycemic state, patients suffering from these conditions continu-
ously monitor their glucose levels and self-administer insulin through injections to
regulate glucose levels. A diabetic patient’s ability to adapt to changes in blood
glucose, mitigating the risk of entering hypoglycemia or hyperglycemia and instead
increase the portion of stay in normoglycemia is called glycemic control. Regulation
of glycemia through exogenously administered insulin is challenging and frequently
leads to fluctuations in glucose. These fluctuations may in themselves be associated
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1. Introduction

with complications of diabetes such as endothelial dysfunction and atherosclerosis
[9]. Moreover, this self administration, even though improved with new technology,
is suboptimal in relation to keeping steady levels of glucose. Patients with this set of
diseases not only have greater fluctuations in glucose but also higher average levels
than those without the diseases. Comparison of prevalence of glucose readings be-
tween T1DM patients and patients not suffering from any glycemic control diseases
can be seen in Figure 1.1. Data for the non-diabetics has been taken from a small
previous study with public data [10] and data for the T1DM diabetics are from two
phase three studies called DEPICT [11, 12].

Figure 1.1: Comparison of probability density curves of readings for T1DM pa-
tients treated only with insulin, taken from the DEPICT-trials, and non diabetics,
from a small sample in an old study.

Recently a new group of medicines, which have a proven positive effect on the
glycemic control in T2DM patients, have been developed. Medicines in this group
are called sodium-glucose co-transporter (SGLT2) inhibitors. They work by in-
hibiting sodium-glucose transport proteins to reabsorb glucose into the bloodstream
when passing the kidneys, and instead removing it from the body via urine. This
stabilises the levels of glucose and decreases the need for insulin. One such inhibitor,
developed by AstraZeneca, is called dapagliflozin. This is an approved medicine for
treating T2DM patients in both in many regions, including the US and EU and
has shown positive effects on cardiovascular disease, heart failure and progression of
renal disease[13, 14]. Two large randomised, placebo-controlled clinical trials have
been carried out, where patients suffering from T1DM have tested two doses of
dapagliflozin together with insulin. Data from these two clinical trials have been
analysed using traditional statistical tests and methods, which show that patients on
dapagliflozin have a more favorable glycemic control based on their levels of glycated
hemoglobin (HbA1c). HbA1c is an indicator of the average level of blood sugar over
the past 3 months, and is tested weeks apart as a proxy for glycemic control. During
parts of the DEPICT-trials, the patients had CGM devices, which allowed for pre-
cise measurements of glucose levels in their blood. Given this collected CGM-data

2



1. Introduction

of high granularity, further analysis into the glycemic control of the patients is made
possible, and can serve as a complementary tool to the 3 month average, HbA1c.

Since dapagliflozin, just like insulin, lowers glucose levels, patients were asked to
reduce their insulin dosages appropriately, with the purpose of not entering hypo-
glycemic state unexpectedly. Patients were then asked to attempt to titrate back up
again. Resuming the earlier dosages was as expected more easily achieved for those
patients that received placebo, leading to greater dose reductions in those receiving
dapagliflozin. This may partially offset the glycemic effect of dapagliflozin in the
studies. There is a sought after need to quantify how much different levels of in-
sulin reduction affect glycemic control. Furthermore, a model that models glycemic
control whilst incorporating many different features such as insulin usage as well as
age, gender, body mass index etc. then becomes a crucial step in order to determine
how much any of these different aspects affect the level of glycemic control different
patient groups have.

A widely used approach to model transition between states, within diseases as well
as other disciplines such as finance, is the multi-state Markov model [15, 16, 17,
18, 19, 20, 21, 22]. This Markov model models the states of the system, in this
case the glycemic states, with variables that change through time. This is a highly
flexible method that can handle time-inhomogeneous and time-homogeneous pro-
cesses. Moreover, Markov models can incorporate the effects of features by either
discretisation of data dependent on the feature thus creating multiple models, or
by application of regression on the transition probabilities between the predefined
states. A simple Markov model inhibits the Markov property, which asserts that the
future states of the process depend only on the present state, not on the sequence
of events that preceded it.

1.1 Aim
This project aims to investigate the suitability to model glucose changes using a
Markov model, as well as developing such a model. By implementing this model
using the DEPICT-data, this project also aims to find and analyse what relation
different features, other than treatment arm and insulin, have on glycemic con-
trol. Following this analysis, evaluation of the relation between insulin dosage and
glycemic control, for the different treatment arms will be performed.

1.2 Research Questions
• How should the Markov model be adapted and implemented in this setting to

draw insights?
• How do features, other than the usage of dapagliflozin and insulin, relate to

glycemic control?
• How do changes in dosage of insulin, when combined with dapagliflozin treat-

ment, affect glycemic control?

3



1. Introduction

1.3 Scope
The model will be made specifically for the DEPICT studies and no effort will be
made to make it more general than necessary to fit any other data set. Analysis will
be done only on these two studies. Even though the studies include severe events,
such as DKA, these will not be included in the model because of its low prevalence
in the data which would be hard to model.

This project aims at developing a model that models glycemic control. The glucose
levels during the day, as recorded by the CGM device, mainly depend on when you
eat, what you eat, as well as when and how much insulin you take. Data regarding
this from the DEPICT studies is somewhat limited. Data in regards to physical
exercises is not collected. Insulin doses are recorded as daily measurements with no
time stamps on when insulin was injected. Meal-times are recorded as diary-entries
with time stamps for breakfast, lunch and dinner. There exists no data on what is
consumed, neither are there any entries for any other forms of consumption, such
as snacking or drinking. Because of this, a model that accurately models intra-day
glycemia levels can never be created, since the major drivers, as explained above, are
lacking granularity. What is hoped to be achieved with the Markov model however,
is to distinguish the effect of attributes on a higher level, such as patient specific
features and treatment arms.

4



2
Theory

Information in regards to the setup of two studies, also known as DEPICT-studies,
and which records are used is presented, though heavily reduced. For a compre-
hensive review of the studies readers are referred to previous publications in the
two articles Efficacy and safety of dapagliflozin in patients with inadequately con-
trolled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind,
phase 3, randomised controlled trial [12] and Efficacy and Safety of Dapagliflozin in
Patients With Inadequately Controlled Type 1 Diabetes (the DEPICT-2 Study): 24-
Week Results From a Randomised Controlled Trial [11]. Theory behind the methods
used is presented in its general form and readers with knowledge in the field are re-
ferred to the methodology section on how general methods were applied to the given
set of problems.

2.1 The DEPICT-Studies
The two studies which contents have been used in the analysis have both been 24
week long, three legged, double-blind, phase three, randomised controlled trials. In
the trials, patients with T1DM were randomised in ratio of 1:1:1 into each leg of
the studies, 5 or 10 mg dapagliflozin per day or placebo, where each patient group
complemented the administration of dapagliflozin/placebo with insulin adjusted as
deemed appropriate. Patients were in all ages ranging from 18 to 75 and all had
been prescribed and used insulin for a minimum of 12 months. The studies were
conduced in the following countries: Argentina, Australia, Belgium, Canada, Chile,
Denmark, Finland, France, Germany, Hungary, Israel, Italy, Japan, Mexico, the
Netherlands, Poland, Romania, Russia, Spain, Sweden, Switzerland, U.K and the
U.S. Both studies have been compliant with the Declaration of Helsinki and Good
Clinical Practice Guidelines as defined by the International Conference on Harmon-
isation. Both of which are guidelines and principles on how human experiments
should be performed and documented to ensure safety of participants, but also har-
monisation in results between studies. Patients eligible to participate in the studies
entered an eight week lead-in period where patients’ glucose values were registered,
diet and exercise guidance was given and insulin was optimised. This gives insight
into individual glycemic control and the possibility to assess variability in glycemic
profiles within the study participants together with a baseline of insulin usage on
an individual level. After the lead-in period was finished participants entered a 24
week long treatment period medicating dependent on treatment arm, each given
once per day. Data from the studies was registered in three separate indices, last
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2. Theory

two weeks of lead-in period, week 10-12 and 22-24 in treatment period. Each of
these two week periods will from now on be referred to as the lead-in period, treat-
ment period one and treatment period two. Initially, patients were recommended
to reduce insulin by up to 20 % when the study phase was initiated and then urged
to attempt to titrate insulin doses back to baseline levels. Insulin dosages consists
of two parts: basal and bolus. Basal, also known as background insulin, can be
one of two things: either a long acting insulin taking effect over the whole day or
a constant infusion rate of insulin, delivered through a catheter from a mechanical
pump. Both methods have the purpose of bringing down high resting glucose levels
during periods of fasting. Bolus is instead taken at times of food consumption or
moments of high glucose levels to bring down glucose levels to appropriate levels
rapidly. Recommendation to reduce insulin was issued to minimise the risk of enter-
ing hypoglycemic state when administered blinded study medication. In addition
to the patients’ usual self monitoring of blood glucose (SMBG) or CGM readings a
study-CGM was recorded. The monitor Dexcom G4 Platinum was used to collect
the data for the analysis. Patients were also urged to record mealtimes and their
administration of medication.

