'22) CHALMERS

UNIVERSITY OF TECHNOLOGY

Use of image processing to determine
greenhouse crop control parameters

A thesis within image analysis and neural networks

Master’s thesis in Biomedical Engineering

HELENA PETTERSSON

Department of Electrical Engineering

MASTER’S THESIS 2018:EENX30

Use of image processing to determine
greenhouse crop control parameters

A thesis within image analysis and neural networks

HELENA PETTERSSON

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering
Research and Development, Heliospectra AB
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2019

Use of image processing to determine greenhouse crop control parameters

A thesis within image analysis and neural networks
HELENA PETTERSSON

© HELENA PETTERSSON, 2019

Supervisor: Daniel Bankestad, Heliospectra AB
Supervisor: Torsten Wik, Automatic Control, Chalmers
Examiner: Fredrik Kahl, Computer Vision, Chalmers

Master’s Thesis 2018:EENX30

Department of Electrical Engineering
Research and Development, Heliospectra AB
Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: Instance segmentation of a basil plant performed using neural networks.

Typeset in KTEX
Gothenburg, Sweden 2019

iv

Abstract

This study is conducted in collaboration with Heliospectra AB, a developer of highly
controllable LED-lamps. Both the intensity and light spectrum can be controlled
in the LED-lamps, giving uprise to intelligent lighting strategies which in the end
will lead to large energy savings. Taking the development further and exploring
the possibilities of optimizing the control system using image analysis and thereby
making it feasible to have a feedback signal from the crops.

To investigate what potentially useful information that can be derived from the
crops by image analysis, with particular focus on image segmentation, the aim of
this project is to develop a small platform for image analysis in a plant lab. The
platform shall include a database consisting of datasets with annotated images of
basil plants and a program which shall be able to segment leaves in an aerial view
of the plants.

By using image segmentation, transfer learning, COCO dataset, and the neural
network framework Mask R-CNN, the program was able to perform leaf instance
segmentation on aerial images of basil plants with an IoU,,,.s accuracy of up to 85%.
Future work could be focused on developing new features for the platform, such as a
monitoring program that aids the grower to keep track of the growth process of the
plants. Another feature may be an alert system that detects disease and vermin in
the plants. By focusing more on the development of the database, future work may
instead be directed towards implementing more species of plants into the platform,
making the platform broader in another sense.

Keywords: Image analysis, object detection, instance segmentation, image dataset,
transfer learning, Mask R-CNN, annotating, neural networks.

Sammanfattning

Detta arbete dr genomfort i samarbete med Heliospectra AB, som utvecklar kon-
trollerbara LED-lampor for vixter. Bade intensitet och spektrum kan kontrolleras
pa en hog niva, vilket ger upphov till anvindandet av intelligenta ljus strategier som
i slutdndan kan leda till stora energibesparingar. For att ta utvecklingen vidare och
optimera kontrollsystemet mer, kan man introducera bildanalys for att pa sa sétt
fa en aterkopplande signal fran plantorna.

For att undersoka vilken information man kan fa ut av plantorna med hjilp av
bildanalys, speciellt med fokus pa instanssegmentering, ar malet med det har pro-
jektet att ta fram en liten plattform for bildanalys i ett vaxtlabb. Plattformen ska
innehalla en bilddatabas som bestar av ett dataset med uppmarkta och kategoris-
erade bilder av basilikaplantor, samt ett program som ska kunna segmentera blad i
bilder tagna ovanifran av plantorna.

Genom att anvinda instanssegmentering, éverforingsinlérning, MS COCO dataset,
och det neutrala natverks-ramverket Mask R-CNN, méjliggjorde detta att program-
met kunde utfora instans segmentering, av basilikablad pa bilder tagna ovan plan-
torna, med en IoU,, .. noggrannhet pa 85%. Fortsatt utveckling av arbetet kan vara
att implementera ett Gvervakningsprogram som kan hjilpa odlarna med att halla
koll pa plantornas viaxtmonster. En annan funktion skulle istillet kunna vara att
utveckla ett varningssystem som kan upptéacka sjukdomar och skador pa plantorna.
Vill man utveckla plattformen i en annan riktning, kan man istallet fokusera pa
att fa in andra typer av vixter dn basilika i databasen, sa att plattformen far ett
bredare utbud at ett annat hall.

Nyckelord: Bildanalys, objektdetektering, instanssegmentering, bilddatabas, over-
foringsinlarning, Mask R-CNN, annotering, neurala nétverk.

Vil

Acknowledgements

In order to accomplish results in this thesis a great help have been provided by the
people at Heliospectra AB and an extra thanks to Daniel Bankestad, Ida Fallstrom,
Grazyna Bochenek and Johan Lindqvist.

Helena Pettersson, Gothenburg, June 2019

ib'e

Nomenclature

CNN Convolutional neural network

FPN Feature pyramid network

IoU Intersection over union

MaskR — CNN Mask region based-convolutional neural network
ResNet Residual neural network

RNN Recurrent neural network

Rol Region of interest

RPN Region proposal network

X1

Xil

Contents

List of Figures
List of Tables

1 Introduction

1.1 Background
1.2 Purpose and aim
1.3 Objectives
2 Theory and related work
2.1 Plant CV and other related research
2.2 Datasets
2.3 Neural networks
2.3.1 Training a neural network
2.3.2 Transfer learningo
2.3.3 The Mask R-CNN framework
2.3.4 Evaluation methods
3 Methods
3.1 Data acquisition setup
3.1.1 Plants
3.1.2 Camerasetup
3.2 Creating the datasets
3.2.1 Augmenting images
3.3 Training the neural network
3.4 How the result shall be evaluated
4 Results
4.1 Data acquisition setupo
4.1.1 Plants o
4.1.2 Setup
4.2 Annotating images and creating the datasets
4.3 Network evaluation
4.3.1 Training of the neural network
4.3.2 Evaluating the network performance

5 Discussion

Xiii

XV

xXix

21
21
21
22
23
24
25
27

29
29
29
29
30
32
32
34

39

Contents

5.1 Data acquisition setup

5.1.1 Annotating images and creating the dataset

5.1.2 Augmenting images
5.2 The neural network
5.2.1 Training the neural network
5.2.2 Evaluating the network performance
5.3 Relation to medical field
54 Future worko

6 Conclusion
Bibliography
A Measuring data during growth process

B Datasets

Xiv

List of Figures

2.1 Tllustrating how four different types of computer vision tasks have
been solved on the same image. Image credit: (Lin et al. [2015]). . . .
2.2 A sample of images from the MNIST dataset with corresponding la-
bels. Image credit: (MNIST dataset introduction [2017]).
2.3 A sample of two root-to-leaf branches of ImageNet, where 9 random
images are presented for each synset. The top sample showing the
mammal subtree and the bottom showing the vehicle subtree. Image
credit: (Deng et al. [2009]).
2.4 Samples of annotated images in the MS COCO dataset. Image credit:
Linetal. [2015].o
2.5 Schematic of the human brain cell compared to an artificial neural
network. L
2.6 An example of how a (simplified) deep layer neural network for image
classification might look like. The input image is feed into the trained
neural network, and the neural network then predicts an output label,
which in this case is "Face' i.e. the network predicted that the image
contains a face.o L oL
2.7 Showing the RGB color profile. The intensity of each color channel
is at its maximum to create white. Image credit: (Sullivan [2016]). . .
2.8 Showing the different planes that construct a color image and a
grayscale image. In this case the grayscale image is created by taking
the mean value of the RGB color image planes. Image credit: (Peyre
2010]). . .«
2.9 R.F. Sigmoid function and the derivative of the sigmoid function.
L.F. ReLU function and the derivative of the ReLLU function.
2.10 R.F. Softmax function, with K = 10. L.F. Softmax function, with
K =20. . . .
2.11 The dotted sigmoid function has been moved with the help of a bias.
2.12 A simplified deep neural network with hidden layers. How features
can look like, lower level features in the earlier hidden layers, higher
level features in the later hidden layers. The lower level features
consist of rough shapes such as edges and corners, whilst higher level
features consist of more real life objects such as rough face shapes.
Image credit: (Aashay Sachdeva [2017]).
2.13 An illustration of the structure of the Mask R-CNN framework. Image
credit: (Ren [2017]).o Lo

XV

List of Figures

2.14

2.15

2.16

217

2.18

2.19

3.1

3.2
3.3
3.4

3.5

3.6

3.7

4.1

Different feature maps. Image (d) shows how the different features
can transcend between the different layers increasing accuracy com-
pared to (a)-(c). Image credit: (Lin et al. [2017]).

A RPN illustrating how the sliding-window generates anchor boxes.
Image credit: (Ren et al. [2016]).

RPN anchor box proposals (more commonly called Region of Interests
(Rols)) showing the individual intersection over union (IoU) score at
each box as well. Image credit: (Ren et al. [2016]).

Showing the ground truth bounding box and the predicted bounding
box. Image credit: (Rosebrock [2016]).

R.F. The yellow field in the image represents the ground truth mask.
L.F. The yellow field represents the predicted neural network output.
Image credit: (Jordan [2018]). Lo

R.F. The yellow field represents the intersection between the ground
truth and the predicted output. L.F. The yellow field represents the
union between the ground truth and the predicted output. Image
credit: (Jordan [2018]).o oo

The plant setup shown from the G3 camera. Each plant was num-
bered in order to follow its growth pattern. The setup was kept the
same throughout the whole growth process.

The plant setup shown from the G3 Dome camera.
[Nlustrating the setup for obtaining the raw data..

Using the VIA image annotating tool to create a polygon train around
each basil leaf. The polygon region shape in the VIA tool is used to
create the polygon trains.

Leaves physically smaller than 2 cm are not considered to be leaves
and therefore are not annotated. Too small leaves are denoted by the
red circle.

Using the VIA tool to add object names to each instance in order to
confine them to a category, the category being "basilleaf" in this case.

Instances not confined to a category is automatically categorized as
"BG" (background).

Mlustrating how the augmentation was done. The left image is the
input image with corresponding instances visualized by colored poly-
gon trains. The right image is a rotated version of the input image,
the instances have been rotated in the same manner as the image. . .

Images of the same basil plants, cropped and scaled down into the
same sizes to show what the difference in camera placement does, as
well as what role camera resolution have. The left and middle image
have the same camera resolution, however the left camera is placed
~40cm above the middle camera. The right image have a camera
resolution of roughly 11 times more than the other two cameras.

