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Training Multi-Tasking Neural Networks using ADMM:
Analysing Autoencoder-Based Semi-Supervised Learning
HENRIK HÅKANSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
An autoencoder is a neural network for unsupervised learning, which consists of two
parts: an encoder and a decoder. The encoder uses data as input, while the decoder
uses the encoder output as input. The learning task for the autoencoder is to recon-
struct data in the decoder output, despite that dimensionality of the encoder output
is smaller than that of the data. In this project, a neural network for classification,
i.e, a discriminator, together with an autoencoder, are trained by minimizing the
sum of the loss functions of the two networks. We also add the constraints that each
parameter of the encoder should equal the corresponding parameter of the discrim-
inator. This corresponds to established semi-supervised methods, which improve
classification results when only a fraction of the observations are labelled. In this
work, we implement training by employing the Alternating Direction Method of Mul-
tipliers (ADMM), which allows the networks to be trained in a distributed manner.
Distributed training may be applicable for privacy-protecting or efficiency reasons.
Since ADMM mainly has been used in convex distributed optimization, some ad-
justments are proposed to make it applicable for the non-convex problem of training
neural networks. The most important change is that exact minimizations within
ADMM are replaced by a number of Stochastic Gradient Descent (SGD) steps, the
number of steps increases linearly with the ADMM iterations. The method is ex-
perimentally evaluated on two datasets, the so-called two-dimensional interleaving
halfmoons and instances from the MNIST database of handwritten digits. The re-
sults show that our suggested method can improve classification results, with at
least as good results as from unsupervised pretraining.

Keywords: semi-supervised learning, distributed machine learning, deep learning,
autoencoder, ADMM
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1
Introduction

Thanks to many successful implementations in various machine learning problems,
the attention for deep learning has increased significantly in recent years. Much
work has focused on supervised tasks, as classification of images (He et al., 2016) or
texts (Zhang et al., 2015b). But there have also been applications in unsupervised
learning, such as generative adversarial nets (Goodfellow et al., 2014) and autoen-
coders (Bengio et al., 2013; Kingma and Welling, 2013). Since these models are best
suited for data-rich situations, much of the advancements had probably not been
achieved without the simultaneous increase of large and high-dimensional data.

One bottleneck of deep learning is that training is often resource-demanding and
time-consuming. Sometimes it may also be impractical to process such large data
sets on a single machine, or for privacy-protecting reasons we do not want data to
be shared between different machines. In such circumstances, there have been many
distributed techniques applied for deep learning training, for example DOWNPOUR
(Dean et al., 2012) or Federated Learning (Konečný et al., 2016). In such distributed
optimization setups, the aim is typically to train a global classification model, despite
training is performed decentralized on different machines. Classification is indeed
the most studied deep learning application, although the problem itself may entail
further complications: data needs to be labeled. Often this can only be done by
manually specifying labels for each observation. Since a huge amount of data may
be needed, this can turn into a costly work.

To avoid the need of completely labeled large data sets, there have been semi-
supervised methods proposed. Such methods utilize both labeled and unlabeled data
for improvement of the classification task. There have been several semi-supervised
methods relying on deep autoencoders (Cheng, 2019; Makhzani et al., 2015). Gener-
ally, an autoencoder consists of two parts: the encoder and the decoder. The encoder
uses data as input, and the decoder uses the encoder output as input. The task of
an autoencoder is to reproduce original data in the decoder output, under some
constraint or regularization that forces the model to extract useful features of the
underlying data distribution (Alain and Bengio, 2014). Some examples of autoen-
coders are the undercomplete (Hinton and Salakhutdinov, 2006), where the encoder
output has a smaller dimensionality than the data, or denoising autoencoders (Vin-
cent et al., 2008), where noise is added to the input. Prominent autoencoder-based
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1. Introduction

semi-supervised approaches are the Ladder network (Rasmus et al., 2015; Pezeshki
et al., 2016) or with the use of variational autoencoders (Kingma et al., 2014). Al-
though it is implemented in very different ways, the common characteristic for these
methods is that the output of the encoder is enforced to learn information about
the classifications.

Simplified, these autoencoder-based semi-supervised methods boil down to models
aimed for multiple tasks: reconstruction of all data and classification for labeled
data. A subset of the model’s parameters are used for both tasks, but many of
them are only used for reconstruction. In this work, we use a similar idea but in
a distributed approach: instead of having a single model, the autoencoder and the
discriminator are trained separately. Compared with most other distributed algo-
rithms, this problem is about distributing a multi-tasking model, while most other
works are concentrated on training a single-tasking classification model. The train-
ing is considered as optimization for both tasks of reconstruction and classification,
but parameters of the encoder and the discriminator are forced to be equal by in-
cluding an equality constraint. The way we attack the optimization problem is by
using the Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011),
which has been a popular choice for distributed convex constrained optimization.

Since the problem we are trying to solve is non-convex and quite different from
typical implementations of ADMM, some adjustments of the original algorithm are
needed. In this work we propose that ADMM can be combined with Stochastic
Gradient Descent (SGD), where the distributed training lasts for more SGD steps
in each ADMM iteration. It turns out that the variation of parameters over time
with such an implementation is affected by a damped oscillation, dependent on the
learning rate and the ADMM penalty parameter. Experimental results suggest that
selecting the penalty will be a trade-off between rapidly approaching equal parameter
values or rapidly achieve a low training loss. A good classification result on the test
data is achieved by balancing these aspects. Our results, which are evaluated on
two-dimensional data and the MNIST database of handwritten digits, suggests that
the proposed method may be useful in cases when unsupervised pretraining is not
applicable, and performs at least similar to unsupervised pretraining when it is
applicable.

1.1 Aim
Our aim is to analyze an implementation of ADMM for training an autoencoder
and a discriminator when constraining equally the parameters of the encoder and
the discriminator. The algorithm is evaluated experimentally on semi-supervised
settings. The purpose is not to produce state-of-the-art-results, but rather to point
out characteristics from this kind of implementation.

2



1. Introduction

1.2 Limitations
The most successful semi-supervised methods involving autoencoders have included
many non-trivial adjustments that have turned out to be successful. This work
focuses on analyzing the problem of training multi-tasking neural networks rather
than producing outstanding results for semi-supervised learning. This is the reason
why we only study simpler autoencoders in this work.

In many distributed machine learning problems, the network communication needed
when exchanging information between different models is regarded as a bottleneck.
In this work, we simply focus on how distributed algorithm can be applied, why
delimiting the communication is of less importance of the assessment.

1.3 Outline
The second chapter contains a review of the background themes for this project:
basics of machine learning, semi-supervised learning, deep learning and ADMM.
In the third chapter we motivate and explain the implementation of ADMM and
some other adjustments to the algorithm. Experiments and results performed on 2-
dimensional data and the MNIST dataset are presented in Chapter 4. A discussion
is found in Chapter 5, while the last Chapter 6 contains the conclusions drawn from
the analysis and experimental results.

3



2
Background

This work is built upon three main themes: deep neural networks, semi-supervised
learning, and distributed optimization with ADMM. Section 2.1 reviews prelimi-
naries about machine learning and semi-supervised learning in general. The deep
learning models relevant for this work, multi-layer perceptrons, and how they can
be applied for semi-supervised learning are discussed in Section 2.2. Last in this
chapter, Section 2.4 describes consensus problems, which is the kind of optimization
problem we will arrive at in the next chapter, and how ADMM can be applied to
those.

2.1 Machine Learning Basics
Machine learning is the field of creating mathematical models that learns some
behavior from observed data. Most of these problems can be sorted into supervised
or unsupervised learning tasks. In unsupervised learning the objective of the problem
is to extract sensible patterns from data, without further human guidance than the
model itself. Examples of problems that belong to this category are clustering,
density estimation, and dimensionality reduction. In supervised problems there are,
in addition to the input data, target values which the supervised model is desired
to predict accurately. In cases when target values are not available for all data,
methods from another branch called semi-supervised learning may perform better
than standard supervised methods.

2.1.1 Training and Evaluating Machine Learning Models
In machine learning terms, training is the process of estimating parameters of a
model so that it performs well on data from some particular probability distribution.
Typically, little is known about this true distribution, but we have observations
generated by this distribution. Training is often solved by optimizing the model to
fit such observed data. Since training aims to produce a model that performs well
on random draws from the true probability distribution, and not exclusively the
observed data, the optimization deviates somewhat from ordinary procedures.

In supervised problems, and sometimes also in unsupervised problems, we have the
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2. Background

n-dimensional random input X ∈ X ⊆ Rn and the m-dimensional random target
Y ∈ Y ⊆ Rm. These random variables are assumed to be generated by some joint
probability distribution X, Y ∼ P(X, Y ). The problem is to find parameters θ ∈ Rp

of a model f : X ×Rp → Q such that

Y | X ∼ P (f(X;θ)) (2.1)

where P is an assumed probability distribution which has q parameters ξ ∈ Q ⊆ Rq,
according to the model output. There might also be some fixed parameters of P ,
which are not dependent on the model input X, and thereby not estimated when
training the model. The objective of the model f is to perform well for random
draws from the true distribution P(X, Y ). To achieve this, we introduce a loss
function L : Y × X × Rp → R+ and try to find values for the parameters θ by
solving the optimization problem

min
θ

EX,Y∼P(X,Y ) [L (Y, f(X;θ))] . (2.2)

The choice of loss function L depends on the distribution P assumed in (2.1). We
can often select the loss function by viewing training of the model as selecting param-
eters such that the probability of the observed data are maximized, i.e., maximum
likelihood estimation (Hastie et al., 2009, Chap. 2).

When little is known about the true probability distribution P(X, Y ), the expecta-
tion in (2.2) can not be formulated analytically. Instead, we use observed data for
fitting the model. With N observed samples, we denote the data as the set

T =
{
(x(1),y(1)), . . . , (x(N),y(N))

}
, (2.3)

where x(t) and y(t) are realizations ofX and Y , respectively, of the same observation.
We also denote by X, Y ∼ T as picking a random observation from this set. The
objective function of the optimization problem (2.2),

LE(θ) := EX,Y∼P(X,Y ) [L (Y, f(X;θ))] , (2.4)

can be estimated by

L̃E(θ) = EX,Y∼T [L (Y, f(X;θ))] = 1
N

N∑
t=1

L
(
y(t), f

(
x(t);θ

))
.

Hence, the optimization problem (2.2) can be approximated as

min
θ

1
N

N∑
t=1

L
(
y(t), f

(
x(t);θ

))
. (2.5)

Under the assumption that observed data of T are independent and identically
distributed, L̃(θ) is an unbiased estimate of L(θ). However, estimating parameters
by the optimal solution θ∗ to the problem (2.5) may favor values such that

LE(θ∗)− L̃E(θ∗) > 0,
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2. Background

where this difference is called the generalization gap. When the generalization gap
is large the training has resulted in overfitting, which occurs since the objective
in the problem (2.5) fits the model to a limited number of points rather than for
infinitely many samples from a distribution. There are techniques for avoiding over-
fitting, called regularization. Avoiding overfitting may be particularly challenging
with complex models having many parameters and an ability to adapt detailed
structures of data, as demonstrated by Zhang et al. (2016).

Since there might occur overfitting in the training phase, L̃(θ∗) will not yield a
fair estimate of the actual model performance. To still be able to estimate the
expectation of (2.4) accurately one needs to exclude some observed data from T ,
and assign them to a test set V . The observations in T , the training set, are then
only used for fitting while data in the test set V are never used for fitting but only to
compute an estimate of the expected value. The purpose of the test set is to estimate
the actual performance of the model. Therefore, a model with good generalisation
achieves a low test loss. There is no general rule for selecting the sizes |T | and |V|,
but in practice the size of the training set is prioritized. Assigning about 80 % of
all data for training and 20 % for test is often an appropriate choice.

Further reading about the machine learning training in general can be found in
Goodfellow et al., Chap. 5 and in Hastie et al. (2009, Chap. 2 & 7).

2.1.2 Supervised Learning as Maximum Likelihood Estima-
tion

Recall that we defined a supervised model with parameters θ ∈ Rp as the function
f : X × Rp → Q, where the output are the parameters for distribution of the
target Y . There are mainly two branches of supervised problems: regression and
classification, where the targets differ between the two. In regression we have a
continuous and possibly multi-dimensional target Y ⊆ Rm, while in classification the
target is one-dimensional and restricted to be in a finite set of C discrete categories
Y = {1, . . . , C}.