2.2 Multi-State Markov Model
When observing a change in a process, and such change is between pre-defined states,
a multi-state Markov model can be used. Observations are often recorded with some
time in between, thus creating uncertainty of what happens between observations.
If observations are recorded with sufficiently small time differences, the uncertainties
become small, and the exact time of the state change can be recorded. Given such
observations, a transition probability matrix (TPM), P, can be defined as

P =


p11 . . . p1n
... . . . ...
pn1 . . . pnn

 , (2.1)

where n is the number of pre-defined states. Moreover, pij is the probability of
changing from state i to state j, where i, j ∈ {1, ..., n}. The probabilities of going
from any one state to any other state sums to one, which means that each row in
the TPM P sums to one. Clearly, the probabilities for state changes that cannot
take place become 0.

The TPM P might not be static, but instead depend on features. Each transition
probability then becomes dependent on said features. The TPM then becomes

P =


p11(x) . . . p1n(x)

... . . . ...
pn1(x) . . . pnn(x)

 , (2.2)

where pij(x) is a function describing the probability transitioning from state i to
state j given the covariates x. If the observations are recorded with a sufficiently
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2. Theory

small time difference, in combination with that the states are sequential, transitions
are only possible between neighbouring states. The TPM then becomes

P =



p11(x) p12(x) 0 0 . . . 0 0 0
p21(x) p22(x) p23(x) 0 . . . 0 0 0

0 p32(x) p33(x) p34(x) . . . 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 . . . 0 pnn−1(x) pnn(x)

 , (2.3)

2.2.1 Mean Sojourn Time
Mean sojourn time (MST) is the time an object is expected to stay within any system
before exiting again. Calculation of this measure can be done by summing up the
amount of time spent within any system divided by the number of times exiting the
system. Together with the TPM defined in Equation 2.3, the mean sujourn time
becomes

MST1 = 1
p12(x)∆t

MSTi = 1
pi,i−1(x) + pi,i+1(x)∆t i ∈ Z : i ∈ [2, n− 1]

MSTn = 1
pn,n−1(x)∆t

where n is the total number of states and ∆t is the time between each time step.

2.2.2 Fraction of Time
Let P be the TPM as defined in Equation 2.3. Let u be the vector which represents
the starting probability in each state, where ∑n

i ui = 1 where n is the number of
states. Then the probability that the Markov model is in state si after t time-steps
is the i th entry in the vector

u(t) = u(t− 1)Pt. (2.4)

The probability of being in a certain state, si, is also the fraction of time spent in
that state given the TPM, P. A vector of extra interest is the probability vector u
such that

u = uP. (2.5)

This vector is of extra interest since when a steady state is reached, multiplication
of vector u by P does not affect the resulting vector u. This is the probability of
being in any of the possible states, i, given the TPM after infinite time which can
be interpreted as the portion of time being in each state. To get this vector u, one
can use the eigendecoposition of matrices. Since each row of TPM sums to one then

det(P− 1 · I) = 0.
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2. Theory

Given that the eigenvalue decomposition

Pu = λu (2.6)

and solution to λ is given as
det(P − λI) = 0

then one eigenvalue corresponding to the TPM must be 1. Given that one eigenvalue
is one the corresponding steady state vector, an eigenvector of P, is given by solving
Equation 2.6.

2.3 Logistic Regression
In order to predict outcomes of a categorical nature, either binomial or multinomial
logistic regression can be used. For the binary outcome case, the probability of
outcome one, p, given some observation x is

p(x) = 1
1 + e−βTx

, (2.7)

where β is a vector of coefficients. The probability of outcome two, clearly becomes
1− p.

In order to find the parameters β that gives the most accurate predictions, they
have to be estimated from the data points. Unlike linear regression, where the
optimal parameters can be computed in closed form, the normal equation, logis-
tic regression requires a different approach. In logistic regression, the logistic loss
function is minimised in an iterative process. This cost is defined as

Cost(p(x), y) =

−log(p(x)) if y = 1
−log(1− p(x)) if y = 0

. (2.8)

Although two cases are studied, when y is either 0 or 1, the cost can be rewritten as

Cost(p(x), y) = −ylog(p(x))− (1− y)log(1− p(x)). (2.9)

The cost function, J(β), of the model then becomes the summation from all the
data points used

J(β) = 1
m

m∑
k=1

Cost(pβ(x(k)), y(k)) (2.10)

which becomes

J(β) = − 1
m

m∑
i=1

(
y(i)log(p(x(i))) + (1− y(i))log(1− p(x(i)))

)
, (2.11)

where m is the number of samples. This cost function seen in Equation 2.11, is con-
vex, which makes the optimisation used to find a global optima highly favorable [23].
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For the multinomial case, where there are K possible outcomes, the probabilities
are instead computed using softmax regression, thus becoming

pi(x) = eβi·x∑K
k=1 e

βk·x
i ∈ Z : i ∈ [1, K] (2.12)

where p1 denotes the probability of outcome when K = 1. Since the denominator
sums to one, it has a normalising effect, thus allowing for the sum of probabilities to
become one. As can be seen, the vector of coefficients, β, vary depending on what
outcomes are being predicted. The cost function, J(β), in the multinomial case is
instead computed as seen below in Equation 2.13,

J(β) = −
m∑

i=1

K∑
k=1

(
1{y(i) = k}log

(
P (y(i) = k|x(i);β)

))
. (2.13)

These cost functions, both for the binomial as well as the multinomial case as de-
scribed in Equation 2.11 and 2.13 respectively, are to be minimised in order to find
the set of parameters that minimises the cost. This in turn maximises the predic-
tive power of the logistic regression model. In order to perform such minimisation
of cost, an optimisation algorithm can be used. One such algorithm is the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which belongs to quasi-Newton
methods, for the numerical optimisation of any function, f(θ), with respect to its
parameters θ. In the particular case of logistic regression, J(β) can be optimised
with respect to its parameters β. In contrast to Newton’s Method, the Hessian
matrix of second derivatives is not computed for Quasi-Newton methods. Approxi-
mation is instead used to establish the Hessian matrix, using approximate gradient
evaluations. The BFGS algorithm uses a modified way of updating the approximate
Hessian matrix, which is described in more detail below. An initial guess is made,
usually I, for an approximate Hessian matrix B0 as well as an initial guess for the
variable β0. The following steps are repeated as βk converges to a solution. Here,
the indice k denotes the iterations performed by the BFGS algorithm.

1. Compute a search direction pk by solving Bkpk = −∇f(βk).
2. Find a step size αk by doing a line search in the direction of the search, so
αk = arg minf(βk + αkpk).

3. Define sk = αkpk and update the parameters as βk+1 = βk + sk.
4. yk = ∇f(βk+1)−∇f(βk).

5. Update the approximate Hessian as Bk+1 = Bk + ykyT
k

yT
k sk

− BksksT
kB

T
k

sT
kBksk

.

