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1 Introduction 

This report describes the design and development of a database cluster in 

MongoDB and a method of tuning the cluster for maximum performance to a 

particular use case. Database clusters can have a lot of different setups or 

designs which all have a different impact on how well the cluster is able to 

handle certain data and queries. Designing the best database cluster is an 

intractable problem as the optimal design, to a large extent, depends on the 

particular use case. Furthermore, given the size and complexity of a DBMS, it 

is virtually impossible to prove the design of a cluster as optimal. These two 

facts explain why there are no formal methods of how to design the best 

possible database cluster. Chodorow (2011) in her book Scaling MongoDB 

tries to give general advice on how to work with clusters in MongoDB but it 

typically comes down to the fact that it’s very application specific. For example 

when asked what sharding key should be used, she states “Not knowing your 

application, I can’t really tell you.” (Chodorow, 2011, p. 24). 

 

The main problem tackled in this report will be to provide a way of 

systematically achieving a design as close as possible to the optimal design of 

a database cluster. Once this has been established, a variety of sub problems 

emerge related as to how this can be done in practice and in a general case 

through the use of virtualization technologies and cluster benchmarking. 

 

As storage is a crucial component in many computer systems, this research is 

highly necessary as it could aide both research institutions and businesses in 

designing database clusters that performs better for their particular use cases. 

There is research that has gone into establishing general guidelines of how 

databases such as MongoDB should be used (Stonebraker and Cattell, 2010), 

but no technique has been established as how to design the best possible 

database cluster. 

 

Hevner et al. (2004) states that design is both a process and a product. This 

research will describe the process to achieve a design that best tackles a 

certain use case. The use case used in this report is tied to that of a particular 

social networking app, but this report will provide the tools and methods 

necessary for the reader to optimize and compare cluster designs in any 

arbitrary setting. 

 

In order to compare designs of database clusters, it is imperative to have 

something quantifiable that defines the cluster’s performance. The term 

performance is subjective, but in this report it will refer to the number of 

simple queries that can be handled by a particular cluster within some time 

interval. This number will vary a lot for different use cases even if the same 
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cluster setup is used, so comparing setups across different use cases will not 

be considered in this report.  

 

Hevner et al. (2004) states that design is inherently an iterative and 

incremental activity. Because of this, I have in my approach taken inspiration 

from the design-science paradigm which aims to solve problems of an 

intractable and wicked nature (Hevner et al. 2004). Throughout this report I 

will be using an approach based on benchmarking the performance of 

different cluster setups. By simulating a workload of my particular use case or 

production environment, I will be able to measure how well the cluster is able 

to perform during these circumstances. Then through using the search process 

method from the design-science paradigm, I can use heuristics to change the 

cluster setup systematically in order to find as good a setup as possible. 
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2 Background 

Trying to optimize databases and making them better at utilizing their 
hardware resources has been going on ever since the introduction of 
databases. There are best practices one can follow when designing datastores 
in the SQL world (Harrington, 2002). However little to no research exists 
around how to design databases and database clusters for document stores 
like MongoDB. 
 
Within the scientific community there is however a clearly defined way of how 
measuring the performance of a document store can be done (Cooper et al. 
2010) and with that, also comes the possibility to compare document stores to 
each other (Cooper et al. 2010). This has been going on for some time, both 
with document stores and those from the SQL world, to compare the 
performance of different DBMSs towards each other (Cooper et al. 2010).  
 
This technique of comparing benchmarks to each other is what I plan to utilize 
in my research. There are however a few distinct differences - I shall only be 
using one DBMS, a document store called MongoDB, and focus primarily on a 
clustered environment rather than a single database instance. The 
comparisons should then be made between different types of cluster designs 
in order to find out how they affect the performance. Upon seeing this, it 
should be possible to deduce different hypotheses regarding the design that 
may improve the performance of the cluster even further. 
 
