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Evolutionary dynamics of spatial games
Olle Ekesryd
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Game theory is a subject that can be applied to many fields of study, for instance
biology and economics. In this report, we look at two known games in game theory,
Prisoner’s dilemma and Hawk dove. In contrast to previous research on these two
games, every agent is located in two-dimensional space on the unit square. This
spatial case on game theory changes the dynamics of the games. For example, we
found that cooperating is a superior strategy in Prisoner’s dilemma, for some combi-
nations of parameters. For reference, in the normal Prisoner’s dilemma, the strategy
defect dominates the strategy to cooperate. It is also found that the initial state
of the simulations has a big impact on the results obtained. The simulations made
are computationally demanding. An attempt was therefore made to make approxi-
mations that could replace the spatial model. The result from the approximations
shows that it is not good enough to replace the spatial model. However, steps has
been made that can help future researchers to make an approximation that works
well.

Keywords: spatial game theory, evolutionary dynamics, Prisoner’s dilemma, Hawk
dove
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1
Background

The concept of game theory was invented by John von Neumann and Oskat Mor-
ganstern, with the goal to design a model to study human behavior [Now06]. Game
theory is a widely used concept, with applications in for instance economy and
biology. In the most simple form of game theory, there are two players and two
strategies. Each player will get rewarded depending on which strategies are played.
This means that there are 4 different combinations of rewards, and these combina-
tions are often represented in a payoff matrix. If no player can benefit from changing
their strategy, the state is called Nash equilibrium. The concept of game theory can
be expanded to evolutionary game theory. In evolutionary game theory, a group
of players are interacting in a game. Each individual have a fixed strategy, and
will receive a payoff, depending on the interactions with the other players. A higher
payoff will lead the a higher chance of reproduction, similar to the process of natural
selection.

Altruistic behavior can lead to advantages in the evolutionary process. This is easy
to confirm by looking at how some animals behave, or most clearly how humans
behave. It is therefore interesting to look at how altruistic behavior plays out for
evolutionary dynamics. For a starter, it is well know that altruistic behavior is not
appropriate for a simple version of a social dilemma. However, for more sophisti-
cated models, altruism can be favorable. This has been looked at in several papers
[Min98][Chr04]. In these papers, they analyse the conditions for altruism to prevail,
when the agents are placed on a two dimensional grid. One of their results was that
the benefit to others by altruistic behavior divided by the cost of altruism has to be
a certain value, for altruism to be a successful strategy.

1.1 Evolutionary dynamics
In a game with only two strategies A and B, the payoff function can be written as
a payoff matrix:

A B
A a b
B c d

Table 1.1: A and B are the two different strategies. A gets a in payoff if faced
against A, and b in payoff if faced against B. B gets c in payoff if faced against A,
and d in payoff if faced against B.
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1. Background

By introducing xA and xB, the frequency of respective strategy in the population,
we can write the expected payoff for A-players and B-players as

fA = axA + bxB (1.1)

fB = cxA + dxB. (1.2)

The equations hold true for the non-spatial case, with the assumption that the
probability of interacting with an A agent is xA, and xB for B agents. Furthermore,
we introduce the rate of change for xA and xB, ẋA and ẋB, with the following
equations [Pet78]:

ẋA = xA(fA(xA, xB)− Φ) (1.3)

ẋB = xB(fB(xA, xB)− Φ) (1.4)

where Φ is the average fitness for the agents, which can be written as Φ = xAfA(xA, xB)+
xBfB(xA, xB). As we only have two strategies, xA +xB = 1. With this information,
we can rewrite equation 1.3 and 1.4 to one equation, with xA = x and xB = 1− x

ẋ = x(1− x)(fA(x)− fB(x)). (1.5)

With the payoff matrix shown in table 1.1, we can rewrite equation 1.5 to

ẋ = x(1− x)[(a− b− c+ d)x+ b− d] (1.6)

where the solution for ẋ = 0 is shown in equation 1.7. This solution is interesting,
because ẋ = 0 is a stable equilibrium.

x∗ = d− b
a− b− c+ d

(1.7)

There are in total 5 different types of dynamics of 1.6, which depends on the entries
of the payoff matrix.

(i) If strategy A always is superior to strategy B, as it is when a > c and b > d,
we say that A dominates B. This means that if two players are facing each other,
it is always better to play A, no matter what the other player are playing. Another
way to see it, is that the average payoff for an A agent will always exceed that of
a B agent. Only one of the inequalities a > c and b > d has to be strict for A to
dominate B

(ii) B dominates A, if a < c and b < d. This is a mirror image to case (i). As in
case (i), only one of the inequalities has to be strict.¨

(iii) If a > c and b < d, then A and B are bistable. If two players where to face
each other, the highest fitness is obtained by playing the same strategy as the other
agent. For selection dynamics, the initial condition is crucial. If the frequency of
A-players at t = 0 is less than that of the unstable equilibrium shown in equation
1.7, x(0) < x∗, the system will converge to only B. If x(0) > x∗, the system will
converge to only A.
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1. Background

(iv) if a < c and b > d, A and B stably coexist. Here, the highest fitness is obtained
by playing the opposite strategy as the opponent does. The equilibrium at x∗ is in
this case stable.
(v) If a = c and b = d, A and B are neutral. If two players where to face each other,
regardless of the choice of strategy, both players would end up with the same payoff.
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1. Background