When the norm of the gradient, ||∇f(βk)||, is sufficiently small or a maximum
number of iterations are completed, the algorithm stops. Convergence to a global
optima cannot be guaranteed, since the BFGS approximation may not converge to
the true Hessian matrix. The final coefficients reached when the iterations stop, β∗,
is used as the coefficients for when constructing the logistic regression model. An
improved version of the algorithm, which improves performance when performed on
a computer, is the limited-memory BFGS (L-BFGS). The numerical approximations
are computed the same way, but old gradients are discarded to leave more space
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for freshly computed gradients, which makes it require less memory, which can be
beneficial for a computer setting.

2.4 Data Manipulation Methods
In order to perform certain modelling, some different manipulation methods need
to be applied to the data. This is done in order to allow for certain algorithms to
converge, as well as allowing for certain features to be included.

2.4.1 Feature Scaling
The method of normalising the range of independent variables is called feature
scaling. Ranges in raw data, for different features, often has large discrepancies. A
large set of machine learning algorithms depend on normalisation to work properly.
Also the difficulty of interpreting result might heavily dependant on normalisation in
pre-processing steps. In logistic regression, interpretation of regression coefficients
is highly sensitive to the scale of the input. In many classifiers euclidean distances
are used which in turn results in features with relative large ranges will govern the
results. Also in tests L-BFGS has been shown to be greatly accelerated, reaching
convergence faster, when normalisation is applied [24].

2.4.2 Dummy-Variables
A feature is said to be categorical if it is not of numeric nature, or that it has
no logical ordering of its values. Because of this, such a feature takes on one of
a limited, pre-specified, number of values. These are referred to as the levels of
the categorical feature. In order to include categorical features when the parameter
estimation of the Markov model is performed, they have to be modified. This is done
by performing one-hot-encoding, which makes each level of the categorical feature
an individual, binary, feature, thus creating what is called dummy-variables. For
each observation within the data-set, only one of a categorical feature’s levels can
be true, thus setting it to one, leaving all other binary values to zero. Each level of
the feature now corresponds to its own parameter β, which indicates how much the
prevalence of that specific level contributes to the outcome.

2.4.3 Interaction Terms
When statistical modelling is performed using some features for inference, the in-
teraction effect between some of the features could be of interest. It could be that
the effect of one feature and the outcome depend on the value of another feature,
that is, the effects of the two features are not additive. These interaction effects can
be captured by including what is called interaction terms. These are computed by
multiplying the features with each other, thus creating an additional feature, the
interaction term. This term has its own parameter β, which is estimated the same
way as the others. This way, the interaction effects of interest are captured within
the model, thus allowing for more extensive inference.

10



2. Theory

2.5 Clustering
Clustering is the art of grouping similar entries into a group or cluster dependent on
their attributes. This can be done when it is known that underlying groups exists
within a population but its compositions are unknown. Clustering can be done using
multiple algorithms in large feature space. One special case of clustering is in one
dimensional feature space. Doing clustering in one dimension is special in the way
that values can be definitely sorted dependent on its values, this makes the task
easier and there is, dependent on the measurable, a definitive best solution. Jenks
natural breaks optimisation solves this problem by calculating the best ranges for a
set of data given the number of clusters. It does this by first calculating the sum of
squared deviations for array mean (SDAM),

SDAM =
∑
x∈X

(x̄− xi)2, (2.14)

whereX is the set of all values and x̄ is the mean. Then split the data into all possible
combinations of clusters which will depend on the number of clusters chosen to be
present in the data. The algorithm will solve the problem naively, testing all the
possible splits, which means that computation-wise it will depend heavily on the
number of possible splits. The number of ways it is possible to split the data of size
n in k non-empty clusters is known as the Stirling partition number and is calculated
as

S(n, k) = 1
k!

k∑
i=0

(−1)i

(
k

i

)
(k − i)n.

Calculate the sum of squared deviations for class means (SSDCM) for each of the
possible split, j,

SSDCMj =
∑
g∈G

∑
x∈X(g)

(x(g)
i − x̄(g))2, (2.15)

where g is one split of all possible ones and X(g) is the set of observations in that
split and group. Then calculate the score which is

Score = (SDAM − SSDCM)
SDAM

,

the split with the highest score is the best split. This algorithm in pseudo code can
be found in Appendix B.

2.6 Validation
When developing multiple models, of any kind, validation can be useful for deter-
mining model performance. It is necessary that the model reflects the underlying
data adequately.

2.6.1 Brier Score
Brier score is used to evaluate the accuracy models where the output is probabil-
ity predictions. The sum of predictions over each outcome sums to one and each
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predicted outcome is in the range of 0 to 1,

1 =
n∑

i=1
pi p ∈ [0, 1]

where n is the number of possible outcomes from the model. The outcome of a
prediction has to be either binary or categorical. Brier score is calculated as the
mean squared difference between the actual probability compared to the predicted
probability for an outcome,

BS(s) = 1
N

n∑
i=1

(oi − pi)2.

This means a lower Brier score, BS, indicates a better calibrated model and also
that the score is in the range of 0 to 1, BS ∈ [0, 1]. In applications where multiple
categories are considered the reformulation of the score is

BS(m) = 1
N

n∑
i=1

∑
c∈C

(oic − pic)2 (2.16)

where C is the different categories. A formulation not mentioned earlier and here
proposed is where multiple classifer models are to be compared, the formulation in
Equation 2.16 is used but now averaged over all models,

BS(p) = 1
M

M∑
m=1

1
Nm

N∑
i=1

∑
c∈Cm

(oic − pic)2

where M is the number of models.

2.6.2 K-Fold Cross Validation
Given an evaluation metric, K-fold cross validation is used to evaluate the model
performance on a given data set. The data is split in K parts, where the model is is
fitted on K−1 parts, and evaluated on the remaining singular part. This is repeated
K times, or folds, in a structured manner so that each data point is evaluated upon
exactly once. The evaluation metric is then averaged over the K folds to get the
overall model performance. This way, the variance of the estimated performance of
the model becomes small when K increases, thus allowing for reliable evaluation.

2.6.3 Bootstrapping
When random sampling with replacement is performed, a metric can be estimated
over and over again in order to compute its value and variance. This can in turn
be used to compute confidence intervals for the sample estimate for the underlying
distribution. In the case of estimating the distribution of the sample mean, where
the data consists of n observation, random sampling with replacement is performed
m times. This results in estimations of the mean, µi where i ∈ [1,m]. The unbiased
sample variance is computed as

s2 = 1
m− 1

m∑
i

(µi − µ̄)2 (2.17)
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where µ̄ is computed as 1
m

∑m
i µi. The sample standard deviation then becomes,

s =
√
s2.

2.7 Related Work
Multi-state Markov models in continuous time are often used to model the course of
diseases in previous literature. This progression of diseases usually have an absorb-
ing state where the patient’s disease progress towards, often death. Recovery may
at times occur before patients die, allowing for state changes in both directions. In
one paper, data on patients with liver cancer, hepatocellular carcinoma, was col-
lected over a period of time and then modelled with a multi-state Markov model
[15]. Around two thirds of the patients eventually die because of the disease, thus
reaching the final absorbing state, death. In the paper, the authors fit both 3-state
and 4-state models, where the disease progression was analysed. Multiple examples
of similar analysis of disease progression in continuous time are found. Without
going into detail of the specifics of the Markov modelling performed, examples of
other related work where such an analysis is performed are: in regards to diabetic
nephropathy [17], chronic post-transplant problems [25], human immunodeficiency
virus infection [16, 18], diabetic retinopathy [20] and screening for breast cancer [19],
all of which has progressive stages of their respective diseases.

