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Fault Detection and Isolation in Traction Voltage System
Evaluation of Plausibility Check and Model-Based Approaches
DANIEL HANSSON & ADAM JOSEFSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
As the complexity of the electrical system increases in full electric vehicles the de-
mand of monitoring the system in purpose of safety and preventive maintenance
increases. In this thesis the purpose is to evaluate methods for fault detection and
isolation in the Traction Voltage system of a Volvo full electric vehicle. The two
sub-systems under investigation are the circuitry and a lithium-ion battery cell. For
the circuitry a Circuit Fault Detector is designed using plausibility check on voltage
and current measurements from sensors distributed in the system. The method is
evaluated using log data from normal operation of a full electric bus. It was found
to perform well using voltage measurements, however when using the current mea-
surements it is found to not capture the dynamics of the system well enough. An
investigation is recommended to conclude if it is the sampling frequency or the es-
timated currents that is degrading the performance of the detector. Improvements
can be made by adding sensors where the system lacks today, this would increase
coverage in the system and hence fault detection and isolation can be enhanced.

The Battery Cell Detector is implemented using two model-based fault detection
methods, Parity Space Approach (PSA) and State Observer Approach using Adap-
tive Extended Kalman Filter (AEKF). The model used is a second-order Equivalent
Circuit Model of a lithium-ion battery cell. The methods are evaluated through
simulations using Volvo’s Global Simulation Program (GSP). The PSA was found
to be able to detect faults, however due to relying on a Linear Time Invariant model
the method was not able to capture all of the dynamics of the nonlinear battery
cell well enough and was thus found unsuitable in its current form. The AEKF
was found to perform well in both detecting faults and estimating state, but with
a potential weakness of high computational complexity when implemented in a real
vehicle. While isolation is not possible in neither method in their current form,
potential isolation schemes for future investigation are discussed.

For future work, a survey of potential faults and their e�ect on the sub-systems
should be made. Further evaluation of the Circuit Fault Detector and the AEKF
method is recommended by a test implementation in the Traction Voltage System.

Keywords: Traction Voltage System, Battery cell, Lithium-ion battery cell, Full
Electric Vehicle, Fault detection and isolation, Plausibility test, Parity Space Ap-
proach, State Observer, Adaptive Extended Kalman Filter
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1
Introduction

As the development of electrical commercial vehicles is forth going, the general trend
is to increase the power handled by the electrical system in the vehicle. As the com-
plexity of the electrical system is increased the perspective of safety and reliability
is becoming of increased importance. The consequences of faults can be serious
in terms of run time, system health and economic loss. Therefore fault diagnosis
methods is needed to monitor these advanced systems in order to reduce the risk
and improve safety and reliability.

Fault diagnosis is a subject that has been developed alongside advanced control the-
ory and in the same pace as computers has gained increased processing power more
advanced and powerful methods has seen the light of day. Today these methods
are accepted as a powerful tool to solve fault diagnose problems [1]. A traditional
method of improving a process reliability is to strengthen individual components
such as sensors, controllers or computers. Even if this might be an e�ective method
fault-free behaviour can still not be guaranteed and instead fault detection and iso-
lation are becoming a more vital part of modern advanced systems with a demand
of high dependability.

The concept of fault diagnosis is divided into three tasks in a rising order of in-
formation; fault detection, fault isolation and fault identification. Fault detection
is defined as just detecting an occurrence of a fault in the system, fault isolation
is defined as locating the fault and fault identification is the highest level which is
defined as determining the type, magnitude and cause of the fault. In this thesis
only fault detection and isolation will be considered since deeper knowledge of the
specific faults in this system is missing and needs a proper survey before it can be
implemented.

This thesis aims at performing and evaluating Fault Detection and Isolation (FDI)
methods on Volvo GTT’s Traction Voltage System (TVS) in a Full Electric Vehicle
(FEV). The TVS is the electrical system connecting the batteries, electric drive,
electric motor and electric auxiliaries, also called components. It is a high voltage
system consisting of high power components, designed to transport passengers or
goods in everyday tra�c. As the vehicles are increased in size to enhance the capa-
bilities the TVS also grows in both size and complexity, and since multiple parties
are dependent on a constantly working solution faults needs to be found and isolated
to optimise run time.

1



1. Introduction

Since the TVS is a large system composed by multiple components and have nu-
merous potential sources for faults, a clear breakdown of the system would be to
separate the potential faults introduced by wiring issues, and potential faults in-
troduced by malfunctioning components. This give that this thesis is evaluating
methods for two detectors with di�erent purpose. The first detector should perform
fault detection on the TVS wiring circuit, and the second detector on one of the
components in the system. In this thesis a battery cell is chosen as the component
for investigation. To clarify which of the two detectors is discussed the method for
finding circuitry faults will be called Circuit Fault Detector, whilst the method for
finding component faults will be called Battery Cell Detector.

Di�erent categories of faults can occur in a FEV. Quick and vital faults, for example
a short circuit, that would make the vehicle instantly stop. Faults that degrade the
intended behaviour but are not critical enough to make the vehicle halt. Lastly,
faults that does not a�ect the normal operation in the short run, but degrade the
equipment or components at a higher rate. The faults of interest in this thesis are
the second and third alternative. Examples of these fault could, for the circuitry,
be an increased voltage drop between the batteries and a component or a current
leakage in the system, causing abnormal behaviour during driving. This is also why
isolation is important, for a battery cell a sensor fault might lead to over-charging
or over-discharging, which potentially could lead to fast degradation. For higher
severity as if an internal cell fault is found the system might need to be halted im-
mediately to protect the well being of the battery.

The Circuit Fault Detector is designed in regard to the system at hand using a
plausibility test, whilst the Battery Cell Fault Detector is evaluated in regards to
previously tested model-based fault detection methods. One method that has shown
promising results of monitoring a modern battery is a State Observer Approach us-
ing an Adaptive Extended Kalman Filter [2][3][4], this method utilises the power of
an state observer capable of handling non-linear models with the Adaptiveness to
detect abrupt changes. To perform a valid comparison another well known method
in fault diagnosis is chosen to be evaluated. This method is the Parity Space ap-
proach, which has proven to be an e�ective fault detector in many systems [1][5][6].
These two methods will be evaluated against each other in an modern Lithium-Ion
battery for full electric vehicles.

The report’s structure will be as follows; first in Chapter 2 the concept of FDI and
the necessary theory around the subject will be presented followed by the chosen
methods. The specific system at hand will have a walk-through for basic understand-
ing and the required models will be presented. In Chapter 3 the implementation
and the design of the di�erent methods will be handled, as well as the used data and
techniques. In Chapter 4 the results of the implemented methods will be presented
with its pros and cons before the discussion takes place in Chapter 5. The thesis
will be finished with the conclusions and the answers to the specific issue under
investigation.
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1. Introduction

1.1 Purpose and scope
The purpose of this project is to find and evaluate fault detection and isolation (
FDI) methods that can tell if a specified TVS sub-system is deviating from nor-
mal operation. It is important to find abnormalities in both safety and preventive
maintenance perspectives. Since the project is divided into two separate TVS sub-
systems the scope will di�er.

For the circuitry the scope is to design and evaluate a method capable of detecting,
and possibly, isolating the faults caused by the wiring circuit. This shall be done
using measurements from already installed sensors measuring voltage and current.
Updates and improvements that can be made to the system or method shall be
included in the evaluation.

For the battery cell the scope is to evaluate the two model-based methods, investigate
what is possible to achieve in regard to fault detection and isolation, and compare
the methods to each other. Declare the pros and cons of the methods and which
one is most suitable for further research, as well as propose possible improvements
to enhance the performance of the method.

1.1.1 Specification of issue under investigation
Circuit Fault Detector

• Is there a suitable method to detect and isolate faults in the circuitry using
the measurements already present in the system today?

• What are the key factors to improve abnormality detection?
Battery Cell Fault Detector

• Are the two model-based fault detection methods under investigation suitable
to be used for monitoring a lithium-ion battery system?

• What are the strength and weakness of the two methods?

1.2 Limitations
The TVS is a large and complex system and therefore this project needs to be limited
to be feasible. This project will focus at detecting longer abnormalities, meaning
sub-second transients are not included. The project will in the designing and evalu-
ation of the detectors be dependent on faults, but this thesis is limited to only take
the faults presented by Volvo into account and will not make an investigation in
more detail.

The project is limited to only evaluate a method for one component in the TVS, the
battery cell. To evaluate the battery cell models needs to be included, but the project
is limited to use existing models and will not develop new ones. The resources at
hand are fault-free logged data from an FEV and Volvo’s Global Simulation Program
(GSP), no field testing or implementation in a real vehicle will be performed.
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2
Theory

In this Chapter the necessary theory for the implemented and evaluated methods are
presented. First an introduction to Fault Detection and Isolation followed by a more
detailed section of the methods and models used and lastly an short introduction of
the Traction Voltage System and an analysis of how the system can behave during
faults.

2.1 Introduction to Fault Detection and Isolation
Fault diagnosis consist of a vast number of methods and techniques to achieve the
same goal, finding faults. The concept is, as earlier mentioned, defined as three
di�erent tasks that provides di�erent information level of the detected fault. Fault
Detection and Isolation (FDI) are the most fundamental of these three tasks, where
detecting the fault is an absolute must and isolation gives vital information. From
here on FDI will only be considered.

A fault is in this context defined as an abnormal condition within the system, that
may cause reduced functionality in a unit required for a specific task. A fault may
not always lead to a breakdown but usually makes the system deviate from normal
operation. There exist numerous types of faults and causes, manufacturing faults,
maintenance fault, hardware faults, software faults, to only mention a few and most
of them are di�cult to find. It is especially hard to design a fault detector method
for unknown faults, whereas knowing how faults propagates throughout the system
helps in making the method mores sensitive to that particular fault. For isolation
of a fault it is usually divided into three categories, sensor faults, actuator fault and
process faults. Sensor faults are faults that act on the measurements of a process,
actuator faults are changes to the actuator or input of the system and process faults
are a fault within a process.

Di�erent techniques of detecting faults exists, the simplest and most common is to
monitor a given signal and classifying it as an fault if it reaches a set limit. The
drawback of this simple method is the lack of understanding the system depending on
operation point, input variations or noise. To include some knowledge of the system
a plausibility test can be used where the known physical relationships between the
input and output values of the system are used to check if the system is consistent.
A plausibility test is usually quite simple and hence limited to what can be achieved
in sense of detection or isolation in a complex system. This is possible to overcome
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with the help of a mathematical model providing a relationship between the di�erent
signals in the system. If the model for the system is known well enough it can be
run along side the real system, and it is reasonable to expect that it will follow the
systems fault-free behaviour for the same input signals. This can then be used to
show a fault if the system and model deviate unexpectedly. The di�erence between
these two measurements are called a residual and provide a check of the consistency
in the system. The residual should be zero-valued during normal operation and
should diverge from zero if a fault is present in the system. This method is called
model-based residual generation and is one of the most powerful tools in FDI. These
residuals are the heart in the fault detection methods, and di�erent methods of
creating residuals provides di�erent residuals generators. The next step of the FDI
process is residual evaluation, which is the decision logic that determine if a fault is
present in the residual, usually using methods of change-detection. This can be done
in multiple ways, by the means of limit checking, estimation of mean and variance,
or hypothesis test such as the ‰2-test [5]. In Figure 2.1 the concept of a FDI method
is presented with the underlying parts, residual generation and residual evaluation.

System

Residual Generation

Residual Evaluation

input output

Residuals

Fault information

Figure 2.1: Concept idea of fault detection and isolation in a general system with
inputs and outputs used by the Residual Generation to create a residual used by
the Residual Evaluation to determine if a fault is present and possibly where it is
located.

The residual evaluation is also used to perform fault isolation, i.e. can provide cer-
tain information of which error has occurred. This is hard to perform and the system
needs certain properties that enables for easier fault isolation, for example a multiple
input multiple output system which gives more measuring points and enables for
more residuals. The residuals needs to provide information about the faults, and the
easiest way is to have multiple residuals that are sensitive or connected to di�erent
measurements in the system. This gives that only one of the residuals should react
to a certain fault. With this logic it is possible to distinguish where in the system
the fault is located if only one of these residuals raise an alarm [1].
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2.2 Introduction to systems under investigation
The systems used for FDI are important and below are the relevant systems and
models presented.