1.2 Prisoner’s dilemma
Two criminals carry out a crime and gets arrested for it. They are taken to an
interrogation room by the police and get questioned one by one, without knowing
how the other criminal will act. They both have two options, remain silent or
confess. If both remain silent, they get 1 year in prison each. If one remains silent
and one confess, the person who remained silent gets 10 years, while the one who
confessed goes free. If both confess, they get 7 years each.
Prisoner’s dilemma is an example in game theory where the rational choose is to not
cooperate. However, if no one cooperates, the average payoff becomes the worst.
As we saw in section 1.1, this is an example where the strategy to defect dominates
the strategy to cooperate. The generalised payoff matrix for Prisoner’s dilemma is
shown in Table 1.2.

cooperator defector
cooperator b− c −c
defector b 0

Table 1.2: Payoff matrix for Prisoner’s dilemma

where b is benefit for others by remaining silent and c is the cost of remaining silent.
The payoff matrix can be made non-negative, by adding c to each element. This
results is the adjusted payoff matrix shown in Table 1.3

cooperator defector
cooperator b 0
defector b+ c c

Table 1.3: Adjusted payoff matrix for Prisoner’s dilemma

For Prisoner’s dilemma, the replicator equation has two fixed points. One stable
equilibrium when every agent is a defector, and one unstable equilibrium when all
agents are cooperators.
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1. Background

1.3 Hawk dove
In the Hawk dove game, two birds compete over a resource b. If a dove meets another
dove, they split the resource and get b

2 each. If a dove meets a hawk, the hawk gets
the whole resource and the dove gets nothing. Lastly, if a hawk meets a hawk, they
have to fight for the resource with a total cost c, and they both end up with b−c

2 .
The payoff matrix for the Hawk dove game is shown in Table 1.4.

Hawk Dove
Hawk b−c

2 b
Dove 0, b

2

Table 1.4: The payoff matrix for the Hawk dove game

If b > c, Hawk dove shows similar dynamics as Prisoner’s dilemma. It is therefore
often assumed that c > b. If the opponent plays hawk, the highest fitness is obtained
by playing dove. If the opponent plays dove, the highest fitness is obtained by playing
hawk, under the assumption that c > b. This is equal to case (iv) in section 1.1.
The payoff matrix can be made non-negative, by adding c

2 to each element. By
doing this, we get the adjusted payoff matrix shown in Table 1.5

Hawk Dove
Hawk b

2 b+ c
2

Dove c
2 ,

b+c
2

Table 1.5: Adjusted payoff matrix for the Hawk dove game

We can use expression for ẋ, shown in equation 1.7, to classify the fixed point. We
have two unstable equilibriums: one when all agents are doves, and one when all
agents are hawks. Furthermore, ẋ will be equal to zero when x = ( b+c

2 )−(b+ c
2 )

( b
2 )−(b+ c

2 )−( c
2 )+( b+c

2 ) =
b
c
, where x is the frequency of hawks. Note that the classifications of the fixed points

are based on the assumption that c > b.
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1. Background

1.4 Fixation probability
Evolution in finite population that is stochastic, can be described with the Morans
process. In each time step, and individual is selected for reproduction, with a prob-
ability proportional to the individuals fitness. The offspring will replace an random
individual in the population, which means that the population size is constant.
The individuals will have the same average lifespan, but individuals who has higher
fitness will have a higher chance to reproduce.
In the Moran process when the dynamics are stochastic, one has to characterise
the dynamics in more ways than just listing the fixed points. One such measure
is the fixation probability. Considering a population of two types of agents, A and
B. The probability that all A or B takes over the population is called the fixation
probability for A or B. Equation 11 in [Arn07] gives the following formula for the
fixation probability.

φk =

∑k−1
i=0 Πi

j=1
P −

j

P +
j∑N−1

i=0 Πi
j=1

P −
j

P +
j

(1.8)

Where φk is the fixation probability for agents of type A, k is the number of agents
of type A at t = 0, N is the population size, P+

j is the probability that the number
of agents of type A will increase from j to j + 1, and P−j is the chance that the
number of agents of type A will decrease from j to j − 1. P+

j is given by

P+
j = (1− w + wπA)j

(1− w + wπA)j + (1− w + wπB)(N − j) ·
N − j
N

(1.9)

where πA is the fitness for an agent of type A, πB is the fitness for an agent of type
B and w is a weight factor, that has to do with weak and strong selection. P−j is
given by

P−j = (1− w + wπB)(N − j)
(1− w + wπA)j + (1− w + wπB)(N − j) ·

j

N
. (1.10)

Note that (N − j) is the amount of agents of type B. The first part of P+/−
j is the

chance that an agent of type A or B will be chosen for reproduction, and the second
part is the chance that an agent of type B or A will be removed.

To calculate the fixation probability, the fraction P −
j

P +
j

has to be calculated. This is
done by dividing equation 1.10 by equation 1.9.

P−j
P+

j

= 1− w + wπB

1− w + wπA

(1.11)

8



1. Background

1.5 Spatial effects
Changing the environment to spatial from non-spatial creates interesting effects. In
the book Evolutionary Dynamics - Exploring the Equations of Life [Now06], spatial
effects in Prisoner’s dilemma are explored. Note that their game setup is not the
same as in this report. It does however give an indication of what can happen in
the spatial case.