As shown, there exists an extensive literature repertoire regarding Markov mod-
elling in a progressive disease setting. However, this project aims at developing
a Markov model where it is not the progression of a disease that is to be mod-
eled. This differs in the way that there is no progression towards a finite, absorbing
state, eg. death, as is for the previous works mentioned above. Instead, the states
change to and from a “mean”-state when time progresses, with no absorbing state.
This methodology of states have previously been used outside of clinical data, more
specifically in the case of economic forecasting and financial modelling. There ex-
ists related work where the states are instead states of economic recession and its
opposite, booming [26]. Here, there is no absorbing state, but it is instead assumed
that there exists a “mean”-state of economic prosperity, and that the states of the
economy change around this. The paper creates a Markov model that, given a set
of leading indicators, models the probability of entering and exiting a high financial
stress regime. The probabilities of the TPM of the Markov model that is developed
are estimated using a logistic regression framework.
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3
Methods

Process of the work has been separated into two mainly serial assignments: pre-
processing and analysis. Initial first phase included cleaning and enhancement,
transformation and feature extraction. The analysis part was not limited to an
analysis performed once with data using selected features but included the con-
struction of a flexible library in Python specifically developed for the assignment.
The developed library for the task is able to create Markov models and perform
model assessments as well as outputting metrics. The model approach is flexible
with respect to how states are defined. In previous work, three states are usually
defined with ranges in glucose readings, these states are: hypoglycemia (<70mg/dL),
normoglycemia (70-180mg/dL) and hyperglycemia (>180mg/dL). In most parts of
this project, these predefined states were used.

3.1 Data Characteristics
All data handled in the project was from two independent triple arm double blind
placebo trials. Data from each of the two studies were concluded into four sets of
data. The sets all contained data needed in the analysis, the sets corresponded to
CGM data, patient data, meal times data and medication data, where the medi-
cation data consisted of both dapagliflozin dosages and insulin dosages. Sets also
corresponded to granularity, see Table 3.1. Sets could be joined on patient identifier,
dates and time of measurement.

Table 3.1: The granularity for each of the four data sets from each study.

Data set CGM Medication Meal Patient
Interval 5 minutes Daily Daily Once

The CGM set contained glucose readings with five minute intervals identified with
patient ID together with date and time of the specific reading. According to the
DEPICT-studies, the data should have been divided into three separate periods,
each consisting of two weeks. One lead-in period, where all data is recorded prior to
the introduction of any treatment, placebo or any of the two arms with dapagliflozin.
Following this period was two periods, each consisting of two weeks, with readings
when treatment had been introduced. Recordings were at week 11-12 and 23-24,
measured as the number of weeks after the introduction of the treatment. Partic-
ipants of the study were urged to record their daily intravenous administration of
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insulin. Insulin recordings were to be labeled bolus or basal dependent on which
type of insulin it was. Moreover, the drug administration of the treatment drug was
to be registered, which was done during both the treatment periods. Patients in the
trials were urged to record the date and time for the three main courses (breakfast,
lunch and dinner) of the day in diary format. Recordings were from the last week in
each of the two treatment periods, week 12 and 24. Patient data had information in
regards to patient specific attributes such as age, gender, and also indication on their
kidney function, glomerular filtration rate (GFR). It should be noted that GFR is
declining with age and a GFR value in the range 60 to 130 is often seen as normal in
a healthy population [27, 28]. Patient data also had dates for when patients entered
the actual treatment leg. Patient data also had dates for when each recording in
the two treatment periods were initiated which should concur with the labeling in
the CGM data.

Table 3.2: Data completeness in fractions for each set of data in each week it
should be present. Worth noting is that meal data is only collected in one of the
two weeks in each period. CGM data completeness is calculated by grouping by
patient and period and checking the registered values and dividing this with the
expected number, 14 · 24 · 12 = 4032. The insulin data is grouped on patient ID
and date to see if 14 readings exist per period, where the discrepancy from 14 is
averaged and presented below. Meal data completeness is calculated by grouping
by patient and period and then checking the number of each meal type and divided
by 7. The mean of all patients is then calculated.

Period Lead-in Treatment Treatment
Week -2 & -1 11 & 12 23 & 24

CGM data 0.79 0.82 0.82

Insulin data 0.87 0.85 0.89

Meal data 0.90 0.92 0.92

3.2 Pre-Processing
The data have been used in previous analysis and should thus have had proper
formatting and been labeled correctly. Notably, this assumption was not correct
since thorough exploration revealed shortcomings in previous work which could have
led to misleading, or even incorrect, results and conclusions. Below, the details
regarding the thorough exploration will be presented, and actions performed to
correct it will be outlined.

3.2.1 Cleaning and Enhancement
The first step, cleaning and enhancement, includes the process of unveiling corrupt
data, incorrectly labeled data, technical shortcomings of instruments used and re-
lated causes of bad data. This is important to ensure, so that conclusions that are
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drawn are not based on errors in the data.

Looking at the CGM-data it can be noted that measurements above approximately
400 were rare, accounting for less than 0.15 %� of the total number of observations.
Furthermore, there is a significant peak in the distribution at approximately 400 mg

dL

and at 40 mg
dL

, see Figure 3.1.

Figure 3.1: Probability density curves of readings of CGM from patients enrolled
in the DEPICT-1 and DEPICT-2 studies. Note the high prevalence of readings in
hyperglycemia, more than 180 mg/dL of glucose, and low prevalence of observations
in hypoglycemia, less than 70 mg/dL of glucose.

The cause of this was the meter being used, Dexcom G4 Platinum, which has a
measuring range of 40 - 400 mg

dL
[29]. Knowing that the meter only measures within

that range, all measurements outside of the range are deemed errors and are re-
moved. These constituted 0.2 %� of all values. It also meant that states should not
be defined outside of this range.

As previously mentioned, the different sets of data, CGM-data, patient data and
medication data had different granularity and were thus separated by this, while
joining them was possible on the basis of two features, patient ID’s and dates.
Looking at the data from DEPICT-1, each CGM reading had labels consisting of
lead-in, treatment or follow-up. The patient data on the other hand had one column
that stated the first date for an individual receiving any treatment, while there in
the medication data was entries on what medication was taken each day. The data
in the vast majority of patients contradicted itself on this point. Readings from the
CGM-data, labeled treatment, were in these cases prior to the first day of treatment
in the patient data and in the medicine data, consisting of daily recordings, treat-
ment had not been administered. No information was possible to get on what was
correct thus the decision was made to assume the CGM-data was incorrectly labeled
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since the labeling was contradicted by the two other sets.

In the CGM-data, some of the observations had labeling corresponding to a fourth
period, except for the three already specified, lead-in, treatment and follow-up. The
DEPICT-studies only mentions the three periods and looking at the data the total
fraction of observations within this fourth period constituted 1.35 %� and without
any further information, these observations were discarded since identifying their
period and validity was deemed too work intensive.

All recordings in the CGM-data should be on strict five minute intervals. This
assumption is the basis for some specific elements of the theory and had to be
checked and corrected for. When this was analysed, it was fairly accurate, and 97
% were within the 4-6 minute interval. If this was not corrected for, this still meant
that 3 % of all CGM readings had to be discarded. Looking at the gaps in the data,
it can be seen that a majority are small, missing only one or two readings, see Figure
3.2.

Figure 3.2: Stepwise time difference frequency table for differences larger than six
minutes and less than 40 minutes between readings.

Gaps in time series or longitudinal data can be filled using multiple interpolation
methods. When the gaps are minor, and the data-frequency surrounding the missing
observation is high, linear interpolation can often be sufficient [30]. Up to three
values, thus covering gaps of up to 20 minutes, were interpolated to fill gaps in the
data. Of the 3.0 percentage points of missing observations, 0.99 percentage points
were within the 6 to 22 minutes region. A large majority of the remaining 2.01
percentage points were instead in the 0 to 4 minute region, see Figure 3.3.
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Figure 3.3: Stepwise time difference frequency table for differences less than four
and a half minutes between readings.

As can be seen in the figure above, some readings have not registered any time
difference. In all these cases, it was deemed impossible to efficiently identify which
glucose reading was correct, if they were not of the same value. Because of this,
the duplicated readings were removed arbitrarily and accounted for 1.9 %� of all
observations. The rest of the observations were left untouched since they were not
duplicates, and even though not adhering to the strict 5 minute interval, were in the
context few.