This leads to a variety of scientific challenges as the different hypotheses needs 
to be tested, analyzed and verified. I have chosen to do this through adapting 
some of the strategies used in quantitative trading and build my own 
framework around the testing and verification. The idea behind quantitative 
trading is to prove or disprove optimizations to your trading strategy through 
simulation or algebra. This can be done continuously in order to achieve as 
good a strategy as possible. A similar pattern or workflow can also be seen in 
the design-science paradigm. In its simplest form it can be described as an 
iterative process with two steps, the developing phase and the evaluating 
phase (Hevner et al. 2004). You build an artifact or a system as part of the 
investigation and refine it, for instance, through heuristics found in the 
evaluating phase. This is known as a search process (Hevner et al. 2004). 
 
Implementing this brings with it a large set of engineering challenges such as 
adapting existing benchmarking frameworks to work on clusters, 
automatically being able to generate clusters of different setups, computing on 
large and changing data together with accounting for the complex 
environment around the DBMSs. 
 
The goal upon solving these challenges is that this research will provide the 
reader with an alternative way of designing a high performing database 
cluster in MongoDB. The reader shall also have seen how this works in practice 
and understand why it works. Furthermore, the reader should also have the 
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knowledge and tools to apply this alternative method of designing a database 
cluster to his or her own use case. 
 
In order to fully appreciate and understand this method, some key aspects, 
elements and terms must be clearly defined as explained below. 
 
2.1 Radish 

Radish is a tech-startup based in Gothenburg, Sweden. Their main product is 

a photo collecting iPhone app called MeBox.  

 

MeBox makes pictures of yourself, taken by other people using MeBox, 

available to you even though they are taken by a device other than your own. 

Today it works by a face recognition algorithm that upon inspecting a photo, 

firstly determines if there are individuals in the photo. If there are individuals 

in the photo, the algorithm provides you with suggestions of who the 

person(s) might be. The user is then free to select from these suggestions and 

any other people stored in some way on the phone and tag them in the photo. 

If that person is a user of the app, this would make the photo accessible to 

them. It accesses your personal information such as Facebook contacts, 

address book and other photos in your phone to provide these suggestions of 

individuals. It is intended for the face recognition algorithm to eventually take 

peoples geographical location into account when matching faces. There is also 

a plan to eventually allow automatic tagging where the face recognition 

algorithm fully determines who is in a photo.  

 

This is the production use case which will be used as an example when 

illustrating the optimization method later on. 
 

2.2 NoSQL and MongoDB 

There are many different kinds of NoSQL databases but they have in common 

that they typically process data quicker than relational databases and also 

scale better (Cattell, 2010).  Some of the NoSQL databases are also able to scale 

horizontally, or in other words run distributed over several machines. This 

comes at a cost in the atomicity domain but as long as your application can 

endure an “eventually consistent” level of atomicity – there is potential for a 

great performance increase in using this horizontal scaling (Cattell, 2010). The 

“eventually consistent” level of atomicity means that changes to data on one 

machine will sooner or later propagate to other machines in the cluster. 

However it leaves room for the data to not be consistent for a short period of 

time after changes to it has been made.  

 

MongoDB is what is referred to as a document store (The MongoDB 2.4 

Manual, 2014). The term document store may be confusing and it also goes 
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under the name document oriented database. The documents here do not 

refer to documents in the traditional sense but to any kind of “pointerless 

object” (Cattell, 2010). They store unstructured data which can be nested and 

provide a simple querying interface (Cattell, 2010).    

 

There is a generic term for dividing data in a database called partitioning. This 

can be done in several ways and one of them is referred to as horizontal 

partitioning or sharding. This is the technique used by MongoDB to achieve 

horizontal scalability and in this report I will use the term sharding as it is the 

term used in MongoDB’s documentation. 
 