Figure 1.1: Picture taken from the book "Evolutionary Dynamics - Exploring the
Equations of Life", [Now06].

In figure 1.1, we can see a brief explanation of their spatial model. The model
consists of a grid, where each individual interacts with its 8 neighbors. They go on
to create some simulations of this. For the simulations, they use the following payoff
matrix

C D
C 1 0
D b ε

where C is the strategy to cooperate, D is the strategy to defect and ε is a small
value greater then zero. They do simulations for different values of b, on a 100 by
100 grid. For b < 1.55, a majority of the cells played C and for b > 1.65, a majority
played D.
This result is interesting, because we saw in the non-spatial case that the strategy
to defect dominates the strategy to cooperate. In the spatial case however, we saw
that in some cases, the best strategy is to cooperate.
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2
Method

2.1 Simulation setup
In our spatial model, every individual is placed on a two dimensional plane. This
plane is a square, with the side lengths 1. It is not possible for an individual to be
outside this square. Before the Morans process is started, every individual is given
a position in the square. The positions are chosen uniformly at random for each
individual.

We will now introduce all the model variables. There are two variables that deter-
mine the outcome of an interaction on a given distance. For Prisoner’s dilemma,
these are benefit(b) and cost(c), where b > c. The payoff for the different scenarios
in Prisoner’s dilemma are shown in Table 1.3. For Hawk dove, the two variables are
the value of the resource(b) and the cost of fight(c), where c > b. The payoff for the
different scenarios are shown in Table 1.5.

The variable that determines how far away an agent places its offspring is called dRD,
short for replicate distance. dRD can vary between 0 and 1√

2 , because the furthest
distance from an individual placed at (0.5, 0.5) is 1√

2 . The angle that the offspring
is placed at is uniformly random chosen over the angles that puts the offspring in
the 1× 1 square.

dL is a variable that determines how much an individual interacts with other indi-
vidual. An interactions effect on an individuals fitness is given by a · e

d
dL , where d is

the euclidean distance between the two individuals in the interaction, and a is the
outcome taken from the relevant payoff matrix.

In each iteration of the Morans process, every individual is moved from its position
with a euclidean distance dRM , short for random movement. As for dRD, dRM can
vary between 0 and 1√

2 , and the angle is random chosen for each individual so that
the individual is in the 1× 1 square.

2.2 The Morans process
When a population has been initialised the Morans process will be executed in
iterations. It will run until the max number of iterations is reached, or until all
individuals are of the same type. the Morans process consists of 3 steps.

11



2. Method

i) An individual is removed. The individual that will be removed is chosen randomly.
This is shown in figure 2.1, where a population of 11 individuals has been initialised,
and one of the individuals has been chosen to be removed.

Figure 2.1: Step 1 in the the Morans process. The blue dots represents agents
with strategy A, and the red dots represents agents with strategy B. The agent with
the cross has been chosen to be removed.

ii) An individual is replicated. The probability that a individual is replicated is
equal to that individuals fitness divided by the total fitness of the population. This
probability can be written as

1− w + w · Πk∑N
i=1(1− w + w · Πi)

(2.1)

where N is the population size and Πk is the payoff for agent k. Πk can be written
as

Πk =
N∑

i=1,i 6=k

e
−dki

dL pki (2.2)

where dik is the distance between agent i and agent k and pki is the payoff for agent
k while interacting with agent i.

12



2. Method

The replicated individual is placed at an euclidean distance dRD from the individual
that was chosen for replication, and the replicated individual will also be of the
same type as the individual that was chosen for replication. The angle at which the
replicated individual is placed from the individual chosen for replication is chosen
uniformly at random, between all angles that will place the new individual in the
one by one square. This is shown in figure 2.2.

(a) Step 2a. The green agent has been
chosen for replication.

(b) Step 2b. The green agent replicates

Figure 2.2: Step 2. A previous blue agent, green in the figures, has been chosen
for replication. This agent replicates itself and creates another blue agent at the
euclidean distance dRD from itself.

iii) This step only happens if the variable determining the random movement is not
equal to zero, dRM 6= 0. Then all individuals are moved at an euclidean distance
dRM , and as above, the angle is random. This is shown in figure 2.3.

Figure 2.3: Step 3 in the Morans process. Every agents moves a euclidean distance
dRM . The faded circles represents the previous positions.

13



2. Method

2.3 Fixation time
The fixation time is defined as the number of iterations in the Morans process it
takes until all agents are of the same type. The fixation time is important in multiple
ways. One important thing is that the time it takes to run the simulations increases
approximately linearly with the fixation time. Because of this, there is a limit of
104 iterations on all simulations.

14



2. Method

2.4 Approximation
In this section we attempt to construct an approximation of the spatial Moran pro-
cess. We proceed by approximating the interaction function by a piecewise constant
function. Instead of previous e

−d
dL , it can be written as a constant IN for d ≤ n and

as another constant If for d > n. n is chosen such as e
n

dL = 0.5→ n = −ln(0.5) · dL

Figure 2.4: The red curve is interaction strength on the form e
−d
dL . The blue line

is the approximation of the interaction strength.