From the perspective of maximum likelihood estimation of the assumption in (2.1),
we define the function pθ(y,x) as the probability density, or probability mass for
discrete distributions, of the observations given the model and its parameters θ.
Utilizing this density function we can formulate a likelihood function L : Rp → R+:

L(θ) = P (T | θ) =
N∏
t=1

pθ(y(t),x(t)) =
N∏
t=1

pθ(y(t) | x(t))pX(x(t)),

where pX is the marginal density of the data-generating distribution P(X, Y ). This
distribution will remain the same regardless of the choice of θ, since X is the model
input. Maximizing the probability of observed data will be given by maximizing the
likelihood function. For numerical reasons, this optimization problem is formulated

6



2. Background

using the logarithm of the likelihood function `(θ) : Rp → R−,

`(θ) = log(L(θ))

= log
(
N∏
t=1

pθ(y(t),x(t))
)

=
N∑
t=1

log
(
pθ(y(t) | x(t))pX(x(t))

)

=
N∑
t=1

log pθ(y(t) | x(t)) + log pX(x(t)).

(2.6)

Maximizing L(θ) will yield the same solution as minimizing −`(θ):

min
θ

N∑
t=1

(
− log pθ(y(t) | x(t))− log pX(x(t))

)
.

Note that we are rarely interested in the optimal value −`∗, but rather to find an
optimal solution θ∗. Since the supervised model does not have any impact on the
data generating distribution P(X) and its density pX , the terms − log pX(x(t)) do
not affect the solution. Hence, the optimization problem useful in machine learning
training can be simplified to

min
θ

N∑
t=1
− log pθ(y(t) | x(t)). (2.7)

We select the loss function L such that minimizing the loss function yields the same
solution θ∗ as the problem (2.7). All loss functions L that fulfill this criteria can be
written on the form

− k log pθ(y | x) + C = L(y, f(x,θ)), (2.8)

where k ∈ R+ and C ∈ R are constants. Since these constants will not affect the
solution θ∗, we can express L as in (2.8) with arbitrary values of k > 0 and C. From
the other perspective of the training in (2.5), we select k = 1

N
and use C to remove

terms originating from the density function that are redundant when we are just
interested in the solution θ∗.

2.1.3 Regression
As a regression model we use the model f : Rn × Rp → Rm that computes an
estimate Ŷ of the m-dimensional target Y ∈ Rm given the input X ∈ Rn and
the parameters θ ∈ Rp. Assuming that the prediction error follows a Gaussian
distribution (Bishop, 2006, Chap. 3), i.e., we have the noise ε ∈ Rm such that

Y = Ŷ + ε = f(X;θ) + ε, where εi ∼ N (0, σ2I) for i = 1, . . . ,m. (2.9)

Reformulated, the output will distributed as

Y | X ∼ N (Ŷ , σ2I),

7



2. Background

which yields the density pθ(y | x). With N observations the log-likelihood function
becomes

`(θ) = −mN log
√

2πσ2 − 1
2σ2

N∑
t=1

(y(t) − f(x(t);θ))T (y(t) − f(x(t);θ)) + log pX(x(t))

= −mN log
√

2πσ2 − 1
2σ2

N∑
t=1

∥∥∥y(t) − f(x(t);θ)
∥∥∥2

2
+ log pX(x(t)).

(2.10)
Maximizing this log-likelihood function with respect to θ will give the same optimal
solution as solving

min
θ

N∑
t=1

∥∥∥y(t) − f(x(t);θ)
∥∥∥2

2
, (2.11)

why the squared error loss

LSE(y, f(x;θ)) = ‖y − f(x;θ)‖2
2 , (2.12)

is a suitable loss function for a regression problem.

2.1.4 Classification
In a classification problem another statistical assumption may be needed, since the
target Y ∈ {1, . . . , C} is restricted to a finite set. One way is to let the model output
Ŷ be C-dimensional, and assume that the target Y is distributed as the categorical
(generalized Bernoulli) random variable

Y | X ∼ Cat(C, Ŷ ), (2.13)

where Cat(C, Ŷ ) is a categorical distribution with the probability mass function

P (Y = i) = Ŷi for i = 1, . . . , C.

Following this interpretation the classifier will be the function

Ŷ = f(X;θ) : Rn ×Rp → [0, 1]C ,

where the output must fulfill
C∑
i=1

Ŷi = 1.

With N observed data and using (2.13), the likelihood function is

L(θ) =
N∏
t=1

pθ
(
y(t) | x(t)

)
pX(x(t)) =

N∏
t=1

Ŷy(t)pX(x(t)) =
N∏
t=1

f(x(t);θ)y(t)pX(x(t)),

and the log-likelihood function is

`(θ) = log(L(θ)) =
N∑
t=1

log(f(x(t);θ)y(t)) + log pX(x(t)). (2.14)

8



2. Background

With the loss function

LCE(y(t),x(t)) = log(f(x(t);θ)y(t)),

minimizing

− 1
N

N∑
t=1

LCE(y(t),x(t))

will be equivalent to maximize the log-likelihood in (2.14). LCE is also referred to
as cross-entropy loss (Hastie et al., 2009, Chap. 2), since the same function can be
derived by minimization of the cross-entropy between the output distribution Ŷ and
the true distribution.

With balanced data, i.e., the probability of observing a label is the same for all
labels, the predicted label from the model is often the label that corresponds to
the entry with highest probability of the output Ŷ . Since the classifier inter- and
extrapolates from training data, data in a local region of the input space Rn will
be predicted with the same label. The boundary between such neighboring regions
where the predicted label differs is called decision boundary (Bishop, 2006, Chap. 1).
An example of a simple decision boundary can be seen in the left plots of Figure 2.1,
where the color indicates the classification of an input in that region. The decision
boundary is the line that separates the regions between two different classifications.
The main task of the classifier can be described as aligning such boundaries in the
input space. If the optimal decision boundaries forms a hyperplane, the problem is
linearly separable (Bishop, 2006, Chap. 4).

9



2. Background

Figure 2.1: Example of when semi-supervised learning is not applicable (top row)
and when it is applicable (bottom row) for classification problems. The data in the
plots of the top rows is generated uniformly, while data in the plots of the bottom
row is generated from the shape of two half-moons with some additional noise. The
colors blue or red indicate what class each observation belong to. The plots in
the left column illustrate decision boundaries (black solid lines) determined by few
observations (the squares). In the plots of the right column, there are more data
from the same distribution as the corresponding left plot. The decision boundary
from the left plot is compared with more desired boundaries (black dashed lines),
which better separates the groups of different labels with more data available. The
dashed line in the right bottom plot is located in regions of low density of the data
distribution, while the alignment of the dashed line in the right top plot has no
connection to such density.

2.1.5 Training with Stochastic Gradient Descent
When optimizing supervised models, much of underlying methodology is borrowed
from convex optimization. However, since standard optimization problems are some-
what different from supervised learning problems, there will be some necessary de-
viations when implementing this. One aspect is that minimizing the loss function is
not the goal itself, but rather a tool for achieving a good generalization. Another as-
pect is that optimizing the loss of a supervised model is not always a convex problem,
as in the case of deep learning. For such complex models as deep nets, mainly first
order methods have been used, because computation of second derivatives takes a
lot of computing resources. In this section, we discuss gradient descent-based meth-
ods for supervised learning problems in general, and we will come back to how this

10



2. Background

applies to deep learning in Section 2.2.1.

In gradient descent we iteratively take steps of length ηk in the direction of the
negative gradient. When using gradient descent for solving the training problem

min
θ

EX,Y∼T [L(Y, f(X;θ))] , (2.15)

each iteration k + 1 is defined as

θ(k+1) = θ(k) − ηk EX,Y∼T
[
∇θL(Y, f(X;θ(k)))

]
.

In this work, we use a fixed step length η and refer to it as the learning rate. As often
in machine learning, we consider stochastic gradient descent (SGD), where a batch
of size B ≤ |T | observations is used for computing the estimate of the expected
gradient:

θ(k+1) = θ(k) − η 1
B

B∑
t=1
∇θL(y(t), fθ(k)(x(t))). (2.16)

Despite selecting B = |T | will result in the most precise estimate, we typically only
use a fraction of all available training data |T | for this purpose. Since the standard
error of the mean gradient will be proportional to 1√

B
, the decreased error of the

gradient estimate will be smaller as we increase B. Also, increasing B will scale the
computational cost linearly, so the gain of increased precision per computational
cost will be smaller and smaller. The value of the batch size B is often selected
in the range 1 to a few hundred; an implementation of SGD with B < |T | is
called minibatch SGD and each batch consists of B random observations of the
training data. In practice, the randomness is implemented by shuffling the order of
observations in T and each batch Bi is formed by

Bi =
{
(y(i−1)B,x(i−1)B), . . . , (yiB−1,xiB−1)

}
for i = 1, . . . ,

⌊ |T |
B

⌋
,

and if |T |
B

is not an integer, we have one more batch with the remaining observations:

Bd |T |
B
e =

{
(yBb

|T |
B
c,xBb

|T |
B
c), . . . , (y|T |−1,x|T |−1)

}
.

Note that this last batch will have fewer than B observations.

SGD can be really inefficient for functions that has areas where the gradient is of
large magnitude, or when the gradients tend to be noisy. For these purposes, the
momentum method can be applied for improved performance (Polyak, 1964). With
momentum, the update scheme from (2.16) is changed to

vk+1 = αvk − η 1
B

m∑
t=1
∇θL(y(t), fθk(x(t)));

θk+1 = θk + vk+1,

where α ∈ [0, 1) is the momentum parameter. The method can be viewed as ap-
proximating the physical movement of the particle θ, which is accelerated by the
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force of the negative gradient and another force proportional to the negative ve-
locity. The step direction and length is determined by a moving average, instead
of a single estimate as in standard SGD. A large value of α means large impact of
previous estimates for computation of the current, and typical values of α may be
in the interval 0.5-0.9.

For more reading about optimizing supervised models with SGD, see Goodfellow
et al., Chap. 5 & 8.

2.1.6 Semi-Supervised Learning
In some classification settings there are data sets in which only a fraction of the
observations are labeled. Therefore, viewing the problem as purely supervised will
not allow us to utilize all available data, since each observation needs to be labeled.
This is clearly not desired; as more data may improve a generalisation of the model.
An advantageous approach would be to also use the unlabeled data when training the
supervised model. Such approach belongs to the family of semi-supervised learning
methods. Comprehensive surveys about theory and proposed methods of semi-
supervised learning can be read in van Engelen and Hoos (2020) and Chapelle et al.
(2006).

Semi-supervised learning is applicable when the structure of the unlabeled data tells
something about the classification labels. In other words, the marginal distribution
of the input data distribution P(X) contains information about the conditional
distribution P(Y | X). In the case of classification, this often means that the density
of the input data distribution has a connection to the decision boundary. An example
when this do not hold is when the distribution P(X) is uniform, since the regions
will not correspond to variations of the density of the input data. In Figure 2.1, this
case is compared with a two-dimensional example when semi-supervised learning
is applicable. The alignment of the desired boundaries in the two the right-most
figures could be aided by the knowledge of unlabeled data for the bottom example,
but not for the uniform example in the upper figures.

Scenarios when P(X) contains information about P(Y | X) may take different
forms. Most semi-supervised approaches rely on at least one of three general as-
sumptions about P(X): smoothness, low-density, and manifold assumptions.

• With the smoothness assumption, observations located near each other in the
input space X should have the same label. Two observations x(1) and x(2), for
which the distance

∥∥∥x(1) − x(2)
∥∥∥ in the input space is small, should have the

same label.

• The low-density assumption suggests that the decision boundary should be
located in a region where the density of P(X) is low. This is quite similar
to the smoothness assumption. Essentially the low-density assumption means
that there are high-density regions in-between the decision boundaries, where
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observations should have the same label. Since we do not expect to find many
observations in the low-density regions, spatially proximal observations will be
found in a high-density region with the same label.

• With the manifold assumption, the data alignment in the input space is
roughly concentrated to a topological shape of lower dimensions, a manifold.
This assumption may be particularly useful for high-dimensional data, mainly
due to the curse of dimensionality: a collection of related phenomena arising
since the volume of space grows exponentially with the dimensionality (Bishop,
2006, Chap. 1). With a fixed number of observations |T |, data will be sparser
in a high-dimensional than in a low-dimensional sample space, which makes an
appropriate interpolation more difficult. In practice, data often lies in a lower-
dimensional structure, which locally represents the input space well. Similarly
to the previously mentioned smoothness assumption, the manifold assumption
is based on the idea that data points close to each other should have the same
label, but we consider distances on the manifold rather than in the input space.

