
DF

Attention on the road!
Multi-object detection in the radar domain leveraging deep
neural networks

Master’s thesis in Master Engineering Mathematics

Peter Svenningsson

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Attention on the road!

Multi-object detection in the radar domain leveraging deep neural
networks

Peter Svenningsson

DF

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2020

Attention on the road!
Multi-object detection in the radar domain leveraging deep neural networks
Peter Svenningsson

© Peter Svenningsson, 2020.

Supervisors:
Samuel Scheidegger, Gothenburg Research Center, Huawei Technologies Sweden AB
Hossein Nemati, Gothenburg Research Center, Huawei Technologies Sweden AB

Examiner:
Marina Axelson-Fisk, Department of Mathematical Sciences, CTH

Master’s Thesis 2020
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Attention on the road!
Multi-object detection in the radar domain leveraging deep neural networks
Peter Svenningsson
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Autonomous driving and advanced driver-assistance systems require the perception
of the surrounding environment. A subtask in perception is the detection and clas-
sification of objects in the environment, commonly referred to as object detection.
To aid in this task an autonomous system is outfitted with a sensor suite which
commonly include camera, LiDAR and radar sensor modalities.

The contribution of this work is the construction of a novel object detection pi-
pline using a sensor suite of five radar sensors which are capable of detecting objects
in a complete field of view. The model constructed is an end-to-end deep learning
model which utilizes graph convolutions over radar points to generate a contextual-
ized representation of the sensor data.

It is shown that the model presented is able detect the most commonly occurring
classes in the dataset and performs particularly well on objects in motion. It is ex-
plored why the model performs poorly on the uncommon classes which stems from
limitations in the non-maximum suppression algorithm as well as the low efficacy of
the object classifier.

Keywords: Object detection, Radar, Automotive, Geometric deep learning, Atten-
tion, nuScenes.

v

Acknowledgements
I thank the members of the Huawei R&D Gothenburg office for their continued sup-
port during this project. In particular, I would like to emphasize the encouragement
and expertise provided by Samuel Scheidegger, Hossein Nemati as well as the fac-
ulty of the department of mathematical sciences Marina Axelsson-Fisk and Johan
Jonasson. I also thank my colleagues Di Xue and Peizheng Yang for the camaraderie
and their continued interest in the work.

Peter Svenningsson, Gothenburg, 2020

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim . 2
1.3 Limitations . 2
1.4 Previous work . 2

1.4.1 PointNet . 3
1.4.2 Point-GNN . 4
1.4.3 Object detection for radar tensor data 4

2 Theory 5
2.1 Radar signal processing . 5

2.1.1 FMCW radar . 6
2.1.2 Radar data tensor . 6
2.1.3 Radar point generation . 7

2.2 Deep neural networks . 8
2.2.1 ANN . 9
2.2.2 Optimizer . 10
2.2.3 Loss functions . 10

2.3 Encoder-decoder architecture . 11
2.3.1 Geometric deep learning . 12
2.3.2 Message passing . 12
2.3.3 Graph attention networks . 13

2.4 Object detection . 14

3 nuScenes dataset 17

4 Methods 21
4.1 Pre-processing . 21
4.2 Data augmentation . 22
4.3 Model architecture . 22

4.3.1 Graph encoder . 23
4.3.2 Attention encoder . 24
4.3.3 Mixed encoder . 25
4.3.4 PointNet++ encoder . 25
4.3.5 Decoder . 25

4.4 Loss functions . 26

ix

Contents

4.4.1 Optimizer . 27
4.5 Non-maximum suppression . 27
4.6 Performance metrics . 28

4.6.1 Average precision . 28
4.6.2 Localization metrics . 29

5 Results 31
5.1 Quantitative results . 31

5.1.1 Graph encoder . 32
5.1.2 Attention encoder . 32
5.1.3 Mixed encoder . 33
5.1.4 PointNet++ . 33

5.2 Qualitative results . 34
5.3 Detailed results . 36
5.4 Ablation study . 37

5.4.1 Choice of Covariates . 37
5.4.2 Choice of Coordinate system 38
5.4.3 Choice of NMS scoring function 39

6 Discussion 41
6.1 Conclusion . 41
6.2 Future work . 42

Bibliography 43

A Architecture parameters I

x

1
Introduction

In this chapter one is introduced to the subject of object detection and the aim of this
work. Limitations and the scope of the project is discussed as well as the general
background for the work.

1.1 Background

For applications in advanced driver-assistance systems (ADAS) and autonomous
driving systems (AD) the task of perceiving the environment and modeling the sur-
roundings is paramount. A subset of this task is commonly referred to as object
detection - the instantiation and classification of objects. ADAS and AD systems
are assisted by three sensor modalities: cameras in the visible spectrum, light imag-
ing based on LiDAR and frequency modulated continuous wave radar sensors. To
increase the robustness of downstream utilization it is of interest to create systems
for object detection without fusion of these three sensor modalities. Therefore there
exists an urgent need for object detection solutions in the radar domain.

Given a set of measurements one is interested in what objects caused those mea-
surements. Object detection is an example of an inverse problem with the related
direct problem of finding what measurements a set of objects would cause. Indirect
problems are generally difficult to solve because the solution may not be unique as
a consequence of measurement noise and ambiguity in the sensor modality. Such
problems are often considered ill-posed [1] and may require prior domain knowledge
to distinguish a desirable solution.

State of the art object detection systems in the camera and LiDAR modalities are
dominated by approaches based on deep learning techniques [2]. Such techniques
aim to learn useful and often high dimensional representations of the input data.
Clustering or proposal based heuristics are then used to generate object detections
represented by a class denomination and a bounding box which specifies the object’s
physical extent.

Frequency modulated continuous-wave (FMCW) radar sensors measure position and
the radial velocity of points in space by sending out radar signals and measuring the
radar echo reflected by surfaces. Radio waves are able to penetrate non-conductive
materials and can therefore measure objects which are not in line-of-sight, in addi-
tion to robustness in various lighting and weather conditions such as rain or snow.

1

1. Introduction

Recent advances in automotive radars, namely a move from the 24 GHz band to the
77 GHz band, has increased the resolution of the radar measurements [3]. The in-
creased resolution makes radar a strong candidate for deep learning methods which
benefit from dense representations such as images or dense point clouds.

A common data representation of a radar measurement is a three dimensional tensor
with axis specifying discretized values of radial distance, azimuth angle and radial
velocity, and elements specifying the strength of the radar echo. Adaptive thresh-
olding algorithms like Constant False Alarm Rate (CFAR) detection can then be
used to extract a sparse point cloud in the spatial and radial velocity space. The
input for the object detection model defined in this work will be the sparse point
cloud extracted by CFAR.

1.2 Aim
The aim of this work is to create a novel model for object detection in the automotive
radar setting using deep neural networks. Specifically, the work aims to locate and
classify objects such cars, pedestrians and traffic obstacles from a point cloud data
representation of radar measurements. The dataset [4] to be used in this work has
been recorded and annotated by the company nuTonomy who also hosts an object
detection leaderboard for the dataset. It is a target of this work to submit the first
object detector model which uses only the radar sensor modality.

1.3 Limitations
Low level sensor data such as radar data tensors is not available in the dataset to
be used in this work. This prohibits the use of feature extraction from the tensor
data which has shown promising results [5].

FMCW radar units are able to measure velocity in the radial direction with respect
to the sensor. Therefore the measured velocity is not representative of the velocity
of the measured object. Furthermore, velocity is measured in the vehicles inertial
frame and is then compensated by the sensor vehicle’s velocity as measured by the
vehicle’s internal sensors. The efficacy of the vehicle’s internal sensors is not known
and may introduce an additive bias to the measurements.

1.4 Previous work
Object detection using radar data is currently an open research challenge with only
minimal previous work in the field. Earlier work such as by Scheiner et a. [6] clus-
ters the radar point cloud and utilizes a deep neural network (DNN) to classify the
clusters. However, this study will focus on end-to-end deep learning solutions for
object detection.

2

1. Introduction

Models for object detections using LiDAR data has seen success on the automotive
datasets KITTI [7] and nuScenes [4], outperforming camera based detection models.
Similarly to the radar sensor modality, the LiDAR data representation is a point
cloud. Therefore it is of interest to investigate relevant deep learning architectures
for object detection in the LiDAR sensor modality.

Many DNN architectures utilizes the structure in the data representation to extract
local patterns in the data, typical examples are convolutional filters [8] used in image
analysis and natural language processing (NLP). A point cloud can be considered an
unstructured data representation and architectures designed to extract local patterns
from point clouds generally use one of three methods to structure the input data:
discretizing the input data to two or three dimensional grids suitable for CNN feature
extraction, graph construction between proximal points, and extracting the local
features of a point by pooling the features of points in its proximity [9].