2.2.1 Traction Voltage System
In this section the system under consideration will be presented, namely the Traction
Voltage System (TVS) in the Full Electric Vehicle (FEV) City Bus Gen 1, which can
be seen in Appendix A under Figure A.1 with the relevant measuring points in the
system. The TVS is the electrical system connecting the Battery Packs (BP), Motor
Drive System (MDS), 600 V-to-24 V DC-DC Converter (DC/DC), Charging Switch
Unit (CSU) and electric auxiliaries such as heater, air compressor and air condition.
Above mentioned units can all communicate over a Controller Area Network (CAN)
bus, each with packets containing di�erent information. The information relevant
for this project are measurements taken at these specific units.

2.2.1.1 Modelling of circuit faults

Since there is no data to access with known faults, this section includes an analysis
of how the system should behave during some certain faults. The faults are based
on information given on errors that has occurred in the specific system of investiga-
tion. The aim is not to find all possible faults that could lead to this behaviour or
investigate all possible faults, it is only to gain as much insight so the Circuit Fault
Detector can be designed in regards to the TVS.

The first fault is a loose screw in a junction box, causing an increased voltage drop.
The screw has either vibrated loose or has not been tighten properly during instal-
lation or service. A poor connection will decrease the conductivity and therefore
increase the resistance, this can be compared by connecting an additional resistance
in series. The second fault is a current leakage which is a ground fault, that could
appear when water or moist is entering the system. This can be compared to a
resistance parallel to the loads.

In Figure 2.2 a circuit is presented for the help of deriving the a�ect of serial faults
during driving. The circuit contains two voltage sources with the same electrical
potential, a fault resistance R

f

and both the wire and internal battery resistance
combined as R. – is defined as the ratio of the change in resistance in the circuit
by the fault, it is also assumed to be smaller than R. Initially it is assumed that
the fault resistance, R

f

, is not present, and hence i1 and i2 will be equal. Deriving
the relationship between these two currents and the voltage U gives how the system
behaves if R

f

would be larger than zero.

The voltage U1 can be described as

U1 = U ≠ i1 · –R, U1 = U ≠ i2 · R (2.1)
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BP1

+≠U

i1

R R
f

R

BP2

+ ≠U
i2U1

i3= –R

Figure 2.2: An electrical circuit which demonstrates how a serial resistance fault
will a�ect two parallel sources during driving. R is the wire resistance and the
internal battery resistance, R

f

is the resistance fault. – = R+Rf

R

.

which gives that this relationship must hold

i1 · –R = i2 · R. (2.2)

By adding Kirchho�’s current law

i1 + i2 = i3 (2.3)

gives the equation system
C
–R ≠R
1 1

D C
i1
i2

D

=
C

0
i3

D

(2.4)

and by solving this equation system gives
C

– ≠1 0
1 1 i3

D

…
C

– + 1 0 i3
1 1 i3

D

…
C

1 0 i3
–+1

1 1 i3

D

…
C

1 0 i3
–+1

0 1 i3 ≠ i3
–+1

D

…
C 1 0 i3

–+1
0 1 i3

1
1 ≠ 1

–+1

2
D

.

These results can be summarised as
Y
]

[
i1 = i3

–+1
i2 = i3

1
1 ≠ 1

–+1

2 (2.5)

meaning that with an increased fault the currents i1 will decrease while i2 will
increase. The amount of change depends on the ratio, –, between the fault, R

f

,
and the combined wire and internal battery resistance, R. The voltage U1 is also
a�ected by

U1 = U ≠ i2 · R = U ≠ i3

3
1 ≠ 1

– + 1

4
· R (2.6)

which will give a lower electrical potential towards the load.

If the system instead is charging the a�ect of the system will di�er since the only
source is the charger. In Figure 2.3 the system is presented, with two batteries to
charge and with the wire and battery internal resistances R and the fault resistance
R

f

. With the same equations as in the driving case it is possible conclude that an
increased R

f

would only give a lower i1, while i2 is barely a�ected since the potential
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BP1

+≠
U

BP1

i1

R R
f

R

BP2

+ ≠
U

BP2
i2

U1

i3

= –R

Figure 2.3: An electrical circuit which demonstrates how a serial resistance fault
will a�ect the system during charging. R is the wire resistance and the internal
battery resistance, R

f

is the resistance fault. – = R+Rf

R

..

at U1 is assumed stable from the charger. The voltage drop over BP1 can still be
substantial due to the high currents passing through R and R

f

during charging.

This theory includes two possible faults, and since these faults will a�ect the system
di�erently depending on where it is located a Simulink-model was used to simulate
the faults. A representation of the electrical system in Simulink is shown in Figure
2.4. The potential fault locations, namely R

f1, R
f2, R

f3 and R
f4 can be seen in the

figure. In Table 2.1 the system changes can be observed during the faults in both
driving and charging. The primary information in the measured signals is how they
change compared to each other when a fault occurs and not the specific magnitude,
since that di�ers depending on the fault. Therefore will Table 2.1 only contain the
direction of the change.

BP1

i1

R + R
f1U1

BP2

i2

RU2

BP3

i3

RU3

BP4

i4

RU4

R + R
f2

(i
T 1)

(U
T 1)

R

(i
T 2)

(U
T 2)

R + R
f3

i7

U7

i8

CHG

R
f4

Figure 2.4: A representation of the electrical system with cable resistances, R, and
potential faulty serial resistances R

f1, R
f2, R

f3 and one faulty parallel resistor of
R

f4. For simplicity the wire resistance, R, is assumed to be the same throughout
the system. All voltages and currents except U

T 1, U
T 2, i

T 1 and i
T 2 are accessible in

the system, these are included to ease the description of system behaviour.
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Table 2.1: The measuring points in Figure 2.4 when a fault has occurred. (+) de-
notes a small increase, (≠) denotes a small decrease, (0) denotes that it is unchanged.
Note that the reference for currents are reversed in the charging case compared to
the driving case in Figure 2.4. Also note that this is only providing a hint of the
direction of the change and does not include any magnitude, two di�erent increases
denoted (+) may not be equal in magnitude.

Driving Case Charging case

R
f1 ø R

f2 ø R
f3 ø R

f4 ø R
f1 ø R

f2 ø R
f3 ø R

f4 ø
i1 - - 0 + - - 0 0
i2 + - 0 + + - 0 0
i3 + + 0 + 0 0 0 0
i4 + + 0 + 0 0 0 0

(i
T 1) - - 0 + - - 0 0

(i
T 2) + + 0 + 0 0 0 0
i7 0 0 0 0 0 0 0 0
i8 0 0 0 0 0 - 0 +
U1 0 0 0 0 - - 0 0
U2 0 0 0 0 + - 0 0
U3 0 0 0 0 0 0 0 0
U4 0 0 0 0 0 0 0 0

(U
T 1) - 0 0 0 - - 0 0

(U
T 2) 0 0 0 0 0 0 0 0

U7 - - - 0 0 0 - 0

2.2.2 Battery cell
There exists multiple methods on how to model a lithium-ion battery cell, depending
on the purpose intended. When only an electrical model is of interest it is possible
to use circuit-based models. These circuit-based models are simple and practical
since they allow to replace the complex electrochemical process with an Equivalent
Circuit Model (ECM) [7]. In Figure 2.5 a second-order ECM is depicted, where U
is the terminal voltage when a load is applied to the cell, U

oc

is the open circuit
voltage, U1 is the voltage over the first transient part, R1//C1, which captures the
fast dynamic such as surface e�ects and reaction kinetics, U2 is the voltage over the
second transient part which captures the slow dynamic (order of hours), R2//C2, of
the cell such as di�usion processes in electrolyte and active material [8]. R0 is the
internal resistance of the cell and I is the load current.

All of the above mentioned parameters, R0, R1, C1, C2, R2 as well as U
oc

, are
dependent on the state of charge (SoC), ageing and cell temperature. The SoC is a
percentage of how much of the maximum energy capacity currently is stored in the
battery. The parameters corresponding to the transient are all dependent on the
load current, which is included in the model. A second order model approximates
the transient behaviour in the battery and thus gives an overall more accurate re-
sults compared to ECM’s of lower order [9][8][3].
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R0I

R1

C1

+ ≠
U1

R2

C2

+ ≠
U2≠

+ U
oc

+

U

≠

Figure 2.5: A second-order equivalent RC model for an lithium-ion battery cell.

The continuous time dynamics of the battery cell is given in Equation 2.7, where ÷
is the coulombic e�ciency, which is dependent on temperature and current. C

bat

is
the capacity in the battery cell, given in ampere hours. The SoC, ageing, tempera-
ture and current dependencies of the parameters are omitted for notation simplicity.
Discretising Equation 2.7 using zero order hold, the new system presented in Equa-
tion 2.8 is achieved, where �t is the sampling time and k is the time index.

U(t) = U
oc

(SoC(t)) ≠ U1(t) ≠ U2(t) ≠ R0I(t)

dU1(t)
dt

= ≠U1(t)
R1C1

+ I(t)
C1

dU2(t)
dt

= ≠U2(t)
R2C2

+ I(t)
C2

dSoC(t)
dt

= ≠÷I(t)
C

bat

(2.7)

U(k) = U
oc

(SoC(k)) ≠ U1(k) ≠ U2(k) ≠ R0I(k)

U1(k + 1) = exp
A

≠ �t

R1C1

B

U1(k) + R1

A

1 ≠ exp
A

≠ �t

R1C1

BB

I(k)

U2(k + 1) = exp
A

≠ �t

R2C2

B

U2(k) + R2

A

1 ≠ exp
A

≠ �t

R2C2

BB

I(k)

SoC(k + 1) = SoC(k) ≠ ÷�tI(k)
C

bat

(2.8)

The nonlinear state and measurement equations are presented in Equation 2.9, where
w

k

and v
k

are independent zero mean Gaussian noise with covariances Q
k

and R
k

respectively.
x

k+1 = f(x
k

, u
k

) + w
k

y
k

= h(x
k

, u
k

) + v
k

(2.9)

For the discrete battery model, the state vector is x
k

= [U1(k), U2(k), SoC(k)]T ,
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and f and h can be expressed as,

f(x
k

, u
k

) =

S

WWWWU

exp
1
≠ �t

R1C1

2
U1(k) + R1

1
1 ≠ exp

1
≠ �t

R1C1

22
I(k)

exp
1
≠ �t

R2C2

2
U2(k) + R2

1
1 ≠ exp

1
≠ �t

R2C2

22
I(k)

SoC(k) ≠ ÷�tI(k)
Cbat

T

XXXXV

h(x
k

, u
k

) = U
oc

(SoC(k)) ≠ U1(k) ≠ U2(k) ≠ R0 · I(k)

(2.10)

2.2.2.1 Modelling of battery cell faults

Faults that can potentially occur in a battery cell system are sensor and process
faults. Sensor faults can occur as e�ects of manufacturing errors, improper cali-
bration, degradation from usage over long time, or direct trauma such as shocks or
vibrations and can manifest themselves in unexpected ways. According to [4], the
most common of sensor fault behaviours are bias, drift and scaling of the measure-
ments as well as added noise and hard faults. As for parameter faults the internal
resistance of the battery cell can increase due to premature ageing through wear
and tear.

2.2.2.2 Local observability and fault detectability

In order to check if faults are theoretically detectable in the battery cell model,
local observability for the system is studied. This is checked by confirming that the
observability matrix for the model, linearised at normal operating state, is of full
rank. Notice that with fault detectability, it is meant; if a fault occurs, independent
of its size and type, would it cause a change in the nominal behaviour of the system
output [1]. If one can observe all inputs, states and outputs of the model, fault
detectability should by the definition presented by S. Ding in [1] be fulfilled. From
confirming local observability, global observability is assumed to be fulfilled for all t
as well.