For the uniform example, the top row in Figure 2.1, one could possibly argue that
the smoothness assumption holds, but none of the remaining assumptions. As long
as the labeled observations are few, more unlabeled data would not aid in improving
the classification. For the half-moons example—the bottom row in Figure 2.1—all of
these three assumptions hold more or less. Regarding smoothness and low-density,
the desired boundary in the right plot is aligned in the low-density regions. The
high-density regions are concentrated around the middle of each half-circle, meaning
that the space where input data are found can roughly be embedded into a one-
dimensional shape.

There have been many different methods proposed for semi-supervised learning,
built upon completely different foundations. One of the oldest family of methods
are so-called wrapper methods (Triguero et al., 2015), where a classification model
is trained iteratively with labels assigned to unlabeled observations based on the
model from the previous iteration. Another example are generative methods, such
as Gaussian mixtures, where artificial data are generated from an unsupervised
model fitted to unlabeled data. We will come back to semi-supervised methods in
Section 2.3, where some semi-supervised methods using deep learning, specifically
autoencoders, are discussed.

2.2 Multilayer Perceptrons
A multi-layer perceptron (MLP) is an artificial neural network whose neurons are
structured into a sequence of layers, where each neuron has connections to all neurons
in the neighboring layers but no connection to any neuron in the same layer. MLPs
have formed the major part of the area of deep learning which have got increased
attention during the two last decades. Most focus has been on high-dimensional
data, such as images, and classification has been the main scope. Nevertheless,
MLPs can be applied for many other tasks as well, which will be discussed in the
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following sections.

An MLP can be viewed as a function gMLP : X → Y with parameters θ ∈ Rp.
An MLP with the depth K, consists of K sequential layers, where the input X is
the value of the first layer and the model output Ŷ is the value of the last layer.
Such MLP can be viewed as a composition of K − 1 functions, where each layer is a
function of the previous layer. Between the input and output layer we have K − 2
intermediate representations, called hidden layers. An MLP with K = 4 layers has
the two hidden layers h(1) and h(2) determined by

h(1) = g
(1)
MLP (X) and h(2) = g

(2)
MLP

(
h(1)

)
,

while the output layer will be determined by the function

Ŷ = g
(3)
MLP

(
h(2)

)
.

Hence, the whole MLP forms the composition

Ŷ = gMLP(X) =
(
g

(3)
MLP ◦ g

(2)
MLP ◦ g

(1)
MLP

)
(X). (2.17)

Each layer has a unique width, which is the number of neurons of the layer. Widths
may be different among layers within the MLP which affects the number of param-
eters and the functions connecting sequential layers. For example, the sequential
hidden layers h(i−1) and h(i) are connected by the function g(i)

MLP : Rni−1 → Rni , but
the widths (ni−1, ni) of the two layers can be any pair of positive integers. This is
possible since the function connecting two hidden layers is always on the form

h(i) = g
(i)
MLP

(
h(i−1)

)
= φ

(
W (i)h(i−1) + b(i)

)
, (2.18)

where the parameters are the weight matrixW (i) ∈ Rni−1×ni and the bias bi ∈ Rni .
All model parameters θ can be partitioned into sub-vectors θ(i) ∈ Rni−1·ni+ni , where
each sub-vector consists of weights and biases for each layer. The activation function
φ : Rni → Rni is typically non-linear. This form is also applied for layer connections
involving the input or output layers, which replacing h(i−1) with X or h(i) with Ŷ .
A schematic picture of an MLP with depth K = 4 can be seen in Figure 2.2.

A common choice of activation function φ for the hidden layers is the Rectifier
Linear Unit (ReLU):

φReLU(x) =


max(0, x1)
max(0, x2)

. . .
max(0, xni

)

 .
Using ReLU as activation function has turned out to result in sparse representations
in hidden layers, which may be useful for several reasons. One reason is that sparse
high-dimensional representations are more likely to be linearly separable than dense
ones (Glorot et al., 2011). The choice of activation function for the output layer is
often based on what problem the MLP is applied for, and what the target looks like.
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Figure 2.2: A schematic illustration of a multi-layer perceptron (MLP) with K = 4
layers, with 3-dimensional input x and 2-dimensional output Ŷ . There are two
hidden layers: h(1) and h(1). Circles represent neurons in layers, lines between
neurons illustrates the weights used for computation of the neuron to the right. The
colors indicate which neuron value computation the corresponding bias or weight is
involved in.

2.2.1 Deep Learning Training
In the previous section, we discussed a MLP as a function gMLP : X → Y with fixed
parameters. However, as for machine learning tasks in general, these parameters are
unknown, and subject to be estimated by model training. Following the notation in
Section 2.1, we form the supervised model function fMLP : Rp×X → Y by incorpo-
rating parameters into the function. Training the MLP is performed by minimizing
the loss function L̃ : Rp → R. The training of MLPs have become significantly
easier in recent years, thanks to new knowledge but also by the introduction of run-
ning training on Graphical Processing Units (Schmidhuber, 2015). The optimization
problem of minimizing the training loss (see (2.15)) of an MLP with K > 2 will be
a non-convex problem. Thus, finding the global minimum may be a hard problem,
but it has turned out that approaching some local minimum with small training loss
is sufficient for good model performance (Goodfellow et al., Chap .8).

We have that the training loss of an MLP is defined as

L̃(θ) = EX,Y∼T [L(Y, fMLP(X;θ))] . (2.19)

Minimizing this function with respect to the parameters often result in a high-
dimensional and non-convex problem. To exemplify the non-convexity, assume an
MLP with depthK ≥ 4 and, for a moment, consider the parameters θ fixed. Assum-
ing all its parameters being fixed, the hidden layers of this MLP for some training
observation X ∼ T will be computed by

h(1) = φ(W (1)X + b(1))

15



2. Background

and
h(2) = φ(W (2)h(1) + b(2)).

We can always retrieve the same value of L by swapping the rows i and j of W (1)

and b(1) together with swapping columns i and j ofW (2). This means, if there exists
a local minimum for the problem

min
θ

L̃(θ), (2.20)

there will also be n2 · n2 · . . . · nK−1 other local minima with the same value. The
non-convexity of the loss function would be problematic if we want to find a global
optimum, but that has not been regarded as a major objective when training MLPs.
In fact, it has turned out that local minima with somewhat small values of L̃ often
result in good generalization (Goodfellow et al., Chap. 8). A local minimum might
be problematic for training if it yields a large value of L̃, but such minima rarely exist
in this context. Instead, saddle points, where the Hessian has both negative and
positive eigenvalues, are far more common than any other type of stationary point
for such high-dimensional functions with stochastic input. However, as L̃ decreases,
the probability of finding a local minimum increases (Dauphin et al., 2014). The
Hessian of L̃ for a trained MLP has many negative eigenvalues, although with very
small magnitudes. This was experimentally shown by Sagun et al. (2016), who also
noted that the norm of the gradient may be small but not zero, meaning that the
obtained solution is not strictly a critical point.

There have been several training algorithms proposed for deep learning. One of the
most used methods, which is the one considered in this work, is to solve (2.20) using
SGD with momentum as it is explained in Section 2.1.5. The use of momentum
and randomly initialize parameters with small values have turned out to be crucial
when using SGD for optimizing MLPs (Sutskever et al., 2013; Glorot and Bengio,
2010). There are also first-order methods using an adaptive learning rate, such as
RMSProp (Tieleman and Hinton, 2012) or Adam (Kingma and Ba, 2014), which are
not covered in this work.

Evaluating the gradient ∇L̃(θ) for MLPs is efficiently performed with the back-
propagation algorithm (Rumelhart et al., 1986), which utilizes the fact that the
deep structure of layers is a composition. This means that the gradient can be
evaluated by computing the derivatives layer-wise backwards, from output to input.
The derivatives of parameters of one layer can then be reused when computing those
of the previous layer.

Beside the computational advantages of using mini-batches of size B (smaller than
the data size |T |; see Section 2.1.5), a smaller batch-size has a regularizing effect
on the training. A common idea is that a flat minimum of the training loss will
generalize better than a sharp minimum, i.e., we want to find a flat minimum where
the eigenvalues of the Hessian are small (Chaudhari et al., 2019). By experiments,
there have been observations that a smaller batch size B will favor approaching
to flat minima, due to variation in the evaluated gradient (Keskar et al., 2016).
Following these ideas, Smith and Le (2017) suggested that there is an optimal batch
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size that is proportional to the learning rate and the size of the training data. For
training sizes in the range 100–50000 such an optimal batch size may be within
20–100 observations.

Avoiding overfitting has often been a challenging task in deep learning, why many
regularization techniques have been developed particularly for MLPs. One is drop-
out (Srivastava et al., 2014), where some random neurons are excluded for each
gradient computation. This prevents neurons of different layers to co-adapt for
specific inputs, why it improves generalization. For image classification, another
efficient technique is to simply apply random affine transformations of the data
(Perez and Wang, 2017). For such problems, the model is expected to have the
same output regardless of data being shifted, rotated, or scaled. When dealing with
other kind of data than images, this might not be appropriate since dependencies
between neighboring pixels is assumed in practice.

2.2.2 MLP as a Classifier
A MLP used as a classifier, here referred to as a discriminator gdiscr, can be imple-
mented in several ways. To follow the concept with a multi-dimensional output and
using the cross-entropy loss, as described in Section 2.1.4, is to let the width of the
output layer Ŷ be C. To make the output correspond to a categorical distribution
we also have to add the constraints Ŷ ∈ [0, 1]C and ∑C

i=1 Ŷi = 1. Still, the depth
K and widths of hidden layers can be virtually any values. There are many results,
e.g., Larochelle et al. (2007) or Goodfellow et al. (2013), supporting that deeper
networks may improve generalization. An example that has gained lot of attention
are the Residual Networks (He et al., 2016), which by this definition are not strictly
MLPs and where depths around 1000 layers were used.

To fulfill the previously mentioned constraints of the output y, the so-called softmax
function can be used as the last activation. With the pre-activated value of the last
layer given by

ỹ = W (K−1)h(K−2) + b(K−2),

the output value of each neuron with softmax activation is defined as

Ŷi := φsoftmax(ỹi) = exp(ỹi)∑C
j=1 exp(ỹj)

for i = 1, . . . , C. (2.21)

This will ensure the output to be normalized, and valid to use as parameters for the
categorical distribution of interest.

2.2.3 Autoencoders
MLPs can also be used for unsupervised learning with an architecture type called
autoencoder, which have been implemented in various forms and for different pur-
poses. The learning of an autoencoder is a regression problem, where the output X̂
is an estimate of the original data X. To transform to a non-trivial problem, some
restrictions and constraints are implemented in the model. With fixed parameters
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θ, the autoencoder gautoe : Rn → Rn is a composition of two functions: the encoder
genc : Rn → Rm and the decoder gdec : Rm → Rn that form

gautoe(X) = (gdec ◦ genc)(X). (2.22)

Both genc and gdec may be composed of multiple layers analogous with (2.17). When
training the autoencoder, the mean squared error is often used as the loss function,
as of the derivation from the Gaussian assumption in Section 2.1.3. Usually, the
encoder and decoder have the same layer architecture, but mirrored. An autoencoder
has K layers, where K is odd, and the encoder and the decoder consist of K+1

2 layers
each. An example of the structure is shown in Figure 2.3.

Z

latent
representation

encoder decoder

X

Figure 2.3: A schematic illustration of an autoencoder. The red part denotes
the encoder genc and the blue part the decoder gdec. In the middle, the latent
representation Z denotes the output of the encoder and the input of the decoder.
Each layer is represented by a rectangle, and the layer connections are the lines
between these rectangles. Note that in the dimensionality decreases as the input
is propagated through the encoder, but increases when propagated through the
decoder.

The basic type of autoencoder is the undercomplete autoencoder (Goodfellow et al.,
Chap. 14), which primarily can be used for a non-linear dimensionality reduction
(Hinton and Salakhutdinov, 2006). In an undercomplete autoencoder the input is
the same as the target, meaning that the training task is to reconstruct the input
in the output. But if we let every layer of the autoencoder have the same width
as the input data, a perfect reconstruction can easily be achieved by assigning an
identity relation to each connection between layers. To make the autoencoder ac-
tually learn something useful about the generating distribution P(X), there has to
be some restrictions in the model. In undercomplete autoencoders, this is imple-
mented by letting the latent space produced by the encoder genc(X) be of a lower
dimensionality than the input, i.e., m < n. This means that the autoencoder must
discard information when selecting such a latent representation, and thereby only
the features that are most useful for reconstruction will be extracted.
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The undercomplete autoencoder can be interpreted as utilization of the manifold
assumption in semi-supervised learning. The encoder computes a lower-dimensional
representation from the possibly high-dimensional data. When training for minimiz-
ing the loss, the use of this lower-dimensional representation must be enabled for the
decoder when reconstructing the input. Hence, if the undercomplete autoencoder
can reconstruct data decently, it must hold that data are roughly located on a lower
dimensional manifold.