XVi

19

25

30

List of Figures

4.2

4.3
4.4
4.5
4.6
4.7

4.8
4.9

4.10

4.11

4.12

4.13

4.14

5.1

5.2

9.3

5.4

9.5

Showing the images in dataset #1, both the training set as well as
the validation set. Images starting with a number was taken with
the G3 Dome camera, other images were taken with the Canon 750D
camera. Note that the annotations are not visible in the images. . . . 31
Validation loss and training loss for the network setups with 10 epochs. 33
Validation loss and training loss for the network setups with 30 epochs. 33

The input image, Basil-13, in the test dataset. 35
The input image, Basil-13, with different neural network setups trained
on 10 epochs. L 35
The input image, Basil-13, with different neural network setups trained
on 30 epochs. 35
The input image, IMG-4000, in the test dataset. 36
The input image, IMG-4000, with different neural network setups
trained on 10 epochs. 36
The input image, IMG-4000, with different neural network setups
trained on 30 epochs. oL 36

The mask intersection over union (IoU,,.sx) results for the different
network setups. The IoU,,.s result was calculated over the whole
test dataset. An average for each network setup was calculated, rep-
resented as the red line in the graph. 37
Leaf count for the different network setups. The leaf count result was
calculated over the whole test dataset. An average for each network
setup was calculated, represented as the red line in the graph. 37
Each mask is denoted by a different color to emphasize the different
segmentations. The neural network segments two leaves with one
mask (denoted by the red circle) in (a) or segments one leaf into
several masks asin (b). L 38
A neural network result performed on input image IMG-4000 and with
network setup: 30e 160im. FEach mask is denoted by a different color
to emphasize the different segmentations. The neural network have
segmented a leaf that is too small to be counted as a leaf (denoted
by the red circle). This in turn effects the number of leaves counted. . 38

A stem from another leaf (denoted by the red circle) overlapping a
leaf. The stem is included in the underlying leaf, in order for the
underlying leaf to not be divided into two instances. 40
A large stem covering the underlying leaf (denoted by the red circle).
A small portion of the stem is included into the underlying leaf in

order for the leaf not to be divided into two instances. 40
A leaf overlapping another leaf. The underlying leaf, (denoted in red)
had to be divided into two separate instances. 40

Hard for the eye to distinguish between two separate leaves (denoted
by red circle). The underlying leaf is also very blurry, making it even
harder to distinguish, thus the annotations are done approximately. . 41
Hard for the eye to distinguish between two separate leaves (denoted
by red circle), thus the annotations are done approximately. 41

XVil

List of Figures

B.1

B.2

B.3

B4

B.5

B.6

B.7

List of images in the different training datasets. The x marks if an
image belongs to a dataset.
List of images in the different validation datasets at the top. List of
images in the different testing datasets at the bottom. The x marks
if an image belongs to a dataset.
Showing the images in dataset #2, both the training set as well as
the validation set. Images starting with a number was taken with
the G3 Dome camera, other images were taken with the Canon 750D
CAIMETA. . . o o v v e e e
Showing some of the images in the training set of dataset #3. Images
starting with a number was taken with the G3 Dome camera, other
images were taken with the Canon 750D camera.
Showing the rest of the images in the training set of dataset #3. All
images were taken with the Canon 750D camera.
Showing the images in the validation set of dataset #3. Images start-
ing with a number was taken with the G3 Dome camera, other images
were taken with the Canon 750D camera.
Showing the test dataset, which is the same for all four datasets. All
images were taken with the Canon 750D camera.

XViii

2.1

4.1
4.2

4.3
Al

A2

List of Tables

The different symbols used in the equations. Table credit: (Weng
2017)). .« o

Camera resolutions for the different cameras.
The setup of the four different training datasets as well as for the test

dataset, visualization of the datasets can be seen in appendix B. . . .
The different network setups during the training of the network. . . .

Result of the growth pattern for each basil. The first column rep-
resents the pot number for each basil plant, in order to follow each
basil’s growth pattern. The number in each column represents the
number of leaves physically larger or equal to 2 cm. The yellow col-
ored rows represents the pots containing only 3 plants per pot, every
other pot contained 8 plants per pot. On harvest the height of the
plant was measured as well, seen in the last column.
Cont. Result of the growth pattern for each basil. The first column
represents the pot number for each basil plant, in order to follow
each basil’s growth pattern. The number in each column represents
the number of leaves physically larger or equal to 2 cm. The yellow
colored rows represents the pots containing only 3 plants per pot,
every other pot contained 8 plants per pot. On harvest the height of
the plant was measured as well, seen in the last column.

Xix

List of Tables

XX

1

Introduction

This chapter presents the introduction to the master thesis work as well as stating
the research questions which shall be answered throughout the thesis.

1.1 Background

Heliospecrta AB is a relatively young company working at the forefront developing
highly controllable LED-lamps for both greenhouses and research purposes. Both
the intensity and light spectrum can be controlled in the LED-lamps, giving uprise
to intelligent lighting strategies which in the end will lead to large energy savings.
In order to further investigate the possibilities of light control to be able to optimize
the control system, more information about the crop is needed. A recent price drop
for high performance cameras over the years has made it feasible to equip the LED-
lamps with such a camera, creating an opportunity to have a feedback signal from
the crops using image analysis.

The development in open source communities and technologies have made it possible
to separate objects in an image using neural networks and image analysis frameworks
such as the Mask R-CNN, (He et al. [2017]). Another one of these open source
platforms is solely focusing on plants, namely the PlantCV, which can determine
crop parameters with the help of a camera, (Gehan et al. [2017]). This framework
however is not applicable for the over all horticulture community, since the user have
to input specifications such as the number of pots, how the pots are placed and the
framework is not able to find overlapping leaves in an image.

1.2 Purpose and aim

The purpose of this thesis is to investigate what potentially useful information can
be derived by image analysis, in particular with focus on image segmentation.

The aim of this project is to develop a small platform for image analysis in a plant
lab. The main program shall be able to segment leaves in an aerial view of the
plants.

1.3 Objectives

The objective of this thesis is to investigate methods on how to incorporate image
analysis into the horticulture environment in order to streamline the growth process.

1. Introduction

The major question to keep in mind during the project is "Can image analy-
sis be used to determine growth parameters?" and if so, "What can we
determine?" with follow-up-questions such as "Can it aid the grower for a
more sufficient way of determining such parameters?" and "Is it sufficient

enough in order to replace the conventional way of counting leaves by
hand?".

2

Theory and related work

This chapter deals with theory used to solve the task in hand along with related
work conducted around the world.

Programs using computer vision tasks can be divided into four main groups as
following; image classification, object localization, semantic segmentation,
and instance segmentation. If a program is using image classification it is able to
tell that the image in figure 2.1a contains a person, a sheep and a dog but can not
tell where in the image these objects are placed. To determine where in the image
an object is located, the program have to use object localization instead. With this,
the program can represent the location of an object as a bounding-box around that
object, as shown in figure 2.1b. In the case of semantic segmentation, shown in
figure 2.1c, the program is also able to, for each pixel in the image, determine if
that pixel either belongs to the background, the person, the dog, or any of the five
sheep. The program can not account for the fact that there are five sheep in the
image and sees them as the same object. If the program should be able to separate
the sheep and actually see them as five different objects, instance segmentation has
to be applied. The separation of each sheep is represented by the different colored
sheep in figure 2.1d.

person, sheep, dog :

(a) Image classification

|

(c) Semantic segmentation (d) Instance segmentation

Figure 2.1: Illustrating how four different types of computer vision tasks have been
solved on the same image. Image credit: (Lin et al. [2015]).

2. Theory and related work

2.1 Plant CV and other related research

The research within the field of image analysis directed to the horticulture commu-
nity is limited and therefore the availability of these applications are as well. There
are however some research and software available for usage, most of them are fo-
cused on height determination of the plants and decease detection in plants (Lin et al.
[2012]), (Radha [2017]), (Scharstein and Szeliski [2001]), (Grenzdorfter [2014]). One
publicly available framework includes both of the aforementioned methods as well
as a method for counting and segmenting leaves, namely the PlantCV framework,
(Gehan et al. [2017]). This framework is on the cutting edge of image processing
within the horticulture environment. Despite that, there are some restraints when
using the leaf count functionality, it cannot distinguish overlapping leaves and the
user have to specify how many plants are visible in the image as well as how the
plants are organized (e.g. 3 plants in a row and 4 rows in total). The requirement of
user input of how the plants are placed does not make the PlantCV very applicable
for the overall user, since the plants may be placed differently compared to a perfect
matrix as well as the problem with overlapping leaves.

2.2 Datasets

In order for a neural network to work it requires data, more specifically a dataset.
The dataset connected to a neural network is task specific and determines the ap-
plication. For visual tasks the dataset contains images, along with an associated
file containing some (or all) of the following attributes; image classifications, object
labels and annotations for each image in the dataset.

A dataset consists of 3 subgroups; training dataset,
validation dataset and test dataset. As a rule
of thumb when dividing the data into the differ-
ent subgroups, a somewhat altered Pareto Principle
is applied, i.e. the training dataset should contain
~80% of the total amount of data and the valida-
tion dataset should contain ~20%, (Box and Meyer
[1986]). However since we have a third dataset
an altercation is needed and the distributions is in-
stead as following; ~60% training dataset, ~20% val-
idation dataset and ~20% test dataset, (Andrew Ng
[2019]).

&
@«
El
-
&
g

|
L]

— I~
|

&
M
&
4
w
g
&

a-

&
w

y y
N (e
. .

&
w
&
e
g

).
aEn
o o
PR

=

N
|
B
o
|

&
~
&
&
@
&
e
g

Figure 2.2: A sam-
ple of images from the
MNIST dataset with cor-
responding labels. Image

- ,) credit: (MNIST dataset
Obtaining a large dataset is the basis of a good neural introduction [2017)).

network performance. However obtaining a large scale
dataset is very time consuming since each image needs
to be hand labeled, meaning a person needs to decide which classes are present in an
image and going deeper into segmentation tasks, each pixel in an image needs to be
associated with a class. In order to not reinvent the wheel for each visual task and
to aid in research, there are some large scale datasets made publicly available for

4

2. Theory and related work

download. Some common datasets are MNIST, MS COCO, ImageNet and PASCAL
VOC.

The Mixed National Institute of Standards and Technology! (MNIST) dataset is to
machine learning what "Hello World" is to programming i.e. it is the first dataset
one encounters when starting to learn neural networks. The MNIST dataset consists
of handwritten digits (see figure 2.2) and contains 60,000 training images and 10,000
test images and became publicly available in 1998, (LeCun Yann [1998]).

The Pattern Analysis Statistical modelling and Computational Learning Visual Ob-
ject Classes (PASCAL VOC) dataset is a dataset with focus on object detection in
natural images.

The dataset roughly contains 11,000 images with 20 object categories (classes),
27,000 object bounding-boxes and 7000 labeled instances (segmentations), (Ever-
ingham et al. [2010]). The dataset was discontinued in 2012 and has since been
surpassed by the ImageNet and MS COCO datasets.

The ImageNet dataset focuses on the ability to capture a large amount of object
categories. This is done in a WordNet manner, i.e. a hierarchical structure based
on synonym sets (synsets) whom connects the root-to-leaf branches in a subtree, see
figure 2.3.

When released in 2009 ImageNet had 3,2 million images with 5247 object categories
sorted into 12 subtrees such as mammal and vehicle, (Deng et al. [2009]). As of now
the dataset provides bounding boxes but no instances.

ELTE B LS BEE TIEE afkiE W% 5 S
£ sk VS WxF DL IRI o Bl ﬂl-?
I!l I iRl R0 WS - Tl VaThk

mammal —— placental —— carnivore —— canine —— dog ﬁworkingdog —— husky

AEE Qe GB™ T4 Bai oHL
=he ~Ee st as | kN BTF
«»&I7% - TRRF 5 Elaal) w3 Mezil

vehicle craft — watercraft —— sailingvessel —— sailboat trimaran

‘-

Figure 2.3: A sample of two root-to-leaf branches of ImageNet, where 9 random
images are presented for each synset. The top sample showing the mammal subtree
and the bottom showing the vehicle subtree. Image credit: (Deng et al. [2009]).

Microsoft Common Objects in COntext (MS COCO) is a dataset based on common
items people encounters on a daily basis and would be easily recognizable by a 4
year old. MS COCO is designed for detection and segmentation of these objects
occurring in their natural context, see figure 2.4.

!The National Institute of Standards and Technology (NIST) is a physical sciences laboratory,
and a non-regulatory agency of the United States Department of Commerce.

5

2. Theory and related work

When released in 2015 the MS COCO dataset
contained 328,000 images with 91 object cat-
egories and 2,8 million labeled instances, (Lin
et al. [2015]).

Compiling the vast amount of annotated images
is, as stated earlier, very time consuming and
both MS COCO and ImageNet have obtained
this data by utilizing Amazon’s Mechanical Turk
(AMT)2. In total the MS COCO took ~70,000
working hours to complete. Figure 2.4: Samples of anno-
Some other programs that are more specifically tated images in the MS COCO
designed to aid in creating datasets for image vi- dataset. Image credit: Lin et al.
sualization tasks are LabelMe, Labelbox, Rect- [2015].

Label and VGG Image Annotator (VIA) tool.

Both LabelMe and Labelbox are free of charge in exchange for letting them keep
the data created with their programs. RectLabel is free of charge and does not ask
to keep the data created, however it is specific to Mac OS and cannot be used on
Windows. The VIA tool is free of charge and runs on a web-platform so does not
require a specific operating system and the program does not keep the data created.