2.3 Model-based residual generation

Model-based fault detection is based on the principle of comparing input and outputs
from a real system with a nominal one, modelled after physical laws or knowledge of
the real system. In Figure 2.6 a general structure for model-based FDI is presented,
where residual generation and evaluation is included. In this section two detailed
approaches of model-based fault detection are described.
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System

System
model

Residual
processing

Decision
logic

input output

r(k)≠

Residual generation Residual evaluation

Model-based fault diagnosis system

Fault
info

Figure 2.6: Schematic figure of a general Model-based fault diagnosis scheme [1].
The system model is compared with the system to create a residual, which then is
evaluated to detect faults.

2.3.1 Parity Space Approach
Parity Space Approach (PSA) is a residual generator that checks the consistency of
the measurements in the system. It was first generalised by Chow and Willsky in
1984 and has been well researched since. In this approach the nominal system is
assumed to be linear and time invariant, with an known model. This model can be
described in multiple forms, such as state-space form, z-transformed input-output
model and transfer functions [5][6].

In order to present the parity equations, the system is described on state-space form
and the parity equations are considered for discrete-time, since derivations and im-
plementation will be simpler. In Figure 2.7 the PSA is presented, this to give an
understanding of the general concept of the method before the mathematical de-
scription that follows.

System

W Q

W

p+

Memory
q samples

Memory
q samples

u(k) y(k)

Y (k)

U(k)

r(k)

Residual generator

Figure 2.7: Concept of parity space approach with the residual generator [6].
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The system is described as

x(k + 1) = Ax(k) + Bu(k) + w(k) + f
l

(k) (2.11)

y(k) = Cx(k) + Du(k) + v(k) + f
m

(k) (2.12)
where w(k) and v(k) are independent zero mean Gaussian noise, with covariance
Q

k

and R
k

on input and output respectively. f
l

and f
m

are additive faults on input
and output respectively.

u process input vector (p ◊ 1) v measurement noise vector (r ◊ 1)
x process state vector (m ◊ 1) w input noise vector (m ◊ 1)
y process output vector (r ◊ 1) f

l

,f
m

fault vectors

For simplification of notation during derivations, the disturbances and faults are
dropped from the state-space form, giving

x(k + 1) = Ax(k) + Bu(k) (2.13)

y(k) = Cx(k) + Du(k). (2.14)
Writing the expression for the output at the next time instant k + 1, Equation 2.13
is inserted in Equation 2.14, yielding

y(k + 1) = CAx(k) + CBu(k) + Du(k + 1). (2.15)

Following this logic the output for time instant k = q, is expressed as

y(k + q) = CAqx(k) + CAq≠1Bu(k) + ... + CBu(k + q ≠ 1) + Du(k + q). (2.16)

Here one can observe that the output at time k = q is dependent on the initial state
x(k) and the inputs in time window of size q + 1. Writing out all outputs for this
time window and time shifting q samples backwards yields

Y (k) = Tx(k ≠ q) + QU(k) (2.17)

where

Y (k) =

S

WWWWU

y(k ≠ q)
y(k ≠ q + 1)

...
y(k)

T

XXXXV
, U(k) =

S

WWWWU

u(k ≠ q)
u(k ≠ q + 1)

...
u(k)

T

XXXXV
(2.18)

and matrices

T =

S

WWWWWWWU

C
CA
CA2

...
CAq

T

XXXXXXXV

, Q =

S

WWWWWWWU

D 0 . . . 0
CB D . . .

CAB CB
... ... . . . ...

CAq≠1B CAq≠2B . . . CB D

T

XXXXXXXV

(2.19)

where T is the extended observability matrix. Equation 2.17, which is also called
the parity relation, describes the input and output relationship of the system with
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dependence on the past state vector x(k ≠ q). Since the initial state is unknown,
a method is needed to remove this dependency. Equation 2.17 is multiplied with a
vector wT , which fulfils

wT T = 0 (2.20)

where wT œ R1◊(q+1)r. The residuals can now be expressed as

r(k) = wT Y (k) ≠ wT QU(k). (2.21)

If A is of order m, then T œ R(q+1)r◊m. From Equation 2.20 m elements of wT is
set, the remaining (q + 1)r ≠ m can be chosen freely. Further, one can create more
residuals by multiplying Equation 2.17 with a matrix W , which contains wT . W is
then determined from following equation

WT = 0. (2.22)

From Equation 2.22, some elements are determined in order to project the initial
state onto the null space. The rest of the elements can again be chosen freely in
order for the residuals to have di�erent behaviors, allowing for a better fault iso-
lation or more robust fault detection. In an ideal case the only thing influencing
the residuals would be faults, but in real applications both modeling errors and dis-
turbances a�ect the outcome. One method of designing W is Structured residuals
also mentioned as orthogonal parity equation, where the idea is that the faults do
not trigger all residuals. The concept is to make the residual orthogonal to certain
faults, this should result in certain patterns appearing during these faults. This is
however not straightforward in all cases [5][6]. Multiple other ways of designing W
is discussed in Chapter 7.4 Optimal Selection of Parity Matrices and Vectors in [1].

The time window, q, can also be chosen di�erently depending on the system. A
larger q gives a more computational heavy system but can in theory provide better
fault detection. This is however depending on the system and the guideline is to
use at least a higher order than the system at hand and not use a higher order than
necessary, i.e. not increase q if there is not clear benefits in terms of fault detection
[1].

2.3.2 State Observer Approach using Adaptive Extended
Kalman Filter

In this approach to a residual generator, a state observer is designed in order to
estimate internal states and output for the use of calculating a residual by adaptive
updating of the noise statistics of the filter. In Figure 2.8 the state observer ap-
proach is depicted.

The linear discrete time Kalman Filter is a widely used method for state observation,
and also as residual generator. Consider the discrete dynamic system presented in
Equation 2.13 and 2.14, the purpose of the discrete Kalman filter is to provide state
and output estimates on the form,
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Input
sensor

State
observer

r(k)
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Measured
input, u(k)

Figure 2.8: Concept of a state observer residual generation approach.

x̂(k + 1) = Ax̂(k) + Bu(k) + K(k)(y(k) ≠ ŷ(k)) (2.23)

ŷ(k) = Cx̂(k) + Du(k), (2.24)

where x̂ is the state estimate, ŷ is the output estimate and K is the Kalman gain.
The filter computes the estimate in a two step process. As a first step, a prediction
of the state estimate is performed using the system model, secondly the estimate is
updated by a weighted sum with the so called innovation, i.e. the di�erence between
measured output and estimated output. The innovation is in fact the residual, which
will be an independent zero mean Gaussian process when no fault is present. When
a fault occur, this process will no longer have zero mean.

The state and output estimation of the Kalman Filter is closely connected to the
a priori information about the process noise and measurement noise, Q0 and R0
respectively, where insu�cient information will lead to reduced precision or intro-
duction of bias. Wrong a priori information will lead to divergence of estimates.
An adaptation scheme is therefore added to the filter, where the process and mea-
surement noise covariance, Q

k

and R
k

, are updated based on the voltage residual
covariance. In addition to increasing accuracy of estimation the adaptation will
enhance the capabilities of detecting faults. An intuitive explanation of how adap-
tation enhance fault detection is when abrupt faults occurs, the measurements and
estimated output will mismatch and the filter will estimate an increased voltage
residual covariance and update process noise covariance and measurement noise co-
variance accordingly. The filter will then place more trust in either the prediction
from the model or the received measurements, since the Kalman gain, K

k

is depen-
dent on R

k≠1 and Q
k≠1. For a more rigorous derivation and explanation of Adaptive

Kalman Filter, the reader is advised to [10].

A well known extension of the linear discrete Kalman Filter is the Extended Kalman
Filter. The use of an extended version of the regular Kalman Filter, is to capture
more of the non-linearities of the system of interest by performing a re-linearisation
along the state-trajectory in each iteration of the algorithm. The combination of
Extended Kalman Filter and the adaptive property outlined above results in an
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Adaptive Extended Kalman Filter (AEKF).

The AEKF is presented in Algorithm 1, where A
k

is the Jacobian matrix, C
k

is the
observation matrix, x̂≠

k

is a priori state estimate, P ≠
k

is a priori error covariance
estimate, x̂+

k

is a posteriori state estimate, P +
k

is a posteriori error covariance, K
k

is the Kalman gain at time step k, N is the window size of sample covariance
calculation, r

k

is the residual between the estimated output and measured output
at time step k, and F̂

k

is the sample covariance of the residual over the window of
N samples [3].

Algorithm 1 Adaptive Extended Kalman Filter
A

k

= ”f(xk,uk)
”xk

---
xk=x̂

+
k ,uk

, C
k

= ”g(xk,uk)
”xk

---
xk=x̂

≠
k

Initialization
For k = 0, set x+

0 = E[x0], P +
0 = E

Ë
(x0 ≠ x+

0 )(x0 ≠ x+
0 )T

È
, process noise covari-

ance Q0 and measurement noise covariance R0
Computation : For k = 1, 2, ...

State estimate time update: x̂≠
k

= f(x+
k≠1)

Error covariance time update: P ≠
k

= A
k≠1P

+
k≠1A

T

k≠1 + Q
k≠1

Kalman gain matrix: K
k

= P ≠
k

CT

k

(C
k

P ≠
k

CT

k

+ R
k≠1)≠1

State estimate measurement update: x̂+
k

= x̂≠
k

+ K
k

[y
k

≠ h(x̂≠
k

, u
k

)]
Error covariance measurement update: P +

k

= (I ≠ K
k

C
k

)P ≠
k

Update of noise covariance Qk and Rk :
For k = 1, 2, ..., N ≠ 1, Q

k

= Q0 and R
k

= R0
For k >= N , compute

Residual sequence: r
k

= y
k

≠ h(x̂+
k

, u
k

)
Estimated variance-covariance of residual sequence: F̂

k

= 1
N

q
k

j=k≠N+1 r
j

rT

j

Process noise matrix update: Q
k

= K
k

F̂
k

KT

k

Measurement noise matrix update: R
k

= F̂
k

+ C
k

P +
k

CT

k

2.4 Residual evaluation
When the residuals are generated the next step is to evaluate and decide if there is a
high possibility of a present fault. This can be done with a few di�erent strategies.
A common method is using limit checking with a hypothesis test.

2.4.1 Limit checking
Limit checking is one of the most common and simplest methods of residual eval-
uation. It includes numerous ways and methods to tune the limits, often called
thresholds, to decide if the system residual contains a fault or not. The most sim-
ple method is a simple limit check of the absolute values in a monitored variable.
Generally, two thresholds are tuned, a maximal value and a minimal value. A usual
statement is when

Y
min

< Y (t) < Y
max

,
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2. Theory

which implies a normal operation is present as long as the monitored variable is
within the range of the thresholds. These limits are most usually set after training
on fault-free data, where it is important to fit the threshold as narrow as possible
without the risk of fault detections.

More advanced forms av limit-checking can be achieved by detecting a change in
the mean of a larger set of N values. As long as the N values belongs to a known
distribution the mean can be monitored and a change can be detected. The problem
becomes detecting small changes in a noisy environment, and for this statistical test
can be used. One form of statistical test is hypothesis test, which is used for change
detection and is described in the next section [5].

2.4.1.1 Hypothesis tests

The objective of a hypothesis test is to make a decision based on observations and
the statistical properties of the distribution from which the observation is assumed
to belong. The decision is made between two hypothesises, which are referred to
as the null-hypothesis, H0, and the alternative hypothesis, H1. H0 represent the
fault-free case and H1 that a fault is present. If the generated residual under test is
assumed to have zero mean and the presence of a fault will contribute to a change
in mean, then the decision problem can be expressed as

D =
Y
]

[
H0, if w Æ k

H1, if w > k
(2.25)

where D is the decision, w is the test statistic and k is the threshold. Which test
statistic used depend on which type of hypothesis test used, one example is the
‰2-test [5].

The ‰2-test assumes that the test statistic belongs to the ‰2-distribution with N
degrees of freedom. A statistic follows the ‰2-distribution if it is a sum of squares,
in which its elements are uncorrelated, have zero mean and unit variance. The
degree of freedom of the statistic, N , is decided by the number of terms in the sum.
Once a ‰2-statistic is created it can be compared to a threshold in order to test
if the null hypothesis should be accepted or rejected. The threshold for the test
can be extracted from a standard ‰2 table or from manually tuning using detector
performance as a metric [11].