Another well-studied type of autoencoder is the denoising autoencoder (DAE), in-
troduced by Vincent et al. (2008) with the motivation that decent representations
of the data should be robust to perturbed inputs. With a DAE, there are no specific
constraints about the hidden widths, but the input X is corrupted with some ran-
dom process C(X̃ | X). The task of the DAE is to denoise the corrupted input into
the uncorrupted target. It has been shown both theoretically and experimentally
that optimizing an autoencoder with corrupted input will force it to learn features
of P(X). Alain and Bengio (2014) analyzed a DAE function gDAE with a Gaussian
corruption process

C(X̃ | X) : X̃ = X +N (0, σ2), (2.23)

where the parameters were selected so than an optimal reconstruction is retrieved.
They showed that as σ2 in (2.23) → 0, for X = x it holds that

− (x− gDAE(x)) ∝ ∇ log pX(x) = 1
pX(x)∇pX(x), (2.24)

where pX denotes the density of the data generating distribution P(X). Note that
this is obvious if the assumption about a Gaussian distributed output holds (see
(2.9)), i.e., pX(x) = pθ(x). Their findings state that with the corrupted input,
(2.24) will be true independently of the data distribution as long as the squared
error loss is used. Also note that

−(x− gDAE(x)) ∝ −∇‖x− gDAE(x)‖2
2 ,

meaning that the direction of the negative gradient of the squared error loss will point
towards regions with higher density. Moreover, Bengio et al. (2013) showed that even
with an arbitrary corruption process, the output distribution of the autoencoder
PDAE(X) will converge to P(X). They also showed that sampling from the data
generating distribution is possible by alternating corruption and denoising.

2.3 Semi-Supervised Learning with Autoencoders
Since the popularity of deep learning in supervised learning has increased in re-
cent years, there has also been various semi-supervised deep learning algorithms
proposed. In some approaches, autoencoders have successfully served as the un-
supervised part of training, while there are many other methods relying on other
foundations. To mention a few examples not involving autoencoders, there have been
generative approaches, such as generative adversarial networks (Goodfellow et al.,
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2014; Odena, 2016), and perturbation-based methods, such as pseudo-ensembles
(Bachman et al., 2014).

Undercomplete autoencoders mainly came to the light by the introduction of un-
supervised pre-training by Hinton and Salakhutdinov (2006). Unsupervised pre-
training is a procedure that makes training of deep discriminators easier. Before
the actual training of the discriminator with labeled data starts, the autoencoder
is trained on the input data with another training algorithm called contrastive di-
vergence. The obtained parameters from the encoder are then used as initial values
when training the discriminator, which turned out to be a more efficient way of
training and reduced test errors significantly (Erhan et al., 2009). Pre-training has
become redundant for purely supervised classification by the introduction of ReLU
as the activation function φ in (2.18), replacing a hyperbolic tangent, which was
previously the most common choice (Glorot et al., 2011). But in semi-supervised
cases, the pre-training still has a positive effect on the generalization (Paine et al.,
2014).

Valpola (2015) remarked the similarities between DAE and hierarchical latent vari-
ables models. A well-established inference method for latent variables models is
the expectation-maximization algorithm (Dempster et al., 1977; Bishop, 2006), in
which parameters are estimated by computing maximum likelihood estimates of pa-
rameters given latent variables, alternated by computing expected values of latent
variables given the parameters. Valpola (2015) argued that this could be mimicked
with a special type of DAE, called ladder network. Beside the ordinary features
of an ordinary autoencoder, the ladder network also has layer connections between
each layer i in the encoder and layer (K + 1)− i in the decoder, called lateral con-
nections. Training a ladder network is based on computing two versions of the same
encoder: a corrupted and a clean one. In the corrupted encoder, Gaussian noise is
added at each layer, while no noise is added in the clean encoder. The values of the
decoder is propagated from the corrupted decoder, and the loss function of ladder
network consists of a sum of squared error losses between the decoder and the clean
encoder. Following this work, the ladder network was applied to semi-supervised
learning by Rasmus et al. (2015) by viewing the classification as a known latent
variable, corresponding to the output of the encoder. In addition to the sum of
squared error losses at each layer between the decoder and the clean encoder, also
the cross-entropy loss of the latent representation from the corrupted encoder was
added to the loss function. Modifications of the ladder network for semi-supervised
learning was analyzed experimentally by Pezeshki et al. (2016). One conclusion
from their work was that the original structure of the ladder network resulted in the
lowest generalization errors, but it was also possible to remove many of the features
and still retrieve almost as good results. For instance, removing the additional noise
at each layer and skipping reconstruction costs at each layer expect the output did
barely result in a worse performance. Removing the lateral connections, and making
the ladder network turn into an ordinary DAE, had a larger impact, although it still
performed better than the purely supervised baseline.
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Another autoencoder-based method that successfully has been used for semi-super-
vised learning is the variational autoencoder (Kingma and Welling, 2013). The
structure of such network is similar to a standard undercomplete autoencoder, but
there are additional terms of the training loss which enforces the encoder output
to follow a multivariate Gaussian distribution. This property may be useful when
generating random input, since data can be generated by sampling random Gaussian
variables. Extending this idea, Kingma et al. (2014) assumed a model where data is
assumed to be generated by a Gaussian and a categorical random variable, matching
the label.

2.4 Distributed Optimization with ADMM
Many training algorithms, including the semi-supervised methods described in the
previous section, are designed to be computed on a single machine. However, this
might not always be practical in the era of large data sets and complex models.
In other setups, we want to train a global model, despite data being of private
nature. For such privacy-protecting reasons, we wish to avoid sharing data between
machines. By the introduction of efficient network communication, decentralized
optimization techniques (Yang et al., 2019) have successfully been employed for
such machine learning problems. Examples of distributed approaches proposed for
deep learning are the DOWNPOUR algorithm (Dean et al., 2012) and Federated
Learning (Konečný et al., 2016).

ADMM (Boyd et al., 2011) is an optimization algorithm well suited for constrained
convex optimization problems which can be decomposed into a sum of separable sub-
problems, except for some of the constraints, which are non-separable. Since each
sub-problem can be solved in parallel, it is frequently used for large-scale optimiza-
tion problems which can be decomposed into many sub-problems. The foundations
on the algorithm relies on Lagrangian relaxation of the non-separable constraints
and the dual ascent method, which are briefly described next.

2.4.1 Lagrangian Relaxation of Equality-Constrained Opti-
mization Problems

Consider an equality-constrained optimization problem

f ∗ := min f(x),
s.t. Ax = b,

(2.25)

where x ∈ Rn, f : Rn → R, A ∈ Rm×n and b ∈ Rm. The Lagrangian function
L : Rn ×Rm → R of this problem is

L(x,ν) = f(x) + νT (Ax− b), (2.26)

where the dual variables ν ∈ Rm are introduced. The purpose of the dual variables
is to act as a penalty when overriding the corresponding constraints. The Lagrangian
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dual function q : Rm → R, which is defined as

q(ν) := inf
x
L(x,ν) = inf

x

(
f(x) + νT (Ax− b)

)
= inf

x

(
f(x) + νTAx

)
− νTb,

can be used for retrieving lower bounds on the optimal objective value f ∗ of (2.25).
A well-known result in optimization is the weak duality theorem (Andréasson et al.,
2020, Chap. 6) which states that for any ν ∈m,

q(ν) ≤ f ∗,

meaning that we can use q(ν) to get a lower bound on f ∗. Solving the dual problem

q∗ := sup
ν
q(ν), (2.27)

will yield the highest possible lower bound on f ∗. In the case that the function f
is assumed to be convex, we have for the optimal q∗ of (2.27) that strong duality
holds, i.e.,

q∗ = f ∗,

i.e., the duality gap is zero. The dual problem itself is always a convex function
(Andréasson et al., 2020) since maximizing q(ν), which is concave, will be equivalent
to minimizing −q(ν).

2.4.2 The Augmented Lagrangian and Dual Ascent
It has been observed from experiments that convergence for numerical algorithms
may be improved by considering the, augmented Lagrangian, see, e.g., (Bertsekas,
1982, Chap. 2), which corresponds to solving the problem

min f(x) + (ρ/2)||Ax− b||22,
s.t. Ax = b,

(2.28)

where we introduce the scalar ρ ∈ R+, the penalty parameter. Note that the problem
(2.28) has the same optimal value f ∗ and solution x∗ as (2.25). The augmented
Lagrangian is then

Lρ(x,ν) = f(x) + νT (Ax− b) + (ρ/2)||Ax− b||22. (2.29)

One method for solving this kind of constrained optimization problem is to employ
the dual ascent algorithm. The foundation of the algorithm is to solve the uncon-
strained dual problem instead of the more difficult and constrained original problem.
With f assumed convex the objective function in (2.28) will be strictly convex for
large enough values of ρ > 0, and the corresponding dual function q will be differ-
entiable. Under such circumstances, the dual ascent algorithm will converge to the
optimal value f ∗ and approach a primal feasible solution (Bertsekas, 1999, Chap. 6).

Essentially, dual ascent consists of an iterative first-order optimization algorithm
applied for maximizing q(ν). This means that each iteration k = 0, 1, . . . consists of
evaluating the gradient of q(ν) and take a step of length αk in that direction. More
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precisely, the dual ascent algorithm begins with initialization of some start values
of x0 and ν0, and then each iteration consists of first computing

xk+1 := arg min
x

L(x,νk)

= arg min
x

(
f(x) + νT (Ax− b) + (ρ/2)||Ax− b||22

)
,

(2.30)

which is then utilized for computing the gradient

∇q(νk) = Axk+1 − b.

For computing the next νk+1 a step of length αk is taken in this direction:

νk+1 = νk + αk∇q(νk) = νk + αk
(
Axk+1 − b

)
. (2.31)

Since (2.27) is a convex problem and there is no dual gap, the algorithm will converge
to its maximum with a appropriate choices of the step lengths αk (Bertsekas, 1982,
Chap. 6).

From the optimality conditions of (2.25), we have a pair of optimal solutions (x∗,
ν∗) must satisfy

∇f(x∗) +ATν∗ = 0. (2.32)
Since xk+1 is chosen such that it minimizes the augmented Lagrangian, we have that

∇xLρ(xk+1,νk) = 0.

With the choice of step length αk = ρ, we will have that for all k

0 = ∇xLρ(xk+1,νk)
= ∇xf(xk+1) +ATνk + ρ

(
Axk+1 − b

)
A

= ∇xf(xk+1) +AT
(
νk + ρ

(
Axk+1 − b

))
= ∇xf(xk+1) +ATνk+1.

(2.33)

From (2.33) follows that the optimality conditions in (2.32) will be fulfilled in all
ADMM iterations. Thus, as convergence is approached, this optimality condition
will tend to be fulfilled.

2.4.3 ADMM for Consensus Problems
We now consider the unconstrained optimization problem

min f(x) =
N∑
i=1

fi(x), (2.34)

where x ∈ Rn and its objective f : Rn → R consists of a sum of N sub-problems.
This problem can be reformulated as the constrained problem

min
N∑
i=1

fi(xi),

s.t. xi − z = 0, i = 1, . . . N,
(2.35)
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2. Background

where xi ∈ Rn and the consensus variable z ∈ Rn is introduced. This formulation
is called the global consensus problem.

ADMM is designed for solving constrained optimization problems that can be de-
composed in two or more sub-problems, like this consensus problem. The method is
very similar to dual ascent when using the augmented Lagrangian as in (2.28), but
thanks to a separable objective the computations can be performed more efficiently.