Some patients, even though labeled as patients who finished the trial, had notably
few observations within one or more periods. Since periods should be two weeks
with readings every five minutes, having just portions of those approximately 4000
readings over a period could mean these were outliers due to errors. To remove pe-
riods with relatively few data points, a cutoff was set at patient’s periods with less
than a total of three days of data. Threshold was set arbitrarily to minimise the risk
of including corrupt data while not unnecessarily excluding too much data. Data
within the treatment period is divided into two sub-periods of 2 weeks each, week
11-12 and 23-24. Since both sub-periods of readings within the treatment period are
labeled with one label in the raw data, clustering had to be done before the filtering
was possible. Clustering was done on the dates of collection of data, which is one
dimensional. For the assignment Jenks Natural Breaks algorithm was considered,
as described in Section 2.5. Applying Jenks and then setting a threshold of three
days excluded 2.0 %� of the initial data set.

Within periods there were still outliers which had either wrongly set timestamps
or just corrupt data. This was handled by setting a threshold on how long the time
difference should be between a cluster of values and another to be a new cluster.
Then if any cluster was of less than a certain amount of observations then this clus-
ter was removed. Setting the time difference to 10 minutes and cluster size to 12
excluded 3.8 %� of the original data.
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In order to capture the dietary habits of the patients enrolled in the study, patients
were asked to record diary data of food consumption. More specifically, patients
were tasked with recording at which time patients ate breakfast, lunch and dinner.
The type of food consumed, calorie intake, or other aspects were not captured. For
the dates during which CGM-data were captured, meal-times were only partially
recorded. During treatment, CGM-data was recorded for two weeks beginning week
11 and for another two weeks, beginning week 23. Because of this, the total number
of days of recorded mealtimes should be 281. This was not the case and patients
only registered an average of 12.5 days with mealtimes, see Figure 3.4. Patients
were asked to only record meal times for a total of two weeks, during week 12 and
week 24.

Figure 3.4: Histogram on how many days the patients recorded one or more
mealtimes.

A total of 1523 patients recorded at least one mealtime, where the patients recorded
mealtimes for 12.5 days on average. The patients could not record if they chose
not to eat for the entirety of a day, so it is not possible to distinguish between
patients who chose to not eat for a full day, or did not record mealtimes for a full
day. It is assumed that the latter is incredibly more common. Moreover, if a patient
recorded one or two of the day’s three meals, it is assumed that the patient did
not eat the meals which were not recorded for that day. During the days where at
least one mealtime was recorded, the patients recorded an average of 2.89 mealtimes.

CGM-data was recorded for 28 days during treatment, but mealtimes only for 12.5
days, on average. In order to not be forced to discard over half the data, in the case
that time since last meal was to be used in the modelling, imputation or removal of
missing values had to be done. The nature of mealtimes on a patient level basis is
practical in the sense of imputation, since habits and daily routines are fairly consis-
tent. If roughly two weeks of mealtimes are recorded per patient, it is assumed that

12 periods · 2 weeks · 7 days = 28
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the remaining two weeks can be imputed by calculating the daily average break-
fast, lunch and dinner times for each patient. Moreover, since the total average
mealtime differs heavily depending on weekday, this has to be taken into account
as well. Based on the above, the missing days of recorded mealtimes were imputed
as follows. For each patient, the average breakfast, lunch and dinner time for all
seven weekdays were computed and saved into a table. If a patient did not have
any recordings for a specific meal on a specific weekday, the population average over
all patients for that specific meal and weekday was used instead. Because of this, a
table containing, for each patient and for all seven weekdays, an average mealtime
for breakfast, lunch and dinner existed. For all days where recordings of mealtimes
are missing, this table was queried and the patient-specific averages were used in
order to impute the missing mealtimes.

During the periods where the patients recorded CGM-data, they were asked to
record their daily insulin dosage consisting of both their basal and bolus doses. In
the data, it was noticed that patients in rare occasions reported their basal and
bolus dosages more than once per day. It is assumed that this was a mistake, and
the average of their daily measurements were used as the daily value. Since these
dosages are self-reported from patients, some discrepancies in the data quality might
exist. Since the analyses of both basal and bolus doses are of interest, there is a
requirement for the observations to contain both the basal and bolus doses. In total,
of all the days where CGM-data was recorded for all patients, only 88.51 % of the
days had both basal and bolus recordings. Thus 11.49 % of the observations were
removed in order to allow for the modelling of basal and bolus.

There existed patients in the treatment period who had not registered any data
in the lead-in period. Since no baseline for these patients was possible to get these
were excluded from the analysis, a total of 40 of the 1480 patients were excluded.

3.2.2 Transformation

Proposed approach to model using logistic regression to predict state changes means
that a data set with this feature together with all other features has to be generated.
The transformation phase is divided into two separate steps. First merging of all
data and then transformation to a data set that can be used by chosen modelling
approach. Merging of the four data sets was done on two covariates, the patient
identifier together with date and time. Using a Markov model, the goal is to,
given a current state, predict the probability of transitioning to any possible state.
Enabling this type of modelling on the data, a new target column was generated
upon merging. When merging each set of neighbouring CGM readings of size n is
reduced into a set of CGM transitions of size n− 1, see Table 3.3 and 3.4.
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Table 3.3: Pre-transformation table.

ID Time ... Present state
1 ...:10:15 ... 1
1 ...:10:20 ... 1
1 ...:10:25 ... 2

Table 3.4: Post-transformation
table which has one less row.

ID Time ... State change
1 ...:10:15 ... -
1 ...:10:20 ... s11
1 ...:10:25 ... s12

At generation of the new feature, as described above, it could happen that the
patient got state changes from one state to a non-neighbouring state. Inspecting
the data where transition times are within the range 4 to 6 minutes the variance
in the changes in glucose readings is 36, see Figure 3.5. As long as the number
of states are relatively few it is unlikely that transitions in states will skip states
given presented data. By removing observations, in a three state setting, where
transitions are to non-neighbouring states data accounting for 0.07 %� of the original
data was removed. Increased number of states means large increases in the removed
observations and should be checked thoroughly when increasing the number of states
or creating states in narrow ranges.

Figure 3.5: Probability density plot for difference between readings in the interval
4 to 6 minutes within the interval from the 0.1 th to the 99.9 th percentile, mean
and standard deviation is for the full data.

3.2.3 Feature Extraction
Feature extraction is the process of deriving covariates from other present ones which
brings more value to the model. This is done under the hypothesis that these de-
rived ones are are non redundant which means logically explainable ones are the
ones generated.

Insulin is, with its direct effect on glucose, a feature of extra significance in this
study. The need of insulin depends on several factors as mentioned earlier, some
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of which are not in the data, such as physical exercise. Data was though collected
for each individual prior to the introduction of the treatment, thus insulin usage
in treatment can be normalised using the pre-treatment, baseline, insulin usage.
Correlation between the two is good, see Figure 3.6 and 3.7. This covariate can
both be introduced as a feature in models to increase model fit when doing analysis,
but also set to variable values as input to generated models to analyse whether there
exists an optimal reduction.

Figure 3.6: Pre-treatment basal
insulin to post treatment basal in-
sulin, Pearson correlation coeffi-
cient of 0.89. Plotted values for
basal are to the 95 th percentile,
Pearson correlation coefficient is
calculated using all data.

Figure 3.7: Pre-treatment bolus
insulin to post treatment bolus
insulin, Pearson correlation coef-
ficient of 0.88. Plotted values for
bolus are to the 95 th percentile,
Pearson correlation coefficient is
calculated using all data.

Consumption of food is a crucial aspect of glycemic control, which has been em-
phasised previously. Since there exists self-reported mealtime data there could be
a way to capture this crucial feature. One such way is, for each observation in the
CGM-data, to compute the time since last meal. This feature, time since last meal,
is extracted by looking for the latest meal consumed, given a timestamp. This could
in turn be incorporated into a numerical feature, corresponding to the number of
minutes since last meal. The way this is computed is shown as pseudo code in Ap-
pendix A.

Through explanatory analysis, it could be seen that glucose levels behaved similarly
over the days, inhabiting a cyclic behavior. Because of this, the feature time of day
was extracted, as a categorical feature with 24 levels, one for each hour of the day.
This was done by extracting the hour element of the timestamp for each observation.
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3.3 Analysis
The multi-state Markov model’s main attribute is its transition probability matrix,
as described in Equation 2.3. Since the transition probabilities depend on covariates,
multiple underlying models have to be created in order to compute the individual
probabilities. In this section relating the modelling aspects of this project, ”Markov
model” relates to the overall model consisting of multiple underlying models.