2.4.2 Detector performance metrics
This section provides a metric that can be used to evaluate the performance of a
FDI method.

In statistics two types of errors are often used, Type I error and Type II error which
are connected to the null hypothesis, H0. A Type I error corresponds to the null
hypothesis being true, but is rejected. A false positive would in this case be if the
detector raised an alarm when there is no fault present. Type II error is the opposite,
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when the null hypothesis is false, but erroneously fails to be rejected. In this case
it would be when the detector fails to detect a present fault. These two types of
errors are useful when evaluating the performance of an FDI method and are called
Missed Detection Rate (MDR) and False Detection Rate (FDR). In Table 2.2 there
is a summary of the four possible scenarios. [12]

Null hypothesis is:

True False

Decision

about null

hypothesis:

Fail to

reject

Correct
(True positive)

Type II error
(False negative)
(MDR)

Reject Type I error
(False positive)
(FDR)

Correct
(True negative)

Table 2.2: The relations between truth and falseness of the null hypothesis, the
outcomes of the test and which error MDR and FDR are measuring.

To calculate MDR it is defined as

MDR = Number of rejections
Number of faulty samples . (2.26)

To calculate FDR it is defined as

FDR = Number of false rejections
Number of samples ≠ Number of faulty samples . (2.27)
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3
Implementation

This chapter will present the design and implementation of the three methods used
for fault detection and isolation. First the method for the Circuit Fault Detector is
described and then the two methods for the Battery Cell Fault Detector. Lastly the
data used for testing the methods is presented and discussed.

3.1 Circuit Fault Detector
This detector is designed as a plausibility check, with the knowledge of the phys-
ical relationship between measurements in the TVS system. The system can be
described with a static model using Kirchho�’s current and voltage laws, which can
be used to create residuals for the system indicating abnormal behaviour.

The detector is implemented using Matlab and a basic overview of the program is
shown in Algorithm 2. The calculation of the residuals and the residual biases will
be discussed in section 3.1.1. The thresholds and how the residuals are evaluated
will be discussed in section 3.1.2.

Algorithm 2 Circuit Fault Detector
Initialisation

Residual biases b1 etc., Thresholds ·
U1 etc., Kalman Filter settings Q, P

Computation loop : While, k = 1,2,3..
Read measurements from CAN
Filter measurements with a low pass filter (Kalman Filter)
Calculate residuals, r

U1(k) = U1 ≠ U5 ≠ b1 etc.
Evaluate residual, if( r

U1(k) > ·
U1 || r

U1(k) < ≠·
U1 ) { Raise alarm }

End of loop

The low-pass filtering is performed using two Kalman filters to simplify the imple-
mentation, one for the voltage measurements and one for the current measurements
with the states U1 to U6 and i1 to i8 respectively. These states represent the measure-
ment points in Figure A.1 in Appendix. The Kalman filter is chosen since it provides
a good, easy to tune low-pass filtering, and is used with a random walk model. Dur-
ing the implementation it became evident that the system measurements properties
behave di�erent during stationary charging and driving, and therefore two sets of
tuning parameters are provided. More details about the di�erences of the two cases
are explained in Section 4.1. The tuning is done separately for each measurement
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3. Implementation

to make sure noise and transients are properly removed. In Table 3.1 the tuning for
charging and driving is presented.

Table 3.1: Kalman filter tuning for the two cases, driving and stationary charging.
The states are U1 to U6 and i1 to i8 respectively for the two filters in both cases.

Parameter Setting
Charging

P
U

I8x8

P
I

I6x6

Q
U

diag[0.001, 0.001, 0.001, 0.001, 0.0005, 0.001]
Q

I

diag[0.005, 0.005, 0.005, 0.005, 0.005, 0.0025, 0.05, 0.0035]
R

U

I8x8

R
I

I6x6

Driving

P
U

I8x8

P
I

I6x6

Q
U

diag[0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
Q

I

diag[0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0025, 0.05, 0.0035]
R

U

I8x8

R
I

I6x6

3.1.1 Creating residuals
The residual is designed to give information about the system in order to detect
and isolate faults. It is hence important to construct residuals containing relevant
information about the system.

The construction of the residuals are based on the static relationships of Kirchho�’s
voltage and current laws. By analysing how the measuring points should relate to
each other in normal operation it is possible to test if Kirchho�’s relationships are
fulfilled, if it is not fulfilled a fault is detected. The voltage residuals derived are
presented in Table 3.2, the current residuals in Table 3.3 and all residuals are ex-
plained below.

According to Kirchho�’s voltage law all components in the system should, in an
ideal case, have the same voltage level, therefore it is possible to compare all the
voltage measuring points with each other in order to check if any component su�ers
from a voltage drop. A voltage drop could be caused by a serial resistance fault,
as presented earlier in Table 2.1. The first eight voltage residuals, r

U1 - r
U8, are

comparing the voltage measurements of each battery with the two components that
have voltage sensors, the MDS and the DC/DC. By comparing all batteries with all
the components, a redundancy in the residuals is achieved. This means if a fault is
located somewhere between the batteries and a component, it should be detected by
multiple residuals. If it is not detected by multiple residuals, it is probable to be a
false positive. The last five voltage residuals, r

U9 - r
U14, are comparing the batteries
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with themselves. These residuals provide information about how the batteries are
balanced in comparison to each other, which are intended to be at the same voltage
level during normal operation.

For example if residual r
U1, r

U3, r
U5 and r

U7 are detecting a fault it would imply
that there is a voltage drop between the MDS and the batteries. The fault is then
most likely located near the MDS, since the residuals for the DC/DC does not de-
tect a fault. If instead only r

U1 is detecting a fault but not r
U3, r

U5 and r
U7, it is

possible to use residuals r
U9 - r

U14 to see if battery pack 1 is deviating. With this
methodology it is possible to pinpoint where in the system it is most likely that the
cause of the detection is located, even if it is not possible with full certainty to tell
exactly what the issue is.

The system consist of sensors from di�erent manufactures that might not be cal-
ibrated perfectly and since the voltage in reality is not the same between a volt-
age source and a voltage load, a new compensation constant is introduced, b

i

with
i œ 1...14, to the voltage residuals. The constant makes it possible to reduce the
voltage di�erence between measuring points of normal operation and hence reduce
the threshold for the decision process and be able to find smaller faults. The com-
pensation constant is found by comparing the measured signals and the residuals
over time to conclude if there is a constant bias. This compensation constant will
also need to be updated over time, since it can change depending on the calibration
of the sensors.

Table 3.2: The 14 voltage residuals used, built from the measuring points in the
TVS that can be seen in Figure A.1. U correspond to the measuring points and b
correspond to the compensation constant to remove the voltage bias in the system.

Voltage residuals:
r

U1 = U1 ≠ U5 ≠ b1
r

U2 = U1 ≠ U6 ≠ b2
r

U3 = U2 ≠ U5 ≠ b3
r

U4 = U2 ≠ U6 ≠ b4
r

U5 = U3 ≠ U5 ≠ b5
r

U6 = U3 ≠ U6 ≠ b6
r

U7 = U4 ≠ U5 ≠ b7
r

U8 = U4 ≠ U6 ≠ b8
r

U9 = U1 ≠ U2 ≠ b9
r

U10 = U1 ≠ U3 ≠ b10
r

U11 = U1 ≠ U4 ≠ b11
r

U12 = U2 ≠ U3 ≠ b12
r

U13 = U2 ≠ U4 ≠ b13
r

U14 = U3 ≠ U4 ≠ b14

The current residuals are based on Kirchho�’s current law, where the first residual,
r

i1, is designed to compare all current measurements from the sources and the loads
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in the system. If there is a di�erence in the current drawn from the source and cur-
rent consumed by the loads there is a inconsistency, which is not possible without
a fault. Six more residuals, r

i2 - r
i7, are created by comparing the current drawn

from the batteries. If the current usage from the batteries diverge a fault could be
present, as earlier shown in Table 2.1. Since it is not possible to create more current
residuals between di�erent points in the system it is not possible to use the same
methodology for isolation as in the voltage case, hence it is not possible to isolate
the faults. An example fault is if a parallel resistance is present in the system. It
will be detected by r

i1 as long as the current it is using is large enough to surpass
the set threshold for the residual, but it will not be possible to isolate since only one
residual is detecting the abnormality.

Table 3.3: The seven current residuals used, built from the measuring points in
the TVS that can be seen in Figure A.1.

Current residuals:
r

i1 = i1 + i2 + i3 + i4 + i5 + i6 + i7 ≠ i8
r

i2 = i1 ≠ i2
r

i3 = i1 ≠ i3
r

i4 = i1 ≠ i4
r

i5 = i2 ≠ i3
r

i6 = i2 ≠ i4
r

i7 = i3 ≠ i4

3.1.2 Evaluation of residuals
The method of evaluating the residuals are chosen to be limit-checking, which simply
checks that the residual is within a specified range from zero. The range is specified
with two thresholds, one positive and one negative, that in this case are the nega-
tion of each other. This creates a range of double the threshold centered around zero.

The threshold is set with help of the training data and the FDR. Each threshold
is set and tweaked manually until a reasonably low FDR is reached and finally the
threshold is confirmed with the validation data to make sure it is not overfitted.
The data used is presented in Section 3.3.1 and the resulting thresholds can be seen
in Section 4.1.1 of the Results chapter.
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3.2 Battery Cell Fault Detector
In this section the methods for implementing and simulating PSA and AEKF resid-
ual generators are first presented. The method for tuning, residual evaluation and
how thresholds where set for both approaches will be presented secondly.

3.2.1 Parity Space Approach
The PSA is designed according to the theory presented in Section 2.3.1, but since
this method is applied to a nonlinear lithium-ion battery model, the system needs
to be linearised. The model is dependent on multiple parameters, such as current,
temperature and SoC. The linearisation is performed at an operating point of 23°C,
a charging current of 74 A and a SoC of 55%. By using parameters from Volvo’s
Global Simulation Program (GSP) that matches with the operating point, a lin-
earised model is achieved. The model can be seen in Appendix A.1.

The implementation of the PSA theory is performed in Simulink and presented in
Figure 3.1. The Simulink implementation contains seven di�erent parts, separated
with blue backgrounds in the figure. The seven parts are Input, Measurement noise,
Fault input, Fault output, Process, Output and PSA. These parts are comparable
with the previously presented concept figure of the PSA, Figure 2.7, where u(k)
is the Input block, y(k) is the Output block, System is the process block and the
Residual generator is the block named PSA in Simulink.

Figure 3.1: Implemenation of PSA in Simulink based on the theory presented in
Section 2.3.1.

Beyond the concept figure some other features have been implemented to be able
to test the implementation and to make it more realistic. The input block adds
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Gaussian distributed noise to the input current measurements, the Measurement
noise block adds Gaussian distributed noise to the output voltage measurements.
The Fault input and the Fault output block makes it possible to add faults to the
input current sensor and the output voltage sensor respectively.

The Process utilises the GSP to simulate a battery cell and provides the process
output for the PSA. It does also remove the stationary output from the nonlinear
system, so it can be used with the linear PSA system.

The PSA block is the heart of the fault detection and contains the same structure
as the residual generator in Figure 2.7, with some added functionality. To remove
some of the noise in the residual a low-pass filer is implemented, and lastly the norm
of the residuals is calculated according to the ‰2 statistics.

3.2.1.1 Tuning of parameters

W has two functionalities, first to project the states to null space and then to create
residuals that are sensitive to the faults intended to find. In this implementation
W is only used to project the states to null space and thus the freedom of kernel
projection is left unexplored. This can be implemented to improve the detection
and robustness but is left since it is deemed to be out of the scope to optimally tune
the PSA. W is calculated using single value decomposition, and gives

W =

S

WWWWWWU

0.0000 0.0146 0.4312 0.8698 0.1261 ≠0.1217 0.1174 ≠0.1133
0.0000 ≠0.0153 ≠0.4171 0.1257 0.8783 0.1175 ≠0.1133 0.1094
0.0000 0.0148 0.4025 ≠0.1213 0.1174 0.8867 0.1094 ≠0.1055
0.0000 ≠0.0143 ≠0.3884 0.1170 ≠0.1133 0.1094 0.8945 0.1018

≠0.0000 0.0138 0.3748 ≠0.1129 0.1094 ≠0.1055 0.1018 0.9017

T

XXXXXXV

The time horizon, q, is in the end set to seven and the value is set by trial and
error. It was found that no increase of performance was found over this value, and
since the computational complexity increases with q it is advantageous to keep it
relatively low.