By adding the augmentation term to (2.36) we get the problem

min
N∑
i=1

(
fi(xi) + ||xi − z||22

)
,

s.t xi − z = 0, i = 1, . . . N,
(2.36)

and the augmented Lagrangian becomes

Lρ(x1, . . . ,xN , z,ν) =
N∑
i=1

(
fi(xi) + (νki )T (xi − z) + ρ

2 ||xi − z||
2
2

)
. (2.37)

The general updating schema of each iteration in ADMM consists, as in dual ascent,
of updating the primal variables in (2.30) followed by updating the dual variables
in (2.31). But instead of updating all primal variables xki simultaneously in the
minimization step, the variables are updated one by one while the rest are fixed.
For the consensus problem, we alternate between minimization over x, and ν:

(xk+1
1 , . . . ,xk+1

N ) = arg min
x1,...,xN

Lρ(x1, . . . ,xN , z
k,νk);

zk+1 = arg min
z

Lρ(xk+1
1 , . . . ,xk+1

N , z,νk);

νk+1 =νk + ρ∇νLρ(xk+1
1 , . . . ,xk+1

N , zk+1,ν)
∣∣∣∣
ν=νk

.

Convergence to the optimal, feasible solution with this schema when f is convex
can be proven. For the case of consensus problems the Lagrangian in (2.37) is
decomposed into terms consisting of only one xi which enables the minimizations
of x1, . . . ,xN to be performed in parallel. Hence, the updates can be rewritten as

xk+1
i = arg min

xi

(
fi(xi) + (νki )T (xi − z) + ρ

2 ||xi − z
k||22

)
, i = 1, . . . , N ; (2.38a)

zk+1 = arg min
z

N∑
i=1

(
(νki )T (xk+1

i − z) + ρ

2 ||x
k+1
i − z||22

)

= 1
N

N∑
i=1

(
xk+1
i + νki

ρ

)
;

(2.38b)

νk+1
i =νki + ρ

(
xk+1
i − zk+1

)
. (2.38c)

For k > 0 if follows from (2.38b) and (2.38c) that the mean value of the dual
variables is

νk := 1
N

N∑
i=1
νki = 0,
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2. Background

and from (2.38b) we see that the global variable iterates zk can be replaced by the
mean of the primal variable iterates xk = 1

N

∑N
i=1 x

k
i . Thus, the updating scheme

can be reduced to

xk+1
i = arg min

xi

(
fi(xi) + (νki )T (xi − xk) + ρ

2 ||xi − x
k||22

)
;

νk+1
i =νki + ρ

(
xk+1
i − xk+1

)
.

(2.39)

As noted earlier, ADMM is proved to converge to an optimal value and primal
feasibility when all functions fi are convex. In fact, convergence will also be achieved
when the minimization of the augmented Lagrangian with respect to the primal
variables is computed inexactly, but with decreasing error (Bertsekas et al., 2003).
However, the loss functions of MLPs will not result in convex functions, so there
will be no guarantee that we will reach an optimal value.

Comparing with other distributed approaches for deep learning, the optimization
problem we try to solve, (2.28), is similar to Elastic Averaging SGD (Zhang et al.,
2015a). In that algorithm, SGD is applied to (2.36), but z is replaced by the mean
x, and we do not have the equality constraint. The purpose is not to achieve exact
solutions for different models, but rather forcing them towards somewhat similar
values.
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3
Motivation and Implementation

Similar to semi-supervised approaches of the Ladder network (Rasmus et al., 2015)
and variational autoencoders (Kingma et al., 2014), we view the classification label
as a latent variable that data is assumed to be generated by. Therefore, we should
be able to both estimate this latent variable given the data, but also re-generate
data given a latent variable. In this chapter, we motivate why we can view this as a
consensus problem, for which ADMM can be applied. How such an implementation
can be combined with established deep learning training algorithms, in our case
SGD, is not obvious. In the algorithm proposed in this work the sub-problems of
the Lagrangians are minimized by a linearly increasing number of SGD steps as
ADMM proceeds. It turns out that this kind of implementation ends up in an
oscillating variation of parameters over the course of training.

3.1 Semi-Supervised Classification as Consensus
Problem

In this work we study semi-supervised classification problems with data X, Y ∈
P(X, Y ) where X ∈ Rn is the input data and Y ∈ {1, . . . , C} is the label. We
assume this data is generated by a latent variable Z ∈ Z where

Z =
{
z ∈ [0, 1]C

∣∣∣∣∣
C∑
i=1
zi = 1

}
.

With some random function G the input data is generated as

X ∼ G(Z). (3.1)

We also assume that the classification label is distributed as

Y ∼ Cat(C,Z). (3.2)

This suggests that the latent representation Z should be utilizable for both clas-
sification and reconstruction. The task of interest is to find two mappings: glat :
Rn → Z where the latent representation Ẑ is estimated from the input data X, and
ggen : Z → Rn where the input data X̂ is generated from the latent representation
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3. Motivation and Implementation

Z. We have two sets of training data: labeled observations in Tl and unlabeled
observations in Tu. The log-likelihood function will be

|Tl|∑
i=1

log p(yi | Ẑ = glat(xi)) +
|Tu|∑
i=1

log p(xi | Ẑ = glat(x̃i), X̂ = ggen(Ẑ)), (3.3)

where x̃i is the autoencoder’s input, which may be corrupted. The discriminator
has parameters θdiscr ∈ Rp, the encoder has parameters θenc ∈ Rp, the decoder
θdec ∈ Rp. We assume the output of a discriminator fdiscr : Rn × Rp → Z to be
categorical distributed, and the output of an autoencoder fautoe : Rn×Rp×Rp → Rn

to be Gaussian distributed. Therefore, we use the cross-entropy loss LCE for the
discriminator and and squared error loss LSE for the autoencoder. Following, we
have the expected discriminator training loss

EX,Y∼Tl [LCE(Y, fdiscr(X,θdiscr))] = 1
|Tl|

|Tl|∑
i=1

log p(yi | Ẑ = glat(xi)),

and the expected autoencoder training loss

EX∼Tu [LSE(X, fautoe(X;θenc,θdec))] = 1
|Tu|

|Tu|∑
i=1

log p(xi | Ẑ = glat(x̃i), X̂ = ggen(Ẑ)).

Hence, the log-likelihood function in (3.3) to be maximized can equivalently be
multiplied with 1

|Tl|
and rewritten as

|Tu|
|Tu|

EX,Y∼Tl [LCE(Y, fdiscr(X,θdiscr))] + |Tu|
|Tl|

EX∼Tu [LSE(X, fautoe(X;θenc,θdec))] ,

why we select the discriminator loss as

L̃discr(θdiscr) = EX∼Tu [LCE(Y, fdiscr(X;θdiscr))] ,

and the autoencoder loss as

L̃autoe(θenc,θdec) = |Tu|
|Tl|

EX∼Tu [LSE(X, fautoe(X;θenc,θdec))] .

Since one of the outputs is assumed to follow a discrete distribution, and the other a
continuous, the way we arrive at these loss functions can legitimately be criticized.
In this derivation, the probability masses of the discrete categorical distribution are
treated equally to the probability densities of the continuous Gaussian distribution.
This is not a valid reasoning from a probabilistic perspective, since we need to inte-
grate over a density function to compute its probability mass. From a probabilistic
perspective, the factor should rather be interpreted as the width of partitions from a
discrete approximation of the Gaussian distribution. It is not obvious how to select
such widths, therefore these factors can be selected differently. In this work we only
consider to use the factors 1 for the discriminator loss, and |Tu|

|Tl|
for the autoencoder

loss.
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3. Motivation and Implementation

Since the aim of both the discriminator and the encoder is to find the same mapping
flat, we view training as the constrained optimization problem

min
θdiscr,θenc,θdec

L̃discr(θdiscr) + L̃autoe(θenc;θdec),

s.t θdiscr = θenc.
(3.4)

A visualization of this problem can be seen in Figure 3.1. Clearly, (3.4) is a consensus
problem as (2.36), why we can use ADMM for its solution. Implementing ADMM
yields the following scheme:

θk+1
discr = arg min

θdiscr

(
L̃discr(θdiscr) + νkdiscr(θdiscr − θ

k) + ρ

2 ||θdiscr − θ
k||22

)
;

θk+1
enc = arg min

θenc

(
L̃autoe(θenc;θdec) + νkenc(θenc − θ

k) + ρ

2 ||θenc − θ
k||22

)
;

νk+1
discr = νkdiscr + ρ(θk+1

discr − θ
k+1);

νk+1
enc = νkenc + ρ(θk+1

enc − θ
k+1),

(3.5)

where where the penalty parameters ρ > 0 and

θ
k = 1

2(θkenc + θkdiscr).

As we will see in following sections of this Chapter, there is a need for some adjust-
ments of this scheme, since we deal with deep learning problems.

ZX

X Y

{ {

{

enc dec

discr

Figure 3.1: Overview of the optimization problem with the MLPs and their param-
eters. In the top the autoencoder consists of the encoder with parameters θenc and
the decoder with parameters θdec. In the bottom the discriminator has parameters
θdiscr. The green layers indicate the parameters of the encoder and the discriminator
which are constrained to be equal.
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3. Motivation and Implementation

3.2 Adjustments of Original ADMM Algorithm
Since optimization of loss functions for MLPs are non-convex and resource-demand-
ing problems, the ADMM scheme in (3.5), where the sub-problem minimization
is computed exactly, will be intractable. Therefore, the sub-problem minimization
can only be solved to sub-optimality. In this work, we propose to perform the
sub-problem minimization by taking a number of SGD steps.

As discussed in Section 2.2.1, the surface of an MLP loss function is high-dimensional
and non-convex. Randomness stemming from the initialization and the SGD algo-
rithm determines which low-cost region will be approached during the training. For
instance, by running the autoencoder and the discriminator independent of each
other could end up in similar solutions, but with permuted entries of weight matri-
ces and bias vectors. If this happen during a run of ADMM, solving the consensus
problem will require very large dual values, since we might need to take steps in the
direction of very steep ascents of the primal problem.

With the manifold assumption, the same low-dimensional representation should be
sufficient for both classification and reconstruction. Thus, if the encoder and the
discriminator approach completely different regions, probably either or both regions
should be of low-cost for both sub-problems. If both solutions enters the same low-
cost region, one may believe that they should remain in that region for the rest of
the training. Therefore, allowing the solutions of the sub-problems to move towards
different regions will probably be an inefficient way of implementing this.

To avoid such behavior, one obvious arrangement is to initialize primal variables with
equal values for both sub-problems. Still, as the training proceeds the directions in
the primal space may point towards completely different directions, so that the
solutions approach different regions in the parameter space. This fact, in addition
to the motivation from the manifold assumption, suggests that guiding parameters
towards similar values should be more important in an early stage of the training
than later on. We suggest to implement this by increasing the number of SGD
steps between each dual update over the course of training. The simplest rule is
to start with a single SGD step of the first ADMM iteration, and then increase
the number of SGD steps linearly, which is used in this work. This can also be
motivated by the convergence analysis of ε-subgradient methods for Lagrangian
dual problems (Bertsekas et al., 2003, Chap 3), which essentially states that we will
get convergence when an approximate minimization is performed with decreasing
error in each ADMM iteration.

3.3 Analysis of ADMM with Inexact Minimiza-
tion of Lagrangian Sub-problems

Replacing exact minimizations with linearly increasing number of SGD steps will
result in very inexact minimizations, especially early on in the algorithm. To demon-
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3. Motivation and Implementation

strate what such implementation results in, we use a simpler example with convex
functions.

Consider a very simple regression model

Ŷ = θ,

where θ is the single parameter. We have two observations:

y(1) = −1 and y(2) = 1,

for which we use to fit the model. Instead of a having a single model, we split the
training data between two distributed models and use ADMM for solving this. The
optimization problem can be formulated as

min
θ

f1(θ1) + f2(θ2),

s.t θ1 = θ2,
(3.6)

where f1 and f2 are the loss functions of the models. We use the squared error loss,
so these functions will be defined as

f1(θ1) = (θ1 + 1)2 and f2(θ2) = (θ2 − 1)2.

This gives the following ADMM updating scheme:

θk+1
1 = arg min

θ1

(
f1(θ1) + νk1 (θ1 − θ

k) + ρ

2
∥∥∥θ1 − θ

k
∥∥∥2

2

)
;

θk+1
2 = arg min

θ2

(
f2(θ2) + νk2 (θ2 − θ

k) + ρ

2
∥∥∥θ2 − θ

k
∥∥∥2

2

)
;

νk+1
1 = νk1 + ρ

(
θk+1

1 − θk+1) ;

νk+1
2 = νk2 + ρ

(
θk+1

2 − θk+1)
.