Sharding is a technique where you take large datasets and divide them into 

smaller pieces, referred to as shards, by some field of the data referred to as 

the sharding key (Chodorow, 2011). An example could be that we have a 

collection of users and choose their last names as a sharding key. We will now 

divide the user collection into smaller pieces (shards) by using the last names 

of the elements. This can be done in several ways, for instance by using a 

range-based approach where we arrange the elements in a lexicographical 

order on their last names and divide the collection into however many shards 

we want. Another way is to apply a hashing function on the chosen field and 

then use the modulo operator to decide in which shard an element belongs.  
 

2.3 Virtual Machines 

Today’s machines are sufficiently powerful to use virtualization in order to 

present the illusion of a smaller, virtual machine, running its own operating 

system (Barham et al. 2003). The concept of virtualization was first coined in 

the 1960’s by IBM. But it wasn’t until more recently when machines got 

powerful enough and the technology was improved upon that it gained more 

traction (Younge et al. 2011). 

 

Younge et al. states that virtualization in its simplest form is a mechanism to 

abstract the hardware and the system resources from the operating system. 

Many tools and frameworks for virtualization have been developed and they 

typically work through the use of a hypervisor or VMM (Virtual Machine 

Monitor) (Younge et al. 2011) (Groesbrink et al. 2014). The hypervisor works 

by taking the instructions from the VMs and their simulated hardware and has 

them execute on the host’s hardware instead (Younge et al. 2011) (Groesbrink 

et al. 2014).  

 

Younge et al. states that the use of virtualization technologies has increased 

dramatically in the past few years and that it’s also one of the most important 

underlying technologies of cloud computing. This is due to the fact that the 

hypervisors enable computing resources to be spread out as seen fit between 
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the different VMs and also allows them to be modified with great ease. A lot of 

research is still going into virtualization and particularly the hypervisors. 

There’s an ongoing race between the different large vendors such as Xen, 

VMware and VirtualBox to support more and more computing resources and 

allow for more virtual CPUs (Younge et al. 2011). There is also state of the art 

research going into supporting dynamic resource management (Groesbrink et 

al. 2014). VMware alone has seen a continuous increase in the number of 

approved patents ever since 2011 (Freshpatents.com, 2014) and there’s also 

research going into making the best usage of virtualized environments (Liu, 

2014) (Hsieh, 2008). The concept of virtualization has even spread from just 

virtualizing hardware to virtualizing data (Delphix Corp. 2009). 

 

My choice of virtualization environment fell on VMware ESXi which is an 

operating system for hosting virtual machines. It is very lightweight and 

consumes only minimal resources in order to be able to distribute its 

hardware resources to its hosted machines. Unlike most other virtualization 

environments, the hypervisor in ESXi also provides its users with the 

possibility of allocating CPU computing time. This is done through a CPU 

scheduler that runs in the host machine. After a virtual machine has been 

created, you specify how many of the host’s CPU cores the VM should have 

access to. The computation power of these cores in terms of MHz are then 

viewed as a resource pool, and during runtime, the scheduler partitions the 

use of the physical CPU to ensure that it spends the right amount of time on 

each virtual machine. Tests have been carried out to ensure that this feature 

achieved fair distributions of CPU resources and that machines with reserved 

CPU resources are not compromised by heavy loads on other VMs or the host 

machine (VMware Inc, 2013). 
 

2.4 Benchmarking 

2.4.1 Hardware Aspects 

One of the most crucial things when it comes to benchmarking is to choose an 

appropriate measurement. Rubenstein et al. (1987) defined the appropriate 

measurement to their benchmarking experiment as the response time in 

milliseconds. They chose this because of the fact that it is the measurement 

that is most critical to the actual applications using the database. They go on 

to explain that this measurement makes the results very dependent on the 

hardware specifications on the system running the benchmarking as opposed 

to if they would use the CPU time. However, it is debatable whether this would 

eliminate that problem either as different CPUs are optimized for different 

CPU instructions.  
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I choose to define an operation as an interaction with the database from some 

application in the shape of either an insert, update, read or a scan following 

the research of Cooper et al. (2010). Based on this I have chosen to focus on 

the number of operations per second that can be handled by the database. 