1.4.1 PointNet

The PointNet architecture presented by Qi et al. [10] utilizes point-wise fully con-
nected layers which takes as input the features of a single point and embeds it in a
new feature space. By convention a set of such point-wise feed forward layers sepa-
rated by activation functions are named a shared multi-layered perception (MLP).

The PointNet architecture encodes a point cloud in two steps. First the points
are passed through a shared MLP to embed them in a large feature space. Then
global features are extracted from the embeddings by taking the maximum element
in each feature dimension (max-pooling). The global features are then concatenated
to each point’s embedding which forms the complete encoding of the point cloud.
The PointNet performs well [10] on 3D model recognition tasks using the ShapeNet-
Part dataset [11] which consists of 31963 CAD models covering 16 different shape
classes.

PointNet++ is an improvement of the PointNet architecture presented by Qi et al.
[12]. PointNet++ is able to extract local features by using the PointNet architecture
to pool the input features of points in small spatial regions. Specifically, a small set
of key-points are sampled from the input point cloud. A key-point is then embedded
by first generating local features by using the PointNet architecture to pool points
within distance ε of the key-point for ε ∈ E . The key-point embedding is then formed
by concatenating the generated local features at each distance in E . Non-keypoints
are embedded by copying the features of the spatially closest key-point.

PointNet and PointNet++ serve as a part of the backbone encoder for many object
detection architectures. Models such as Point-GNN [13] and SECOND [14] use the
PointNet architecture to project LiDAR point cloud into a three-dimensional grid -
a method referred to as voxelization. In contrast, the PointPillar architecture [15]
uses PointNet++ to project the point cloud to a two dimensional image.

3

1. Introduction

1.4.2 Point-GNN
The Point Graph Neural Network (Point-GNN) [13] is an object detection model
for LiDAR input data in which the LiDAR point cloud is first voxelized using a
PointNet encoder. A graph is then constructed with edges connecting voxel-nodes
within a fixed radius of each other. A deep neural network then further embeds the
voxels by performing message passing operations on each voxel-pair connected by
an edge. In a message passing operation the embeddings of the transmitting node
and the receiving nodes is passed through an MLP to generate a message. A new
embedding of the receiving node is generated by max-pooling the received messages.

Point-GNN is a proposal based object detector. Each voxel generates one proposal
for an object which includes a class prediction and a prediction for the physical
extent of the object. The proposals are then merged or suppressed based on heuris-
tic algorithms similar to non-maximum suppression to generate the set predicted
objects.

1.4.3 Object detection for radar tensor data
Some work has explored object detection by leveraging the dense information in
the radar data tensor. In work by Palffy et al. [5] CNN filters are used to extract
features from the radar data tensor which are then appended to the points gener-
ated by CFAR. The extracted features are shown to improve classification metrics
in object detection. Work by Major et al. [16] has explored applying object detec-
tion architectures popularized in image analysis such as the Single Shot multibox
Detector (SSD) on the range-azimuth 2D tensor.

4

2
Theory

This chapter covers the theoretical framework required to answer the posed research
question of object detection in the radar domain. An overview of radar metrology
and signal processing is presented. The methodology of deep learning techniques is
then presented with an overview of geometric deep learning, attention and object
detection techniques.

A FMCW radar operates by transmitting a radar signal which is subsequently mixed
with the recieved radar echo. By observing how the radar echo changes over time as
measured by a small set of receiver antennas the signal strength in a spatial-velocity
space is measured. These measurements are subsequently transformed into a point
cloud by finding locally strong signals.

2.1 Radar signal processing

A radar sensor is composed of transmitters which emit electromagnetic waves and
receivers which measure the electromagnetic waves reflected by surfaces. A conven-
tional signal processing chain for frequency modulated continuous wave (FMCW)
radars generates a point cloud with spatial coordinates x ∈ R2 marked with object-
velocity in the heading direction of the sensor v ∈ R, and radar cross section σ ∈ R.
By convention these points p = (x, v, σ) are named radar detection points and are
in this work referred to as radar points to avoid ambiguity. Multiple radar points
may be generated by one object instance depending on the size, material properties
of the object and the distance to the object.

The radar cross section σ is a measure of the targets’ ability to reflect radar signals
in the direction of the sensor. In the ideal case this value depends only on the ma-
terial and the geometry of the target object. However, in practice it is a measure of
signal strength normalized by the distance to the object.

A conventional signal processing chain for FMCW radar generates a point cloud.
Formally we define a point cloud as a set P = {p1, . . . , pn} where pi = (xi,mi)
is a point with spatial coordinates xi ∈ Rd marked with the state vector mi ∈
Rk representing additional point properties. The mark m may include properties
measured by a sensor such as signal strength or embedding features generated by a
neural network.

5

2. Theory

Figure 2.1: A visualization of the transmitter signal of a FMCW radar unit. By
convention one linearly increasing segment is named a chirp. The image displays
three chirps separated by idle time which allows the signal synthesizer to ramp down
after each chirp.

2.1.1 FMCW radar
A FMCW radar unit capable of measuring velocity, range and angular position is
composed of one transmitter and multiple receivers. The transmitter outputs a
series of short signals which frequencies increases linearly in time as visualized in
Figure 2.1; one monotone signal is named a chirp. The signal recorded by a receiver
is mixed with the currently output transmitter signal to generate the Intermediate
Frequency (IF) signal

sIF (t) = sin ((w1 − w2)t+ (Φ1 − Φ2)) = sin(wIF t+ ΦIF), (2.1)

for a transmitter signal s1 = sin(w1t+ Φ1) and a received radar echo s2 = sin(w2t+
Φ2) where w denotes the signal’s frequency and Φ denotes the signal’s phase. To
enable digital post-processing the signal sIF is sampled and recorded as analog-to-
digital converter (ADC) samples.

2.1.2 Radar data tensor
One radar measurement consists of ADC samples recorded over a number of chirps
from all of the receiver antennas. The ADC data can be visualized as a three-
dimensional tensor as seen in Figure 2.2. The radar data tensor is processed by
three fast Fourier transforms (FFT), by convention named 3D-FFT, to extract the
range, angle and velocity information.

An FFT is applied across the short-time dimension as visualized in Figure 2.2 to
reconstruct the IF signal defined in (2.1). The measured distance

d = wIF cTc
2B ,

6

2. Theory

Figure 2.2: An abstract visualization of the three-dimensional data tensor before
and after 3D-FFT transformation. The fast-time dimension refers to ADC samples
taken within one chirp. In contrast, the chirp dimension is sometimes referred to as
slow-time.

where c denotes the speed of light, B denotes the bandwidth of a chirp and Tc de-
notes the chirp duration [3].

The velocity dimension is recovered by stating that in the time between chirps the
position of a measured object in motion has changed only a small amount. It follows
that between chirps the frequency of (2.1) is approximately constant for a measured
object and the difference in phase of (2.1) between two chirps indicates the velocity
of the object relative to the sensor. An FFT is applied across the chirps in each
range-bin and the velocity is given by

v = λΦ∆c

4πTc
,

where Tc denotes the time between two chirps, λ denotes the wavelength of the sig-
nal and Φ∆c denotes the difference in phase between two consecutive chirps [3].

The arrival angle of received radar signals is estimated by observing that receivers
separated by a small distance d will receive the radar echo at different phases, see
Figure 2.3. Therefore an FFT is applied across the receiver dimension to recover
the phase difference Φ∆r across neighboring antennas. The signal’s angle of arrival
becomes

θ = sin−1 λΦ∆r

2πd ,

where d denotes the separation distance between two receiver antennas and λ denotes
the wavelength of the signal [3].

2.1.3 Radar point generation
The velocity, range, angle radar data tensor visualized in Figure 2.2 has complex el-
ements with absolute values corresponding to the strength of the signal from a point
in the spatial-velocity space. In general there is a large amount of noise in the radar
data tensor which stems from signals reflecting from multiple surfaces, background

7

2. Theory

d

Figure 2.3: A visualization of the geometric properties used to estimate the arrival
angle of a radar echo. Note the assumption that the radar signal has not been
reflected by multiple surfaces.

electromagnetic radiation and other sources such as reflections from rain particles [3].

The adaptive thresholding algorithm CFAR is used to filter out the noise and ex-
tract the informative measurements which comprises the radar point cloud. CFAR
estimates the local signal strength sl by sampling in the neighborhood of a mea-
surement sp. If the strength of the signal sp exceeds the local signal’s strength sl
by a factor of a threshold τ then the point at sp is included as a radar point. The
threshold τ is set as an algorithm parameter [17].

2.2 Deep neural networks
Supervised learning is a machine learning paradigm in which labeled examples for
some task are used to produce hypotheses which generalize to unlabeled data. Com-
monly, a sequence of parameterized non-linear functions are used to model the label
distribution in terms of some covariates. Such models are named deep neural net-
works (DNN).