(3.7)

For this case, the minimization steps of the subproblems can be analytically and
exactly computed. However, such assumption is neither practical nor possible when
dealing with non-convex loss functions of neural networks. Optimization with SGD
may require a long running time of before anything close to even a locally optimal so-
lution is reached. Therefore, the task of minimizing the subproblem in each iteration
can be regarded as intractable. To exemplify the behavior of ADMM implemented
with the setting with the subproblem is not solved to optimality, we employ the
most extreme scenario: replacing the minimization with a single step of length η in
the negative gradient direction. Hence, the two first rows of (3.7) are replaced by

θk+1
1 = θk1 − η

 ∂f1

∂θ1

∣∣∣∣∣
θ1=θk

1

+ νk1 + ρ
(
θk1 − θ

k
)

= θk1 + η
(
−2(θ1 + 1)− νk1 − ρ

(
θk1 − θ

k
))

;

θk+1
2 = θk2 − η

 ∂f2

∂θ2

∣∣∣∣∣
θ2=θk

2

+ νk2 + ρ
(
θk2 − θ

k
)

= θk2 + η
(
−2(θ2 − 1)− νk2 − ρ

(
θk2 − θ

k
))
.
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We also introduce the variable νδ for the difference between the primal variable:

θkδ = θk1 − θk2 ,

so we have (
θk1 − θ

k
)

= 1
2θ

k
δ ,

(
θk2 − θ

k
)

= −1
2θ

k
δ ,

and
θ1 = θ

k + 1
2θ

k
δ , θ2 = θ

k − 1
2θ

k
δ .

We rewrite the updates in terms of θδ and θ:

θ
k+1 + θk+1

δ

2 = θ
k + θkδ

2 + η
(
−2θk − θkδ − 2− νk1 −

1
2ρθ

k
δ

)
;

θ
k+1 − θk+1

δ

2 = θ
k − θkδ

2 + η
(
−2θk + θkδ + 2− νk2 + 1

2ρθ
k
δ

)
;

νk+1
1 = νk1 + 1

2ρθ
k+1
δ ;

νk+1
2 = νk2 −

1
2ρθ

k+1
δ .

(3.8)

We also introduce the variable νδ for the difference between the dual variables

νkδ = νk1 − νk2 .

We can now rewrite (3.8) by taking the difference of the first and second row, and
the difference of the third and fourth row:

θk+1
δ = θkδ + η

(
−2θkδ − 4− νkδ − ρθkδ

)
;

νk+1
δ = νkδ + ρθk+1

δ

= νkδ + η
ρ

η
θk+1
δ .

Such updates can be viewed as solving a system of ordinary differential equations
(ODEs) using Euler’s method with a step length of η. The corresponding system of
ODEs is

θ′δ = −4− νδ − (ρ+ 2)θδ;

ν ′δ = ρ

η
θδ + ρθ′δ.

(3.9)

We take the derivative of θ′δ to receive a single homogeneous ODE for θδ:

θ′′δ = −ν ′δ − (ρ+ 2)θ′δ = −ρ
η
θδ − ρθ′δ − (ρ+ 2)θ′δ = −ρ

η
θδ − 2(ρ+ 1)θ′δ

⇐⇒

0 = θ′′δ + 2(ρ+ 1)θ′δ + ρ

η
θδ.

The characteristic equation of this second order ODE is

r2 + 2(ρ+ 1)r + ρ

η
= 0, (3.10)
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which has solutions in

r = −(ρ+ 1)±
√

(ρ+ 1)2 − ρ

η
.

If we have that
(ρ+ 1)2 − ρ

η
< 0, (3.11)

the variation of θδ over time will be determined by

θδ(t) = exp(−(ρ+ 1)t) (A cos (tω) +B sin (tω)) ,

where
ω =

√
ρ

η
− (ρ+ 1)2.

With the same initial values of the parameters we have θδ(0) = 0, and A = 0, this
turns into

θδ(t) = B exp(−(ρ+ 1)t) sin (tω) ,

which is a damped oscillation that approaches 0. That is clearly desired, since it
means the constraint of (3.6) will be satisfied.

We now use (3.9) to solve νδ(t):

νδ(t) = −4− θ′δ(t)− (ρ+ 2)θδ(t);
θ′δ(t) = Bω exp(−ρt) cos (tω)− (ρ+ 1)θδ(t);
=⇒
νδ(t) = −4−Bω exp(−ρt) cos (tω) + (ρ+ 1)θδ(t)− (ρ+ 2)θδ(t)

= −4−B exp(−(ρ+ 1)t) (ω cos (tω)− sin (tω)) .

When starting with dual variables set to 0, we have νδ(0) = 0 and B = −4
ω
. Thereby,

the change of θδ and νδ over time will be:

θδ(t) = −4
ω

exp(−(ρ+ 1)t) sin (tω) ;

νδ(t) = −4 + 4 exp(−(ρ+ 1)t)
(

cos (tω)− sin (tω)
ω

)
.

(3.12)

An example of what these oscillations can look like is illustrated in Figure 3.2. From
(3.12), we see that νδ → −4, which we can expect from the optimality conditions
of (3.6). We also see that the frequency of of the oscillations will be determined by
both ρ and η. With a fixed ρ a smaller η will increase the frequency, but it will also
decrease the amplitude of θδ and increase the amplitude of νδ. With a fixed value of
η, the maximum frequency will be achieved at ρ = 1

2η − 1, lower and greater values
will lead to a smaller frequency. A larger ρ will also result in a faster convergence.

Since η will be selected quite small, about 0.001-0.1, a smaller ρ will in practice
result in large wavelength and amplitude, but also smaller damping. Hence, reaching
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3. Motivation and Implementation

primal feasibility will take more iterations for small values of ρ. On the other hand,
selecting ρ very large will result in a large damping, and the difference of the primal
values approach 0 very quickly. When training MLPs, we rarely approach decent
values in an early phase of the training, why we do not want too fast convergence.
Thus, we want to have some degree of oscillation.

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
1

2

Figure 3.2: ADMM implementation of the quadratic optimization problem (3.6),
with initial values θ1 = θ2 = 0.5. The y-axis is the values of the parameters.

3.4 Permutation Invariant Latent Representation
The non-convexity of the problem may lead to more complications when imple-
menting ADMM for deep learning. Based on the assumptions in (3.1) and (3.2), the
latent representation of the autoencoder and the output layer of the discriminator
should have the same width and softmax activation. For the autoencoder, the latent
representation is a hidden layer, while it is the output layer for the discriminator.
This means that we can permute weight matrices for the last layer connection of the
encoder and the first connection of the decoder, and still retrieve the same solution.
Clearly, this is not the case for the discriminator, since the order of the neurons in
the output layer is vital for a good performance.

To increase efficiency of the algorithm, we would benefit from having a permutation
invariant latent representation. We implement this by adding an extra layer with
parameters θperm for the discriminator. This allows the order of the neurons in the
latent representation to be swapped, and we can still retrieve the same output Ŷ by
permuting rows of the weight matrix. We refer to this extra discriminator layer as
the permutation layer.

With such a layer, we do not need the latent representation Z to have the softmax
activation. Since the sum of neurons from a softmax activation is 1, it will produce
a hyperplane. With C classes, the same information can be represented in a layer
of width C − 1, with for instance ReLU activation. Since both the autoencoder
and the discriminator will have unconstrained parameters, the introduction of the
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permutation layer will change the optimization problem. These unconstrained pa-
rameters will be the decoder for the autoencoder and the layer connection for the
permutation layer for the discriminator. A vizualisation of this can be seen in Figure
3.3. The essence of the adjustment is that a low discriminator training loss can only
be achieved if the latent representation is linearly separable for the discriminator
training data, which may act as a guard against overfitting of the encoder output.

ZX

X Y

{ {
{

enc dec

discr

Z

{
perm

Figure 3.3: Illustration of the modified setup to make the latent representation
permutation invariant. Compare this with Figure 3.1.

3.5 Algorithm
From the reasoning in this chapter, we end up in a modified ADMM algorithm,
completely described in Algorithm 1. Note that the same batch of data is used
for computing the gradients in one round of the inner minimization loops. Obser-
vations are assigned to batches randomly at the beginning of an epoch, e.g, when
starting to traverse all observations in the data. When all batches of an epoch
have been used for gradient computations, new batches are creates by randomly
assigning all data to a batch. This proceeds independently of the ADMM iterations.
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Algorithm 1: Modified ADMM for training the autoencoder and the dis-
criminator.
Initialize θdiscr,θenc,θperm,θdec with random values where θdiscr = θenc
νenc ← 0
νdiscr ← 0
θ ← θdiscr
Shuffle order of observations in Tu and Tl
jl ← 1
ju ← 1
for k = 1, . . . , kmax do

# Minimization of discriminator
for i = 1, . . . , k do

Use batch Bjl to compute
gperm ← ∇θpermL̃discr(θdiscr;θperm)
and
gdiscr ← ∇θdiscrL̃discr(θperm;θdiscr) + νdiscr + ρ

(
θdiscr − θ

)
# Update parameter values
θperm ← θperm − ηgperm
θdiscr ← θdiscr − ηgdiscr # Update batch counter
if jl = d |Tl|

B
e then

Reshuffle order of Tl
jl ← 1

else
jl ← jl + 1

# Minimization of autoencoder
for i = 1, . . . , k do

# Compute gradient
Use batch Bju to compute
gdec ← ∇θdecL̃autoe(θenc;θdec)
and
genc ← ∇θencL̃autoe(θdec;θenc) + νenc + ρ

(
θenc − θ

)
# Update parameter values
θdec ← θdec − ηgdec
θenc ← θenc − ηgenc
# Update batch counter
if ju = d |Tu|

B
e then

Reshuffle order of Tu
ju ← 1

else
ju ← ju + 1

# Update consensus variable and dual variables
θ ← 1

2θenc + 1
2θdiscr

νdiscr ← νdiscr + ρ(θdiscr − θ)
νenc ← νenc + ρ(θenc − θ)
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4
Experiments and Results

Algorithm 1 has been evaluated on two different data sets: the automatically gener-
ated two-dimensional half-moon data (Pedregosa et al., 2011) and MNIST (LeCun
and Cortes, 2010), which consists of 60000 images of handwritten digits. The as-
sessment of the experiments has mainly focused on classical performance indicators,
such as training and test loss and test accuracy. In experiments with ADMM, also
the squared norm of the difference of the discriminator parameters and the consensus
values

δdiscr =
∥∥∥θdiscr − θ

∥∥∥2

2
,

where both θdiscr and θ are the values from the last ADMM iteration in the experi-
ment, is used. Still, many characteristics of the algorithm are difficult to show with
only these measurements, why also results of more qualitative nature are included.

4.1 Half-moons Data
To demonstrate the behavior of the algorithm in an intuitive way, some experiments
performed on the half-moons data set is presented in this section. The data is
two-dimensional and generated from the shape of two half-moons, with additional
Gaussian noise. Data generated from the upper half-moon has the classification
label 0, while data generated from the lower has label 1. In all our experiments, the
standard deviation of the Gaussian noise is 0.15.

The training data for the discriminator consisted of two observations form each class,
both close to the ends of each half-moon. The training data for the autoencoder
consisted of 48 randomly generated observations, 24 from each class. This is visu-
alized together with the test data in Figure 4.1. The batch size for both networks
was four.

The initial layers of the discriminator and the autoencoders, with the constrained
parameters, had the same width with ReLU activation. The widths of these layers
were 2-20-15-1. ReLU was also used for the decoder layers, expect the last where
linear activation was used. The widths of the decoder was 1-15-20-2. The remaining
layer of the discriminator had widths 9-10, with softmax activation on the last layer.
The learning rate was η =0.001 in all experiments, and each experiment was repeated
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4. Experiments and Results

30 times.

Figure 4.1: Visualization of the data used for the half-moon experiments. Left
plot: test data of 1000 data points colored by the classification label. Right plot:
example of training data for the experiments. The four larger dots with black border
represent the discriminator training data, while the 48 smaller gray dots represent
the unlabeled autoencoder data.

Results for experiments on this data set can be seen in Table 4.1. Two types of
benchmark results for this problem were evaluated. The first one was the baseline,
i.e., training the autoencoder and the discriminator individually. The other bench-
mark was unsupervised pretraining, where the discriminator was initialized with the
solution of a trained autoencoder. The pretraining gave a slightly better mean gen-
eralization for the discriminator, but the standard deviation was large. The ADMM
implementation was tried for three penalty values ,ρ: 1, 0.1, and 0.01, and each
trial was run for 200 ADMM iterations. The best performing penalty value was
ρ = 1, where the test accuracy is remarkably higher than the benchmarks. The
smaller penalty ρ, the smaller was the discriminator training loss, while the autoen-
coder training loss was similar for all values of ρ. Smaller penalties also resulted in
larger values of δdiscr. However, ADMM performed better than both baseline and
unsupervised pretraining for all three values of ρ tried here.