3.2.1.2 Evaluation of residuals

The fault-free samples of the generated residual signals are assumed to be indepen-
dent zero mean Gaussian with variance corresponding to the measurement noise
covariance. By the theory in Section 2.4.1.1 one can then construct a test statistic
that follows the ‰2 distribution by taking the sum of squares of the residual signals
and normalising with the measurement noise covariance. The test statistic is then
compared to a threshold extracted from a ‰2-table corresponding to a false detection
rate of 0.1%.
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3.2.2 State Observer Approach using Adaptive Extended
Kalman Filter

The state observer approach using AEKF is implemented and simulated in MATLAB,
and depicted in Figure 3.2. The Battery cell is modelled using GSP. As explained
in Section 3.3.2, real log data of battery load current from a FEV is used as input to
the GSP battery cell model. Independent zero mean Gaussian noise is then added
to both the current measurements, u

k

, and the voltage measurements, y
k

, in order
to achieve realistic measurements in the simulation. Both the real log data and the
simulated voltage measurements are then fed to the AEKF for estimation of internal
states and generation of residual, according to Section 2.3.2. The model used in the
AEKF for prediction and measurement update is the second order ECM presented
in Section 2.2.2, where the temperature dependency of the parameters is fixed to
23°C and the coulombic e�ciency is assumed to be one at all times, in order to
simplify the model and decrease complexity. The e�ect of ageing is also neglected
since the duration of the simulation time is much shorter than the duration needed
for ageing e�ects to have significant e�ect on the parameter values. During the
simulations the true initial state is set to x0,true

= [0, 0, 0.5]T in the system.

Battery
cell

Voltage
sensor

Current
sensor

AEKF
r

k Residual
evaluation

Load current
Measured
voltage, y

k

Measured
current, u

k

Fault
alarms

Figure 3.2: State observer approach with the Adaptive Extended Kalman Filter
for fault detection in a battery cell.

3.2.2.1 Tuning of filter parameters

Tuning of the AEKF was performed by trial and error. The performance parameters
taken into account when performing the tuning were residual sensitivity to errors,
convergence speed of estimation, accuracy of SoC estimation, and insensitivity of
the estimations to faults. The resulting initial mean, noise covariances and window
size settings are presented in Table 3.4. The initial expected value of the SoC is
set to be o� by 10%, in order to test convergence speed of the filter. The initial
error covariance for the SoC was chosen relatively large compared to the other two
states to reflect the uncertainty in the initial state. The initial measurement noise
covariance R0 was set to the actual measurement noise covariance, ‡2, presented
in Section 3.3.2. The initial process noise covariance for the SoC is chosen to be
factor of 103 lower than the measurement noise, to reflect a high certainty in the
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model. The initial process noise covariance as well as the initial error covariance
for the other states is set to relatively small compared to the one for SoC in order
for measurement updates to a�ect SoC rather than these transient voltages. The
window size of sample covariance calculation is chosen so that it is large enough
to estimate the covariance accurately and small enough to be able to reject sudden
changes in the measurements i.e. faults.

Table 3.4: Initial mean, noise covariances and window size settings for AEKF
simulations.

Parameter Setting
x0 [0, 0, 0.4]T
P0 diag([10≠20, 10≠20, 10≠3])
Q0 diag([10≠20,10≠20,10≠9])
R0 1 · 10≠6

N 20

3.2.2.2 Evaluation of residual

Exactly as in Section 3.2.1.2 the fault-free samples of the generated residual signal
are assumed to be independent zero mean Gaussian with variance corresponding
to the measurement noise covariance. One can then construct a test statistic that
follows the ‰2-distribution by taking the sum of squares of the residual from a win-
dow of N samples and normalising with the measurement noise covariance, which
is presented in Equation 3.1.

w = rT

k≠N+1:k R≠1
0 r

k≠N+1:k (3.1)

In this thesis it was found that this sum of squares corresponds to a scaled version
of the sample covariance over window N , already calculated in the algorithm for
update of noise covariances. One can receive the ‰2-statistic from the algorithm by
multiplying the sample covariance with the window length and normalising with the
known measurement noise. In order to test the null hypothesis, w is compared to a
threshold extracted from a ‰2-table corresponding to a false detection rate of 0.1%.
Since the degree of freedom of the statistic is dependent on the window size, so is
the chosen threshold.

3.2.3 Injected faults during Battery Cell Detector simula-
tions

The faults simulated for the PSA and AEKF method are foremost intended to em-
ulate sensor faults but also process faults, such as parameter faults, are considered.
Sensor faults that are injected during simulations are bias, drift and scaling faults
added to the measurements of voltage and current. The internal resistance of the
GSP battery cell model will be temporarily changed during simulations to see how
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the system behaves when the model used in the AEKF di�ers from reality.

The magnitude of all injected faults is chosen relatively small compared to nominal
values of measurements and parameters while still large enough for detection in
order for simulation results to reflect near peak performance of the fault detection
methods, i.e. to find how small errors can be detected. The fault detection schemes
are assumed to be able to find all faults of the same type that is larger than these.
For the AEKF method, larger faults are injected as well, in order to check the
performance of the state estimation and the adaptation.

3.3 Test data
In this section information about the data used will be presented. The relevant
measurements for this thesis includes voltage and current readings, which are taken
with a specific sampling rate and accuracy. The communication over the CAN-bus
a�ects the quality of the measurements. Since all of the units need to communicate
over the same bus, packets containing measurements can be delayed due to that
higher priority packets need the medium. This latency is determining the approx-
imate update frequency with which measurements are received and available for
calculations at the central computation unit. Since the information in the packets
is represented by bits, the values that can be transmitted su�er to resolution limi-
tations. Some units does not transmit direct measurements of voltage and current,
but rather estimates of these quantities calculated from other measurements.

3.3.1 Logged data from full electric bus in operation
The data is provided by Volvo and consist of logged data under normal operation
of the 55 route in Gothenburg between the 8th to 10th of January 2018. The spec-
ification of the data is shown in Appendix under Table A.1, where the estimated
accuracy, approximate update frequency and resolution of the measurements from
each unit are presented. The accuracy is calculated by estimating the sample co-
variance over a sequence where the measurements are constant. The sequences used
are chosen such that the magnitude of the measurements are as high as possible
while being stable over the period of estimation. The estimation of the covariance
is done using the logged data and might not represent the accuracy over the entire
measurement range, but gives an understanding of how the measurement compares
to other readings in the system. All voltage accuracies are estimated around 630-635
V. The accuracy of the current measurements at the battery packs are estimated at
83 A, MDS at 47 A, DC/DC at 4 A and CSU at 343 A.

To be able to use the data in the Circuit Fault Detector, the data needs to be slightly
altered. Nonconcurrent data can be handle but is not taken into account, instead
the signals are re-sampled to have the same updating rate. In this case the updating
frequency of 50 Hz is chosen, meaning that both the data from MDS and DC/DC
needs to be down-sampled whereas data from CSU is up-sampled using zero order
hold. The data used for the Circuit Fault Detector consist of 56 driving cycles and

29



3. Implementation

64 charging cycles logged, as earlier mentioned, between the 8th and 10th of January
2018. The data are randomly divided into two equal sized sets of training data and
validation data in order to train the thresholds.

The current readings from the MDS are not actual measurements, but are instead
estimations from the AC measurements at the MDS. Hence the accuracy estimated
will most likely be higher in reality. The same applies to the auxiliaries where the
power consumption is estimated and sent on the CAN-bus. To find the approximate
current consumption it is calculated using the TVS voltage at each specific time
unit. Since no investigation in the actual estimation of the power consumption is
done, the accuracy of the estimations cannot be properly estimated.

3.3.2 Simulated data for testing
The data used for both the AEKF and the PSA consists of both simulated and real
logged data. The input to the system, the battery current, is logged from battery
pack 1 during the FEV bus route 55 in normal operation during the 8th of January
2018. The output of the system, the battery cell voltage, is on the other hand sim-
ulated using Volvo’s Global Simulation Program (GSP). The GSP is developed to
accurately simulate the characteristics of a battery cell. The battery specifications
are for City bus gen 2 and the details and parameters can be found at the Volvo
GSP team.

For both the input and the output data noise is added to emulate measurement noise.
The noise added for the input data is Gaussian zero mean with variance ‡2 = 0.44
A. This is derived by reviewing the market for current sensors in the automotive
industry [13]. The noise added to the simulated cell output data is Gaussian, zero
mean with a variance of ‡2 = 1 · 10≠6 V. This is chosen by reviewing the market for
Lithium Ion Battery Monitoring Systems, where three relevant variants where found.
These three systems, two from Analog Devices and one from Texas Instruments, are
ranging from ±1.6 mV to ±3 mV of accuracy [14][15][16]. The highest value of 3 mV
is chosen with the assumption that the accuracy is for 3‡, i.e. 99.7 % probability
that the measurement is within 3 mV from the true value. This gives a variance of
‡2 = 1 · 10≠6 V.
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Results

In this chapter the results of the implemented Circuit Faults Detector and Battery
Cell Fault Detector are presented.

4.1 Circuit Fault Detector

During the testing of the Circuit Fault Detector it became evident that the residu-
als had di�erent behaviour during driving and during stationary charging with an
external charger. In Figure 4.1 residual, r

u12, is presented from a sequence con-
taining both driving and changing cycles. In this figure it is possible to see that
during driving the residual is zero mean indicating fault free behaviour, but during
charging the residuals deviates significantly from zero surpassing the set threshold.
This behaviour can be confirmed in all data sets used in this thesis. Because of
this behaviour the driving and charging cycles will be handled separately regarding
compensation constants, thresholds and filtering in order to enhance the detecting
capabilities for each case. Charging performed by the MDS during driving is in-
cluded as normal driving, and is not showing the same behaviour as an external
charger.

Figure 4.1: Residual r
u12 from a sequence during 2018-01-08 containing both driv-

ing and charging cycles. The residual is deviating significantly during charging. The
threshold is tuned for driving case and this shows how the detection capabilities can
be enhanced if the driving and charging case are separated.
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4.1.1 Tuning of bias compensation, thresholds and low-pass
filters

As discussed earlier in the method the voltage measurements contains a bias and
in Figure 4.2 this phenomenon can be observed, where the voltage from the four
batteries are constantly biased compared to the MDS and among themselves. This
has been detected in all log data used stretching from 2018-01-08 to 2018-01-12.
By compensating for this bias the threshold is decreased and hence able to detect
smaller faults in the system. The resulting compensation constants used during
charging and driving is presented in Table 4.1.

Figure 4.2: The voltage measurements contains a bias that can be seen in the
measurements between the MDS and the the four battery packs. The batteries are
also biased from each other.

Table 4.1: Constant added to the residuals to compensate for the bias in the
measurements. They are tuned manually using the training data.

Constant Charging [V] Driving [V]
b1 -6.05 -6.20
b2 -2.90 -1.70
b3 -6.00 -6.40
b4 -2.60 -1.90
b5 -4.50 -5.70
b6 -0.75 -1.25
b7 -5.30 -6.20

Constant Charging [V] Driving [V]
b8 -1.60 -2.00
b9 -0.50 0
b10 -1.00 -0.40
b11 -0.30 0.20
b12 -0.50 -0.70
b13 -0.20 0.10
b14 0.50 0.85

The thresholds used for the detector were found by tuning using the training data
to reach a low FDR. The thresholds were tested on the validation data to ensure
that the threshold had not become overfitted to the training data. The resulting
thresholds used for each residual can be seen in Table 4.2. The table includes the
FDR for the specific threshold and the minimum fault magnitude one is able to
deterministically detect. It is evident that it is possible to detect smaller faults in
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the voltage residuals compared to the current residuals and the same holds for the
driving case compared to the charging case.