To aid in the optimization of a DNN, an objective function is constructed which
compares the output of the model to the true label for an example. The objective
function may consist of a linear combination of loss functions suitable for classifi-
cation and regression tasks. The choice of loss functions reflects the multiple tasks
a model may perform as well as enable the convergence of the model optimization
to a desirable minimum. The object function averaged over all the examples in the

8

2. Theory

dataset reflects the performance of the algorithm.

2.2.1 ANN
An artificial neural network (ANN) is a computational model consisting of a se-
quence of linear models and non-linear activation functions. One such linear model
is named a neuron and an activation function commonly used is the rectified linear
unit (ReLU) as it has a well behaved gradient. The parameterized linear models are
fit to minimize an objective function, in this context named a loss function.

In this work, the artificial neural networks considered are feed forward neural net-
works. A feed forward network consists of layers of neurons. The first layer maps
the input covariates to some feature space. Common operations used by a layer
are linear transformations and convolutional operations. The second layer takes the
embedded input and maps it to another features space. The last layer is named the
output layer and outputs a representation useful for some task. Any layer between
the input layer and output layer is named a hidden layer. A deep neural network
(DNN) is an ANN with many such hidden layers.

Convolutional neural networks (CNNs) utilize parametrized kernels which are con-
volved across the input. Convolutions are capable of identifying patterns in the
input that are invariant under translation. In image analysis CNNs commonly con-
sists of parametrized linear filters which activate on specific patterns and output a
response map. Convolutions may also be defined on graphs by defining an opera-
tion which acts along the edges of a graph. A general framework for defining graph
convolutions is as message passing operations.

To capture a wide range of patterns multiple convolutional operations are performed
in parallel. The information captured in the response maps is then summarized by
pooling the response maps. A common pooling function is max-pooling which ex-
tracts the maximum element in each feature dimension.

A typical use case for artificial neural networks are classification tasks. For such
tasks, the ANN is used to approximate a probability distribution over the classes.
The distribution is generated by passing the non-normalized output of a network
through a normalized exponential function, here named the softmax function

Softmax(z) = ezi∑K
j=1 e

zj
,

where z denotes the non-normalized network output.

A perceptron is a single-layered ANN consisting of neurons which are linear functions
over the complete set of inputs. The output of the linear models is then passed
through an activation function. A multi-layered perceptron (MLP) is a sequence of
such perceptrons. In this work a shared-MLP is defined as an MLP for which the

9

2. Theory

input elements x ∈ X are passed independently through the MLP to produce the
output set X ′ which contains the same number of elements as X. A use case for a
shared-MLP would be to independently embed the points in a radar point cloud.

2.2.2 Optimizer
The parameters of a deep neural network are commonly fit to training examples by
variations of the optimization algorithm stochastic gradient descent (SGD) [18]. The
SGD algorithm constructs a noisy estimate of the objective function and its gradi-
ent based on a single example or a small set of examples. Each model parameter is
then updated in the negative gradient direction according to some specified step size.

Adam is a variant of the SGD algorithm in which estimates of the first and second
raw moment of the gradient informs the parameter update. In effect, Adam decreases
the step size in regions in the loss landscape where the gradient may be large [19]
while allowing previous parameter updates to inform the step direction. It has been
shown empirically that Adam compares favorably to other stochastic optimization
methods for fitting the parameters of a DNN [19].

2.2.3 Loss functions
Loss functions used for classification tasks compare how much the predicted class
probability diverges from the actual label. For a set of classes C the cross-entropy
loss, given by

Lce = −
∑
i∈C

wi yi log pi, yi ∈ {0, 1}, pi ∈ {x | 0 < x < 1}, w ∈ R+ (2.2)

for predicted class probabilities p and label y, is zero-valued for a correct prediction
and grows unbounded as pj → 0, j : yj = 1. For datasets with a large class imbal-
ance the weights wi are set to downweigh the most common classes [20].

A loss function suitable for segmentation tasks with n predictions with large class
imbalances is the class-averaged soft Dice loss [21]

LDICE = 1
|C|

∑
i∈C

2 ∑n
j=1 p

(j)
i y

(j)
i + ε∑n

j=1 p
(j)
i + ∑n

j=1 y
(j)
i + ε

, ε << 1. (2.3)

The soft Dice loss shares similarities with the Dice coefficient [22]

Dice(A,B) = 2|AB|
|A|+ |B| ,

used to measure similarity of sets A and B.

For regression tasks, two widely used loss functions are the squared error and the
absolute error. The squared error has a gradient which is well behaved close to zero

10

2. Theory

while the absolute error is robust against outliers, i.e. abnormally large errors. The
Huber loss [23]

LHuber =
{

1
2(y − ŷ)2 if |y − ŷ| ≤ δ
δ|y − ŷ| − 1

2δ
2 else , δ ∈ R+, (2.4)

is a piecewise function of the squared loss and absolute loss leveraging these two
properties.

2.3 Encoder-decoder architecture
Some neural network architectures can be segmented into an encoder-decoder hier-
archy. An encoder network maps an input signal to a feature space, and the decoder
takes this feature map as input to produce an output, such as a probability distri-
bution.

Convolutional encoder-decoder architectures are commonly used to solve inverse
problems such as object detection [24], superresolution [25] and monocular depth
estimation [26], visualized in Figure 2.4, outperforming analytical methods on these
tasks [27]. Inverse problems are reconstructions of unknown signals, images or sets
from observations. The observations may be noisy or generated by a non-invertable
process. A solution to an inverse problem is often not unique and analytical ap-
proaches leverage prior domain knowledge to generate a desirable solution. In con-
trast, deep learning models learns to provide the most probable solution based on
the training data.

Figure 2.4: A visualization of monocular depth estimation which is a example of
an inverse problem solved by a encoder-decoder architecture. The recorded image
(left) is used as input to estimate a depth heatmap (right). The figure is adapted
from [26].

The encoder, here considered as a CNN, embeds the input in a large feature space.
Structure in the data representation, such as grids or sequences, may be used to
embed a data point with regards to its local context. Examples of encoders include
the U-net architecture [28] for image processing, the BERT architecture [29] for use
in natural language processing (NLP) and PointNet++ [12] for use on point cloud
representation.

A decoder head often consists of an MLP that takes as input an embedded sig-
nal and outputs a set of values related to a specific task. For classification tasks

11

2. Theory

these values are passed through a softmax function to generate a probability distri-
bution over the predicted output classes. For regression tasks the output is often
used in a parametrization of the intended output. For example, a regression output
may be scaled and centered by the mean annotated value in the training set. In a
multi-task setting, the decoder architecture is often comprises several decoder heads.

2.3.1 Geometric deep learning
Conventionally deep learning techniques have been applied on data represented in a
grid-like structure - such as a sequence or an image. Convolutions and other opera-
tors are then used to extract local patterns. Many interesting applications in deep
learning have data which is ill-suited for Euclidian representations such as matrices.
Therefore, geometric deep learning has arised as a collective term for deep learning
techniques applied on non-Euclidian data such as graphs [30].

The sparsity of radar point cloud measurements makes it ill-suited to be discretized
into a grid-like structure. A convolutional operation would encounter many non-
informative zero-valued elements at a large computational cost. Therefore, a graph-
based data representation may be more suitable for the application of deep learning
methods on radar data. In this context, the radar points may be considered as
graph nodes and edges may be constructed based on the spatial distance between
them. The sparsity of the radar point cloud is further discussed in Chapter 3 and
visualized in Figure 3.3.

2.3.2 Message passing
By convention, convolutional operations on graphs are defined in the abstraction of
message passing. A message signifies an interaction between two graph nodes. A
message passing operation consists of first generating a message along every edge in
the graph. A node’s embedding is then updated based on the messages it received.
Message passing is a general framework capable of capturing many different types
of graph convolutions [31]. An encoder can be constructed as a sequence of such
message passing operations.

Consider a graph G = (P, E), with nodes v ∈ P and directed edges ei,j ∈ E defining
a connection from node vi to node vj. The node vi = (xi,mi) consists of spatial
coordinates xi ∈ R2 and is marked by a embedding vector mi.

A message function
bi,j = f(vi, vj),

constructs a message bi,j along edge ei,j. All messages bi,. directed to a node vi are
pooled by a pooling function ρ(·). A new embedding mi for the node vi is generated
as

mi ← g (ρ ({bi,j | ei,j ∈ E}) , vi) ,

12

2. Theory

where g(·) is some function which further embeds the pooled messages.

2.3.3 Graph attention networks
An attention mechanism is an operation which identifies relevant context and in
some way pools the contextual information. Graph attention networks [32] use
attention mechanisms to pool the messages received by a node during a message
passing operation. A benefit of using an attention mechanisms to pool information
is that the operation has a more informative gradient than other pooling functions
such as max-pooling. Also, the network may also learn to ignore messages from
neighboring nodes which are not informative.