3.3.1 Selection of Data
In order to be able to fit the Markov model to data, a data set consisting of features
and target is required. The data engineering described in Section 3.2 above resulted
in a clean and structured data set in a tabular format. This full dataset, consisting
of multiple features, is used in the modelling stage. A subset of features would be
chosen, based on selection criteria from the user. Below, the different aspects of
the selection criteria that exists will be outlined, together with their corresponding
effects on the modelling.

When choosing features to be included in the Markov model, both numerical and
categorical, actions have to be taken in order for the modelling to be feasible. For
the numerical features chosen, normalisation is required in order for the modelling to
work properly, as described in Section 2.4.1. Furthermore, the categorical features
have to be encoded into dummy-variables, as described in Section 2.4.2. If there
is a demand to also model interaction effects within the Markov model, interaction
terms between relevant features have to be created and included, as described in
Section 2.4.3. When the above is performed, a dataset consisting of the appropriate
features is created, and forms the basis for the Markov modelling.

3.3.2 Fit the Markov Model
With the transition probability matrix defined as in Equation 2.3, the probabilities
depend on covariates, x. In previous literature, this dependency is done with a
logistic regression model [15]. Incorporating this into the multi-state Markov model,
it is possible to fit a model that predicts a specific state change. Since the probability
of transitioning to another neighboring state, or staying in the current one, sums to
one, a single logistic regression model has to be fitted for each state. Each model for
each state i, depends on a different set of coefficients, βi. For the first and last state,
where i = 1 and i = n, there are only two possible transitions as seen in Equation
2.3. This leads to a binomial logistic regression, defined in Equation 2.7, where the
probabilities are determined by,

pβi
(x) = 1

1 + e−β
T
i x

i ∈ {1, n}. (3.1)

For the other cases, when the current state is not the first nor the last, there are
three possible transitions. This leads to a multinomial logistic regression, defined in
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Equation 2.12, where the probabilities are determined by,

pi(x) = eβix∑K
k=1 e

βkx
i ∈ Z : i ∈ [2, ..., n− 1] (3.2)

The n different models are fitted to the data using the SKLearn-module in Python.
This module optimises the coefficients βi with the L-BFGS algorithm described in
Section 2.3. This way the Markov model is fitted to the data, and its transition
probability matrix, P , is created, which is dependent on the features included in
the model. A representation of the model, when applying it on the given problem
with three states, can be seen in Figure 3.8. The method described is applicable to
any number of states.

1 2 3

p12

p21

p23

p32

p22

p11 p33

Figure 3.8: Abstract representation of a multi-state Markov model with three
states.

3.3.3 Confidence Intervals
In order to get confidence intervals for the MST and fraction of time spent in the
different states, bootstrapping was performed. This was done as described in Section
2.6.3, where the number of bootstraps were set to 1000. Line-plots with 95 %
confidence levels were generated in order to display the range of confidence.

3.3.4 Validation
The validation was performed utilising Brier score, as explained in theory, Section
2.6.1. The Markov model created consists of multiple logistic regression models de-
pending on the current state, as described in Section 3.3. For clarification, each
possible state corresponds to a binomial or multinomial logistic regression model
predicting the probability of transitioning to neighboring states. Because of the
multitude of underlying models as well as a different number of observations in
each state, the computation of the Brier Score has to be adapted in a way that
accurately reflects the performance of the Markov model. As described in detail in
theory, Section 2.6.1, Brier score is an evaluation of the mean square error between
the predicted probabilities assigned to the possible outcomes and the actual out-
comes. The range of probabilities, [0, 1], is traditionally divided into a set of equally
sized bins, where the comparison is made and each bin is weighted equally. For the
use case of this multi-state Markov model on the other hand, where the number of
observations are highly concentrated within a tiny range of probabilities, the bins
are instead formed based on the number of observations. This results in bins vary-
ing in range, but of equal weight in terms of number of observations which gives a
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more fair measurement of model performance. A Brier score is computed for each
predicted state change, which are then averaged to a single scalar, thus representing
the performance of the Markov model.

In order to reliably validate the model, K-fold cross validation was performed as
described in Section 2.6.2. The number of folds, K, was chosen to 10, as it has been
proven to be successful in previous work [31]. The evaluation metric, Brier score,
was computed as described above, once per fold, then averaged over the 10 folds,
thus acting as the validation score for the Markov model. This validation score could
then be compared between Markov models.
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Given the previous methodology, results regarding three major areas are presented.
First, the adaptation and implementation of the Markov model is described, in-
volving the library specifically created for the task of analysing the DEPICT-data.
Secondly, features of interest and their relationship to glycemic control are presented.
Lastly, insulin reduction, both basal and bolus, is presented and their relationship
to glycemic control is presented.

4.1 Adaptation and Implementation of the Markov
Model

Given the high frequency data points from the CGM-data, with 5-minute intervals,
it can be shown that all state changes are observed, as motivated in Section 3.2.2.
Because of this, only state changes to neighboring states are allowed, which is an
adaptation to the original Markov model. Moreover, since there is no progression in
some particular direction, there exists no absorbing states. The transition probabil-
ity matrix is computed around a logistic regression framework, using the L-BFGS
algorithm for parameter estimation. This transition probability matrix is then used
to compute fraction of time spent in the various states as well as the mean sojourn
time, which are used as a basis for analysis.

In order to implement a Markov model the way as described previously in Chapter
3, there was a need to implement a library that given a data set, processed the data
accordingly as well as generated and fitted a Markov model to the data. This has
been implemented in a library, written in Python. The structure of the code is here
outlined in order to give insights into the workings of generating a Markov model.

1. Load data
The data files containing all information gathered during the DEPICT studies
are included. More specifically, this involves all data regarding CGM-readings,
insulin usage, patient information as well as mealtime data. All these files are
loaded into memory.

2. Choose number of states to model
The user specifies how many states are desired to model, and their correspond-
ing glucose limits in mg/dL.
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3. Pre-processing
Pre-processing is performed, as described thoroughly in Section 3.2, where
data points are removed and added as well as merged together from multiple
data sources. Moreover, feature extraction is performed to extract features
involving time since last meal, insulin reduction and time of day to name a
few.

4. Choose what time-frame to model on
The user then specifies over which time frame the data should be contained.
The feature days on treatment can be used to specify if the data to be used is
concerning the lead-in period, the treatment period, or some other time period.

5. Choose features to include
The user specifies which categorical features and numerical features should be
included in the model, where any number of features can be specified.

6. Add dummy variables
Dummy variables were derived using one hot encoding for the categorical fea-
tures, where each level of each feature becomes a new, binary, feature.

7. Normalise the data
The data is normalised, with a scaler of choice from the user: minmax, maxabs
or standard scaler. The scalar parameters are saved.

8. Add interaction terms
The user can choose to include interaction terms, which are then generated by
a process of multiplication, resulting in additional features.

9. Initiate the Markov model
Finally, a Markov model with the specifics from the previous steps is initiated
and fitted to the data.

When the Markov model is initiated and fitted to the data, as described above, it
can be utilised for analysis. Below the different aspects of analysis are described.

• Perform model validation
Use the Markov model and perform K-fold cross validation as described in
Section 2.6.2. This gives the Brier score, thus the evaluation metric, for the
model and can be compared with the Brier score from Markov models based
on a different set of features.

• Create patient groups
In order to compare different patient groups and gain insights, patient groups
with different values for different features can be created. If, for example,
comparison of the different treatment arms was of interest, three different
patient groups would be created.
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• Transition probability matrix
The transition probability matrix, P, for each patient group is computed,
which consists of the probabilities of transitioning between the different states.
This matrix is then used for further analysis.

• Fraction over day and mean sojourn times
The transition probability matrix, P, computed above can be used to compute
the fraction over day as well as mean sojourn times for each patient group,
as described in Section 2.2.2 and 2.2.1. This way, the two metrics for the
different patient groups can be compared and analysed, which enables well-
founded conclusions to be drawn.