2.3 Neural networks

The basic structure of an artificial neural network (called neural network for sim-
plicity) mimics, as good as it can, the human brain cells and their connections. The
equivalent to a brain cell and its connections in the neural network is called a neu-
ron. In many cases it goes by another name, perceptron, and acts as a binary linear
classifier. When using multiple layer of perceptrons a perceptron can perform ei-
ther classification or regression, depending upon its activation function, (SHARMA
[2017]), (Multilayer perceptron — Wikipedia, The Free Encyclopedia [2019]).

The direction of information flow in a human brain can be seen in figure 2.5a. The
dendrites connected to the brain cell receives an input signal, this signal is passed
via the axons who in turn tells the synapses to send out signals to another cells’
dendrites. A neural network needs to operate in a similar manner, and the different
parts in the human brain can be translated to the neural network. The dendrites
translates to the input in the neural network, the synapses are the weights and the
axon translates to the output, see figure 2.5 for clarifications.

To translate the interconnections that happens when synapses interact with (acti-
vates) the dendrites in the human brain we also need a type of activation function
in the neural network. Common activation functions used are the sigmoid function,
the softmax function and the rectified linear unit (ReLU) function (all of which are
described in detail in section, 2.3.1) (Garbade [2018]), (Artificial Neural Network: -
Basic Concepts [2019]), (He et al. [2017]), (Hinton Geoffrey E [2013]).

2 Amazon Mechanical Turk is a online platform that enables individuals and businesses to out-
source their processes and jobs for users to complete and get paid for.

2. Theory and related work

Soma(Cell Body) /’
Infromation Processing

Dendrites
(Receivers)

Synapses
(conncction with
other neurons)

Flow of information

(a) A schematic of a human brain cell
and its connections. Image credit: (Ar-
tificial Neural Network - Basic Con-

weighted

sum (Y,) output
input S o
values activation
function (F)

(b) A schematic of a perceptron for a
artificial neural network. The dotted
circle represents a hidden neuron.

cepts [2019]).

Figure 2.5: Schematic of the human brain cell compared to an artificial neural
network.

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Face

labels

input image

Figure 2.6: An example of how a (simplified) deep layer neural network for image
classification might look like. The input image is feed into the trained neural net-
work, and the neural network then predicts an output label, which in this case is
"Face" i.e. the network predicted that the image contains a face.

A neural network almost always consists of more than one perceptron which lay
side by side with each other to construct a hidden layer, see figure 2.6. This figure
is however slightly simplified, since each circle contains the weighted sum and the
activation function. The bias is not illustrated at all but exists for every perceptron.
The weights are in fact also constructed of matrices of float numbers between 0
and 1 and are therefore often refereed to as weight matrices. The output from
each perceptron acts as the input to the next layer of hidden layers. The last layer
decides the predicted output from the entire network and decides which label (class)
the input most likely belongs to.

2. Theory and related work

In figure 2.6 it is also illustrated that the input to the
network is an image, which is feed into the network as
a matrix containing all of the pixel-values for the image,
e.g for a HD color image the matrix has the dimensions:
1024x1024x3. The first numbers are the height and width
of the image, where each entry in the matrix corresponds
to a pixel in the image. The number 3 comes from the
fact that it is a color image and the most common color
profile used in computer vision is RGB (R=red, B=Dblue
and G=green, shown in figure 2.3), so in order for each
color channel to be represented in the matrix, 3 planes is
needed, see figure 2.8a for an example. A grayscale image
consists of only one plane, that represents the intensity
between black and white. A grayscale can be created
from a color image by taking the mean value of the three
planes for each individual pixel and thereby creating a
new matrix, see figure 2.8b for an example.

The initial value of the pixels are normalized so that they

2.7:

Show-
ing the RGB color pro-

Figure

file.. The intensity of
each color channel is at
its maximum to create

white. Image credit:
(Sullivan [2016]).

have a value between 0 and 1. This yields for both the RGB image as well as the
grayscale image. If the values of a color pixel (x,y) is (0,0,0) the pixel is black if it

however is (1,1,1) it is white.

f R (Red)

G [green) B (blue)

(a) Showing the planes of a color image.
image.

(b) Showing the plane of a grayscale

Figure 2.8: Showing the different planes that construct a color image and a
grayscale image. In this case the grayscale image is created by taking the mean
value of the RGB color image planes. Image credit: (Peyre [2010]).

2.3.1 Training a neural network

The goal of a neural network is to predict the output and come as close to the real
output as possible. To obtain this, training is needed, and during the training period
the weight matrices are changed (updated) for each loop of training.

8

2. Theory and related work

As described in the previous section the output of one layer acts as the input to the
next layer with the help of weight matrices and activation functions. So in order to
calculate the predicted output of the neural network the output from each individual
layer needs to be calculated.

Looking at figure 2.5b we see that the predicted output of the network is Y = F(y;,).
We also have the following input to the activation function (also known as the
weighted sum):

n
Yin = inwi .
i=0

Keeping in mind that a neural network is looking more like in figure 2.6, it is clear
that we have multiple of these equations and that the predicted output Y actually
is the predicted output for just one perceptron.

To complete the calculations for one perceptron however, equations for the activation
function need to be obtained.

The three activation functions of interest are, as previously mentioned, the sigmoid
function, the ReLLU function and the softmax function. The functions are described
mathematically below and the characteristics of each function can be found in figures
2.9 and 2.10.

The sigmoid function and its corresponding derivative are

1 / !
Ysigmoid = F (Yin) = T4 o—vn Yiigmoia = F (Yin) = F (Yin) (1 — F(Yin)) -

The ReLU function and its corresponding derivative are

0 fory;, <0

Yrerv = F(Yin) = P el (Yin) 1 for ym;, >0
Yin fOI’ Yin Z 0

The softmax function is

eyin

}/;oftmaz = -F(y'm) =

Y

K
k=1

where K is the number of total output classes. A representation of the softmax
function can be seen in figure 2.10.

When training a neural network a common way is to feed the inputs through the
network in a straight forward manner, called forward propagation, as well as doing
so the weights are usually initialized randomly with float numbers between 0 and
1. The predicted output produced by the neural network, called Y in figure 2.5b, is
compared to the true output, Yi..e, (prelabeled by the user) as following: error =
Yiue—Y . The error determines how the weights of the hidden layer shall be updated,
and the derivative of the activation function determines in which direction and how
much the weight shall be updated. This method is called backpropagation, since it
is done starting from the output and working its way through all the layers to the
input.

2. Theory and related work

_}/sz moi —Y, €
0.8 || 5ome T
sigmoid ReLU
3 0.6 | 3
No04)
0.2 |
LTS 0 : : 4 1 1
-4 -2 0 2 4 —4 -2 0 2 4
xz X

Figure 2.9: R.F. Sigmoid function and the derivative of the sigmoid function.
L.F. ReLU function and the derivative of the ReLU function.

0.6 1 0.6 1
}/softmax }/softmaa:
— 04 — 04
= =
5 5
0.2 0.2
0 — : R 0 : : —
2 4 6 8 10 0 D 10 15 20
X X

Figure 2.10: R.F. Softmax function, with K = 10. L.F. Softmax function, with
K = 20.

In the case of backpropagation the derivative of the sigmoid activation function,
seen in figure 2.9, will only amplify the error by a quarter for each hidden layer.
This means that the hidden layers closest to the input may not be effected by larger
errors generated from the output since a lot of information is lost with each step.

Looking at the derivative of the ReLLU function in the same figure (2.9), one notice
that the derivative is equal to 1 for all x > 0 which helps to avoid the effect of
loosing information during backpropagation.

The sigmoid function is a binary function, which means it can only differentiate
between either this or that, whilst the softmax function is a categorical probability
distribution which means that it can determine the probability between multiple
classes and tell you if any of them are true.

The ReLU function is easier to use compared to the sigmoid function and aids in
faster training time for large networks, (Hinton Geoffrey E [2013]).

Depending on the application the activation functions can be used separately or in
combination with each other. One of the most common way for a multiple classifi-
cation problem is to have the ReLLU activation function in the hidden layers and to
use the softmax function in the output of the neural network.

10

2. Theory and related work

The contribution of the bias at each neuron makes it possible to make the activation
function more flexible in order for it to classify the data correctly, e.g. the activation
function can be moved so that the function not always intersect origin, see figure

2.11.

There are several different structures of

neural networks, some of the most com- 1 _
mon ones are Recurrent Neural Net- 08 Il— Ysigmoid ’
work (RNN), Convolutional Neural Net- Tl === Ysigmoid+vias
works (CNN), and Region Proposal Net- = 067 K
work (RPN). They all are very similar, K04 ’
built up of different layers which are 0.2 | N
connected with weight matrices. How- _,"

. . 0 =
ever there are some differences, which -5 0 5 10

aids in different applications: a RNN is x
more applicable when doing computa-
tional tasks regarding speech and writ-
ing, wheres a CNN and a RPN is more
suited for images and videos. In fact,
the RPN was constructed in order to
find region of interests in images which is more described in detail later in this
paper. The different networks can be combined for suitable applications together.

Figure 2.11: The dotted sigmoid func-
tion has been moved with the help of a
bias.

The deepness, shallowness, thickness and narrowness of the neural network is of
importance and there are some studies that has shown that a shallow network can
fit any function if it is really thick. A thick network will however cause a large
increase in neurons in each hidden layer and in turn a large increase in calculation
size between the hidden layers. A deep but narrow neural network has also been
proven to fit any function, despite having more hidden layers (with fewer neurons

per layer) it has been proven to outperform shallower neural networks, (Lin et al.
[2015]), (He et al. [2015]).

2.3.2 Transfer learning

Constructing a deep neural network and training it is very time consuming, so in
order to get a good model without the large time consumption transfer learning is
used. Early research showed that it is possible to transfer features from the lower
levels of features, see figure 2.12, in a neural network and apply on a new task,
(Caruana [1995]).

11

2. Theory and related work

Deep Neural Network

LY

Input Layer

e}

edges combinations of edges object models

Figure 2.12: A simplified deep neural network with hidden layers. How features
can look like, lower level features in the earlier hidden layers, higher level features
in the later hidden layers. The lower level features consist of rough shapes such as
edges and corners, whilst higher level features consist of more real life objects such
as rough face shapes. Image credit: (Aashay Sachdeva [2017]).

More recent research has further shown that transfer learning can achieve supe-
rior results for some tasks compered to not using transfer learning, (Donahue et al.

[2013]), (Yosinski et al. [2014]), (Razavian et al. [2014]). Moreover there are two
major transfer learning alternatives for CNNs:

« Removing the last fully connected layer (the classifier) to retrain it on the new
dataset. Basically meaning to have a CNN as a fixed feature extractor for the
new dataset.

» Removing the classifier and retrain it as well as fine tuning and retraining the
weights through backpropagation. Either all of the weights can be fine-tuned
or only the weights associated with the layers of higher features.

Fine-tuning a CNN can be tricky depending on the size of the new dataset. So some
rule of thumbs to keep in mind and help during the fine-tuning are:

o If the new dataset is small and similar to the original dataset: Fine-
tuning can lead to overfitting. The best way is to train the linear classifier on
the CNN.

o If the new dataset is large and similar to the original dataset: Fine-
tuning all of the weights should be fine, and overfitting should be avoided.

o If the new dataset is small and very different from the original
dataset: Training a linear classifier with start somewhere early in the network
should aid in getting more data-specific features later in the neural network.

o If the new dataset is large and very different from the original
dataset: Train a CNN from scratch, or fine-tune all of the weights.

12

2. Theory and related work

Being similar to the original dataset means that they have a similar approach, e.g.
the original dataset is ImageNet which focuses on many classes and natural scenery,
the new dataset also have many classes in natural scenery. If the new dataset
on the other hand contains few classes and for example are microscopic images it is
considered to be very different from the original dataset (ImageNet in this example).
Due to the effectiveness of transfer learning there are many open source frameworks

available for implementation of instance segmentation tasks, such as Mask R-CNN,
CFS-FCN, U-Net, and CUMedVision2 (DCAN).