Table 4.2: The resulting thresholds for each residual after training and the corre-
sponding FDR on the validation data. The minimum magnitude of a fault required
to deterministically detect the deviation in all scenarios is also presented for the
residuals.

Voltage residuals

Charging Driving

Residual Threshold FDR Min fault [V] Threshold FDR Min fault [V]
r

U1 ±1.7 0.0029 ±3.4 ±1.70 0.0015 ±3.4
r

U2 ±1.4 0.0001 ±2.8 ±0.90 0.0018 ±1.8
r

U3 ±1.8 0.0190 ±3.6 ±1.80 0.0018 ±3.6
r

U4 ±1.0 0.0011 ±2.0 ±0.90 0.0013 ±1.8
r

U5 ±1.4 0.0069 ±2.8 ±1.60 0.0111 ±3.2
r

U6 ±1.1 0.0001 ±2.2 ±1.00 0.0050 ±2.0
r

U7 ±1.5 0.0024 ±3.0 ±1.60 0.0078 ±3.2
r

U8 ±0.9 0.0002 ±1.8 ±1.20 0.0037 ±2.4
r

U9 ±1.3 0.0002 ±2.6 ±0.55 0.0037 ±1.1
r

U10 ±1.9 0.0012 ±3.8 ±0.75 0.0165 ±1.5
r

U11 ±1.7 0.0026 ±3.4 ±0.75 0.0076 ±1.5
r

U12 ±1.8 0.0013 ±3.6 ±0.55 0.0015 ±1.1
r

U13 ±1.8 0.0004 ±3.6 ±0.75 0.0021 ±1.5
r

U14 ±0.8 0.0010 ±1.6 ±0.40 0.0007 ±0.8
Current residuals

Charging Driving

Residual Threshold FDR Min fault [A] Threshold FDR Min fault [A]
r

i1 ±7.7 0.0189 ±15.4 ±7.7 0.0068 ±15.4
r

i2 ±1.2 0.0018 ±2.4 ±1.1 0.0048 ±2.2
r

i3 ±7.5 0.0030 ±15.0 ±4.0 0.0003 ±8.0
r

i4 ±6.2 0.0015 ±12.4 ±5.5 0.0010 ±11.0
r

i5 ±8.2 0.0001 ±16.4 ±4.0 0.0004 ±8.0
r

i6 ±6.3 0.0014 ±12.6 ±5.5 0.0010 ±11.0
r

i7 ±3.7 0.0064 ±7.4 ±2.0 0.0097 ±4.0

The tuning of the low-pass filter a�ects the performance of the residuals signifi-
cantly. The low-pass filter has two tasks, to suppress measurement noise and to
suppress transients in the system. In Figure 4.3 a comparison between the filtered
and unfiltered residual r

i1 is presented where it is possible to see how the noise and
transients are suppressed by the filter. The transients are a result of an abrupt
change in the system not captured by the current estimations and measurements.
It can be because of too low sampling frequency or inaccurate estimations. The
transients arise only during driving and hence the low-pass e�ect of the filter used
under charging can be relaxed to preserve more content of the original signals.
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Figure 4.3: A comparison of the residual r
i1, filtered and unfiltered during driving.

The filter is able to suppress the large transients and hence reduce the false detection.
It can also be seen that the residual does not have zero mean, but rather -2.5 A.

Aside from the transients one can also notice that the residual has not a zero mean.
It contains a bias and also patterns similar to square waves at certain positions.
This behaviour can be explained by multiple reasons. The bias can be explained
with uncalibrated sensors, giving a constant o�set from the true value. The square
wave patterns can be explained by the estimations being additionally inaccurate
with higher current. The residual is constantly negative, meaning the batteries are
measuring more current than the loads. This could mean that there is a load not
being measured in the system.

One reason for the transients can be seen in in Figure 4.4, which is a comparison
between the current measurements for the batteries and the estimated current from
the MDS. As can be observed the signals are not synchronised in either time or
magnitude during the entire sequence, where the current estimations from the MDS
are ahead of the battery measurements. This happens when the MDS goes into a
generative state and is charging the batteries. This gives that either the estimations
or the sampling frequency of the measurements are not capturing the dynamics of
the system, unless there exist a component taking care of the current peaks of the
MDS generative state to protect the batteries.
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Figure 4.4: The current measurements of the batteries and the current estimations
of the MDS. The estimation of the MDS current is not synchronised with the mea-
surements in the batteries. This occur when the MDS goes into a fast generative
state. The top value of the MDS is -173 A while the top value of the four batteries
is 25.35 A.

4.1.2 Fault-free behaviour

First fault-free behaviour will be presented to provide the reader with understanding
of how the implemented detector works, then an example of detection of an injected
test fault will be shown.

The fault-free behaviour of the filtered current residual r
i1 can be seen in Figure

4.3. One can notice that the residual does not have a zero mean and the noise is not
the largest contribution to deviation. In Figure 4.5 residual r

i5 is displayed showing
the di�erence in the current measurements between two batteries. One can observe
that these are not equal during neither charging or driving.
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Figure 4.5: Current residual r
i5 during both charging and driving. The current that

flows in and out of the batteries diverge both during driving and during charging.

For the voltage residuals during driving the normal behaviour is zero mean with
noise as the limiting factor for the threshold. This can be seen in the previously
presented Figure 4.1. During charging the voltage residual is deviating from zero
mean forcing the thresholds to be increased.

4.1.3 Fault detection performance

This section will provide an example of the Circuit Fault Detector detecting an
injected fault during driving. The injected fault is a voltage drop at the DC/DC
sensor of -3 V, which may represent a serial resistance fault. At the same time a
current fault is injected as an increased current usage on each of the battery of 3
A with a total of 12 A, representing leakage current through a parallel resistance
fault. The fault is injected into the validation data and in Table 4.3 the resulting
MDR is presented. The voltage fault is clearly detected while the current fault has
a MDR of 17 %. In Figure 4.6 two of the a�ected residuals are displayed.

Table 4.3: Results in form of MDR from the a�ected residuals in the voltage fault,
-3 V at DC/DC, and the current fault, increased usage of +3 A at each battery
pack.

Voltage residuals

Residual MDR Total MDR
r

U2 0.007

0.006r
U4 0.005

r
U6 0.006

r
U8 0.007

Current residuals

Residual MDR Total MDR
r

i1 0.170 0.170
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(a) Voltage fault in r
U2. (b) Current fault in r

i1.

Figure 4.6: The injected voltage fault of -3 V in the DC/DC is shown in figure
(a) from the first driving cycle in the validation set. The injected current fault at
each battery pack of 3 A is shown in figure (b) from the 28th driving cycle in the
validation set. Both faults are active between t = 60 s to t = 100 s. The faults are
in these sequences clearly detected by surpassing the threshold.

4.2 Battery Cell Fault Detector

In this section the results from both approaches will be presented, starting with the
PSA and followed by the state observer approach using AEKF.

4.2.1 Parity Space Approach

In this section the results for Parity Space Approach will be presented, including
behaviour of the linearised model, behaviour of the residual with and without fault
present in the system.

4.2.1.1 Linearised model evaluation

In Figure 4.7 a comparison between the linear model and the nonlinear GSP is
displayed for an operation cycle of 2.5 hours. One can notice that the linearised
model deviates both during driving and charging. Temporarily the fast dynamics
seems to be captured by the model but not in the entire sequence. One can also
notice that there exists an error drift over time.
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Figure 4.7: A comparison between the output of the GSP (nonlinear) and the
linearised model used in the PSA. This figure does not contain measurement noise
to show the models behaviour. The linearised model output diverge during both
driving and charging. This sequence starts at a SoC of 50%.

4.2.1.2 Fault free behaviour

Before the faults are presented the fault free behaviour of the PSA is introduced in
Figure 4.8. The first thing to note is that the residual gives a high reading during the
four charging cycles. During driving the residual readings are significantly lower, but
are still giving a relatively high reading compare to intended design, which should
be close to zero.

The PSA residual turns out to not be zero mean and unit variance, meaning that it
will not follow the ‰2 distribution and hence the distribution cannot be used to set
a valid threshold. Instead of using this statistical approach of selecting a threshold,
a nominal value of 2300 is chosen to give a FDR close to zero when disregarding the
charging cycles.
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Figure 4.8: The fault free behaviour of the PSA with a nominal threshold value
of 2300. One can notice the large discrepancies in the model during both charging
and driving, since the residual should be close to zero during normal operation.

4.2.1.3 Fault detection performance

The faults discussed in Section 3.2.3 will in this section be injected to the Battery
Cell Fault Detector when using PSA. Because of the significant model mismatch
during charging the ability to detect faults when charging is not of interest, since
model improvements are needed in order to use it. All faults will hence be injected
during driving, except for the parameter fault.

In Figure 4.9, a bias fault is injected both in the voltage and current sensor. The
voltage sensor fault is 50 seconds long and is started at t = 2000 s with a magnitude
of 0.03 V. The current sensor bias fault is a 50 second fault injected at t = 2100
s with a bias of 25 A. Both the faults are clearly detected with no delay, the test
statistic returns below the threshold as soon as the fault is over. Lower bias faults
would not be fully detected.
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Figure 4.9: Resulting test statistic when injecting a 50 second 0.03 V bias fault in
the voltage sensor at t = 2000 s and a 50 second 25 A fault in the current sensor at
t = 2100 s. Both faults are exceeding the threshold and are hence detected.

In Figure 4.10 a drift fault is introduced in both sensors. For the voltage sensor a 50
seconds fault is started at t = 4000 s with a drift of 6 · 10≠4 V/s and for the current
sensor a 50 second fault is started at t = 4100 s with a drift of 0.6 A/s. Both faults
are eventually detected by the PSA, which is able to detect drift faults as long as
the faults are large enough. One can note that the total accumulated drift for both
the voltage and current sensor have almost the same value as the bias fault injected
in the previous case. This gives that a delay will occur before the accumulated drift
becomes larger than the set threshold.

Figure 4.10: Resulting test statistic when injecting a 50 second drift fault of 6·10≠4

V/s in the voltage sensor starting at t = 4000 s and a 50 second drift fault of 0.6
A/s in the current sensor starting at t = 4100 s. Both faults are eventually detected
when the fault becomes large enough.

In Figure 4.11 a 50 seconds scaling fault of 0.5% is starting at t = 6000 s for the
voltage sensor, and a 50 second scaling fault of 100% is started for the current sensor
at t = 6100 s. The scaling fault of the voltage sensor is detected without problem,
while the scaling fault of the current sensor needs to be doubled before parts of the
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fault can be detected. The di�erence between the two faults are the fluctuation
in the input current, at times the current will be close to 0 A which will not be
significantly a�ected by the scaling fault. The voltage measurements will always be
around 3-4 V and will hence give close to the same fault regardless of which SoC
state the system is in.

Figure 4.11: Resulting test statistic when injecting a 50 second 0.5% scaling fault
in the voltage sensor at t = 6000 s and a 50 second 100% scaling fault in the current
sensor at t = 6100 s. The voltage sensor fault is detected during the entire fault.
The current sensor fault is only detected at certain instances when the input current
is large enough to be a�ected by the fault scaling.

In Figure 4.12 the resulting test statistic from the PSA with a 50% increased internal
resistance, R0, is presented. The fault is injected at t = 2600 s and persists under
600 seconds, along with the test statistic for the fault free case. One can see that no
fault is detected during driving between t = 2600 s and t = 2980 s. The fault can
however clearly be seen during charging between t = 2980 s and t = 3200 s, when
higher currents are flowing in the system. This parameter fault will be impossible to
find during sequences with a low current, and easier to detect during higher currents
since the output is directly a�ected by the input and the internal resistance, R0. The
observation can be made that this parameter fault behaves similarly as increasing
the model mismatch of the system, which also is increased during higher current
sequences.
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Figure 4.12: Resulting test statistic from the PSA when injecting a 600 second
fault with an increased internal resistance of 50% at t = 2600 s. The fault is
not detected initially, but it can be observed that when the current in the system
increases the parameter fault can be detected.