In is chosen as the average over the interval [0, n]. The average can be can be
calculated to

In =
∫ n

0 e
− d

dL dd

n
= −0.5
ln(0.5) . (2.3)

Calculating If introduces a new problem, which is deciding an upper limit on the
distance when taking the average. The maximum value of the upper limit that
would be reasonable is

√
2, as that is the largest possible distance between any two

agents in the one by one square. However, as the cases where the distance is close
to
√

2 are rare, a better result might be acquired by taking an upper limit less than√
2. For simplicity reasons, the upper limit has been chosen to 1 in this report. If

then becomes

If =
∫ 1

n e
− d

dL dd

1− n = dL

1− n(e−
n

dL − e−
1

dL ). (2.4)

Given two types of agents, A and B, the average fitness π̄ for an agent of type A
and B can be written as in equation 2.5 and equation 2.6. π in the formulas stand
for payoffs from the payoff matrices. N̄ij denotes the average number of j agents

15



2. Method

close to an i agent, where close means a euclidean distance less than or equal to n.
F̄ij denotes the average number of j agents far from an i agent, where far means a
euclidean distance greater than n. The average payoffs can now be written:

π̄A = In(πAAN̄AA + πABN̄AB) + If (πAAF̄AA + πABF̄AB) (2.5)

π̄B = In(πBBN̄BB + πBAN̄BA) + If (πBBF̄BB + πBAF̄BA). (2.6)

In equation 2.5 and equation 2.6, there are eight unknown variables. By introducing
two new variables, A and B, which are the number of agents of respective type, we
can come up with the following equations. NAA+FAA = A− 1, because the average
number of close agents added to the average number of agents far away, has to be
equal to the number of agents at any distance, minus one, as the observed agent
has to be excluded. For B, the same argument can be used, NBB+FBB = B − 1.
Also, we can obtain NAB+FAB = B, NBA+FBA = A, with similar reasoning, but
the minus one is gone, because we have two different types of agents. Lastly, we
have that NAB

B
= NBA

A
.

In conclusion, we will end up with three unknown variables, which for example
can be NAA, NBB and NAB. These variables will be approximated for different
configurations in the Result section.
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3
Result

In this section we present results on how the model parameters affect the dynamics
of the model. An example of a simulation of the spatial Moran process is shown in
3.1, where we can see how to agents have clustered together in the plane.

Figure 3.1: the Morans process after 7000 iterations, for Prisoner’s dilemma. The
red dots represents defectors, and the blue dots represents cooperators.

3.1 The fixation probability depends on dL, dRD
and dRM

In this section, results are shown on how the fixation probability and long term
frequency depend on the variables dL, dRD and dRM , for Hawk dove and Prisoner’s
dilemma. This is done by simulating the model for 104 iterations, 1000 times for each
data point and then taking the average. The limit of 104 iterations had to be set,
as it would take to long time to generate the result otherwise. If every run finishes
under 104 iterations, the measurement is labeled as fixation probability. Otherwise,
it is labeled as long term frequency.
The values for the variables that were constant were chosen so that the fixation
probability and long term frequency would change significantly. The values for
Prisoner’s dilemma are show in table 3.1, and the values for Hawk dove are shown
in table 3.2.

17



3. Result

notation value meaning
dL 1 exponential constant
dRD 0.05 replicate distance
dRM 0 random movement
b 30 benefit
c 1 cost
w 1 weight factor
Nc 25 start amount of cooperators
Nd 25 start amount of defectors

Table 3.1: The base case of variables for Prisoner’s dilemma

notation value meaning
dL 1 exponential constant
dRD 0.05 replicate distance
dRM 0 random movement
b 1 benefit
c 2 cost
w 1 weight factor
Nd 25 start amount of doves
Nh 25 start amount of hawks

Table 3.2: The base case of variables for Hawk dove

An exponential curve has also been fitted to the data points for the different cases,
on the form a1e

a2x + a3.

18



3. Result

3.1.1 Prisoner’s dilemma
For Prisoner’s dilemma, the chance that the Morans process will converge before 104

iterations can be approximated to one (see appendix A.1). The y-axis in the results
shown in this section is therefore labeled as a fixation probability. The constant a3
is set to the fixation probability given by equation 1.8. The reason for this is that
when any of the parameters dL, dRD or dRM is infinity, the positions of the agents
does not matter, so it is similar to the non-spatial case.
Below in this section, it is shown how the fixation probability depends on the pa-
rameters dL, dRD and dRM . For dL, an additional figure with logarithmic scale has
been created, to see how small values of dL affects the fixation probability. Nothing
special happens when dRD and dRM are low, so the additional plot has not been
created for those parameters.

Figure 3.2: The blue dots is Prisoner’s dilemma with the parameters: b = 30, c = 1,
dRM=0, runs = 1000, dRD=0.05, iterations=104, w = 1, Nc = 25, Nd = 25. The red
line is a exponential fitted exponential curve on the form a1e

a2x + a3. a1 = 0.597,
a2 = −0.423, a3 = 0.0823.
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3. Result

Figure 3.3: The green dots from figure 3.3 in log scale

20



3. Result

Figure 3.4: The blue dots is Prisoner’s dilemma with the parameters: b = 30,
c = 1, dRM=0, runs = 1000, dL=1, iterations=104, w = 1, Nc = 25, Nd = 25. The
red line is a exponential fitted exponential curve on the form a1e

a2x +a3. a1 = 0.617,
a2 = −8.861, a3 = 0.0823.
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3. Result

Figure 3.5: The blue dots is Prisoner’s dilemma with the parameters: b = 30, c = 1,
dRD = 0.05, runs = 1000, dL=1, iterations=104, w = 1, Nc = 25, Nd = 25. The red
line is a exponential fitted exponential curve on the form a1e

a2x + a3. a1 = 0.589,
a2 = −34.14, a3 = 0.0823.
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3. Result

3.1.2 Prisoner’s dilemma with weak selection
In this section, the result from section 3.1.1 has been replicated, but with w = 0.1
and w = 0.01. Note that the fixation probability is quite similar to when w = 1.