2.3.3 The Mask R-CNN framework

The Mask Region based-Convolutional Neural Network (Mask R-CNN) framework
is created for instance segmentation tasks and it uses the Faster R-CNN framework,
used for object detection tasks, as a foundation, (He et al. [2017]). The Mask R-CNN
framework is illustrated in figure 2.13.

box
regression

classification

fully connected
""""" layers

T a— fixed size feature map

,, RoIAlign layer

,,,,,,,,,,,, feature map

convolutional backbone

Figure 2.13: An illustration of the structure of the Mask R-CNN framework.
Image credit: (Ren [2017]).

The Mask R-CNN framework can be divided into four blocks as follows:

o Backbone: A standard CNN of some sort.

« Regional proposal network (RPN): A lightweight CNN with sliding-
window effect which creates regions of interests (Rols).

« Rol classifier and bounding box regressor: A CNN which is cropping
and resizing the Rols.

o Segmentation mask branch: A CNN which converts Rols into binary
masks.

A more detailed description of the four blocks is given below.

13

2. Theory and related work

Backbone

This block takes an image as input and produces a feature map which acts as an
input to the next block.

There are many different network architectures that can be used as a backbone
such as AlexNet, ZFNet, VGGNet, GoogleNet, ResNet, ResNeXt, DenseNet, and
SENet.

A suitable choice of CNN is a CNN with a significant depth and some type of
ResNet, since it uses skip connections which enables a deeper network structure
(up to 152 layers; ResNet152) with higher accuracy than other shallower networks,
despite losing computational speed would be a suitable choice, (He et al. [2015]).

To improve the accuracy even more a Feature Pyramid Network (FPN) lays on top
to extract features from more layers, see figure 2.14. The authors of the paper (Lin
et al. [2017]) claims that in using a FPN they "achieves state-of-the-art single-model
results on the COCO detection benchmark without bells and whistles, surpassing
all existing single-model entries including those from the COCO 2016 challenge

winners".
ﬁ -
*

(a) Featurized image pyramid (b) Single feature map

> predict

‘ predict
predict|
—» predict

."

(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

Figure 2.14: Different feature maps. Image (d) shows how the different features
can transcend between the different layers increasing accuracy compared to (a)-(c).
Image credit: (Lin et al. [2017]).

Regional proposal network (RPN)

Takes an feature map as input and produces anchor boxes (Rols), containing center
x-,y-coordinate of the box as well as the height and with of the box, as output.

A lightweight CNN is used to scan over the feature map (produced by previous block)
like a sliding-window, which finds patches (areas) of interest in the feature map. In
each sliding-window, multiple region proposals are predicted, called anchors, where
k is the maximum number anchors as seen in 2.15. An anchor box is centered in the
sliding window and is associated with a scale and aspect ratio.

14

2. Theory and related work

| 2k scores | | 4k coordinates | <«mm kanchor boxes
cls layer ‘ t reg layer
256-d |:|

t intermediate layer

DN

sliding window:

=

conv feature map

Figure 2.15: A RPN illustrating how the sliding-window generates anchor boxes.
Image credit: (Ren et al. [2016]).

Each anchor is classified as positive (likely to contain an object) or negative (not
likely to contain an object) using bounding box intersection over union (IoU) scores.
A score higher than ToUjpeshoq is positive, and if an ground-truth box has more
than one positive anchor, the anchor with the highest score is kept (known as non-
maximum suppression).

The positive anchors may not be placed perfectly over the object, so therefore they
have to be refined, known as bounding box regression. This is done by shifting both
the x-,y-coordinate of the center-point of the anchor box as well as adjusting the
height and width of the anchor box. At last the refined anchor boxes finalizes in
region of interests (Rol) proposals, (consisting of the final x-,y-coordinates and the
width and height of the the box) illustrated in 2.16 with corresponding loU score
for each box.

Figure 2.16: RPN anchor box proposals (more commonly called Region of Interests
(Rols)) showing the individual intersection over union (IoU) score at each box as
well. Image credit: (Ren et al. [2016]).

15

2. Theory and related work

Rol classifier and bounding box regressor

Takes the bounding box proposals as inputs and classifies them into specific labels
(given by the network input specifications).

This classification stage differs from the one in the previous stage in that this network
is deeper and by that has more ability to classify more classes than just positive or
negative, i.e. a softmax classifier is used.

Since the Rols provided by the steps before most likely varies in size so they have
to be cropped and resized in order for the classification to work. This is called Rol
warping or bounding box regression and this layer is applied on the feature maps.
The Rol warping layer has a pre-defined output size and can take any input size.

Segmentation mask branch

Takes the Rol from the classifier as an input and generates segmentation masks for
them.

The segmentation mask block converts the Rols into binary masks and by pixel-wise
binary classification the CNN determines which pixel belongs to which category. If
multiple classes are present, each class gets its own binary mask, so there is no
competition between them. The generated masks consists of float numbers which
makes it possible to be more precise compared to integer numbers.

2.3.4 Evaluation methods

There are many ways to evaluate a neural network and its performance, two of which
will be presented here; loss functions and intersection over union.

Loss functions

One way to evaluate the performance of a neural network is to evaluate the loss-
functions during the training period, (Changhau [2017]). Evaluating the loss func-
tion is done both on the training set as well as the validation set.

There is a variety of different loss functions such as Mean Squared Error (MSE),
Mean Squared Logarithmic Error(MSLE), L2, Mean Absolute Error (MAE), Mean
Absolute Error (MAE), Mean Absolute Precentage Error (MAPE), L1, Kullback
Leibler (KL) Divergence, Cross Entropy, Negative Logarithmic Likelihood, Pois-
son, Cosine Proximity, Hinge, Squared Hinge. They all have different applications
and specific areas of interest for the developer. The purpose of a loss function is
however the same despite which function is selected, namely to minimize the loss of
both the training loss and validation loss and to make them converge to one another.

The different loss functions in the Mask R-CNN:
The multitask loss function for the Mask R-CNN combines the losses from classifi-
cation, bounding box regression and segmentation mask, and is defined as following
in (He et al. [2017]):

L= ‘Ccls + ‘Cboac + /Cmask: (21)

16

2. Theory and related work

in which the two losses L. and Ly, where first defined in (Girshick [2015]).

Symbol | Description
U True class label, u € 0,1,...,K; the background class has u =0
P Discrete probability distribution (per Rol) over K + 1 classes:
» = (po, 1, ---, Pk), computed by a softmax over the K + 1 outputs of
a fully connected layer
v True bounding box, v = (v, Vy, Uy, Vs)
v Predicted bounding box correction, t* = (¢}, ty, t., t};)
Di Predicted probability of anchor ¢ being an object
o Binary ground truth label of whether anchor 7 is an object
t; The four parameterized predicted coordinates
tr Ground truth coordinates
Ny Normalization term, set to be mini-batch size
Npow Normalization term, set to the number of anchor locations
A A balancing parameter, so that both L
and Ly, terms are roughly equally weighted

Table 2.1: The different symbols used in the equations. Table credit: (Weng

[2017]).

Further on these are given as following:

1 ifu>1
Iu=>1] = .
0 otherwise
ﬁ(p7 u, tuv U) = £cls(p7 U) +]]-[u > 1]£boz<tu7 U) (22)
‘Ccls<pa U) = - logpu (23)
Loor(t*,v) = > L™t —) (2.4)
€{z,y,w,h}
Lemooth () — 0.522 if || 2'1
|z| — 0.5 otherwise

17

2. Theory and related work

1 A . p
Lonask = Y Z [yij log yfj + (i — yi;) log(1 — ?Jf])] . (2.5)

" 1<ij<m

The loss functions for the RPN is the following:

1 * * T SOOI *
LEpi} Ati}) = N, Z/Ccls(phpi)_'_ N, sz’Li "t — t]) (2.6)
Leas(pi, i) = —p; logp; — (1 —p}) log(1 — p;) (2.7)

All of these five loss equations contribute to the total loss function for the whole
training process of the network. The same calculations are used to calculate the
validation loss functions, with the change that drop-out is not used, i.e. all neurons
in the whole network is used to calculate the loss functions. Compared to when in
training mode, and drop-out is used to drop random neurons in order to add some
noise and avoid over-fitting.

Intersection over Union (IoU)

Another method to evaluate a neural networks performance is to use the Jaccard
index, coined by Paul Jaccard in (Phytoiiogist [1912]), or as it is more commonly
known today; the Intersection over Union (IoU) index. This index measures the
similarity between finite sample sets, and is defined as

_|AnB|
- |AuB|

J(A,B) IoU . (2.8)
To implement this, the nominator in equation 2.8 consists of the intersection between
the ground-truth bounding box and the predicted bounding box and the denomi-
nator is represented by the union between the same boxes. A representation of the
boxes is shown in figure 2.17.

Figure 2.17: Showing the ground truth bounding box and the predicted bounding
box. Image credit: (Rosebrock [2016]).

18

2. Theory and related work

However to get an even more accurate IoU for segmentation tasks one can calculate
the area, pixel-wise, of the segmentation masks instead of the bounding boxes.
The equation is basically the same, however it calculates the area of a ground truth
mask and a predicted output mask instead as:

Intersection of ground truth mask and predicted mask (2.9)

ToU sk =
O mask Union of ground truth mask and predicted mask

Visualization of the ground truth mask and the predicted output mask are shown
as yellow fields in figure 2.18. And the intersection and union of the two masks are
represented in figure 2.19.

Ground Truth Prediction

500 600 700 800

Figure 2.18: R.F. The yellow field in the image represents the ground truth mask.
L.F. The yellow field represents the predicted neural network output. Image credit:
(Jordan [2018]).

Intersection: Union:
AnB AuB

100
200
300 300
400

400

500 500

0 100 200 300 400 500 600 700 800 0 100 200 400 500 600 700 800

Figure 2.19: R.F. The yellow field represents the intersection between the ground
truth and the predicted output. L.F. The yellow field represents the union between
the ground truth and the predicted output. Image credit: (Jordan [2018]).

19

2. Theory and related work

20

3

Methods

In this chapter, the methods used to solve the task in hand are presented.

3.1 Data acquisition setup

In order to get a data set images of the required object are needed and in order to get
those images the object is necessary. In this case the dataset should be constructed
for basil leaves and therefore basil plants are required in order to get the images

needed.

3.1.1 Plants

The basil plants where positioned in a
growth chamber and was monitored during
the 28-day growth period. In order to get
different data the basil plants where placed
on 4 different trays positioned in different
ways on each tray as seen in figure 3.1.
Each pot had 8 plants per pot except for
pot number 20, 21, 22, 49 and 50 whom
had 3 plants per pot. During the growth
period the plants received sufficient lighting
and nutrients in order to grow. During each
time of watering, the plants where also ex-
amined and all of the leaves of each plant
where counted in order to follow the growth
pattern, a leaf is counted as a leaf when the
physical length of it is larger or equal to 2 cm
and the result can be found in appendix A.1
and A.2. In order to aid in future work the
height of the plants, during harvest, where

Figure 3.1: The plant setup shown
from the G3 camera. Each plant was
numbered in order to follow its growth
pattern. The setup was kept the same
throughout the whole growth process.

also measured and can also be found in the same appendix.

21

3. Methods

3.1.2 Camera setup

Two UniFi cameras was placed inside the unit at different
heights as seen in figure 3.3a. The camera to the left in
figure 3.3a is a UniFi Video Camera G3 Dome (G3 Dome)
and the camera to the right in the same figure is a UniFi
Video Camera G3 (G3). The field of view from the G3
Dome camera can be seen in figure 3.2.

The UniFi cameras are used for surveillance and are
therefore easy to use and access via Wi-Fi. To obtain
the raw data a python script was used in order to acqui-
sition 1 image per camera per minute during the 28-day
growth period.

The images was categorized and stored automati-
cally in order of date and time of the capture.
Both cameras produce images of the size 1920x1080px
which equals to a pixel count of roughly 2.07
MP.

Figure 3.2: The plant
setup shown from the G3
Dome camera.

[cm] :
. ﬁﬂiﬁu Z
o ——
A *
=) Y
-
e
P
Qo W ol iy
80 L L)
— ||

(a) A 3D illustration of the set up inside the
growth unit with measurements. At the top a
Heliospectra lamp (grey layer), in the middle
a UniFi Video Camera G3 Dome (red layer)
and at the bottom a UniFi Video Camera G3
(blue layer).