Essentially this is quite similar to measuring the response times from the client 

side. The more operations per second that can be handled by the database, the 

shorter the response times as seen from the application. However measuring 

the response times also takes into account the potential overheads associated 

with the client such as network latencies, process scheduling and disk 

latencies to name a few. These factors will naturally play a part for me too, 

however only on the database side where the MongoDB instances are running, 

and not for the machines initiating the database operations.  

 

This approach leads to the same dilemma as for Rubenstein et al., that the 

results produced become highly dependent on the hardware of the system. 

However it will still be possible to compare results on different cluster setups 

towards each other if they are run on identical hardware.  

2.4.2 Workload Considerations 

Rubenstein et al. (1987) benchmarks the use of simple database operations. 

They define these simple database operations as lookups, range lookups, 

group lookups, reference lookups, sequential scans and opening of databases. 

This research uses a schema associated with relational databases but 

following the use of denormalization which is a common technique in NoSQL, 

this approach of using simple operations becomes even more suitable. 

Because of the denormalization, the processes of getting the data is generally 

a bit easier than if you would have to, for instance, make joins and reference 

lookups. The operations can now generally be divided into one of four possible 

categories - inserts, updates, reads and scans (Cooper et al. 2010).  

 

These operations can all be found in the work by Rubenstein et al. but renders 

a few of the original operations obsolete, reference lookups being one of these. 

It is important for the ratio between these four operations to be close to those 

of the production environment for the results to be of any use. Previous 

research has used separate workloads to test the systems for different types 

of load distribution, in my case it is however possible to inspect the live 

production machine. This gives me very good values on the distribution 

between operations to use for my benchmarking. I will conduct my 

benchmarking based on the distributions of the production environment in 

conjunction with another slightly different distribution, in order to see how 

this affects the properties of the database cluster.  
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3 Method 

As previously mentioned, the method will follow a search-process from the 

design-science paradigm (Hevner et al. 2004). An artifact will thus be acquired 

as a part of the investigation and in my case be the final cluster design. My 

adaptation of this method consists of three steps that are repeated, following 

agile practices, to increase the level of quality of the resulting database cluster 

through each iteration. The first step is to initialize a database cluster. This is 

followed by applying a workload to this cluster and benchmarking the results. 

After this there is an evaluation phase where the results of the benchmarking 

are analyzed. Based on the results, there will lastly be a section describing 

what to change in the cluster setup for the next iteration that may increase the 

performance of the cluster even further. 

 

In the end, this should give a cluster that is able to handle the simulated 

workload very efficiently and as this workload represents the production 

workload - it should also perform really well out in production.  

 

 

3.1 Virtual Machine Environment 

Database clusters can take many different shapes and there are many 

important factors to consider. Attributes that define clusters include the 

number of nodes in the cluster, the choice of sharding key, how many and 

where to place replicated sets and many more. In order to quickly be able to 

change these attributes it is not feasible to use physical machines. This would 

require a lot of identical machines which would all have to be configured 

individually. Instead, a design choice was taken to use Virtual Machines. The 

machines to host the MongoDB clients are generated from a template to 

ensure that they all have the same computing capabilities. They also all appear 

in the same network and on the same host machine in order to as much as 

possible avoid unevenly spread latencies.  

 

As previously mentioned, the choice of virtualization technology fell on 

VMware and their ESXi host. ESXi, given its lightweight nature, is merely a 

system for hosting VMs and not to manage them. In order to be able to do 

meaningful things with the VMs that are running on ESXi, a separate service 

called vCenter is needed. This service allows you to connect to the host 

operating system, open up terminals to the existing virtual machines, create 

templates, clone machines and much more.  