4.1.1 Feature Selection
During the modelling phase, multiple models are used to draw insights into various
topics. In a general sense, a model should have as high fit as possible which often
results in adding many features. However, when a specific relation between one or
many features and the outcome is analysed, only this specific set of features is needed
in the model. This because, for the specific analysis in question, all other contri-
butions to the outcome is not of interest and are thus included as noise in the model.

The kidney function of patients is highly relevant for the effect of dapagliflozin. Be-
cause of this, the relationship between Glomerular Filtration Rate (GFR), which
is an indicator of kidney function, and glycemic control is chosen to be analysed.
Another interesting aspect is the time on treatment, which might have a relationship
to the glycemic control of the different treatment arms. Because of this, time on
treatment is also chosen to be analysed.

Two features, time of day and time since last meal, were extracted which were
supposed to capture similar behavior in the data, periodicity during the day due to
eating. Time of the day might capture other periodic aspects of an individual’s life,
it might also quite badly fit the meals which will not be fixed to a certain time each
day. Mealtime on the other hand might, because of the already quite poor data
quality, not capture the effect. To analyse which of these is the better feature, Brier
score was used. A simple model with only treatment arm and one of the two other
features was fitted which yielded the Brier scores in Table 4.1. The Brier score was
calculated using ten-fold cross validation.

Table 4.1: Comparison of fit between two simple models with the only difference
of one feature, either time of day or time since last meal.

Model Number Feature Brier score
1 Time of day 352.2 ·10−4

2 Time since last meal 352.7 · 10−4

Looking at the Brier score for the two models one can see that model 1 is closer to
the perfectly calibrated model. The feature time of day fit better to the data.
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4.2 General Features’ Relation to Glycemic Con-
trol

When features that might have a relation to glycemic control, other than da-
pagliflozin and insulin, were explored, the patients’ kidney function was particularly
interesting. The relationship between GFR and glycemic control was modelled in
order to enable analysis. The relationship between fraction of stay in each state,
dependent on kidney function, measured in GFR, could show if there are any de-
pendencies on the well-being of patients on the treatment arms dependent on their
kidney function. A Markov model is fitted with the interaction between GFR and
treatment arm as a feature. The analysis is then made by comparing the length
of stay, compared with baseline, for each treatment arm, depending on GFR value.
Given this analysis, no apparent trends can be seen, see Figure 4.1. The baseline
that the fraction of stay in each state is compared against, is computed by splitting
the pre-study data dependent on thresholds in GFR.

Figure 4.1: Stay in each glycemia state compared to baseline for different levels
of GFR values. The result is generated by fitting the Markov model using the
interaction between GFR and treatment arm as a feature over a given GFR range.

4.3 Reduction of Insulin
Patients in both treatment arms, dapagliflozin 5 mg and dapagliflozin 10 mg, reduced
their usage of insulin compared to baseline, see Figure 4.2 and 4.3. During the
DEPICT-studies, patients were recommended to reduce their insulin by up to 20
% at the start of the treatment period and then urged to resume medication to
previously established individual baseline levels. Analysing the time spent in each
state as well as mean sojourn times for the different states becomes highly interesting
to see if any specific reduction corresponded to better reaction to dapagliflozin. The
span of reduction to be analysed is set to vary symmetrical among basal and bolus,
between 0 % and 24 %, for which there exist a substantial amount of data. Thus the
model is not extrapolating out of data ranges. Worth noting is that patients had a
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large amount of days where they chose not to decrease their basal insulin, looking
at the peak at 1.0 in Figure 4.2. A large portion of patients in the treatment arm of
10 mg of dapagliflozin had days where they reduced their basal insulin by exactly
20 % compared to baseline. There is no data in these figures from the first few
days of treatment, only from week 11, 12, 23 and 24, thus the initial recommended
reduction would not affect the distribution plots.

Figure 4.2: Probability density function of daily basal insulin usage compared to
baseline in the treatment periods for each treatment arm. This is with data for each
treatment arm within the interval from the 2.5th to the 97.5th percentile, mean
values are for the full data.

Reduction in bolus insulin was more normally distributed, where patients in both
treatment arms reduced their usage by 10 % and 8 % on average, respectively, while
the placebo group instead increased usage by 3 % compared to baseline, see Figure
4.3.

Figure 4.3: Probability density function of daily bolus insulin usage compared to
baseline in the treatment periods for each treatment arm. This is with data for each
treatment arm within the interval from the 2.5th to the 97.5th percentile, mean
values are for the full data.

31



4. Results

Modelling the effect of reducing insulin on each treatment arm shows patients on
the two treatment arms, dapagliflozin 5 mg and dapagliflozin 10 mg, increase time
spent in normoglycemia compared to baseline, see Figure 4.4. Moreover, the model
shows that time spent in hyperglycemia reduces for the two treatment arms involv-
ing dapagliflozin as well. It should be noted that the portion of day spent in the
hypoglycemic state consists of very low fractions as a baseline. Because of this,
the reduction of 10 % as seen for placebo and dapagliflozin 5 mg corresponds to a
reduction, from baseline, of roughly 0.5 percentage points in hypoglycemia.

Figure 4.4: Fraction of day with a 95 % confidence interval compared to baseline,
based on treatment arm and reduction in insulin.

4.3.1 Fraction of Day Spent in Each Glycemic State

Line-plots with 95 % confidence intervals, the shaded area, are formed to show the
fraction of day spent in the different glycemic states, and to give an estimation of
the level of confidence, given different levels of insulin reduction. The model shows
that there is an increased amount of time spent in normoglycemia when insulin is
reduced, see Figure 4.5. A similar relation to insulin reduction can also be seen for
time in hyperglycemia, where reducing insulin reduces the time spent in that state.
The effect is less substantial in the case of hypoglycemia, where the effect is less
beneficial for the patient, since time in this state is increased when reducing insulin.
It should be noted however, that the number of percentage points difference is far
from as high, in comparison with the benefits in normo- and hyperglycemia.
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Figure 4.5: Fraction of day with a 95 % confidence interval spent in different
states, based on treatment arm and reduction in insulin.

4.3.2 Mean Sojourn Times

The mean sojourn time in each state is the expected amount of time spent there
once entered. Line-plots with 95 % confidence intervals, the shaded area, are formed
to show the mean sojourn times in the different glycemic states, and to give an es-
timation of the level of confidence, given different levels of insulin reduction. The
relationship between mean sojourn time and insulin reduction is of the same char-
acter as for the fraction of day in the previous section, Section 4.3.1. However, the
sojourn time in minutes for the different states, dependent on insulin reduction and
treatment arm, can be seen below in Figure 4.6

Figure 4.6: Mean sojourn time with a 95 % confidence interval spent in different
states, based on treatment arm and reduction in insulin.
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4.3.3 Five-State Model
The previous three-state model suggests that when insulin is reduced, the time in
hyperglycemia is reduced, as described in Section 4.3.1. In order to explore if further
insights could be had within this hyperglycemic region, a more granular Markov
model with more states was created. The previous glucose limit for a hyperglycemic
state was set as >180 mg/dL. The glucose limits for the five states were now instead
set to ’<70 mg/dL’, ’70-180 mg/dL’, ’180-220 mg/dL’, ’220-260 mg/dL’ and ’>260
mg/dL’. The model now consisted of five states, where the granularity in the upper
region of glucose measurements was increased, allowing for inference in the extreme
hyperglycemic range to be had. This five-state model suggests that the relation with
insulin reduction in the highest glycemic state, ’>260 mg/dL’, has an even greater
correlation on time spent in this extreme hyperglycemic state, compared to its lower
states, ’180-220 mg/dL’ and ’220-260 mg/dL’ respectively, see Figure 4.7. This even
greater correlation on time spent can be seen by noting that the angle of the slope
of the lines are larger in the highest glycemic state, ’>260 mg/dL’, compared with
the glycemic states ’180-220 mg/dL’ and ’220-260 mg/dL’.

Figure 4.7: Fraction of day with a 95 % confidence interval spent in three extreme-
hyperglycemic states ’180-220 mg/dL’, ’220-260 mg/dL’ and ’>260 mg/dL’, based
on treatment arm and reduction in insulin.