(b) A side view illustration
of the set up. The blue and
red areas show the camera G3
Dome’s and the camera G3’s
field of view respectively.

Figure 3.3: Illustrating the setup for obtaining the raw data.

22

3. Methods

3.2 Creating the datasets

To create the datasets, the images had to be manually annotated first. A suitable
choice for an annotating tool was the VGG Image Annotator (VIA) tool!, since it
can be used online on any computer and does not keep the data created using the
tool. As the goal is to perform instance segmentation the dataset needs to contain
annotated images containing instance segmentation masks around the objects of
interest, the basil leaves in this case. In every image a polygon train had to be
created on the outline of each basil leaf such as in figure 3.4b, and this was done
using the polygon region shape in the VIA tool shown in figure 3.4a. The polygon
train around each leaf is called an instance and the more accurate the instance
follows the shape of the leaf, the better the neural network will perform in the end.

P s O o wwverol —
Home Image * 0 ; .
Region Shape Folgon = '

O QO e

\'al

Loaded Images =

(a) Polygon region (b) One polygon train created around one basil
shape. leaf.

Figure 3.4: Using the VIA image annotating tool to create a polygon train around
each basil leaf. The polygon region shape in the VIA tool is used to create the
polygon trains.

During the growth process leaves phys-
ically smaller than 2 cm were not con-
sidered a leaf and were not counted, be-
cause of this reasoning it is only logi-
cal that leaves physically smaller than 2
cm are not annotated in the images as
well, see figure 3.5. Since it is images
there is no ability to measure and there-
fore the number of annotations shall be
compared to the real number of leaves,
in order to be more precise.

When all of the leaves in an image have
a corresponding instance, the instances Figure 3.5: Leaves physically smaller
(as well as the non-instance areas of the than 2 cm are not considered to be leaves
image) have to be categorized, i.e. the and therefore are not annotated. Too
pixels in the image needs to be told small leaves are denoted by the red circle.
which category they belong to.

VGG Image Annotator (VIA) is an image annotation tool that can be used to define regions in
an image and create textual descriptions of those regions. VIA is an open source project developed
at the Visual Geometry Group and released under the BSD-2 clause license.

23

3. Methods

Since the neural network should be able to find a basil leaf a suitable name for the
category is "basilleaf". In the VIA tool this is done by adding an object name to the
instance, shown in figure 3.6, and this has to be done for each instance (each leaf)
in the image.

When every instance have an object name (i.e. belongs to a category) the VIA tool
generates a JSON-file, where each entry in the file corresponds to one instance and
its attributes. Some of the attributes being the name of the image file, the x-,y-
coordinates of each red-dot in the polygon trains (see figure 3.4b) and what category
the pixels confined by the train belongs to. The file also contains information about
all other areas whom are not included in the instances and these are assigned to the
background "BG" category.

Keyboard Shortcuts.

Ohbject_name. [Add New)
1 fazifeal
2 basikal
3 bsiieaf

basikal

Figure 3.6: Using the VIA tool to add object names to each instance in order to
confine them to a category, the category being "basilleaf" in this case. Instances not
confined to a category is automatically categorized as "BG" (background).

A dataset should contain more than just one image and all images shall be annotated
at the same time in order to create just one JSON-file containing the information
for all of the images. The annotating procedure was repeated for all of the images
to create the three datasets (training, validation and test) each containing images
and a corresponding JSON-file. Also keeping in mind that the total amount of data
should be distributed over the three datasets accordingly; ~60% training dataset,
~20% validation dataset and ~20% test dataset.

3.2.1 Augmenting images

Manual annotation of images is very time consuming demonstrably mentioned in
section 2.2, so in order to overcome this issue, augmentation was used. Augmenta-
tion can be done by either rotating the image, flipping it, shearing it, scaling it or
a combination of said methods.

24

3. Methods

The easiest method of augmentation is to rotate each image in the dataset a couple
of times in order to gain a greater dataset. However the images cannot just be
rotated, the instances needs to be rotated in the same manner as the image itself,
see figure 3.7. This was simply done using a MATLAB script, which as an input
takes an image with its corresponding JSON-file. The script in return produces an
output image with the rotated version of the image, as well as adding new entries
in the JSON-file containing the rotated instances.

Figure 3.7: Illustrating how the augmentation was done. The left image is the
input image with corresponding instances visualized by colored polygon trains. The
right image is a rotated version of the input image, the instances have been rotated
in the same manner as the image.

3.3 Training the neural network

Transfer learning was used in order to train the neural network. Since the task is
to preform instance segmentation, a good starting point is with a neural network
trained on the MS COCO dataset since the dataset has more labelled instance seg-
mentations compared to ImageNet and MNIST. The Mask R-CNN framework was
chosen as the framework to use, and further on an implementation of the framework
made by the company Matterport?, available on GitHub?, was used to work with as
they have done an implementation with the MS COCO dataset.

As described in section 2.3.2, the rule of thumbs shall be considered when applying
transfer learning. In this case the new dataset is quite small and the original dataset
is chosen to be MS COCO there are two choices left to consider: is the new dataset
similar or very different. Since the new dataset consists of images taken of basil
plants, there is a slight chance that there exist basil plants in the MS COCO dataset

2Matterport is a company developing and selling three-dimensional camera systems one can use
to create realistic, fully immersive experiences, (Abdulla [2017]).

3GitHub is a development platform used for anything from open source to business. It has 36
million developers and people can host and review code, manage projects, and build software.

25

3. Methods

already, and therefore the new dataset shall be considered as similar to the original
dataset.

And following the rule of thumbs the best way to train the neural network is to train
just the linear classifier i.e the head branch in this case. This is done by freezing all
of the weights not associated with the head branches and retrain the head branch
on the new dataset.

Most of the network parameters in Matterport’s implementation is the same as in
the ones presented in the Mask R-CNN article however some varies due to com-
patibility issues towards TensorFlow and Keras and some needs to be changed to
match the new dataset. The parameters of interest is mentioned below and the
other parameters can be reviewed at Matterport’s GitHub page, (Abdulla [2017]).

Network parameters

Backbone

The RestNet101 has been widely used since the introduction and it won 1st place
in the ILSVRC* image classification, detection and localization competition as well
as the MS COCO detection and segmentation competition 2015°.
The FPN which lays on top to extract features from more layers has a size of 256
with the following strides: 4, 8, 16, 32 and 64, (Lin et al. [2017]).

Regional proposal network (RPN)

The anchor box has a scale and aspect ratio whom both by default is 3, which yields
k =9 at each sliding-window adding up to ~200°000 anchor boxes in total for a
feature map with an input image size of 1024x1024xRGB.

The IToUpreshoa is set to 0.7 and an anchor is classified as positive if the score is
higher, and if a ground-truth box has more than one positive anchor, the anchor
with the highest score is kept.

The total number of Rols per image is kept to a maximum of 2000 per image.

Rol classifier and bounding box regressor

The classifier only needs to decide between two different classes, "basilleat" or "BG"
in this case. Therefore it is not necessary to use the softmax function, the sigmoid
function will suffice.

The function RolAlign is not yet implemented in TensorFlow® and therefore, as the
Matterport implementation suggests, the crop_and_ resize function in TensorFlow
is used as a substitute function.

4The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algorithms for
object detection and image classification at large scale, (ImageNet Large Scale Visual Recognition
Challenge [2015]).

5Looking at the general problem of visual recognition, the underlying datasets and the specific
tasks in the challenges probe different aspects of the problem,(COCO - Common Objects in Context
[2015]), (ImageNet and MS COCO Visual Recognition Challenges Joint Workshop 2015 [2015]).

6 At the time of writing this report a beta version of RolAlign has been released for TensorFlow.

26

3. Methods

Segmentation mask branch

The mask size is set to 28x28 and the minimum probability value of which to accept
a detection is set to 90% in order to trying to get a high accuracy.

The implementation of Matterport also uses a maximum of 100 ground truth in-
stances, which is quite small due to the fact that there are probably more than 100
leaves visible when having an image of 3 basil plants (on average one plant had ~43
leaves). So this number is set to 400 to make sure every ground truth area is kept.

3.4 How the result shall be evaluated

During the training of the neural network the program produces an output of how
the training loss and validation loss is going. As mentioned in section 2.3.4 both of
the loss functions are composed of five different losses that contribute to the total
loss function. The progress of the loss functions shall be presented in a graph form in
order to follow its development during the training process. The goal is to minimize
the loss functions and see that both the training loss and validation loss finds the
same steady-state value.

The ToU,,sx result can only be calculated when the neural network is done training
and ready to perform the segmentation task. The evaluation is performed on the
test dataset in order to ensure a plausible outcome of the network performance.

27

3. Methods

28

4

Results

This chapter presents the results obtained throughout the work.

4.1 Data acquisition setup

4.1.1 Plants

Plants are living things and do not always behave as expected. During the growth
process some of the basil plants dried out and were nearly dead for several days, so
some of the images have nearly dead plants in them. This is also reflected in the
real number off leaves counted since some leaves fell of the plants.

4.1.2 Setup

The python script used for obtaining the images was supposed to run from the start
of the growth until the harvest day, however it crashed several times during, so
instead of 40 320 images from each camera, approximately 23 160 images where
obtained from each camera instead.

Camera PPI | Pixel dimension[WxH] | Pixel count[MPixel]
G3 255 | 1920x1080 2.07

G3 Dome 255 | 1920x1080 2.07

Canon 750D | 258 | 6000x4000 24.00

Table 4.1: Camera resolutions for the different cameras.

In table 4.1 it can be seen that both the G3 and the G3-Dome camera have the
same PPI! as well as the same pixel dimension and pixel count resolution, however,
since the G3 camera was placed ~40cm above we get a larger field of view which
results in a blurrier image from it compared to the G3-Dome camera, as shown in
figure 4.1. When the plants where ready for harvest, a Canon 750D camera was
used to photograph each plant in close up (from about ~50 ¢cm height) in order to
get images with higher pixel count resolution. The height from were the images was
obtained by the Canon camera varied quite a lot, since the camera unfortunately
was held by hand, and not placed in a stationary position. To gain some diversity of

'PPI stands for pixels per inch, and describes how many pixels that can be placed in a square
with sides of 1 inch (2.54 cm).

29

4. Results

images, a couple of different constellations of plant images were also taken in close
up as well, such as the ones presented in figure 4.1.

i ‘ Begessy” :

(a) Image from G3 cam- (b) Image from G3 Dome (c¢) Image from Canon
era. camera. 750D camera.

Figure 4.1: Images of the same basil plants, cropped and scaled down into the same
sizes to show what the difference in camera placement does, as well as what role
camera resolution have. The left and middle image have the same camera resolution,
however the left camera is placed ~40cm above the middle camera. The right image
have a camera resolution of roughly 11 times more than the other two cameras.

4.2 Annotating images and creating the datasets

Four different training datasets where created, compiled of a different amount of
images. The first dataset contains 7 images in the training set and 3 images in the
validation set, visualized in figure 4.2. The same images are present in the other
datasets, since the dataset grew over time as the annotation progressed. The second
dataset contains of 9 images in the training set and 3 images in the validation set,
visualized in appendix B.3. The third dataset contains 40 images in the training
set and 10 in the validation set, visualized in appendix B.4, B.5 and B.6. To create
the fourth dataset augmentation was used, and each image in the third dataset was
rotated 3 times each, thereby creating 3 times more images for the last dataset, i.e.
160 images in the training set and 40 images in the validation set.

After creating the four training datasets a test dataset was also created, containing
10 images in total. These images are not present in the four training datasets, in
order to get a plausible result when evaluating the performance later on.

Annotating one image took between 20 minutes up to 3.5 hours depending on the
amount of leaves present in the image.

30

4. Results

Number of Number of
Dataset . e e .
training images | validation images
Dataset #1 7 3
Dataset #2 9 3
Dataset #3 40 10
Dataset #4 160 40
Test dataset 10 images

Table 4.2: The setup of the four different training datasets as well as for the test
dataset, visualization of the datasets can be seen in appendix B.