Figure 3.6: Same setup as for in figure 3.3, but w = 0.1 for the green line, and
w = 0.01 for the red line. The green fitted curve has the parameters a1 = 0.6082,
a2 = −0.3995, a3 = 0.0840 and the red line has the parameters a1 = 0.5438,
a2 = −0.3780, a3 = 0.1019.
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3. Result

Figure 3.7: Same setup as for in figure 3.8, but w = 0.1 for the green line, and
w = 0.01 for the red line. The green fitted curve has the parameters a1 = 0.5982,
a2 = −8.6882, a3 = 0.0840 and the red line has the parameters a1 = 0.6072,
a2 = −7.5324, a3 = 0.1019.
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Figure 3.8: Same setup as for in figure 3.8, but w = 0.1 for the green line, and
w = 0.01 for the red line. The green fitted curve has the parameters a1 = 0.4281,
a2 = −34.2487, a3 = 0.0840 and the red line has the parameters a1 = 0.4542,
a2 = −31.2254, a3 = 0.1019.
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3.1.3 Hawk dove
For Hawk dove, the long term frequency is measured by the average amount of doves
after 104 iterations of the Morans process. The reason that long term frequency is
measured instead of fixation probability, is that the fixation time is much higher,
because of the dynamics of Hawk dove. The constant a3 is obtained by setting dL =
∞. By averaging over 2000 runs, the long term frequency was given to a3 = 0.62078.
Using equation 1.8 to calculate the fixation probability, 0.814 is obtained for the non-
spatial case. The reason these two values differ, is that 0.62078 is calculated with
the limit of 104 iterations. After 104 iterations, only 40.8% has converged to either
only doves or only haws. Looking at only the 40.8% that converged, the fixation
probability is 0.819, which is close to the value obtained from equation 1.8.

Figure 3.9: The blue dots are Hawk dove for dL ≥ 1 and the green dots are
Hawk dove for dL ≤ 1. The parameters are: b = 1, c = 2, dRM=0, runs = 1000,
dRD=0.05, iterations=104, w = 1, Nd = 25, Nh = 25. The red line is an exponential
fitted exponential curve to the blue dots on the form a1e

a2x + a3. a1 = 0.233,
a2 = −0.131, a3 = 0.62078.
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Figure 3.10: The green dots from figure 3.10 in log scale

Figure 3.11: The blue dots are Hawk dove with the parameters: b = 1, c = 2,
dRM=0, runs=1000, dL=1, iterations=104, w = 1, Nd = 25, Nh = 25. The red line
is an exponential fitted exponential curve to the blue dots on the form a1e

a2x + a3.
a1 = 0.228, a2 = −3.898, a3 = 0.62078.

27



3. Result

Figure 3.12: The blue dots are Hawk dove with the parameters: b = 1, c = 2,
dRM=0, runs=1000, dL=1, iterations=104, w = 1, Nd = 25, Nh = 25. The red line
is an exponential fitted exponential curve to the blue dots on the form a1e

a2x + a3.
a1 = 0.227, a2 = −20.666, a3 = 0.62078.
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3.2 Fixation time
The fixation time is measured for both Prisoner’s dilemma and Hawk dove, as func-
tion of dL, dRD and dRM . Also, the probability that the the iterations will be below
104 is measured. It turned out that the fixation time for Prisoner’s dilemma is
around 850 iterations in average, almost regardless of the parameters dL, dRD and
dRM . The only exception is when dL is low, where the fixation time goes down to
200 iterations for the measured cases. The result for fixation time for Prisoner’s
dilemma is therefore put in appendix A.1.
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(a) The fraction that converge before
104 iterations, as a function of dL

(b) The average amount of iterations as
a function of dL

Figure 3.13: The results in the two figures comes from the same measurement of
Hawk dove. The parameters are: b = 1, c = 2, dRM=0, runs = 100, dRD=0.05,
w = 1, Nd = 25, Nh = 25.
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(a) The fraction that converge before
104 iterations, as a function of dRD

(b) The average amount of iterations as
a function of dRD

Figure 3.14: The results in the two figures comes from the same measurement of
Hawk dove. The parameters are: b = 1, c = 2, dRM=0, runs = 100, dL=1, w = 1,
Nd = 25, Nh = 25.
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(a) The fraction that converge before
104 iterations, as a funtion of dRM

(b) The average amount of iterations as
a function of dRM

Figure 3.15: The results in the two figures comes from the same measurement of
Hawk dove. The parameters are: b = 1, c = 2, dRD=0.05, runs = 100, dL=1, w = 1,
Nd = 25, Nh = 25.
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3.3 Approximation
In section 2.4, we concluded that with NAA, NBB and NAB can be numerically
approximated. With the values of these three variables, it is possible to simulate
the dynamics much faster than in the spatial Morans proces. It turns out that the
average over many runs of the fractions NAA

A−1 ,
NBB

B−1 and NAB

B
, can be approximated

quite well by a piecewise linear function. An example of this is shown in figure 3.16.