Table 4.1: Results from ADMM implementation on half-moon data for different
penalty values. The values are the mean of ten runs with standard deviation in
parentheses. The standard deviation is excluded if smaller than 0.005.

Discriminator Autoencoder
Method Test acc×100 Train loss Test loss Train loss δdiscr

Baseline 31.81 (6.34) 1e-4 0.71 (0.14) 0.22 (0.08) -
Pretraining 53.04 (23.31) 2e-4 - - -
ADMM, ρ =1 92.91 (4.47) 0.03 (0.07) 0.73 (0.14) 0.29 (0.17) 7e-3 (0.02)
ADMM, ρ =0.1 86.37 (16.24) 0.01 0.67 (0.12) 0.29 (0.17) 0.40 (0.45)
ADMM, ρ =0.01 67.53 (23.31) 6e-3 0.69 (0.14) 0.28 (0.13) 3.50 (1.39)
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4. Experiments and Results

To explain this variation between different penalties we focus on three different runs,
one for each of the tried penalty values. In Figure 4.2, we see that both accuracy
and δdiscr became more unstable for smaller penalties. For ρ = 1, δdiscr increased
rapidly during early iterations, but after about iteration 20 it went steadily down.
For the smaller penalties, the movement of the δdiscr was more unstable and did not
tend toward such low values as for ρ = 1. This behavior is also reflected in the test
accuracy, where smaller penalties showed more changeable movements than larger.
Note that among these three runs, ρ = 0.01 is the penalty that ends up in the
best test accuracy after 200 ADMM iterations. This suggests that with small values
of the penalty ρ, it is not impossible to achieve well-generalized solutions, but the
instability over iterations may be problematic.

ADMM iterations

Test Acc.

0

0.2

0.4

0.6

0.8

1

0 20 60 100 140 180 220

1e-8
1e-7
1e-6
1e-5
1e-4
1e-3
0.01
0.1
1
10
100

0 20 60 100 140 180 220

ρ=1

ρ=1e-1

ρ=1e-2

Figure 4.2: The variation of test accuracy and δdiscr over the course of ADMM
iterations for discriminators. Note the logarithmic scale of vertical axis in the lower
plot.

Since the autoencoder training loss was more or less unaffected by the larger penalty,
while the discriminator training loss and the test errors were largely affected, the
results suggest that the discriminator adapted to the autoencoder rather than the
opposite. This is supported by other observations of the behavior of the algorithm
made from these experiments. The most intuitive example is viewed in Figure 4.3.
In this plot, we see that the decision boundary of the discriminator was aligned com-
pletely differently depending on if ADMM is applied or not, while the autoencoder
solution was similar. Also, note that the direction of the one-dimensional latent
representation was aligned in opposite directions of the two autoencoder plots in
this figure. This is possible due to the unconstrained permutation layer of the dis-
criminator.
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Figure 4.3: Comparison of the test data (1000 data points) between models trained
without ADMM, in the top row, and with ADMM, in the bottom row. The left
column shows the classifications of the discriminator, where red is classified as 1
and blue as 0. The right column shows the reconstructions from the autoencoder,
where the color indicates the value of the latent representation. Blue means smaller
value, red larger, but the scale is not the same as in the left column.

Another information indicating that the discriminator basically is forced to the
autoencoder solution can be seen in the oscillations of Figure 4.4. As suggested by
previous analysis, the oscillations have a larger amplitude and a larger wavelength
for smaller penalties. In this plot we also see that the amplitude for the oscillation
of the discriminator parameter became much larger than that of the autoencoder.
An explanation of this would be that the derivative of the loss function, pushing the
parameter away from the consensus value, is much larger for the autoencoder than
for the discriminator.
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Figure 4.4: Example of change of the same weight parameter during training for
three different values of the penalty ρ. The scale of the horizontal axis denotes
ADMM iterations. For all three runs the initializations were the same and the
autoencoder was trained the same number of epochs as for the discriminator.

4.2 MNIST
The MNIST database of handwritten digits (LeCun and Cortes, 2010) consists of
square images of handwritten digits with side 28 pixels, meaning there is in total
28 · 28 = 784 pixels for each image. Since the images are grayscale, each pixel is
represented by a value between 0 and 1, describing the brightness of the pixel. 0
corresponds to black and 1 to white. The training set has 60000 images and the test
set has 10000 images. The experiments were evaluated for permutation invariant
classification and reconstruction, meaning that permuting the pixels of input data
will not affect performance as long as we apply the same the permutation on all
images.

In all experiments, the training data for the discriminator consisted of 10 random
observations from each class of the training set, i.e., 100 labeled observations in
total. The training data for the autoencoder was the whole training set, which is
60000 observations. The batch size was 32 for both networks and the learning rate
was η = 0.001. All experiments were repeated 10 times, with different randomly
selected data for the discriminator and different random initialization.

There were two different experimental setups: small networks and large networks. In
both setups, the discriminator shared the structure with the layers of the constrained
parameters, the consensus layers, for which ReLU activation was used. ReLU was
also used for all other layers of the autoencoder, except the last one where linear
activation was used. The discriminator had one unconstrained layer, with softmax
activation. The widths of the two setups were:

• For the small networks, the consensus layers were 784-20-15-9, the decoder
9-15-20-784 and the unconstrained discriminator layer 9-10.

• For the large networks, the consensus layers were 784-784-784-784-9, the de-
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coder 9-784-784-784-784 and the unconstrained discriminator layer 9-10.

The implementation was assessed on both unperturbed and perturbed input. The
perturbed input was achieved by adding random Gaussian noise, with 0 mean and
0.7 standard deviation.

4.2.1 ADMM with Unperturbed Input
With unperturbed input, the ADMM implementation was evaluated for each of the
three values of the penalty ρ: 1, 0.1, and 0.01. Each experiment was running for 300
ADMM iterations, which was repeated 10 times. In order to assess the performance
of the algorithm, also two different benchmark results were produced: baseline and
unsupervised pretraining. In the baseline implementations, the MLPs were trained
individually, with the same amount of data as in the latter experiments. For the
unsupervised pretraining benchmarks, an autoencoder was first trained as in the
baseline implementation. The parameters of the encoder obtained after training
were used as initialization of the discriminator. The training of the benchmark im-
plementations proceeded for the same number of steps corresponding to the number
of minimization steps of 300 ADMM iterations, which is 45150 SGD steps.

Pretraining had a positive effect for the generalization results. However, the effect
was much smaller for the perturbed input than for the unperturbed input. For the
large networks, the perturbations seem to have had a minor effect on the pretrain-
ing. Also observe that for the unperturbed baseline of the discriminator, the larger
network had a slightly worse test accuracy, despite the representational capacity was
vastly larger.

For the small networks, see Table 4.2, the best discriminator test results were
achieved by the largest penalty ρ = 1. For the autoencoder, both training and
test loss attained the lowest values for ρ = 0.1. An interesting point from the
results is that a smaller penalty seems to have favored a smaller training loss for
the discriminator, while the training loss of the autoencoder was somewhat similar.
Comparing with the baseline, all ADMM implementations result in a better average
generalization for the discriminator. ADMM with ρ = 1 performed slightly better
than the pretraining.
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Table 4.2: Results on MNIST for small networks and unperturbed input. The
values are the mean of 10 runs with standard deviation in parentheses. The standard
deviation is excluded if smaller than 0.005.

Discriminator Autoencoder
Test Training Test Training

ρ accuracy loss loss loss δdiscr

Baseline - 57.25 (4.65) 1e-4 22.38 (2.26) 22.58 (2.26) -
Pretrain. - 68.23 (4.16) 2e-4 - - -
ADMM 1 68.65 (2.46) 0.02 (0.01) 21.24 (0.82) 21.44 (0.83) 8e-3 (0.01)
ADMM 0.1 67.85 (3.23) 0.01 20.92 (1.42) 21.11 (1.43) 0.01
ADMM 0.01 58.28 (9.34) 5e-3 21.51 (1.45) 21.72 (1.44) 0.92 (0.66)

For the large networks in Table 4.3, the best generalisations were retrieved with ρ =
0.1 for the discriminator and ρ = 0.01 for the autoencoder. Both autoencoder and
discriminator training losses decreased with smaller penalties, but δdiscr increased.
Like for the small network, the best discriminator test results were slightly better
than for unsupervised pretraining. Note that the test accuracy for the discriminator
was worse for the baseline of the large networks than the baseline of the small
networks in Table 4.2.

While the autoencoder training loss was more or less unaffected by a larger penalty
for the small networks in Table 4.2, there were significant differences among the
autoencoder training losses for the large networks in 4.3. Overall, the performance
was vastly better among the large autoencoders than for the small ones. The re-
construction from a large autoencoder is visualized in Figure 4.5, where we see the
output to be very similar to the target.

Table 4.3: Results on MNIST for large networks and unperturbed input. The
values are the mean of 10 runs with standard deviation in parentheses. The standard
deviation is excluded if smaller than 0.005.

Discriminator Autoencoder
Test Training Test Training

ρ Accuracy Loss Loss Loss δdiscr

Baseline - 56.17 (3.80) 8e-5 8.37 (0.40) 7.78 (0.39) -
Pretrain. - 84.82 (1.91) 8e-5 - - -
ADMM 1 83.12 (2.62) 6e-3 9.20 (0.56) 8.66 (0.55) 0.04
ADMM 0.1 85.37 (1.17) 2e-3 8.52 (0.50) 7.92 (0.50) 0.11 (0.01)
ADMM 0.01 79.66 (2.17) 2e-3 8.13 (0.34) 7.60 (0.33) 1.93 (0.21)
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Figure 4.5: Reconstruction made by the autoencoder compared with its target,
for the large network with ρ = 0.1. Output values smaller than 0 and larger than 1
are cropped.

Consider a single run of ADMM for the large network with penalty ρ = 0.1, shown
in Figure 4.6, we see that the norm of the gradient was much smaller for the discrim-
inator than for the autoencoder. For the first 50 iterations, the gradient norm of the
discriminator increased, but as the training loss started decreasing, also the gradient
norm decreased. At this point, also δdiscr shifted from increasing to decreasing. As
the discriminator gradient went smaller, it seems that the discriminator solution
followed the autoencoder’s.
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Figure 4.6: Change of four different measurements over one run of training for
the large networks with ρ = 0.1. The x-axis on each plot is ADMM iterations.
The training loss of both autoencoder and discriminator is in the top left plot. The
test accuracy is in the top right plot. The plot in the bottom left corner shows the
squared norm of the gradient of the loss function for the consensus parameters, i.e.,∥∥∥∇θdiscr

L̃discr

∥∥∥2

2
and

∥∥∥∇θencL̃autoe

∥∥∥2

2
. The lower right plot shows the difference between

the squared norm of the difference between the parameters and the consensus values,
e.g., δdiscr and δenc. At the beginning of each ADMM iteration we have that δdiscr =
δenc, but these values are only tracked in the end of each ADMM iteration.

Looking at the dual measures in Figure 4.7, we see that the norm of the dual vector
had a peak around the top of the norm of the gradient for the discriminator in Figure
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4.6. Although the values of the dual variables are smaller, they have not necessarily
converged, as we see in the two plots to the right in Figure 4.7.
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Figure 4.7: Some plots of the change of dual variables during one run with the
large network on MNIST. The horizontal axis in the diagrams represent ADMM
iterations. Left plot: norm of vector of dual variables. Middle plot: dual variable
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4.2.2 ADMM with Perturbed Input
Analogous experiments with ADMM as in the previous section were also performed
with a perturbed input. For the small network, the discriminator had worse test
accuracy and training loss than the baseline implementation for all penalty values,
and also much worse than pretraining penalties.

Table 4.4: Results with ADMM and perturbed input. The values are the mean of
10 runs with standard deviation in parentheses. The standard deviation is excluded
if smaller than 0.005. The test loss of autoencoders trained with perturbed input is
evaluated with unperturbed input.