 

VCenter is also interfaced towards a lot of popular programming languages, 

for example Java and this connection is used to allow my altered version of 
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YCSB to create its own database clusters.  YCSB is an open source 

benchmarking tool that will be explained further in the next section.  

 

 
Figure 3.1: Machine hierarchy on main virtual machine host 

 

 
Figure 3.2: Machine hierarchy on secondary virtual machine host 

 
Two physical machines are used in this report. One machine referred to as the 

main virtual machine host (Machine 1) and also a secondary one (Machine 2). 

The main virtual machine host, as illustrated in Figure 3.1, is the one that hosts 

the database cluster. The secondary machine is there mainly for convenience 

reasons. The two VMs in the secondary machine could just as well have resided 

in the main host as long as its total computational resources are not exceeded.  

 

The VM denoted as vCenter in Figure 3.1 is the machine that runs the vCenter 

service, and the VM denoted as Mongo Primary is used as a template. When a 

new cluster is generated, N new machines are cloned from this template and 

can be seen in the same figure, denoted as Mongo1 through MongoN.  

 

The MMS Agent VM, residing in Machine 2 of Figure 3.2 hosts a third party 

monitoring system that provides additional information on what is going on 

in a specified cluster. The Dev Machine is the machine that runs YCSB and will 

issue the queries to the cluster in the benchmarking phase later on.  
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3.2 Benchmarking Tool 

The benchmarking of a database is done in two steps. The first constitutes 

filling a collection up with some initial data. After this is done, a workload is 

applied. This workload will be explained more thoroughly in the next section 

but simply put, it is a set of queries to the database which are executed in the 

same fashion as a stress test. The queries are fed to the database as quickly as 

possible and the number of queries that the database is able to handle is then 

measured.  

 

Yahoo! Cloud Serving Benchmark (YCSB) is an open source tool, developed by 

Yahoo! to do exactly this. It is written in Java and contains libraries, both for 

generating your own generic workloads and applying these workloads to a 

database (Kashyap et al. 2013). The workloads are generic in the sense that 

they are not database specific, you do not need to take the choice of DBMS into 

consideration at all when defining the workload. It is built upon the fact that 

all interaction with the DBMS by the workload will be through simple queries. 

These simple queries are inserts, updates, deletes and scans. Each operation 

against the DBMS is randomly chosen between these four operations, however 

the distribution between them is set by the user (Cooper et al. 2010).  

 

An abstract class of these basic queries is given for the user to interface the 

tool towards whatever DBMS is being used, in my case MongoDB. Now it is 

possible for YCSB to apply my workload to my database. While doing this, 

YCSB collects valuable statistics of how well the database is performing to the 

workload. The metrics are for instance the number of operations per second, 

average overall latency and average latency for different types of queries.  

 

In addition to writing my own workload and database interface I have made 

some additions to this tool. As I am working with ESXi and vCenter, I have 

made my own solution for automatically generating database clusters. 

VCenter is interfaced towards Java. I use this in order to let my YCSB instance 

automatically create the set of virtual machines needed to check the 

performance of some cluster design. The characteristics of the cluster is 

defined in an XML configuration file that the altered YCSB parses and then uses 

to create a new database cluster using only new virtual machines. The virtual 

machines are all created from the same template to ensure identical hardware 

capabilities. SSH connections are then set up to these VMs to make them into 

a working MongoDB cluster with properties also defined in the configuration 

file.  
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All in all, these additions make YCSB not only able to benchmark existing 

databases, but also to be able to easily experiment with new and different 

cluster setups and compare the results between them. 

 

Furthermore - Cooper et al. (2010) writes about measuring elasticity, the 

ability to adapt to new nodes in the cluster, and how this can be measured by 

YCSB. I have added functionality for YCSB itself to be able to modify the 

number of nodes in a cluster and therefore not have the measurements being 

reliant on external interactions. Elasticity is however not something that plays 

a big part in this report.  