Figure 3.16: The red curve is the average NDD

D−1 over 50 runs. The blue lines are
two different approximated lines to the measured average.

A line can be written on the form A1x+B2. For the first line in figure 3.16, the one
with the high slope, B2 = 0. For the other line in figure 3.16, A1 = 0.
The two lines has to be approximated for each set of parameters. The values of the
lines has been approximated for some sets of parameters values. The result of this
is shown in table 3.3 and table 3.4. In each case in the tables, all the variables are
the same as in section 3.1, except for the change written in the tables. The variable
n that determines the interaction strength is not written in that section however.
For all the cases, n has been set to n = −ln(1

2)dL.
In the tables, N1 corresponds to A1 for the first line and N2 corresponds to B2 for
the second line. AFP is the approximated fixation probability for simulations made
with the approximate method. MFP is the measured fixation probability calculated
with the spatial Morans process. An important thing to note from the tables below,
is that the approximated fixation probability does not match the measured fixation
probability that well.
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setup N1
dd N2

dd N1
hh N2

hh N1
dh N2

dh AFP MFP
dL = 0.1 0.0013 0.2807 0.0010 0.3217 0.0004 0.1777 0.998 0.640
dL = 0.3 0.0025 0.8037 0.0024 0.8250 0.0010 0.6113 0.967 0.738

Table 3.3: Measured values for Hawk dove.

setup N1
cc N2

cc N1
dd N2

dd N1
cd N2

cd AFP MFP
dL = 0.1 0.0024 0.2894 0.0014 0.3369 0.0005 0.2217 0.998 0.88
dL = 0.01 0.00007 0.0051 0.00003 0.0059 0.00001 0.0026 0.900 0.68
dL = 0.3 0.0021 0.8092 0.0017 0.6864 0.0013 0.5437 0.835 0.815

Table 3.4: Measured values for Prisoner’s dilemma.

3.4 Special case of small dL and small dRD
When dL and dRD are small enough, the fixation probability can be determined
largely by looking at the fitness at t = 0. The reason is, that at t = 1, the agent
that was chosen for replication, and the replicated agent, will have very high fitness.
Then at t = 2, the chance that one of those two individuals are chosen for replication
is almost 100%. The same argument can be made for every upcoming iteration,
which means that the individual type that are replicated at t = 0 will be the only
type after enough iterations. This phenomenon is shown in figure 3.17.
Figure 3.17 is made for Hawk dove, but the phenomenon holds true for Prisoner’s
dilemma as well. The x axis in figure 3.17 is initial fitness fraction for doves, which
is the part of the total fitness that comes from the type that the fixation probability
is measured for, which in figure 3.17 is doves.
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Figure 3.17: On the x-axis is the part of the total fitness that comes from doves
at t = 0. The y-axis is the fixation probability for doves. The red line, initial fitness
fraction equal to fixation probability, is just for reference. The parameters are b = 1,
c = 2, total runs=106, dL = 0.00434, dRD = 0.0001, dRM = 0, Nd = 25, Nh = 25.

Denoting the initial fitness fraction for strategy A, FA
0 , we can can write FA

0 as

FA
0 =

∑NA
i=1 ΠA

i∑NA
i=1 ΠA

i + ∑NB
i=1 ΠB

i

(3.1)

where NA is the number of agents of type A at t = 0, NB is the number of agents
of type B at t = 0, ΠA

i is the payoff for for agent i of type A at t = 0 and ΠB
i is the

payoff for for agent i of type B at t = 0.
A way to measure how strong the initial state is related to the fixation probability, is
to measure the mean square error(MSE) between the blue dots and the correspond-
ing initial fraction fitness on the red line, shown in figure 3.17. MSE is calculated
for different combinations of dL and dRD in the following two subsections.

35



3. Result

Another interesting thing occurs when dL is small enough. The initial fitness of the
two agents who are closest to each other will be approximately equal to the total
fitness of all agents. A way to measure this effect is to measure the chance that the
total fitness of one of the agent types is more than 90% of the total fitness, or less
than 10%. This has been done, and is shown for both Prisoner’s dilemma and Hawk
dove, in figure 3.18.

(a) The chance that the initial fitness
for all doves will be less than 10% or
more than 90% of the total fitness as a
function of dL.

(b) The chance that the initial fitness
for all cooperates will be less than 10%
or more than 90% of the total fitness as
a function of dL.