Discriminator Autoencoder
Test Training Test Training

ρ Accuracy Loss Loss Loss δdiscr

Baseline - 76.59 (1.00) 0.08 (0.08) 22.05 (0.48) 23.91 (0.49) -
Pretrain. - 78.66 (1.39) 0.03 (0.02) - - -
ADMM 1 75.13 (1.04) 0.12 (0.07) 22.60 (1.51) 24.48 (1.27) 0.12 (0.03)
ADMM 0.1 77.72 (1.07) 0.20 (0.06) 21.23 (0.55) 23.35 (0.42) 0.41 (0.05)
ADMM 0.01 77.013 (1.69) 0.11 (0.10) 22.12 (0.69) 24.08 (0.54) 3.80 (0.63)

With the large networks, see Table 4.5, the best performing penalty was ρ = 0.1.
It was somewhat better than the same experiments with unperturbed input, but
worse than unsupervised pretraining with perturbed input. Both discriminator and
autoencoder training losses were smaller for smaller penalty values ρ.
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Table 4.5: Results for the large networks with perturbed input. The values are the
mean of 10 runs with standard deviation in parenthesis. The standard deviation is
excluded if smaller than 0.005. The test loss of autoencoders trained with perturbed
input is evaluated with unperturbed input.

Discriminator Autoencoder
Test Training Test Training

ρ Accuracy Loss Loss Loss δdiscr

Baseline - 77.50 (1.78) 1e-3 10.31 (0.27) 12.49 (0.20) -
Pretrain. - 86.26 (1.76) 3e-3 - - -
ADMM 1 85.24 (1.55) 0.04 (0.02) 11.43 (0.33) 13.79 (0.29) 0.31 (0.02)
ADMM 0.1 86.20 (1.99) 0.02 (0.01) 10.56 (0.28) 12.91 (0.17) 1.47 (0.02)
ADMM 0.01 81.55 (3.48) 0.02 (0.01) 10.56 (0.11) 12.87 (0.05) 15.34 (0.25)
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Discussion

Overall, there are tendencies that the proposed method of utilizing ADMM improves
generalization of the classification—which is the aim for semi-supervised learning.
The results are quite far from state-of-the-art semi-supervised results, but we should
keep in mind that this distributed setup may be a more difficult problem. Also, the
ideas are probably not refined to its greatest potential by this work, but this work
has increased the understandings of the method.

5.1 Characteristics of the Algorithm
Supported by both the analysis in Section 3.3 and the experimental results, the
smaller choice of penalty ρ, the larger oscillations of parameter values arise during
the training. The damping of the oscillation will also be smaller, why approaching
a small parameter gap takes longer time with a smaller penalty. Selecting this
hyperparameter ρ will be a trade-off between approaching primal feasibility and a
low training loss. Extremes in either direction of these aspects will lead to poor
generalization—the best choice will be somewhere in between. When the penalty is
too large, primal feasibility is approached rapidly—but after this point the movement
is slow and only minor changes of the parameters can be achieved. For a small
penalty, the sub-problems are instead quickly optimized to a low-cost solution, but
they may have approached parameter values relatively far away from each other.
Essentially, this trade-off is about keeping the manifold representation somewhat
similar during the whole training, but still allow some deviation.

This trade-off is manifested for the large networks in Table 4.3 and Table 4.5. For
the best performing penalty ρ = 0.1 the training loss was higher than for ρ = .01,
and δdiscr was larger than ρ = 1. This suggests that a too large penalty hurts the
training loss too much, while a too small penalty is too weak to force the parameters
to attain the same values. These characteristics can not be seen in any of the other
experiments, perhaps due to the fact that the difference of autoencoder training
loss is not affected in the same manner. But probably, we could replicate this
phenomenon with an even larger penalty ρ for these networks.

From an optimization perspective, we cannot really expect the algorithm to approach
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primal feasibility. There will always be some prediction error, and the gradient will
more or less always cause small changes of the parameters in different directions.
Therefore, there will be no guarantee that the gap between primal variable values
always decreases, as we saw in Figure 4.2. Although we have seen in the experiments
that parameters are approaching well-generalized solutions and primal feasibility
over the course of training, there will always be this kind of uncertainty. Therefore,
it is probably difficult to construct a general stopping criteria only based on training
metrics. Since we would like to use as much as possible of the few labeled data for
training, avoiding the need for labeled test data is desired. However, the scenario
for which the algorithm is intended includes a lot of unlabeled data, and we can
probably afford an unlabeled test set. Thus, a possible stopping criterion would be
when the autoencoder test loss stops decreasing.

5.2 Comparing with Other Semi-Supervised
Methods

From the experiments, we are quite far from generalization errors achieved by high
performing methods that inspired this work, e.g., the Ladder network and varia-
tional autoencoders with corresponding 0.99 and 0.97 test accuracy on permutation
invariant MNIST with 100 labeled observations and 60000 unlabeled observations,
respectively. But the experiments revealed that the proposed ADMM method can
result in generalizations that at least are in parity with the more basic approach of
unsupervised pretraining. For the examples with the half-moons, pretraining was
somewhat helpful but did not always work, while ADMM produced very good re-
sults. The reason why pretraining did not work as well as in the half-moons case
is probably that the low-costs solutions of the encoder and the discriminator can
look very different, even though the manifold assumption should hold. For MNIST,
it seems that pretraining resulted in encoder solutions that were useful for the dis-
criminator, probably thanks to the spatial similarity for digits of the same label.

Even though the results of the experiments are not remarkably better than unsuper-
vised pretraining for MNIST, there may be reasons for using ADMM. ADMM can
be employed for multiple machines simultaneously, while in pretraining, we must
wait twice as many epochs until both the autoencoder and the discriminator have
finished training. Also, the performance comparison between the two methods can
be criticized. Clearly, we get at least similar results for MNIST when performing
ADMM and unsupervised pretraining for the same number of SGD steps. These
results would probably be different if this number of fixed SGD steps was different,
especially for the large networks. The large network has a large representational
capacity, meaning it may also be prone to overfitting. When pre-training with the
large network, the classification ends up in a low training loss and a decent gener-
alization. This suggests that the encoder output from the pretraining is, at least
almost, linearly separable for the labeled training data. If the pretraining went on
for longer, the encoder output would probably be an overfitted representation and
no longer a very helpful initialization for the discriminator.
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Comparing the small and large networks of MNIST, we see a couple of interesting
points. First, in Table 4.3 and in Table 4.2, the baselines achieved almost the same
discriminator test accuracy regardless of network size. For the small networks, the
effect of pretraining was much larger for the unperturbed than for the perturbed
input. In contrast, pretraining had a significantly positive impact for both unper-
turbed and perturbed input for the large network. Similar patterns arose for ADMM
in Table 4.5: with a perturbed input it actually performs worse than the baseline.
The training loss for the small perturbed networks were still quite large, suggesting
that more iterations would be needed. However, the training loss went down to
substantially smaller values for the large networks and ‖δdiscr‖2 were smaller. The
concern about not using the larger network would be that it is more prone to over-
fitting, but the experiments indicate that a too small network may slow down the
training with this algorithm. Answering whether the combination of discrimina-
tor and autoencoder will be sufficient for avoiding serious overfitting would require
more, long-running experiments.

5.3 Extension to Other Learning Problems
The adjustments of ADMM proposed in this work should not be restricted to this
semi-supervised problem. In fact, one may believe it may be applicable to distributed
deep learning in general. An interesting extension from the experiment setups of
this work would be to include more MLPs in the distributed system. With the
permutation layer, we could include more discriminators with different classification
labels. Therefore, this method should also be applicable in transfer learning, which
could also be mixed with a semi-supervised problem. One hypothetical example:
consider a large data set with images of cars, where most of them are unlabeled.
Some of the labeled images are classified by the color of the cars, while other are
classified by brand. We use all unlabeled data for training an autoencoder, but also
two discriminators with different labels trained on separated machines.

5.4 Future work
We believe that this work has contributed with some insights in what implementing
ADMM for this kind of multi-tasking neural networks end up in. Still, there are
much potential improvement and further investigations possible to do as a follow-up
to this work. The hyperparameters of the algorithm, for example the ADMM penalty
ρ and the factors of the two loss functions in the objective function (3.4), have not
been extensively investigated in this work. Both of these may be subject for further
analysis and experimental evaluation. In this work, the limitations were to only
consider a simple autoencoder and to not take much account into communication
efficiency. Reviewing the algorithm proposed here with these aspects as the main
concern would be a possible way towards a better, distributed, semi-supervised
method.
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5.4.1 Setting Factors of the Loss Functions
In Section 3.1, the reasoning was that maximizing the log-likelihood suggests that
the two sub-problems, the loss of the discriminator and the autoencoder, should be
multiplied with a factor dependent on the sizes of the labeled and the unlabeled
data sets. Since the assumed distributions are discrete and continuous, respectively,
this reasoning is not without remarks. If both model outputs were assumed as either
discrete or continuous distributions, the argumentation would be less questionable,
and factors should be determined in this way.

However, in this case with both discrete and continuous likelihoods, it is not easy
to come up with a mathematical explanation on how the factors should be deter-
mined. Since the amount of unlabeled data is much larger than the labeled, the
factor of the autoencoder loss should probably be larger than the discriminator loss,
but exactly what factors is probably subject for experimental evaluation. In these
experiments we have seen that setting the factors as suggested resulted in a vastly
larger magnitude of the gradient for the encoder than for the discriminator. An
easy way to shift this is by selecting other factors of the training loss functions. A
few observations with a smaller factor of the autoencoder loss suggest that this can
lead to the opposite scenario: the discriminator becomes the dominant force and the
encoder adapts its solution to this one. An interesting experiment would be to find
some factor in-between, where it is more difficult to distinguish which of the loss
functions that is favored by the ADMM implementation. Also, we should not be
restricted to use the same factors over the course of training, why another extension
would be to vary the factors.

5.4.2 Varying the penalty ρ

By this work, we have gained insights in the consequences of selecting the ADMM
penalty ρ, when ρ is constant over the ADMM iterations. However, there have
been extensions of ADMM with a varying penalty ρ such as in Xu et al. (2017).
The main benefit is a faster algorithm, which clearly would be of interest in the
distributed setting we consider. In this work, we have seen that the best value of ρ
depends on the network architecture and the problem. Possibly, the magnitudes of
the gradients for the primal sub-problems are contributing factors on the best value
of the penalty ρ. Another observation from this work is that the magnitude of the
primal gradient for the discriminator decreases much faster than for the encoder. If
these magnitudes affect what penalty ρ we should use, this should be adjusted over
the course of training. Therefore, implementing ADMM with a varying, possibly
self-adapting, penalty ρ would be an interesting following work.

5.4.3 Using other unsupervised models
A limitation of this work was to only use simple autoencoders as the unsupervised
model. Indeed, we have seen that our implementation is far from variational autoen-
coders and the Ladder network. However, future work does not need be limited to
not utilize such more advanced models. Since the probabilistic frameworks of these
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models differ somewhat from our motivation in Section 3.1, the problem may look
a bit different and possibly some adjustments will be necessary. However, if such
an implementation turns out to be successful it would be interesting to see if the
parallelization enabled with ADMM can improve efficiency. For example, one dis-
advantage of the Ladder network is that it is more resource-demanding than purely
supervised methods. If almost as good results could be achieved by using a Ladder
network in our proposed algorithm with ADMM, the parallelization offered with
our approach may be useful for reducing the training wall clock time. Also, when
the distributed approach is used for privacy-protecting reasons, the method may be
useful despite the training time can not be reduced with the distributed approach
since centralized training is then not an option.
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6
Conclusions

This work has focused on how ADMM can be applied to multi-tasking neural net-
works by analyzing a semi-supervised problem where an autoencoder and a discrim-
inator are trained together. In the proposed algorithm, the minimization of the
Lagrangian sub-problems are performed inexactly with SGD, where the number of
SGD steps increases linearly with the ADMM iterations. Using a simpler case with
convex quadratic functions, and by experiments with the MLPs, we have shown
that this scheme results in damped oscillations of parameters over the course of
training. The oscillations will be larger when the penalty parameter ρ in ADMM
is small. Smaller values of ρ results in a large amplitude and wavelength, but also
small damping. Therefore, with small values of ρ it takes more ADMM iterations
until the parameter values for the discriminator and autoencoder are close to each
other. Too large values of ρ will potentially slow down the decrease of training loss,
why we would like ρ neither too small nor too large. With an appropriate choice of
the penalty ρ, the algorithm can be used for improving the generalization of the dis-
criminator. For experiments on MNIST, the results are similar to what is achieved
by unsupervised pretraining, with the advantage that training with ADMM can be
performed in a distributed manner. Further, we have showed that this algorithm
can work in situations when the effect of unsupervised pretraining is weak, as for
the half-moons experiments.
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