Dataset #1, training set

09’57.jpg 11'37.jpg Basil_6.jpg

Basil_22.jpg Basil_49.jpg IMG_4197.jpg
Dataset #1, validation set

10°03.jpg Basil_50.jpg IMG_4198.jpg

Figure 4.2: Showing the images in dataset #1, both the training set as well as the
validation set. Images starting with a number was taken with the G3 Dome camera,
other images were taken with the Canon 750D camera. Note that the annotations
are not visible in the images.

31

4. Results

4.3 Network evaluation

This section presents the result regarding the neural network, both the result from
the training of the neural network as well as the results regarding the performance
of the neural network.

4.3.1 Training of the neural network

The training of the neural network was done using different network setups, pre-
sented in table 4.3. The nomenclature seen in the table 4.3 is used throughout this
chapter when describing which setup was used.

During the training of the neural network the loss functions are calculated as de-
scribed in section 2.3.4. The goal during training is to minimize the loss functions
whilst getting a similar value for the training loss and validation loss. The loss
functions are then combined to produce a total loss function for the training as well
as for the validation.

Nomenclature Number of | Time
Number .
for network Dataset runs per consumption
of epochs ..
setup epoch for training
10e 7im 10runs | Dataset #1 10 10 ~6h
10e 7im Dataset #1 10 100 ~20h
10e 9im Dataset #2 10 100 ~21h
30e 9im Dataset #2 30 100 ~64h
30e 40im Dataset #3 30 100 ~64h
30e 160im Dataset #4 30 100 ~72h

Table 4.3: The different network setups during the training of the network.

In figure 4.3 the loss functions from the setups run with 10 epochs is presented and
in figure 4.4 the result from the network setups run with 30 epochs is presented.
The loss functions where calculated at the end of each epoch and summed to a total
training loss and a total validation loss for each network setup.

Looking at figure 4.3, one can see that the setup with 10e 7im 10runs is almost
saturated at 10 epochs and the validation loss and training loss are beginning to
converge towards one another. Further on, looking at the other two setups with 10
epochs they have a similar pattern, i.e. the validation loss are beginning to increase
while the training loss are decreasing, thus they are moving further apart. Having
a loss function that is significantly increasing in value during training is most likely
a sign of an overfitted network which preforms worse for each epoch trained.

The same pattern, however much less significant, can also be seen in the network
setups 30e 9im as well as in 30e 40im in figure 4.4. Moving on to the last network
setup 30e 160im, the training loss and validation loss are both decreasing in value
whilst converging to one another, which is a great sign that the network will perform
well.

32

4. Results

Validation and training loss for networks trained with 10 epochs

0.20
EPOCH1 EPOCH2 EPOCH3 EPOCH4 EPOCHS EPOCH& EPOCH7 EPOCH& EPOCHY9 EPOCHI10

e Train 10e 7im 10runs s==—=Train 10e 7im ——Train 10e 9im

Val 10e 7im 10runs ~ ==\/a| 10e 7im m—/a| 10e 9im

Figure 4.3: Validation loss and training loss for the network setups with 10 epochs.

Validation and training loss for networks trained with 30 epochs

2.50
2.00
1.50
1.00
0.50

e
0.00

'—1dem\nr\wmo-—qmmwm\or\wmg‘—«Nm-:rm&or\wmg

T T T T rTrrrT SO =Aaa8+=a+@¢+a S LV B S I S I S

o9 Qo VY Qv Y vyY v r r r r r r r r r T T T I I T T I T I I I

0O 000000000 UU UL UL L0 U000 UL U0U U0 oo g0

& & 4 & 44 daa s 000000000000 00000 0 0 0 0

LT T T T T T T T T - T - T - T - T - T R < T < O < < < < T = - - - T - T - T - %)

[rr T v R v R v [v v R v v v v R v e R e

e Train 30 9imM em=Train 30 40im emm——Train 30e 160im

Wal 30e Sim Val 30e 40im ==—=\/3| 30e 160im

Figure 4.4: Validation loss and training loss for the network setups with 30 epochs.

33

4. Results

4.3.2 Evaluating the network performance

To render an image with instance segmentation masks (i.e. leaves) an input image
was fed into the trained neural network. In general the neural network then finds
the leaves and produces an output image containing the input image with a filter
on top showing the leaves in different colors in order to emphasize the instance
segmentation. The neural network performed this evaluation for each image in the
test dataset and for each training setup. This step took the neural network about
30 seconds to process each image in the test dataset.

The evaluation of the performance for the neural network was done, as described
in section 2.3.4, by calculating the IoU,,,s for each instance in an image. More
explicitly this was done by letting the neural network also produce a file containing
the meta-data for the masks, which then was imported via a script into MATLAB.
The script also performed the calculation of the IoU,,,q as well as producing a
visual representation of the result, seen in figures 4.6, 4.7, 4.9 and 4.10 for the input
images shown in figure 4.5 and figure 4.8 respectively. This evaluation took about
1 minute per image to calculate.

In the ToU,, s images (figure 4.6, 4.7, 4.9 and 4.10) the different colors represents
the following; blue is the correctly predicted ground truth, red is ground truth that
has been missed and green is falsely predicted areas.

Looking at the figures 4.6 and 4.9, from (a) to (c), an increase of the blue areas as
well as a decrease in the red and green areas can be seen. The figures shows the
result of increasing the number of steps per epoch as well as increasing the number
of images in the training dataset when the number of epochs is consistent. This
increase clearly effects the neural network performance in a good way and the same
pattern can be seen throughout the three datasets trained with 10 epochs, presented
by the three first average data points in figure 4.11.

When solely looking at the results trained on 30 epochs instead, figures 4.7 and
4.10, the same pattern is occurring when the number of images in the training set
is increasing. This can also be seen in the last three average data points in figure
4.11.

When comparing figure 4.9c with figure 4.10a, a large decrease of the blue areas as
well as an increase of the red areas are shown. This change is not as significant in
figure 4.6b and figure 4.7a, however over all the training dataset this change can be
clearly seen as the drop between the average data points 3 and 4 in figure 4.11.

Over all the data setup with 30 epochs and 100 runs per epoch, trained on 160
images have the highest average IoU,, .. result of 85%.

34

4. Results

Figure 4.5: The input image, Basil-13, in the test dataset.

(a) Neural network (b) Neural network (c¢) Neural network
setup: 10e 7im 10 runs. setup: 10e 7im. setup: 10e 9im.

Figure 4.6: The input image, Basil-13, with different neural network setups trained
on 10 epochs.

(a) Neural network (b) Neural network (c¢) Neural network
setup: 30e 9im. setup: 30e 40im. setup: 30e 160im.

Figure 4.7: The input image, Basil-13, with different neural network setups trained
on 30 epochs.

35

4. Results

Figure 4.8: The input image, IMG-4000, in the test dataset.

(a) Neural network (b) Neural mnetwork (c¢) Neural network
setup: 10e 7im 10 runs. setup: 10e 7im. setup: 10e 9im.

Figure 4.9: The input image, IMG-4000, with different neural network setups
trained on 10 epochs.

Intersection and union

(a) Neural network (b) Neural network (c¢) Neural network
setup: 30e 9im. setup: 30e 40im. setup: 30e 160im.

Figure 4.10: The input image, IMG-4000, with different neural network setups
trained on 30 epochs.

36

4. Results

Intersection over Union (loU) for the differet network setups

1.00

0.90

0.70

loU

0.60

0.50

0.40

0.30
10e 7im 10runs 10e 7im 10e 9im 30e 9im 30e 40im 30e 160im

Network setup

—8—PBasil_13 =—8—Basil_27 =—8—Basil_36 =—8#—Basil_38 =8—PBasil_39_vs2 —#=—Basil_40

— Basil_43 —f— Basil_44 e [MG_3961 = |MG_4000 emibem/yverage

Figure 4.11: The mask intersection over union (IoU,,.s) results for the different
network setups. The IoU,, ., result was calculated over the whole test dataset. An
average for each network setup was calculated, represented as the red line in the
graph.

Predicted leaf error, for the differet network setups

e
w
]

e
i
&

=]
=
“x

e
=]
]

-0.05 i {oei 10e 9im 30e 9im

2
-
[T}

e
R
v}

e
W
[l

% of leaf error in predicted output compared to input

-0.45

-0.55

Network setup

== Basil_13 e Basil_27 == Basil_36 === Pasil_38 === Basil_39_vs2 ==®==Basil_40

8 Basil_ 43 elemBasil 44~ eeSemiMG_3961 ==@m=IMG_4000 emSusAverage

Figure 4.12: Leaf count for the different network setups. The leaf count result
was calculated over the whole test dataset. An average for each network setup was
calculated, represented as the red line in the graph.

37

4. Results

While performing the instance segmentation the neural network also always per-
formed a leaf count for each image. The leaf count was based on how many masks
the neural network found and the neural network then presented an output of the
sum. This result was then compared to the real leaf count number as following:

(network calculated leaf count)-(real leaf count)

4.1
(real leaf count) ’ (4.1)

and the result for each network setup is presented in figure 4.12. The network setup
that on average performed the best was the last one, dataset #4 (30 epochs and 100
runs trained on 160 images), with a deviation of -0.9% compared to the real leaf
count. However the first setup (10 epochs and 10 runs trained on 7 images) with a
deviation of 10% from the real leaf count is also very good.

The result is clearly effected by the fact that the neural network sometimes counted
two or more leaves as one, see figure 4.13. On the other hand the neural network
sometimes compensated by finding a leaf that in fact was too small to actually be
counted as a leaf, see figure 4.14.

(a) A neural network result performed (b) A neural network result per-
on input image Basil-36 and with net- formed on input image IMG-4000 and
work setup: 30e 160im. with network setup: 10e 7im 10runs.

Figure 4.13: Each mask is denoted by a different color to emphasize the different
segmentations. The neural network segments two leaves with one mask (denoted by
the red circle) in (a) or segments one leaf into several masks as in (b).

Figure 4.14: A neural network result per-
formed on input image IMG-4000 and with net-
work setup: 30e 160im. Each mask is denoted by
a different color to emphasize the different seg-
mentations. The neural network have segmented
a leaf that is too small to be counted as a leaf
(denoted by the red circle). This in turn effects
the number of leaves counted.

38

O

Discussion

Any discussion developed during the work is presented in this chapter in order of
appearance.

5.1 Data acquisition setup

The bad resolution of the images taken during the growth process could have been
discovered earlier in order to gain better images during the growth process.

The placement of the plants as well as the number of plants was a good idea in
theory, however the number of leaves present in the images taken during the growth
process made it too extensive to annotate. Despite that, the number of plants was
good in order to gain a greater dataset and diversity of plant images at the end of
the growth process. Perhaps the images taken with the Canon 750D camera could
have been performed a couple of times during the growth process rather than just
at the end in order to gain an even better dataset.

5.1.1 Annotating images and creating the dataset

Annotating images containing more than one basil plant in it was extremely time
consuming and therefore that kind of images are sparse in the datasets. This might
have caused the neural network to be a less robust system.

There where some other type of difficulties when annotating the images as well.
The major difficulty being when stems and leaves were overlapping other leaves,
this problem was solved in different ways depending on how the situation looked
like. In some cases the stem was included in the "leaf-area" as shown in figures 5.1
and 5.2.

In other cases the leaf had to be divided into two or more sections as in figure
5.3. Both of these methods are in general quite bad, since areas that should be
classified as background are being included and classified as a leaf. Another bad
thing is dividing a leaf into two or more sections since it is actually one leaf. This
can provide a false input for the neural network while training which in hand can
perform bad and produce a bad output.

Another less significant difficulty regarded blurry leaves, which made it hard to
distinguish the outline of a leaf as seen in figures 5.4 and 5.5. This may not affect
the neural network as much as the previously mentioned difficulty, however this
made it tricky and more time consuming to annotate.

39

5. Discussion

Figure 5.1: A stem from another leaf (denoted by the red circle) overlapping a
leaf. The stem is included in the underlying leaf, in order for the underlying leaf to
not be divided into two instances.

(a) Before annotating. (b) After annotating.