4.2.2 State Observer Approach using Adaptive Extended
Kalman Filter

In this section the results for the state observer is presented, including behaviour
when no fault is present and when faults from Section 3.2.3 are injected in the
system.

4.2.2.1 Nonlinear model evaluation

In order to check the accuracy of the nonlinear battery model used in the AEKF
for prediction and measurement update, the output from GSP and the filter output
from simulation are presented in Figure 4.13. Observe that they are simulated
without noise and the initial filter parameters are set to correspond to the true
state in GSP. Initial error noise and process noise are set very low, with adaptation
turned o�, in order for the filter to exclusively use the predicted value, i.e the model,
without using measurement for estimation of posterior mean and covariance. One
can notice an overall mismatch in the voltage, especially after charging at times
t = {1500, 3300, 5600, 7400} s but also during charging at the voltage peaks. The
state estimates from the filter were also compared to the actual states from GSP.
It was observed that the magnitude of the first two transient voltage states slightly
mismatched while the SoC was found to follow GSP without errors.
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Figure 4.13: Output from GSP and AEKF simulation without added noise, when
using only the model for posterior mean and covariance estimation in the filter.

4.2.2.2 Fault free behaviour of state and output estimation

In order to allow the reader to get an apprehension of normal, fault free, behaviour
of the AEKF estimation of output and SoC, they are presented in Figures 4.14 and
4.15.

In Figure 4.14 measurements, true values from GSP and estimated output voltage
from AEKF over a duration of approximately 1.5 minutes are presented. One can
observe that the filter performs well in following the true output voltage. It is also
able to follow fast transients of the system such at t = 540 s.

Figure 4.14: Measurements, true values from GSP and AEKF estimated output
voltage corresponding to a fault free drive of approximately 1.5 minutes. One can
observe that the filter performs well in following the true output voltage.

In Figure 4.15 the true values from GSP and estimated SoC are plotted. One can
see that the maximum estimation error is about 1%. It should also be noted that
these relatively larger errors occur after charging where the measurement model
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mismatch as seen in Figure 4.14. The SoC estimation converges after just a couple
of samples.

Figure 4.15: True values from GSP and AEKF estimates of SoC corresponding
to a fault free drive of approximately 2.5 hours. One can see that the maximum
estimation error is about 1%.

4.2.2.3 Fault detection performance

In Figure 4.16 the resulting ‰2-statistic when injecting a 50 second 0.015 V bias
fault in the voltage sensor at t = 2000 s and a 50 second 5 A bias in the current
sensor at t = 2100 s is presented. One can see that the two injected faults are clearly
detected with very little delay for both sensors. One can also observe that after the
fault injection, the ‰2-statistic returns to below alarm level. It was observed that
for smaller values of the injected bias, the filter would adapt towards them, since the
bias would not introduce enough change in the voltage residual to make the filter
distrust the measurements.

Figure 4.16: Resulting ‰2-statistic from the AEKF when injecting a 50 second
0.015 V bias fault in the voltage sensor at t = 2000 s and a 50 second 5 A bias in
the current sensor at t = 2100 s.

In Figure 4.17 the resulting ‰2-statistic when injecting a 50 second 4 ·10≠4 V/s drift
fault in the voltage sensor at t = 4000 s and a 50 second 0.004 A/s drift in the
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current sensor at t = 4100 s is presented. The drift is well detected for both sensor
types, after the divergence from the nominal value has grown large enough. The
‰2-statistic returns to below alarm level when the fault duration is over. The fil-
ter was not observed to adapt towards the fault for small divergences, as seen when
injecting a small bias, as long as it experienced a fault with a non-zero rate of change.

Figure 4.17: Resulting ‰2-statistic from the AEKF when injecting a 50 second
4 · 10≠4 V/s drift fault in the voltage sensor at t = 4000 s and a 50 second 0.004 A/s
drift in the current sensor at t = 4100 s.

In Figure 4.18 the resulting ‰2-statistic when injecting a 50 second 0.25% scaling
fault in the voltage sensor at t = 6000 s and a 50 second 30% scaling fault in the
current sensor at t = 6100 s is presented. The scaling fault is detected for both
sensors. The filter was observed to be more insensitive towards scaling faults in
the current sensor, since the current, unlike the voltage, is zero frequently during
operation.

Figure 4.18: Resulting ‰2-statistic from the AEKF when injecting a 50 second
0.25% scaling fault in the voltage sensor at t = 6000 s and a 50 second 30% scaling
fault in the current sensor at t = 6100 s.

In Figure 4.19 the resulting ‰2-statistic from the AEKF when injecting a 600 second
scaling fault of 50% on the internal resistance, R0 at t = 2600 s is presented. One
can observe that some alarms arise between t = 2600 s and t = 2980 s, but the fault
is mostly undetected during this time period. When the FEV goes into charging
at t = 2980 s the fault is however clearly detected for a period of approximately
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200 s. The ‰2-statistic is steadily decreasing during these 200 second until it is no
longer detected. It should be noted that the scaling fault on R0 is constant for the
whole fault duration. When the fault is no longer injected at t = 3200 s, the ‰2-
statistic grows large again and then decreases in a similar fashion as during charging.

Figure 4.19: Resulting ‰2-statistic from the AEKF when injecting a 600 second
scaling fault of 50% on the internal resistance, R0 at t = 2600 s.

In Figure 4.20 the SoC estimation is plotted with and without adaption in the filter,
with same fault signatures injected as presented above but with a small increase in
magnitude in order highlight the performance of the adaptation. One can note that
with adaptation the AEKF rejects the faults in the SoC estimation.

Figure 4.20: SoC estimation with (AEKF) and without (EKF) adaptation when
injecting bias, drift and scaling faults in both current sensor and voltage sensor at
di�erent time instants.
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In this chapter the results from both the evaluation of the circuit detector and the
battery cell detector are discussed.

5.1 Circuit Fault Detector
The circuit detector enable us to detect abnormalities in the TVS, if they are large
enough. The thresholds are tuned with real logged data over three days of normal
driving and should provide enough data to cover normal operation of the vehicle.
The faults requested to be found are tested in the detector and shows expected re-
sults, they are found if the noise and dynamic deviations in the system are surpassed.

More research is recommended to be performed on why the current residual, r
i1,

is not zero mean with the noise variance as the largest deviation. The behaviour
of the residual points towards the dynamics in the system is not fully captured by
measurements or estimations. This could be caused by the estimation of the aux-
iliaries. As shown in Figure 4.4 the current of the MDS and the batteries are not
fully synchronised during fast transitions to generative state and since the currents
in the system are typically high in these cases, it will result in large spikes in the
residual. These large spikes severely degrade what is possible to achieve with the
detector, since the threshold needs to be increased. A few techniques to circumvent
this could be to low-pass filter the signals heavily, as is done in this implementation.
Another method is to implement an rejection of short, few sampled alarms in the
system, i.e. simply not send an alarm if the fault is shorter than a certain time
limit. This could on the other hand be dangerous and lead to missed faults that are
oscillating near the threshold. A third alternative is to disable the detector when
the MDS is entering generative states.

The voltage residuals are designed based on the idea of an ideal system, where the
source and load are having the same electrical potential. This is not applicable in
a real implementation and hence constants are added to compensate. During the
testing this approach seem to give good results, but the problem arise of how these
constants should be tuned during operation. The bias is a�ected by the calibration
of the sensors and the balance of the batteries. The bias in the signals was found to
fluctuate up to 0.3 V depending on which day the data was logged. One method of
correcting the bias could be to log the residuals over an amount of time, calculate
the mean and update the compensation constants if necessary.
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A shortcoming of the plausibility check is that it is not possible to distinguish if it is
a process or sensor fault. Deviations will be detectable if large enough, but it is not
possible to determine the nature of the fault. This is caused by process and sensor
faults having the same e�ect on the residual, and the fact that a plausibility check
have limited knowledge about the system behaviour. The designed detector is on
the other hand able to locate which sensor or process in the system that is giving
the inconsistent measurements. This is done by using the fault tree logic discussed
in Section 3.1.1.

The low-pass filtering of the system is implemented to remove the large transients,
which results in the detector responding slower to deviations. There is a trade o�
between how much the transients needs to be suppressed and how fast abnormalities
can be detected. In this case the test faults were detected without noticeable delay,
and will hence not a�ect detection of longer faults. Small oscillating faults might
on the other hand be suppressed by low-pass filtering. In this method the Kalman
Filter was used as a low-pass filter because the simplicity in the tuning. This is on
the other hand a computational heavy method, and in an vehicle implementation a
more e�cient low-pass filter will be more feasible. This should not a�ect the actual
performance as long as the filter is tuned properly in order to remove both noise
and transients.

The Circuit Fault Detector can be improved in several di�erent areas. The voltage
sensors are performing well as is today, but can always be enhanced by improving
both the frequency and the accuracy of the measurements. One can on the other
hand argue that there are other areas in need of improvements before the voltage
sensors. The current measurements should be enhanced in regard to sampling fre-
quency and estimation. During testing it became evident that the operation of the
MDS provides large transients in the current residuals during driving and that the
residual is not zero mean, this points towards the sampling frequency or estimations
is not capturing the full behaviour of the system. To conclude if it is the sampling
frequency or the estimations in the system, a field test with proper measurement
tools can be used to capture the correct behaviour of the current and compare it
to the measurements by the installed sensors. The CSU is today using a frequency
significantly lower than other measurements in the system, and since it is used to
measure the high currents from the charger it has a great impact on the residual. It
is also found to be the sensor with the worst accuracy.

In order to make sure the correct behaviour of the system is captured in the mea-
surements, a high sampling frequency is needed and it should be investigated if the
sampling frequency used today achieves this. Di�erent sampling frequencies are used
for di�erent sensors in the system today, but only the lowest common frequency can
be used in the detector and hence sensors with low frequency should be upgraded
to increase the overall frequency in the fault detection. An increased sampling fre-
quency may give rise to problems in the CAN-bus communication, which needs to
be taken into account before an upgrade is carried out. Data communicated over
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the CAN-bus can also give rise to synchronisation issues, hence the time stamp
information in the communication packages should be used in order to avoid this
problem. In a vehicle implementation the synchronisation should be evaluated in
order to properly use the measured data.

Today certain areas of the TVS does not have measurements and hence these ar-
eas are not monitored by the detector. Examples are the three auxiliaries (heater,
HVAC and air compressor) which today have no available voltage or current mea-
surements at the used CAN-bus. The current can be calculated from the estimated
power consumption, but provides no exact measurement. Increasing the measure-
ment points in the system will provide the possibility for a more comprehensive fault
localisation in the TVS.

Another approach to improve the fault detection capabilities is to use a more com-
plex thresholding method, for example Adaptive thresholding. This could be used
instead for the compensation constants added. It can also be used to increase the
threshold when high currents are flowing, since the accuracy of the sensors usually
are degraded.

It can be discussed if the threshold tuned for the six current residuals, r
i2 - r

i7
are relevant. Initially the residuals where designed to detect faults if the currents
measured at the batteries deviated, but during testing it became evident that the
batteries are in fact deviating in normal operation both during driving and charging.
The currently tuned thresholds are set from the training data of 3 days of normal
operation, but one can then ask the question how much the batteries should be al-
lowed to deviate before it can be considered a fault, and instead tune the threshold
according to this decided limit. These residuals are then monitoring how balanced
the batteries are in the system and gives a warning if the batteries are too unbal-
anced.

A more comprehensive study of faults that can occur in the TVS and how they e�ect
the system is recommended. This is important to do before a vehicle implementation
since it then is possible to know if the faults could be detected with the designed
detector or if improvements needs to be made. More importantly the study should
conclude if the proposed improvements are cost e�ective in terms of the benefits these
improvements would make, for example towards run time or preventive maintenance.
It is hence important to know if the faults able to detect are necessary to find or if
it is of no harm to the vehicle and would be repaired during the next service.
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5.2 Battery Cell Fault Detector

From the results in Chapter 4.2 it became apparent that both methods of perform-
ing fault detection on a battery cell were able to detect di�erent faults with some
strengths and weaknesses. The AEKF did outperform the PSA in terms of magni-
tude of faults able to reliable detect with low FDR. A number of reasons have been
considered for this such that the initial state is projected to null space in the PSA,
which could potentially contain a lot of information of the fault signature. It was
however observed that the PSA performed worse due to the model mismatch with
the nonlinear battery cell model, where the threshold needed to be set higher to
avoid false alarms.