Figure 3.18: Figure (a) represents Hawk dove and figure (b) represents Prisoner’s
dilemma. For Hawk dove, the parameters are b = 1, c = 2, runs = 1000, w = 1.
For Prisoner’s dilemma, the parameters are b = 30, c = 1, runs = 1000, w = 1. In
both cases, there are 25 agents of each type.
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3.4.1 Hawk dove

Figure 3.19: Each square represents the log(MSE) for different combinations of
dL and dRD. The axes are logarithmic, where dL range from 10−3 to 10−2, and dRD

range from 10−4 to 10−0.6. The parameters are: b = 1, c = 2, dRM=0, runs = 104,
iterations=104, Nd = 25, Nh = 25.
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In figure 3.19, log(MSE) was highest when dL = 10−2 and dRD = 10−1.8. It is
worth noting, that even in this case, the initial condition has a big impact on the
fixation probability. In other words, around log(MSE)=-3.5 as we have for these
parameters, are still quite small. As a reference, if the fixation probability would
be 0.5, independent on the initial condition, the log(MSE) would be -2.5. For
fixation probabilities other than 0.5, log(MSE)>-2.5. The case when dL = 10−2 and
dRD = 10−1.8 is shown in figure 3.20

Figure 3.20: The measurement from figure 3.19 where dL = 10−2 and dRD = 10−1.8.
The red line, initial fraction fitness equal to fixation probability, is just for reference.
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3.4.2 Prisoner’s dilemma

Figure 3.21: Each square represents the log(MSE) for different combinations of
dL and dRD. The axes are logarithmic, where dL range from 10−3 to 10−2, and dRD

range from 10−4 to 10−0.6. The parameters are: b = 30, c = 1, dRM=0, runs = 104,
iterations=104, Nc = 25, Nd = 25.

In figure 3.21, log(MSE) was highest when dL = 10−2 and dRD = 10−0.8. As for
Prisoner’s dilemma, also in this case, there is a strong connection between the fix-
ation probability and the initial fitness fraction. The case when dL = 10−2 and
dRD = 10−0.8 is shown in figure 3.22.
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Figure 3.22: The measurement from figure 3.21 where dL = 10−2 and dRD = 10−0.8.
The red line, initial fraction fitness equal to fixation probability, is just for reference.
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4
Discussion

In the result, we presented how the fixation probability depends on the parameters
dL, dRD and dRM , and also how the fixation time depends on these three parameters.
We proceeded with showing an approximation, with could replace the computational
demanding simulation. Lastly, we showed what happens when dL and dRD are
small.

4.1 The fixation probability depends on dL, dRD
and dRM

As dL goes to zero, the fixation probability seems to approach 0.22 for Prisoner’s
dilemma, and 0.47 for Hawk dove. Our explanation to this, is that when dL is small
enough, the only thing that matters for the fixation probability, is the initial state.
In this initial state, only the two closest agents have to be considered, as the payoff
from that interaction will be much bigger then all other payoffs, because of the low
dL. If none of the two agents who are close to each other gets removed in the Morans
process, these agents will most likely be responsible for every upcoming replication.

There are four different combinations of the closest 2 agents. For Prisoner’s dilemma,
these are C−C, C−D, D−C, D−D. Roughly, if C−C is the closest, cooperators
will fixate, and this state has approximately 25% chance of occurring. In any of
the three other state, defectors will fixate. With this argument, 0.22 in fixation
probability for low dL in prisoners dilemma seams reasonable.

We could make the same argument for Hawk dove. According to the argument, when
two doves are close to each other, doves will fixate. If a dove is close to a hawk, the
hawk will have 4 times higher fitness then the dove. With this information, we could
estimate the fixation probability for low dL to 0.25 + 0.2 · 0.5 = 0.35, assuming that
doves have 20% chance of fixating if the two closest agents are a hawk and a dove.
This is quite a bit lower then the measured 0.47 fixation probability. The fixation
probability for the different cases could quite easy be verified with some simulations.

While dL increases, the positions of the agents matter less and less, with the setup
equals the non-spatial case for dL = ∞. This is shown in figure 3.10 and figure
3.3, where dL is plotted against the fixation probability for Prisoner’s dilemma and
against long term frequency for Hawk dove.

As shown in the same figures, the fixation probability as a function dL has a local
maximum. For Prisoner’s dilemma, this local maximum is measured at dL = 10−1.5,
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and for Hawk dove it is at dL = 2. To describe these local maximums, we can imagine
two effects competing with each other, both lowering the fixation probability. One
when dL is low, where only the two closest agents matter, and one when dL is high,
making the dynamics as in the non-spatial case.

In the result in section 3.1, curves on the form a1e
a2x + a3 has been fitted to the

measured points. This exponential curve fits in general quite good to the measured
points. However, only one of dL, dRD or dRM is varied at the time. An interesting
extension would be to fit a function that takes in more then one variable at the same
time. This wasn’t done in the report, because it requires a lot of computational
power.
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4.2 Special case of small dL and small dRD
With the goal to see how the initial condition impacts the fixation probability,
log(MSE) was measured, shown in figure 3.19 and figure 3.21. From the figures, we
can see that in general, log(MSE) increases as dL and dRD increases.

While dL and dRD changes, the fixation time will most likely change as well, which
will impact the log(MSE). If the fixation time is low, the positions in the initial state
will be more alike the positions in the final state, compared to if the fixation time
is high. log(MSE) is therefore expected to increase as the fixation time increases.

The log(MSE) is also affected by the number of runs that was averaged over, and
the number of bins. Ideally, both these parameters would be set to as high as
possible. What limits is the time it takes to create the result, and that time increases
approximately linearly with the number of runs. For the number of bins, it has to
be set so there is enough results in each bin the reflect the average.