Figure 5.2: A large stem covering the underlying leaf (denoted by the red circle).
A small portion of the stem is included into the underlying leaf in order for the leaf
not to be divided into two instances.

Figure 5.3: A leaf overlapping another leaf. The underlying leaf, (denoted in red)
had to be divided into two separate instances.

40

5. Discussion

(a) Before annotating. (b) After annotating.

Figure 5.4: Hard for the eye to distinguish between two separate leaves (denoted
by red circle). The underlying leaf is also very blurry, making it even harder to
distinguish, thus the annotations are done approximately.

(a) Before annotating. (b) After annotating.

Figure 5.5: Hard for the eye to distinguish between two separate leaves (denoted
by red circle), thus the annotations are done approximately.

5.1.2 Augmenting images

More augmenting could have been performed in order to gain larger datasets. Apart
from being rotated, the images could also have been sheared, scaled and flipped to
get a more diverse dataset.

5.2 The neural network
It would have been nice to test different neural network parameter setups to see if a

greater and more sufficient network could have been achieved. Small changes may
include changing the training parameters even more to get a better performance.

41

5. Discussion

Larger changes might include changing the backbone of the neural network or even
change the whole framework.

5.2.1 Training the neural network

Training the neural network was very time consuming, and in order to have been
more efficient the training should have been done on a computer containing a graph-
ics processor unit (GPU). In comparison to a standard central processor unit (CPU),
the GPU can make parallel calculations and can be up to 50-100 times faster when
computing neural networks, (Olena [2018]).

5.2.2 Evaluating the network performance

The network performance regarding the segmentation worked very well, especially
with the 30e 160im setup. The leaf count result however, despite it looking quite
good, is misleading. This is due to the fact that the neural network sometimes
divided one leaf into two or more leaves, as well as included leaves smaller than 2
cm in some cases.

5.3 Relation to medical field

The methods used regarding instance segmentation, constructing datasets and col-
lecting the metadata can be applied onto almost any image application. And transfer
learning can be used to train the neural network for the application needed.

Since instance segmentation is used (amongst other) within the areas of ex-rays,
MRI and CT-scans in the medical field, the methods can be applied for a medical
application, (Ronneberger et al. [2015]), (Novikov et al. [2017]).

Some newly developed applications using the Fast R-CNN framework combined with
a modified version of U-Net called SkinNet in order to find, localize and segment
skin lesions in images, where recently released, (Sulaiman Vesal [2018]).

5.4 Future work

Further progress of this work would be to add images from the whole growth process
to the databases (training, validation and test) in order to create a more robust
neural network. This can be developed further in order get the neural network to
determine how old a plant is.

An interesting investigation is to see if it is possible to approximate the green area
the leaves cover in an image in order to use that as a crop control parameter. It may
or may not be combined with the prospects of determining how old a plant is. Since
the segmentation of the images is done and some measurements were taken during
the image gathering, it should be possible to determine the pixel-to-(real)cm-ratio.
Since these measurement images where taken, and the placement of the cameras
were done, it might also be possible to determine the height of the plants via stereo.

42

5. Discussion

And finally, a development of the datasets would be to extend the datasets so they
include more than just one class (background class excluded) i.e. include other plant
types in the datasets. This enables for many other inventions as well, one could be
for the neural network to identify and separate the different plant species.

43

5. Discussion

44

O

Conclusion

Image analysis in its own way has been proven to be useful when applied on plants.
The demanding and time-consuming part is to create the datasets in order to train
and configure the neural network and get a desired result.

The neural network by itself have a high accuracy (IoU,,.sx = 85%) when trained
with dataset #4. Despite this, the leafcount-functionality by itself is not as sophis-
ticated as one could hoped and as of today it will not aid the grower in a sufficient
and accurate way.

One downside with the neural network (as it is implemented today) is its incapabil-
ity to work in real time on a live video-feed. In order to aid the grower in monitoring
the plants and their growth process, this should be a next step of implementation.

Exploring other possibilities such as determining leaf area for the plant can however
prove to be fruitful since the instance segmentation for the the leaves is quite good.

This however requires the implementation of a transition from pixels to cm.

So in conclusion, the thesis by itself cannot aid the grower today, but it has laid out
the ground work for an image platform for Heliospectra to develop further.

45

6. Conclusion

46

Bibliography

Aashay Sachdeva [2017], ‘Deep Learning for Computer Vision for the average per-
son’. Last accessed on 2019-02-21.
URL: https://medium.com/diaryofawannapreneur/deep-learning-for-computer-
vision-for-the-average-person-861661d8aa61

Abdulla, W. [2017], ‘Mask R-CNN for object detection and instance segmentation
on Keras and TensorFlow’ Last accessed on 2019-04-05.
URL: https://github.com/matterport/Mask_RCNN

Andrew Ng, Kian Katanforoosh, Y. B. M. [2019], ‘ITmproving Deep Neural Networks:
Hyperparameter tuning, Regularization and Optimization’ At 4:23 in the video.
URL: https://www.coursera.orqg/lecture/deep-neural-network/train-dev-test-sets-
cxG1s

Artificial Neural Network - Basic Concepts [2019]. Last accessed on 2019-03-10.
URL: https://www.tutorialspoint.com/artificial_neural network/artificial_ne-
ural__network__basic__concepts.htm

Box, G. E. and Meyer, R. D. [1986], ‘An Analysis for Unreplicated Fractional Fac-
torials’, Technometrics 28(1), 11-18.
URL: https://www.tandfonline.com/doi/abs/10.1080/00401706.1986.10488093

Caruana, R. [1995], Learning many related tasks at the same time with backprop-
agation, in ‘In Advances in Neural Information Processing Systems 7’, Morgan
Kaufmann, pp. 657-664.

Changhau, I. [2017], ‘Loss Functions in Neural Networks’. Last accessed: 2019-02-
01.
URL: https://isaacchanghau.github.io/post/loss_functions/

COCO - Common Objects in Context [2015]. Last accessed on 2019-01-30.
URL: http://cocodataset.org//#detection-2015

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. [2009], ImageNet:
A Large-Scale Hierarchical Image Database, Technical report.
URL: http://www.image-net.org.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E. and Darrell, T.
[2013], ‘Decaf: A deep convolutional activation feature for generic visual recogni-
tion’, CoRR abs/1310.1531.

URL: http://arziv.org/abs/1310.1551

47

Bibliography

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. and Zisserman, A. [2010],
‘The Pascal Visual Object Classes (VOC) Challenge’, International Journal of
Computer Vision 88(2), 303-338.

Garbade, D. M. J. [2018], ‘How to Create a Simple Neural Network in
Python(18:n38)". Last accessed on 2019-03-10.
URL: https://www.kdnuggets.com/2018/10/simple-neural-network-python.html

Gehan, M. A., Loraine, A., Fahlgren, N., Abbasi, A., Berry, J. C., Callen, S. T.,
Chavez, L., Doust, A. N., Feldman, M. J., Gilbert, K. B., Hodge, J. G., Hoyer,
J.S., Lin, A., Liu, S., Lizarraga, C., Lorence, A., Miller, M., Platon, E., Tessman,
M. and Sax, T. [2017], ‘PlantCV v2: Image analysis software for high-throughput
plant phenotyping’.

URL: https://www.ncbi.nlm.nih.gov/pmce/articles/PMC5713628 /pdf/peerj-05-
4088.pdf

Girshick, R. [2015], Fast R-CNN, 4n ‘Proceedings of the IEEE International Confer-
ence on Computer Vision’.

Grenzdorffer, G. J. [2014], ‘CROP HEIGHT DETERMINATION WITH UAS
POINT CLOUDS’.
URL: https: //www.int-arch-photogramm-remote-sens-spatial-inf-sci.net /X L-
1/185/2014 /isprsarchives-XL-1-135-2014.pdf

He, K., Gkioxari, G., Dollar, P. and Girshick, R. [2017], ‘Mask R-CNN’| Proceedings
of the IEEE International Conference on Computer Vision 2017-Octob, 2980—
2988.

He, K., Zhang, X., Ren, S. and Sun, J. [2015], Deep Residual Learning for Image
Recognition, Technical report.
URL: http://image-net.org/challenges/LSVRC/2015/

Hinton Geoffrey E, Krizhevsky Alex, S. I. [2013], ImageNet Classification with Deep
Convolutional Neural Networks, Technical report.
URL: http://www.cs.toronto.edu/fritz/absps/imagenet. pdf

ImageNet and MS COCO Visual Recognition Challenges Joint Workshop 2015
[2015]. Last accessed on 2019-02-15.
URL: http://image-net.org/challenges/ilsvrc+mscoco2015

ImageNet Large Scale Visual Recognition Challenge [2015]. Last accessed on 2019-
02-15.
URL: http://image-net.org/challenges/LSVRC/

Jordan, J. [2018], ‘Evaluating image segmentation models.”. Last accessed on 2019-
01-30.
URL: https://www.jeremyjordan.me/evaluating-image-segmentation-models/

LeCun Yann, Bottou Léon, B. Y. H. P. [1998], ‘Gradient-Based Learning Applied
to Document Recognition’, Proceedings of the IEEE pp. 2278-2324.

48

Bibliography

Lin, T.-T., Lai, T.-C., Liu, T.-Y., Yeh, Y.-H., Liu, C.-C. and Chung, W.-C. [2012],
‘An Automatic Vision-Based Plant Growth Measurement System for Leafy
Vegetables’
URL: https://pdfs.semanticscholar.org/Tc5c/6e30284fd4102¢48ad998a88bc30f3769680.pdf

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. [2017],
‘Feature Pyramid Networks for Object Detection’.
URL: https://arxiv.org/pdf/1612.03144.pdf

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona,
P., Ramanan, D., Zitnick, C. L. and Doli, P. [2015], Microsoft COCO: Common
Objects in Context, Technical report.

URL: https://arziv.org/pdf/1405.0312.pdf

MNIST dataset introduction [2017]. Last accessed on 2019-03-15.
URL: https://corochann.com/mnist-dataset-introduction-1138.html

Multilayer perceptron — Wikipedia, The Free Encyclopedia [2019]. Last accessed
on 2019-03-27.
URL: hittps://en.wikipedia.org/w/index.php ?title=Multilayer _perceptronéioldid=889400320

Novikov, A. A., Major, D., Lenis, D., Hladuvka, J., Wimmer, M. and Biihler, K.
[2017], ‘Fully convolutional architectures for multi-class segmentation in chest
radiographs’, CoRR 1701.08816.

URL: http://arziv.org/abs/1701.08816

Olena [2018], ‘GPU vs CPU Computing: What to choose?’. Last accessed on
2019-03-23.
URL: medium. com/altumea/gpu-vs-cpu-computing-what-to-choose-
a9788a2370c4

Peyre, G. [2010], ‘Color Image Processing’. Last accessed on 2019-03-30.
URL: http://www.numerical-tours.com/matlab/multidim__1__color/

Phytoiiogist, H. E. W. [1912], ‘the Distribution of the Flora in the’, Flora XI(2).

Radha, S. [2017], ‘Leaf disease detection using image processing’, Journal of Chem-
tcal and Pharmaceutical Sciences .

Razavian, A. S., Azizpour, H., Sullivan, J. and Carlsson, S. [2014], ‘CNN features
off-the-shelf: an astounding baseline for recognition’, CoRR abs/1403.6382.
URL: http://arziv.org/abs/14083.6382

Ren, S. [2017], ‘mask rcnn’. Last accessed on 2019-04-05.
URL: https://blog.csdn.net/u013010889/article/details /78588227

Ren, S., He, K., Girshick, R. and Sun, J. [2016], ‘Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks’.
URL: https://arziv.org/pdf/1506.01497. pdf

49

Bibliography

Ronneberger, O., Fischer, P. and Brox, T. [2015], ‘U-net: Convolutional networks
for biomedical image segmentation’, CoRR 1505.04597.
URL: http://arxiv.org/abs/1505.04597

Rosebrock, A. [2016], ‘Intersection over Union (IoU) for object detection - PylIm-
ageSearch’ Last accessed: 2018-12-07.
URL: https: //www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-
for-object-detection/

Scharstein, D. and Szeliski, R. [2001], ‘A Taxonomy and Evaluation of Dense Two-
Frame Stereo Correspondence Algorithms’.
URL: http://vision.middlebury.edu/stereo /tazonomy-1JC'V.pdf

SHARMA, S. [2017], ‘The Fundamentals of Neural Networks’ Last accessed on
2019-03-25.
URL: https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

Sulaiman Vesal, Shreyas Patil, N. R. A. M. [2018], ‘A multi-task framework for
skin lesion detection and segmentation.’, Conference: Workshop on skin image
analysis, MICCAI 2018, At Granada, Spain .