The model of a battery cell presented in Section 2.2.2, was evaluated for both meth-
ods and it was found that there existed some model inconsistency between GSP
and both the linearised model used for PSA and the nonlinear used for the AEKF.
A first improvement that could be made is to remove the limitation mentioned in
Section 3.2.2, that parameter values are used at a temperature of 23°C. A more
accurate model would include a temperature dependency and one could also model
the ambient temperature in the cell as a dynamic state. Another improvement that
could be done is to include ageing e�ects on the battery cell and track it using the
so called state of health [17]. Over time the equivalent parameters in the battery
cell will change through natural wear and tear. As the mismatch between the un-
changed parameters in the model and the parameters in the cell increase over time,
so does the test statistic and the amount of fault alarms, if not accounted for. Even
though excluding ageing e�ects would not a�ect detectability or state estimation on
the short time period used in this thesis, it would a�ect performance in a vehicle
implementation where one expects the performance of the fault detection to stay
within acceptable levels over periods of years. A sensible approach is to update
model parameters as part of service of the vehicle or performing online parameter
estimation from the measurements with some time interval, decreasing the need for
an accurate ageing model. As one improves the model by including more dependen-
cies and dynamics, one also increases the complexity. This could lead to problems
with computations in a vehicle implementation. There is then a trade o� between
accuracy and complexity of the model. To be noted is that if the currently used
model without improvement is found to be too complex, there exist potential solu-
tions such as using a simpler first order battery cell ECM.

A natural future investigation would be how one could use methods as PSA and
AEKF, which only performs fault detection in their current format, to perform fault
isolation. Knowledge about where faults have occurred in the system is of great
value as it allows the engineer to develop algorithms and functions to correctly react
and adapt towards these faults. An approach is presented in [2], where one can
isolate current and voltage sensor faults, assuming fault detection was performed
on several battery cells. The fault signature for a current sensor would appear in
the residual for every cell monitored, while a voltage sensor fault signature would
only be seen in one of the residuals corresponding to the cell where the sensor
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fault occurred. During the simulations it became apparent that the voltage sensor
faults and parameter fault had similar behaviour, when looking at only one time
instant. This could mean that one is not able to isolate voltage sensor faults from
parametric faults, which impact is of di�erent severity for the system and vehicle. It
was observed however that the scaling error of R0 had a certain fault signature, that
would grow significantly during periods where the load current was high, and hence
this behaviour showed especially during charging. According to [5] it is necessary
to have multiple process outputs in order to perform fault isolation within only one
process model. This is a drawback with the current model used for a lithium-ion
battery cell, which only has one output.

5.2.1 Parity Space Approach
For the model now used in the PSA, the results show that the linear process model
is lacking the capabilities of capturing the dynamics of the system over the entire
range. It is important that the model used gives a good representation and the
linear model is accomplishing that for a certain operating point, but are clearly
not able to do it for the entire operation cycle. If one instead would disregard the
model mismatch seen over the entire sequence in Figure 4.8 and only focuses on the
sequences in Figure 4.9. Then one can observe that the threshold would be able to
be lowered from 2300 to approximately 500 without any false detections and this
would allow detection of lower faults. A way of improving the method could be to
use a Linear Parameter Varying system model. This means the PSA would change
the model parameters it uses during certain conditions, for example charging, and
then better model performances could potentially be achieved. This does on the
other hand result in a more complex method where multiple tuning of method pa-
rameters, such as W , needs to be performed. Improving the model as a solution
to the entire range of the system does not seem as a feasible approach, since the
battery cell has too nonlinear characteristics to be captured well enough by only one
linear model. To further improve the system would be to implement an adaptive
threshold method to follow the residual. This could for example be an increased
threshold when higher currents are running through the system. More advanced
adaptive threshold methods exists and are discussed in [6], this could be a solution
instead of only improving the linear model.

The tuning of W in the PSA is not intuitive when using a single input single output
system. When a multiple output system is at hand more freedom and more possibil-
ities in the tuning to enhance certain faults can be performed. For an single output
system the tuning possibilities is limited as well as the isolation of faults, since not
enough information is delivered by the residuals. When tuning for the time horizon
parameter q, no improvements could be found when it was increased. This might be
because of the usage of a single input and single output system and the calculations
of the test statistic, where the norm is taken of the residuals.

Since the PSA is using a linear model this method is not recommended for imple-
mentation as a fault detector in a lithium-ion battery cell. Improvements can be
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made on several areas as discussed above, but approach methods that can handle
non-linear models in a better fashion is instead recommended.

5.2.2 State Observer Approach using Adaptive Extended
Kalman Filter

From the results in Section 4.2.2 it could be seen that the adaptation of process and
measurement noise covariance both enable fault detection and makes the filter able
to reject faults to retain normal state estimation even during the presence of faults.
It was observed however that when faults where too small for detection or present for
a longer time, as with the scaling fault on R0, the filter started to converge towards
the fault. This is an inevitable feature of the filter, since the filter is using measure-
ments to a certain, although small extent even when errors are present. The increase
of the test statistic after the parameter fault was no longer injected as can be seen in
Figure 4.19, is a result of the fact that the filter has completely converged towards
the fault and comprehend this as normal behaviour. When the fault duration is
over, the filter register the change in measurements to actual normal behaviour as
an abrupt fault signature. A way of mitigating completely converging towards a
detected fault would be to turn of the adaptation when a fault has been present
for a longer time, and only use the fault free current or voltage measurements, as-
suming one uses the approach for isolation suggested earlier. In this way one could
potentially retain SoC-estimation capabilities with decreased accuracy for a while,
but without fault detection capabilities. If an isolation of current sensor fault was
made, the system could start using only the voltage measurements and the U

oc

as
a look up table for approximation of SoC. If a fault was isolated as voltage sensor
or parameter fault, one could just use the current measurements and the model for
SoC estimation by current integration but being susceptible towards drift of the
estimation over time.

From the results in Section 4.2.2 it became apparent that even though a nonlinear
model was used, there where model deficiencies of the second order ECM compared
to GSP. Even though the prediction model of the SoC was very accurate, the in-
accuracies in the model of the other two states as well as the measurement model
ultimately led to some errors in the posterior mean of the SoC. The model inaccu-
racies could especially be seen after charging, and this combined with the adaptive
part of the filter, would lead to a high residual and false alarms. After charging the
value of measured voltage dropped fast, making the adaptive part of the filter react
and increase the noise covariance for the measurement. The filter would then no
longer follow the measurement as closely as before charging. Since the filter starts
to distrust the measurements, it will trust the model to increased extent in a region
where it is inaccurate. The mismatch between the measurements and estimated out-
put i.e. the residual would grow, even though no fault was present. This behaviour
is inherent to the Adaptive Kalman Filter, where large abrupt changes in the nomi-
nal system which is not captured by the prediction model, would cause an increased
measurement covariance since the covariance of the residual would grow.This be-
haviour could be mitigated in several potential ways. Firstly the approach that was
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used in this project, that one could tune the window size of the adaptation to be
less sensitive to the fast natural change in the nominal system. The benefit of this
approach are ideal since the filter retain its fault detection capabilities while not giv-
ing false alarms. This approach might however not always work since correct tuning
depends on in what system the battery cell is used and the nominal behaviour of
that system, and there is no clear rule in how to perform the tuning of the window
size.

A second approach is to improve the actual model so that a mismatch between mea-
surements and estimated output will not occur. False alarms would then no longer
occur when the filter mostly trust the model in these critical regions. There are
two potential limitations with this approach however, firstly reality versus model
and secondly complexity, as discussed earlier. While one can improve the model a
fair bit, to achieve a perfect description of reality is not reasonable. It should be
noted that GSP used in the simulations in this thesis is just a more advanced model
and that reality di�er, so while a perfect model knowledge might be achieved in
simulations, the model would still mismatch to reality. There is also the limitation
of complexity, that as one extend the model to account for more physical laws, one
increases the processing capabilities needed in order to calculate state transitions.
According to [1], the recursive Kalman filter algorithm in itself is highly compu-
tation consuming, especially the calculation of the posterior error covariance. One
should note that this detector is performing fault detection on a single cell, and when
implemented in reality, one battery pack could contain hundreds of cells, making
real time monitoring of them all unreasonable, especially if the model for each cell
is very complex. A way of mitigating the problem of complexity when performing
cell monitoring in a battery pack, is proposed in [3] where real time monitoring is
performed on the two cells with highest and lowest output voltage since they are
deemed to have the highest probability to be subjects to faults. Monitoring on the
other cells is then performed in an o�ine fashion.

5.3 Limitation of theoretical faults
As mentioned previous, the faults injected during simulation of both the Circuit
Fault Detector and the Battery Cell Fault Detector, where based on theoretical rea-
soning and claims from other sources such as [4]. A obvious drawback with this is
that while the results are hinting towards a good performance of detecting faults,
the faults in reality might behave di�erently than the ones simulated in this the-
sis. Without or limited knowledge of actual fault behaviour in the real system, the
methods can only be evaluated to certain extent. Further on could more in depth
knowledge of real fault behaviour and magnitude be used to tune each method to
increase performance and also allow for isolation and identification of faults. The
information of interest is the one that answers the following questions; what kind of
faults can occur? Which are the most probable faults to occur? How do they a�ect
the system? Which faults are relevant to detect and isolate?
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Conclusion

In this chapter the specific questions under investigation are answered.

6.1 Circuit Fault Detector
In this thesis a plausibility method has been designed in order to detect abnormalities
in the Traction Voltage System and one of the strengths is the easy implementation
of the method. The method is proven to be suitable for detection but are on the
other hand not as suitable to robustly isolate the faults. This is both due to the
limitations in a plausibility test and that proper knowledge of the faults are missing.
The resulting thresholds, presented in Table 4.2, gives the appropriate means of dis-
tinguish between normal and abnormal behaviour in the system as of today. The
thresholds for the voltage residuals are limited by the covariance of the measurement
noise while the thresholds for the current residuals are limited by ability to capture
the dynamics in the current by the measurements and estimations performed today.

The key factors to improve for abnormality detection are estimations and measure-
ments in the current residuals. The estimations and measurements are not capturing
the dynamics well enough to provide a stable zero mean residual. By investigating
if it is the measurements or the estimations that are degrading the performance of
the current residuals, correct improvements can be made. To be able to monitor the
entire system, addition of sensors to the auxiliaries is a necessity for full coverage of
both voltage and current. In order to improve isolation, both the knowledge of faults
and the addition of more residuals with the new measuring points at the auxiliaries
are needed contributions.

Future work should contain a study of faults that can occur in the TVS and that
are of interest to find, this would give insight if the proposed improvements are
necessary and cost e�ective.

6.2 Battery Cell Fault Detector
Even if fault detection was achieved with the Parity Space Approach the results
achieved are not good enough for proper implementation. The Parity Space Ap-
proach with a linear model does not have the capabilities to overall capture the
dynamics of the nonlinear lithium-ion battery well enough, this weakness makes
the method in its current form unsuitable to be used to monitor this system. The
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strength lies in an easy implementation, but another weakness is how the tuning
should be performed to enhance fault detection in a single input single output sys-
tem.

The state observer approach using a AEKF performed well for the battery cell sys-
tem, both at detecting faults and estimating SoC. The posterior SoC estimation is
able to reject faulty sensor measurements by adaptation for a more accurate state
estimation even during faults. A weakness of the method is, if faults are present
for a longer time span, the filter converge towards the fault and it can no longer be
detected. Potential problems could also arise with complexity of computation, due
to extensive model and the algorithm computations if implemented in a FEV, when
hundreds of cells need to be monitored simultaneously.

Future work should be done into actual fault signature of a battery cell and how to
extend the fault detection algorithm to allow for fault isolation. An implementation
in a FEV for further evaluation and development is also recommended for the AEKF.
In a real implementation some re-tuning of filter parameters might be needed since
the parameter set presented in this thesis is optimised towards GSP.
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