In figure 3.17, which shows how the initial fitness affects the fixation probability, we
can see something interesting. If we were to compute the derivative for the blue dots
in the figure, this derivative would vary more for those dots who corresponds the
initial fitness fraction around 0.5, than those dots who corresponds to initial fitness
fraction around 0 or 1. This is true, because initial fitness fraction is less likely to be
around 0.5, than it is to be around 0 or 1. This is also shown in figure 3.18, where
we could see that that when L decreases, the chance that almost all fitness comes
from one type of agent increases.

In many cases when dL is low, for example in the range the range 10−4 to 10−3,
the initial fitness will in many cases come from only one of the agent types. If
we look at the first bin while calculating log(MSE), which is between 0 − 0.1, the
log(MSE) calculation would compare with the average, 0.05. However, the average
of the measured initial fitness fraction in this interval is much lower. Looking at the
raw data, the fixation probability for the cases who end up in this bin is close to 0,
for low dL. The conclusion of this, is that log(MSE) increases when bins decreases.

If dL would become lower than 10−4, the log(MSE) would increase if all other param-
eters stay constant. The reason is, that the chance that the initial fitness fraction
will be around 0.5 decreases so much, so it does not represent the average anymore.
If dL goes to zero, the chance that the initial fitness fraction would be around 0.5
would also go to zero.

4.3 Approximation
Looking at the results of the approximations made in section 3.3, it is apparent that
the approximations does not match the measured values to good. There can be
multiple reasons for this. Two possible reasons is discussed below

First of all, setting e
−d
dL to a function that only has two values may make the approx-

imation not work. It could be tried to change the approximated function to take
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three or more values. However, increasing the values the function can take would
require more fractions like NAA

A−1 to be estimated.

Looking at figure 3.16, where the fraction Ndd

doves−1 measured, we can see the average
of the fraction varies between around 0.2 to 0.4 for the iterations that correspond
to the second approximated line. For a single measurement, the fraction varies
significantly more. Taking the average of many runs, may be a reason why to
approximation doesn’t work.

4.4 Simulation setup
While initialising positions of the agents, every agent are given a position in a 2d
square with the side length 1. The shape of this area is chosen to be a square for
convenient reasons. The shape could for example be chosen to be a circle instead,
which could have an effect on the result. The side lengths of the square should not
matter. Multiplying the side lengths with a constant, q, should be equal to dividing
the parameters dL, dRD and dRM with q.
An interesting change to the area would be to let the edges connect with each other.
In this scenario, an agent on the position (0.5, 0) would be at distance zero to an
agent in the position (0.5, 1). Furthermore, if an agent at position (0.9, 0) where to
move at a distance (0.2, 0), the new position would be (0.1, 0). Doing this, possible
effects from having edges could be removed.
The effects of edges should increase as dL, dRD and dRM increases. For example,
dRD and dRM can not be greater then 1√

2 . If it were to be just below this value,
something special might occur, for example that agents are grouped together in
some areas.
In every simulation, the population size is 50. This was chosen arbitrary, but with
the knowledge that increasing the population size would increase the time it takes
to run the simulations significantly. The dynamics might change if the population
size changes. Increasing the population size would for example decrease the average
distance between agents, which could result in effects not discovered in this report.
A larger population size would also make the dynamics less stochastic.
Furthermore, there are 25 agents of each type in the beginning of each set of it-
erations. This could be changed so that the starting amount of agents are not
equal. The biggest effect of this would probably be that the fixation probability
increases(decreases), if the number of agents the fixation probability is measured on
increases(decreases)

While doing the simulations, a small error occurred which is good to know about.
Looking at the payoff matrices in section 1.3, we can see that when making the
payoff matrix for dove hawk non-negative, c

2 was added to each element. However,
it would be possible to add c−b

2 to make the matrix non-negative, which is smaller
then c

2 . Adding c−b
2 instead of c

2 , would be equal to adding c
2 , and setting w = 2

3 ,
when c = 2 and b = 1. The value of w can be determined by picking two of the
values from the payoff matrix, and the condition that the fraction between them
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has to be equal. For example, we can pick b
2 and c

2 from table 1.5. The fraction
is

b
2
c
2

= b
c

= 1
2 . In the case where we only add c

2 to make it none negative, we get
1−w+w∗0

1−w+w∗ c−b
2

= 1−w
1−w

2
. For this fraction to be equal to 1

2 , w has to be 2
3 . w = 2

3 will be
obtained regardless of the choice of elements from the payoff matrix.
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A
Appendix

A.1 Prisoner’s dilemma fixation time
¨

(a) The fraction that converge before
104 iterations as a function of dL.

(b) The average amount of iterations as
a function of dL.

Figure A.1: The results in the two figures comes from the same measurement.
The parameters are: b = 30, c = 1, dRD=0.05, runs= 100, dRM=0, w = 1, Nc = 25,
Nd = 25.
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(a) The fraction that converge before
104 iterations as a function of dRD

(b) The average amount of iterations as
a function of dRD

Figure A.2: The results in the two figures comes from the same measurement. The
parameters are: b = 30, c = 1, dRM=0, runs= 100, dL=1, w = 1, Nc = 25, Nd = 25.
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(a) The fraction that converge before
104 iterations

(b) The average amount of iterations as
a function of dRM

Figure A.3: The results in the two figures comes from the same measurement.
The parameters are: b = 30, c = 1, dRD=0.05, runs=100, dL=1, w = 1, Nc = 25,
Nd = 25.
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