 

3.3 Workload 

YCSB contains libraries for generating your own workload. The workload is 

built to replicate the Radish collection of storing users. A method for 

generating random users that follow the same schemas with the same fields 

as the production environment was developed. In the first phase of the 

workload where the collection is filled up with entries, 50 000 of these random 

users are generated and entered.  As we will see shortly, most of the operations 

in the benchmarking phase are reads, therefore it is necessary that the 

collection is not empty when the benchmarking starts and it can also be good 

to warm up the CPU cache and pipelines (Lungu et al. 2013). The number 50 

000 was chosen as it is a sufficiently large dataset for MongoDB to divide the 

collection into several chunks and therefore initiate the MongoDB load 

balancing algorithm. A chunk is defined as the smallest amount of data that 

can be moved in one load to achieve balance between the shards. Another way 

of describing it is by saying that each shard consist of one or more chunks.  

 

MongoDB takes care of moving data between shards in a cluster but it does not 

trigger unless the data reaches a certain size. It is also not so large that it 

exceeds the RAM capacities of the VMs which would be a very large bottleneck 

for the performance of the cluster.  

 

The next phase consists of a series of operations to the database, executed by 

a maximum of 40 worker threads by an arbitrary amount of CPU cores. These 

operations are the previously mentioned inserts, updates, reads and scans. 

Each thread chooses one of these operations at random but with different 

distributions. The distributions are chosen as replicas of the current 

production environment and the accumulated statistics from the live machine 

was taken and normalized.  
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The live environment gave me the following distributions and they will be 

denoted as distribution (1): 

 

 inserts = 0.00053 

reads = 0.94286 

updates = 0.05593 

deletes = 0.00016 

range = 0.00052 

 

 
In order to see how different distributions affect the overall performance of 

the database clusters I will also run the tests for another set of distributions. 

 
Update Heavy Cooper et al. (2010), denoted as distribution (2): 

 

 inserts = 0.0 

reads = 0.5 

updates = 0.5 

deletes = 0.0 

range = 0.0 

 

The number of operations executed by each thread is calculated at compile 

time as the total number of operations / number of threads. This could lead to 

the threads not finishing at the same time. Upon investigating this scenario, it 

becomes apparent that this may have impact on the benchmarking results. The 

database does not care, nor know, which of the worker threads issued a query. 

It will merely do its best to handle every query in the order they arrive (with 

the exclusion of writes which have priority over reads, this will be explained 

further in the results section).  

 

The scenario where one worker thread lags behind the other worker threads 

opens the results up to a margin of error. If only one worker thread executes 

the operations there will be a slight period between the queries where the 

database is not doing anything productive. The worker thread will stall until 

the results of an operation are received, then it will decide on the next query 

and if that is an insert or modify operation it needs to generate the new data 

and then send the query back across the network. Normally the database 

would take care of another query from another worker thread while it is 

waiting for the next one, but in the event where only one worker thread is left 

- it will just have to stall until it receives the next query. 
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This will definitely compromise the results and this needs to be taken into 

consideration when evaluating the results as the ops/sec might not be correct 

near the end of executing a workload.  

 

A potential workaround of this would be to have a static, volatile counter for 

the worker threads to keep track of the total number of operations. 

Continuously flushing increments and synchronizing this counter with RAM 

for the different threads instead of the local cache might also influence the 

results though, as it could potentially stall all worker threads while an update 

to the counter variable is being flushed.  

 

A total of 250 000 operations are executed by the worker threads in this 

fashion. 

3.3.1  Social Networking Illusion 

As we can see from the previous section, a vast majority of the operations used 

in the production environment are reads. YCSB’s default behavior is to store 

the IDs of elements added to the database and uniformly choose one of them 

for each read. This would lead to the contents of the datastore being accessed 

uniformly and when considering possible usage scenarios and the resulting 

flow of data you realize that this most likely is not the case.  