Sullivan, S. [2016], ‘RGB vs CMYK — Colors for the web vs print’. Last accessed on
2019-03-30.
URL: https://www.sumydesigns.com/rgb-vs-cmyk-colors-web-vs-print/

Weng, L. [2017], ‘Object Detection for Dummies Part 3: R-CNN Family’ Last
accessed on 2019-01-13.
URL: https://lilianweng. github.io /lil-log/2017/12/31 /object-recognition-for-
dummies-part-3.html

Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. [2014], ‘How transferable are
features in deep neural networks?’, CoRR abs/1411.1792.
URL: http://arziv.org/abs/1411.1792

50

A

Measuring data during growth
process

Presenting the data regarding counting the leaves of each basil plant during the
growth process. On harvest day the height of each plant was also measured. The
pot number refers to the pot number shown in figure 3.1 in section 3.1.1.

%4 8¢ €€ 8T 9z 44 9T 14 % 0 2
1T 13 no paup 1€ 8¢ 74 8T 9T 8 0 E2
(44 43 43 T e 0z 45 a 8 0 E2
6T LE €€ €€ 14 9z 9T T (0] 0 ve |
6T w o€ 6C T vz 4 4’ 9 0 E2
(34 w 44 9T 9T 0T 8 9 % 0 zze]
o 8 w8 8 T 8 9 9 0

0z 43 44 8T vT 14 9 9 9 0
9T w 8¢ 8¢ 43 o€ 9T 9T 9T 0 61 |
2 (114 Ly 8¢ s€ 14 144 9T 91 8 0 st |
m 0z 0S w ov o€ 9z 91 9t ot 0 G
2 (34 8 9 € o€ 8T 9T 9T 8 0 ot |
= 6T 8 L€ 13 [T 174 9T T 6 0 st |
= (114 0S 8¢ L€ 9z 44 91 91 9 0 vt |
mo (014 S 9 ov (0} 9T 8T 8T a 0 T |
0 1) [4% mopaup pE 8z 144 9T 91 14" 0 et
£ ST vy 9€ 9€ 9z vz 9T T 8 0 it
= L 6 w 8¢ 8z 144 81 9t 8 0 ot |
a €1 9 oy vE 14 9z 9T 9T 45 0 6 |
M 144 29 LY (3% €€ 6C 1T (T 0T 0 s |
a0 9z 8t 137 o (]3 9 8T (4 (0]8 0 .]
m ST S9 0S w (0} 9z 44 9T 0T 0 N
7 9t 8y w [43 8z 8z T v 4’ 0 s |
g 6T 0s 2 9€ 0€ 8¢ 9T vT 0T 0 i
= (014 0s (017 9€ o€ 9z 9T vT vI 0 e |
< 6T 09 9p 8¢ o€ Y4 91 91 T 0]
8T 144 [47 143 9z 9z 9T 4! ot 0 Tt]

Ava Aval| 8toe/L/o€| 8toe/L/Lz| 8toz/L/se| 8t0c/L/€z| 810c/0c/L| 8tOZ/6T/L| 8TO0Z/9T/L
1SIAYVH| 1S3IAYVH

S w.HON\N\w E

UWN0D 18] 9} Ul U99S ‘[[oM Se poinseawr sem jue[d o) JO IYSOY o) JSOAIRY
u() -jod 1od syuerd g poaurejuoo jod 10110 A10ad ‘jod 1od sjuerd ¢ Ajuo Jururejuon sjod oy} sjuesordor SMOI POIO[0D MO[[PA U, WO
g 03 Tenbo 10 108r1e] ApeorsAyd seAvel Jo Ioquunu oY) sjussarder uwn{od Yors Ul Iquunu oY], ‘wIvjjed 1MOIS S JISR([DORS MO[[0] 09
Topro ur ‘querd [seq yoes 10y quunu jod o) sjueserdsr uwnod JsIg Y[, ISk PR 10J wivjyed 1moI3 o) JO yNSOY 1V O[qelL

11

A. Measuring data during growth process

Ve (474 (013 8T 9T 4" 9 9 9

0
4 8 v 8¢ 9 8T 8T vT vI 0 EN
(014 s o 6€ o€ o€ 8T 9T 9 0 v
6T 9 8¢ €€ 9z %4 9T 9T z 0 X
1¢C ov e €€ 1€ ST LT (T 9 0 B
12T S 8y 9€ (0} 8T 9T 9T vI 0 vy |
€¢C 85 2% ov 0€ 8¢ ST ST o1 0 i
LT Sy £ LE o€ o€ 9T 9T ras 0 2
0z v e 153 14 T 9T 4 9 0 v |
6T vE €€ 8T 9z Y44 9T 14 % 0 ov |
€1 9€ e 43 o€ 44 vI a z 0 6e |
1T 137 43 o€ 8T 44 9T €1 9 0 E
(44 8¢ 9€ e Y4 9z vI vT 0} 0 R
[44 9¢ e LT 9z [44 vI vT 9 0 i
(014 oy 9€ vE 9z T 9T 9T 8 0 B
Y44 (44 (014 0z 9T vT 8 8 % 0 ve |
74 w 8¢ e 14 9z 9T 14 % 0 I
4 8¢ 8¢ T T 44 €T 1T 8 0 ze |
0z 9v LE vE 43 9z 9T 9T 0T 0 e |
0t T T (014 8T 9T 0T 0T v 0 o |
74 13 e 6C Y4 44 9T T 8 0 6z |
74 6C LT T 1T 4 ST 0T 9 0 E

TUWN[0D 1Se[9} Ul U0oS ‘[[om se poinseawt sem jue[d oY) Jo SO oY) ISoAley U()
j0d 10d syuerd § paurejuoo jod 1070 A1oao ‘jod 1od sjuerd ¢ AJuo Sururejuoo syod oY) sjueserdor SMOI POIO[0D MO[[PA Y, ‘WD g 09
[enbe 10 1881R[ARoIsAUYd SseAwe[JO Ioquunu oY) sjuasardar uwNod yore Ul Ioquunu oy], "wivjjed IMOIS S [ISeq [orvs MO[[0] 01 ISPIO
ur ‘querd iseq yoes 10y qunu jod oy sjyussardar uwn[od 4sI1g oy, TSk yova 10§ wrsjjyed YImoIs o) Jo NS9Oy U0 gV O[qelL

111

A. Measuring data during growth process

1V

B

Datasets

This appendix contains the datasets not presented in the report (dataset #1 is
presented in section 4.2) and describes which images that are present in which
dataset. Dataset #4 is not present in its entity, since it is composed of dataset #3
with all of the images rotated 3 times.

B. Datasets

Image name in Dataset Dataset Dataset Dataset

training dataset #1 #2 #3 i
09'57.jpe b b b H
09'58.jpg X X
10°00.jpg b H
10'01.jpg X A
11'37.jpg X X X R
Basil_1.jpg X A
Basil_3.jpg X X
Basil_4.jpg b H
Basil 5.jpg X X
Basil_6.jpg b b b H
Basil 7.jpg X X
Basil 9.jpg b H
Basil_10.jpg X X
Basil_11.jpg b H
Basil_12.jpg X X X X
Basil 13 vs2.jpg X R
Basil_14.jpg X A
Basil_15.jpg X R
Basil_16.jpg X A
Basil _17.jpg X X
Basil_18.jpg b H
Basil_20.jpg X X
Basil_22.jpg b b b b
Basil_23.jpg X X
Basil_24.jpg b H
Basil_26.jpg X X
Basil_28.jpg b H
Basil_29.jpg X A
Basil_30.jpg X R
Basil _32.jpg X A
Basil 34.jpg X X
Basil_35.jpg b H
Basil_45.jpg X X
Basil_47.jpg b H
Basil_48.jpg X X
Basil_49.jpg b b b H
IMG_3967.jpg X X X
IMG_4195.jpg b H
IMG_4196.jpg X X X
IMG_4197.jpg X X X R

Figure B.1: List of images in the different training datasets. The x marks if an
image belongs to a dataset.

VI

B. Datasets

Image name in Dataset Dataset Dataset Dataset
validation dataset #1 #2 #3 #4
10'03.jpg X X X X
Basil_2.jpg X X
Basil_8.jpg X X
Basil_19.jpg X X
Basil_21.jpg X X
Basil_25.jpg X X
Basil_31.jpg X X
Basil_46.jpg X X
Basil_50.jpg X X X
IMG_4198.jpg X X X
Image name in Dataset Dataset Dataset Dataset
test dataset #1 #2 #3 #4
Basil_13.jpg X X X X
Basil_27.jpg X X X X
Basil_36.jpg X X X X
Basil_38.jpg X X X X
Basil_39_vs2.jpg X X X X
Basil_40.jpg X X X X
Basil_43.jpg X X X X
Basil_44.jpg X X X X
IMG_3961.jpg X X X X
IMG_4000.jpg X X X X

Figure B.2: List of images in the different validation datasets at the top. List of
images in the different testing datasets at the bottom. The x marks if an image
belongs to a dataset.

VII

B. Datasets

Dataset #2, training set

09°57.jpg Basil_6.jpg

P

Basil_22.jpg Basil_49.jpg IMG_367.jpg IMG_4196.jpg

IMG_4197.jpg

Dataset #2, validation set

10°03.jpg Basil_50.jpg IMG_4198.jpg

Figure B.3: Showing the images in dataset #2, both the training set as well as the
validation set. Images starting with a number was taken with the G3 Dome camera,
other images were taken with the Canon 750D camera.

VIII

B. Datasets

Dataset #3, training set

09’57.jpg 09’58.jpg 10°00.jpg 10°01.jpg

/|

11'37.jpg Basil_1.jpg Basil_3.jpg Basil_4.jpg

Basil_5.jpg Basil_6.jpg Basil_7.jpg Basil_9.jpg

Basil_10.jpg Basil_11.jpg Basil_12.jpg Basil_13_vs2.jpg
Basil_14.jpg Basil_15.jpg Basil_16.jpg Basil_17.jpg

Basil_18.jpg Basil_20.jpg Basil_22.jpg Basil_23.jpg
Figure B.4: Showing some of the images in the training set of dataset #3. Images

starting with a number was taken with the G3 Dome camera, other images were
taken with the Canon 750D camera.

IX

B. Datasets

Dataset #3, training set cont.

Basil_24.jpg Basil_26.jpg Basil_28.jpg Basil_29.jpg

Basil_30.jpg

Basil_45.jpg Basil_48.jpg Basil_49.jpg

IMG_3967.jpg IMG_4195.pg IMG_4196.jpg IMG_4197.jpg

Figure B.5: Showing the rest of the images in the training set of dataset #3. All
images were taken with the Canon 750D camera.

B. Datasets

Dataset #3, validation set

=

10°03.jpg Basil_2.jpg Basil_8.jpg Basil _19.jpg

Basil_21.jpg Basil_25.jpg Basil_31.jpg Basil_46.jpg

Basil_50.jpg IMG_4198.jpg

Figure B.6: Showing the images in the validation set of dataset #3. Images
starting with a number was taken with the G3 Dome camera, other images were
taken with the Canon 750D camera.

XI

B. Datasets

Test dataset (same for all)

Basil_13.jpg Basil_36.jpg Basil_38.jpg

Basil_39_vs2.jpg Basil_40.jpg Basil_43.jpg Basil_44.jpg

IMG_3961.pg IMG_4000.jpg

Figure B.7: Showing the test dataset, which is the same for all four datasets. All
images were taken with the Canon 750D camera.

XII