4.3.4 Other Model Variations
The Markov model was, in addition to the reduction of insulin, also fitted with an
interaction term between bolus and basal reduction, thus allowing for more complex
interaction effects to be captured. This model did however not yield any other
insights than the ones presented previously, in Section 4.3.1. Moreover, another
approach tried was to not set the reduction of bolus and basal symmetric. Since the
patients did not change their basal dosages for a a large majority of days, as seen
in Figure 4.2, this reduction was set to 0, while the bolus was reduced between 0
% and 24 %. However, neither this did result in any insights other than the ones
presented previously in Section 4.3.1.
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Given the data collected from the DEPICT-studies, which have served as a basis for
this project, the multi-state Markov model has proven possible to adapt in a way
that incorporates the different aspects of interest. Developing the model around a lo-
gistic regression framework, using the L-BFGS algorithm for parameter estimation,
have shown to be successful in modelling a set of defined states. The assumption
that all state changes are observed, given the high frequency data points, has proven
to be applicable when estimating the transition probability matrix. Based on this
assumption, fraction of day spent in each state as well as mean sojourn times were
successfully computed. The library developed around the Markov model allows for
flexibility in regards to the number of states chosen, what features to be included
as well as the computation of performance metrics to be validated against. This
performance metric, using Brier scores, was proven useful although challenging to
implement successfully since it is mainly used for feature selection and is hard to
use in order to determine how well a model fits the underlying data. There could
be other, even more useful, measurements of model performance as well as model
fit, applicable for this type of Markov models. The Markov model developed during
this project and its applications have thus proven to be a useful and flexible tool in
the inference of features affecting glycemic control.

As previously established in studies, patients receiving dapagliflozin are experienc-
ing significant improvements in glycemic control. The modelling shows that patients
on dapagliflozin experience large increases in the portion of time spent in normo-
glycemia, large decreases in the portion of time spent in hyperglycemia while experi-
encing only slight increases in portion of time spent in hypoglycemia, in comparison
with placebo patients. Capturing the effect of fluctuations in glucose over the day
due to eating was better approximated using time of day than time since last meal.
Time since last meal could be used complementary to the time of day feature since
it is possible that the time of the day captures other periodically recurring activ-
ities, such as physical activity. Modelling effects using the time since the actions
was successful though and gives an indication on how to successfully integrate the
effect of eating, or other activities, in future models. Measured GFR does not seem
to have any relation to how well the different levels of medication work for patients
with normal kidney function, GFR values within 60 to 110. Given that the patients
were exposed to dapagliflozin during relatively long time frames, the time spent in
the different states could change over time.
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There is a causal relationship between insulin and decreased glucose levels. Thus pa-
tients, or days where patients, used more insulin than usual should mean a decreased
portion of time spent in hyperglycemia and an increased time in hypoglycemia com-
pared to days of using less insulin. However, this is not what was found modelling
the effect, for any of the treatment arms, dapagliflozin nor placebo. Instead, with a
decrease in insulin usage one can see decreased time in hyperglycemia and a slight
increase in hypoglycemia, opposite of what could be assumed. It should be noted
that patients on the two treatment arms receiving dapagliflozin experienced better
glycemic control over the entire range of insulin reduction that is modeled, compared
to the placebo arm. Moreover, a five-state model was created to get more insights
into the extreme-hyperglycemic range, ’>260 mg/dL’. The model shows that in this
extreme region, the relationship between the reduction of insulin and decreased time
in extreme hyperglycemia was even stronger. The causal relationship is well estab-
lished and something must instead be masking the effect. The reason for this could
be because of the lack of granularity within the data regarding insulin doses, food
consumption and physical exercise, as mentioned in the limitations of this project.
One explanation could thus be that this relationship discovered is due to the fact
that insulin is only a proxy for eating unevenly; a day of increased insulin would cor-
respond to a day with worsened glycemic control since this was a day of abnormally
large food and drink intake.

5.1 Future Work
The chosen performance metric, Brier score, does not perform well given how it is
applied in this project. It is mainly used for feature selection, and not for how well
models fit to the underlying data, since this was notoriously hard to implement.
However, this project mainly focused on the relationship between specific features
and glycemic states, which resulted in that comparison of different models based
on a selection of varying features was never needed. Implementation of other more
appropriate performance metrics allowing evaluation of model fit would bring great
value.

This project has focused on modelling glucose levels based on various data that is
thought to have a glycemic effect. However, it is previously known that two major
drivers of glucose changes, in diabetes patients, are food consumption and insulin
intake. Information about how much, and what kind, of food is consumed together
with exact times for administration of insulin and the corresponding dosage is thus
crucial for glycemia control. Possibly even data on other activity with relations
to glycemic control, like physical activity, would be needed to make the attempted
analysis plausible. If such increased granularity within the data could be achieved in
the future, more nuanced modelling could take place. With such a model, hopefully
an even more accurate relationship between dapagliflozin and reduction of insulin
could be established.
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A
Time Since Last Meal

Algorithm 1: Given CGM-data and meal times, compute time since last meal
Result: Time since last meal for all observations
Define meal_times as a table consisting of information regarding if and when
each patient have eaten their Breakfast, Lunch and Dinner, as described in
section 3.2.3;
for each patient in CGM-data do

Take a subset of the CGM-data corresponding to the specific patient;
for each day of recordings in the subset do

Take a subset corresponding to the specific date.;
Define todays_meals as the mealtimes from meal_times corresponding
to the current date;
Define yesterdays_meals as the mealtimes from meal_times
corresponding to the current date minus one day;
for each observation do

Define timestamp as the date and time when the observation was
recorded;
if todays_meals[’Dinner’] happend before timestamp and
todays_meals[’Dinner’] was eaten then
time_since_last_meal ← timestamp - todays_meals[’Dinner’]

else if todays_meals[’Lunch’] happend before timestamp and
todays_meals[’Lunch’] was eaten then
time_since_last_meal ← timestamp - todays_meals[’Lunch’]

else if todays_meals[’Breakfast’] happend before timestamp and
todays_meals[’Breakfast’] was eaten then
time_since_last_meal ← timestamp - todays_meals[’Breakfast’]

else if yesterdays_meals[’Dinner’] was eaten then
time_since_last_meal ← timestamp - yesterdays_meals[’Dinner’]

else if yesterdays_meals[’Lunch’] was eaten then
time_since_last_meal ← timestamp - yesterdays_meals[’Lunch’]

else
time_since_last_meal ← timestamp - yesterdays_meals[’Breakfast’]

end if
end

end
end
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B
Jenks Natural Breaks Algorithm

Algorithm 2: Jenks Natural breaks
Result: A set of breakage points in the data
Calculate mean of data;
Calculate the SDAM 2.14;
for each possible split do

for each group in that split do
Calculate group mean;
Calculate the SDCM;

end
Sum all the SDCM to SSDCM 2.15;

end
for each possible split do

Calculate the score: (SDAM — SSDCM) / SDAM;
end
Highest score is the best split.

III


	List of Figures
	List of Tables
	Acronyms
	Introduction
	Aim
	Research Questions
	Scope

	Theory
	The DEPICT-Studies
	Multi-State Markov Model
	Mean Sojourn Time
	Fraction of Time

	Logistic Regression
	Data Manipulation Methods
	Feature Scaling
	Dummy-Variables
	Interaction Terms

	Clustering
	Validation
	Brier Score
	K-Fold Cross Validation
	Bootstrapping

	Related Work

	Methods
	Data Characteristics
	Pre-Processing
	Cleaning and Enhancement
	Transformation
	Feature Extraction

	Analysis
	Selection of Data
	Fit the Markov Model
	Confidence Intervals
	Validation


	Results
	Adaptation and Implementation of the Markov Model
	Feature Selection

	General Features' Relation to Glycemic Control
	Reduction of Insulin
	Fraction of Day Spent in Each Glycemic State
	Mean Sojourn Times
	Five-State Model
	Other Model Variations


	Discussion and Conclusions
	Future Work

	Bibliography
	Time Since Last Meal
	Jenks Natural Breaks Algorithm