The scaled dot product self-attention mechanism presented in [33] is used in state
of the art models for many NLP benchmarks [34] and has also seen use in computer
vision [35]. The attention mechanism presented generates a query vector qi, a key
vector ki and a value vector vi for each data point xi ∈ X using three shared MLPs.
A self-attention mechanism gathers context and pools information from the same
data representation while a cross-attention mechanism uses different representations
for the two tasks [36].

Relevant context with respect to point xi is quantified by the attention scores

si,j = ki · qj, qj ∈ {MLPq(x) | x ∈ X}.

The scores si,. are normalized to non-negative weights w using the softmax function

wi,j = esi,j∑n
k=1 e

si,k
.

The output embedding zi is generated as scalar products of the weights wi,. and the
value vectors v

zi =
∑
j

wi,jvj.

The interaction of key and query vectors allows the mechanism to gather contextual-
ized information without using structures in the data such as grids or sequences [33].

If the input embeddings xi are first segmented into k segments and the attention
mechanism described above is performed independently across the k segments the
mechanism is called multi-headed attention with k heads. Multi-headed attention
allows the model to pool information from different representation subspaces [33].

In the context of message passing, attention may be used to pool the messages
received by node vi. The set X then comprises the messages received by a node vi
and zi denotes the new node embedding.

13

2. Theory

2.4 Object detection
The task of finding all the objects in the input data and assigning them to an object
class is commonly referred to as object detection. Many models for object detection
are based on first generating a large number of proposals, regions where there might
exists an object, which are then classified by a neural network and further filtered
heuristically.

Popularized in image analysis, object detectors such as YOLO [37] and SSD [38] are
proposal based detectors which generate a large number of proposed objects in a
grid-pattern across the image. In contrast, two-stage object detectors such as Faster
R-CNN [39] utilizes a second convolutional neural network (CNN) or some other
heuristic algorithm which generates region predictions in which objects of interests
may reside. The network is then tasked to classify the proposals as some class in
C or as part of the image background as well as to adjust the predicted physical
extent of the object. LiDAR object detectors such as PointPillar [15] project the
point cloud to a two dimensional grid and utilizes image object detectors such as
SSD to identify objects in birds-eye-view (BEV).

The Point-GNN [13] LiDAR detector extends proposal based object detection by
embedding the point cloud using message passing operations and generates one pro-
posal from every point in the point cloud. Similarly, the proposals are then classified
as one of the classes in C or as part of the background.

Proposals which have been classified as belonging to some class in C may be referred
to as detections. Often one particular object may be covered by many detections.
Algorithms such as non-maximum suppression are used to filter out the most infor-
mative detection for every object. An overview of the non-maximum suppression
algorithm is found in Algorithm 1.

14

2. Theory

Algorithm 1 The non-maximum suppression algorithm conventionally used to filter
out overlapping detections.

iou(·): The intersection over union of the physical extent of two detection.
Input: B = {b1, . . . , bn}, D = {d1, . . . , dn}, T
B is the set of detections
D is the corresponding detection scores
T is the overlap threshold value

Output: M is the output set of filtered detections

1: function NMS(B : detections, D : scores)
2: M← {}
3: while B 6= {} do
4: i ← argmax(D)
5: M←M+ bi
6: for bj ∈ B do
7: if iou(bi, bj) > T then
8: B ← B − bj
9: D ← D − dj

10: return M

15

2. Theory

16

3
nuScenes dataset

The nuScenes dataset [4] produced by nuTonomy comprises measurements from
radar, camera and LiDAR sensors as well as the sensor vehicle’s odometry. The
data has been collected in the city of Singapore and Boston and consists in total of
5.5 hours of driving divided into 20 s continuous driving sequences.

The dataset is annotated with three-dimensional bounding boxes which inscribe the
physical extent of an object. The set of object classes annotated in the dataset can
be found in Table 3.1. For a selection of the classes additional attributes are also
annotated such as if a car is parked, temporally stopped or moving. However, these
properties are not used in this work.

Table 3.1: The number of annotations for each class in the dataset nuScenes [4].
The dataset exhibits class imbalance with the car and pedestrian classes making up
a majority of the total annotations.

class number of annotations
Barrier 152087
Bicycle 11859
Bus 16321
Car 493322

Construction vehicle 14671
Motorcycle 12617
Pedestrian 220194
Trailer 24860
Truck 88519

Camera images are captured at a frequency of 12 Hz, radar and LiDAR measure-
ments are taken at 13 Hz and 20 Hz respectively. Objects in the data have been
annotated by a human at a frequency of 2 Hz. A visualization of the available data
can be found in Figure 3.1. In this work, a linear interpolation of the position and
orientation of the annotating bounding boxes has been used to acquire continuous
annotations in the dataset.

The sensors do not capture measurements at the same time. The frame at time τ is
defined as the collection of measurements from each sensor which was captured clos-
est in time to τ . A frame which coincides with the annotation frequency is named

17

3. nuScenes dataset

Figure 3.1: A visualization of the three sensor modalities. The radar points are
plotted with a vector indicating the measured velocity of the radar point, annotated
vehicles and pedestrians are shown in this visualization.

a keyframe to mark its importance in calculating performance metrics.

The measurement vehicle is mounted with five radar sensor units as visualized in
Figure 3.2a. A radar sensor unit is composed of a short, a medium and a long range
radar sensor. The short range sensors have a significantly larger field of view as
visualized in Figure 3.2b.

The radar point cloud generated by CFAR is sparse. One can include radar points
from previous radar measurements to acquire a denser point cloud. In this work the
previous five radar measurements have been translated and rotated to account for
the movement of the measurement vehicle and are included in the point cloud. The
increase in point density is visualized in Figure 3.3.

18

3. nuScenes dataset

(a) A visualization of the mounted sensors on the measurement vehicle.
The vehicle model is a Renault Zoe [4]. The car is mounted with five
radar sensor units.

(b) A illustration of the field of view of the short, medium and long
range radar sensors which comprises the radar sensor unit.

Figure 3.2: As seen in Figure 3.2b the field of view of the radar sensors is narrow
ranges longer than 50 m. The two radar sensors mounted on the back of the car
have significantly intersecting intersecting field of views.

19

3. nuScenes dataset

x
y

x
y

x
y

x
y

x
y

Detections from radar sensors

(a) A visualization of one radar measurement from the radar sensor suite. Note the
sparsity of the point cloud.

x
y

x
y

x
y

x
y

x
y

Detections from radar sensors

(b) Six consecutive measurements visualized in one point cloud. The complete set
of measurements have been taken within an interval of 0.5 s. Note the increase in
point density in comparison to 3.3a.

Figure 3.3: The radar points visualized with annotated vehicles and the
measurement vehicle . The measured velocity at the radar points are visualized
as a vector with length proportional to the magnitude of the velocity. The
increased point density achieved by including previous sensor measurements makes
the data representation more suitable for deep learning.

20

4
Methods

In this chapter the object detection pipeline is described and visualized. The pre-
processing steps of the datasets are described as well as the performance metrics
used to evaluate the model.

4.1 Pre-processing
The point cloud used as input at frame time τ consists of the six most recent radar
measurements from the full radar sensor suite. A categorical covariate t is added to
each radar point indicating the age of the measurement with respect to time τ . The
measurements are rotated and translated to account for the movement and velocity
of the measurement vehicle.

The measurements from the radar sensor suite are transformed to a unified coor-
dinate system centered on the measurement vehicle. This allows for measurements
from different sensors to inform the embedding of a radar point.

If a radar point is located inside an annotated bounding box it is assumed that
the annotated object generated the radar point. Therefore, a radar point which is
located within a bounding box is annotated with the class label and localization pa-
rameters of the annotated bounding box. To account for the inherent noise in radar
measurements, the size of the bounding boxes are temporally increased by 20% dur-
ing this process. Any detection points which are not located inside a bounding box
are labeled as Background.

The annotated bounding boxes are not axis-aligned. The yaw angle φ denotes the
rotation along the z axis w.r.t the center of the bounding box. With the aim to con-
struct the angle prediction as a classification task, the yaw angle is discretized into
eight equisized bins. The motivation is that when using radar data it may be difficult
to distinguish the front and back of a vehicle. As a regression task this ambiguity
would lead to large losses for predictions that correctly predicted the orientation in
180◦ but incorrectly distinguished the front of the vehicle. Formulating the task as
a classification problem also avoids the problematic discontinuity at φ = 0, 2π.