 

The datastore will store data on users and users’ photos. A more likely usage 

scenario is that a person is more likely to check out information on people in 

his or her friend circuit than any arbitrary person in the system. In technical 

terms this means that the application is more likely to query the database on 

a predefined subset of its data rather than any uniformly chosen entry given a 

previous entry. I want the workload to take this into consideration as it might 

affect the result of the benchmarking.  

 

In order to accomplish this, I need to generate a social network. There are 

many factors to take into consideration when designing these social networks. 

For instance there is the phenomenon referred to as the “small-world 

problem”. Stanley Milgram (1967) describes it very elegantly by considering 

two persons X and Z that do not know each other. They might however still 

share a mutual acquaintance, e.g. a third person Y that knows both X and Z. By 

then thinking of a chain of acquaintances where X knows Y and Y knows Z. It 

has been suggested that the entire world's population can be connected in this 

way by using only six acquaintances in the chain (Newman et al. 1999). You 

also have something called hubs or clusters where within a small locale there 

are a lot of individuals who all know each other. These are brought on by the 

fact that social networks have the behavior that if person A knows person B 

and person B knows person C, it is more likely that A knows C than it would be 
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if A and C were just two random people in the universe (Newman et al. 1999). 

A networks likelihood to contain these hubs is referred to as the clustering 

coefficient (Prettejohn, 2011). If a network has a high clustering coefficient it 

is referred to as scale-free. This means that the network will grow through its 

hubs and also means that the number of connections between nodes that are 

not hubs is not likely to change even if the network rapidly increases in size. 

An example could be the World Wide Web, or international airline traffic. 

These are scale-free networks that are held together by hubs in the shape of 

very large websites and major airports. 

 

An algorithm exists for generating such a network that has the properties of 

scale-free and small-world, created by Klemm and Eguílez (Prettejohn, 2011).  

 

As previously mentioned, the benchmarking is conducted in two steps. Firstly 

the collection is filled up with content and for this example I choose the user 

collection. After the users have been entered, the algorithm by Klemm and 

Eguílez is applied to generate a social network from these users where each 

user is considered a node and some nodes are considered hubs. When the 

second phase of the benchmarking starts, each worker thread that will query 

the database chooses a starting node in the social network at random. From 

this starting node, it is easy to fetch the subset of the users which are 

considered acquaintances of the current node. The next query executed by the 

worker thread will, with high probability, be for one of the nodes in this subset 

and this pattern is repeated throughout the lifecycle of the worker thread.  
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4 Result 

In this section, the method described in the previous section will be 

demonstrated in a practical example where the collection of users in our 

predefined use case is subject for optimization. 

 

The results are primarily going to be focused on the number of operations per 

second that can be handled by the database or database cluster. The process 

of getting these numbers will be conducted in a pattern where I first explain 

the database setup that will be benchmarked, and this is followed by an 

analysis where a corrective action will be given. The corrective action will be 

focused on the results of the setup of the current iteration and how the setup 

can be changed in order to improve these results. The changes will be applied 

to the next setup and the process starts all over again. This process is tightly 

linked to a core aspect of agile methodology where the main focus is on getting 

the software up and running. Once it is running, improvements are made 

through an iterative process (Turk et al. 2002).  
 

As mentioned, the results will be focused on the number of operations per 

second handled by the database. This will however fluctuate somewhat even 

when applying the workload to two identical database setups. This is due to 

many factors, but the two major ones are the randomness of the workload and 

the unpredictability of the host operating systems. The workload decides 

which type of query to ask the database at random, however the distribution 

is not uniform. This randomness makes two runs unlikely to be identical, 

particularly as writes to the database gets priority over reads (The MongoDB 

2.4 Manual, 2014). This causes chain effects that affect all threads issuing 

queries and the results will therefore fluctuate to some extent. The host 

operating system also plays a big part as there are large uncertainties when 

operating system features are run and use up computing resources.  