Given a point cloud P with points vi = (xi,mi, ai) ∈ P, x ∈ R2 marked with the
covariates

mi = (σi, u(r)
i , ti)

21

4. Methods

and annotation
ai = (c(x)

i , c
(y)
i , hi, wi, ui, φi, yi),

where σi denotes radar cross section, u(r)
i denotes radial velocity and ti denotes the

time covariate. The annotation is composed of the center position ci, height hi,
width wi, velocity ui, orientation bin φi and class label yi. A graph G = (P, E) is
constructed with the radar points vi ∈ P as vertices and edges

E =
{

(pi, pj) | ‖xi − xj‖2 < r
}
,

including self loops. In this work the radius r is set to 1 m.

Two additional covariates are constructed for each node. The degree of a node, i.e.
the number of edges connected to the node, is appended as a proxy for the local
point density. Additionally, the distance d from the measurement vehicle to the
radar point is also appended as a covariate. The mark then comprises

mi = (σi, u(r)
i , ti, deg(vi), di).

The dataset consists of 850 driving sequences which are approximately 20 seconds
long [4]. Holdout validation is defined with 700 driving sequences used to fit the
model parameters, 100 sequences are used to evaluate model selection and 50 se-
quences are used as a test set.

4.2 Data augmentation
With the aim to prevent the model from overfitting to the training dataset, noise is
added to the samples in the training set. The velocity covariate u(r)

i is scaled as

u
(r)
i ← av u

(r)
i , av ∼ unif(0.8, 1.2).

The positional coordinates are translated as

c
(x)
i ← c

(x)
i + ax, ax ∼ unif(−0.1, 0.1),

c
(y)
i ← c

(y)
i + ay, ay ∼ unif(−0.1, 0.1)

and the radar cross section σ is translated as

σi ← σi + aσ, aσ ∼ unif(−0.04, 0.04).

4.3 Model architecture
The model architecture used in this work consists of an encoder which embeds the
radar points based on the local context and a decoder which generates one object
proposal from the embedding of every radar point. The model parameters are fit

22

4. Methods

Figure 4.1: A illustration of the object detection network with the graph encoder.
Note that · · · signifies that several message passing operations are performed in
sequence. For a network utilizing the attention encoder, the max-pool operation is
replaced with a self-attention mechanism.

by comparing the object proposals to object annotations based on a selection of loss
functions. At inference, multiple predictions of the same object is not preferable
and therefore overlapping proposals are suppressed.

Three encoders are evaluated in this work. The graph encoder and the attention
encoder are defined in the geometric setting using message passing operations. The
PointNet++ encoder is implemented as described in [12]. A visualization of the
model architecture is found in Figure 4.1. Note that non-contextual embeddings are
generated using a shared MLP. This is the first step for any of the encoders and will
not be further mentioned.

4.3.1 Graph encoder
The graph encoder consists of a sequence of message passing operations which uses
the max pool function to pool messages. In review of the geometric deep learning
theory previously presented, a message function

bi,j = f(vi, vj),

constructs a message bi,j along edge ei,j. All messages bi,. directed to a node vi are
pooled by a pooling function ρ(·). A new embedding mi for the node vi is generated
as

mi ← g (ρ ({bi,j | j : ei,j ∈ E}) , vi) ,

where g(·) is some function which further embeds the pooled messages. In this work
the functions considered for f(·) and g(·) are MLPs with detailed information found
in Appendix A.

23

4. Methods

With the aim to capture local structures in the dataset rather than overfitting
to global features, the absolute coordinates of the radar points are not used as
covariates. Instead the relative position xj−xi and the input embedding mj is used
to define the operation

bi,j ← f (xj − xi,mj)
mi ← g (ρ ({bi,j | j : ei,j ∈ E}) ,mi) ,

(4.1)

with ρ selected as the max pool function.

As visualized in Figure 4.1, multiple message passing operations are performed in
sequence. The number of operations as well as the MLP parameters can be found
in Appendix A.

4.3.2 Attention encoder
The attention encoder shares many similarities with the graph encoder. It uses the
message operation defined in (4.1). However, a self-attention mechanism is defined
to pool the messages bi,..

Given a set of messages directed to node i, Bi = {bi,j | j : ei,j ∈ E}, an attention
operation is defined by generating a key vector ki , query vectors q. and value vec-
tors v.. These are constructed by passing the messages bi,. through the multi-layered
perceptrons: MLPq, MLPk and MLPv.

Attention scores

si,j = ki qj, qj ∈ {MLPq(bi,j) | bi,j ∈ Bi}, ki = MLPk(bi,i),

are calculated and passed through a softmax function to generate the attention
weights

wi,j = esi,j∑n
k=1 e

si,k
.

The pooled message zi is then constructed as a weighted scalar product of the value
vectors

zi =
∑
j

wi,jvj, vj ∈ {MLPv(bi,j) | bi,j ∈ Bi}.

The output embedding is then calculated analogously to the graph encoder archi-
tecture

mi ← g (zi,mi) .

Note that the inclusion of the mi as a covariate to the MLP g(·) may be interpreted
as a skip connection.

24

4. Methods

4.3.3 Mixed encoder
The mixed encoder consists of a graph encoder followed by a attention encoder.
The motivation is that the max pooling operation has shown to be robust to noise
[40] and could therefore extract robust features. However, the attention pooling
operations used later in the network provides the opportunity to learn the size of
the local receptive field. The model parameters used for the mixed encoder can be
found in Appendix A.

4.3.4 PointNet++ encoder

In this work, the PointNet++ encoder serves as a baseline architecture. The archi-
tecture embeds radar points by pooling the input features of points in small spatial
regions. One can find a detailed description of the architecture in Section 2.7.1 or
in [12]. In this work the subsampling processes used in PointNet++ was removed to
account for the sparsity of radar point cloud. Features were extracted from spherical
spatial regions with radius r = {0.2m, 1m} in addition to the global features. The
model parameters used in this work can be found in Appendix A.

4.3.5 Decoder
The decoder outputs one object proposal for every point in the point cloud. The
architecture consists of three multi-layered perceptions (MLPs) which in parallel
takes an embedded point as input, see Figure 4.1. The classification head consists
of an MLP which outputs a probability distribution over the object classes as well
as a binary prediction if the proposal is an object or not, here named the objectness
score. The orientation head is an MLP which outputs a probability distribution over
the discrete orientation bins.

The MLP regression head outputs five scalar values. The center position of the
proposed bounding box (x, y) is regressed as

x = xpoint + δx,

y = ypoint + δx,

where (xpoint, ypoint) is the coordinates of the input radar point and (δx, δy) are the
regressed scalars. The width and the height is regressed in the parameterization

h = h̄class + δh,

w = w̄class + δw,

where (δh, δw) are the regressed values and (h̄class, w̄class) denotes the median height
and width of the class. The absolute velocity u is regressed as a positive scalar and
it is assumed that direction of travel is the same as the orientation angle.

25

4. Methods

4.4 Loss functions
The loss functions used in this work compare how dissimilar an object proposal
generated from radar point v is to the annotation of v. The loss function

L = c1Lclassification + c2Llocalization, c1, c2 ∈ R+ (4.2)

is composed of a linear combination of the classification loss Lclassification and the
localization loss Llocalization.

For a point cloud P
vi ∈ P, vi = (xi,mi, ai),

with point-wise annotation

ai = (c(x)
i , c

(y)
i , hi, wi, ui, φi, yi),

the model outputs a predicted class distribution pi and a objectness prediction p(o)
i

for each radar point vi ∈ P. If the objectness prediction is smaller than thresh-
old τobject then the proposal is classified as background. The model also outputs
the localization parameters li = (ĉ(x)

i , ĉ
(y)
i , ĥi, ŵi, φ̂i, ûi) which define the center co-

ordinates, the height, width, orientation and the absolute velocity of the predicted
bounding box.

The classification loss is defined as

Lclassification = c3LDICE(B) + c4
∑

(p(o)
i ,y

(o)
i)∈A

Lce(p(o)
i , y

(o)
i) + c5

∑
(pi,yi)∈B

Lce(pi, yi), (4.3)

where

A = {(p(o)
i , y

(o)
i) | vi ∈ P}, y

(o)
i =

1, if yi = Background
0, else

is the set of objectness predictions with corresponding annotation and

B = {(pi, yi) | yi 6= Background, vi ∈ P}

is the set of predictions and annotations for non-background annotations.

The localization loss is defined for proposals which are correctly classified

Llocalization =
∑
vi∈C

∑
(q̂,q)∈Qi

cqLHuber(q̂, q) + cφLce(φ̂i, φi),

Qi = {(ĉ(x)
i , c

(x)
i), (ĉ(y)

i , c
(y)
i), (ĥi, hi), (ŵi, wi), (ûi, ui)},

C = {vi | argmax
i

(pi) = yi, p
(o)
i > τobject},

26

4. Methods

where C is the set of correctly classified proposals and Q are the localization pa-
rameters output by the decoder with the corresponding annotation.

To avoid large losses from training examples with many radar points and annota-
tions, the classification loss and the localization loss are averaged as

Lclassification = b1LDICE(B) + 1
|A|

b2
∑

(p(o)
i ,y

(o)
i)

Lce(p(o)
i , y

(o)
i) + 1

|B|
b3

∑
(pi,yi)∈B

Lce(pi, yi), (4.4)

Llocalization = 1
|C|

∑
vi∈C

∑
(q̂,q)∈Qi

cqLHuber(q̂, q) + cφLce(φ̂i, φi). (4.5)

The constants c. are used to scale the losses.

4.4.1 Optimizer
To optimize the object detection model with regards to the loss function described,
this work utilizes the Adam optimizer. The learning rate is changed according to the
learning rate schedule displayed in Figure 4.2. The optimization parameters used in
this work can be found tabulated in Appendix A.

The learning rate schedule starts with a warmup segment with a low learning rate.
The motivation is that the Adam optimzer needs a large set of previous updates to
correctly estimate the moments of the gradient. The practice of using a warmup
segment has been motivated by previous empirical studies [41]. The learning rate is
decrease towards the end of the training which has show to help convergence of the
optimization algorithm [42].

4.5 Non-maximum suppression
At inference, non-maximum suppression as described in Algorithm 1 is used to
suppress spatially overlapping predictions. The intersection-over-union (IoU) calcu-
lation at step 7 in Algorithm 1 is calculated in the x–y plane. The overlap threshold
T , found in Appendix A, is selected as a small value with the motivation that objects
in the dataset are seldom overlapping.

It is less computationally expensive to calculate the intersection-over-union (IoU)
of rectangles which are axis-aligned than of those which may be oriented in any di-
rection. Therefore, the IoU(·) implementation used in this work calculates the IoU
metric of axis-aligned rectangles which inscribe the predicted bounding boxes. A
GPU accelerated implementation of the IoU calculation [43] was tested and showed
to be orders of magnitude slower than the axis-aligned CPU implementation using
the python library numpy.

The scoring value used to select the most confident object proposal is the sum
of the predicted objectness p(o)

i and the selected orientation probability max (φi).

27

4. Methods

Figure 4.2: A visualization of the learning rate schedule used in this work. The
schedule consists of a linear function splined with a half wave cosine function. The
learning rate determines the step size used in the parameter update.

The motivation being that a confident object proposal should be confident of the
proposed class and the spatial orientation.

4.6 Performance metrics

The purpose of the performance metrics presented here is to measure the similarity
between the set of predicted objects output by the model and the set of annotated
objects in the dataset. In this work the average precision (AP) metric is used to
evaluate the detection and classification performance for a class. In addition a set
of localization metrics are defined to evaluate the performance of the position, size,
orientation and velocity predictions.

The annotated objects are matched with the closest predicted object within 3 meters
by distance measure in the ground plane between the object centers. An annotated
object is at most matched with one predicted object and any predicted object which
is not matched with an annotation is considered a false positive. Any annotation
which do not contain a radar point is removed from the dataset.

4.6.1 Average precision

In this work, classification is considered in a binary setting for each class. In binary
classification the quantities true positives (TP), false positives (FP), true negatives

28

4. Methods

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
on

Example P-R curve

Figure 4.3: A example of a Precision - Recall curve. The sharp drop in precision
stems from that undetected objects are considered false negatives at all thresholds
τ .

(TN) and false negatives (FN) are used to define metrics such as

Precision = TP
TP + FP = TP

all predictions ,

Recall = TP
TP + FN = TP

all annotations .

A prediction is considered positive if the generated probability is larger than some
threshold τ . A prediction is considered true if the class-prediction is consistent with
the class of the matched annotation.

One can calculate several recall Rτ and precision Pτ values by varying the threshold
τ . To evaluate a classifier independent of the threshold τ one can interpolate an
R, P curve from the Rτ , Pτ values, visualized in Figure 4.3. To summarize the
information in the R, P curve in one scalar one can calculate the area under the
curve, this metric is named the average precision (AP).

4.6.2 Localization metrics
For any correctly classified prediction it is of interest to measure how well the model
predicted the physical extend, the heading and the velocity of the object. For a
predicted object bpred = (xpred, φpred,vpred) with center position x and orientation φ
and an annotated object bann, the translating error

eδ = ‖xpred − xann‖2

and the orientation error

eΦ = ∆φ = |φpred − φann|

29

4. Methods

measure the models ability to predict the heading and the position of an object. A
visualization of these metrics is found in Figure 4.4.

Figure 4.4: Visualization of the translation error eδ and the orientation error φ for
the predicted bounding box the annotated bounding box .

The fidelity of the predicted size of the object is measured by first aligning the
predicted and the annotated object as visualized in figure 4.5. The intersection-
over-union (IoU) of the predicted object bounding box and the annotated bounding
box after alignment measure how well the width and height prediction reflects the
annotation.

Figure 4.5: Visualization of the intersection area for the predicted bounding box
and the annotated bounding box after center and orientation alignment.

Lastly, the velocity error ev = ‖vpred − vann‖2 is used to measure the velocity pre-
diction. Note that the predicted velocity vector vpred has length upred and is parallel
to the predicted heading of the object. In summary, the localization metrics are eδ,
eφ, ev and IoU which measure how correct the object prediction is beyond the class
classification.

30

5
Results

In this chapter one finds a comparison of the effectiveness of the different encoders.
The performance of the best performing encoder is evaluated in detail. An ablation
study verifies various aspects of the methodology such as the engineered features.

5.1 Quantitative results
The quantitative results comprise statistics on how well the different encoders per-
formed in the object detection task. This comparison focuses on the performance on
the two most prevailing object classes, Cars and Pedestrians. No encoder detected
any class other than the two most prevailing classes on the test set. The object
threshold τ = 0.5 for the comparison.

Table 5.1: A selection of the performance metrics as evaluated on the test set.
The Car and Pedestrian classes are the most common classes in the dataset. The
mixed encoder achieves the highest AP while the graph encoder performs well on
the localization metrics.

Performance metrics

AP eδ eφ IoU eu

Graph encoder
Car 0.20 0.68 0.22 0.65 1.06

Pedestrian 0.13 0.39 0.33 0.60 0.46
Attention encoder

Car 0.18 0.83 0.32 0.64 0.99
Pedestrian 0.15 0.42 0.38 0.60 0.59

Mixed encoder
Car 0.21 0.77 0.27 0.64 0.93

Pedestrian 0.15 0.43 0.51 0.60 0.62
PointNet encoder

Car 0.16 1.05 0.24 0.63 1.46
Pedestrian 0.10 0.47 0.38 0.58 0.60

31

5. Results

5.1.1 Graph encoder
The detection model using a graph encoder performed well on the localization tasks.
In particular, the model achieved low translation and orientation errors compared to
the other models as seen in Table 5.1. The precision - recall curve displayed in Figure
5.1 shows that model achieves low recall values. The low recall is a consequence of
the model not detecting objects in the scene which is reflected in a large number of
false negative classifications.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

P-R curve, Car, AP: 20.2 %

Figure 5.1: The precision - recall curve for the Car class. The detection model
uses the graph encoder with an objectness threshold of 0.5.

5.1.2 Attention encoder
A detection model with the attention encoder achieved similar performance to the
graph encoder. The attention encoder performed well on the Pedestrian class as can
be seen in Table 5.1. In comparison to the graph encoder, the P-R curve for the
attention encoder displayed in Figure 5.2 indicates larger recall and lower precision
for the Car class.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

P-R curve, Car, AP: 18.3 %

Figure 5.2: A plot of a Precision - Recall curve for the attention encoder. The
sharp drop in precision stems from that undetected objects are considered false
negatives at all thresholds τ .

32

5. Results

5.1.3 Mixed encoder
The mixed encoder achieved the highest AP metrics as can be seen in Table 5.1
and the highest recall as seen in Figure 5.3. The encoder performed worse in terms
of localization metrics. However, since localization is only evaluated for correctly
classified objects the localization metrics are not directly comparable.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

P-R curve, Car, AP: 21.4 %

Figure 5.3: The Precision - Recall curve generated by the mixed encoder. The
encoder achieved the highest AP among the encoders considered.

5.1.4 PointNet++

The PointNet++ encoder acheived the lowest AP for both classes. The AP and other
metrics can be viewed in Table 5.1. The P-R curve for the Car class is displayed in
Figure 5.4.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

P-R curve, Car, AP: 15.7 %

Figure 5.4: The Precision - Recall curve generated by the PointNet++ encoder for
the Car class. The PointNet++ encoder underperformed in comparison to the other
encoders achieving the lowest AP.

33

5. Results

5.2 Qualitative results
The performance of the object detection model is here visualized in bird’s eye view
(BEV) supplemented by camera images. The examples displayed are curated to
illustrate model performance under specific circumstances. The model does not pre-
dict the height of an object and therefore the height of closest annotated object is
used when visualizing the predicted objects in the camera images.

The detection model underperforms in examples with stationary objects such as
the parking lot visualized in Figure 5.5. A majority of the stationary objects are
not detected and this limitation is found consistently when evaluating the model.
Furthermore, the heading direction of the predicted vehicle in the sample is incorrect.

Figure 5.5: The model underperforms on examples with stationary objects such
as in a parking lot. Note that only one vehicle is detected and the model incorrectly
identified the heading direction. Detected objects are visualized with annotated
objects , radar points and the measurement vehicle . The heading direction of
an object is indicated with .

34

5. Results

The detection model performs well in detecting objects with a large measured ve-
locity as visualized in Figure 5.6. The model’s ability to predict the localization
metrics reflects the results in Table 5.1 with the largest translation error being ap-
proximately 2 m. The objects in the scene are detected consistently throughout the
driving sequence.

Figure 5.6: A visualized sample which includes several non-stationary objects.
Detected objects are visualized with annotated objects , radar points and the
measurement vehicle . The heading direction of an object is indicated with
and the measured velocity of a radar point is visualized with the vector with
length proportional to the magnitude of the velocity.

The visualized samples in Figure 5.5, 5.6 indicate that the model has a stronger
performance on moving objects than on stationary objects. However, the radar
sensors only measure velocity in the radial direction w.r.t. the sensors. Therefore
objects which move in the tangential direction w.r.t the sensor have a low measured
velocity and the object detection model underperforms on these cases as well. The
number of these cases is significant in common traffic scenarios such as intersections.

35

5. Results

Bus Car Pedestrian Truck

B
u

s
C

a
r

P
ed

es
tr

ia
n

T
ru

ck

718 6645 34 2369

1231 56473 341 2702

14 883 3982 59

1700 10283 70 5637

Figure 5.7: A confusion matrix for a selection of the classes in an object proposal
classification task. The result is generated from the test set and proposals which
have a predicted objectness score lower than 0.5 are not included.

5.3 Detailed results

The mixed encoder had the highest performance with respect to AP and its results
are reviewed here in detail. Only objects in the Pedestrian and Car classes were
detected in the test set. It is therefore of interest to investigate the object proposals’
classification metrics to quantify the models ability to detect the remaining classes
before non-maximum suppression. The model’s performance in classifying the ob-
ject proposals is visualized as a confusion matrix in Figure 5.7. It is apparent that
the model correctly classifies some proposals as the remaining classes. However,
these are then suppressed by NMS.

The qualitative results indicated that the model had better performance on moving
objects. To quantify this difference a model was trained to detect only moving
objects. As a pre-processing step all radar points with zero-valued measured radial
velocity were removed. The model was then evaluated on annotations with non-
zero valued velocity. The performance metrics for non-stationary objects can be
found in Table 5.2 and the P-R curve is shown in Figure 5.8. Notably, the model’s
performance increased on the classification and localization tasks.

36

5. Results

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
on

P-R curve, Car, AP: 55.4 %

Figure 5.8: The Precision - Recall curve for non-stationary cars using an object
detection model with the mixed encoder. Note the increase in maximum recall in
comparison to Figure 5.3.

Table 5.2: A selection of the performance metrics of the object detection model
on non-stationary objects using the mixed encoder. Note the decrease in eφ in
comparison to the results in Table 5.1.

Class AP eδ eφ IoU eu

Car 0.55 0.70 0.12 0.64 1.27
Pedestrian 0.21 0.35 0.25 0.60 0.40

5.4 Ablation study

The aim of the ablation study is to evaluate if specific model design choices or
other elements of the methodology presented are beneficial. The design choices here
explored are the selection of coordinate system, the addition of engineered covariates
such as the point density and the inclusion of the orientation confidence in the non-
maximum suppression score.

5.4.1 Choice of Covariates

It is of interest to evaluate the importance of the covariates used in this work. With
this aim, models were trained with one of the covariates masked and evaluated
on the test set. The results displayed in Table 5.3, show that removing the time
covariate increases the translation error eδ for potentially fast moving objects such
as cars. The change in performance when masking the density or range covariate is
in contrast negligible. The addition of the absolute coordinate as a covariate in the
generation of the non-contextual embeddings increases the performance for the Car
class and decreases the performance on the Pedestrian class.

37

5. Results

Table 5.3: Performance metrics for a detection model using the mixed encoder with
a selection of covariates removed or added. The time covariate indicates the time
when a radar point was generated. The density covariate indicates the number
of edges connected to a radar point. The range covariate denotes the distance
from the radar point to the measurement vehicle. The addition of the absolute
coordinate of a radar point as a covariate is also explored.

Performance metrics

Removed covariate AP eδ eφ IoU eu

Original model
Car 0.21 0.77 0.27 0.64 0.93

Pedestrian 0.15 0.43 0.51 0.60 0.62

Time covariate
Car 0.19 0.94 0.29 0.64 1.05

Pedestrian 0.14 0.42 0.44 0.60 0.57
Density covariate

Car 0.20 0.74 0.27 0.64 0.91
Pedestrian 0.15 0.41 0.49 0.62 0.64

Range covariate
Car 0.19 0.70 0.26 0.62 1.01

Pedestrian 0.15 0.31 0.41 0.61 0.62

Added covariate AP eδ eφ IoU eu

Absolute coordinate
Car 0.23 0.55 0.21 0.64 0.92

Pedestrian 0.11 0.34 0.23 0.58 0.44

5.4.2 Choice of Coordinate system

In this work the radar points from the five sensors have been transformed to a
coordinate system centered on the measurement vehicle. Since the radar sensors
are only able to measure velocity in the radial direction it is investigated whether
keeping the radar points in the sensor coordinate system is beneficial for the model’s
performance. A model is trained on radar points in their respective sensor coordinate
system with no edges constructed between measurements from different sensors. The
results are found in Table 5.4. The model performance decreases when trained and
tested on radar points in the sensors’ coordinate system.

38

5. Results

Table 5.4: Performance metrics for a detection model using the mixed encoder.
Sensor coordinates refers to keeping the radar points in the respective sensor’s
coordinate system. The objectness NMS referrers to using a NMS scoring function
which disregards the orientation confidence.

Performance metrics

Modification AP eδ eφ IoU eu

Original model
Car 0.21 0.77 0.27 0.64 0.93

Pedestrian 0.15 0.43 0.51 0.60 0.62

Sensor coordinates
Car 0.16 0.91 0.23 0.64 1.30

Pedestrian 0.11 0.84 0.49 0.61 0.64
Objectness NMS

Car 0.21 0.78 0.28 0.64 1.01
Pedestrian 0.16 0.41 0.33 0.61 0.50

5.4.3 Choice of NMS scoring function
The non-maximum suppression algorithm defined in Algorithm 1 requires a scoring
function to act as a proxy for the confidence of object proposal. In this work the
scoring function has been defined as the sum of the predicted objectness and the
predicted probability of the selected orientation. The model was evaluated with
only the objectness probability included in the scoring function and the results can
be found in Table 5.4. The inclusion of the orientation probability in the scoring
function did not affect the model’s performance.

39

5. Results

40

6
Discussion

In this chapter one finds a discussion regarding the performance and limitations of
the presented work. In addition, areas of future work are explored.

6.1 Conclusion
The work presented has shown that end-to-end deep learning methods for object
detection in the radar modality is a viable approach, in particular for objects in
motion. However, the performance is hindered by two limitations. It is difficult for
the model to distinguish stationary objects from the surrounding environment and
proposals from uncommon classes are consistently supressed by the non-maximum
supression algorithm.

Any object detected by the model is generally covered by several object proposals.
Some of the proposals may be incorrectly classified as indicated by the confusion
matrix in Figure 5.7. The NMS algorithm selects the most confident proposal as
measured by some scoring function. In this work the NMS algorithm rarely selected
the uncommon classes which indicates that the objectness probability used in this
work is a poor proxy for proposal confidence and is systematically overestimated for
the common classes like Car and Pedestrian.

Simply training a more effective classifier would lower the number of incorrectly
classified proposals and therefore mitigate the suppression of uncommon classes.
Another approach would be to cluster the embedded radar points in some way and
assume that the points in a cluster is generated by one unique object - circumventing
the need for NMS. Finding a more suitable scoring function or using a heuristic such
as majority vote for classification could also be beneficial.

It is challenging for an object detector operating on the radar point cloud to dis-
tinguish a parked vehicle from the surrounding environment. The materials such as
metal and plastic which comprise a car are also common in the environment. Fur-
thermore, the geometry of a car might not be descriptive as it is roughly a rectangle
in the x–y plane. Therefore it is likely necessary to provide more information to the
model in order to achieve the performance needed for application in the automotive
industry. For example, it is possible that the cross-section of the car in the range-
azimuth plane could distinguish the car from background elements such as a chain

41

6. Discussion

link fence.

6.2 Future work
Radar data in any representation can be difficult to annotate and often requires
additional sensor modalities in support of the effort. Given the difficulty of annotat-
ing radar data it would be interesting to explore the construction of self-supervised
tasks as a pre-training stage. The intention is that the model will learn to embed
the input data in a representation useful for other tasks such as object detection. A
simple self-supervised task might be to predict the next range-azimuth heatmap in
a sequence.

Recent work [44] have explored instance segmentation of point cloud representations
using loss functions which explicitly separates the embeddings of different instances
and constricts embeddings of points which belong to the same instance. At infer-
ence, the embeddings are clustered to produce a set of objects, in this context named
an instance segmentation. It would be interesting to use this methodology for object
detection in the radar domain with the addition of classifying the generated cluster.

42

Bibliography

[1] Jacques Hadamard. Sur les problèmes aux dérivées partielles et leur signification
physique. Princeton university bulletin, pages 49–52, 1902.

[2] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11621–11631, 2020.

[3] Sujeet Milind Patole, Murat Torlak, Dan Wang, and Murtaza Ali. Automo-
tive radars: A review of signal processing techniques. IEEE Signal Processing
Magazine, 34(2):22–35, 2017.

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11621–11631, 2020.

[5] Andras Palffy, Jiaao Dong, Julian FP Kooij, and Dariu M Gavrila. Cnn based
road user detection using the 3d radar cube. IEEE Robotics and Automation
Letters, 5(2):1263–1270, 2020.

[6] Nicolas Scheiner, Nils Appenrodt, Jürgen Dickmann, and Bernhard Sick. A
multi-stage clustering framework for automotive radar data. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 2060–2067. IEEE,
2019.

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 3354–3361. IEEE, 2012.

[8] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition
and cooperation in neural nets, pages 267–285. Springer, 1982.

[9] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed
Bennamoun. Deep learning for 3d point clouds: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

[10] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 652–660,
2017.

[11] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,

43

Bibliography

et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[12] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. In Advances
in neural information processing systems, pages 5099–5108, 2017.

[13] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object
detection in a point cloud. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1711–1719, 2020.

[14] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional
detection. Sensors, 18(10):3337, 2018.

[15] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and
Oscar Beijbom. Pointpillars: Fast encoders for object detection from point
clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12697–12705, 2019.

[16] Bence Major, Daniel Fontijne, Amin Ansari, Ravi Teja Sukhavasi, Radhika
Gowaikar, Michael Hamilton, Sean Lee, Slawomir Grzechnik, and Sundar Sub-
ramanian. Vehicle detection with automotive radar using deep learning on
range-azimuth-doppler tensors. In Proceedings of the IEEE International Con-
ference on Computer Vision Workshops, pages 0–0, 2019.

[17] Wai Kai Chen. The electrical engineering handbook. Elsevier, 2004.
[18] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.
[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.
[20] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of

loss functions in machine learning. Annals of Data Science, pages 1–26, 2020.
[21] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge

Cardoso. Generalised dice overlap as a deep learning loss function for highly
unbalanced segmentations. In Deep learning in medical image analysis and
multimodal learning for clinical decision support, pages 240–248. Springer, 2017.

[22] Lee R Dice. Measures of the amount of ecologic association between species.
Ecology, 26(3):297–302, 1945.

[23] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs
in statistics, pages 492–518. Springer, 1992.

[24] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detec-
tion with deep learning: A review. IEEE transactions on neural networks and
learning systems, 30(11):3212–3232, 2019.

[25] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, and
Qingmin Liao. Deep learning for single image super-resolution: A brief review.
IEEE Transactions on Multimedia, 21(12):3106–3121, 2019.

[26] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised
monocular depth estimation with left-right consistency. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 270–279,
2017.

44

Bibliography

[27] Alice Lucas, Michael Iliadis, Rafael Molina, and Aggelos K Katsaggelos. Us-
ing deep neural networks for inverse problems in imaging: beyond analytical
methods. IEEE Signal Processing Magazine, 35(1):20–36, 2018.

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431–3440, 2015.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[30] Wenming Cao, Zhiyue Yan, Zhiquan He, and Zhihai He. A comprehensive
survey on geometric deep learning. IEEE Access, 8:35929–35949, 2020.

[31] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of
methods and applications. arXiv preprint arXiv:1812.08434, 2018.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–6008,
2017.

[34] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for
natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

[35] Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Lev-
skaya, and Jon Shlens. Stand-alone self-attention in vision models. In Advances
in Neural Information Processing Systems, pages 68–80, 2019.

[36] Andrea Galassi, Marco Lippi, and Paolo Torroni. Attention, please! a critical
review of neural attention models in natural language processing. arXiv preprint
arXiv:1902.02181, 2019.

[37] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788, 2016.

[38] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[40] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling
operations in convolutional architectures for object recognition. In International
conference on artificial neural networks, pages 92–101. Springer, 2010.

[41] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher.
A closer look at deep learning heuristics: Learning rate restarts, warmup and
distillation. arXiv preprint arXiv:1810.13243, 2018.

45

Bibliography

[42] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t de-
cay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489,
2017.

[43] Lia Corrales. retinanet-examples, May 2020.
[44] Guangnan Wu, Zhiyi Pan, Peng Jiang, and Changhe Tu. Bi-directional at-

tention for joint instance and semantic segmentation in point clouds. arXiv
preprint arXiv:2003.05420, 2020.

46

A
Architecture parameters

Here disclosed are the architecture and optimization parameters used in this work.
One can find the optimization parameters in Table A.1 and the network architectures
in Table A.2.

Table A.1: The parameters used in this work related to the optimization of the
network.

Parameters
Optimizer Algorithm Base learning rate L2 regularization

Adam 2× 10−5 0.01
Scheduler Schedule Warmup iterations Epochs

Half-cosine 1000 20

I

A. Architecture parameters

Table A.2: A listing of the MLP architectures used in this work consisting of the
components linear layer (Lin), batch normalization (BN) and rectified linear unit
(ReLU). The operations field specifies how many message passing operations are
used in the architecture.

Multilayer perceptron pipeline
−−→

Graph encoder
MLPf BN Lin(512) BN ReLU Lin(512) BN ReLU
MLPg BN Lin(512) BN ReLU Lin(512) BN ReLU

Operations 8
Attention encoder

MLPf BN Lin(448) BN ReLU Lin(512) BN ReLU
MLPg BN Lin(448) BN ReLU Lin(512) BN ReLU
MLPk Lin(448)
MLPq Lin(448)
MLPv Lin(448)

Operations 8
Mixed encoder

MLPf BN Lin(512) BN ReLU Lin(512) BN ReLU
MLPg BN Lin(512) BN ReLU Lin(512) BN ReLU

Operations 6

MLPf BN Lin(512) BN ReLU Lin(512) BN ReLU
MLPg BN Lin(512) BN ReLU Lin(512) BN ReLU
MLPk Lin(512)
MLPq Lin(512)
MLPv Lin(512)

Operations 2

II

A. Architecture parameters

Multilayer perceptron pipeline
−−−→

PointNet encoder
0.2 m Lin(64) BN ReLU Lin(64) BN RelU Lin(64)

ReLU BN
1 m Lin(128) BN ReLU Lin(128) BN RelU Lin(256)

ReLU BN
Global Lin(256) BN ReLU Lin(512) BN RelU Lin(512)

ReLU BN
Decoder

Class MLP Lin(512) BN ReLU Lin(512) BN RelU Lin(10)
ReLU BN

Orientation MLP Lin(512) BN ReLU Lin(512) BN RelU Lin(8)
ReLU BN

Regression MLP Lin(512) BN ReLU Lin(512) BN RelU Lin(5)
ReLU BN

III

	Introduction
	Background
	Aim
	Limitations
	Previous work
	PointNet
	Point-GNN
	Object detection for radar tensor data

	Theory
	Radar signal processing
	FMCW radar
	Radar data tensor
	Radar point generation

	Deep neural networks
	ANN
	Optimizer
	Loss functions

	Encoder-decoder architecture
	Geometric deep learning
	Message passing
	Graph attention networks

	Object detection

	nuScenes dataset
	Methods
	Pre-processing
	Data augmentation
	Model architecture
	Graph encoder
	Attention encoder
	Mixed encoder
	PointNet++ encoder
	Decoder

	Loss functions
	Optimizer

	Non-maximum suppression
	Performance metrics
	Average precision
	Localization metrics

	Results
	Quantitative results
	Graph encoder
	Attention encoder
	Mixed encoder
	PointNet++

	Qualitative results
	Detailed results
	Ablation study
	Choice of Covariates
	Choice of Coordinate system
	Choice of NMS scoring function

	Discussion
	Conclusion
	Future work

	Bibliography
	Architecture parameters