 

Following this uncertainty, the tests were run multiple times and the average 

performance is the one I put main focus on. The average performance is 

calculated by using a confidence interval. This is a common tool in statistics 

and allows us to say something about the averages of large data sets using a 

limited amount of sample values. 

 

A confidence interval is defined as a number range that with some certainty 

contains the actual average given from a limited number of samples. The limits 

to the number range are calculated as: 

 𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 = 𝑀 −
𝑡∗𝜎

√𝑛
 

 𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 = 𝑀 +
𝑡∗𝜎

√𝑛
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Where M is the sample average, σ is the standard deviation which in turns is 

the square root of the sample variance, t is tied to the confidence level and n is 

the number of sample values. We see that the size of the interval decreases as 

n grows larger which is intuitive as more samples should give us a better 

reading on the actual average. 

 

For this report, the sample values used in the confidence interval is the 

average number of ops/sec for each run. The confidence level used is 95% 

(which gives us a t=1.96) and sample values are assumed to follow a normal 

distribution. Each run gives a new sample value, representing of the average 

number of operations for that run. From the definition of the confidence 

interval we can see that the interval decreases in size with larger sample sizes. 

The tests were run until the size of the confidence interval was at most 4% of 

the size of the sample average, with two exceptions.  

 

All virtual machines used in the experiment are identical and have the 

hardware capabilities of 1500 MHz worth of computing power, 1024MB of 

RAM memory and 90GB of storage. The operating system in use is Ubuntu 

12.04 LTS and the MongoDB version is v2.4.10.  
 

For almost every different database setup, two different versions of the 

workload will be applied. These two follow the same basic procedures but the 

distributions between the different types of operations towards the database 

are changed to see if this has any major impacts on the performance.  

 

Below are three tables, Table 4.1 and Table 4.2 will be the main subjects of the 

analysis of each iteration whilst Table 4.3 contains a quick summary of the 

setups used in each iteration. 
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Iteration 

Average number 

of operations per 

second (ops/s) 

Confidence 

Interval 

(ops/s) 

Confidence 

interval 

span (%) 

Standard 

deviation 

(ops/s) 

Standard 

deviation 

(%) 

1 3470 [3445, 3495] 1.44 128 3.69 

2 1761 [1735, 1787] 2.99 67 3.81 

3 1831 [1820, 1843] 1.28 41 2.24 

4 1866 [1860, 1873] 0.68 32 1.71 

5 1412 [1396, 1428] 2.29 30 2.12 

6 3523 [3477, 3568] 2.59 99 2.81 

7 3436 [3390, 3482] 2.68 108 3.14 

8 2737 [2671, 2803] 4.85 194 7.01 

9 4678 [4607, 4749] 3.03 208 4.44 
Table 4.1: The results of each iteration as distribution (1) is applied 

 

Iteration 

Average number 

of operations per 

second (ops/s) 

Confidence 

Interval 

(ops/s) 

Confidence 

interval 

span (%) 

Standard 

deviation 

(ops/s) 

Standard 

deviation 

(%) 

1 2158 [2126, 2189] 2.96 73 3.37 

2 1396 [1386, 1407] 1.52 30 2.15 

3 - - - - - 

4 - - - - - 

5 - - - - - 

6 2771 [2745, 2798] 1.91 108 3.9 

7 - - - - - 

8 785 [641, 930] 36.73 368 46.88 

9 3092 [3022, 3163] 4.54 289 9.34 
Table 4.2: The results of each iteration as distribution (2) is applied 

 
Iteration Number 

of Total 

VMs 

mongos 

processes 

mongod 

processes 

Sharding 

key 

Chunk 

size (MB) 

Replica 

sets 

1 1 0 1 _id:1 5 - 

2 3 1 2 _id:1 5 - 

3 4 1 2 _id:1 5 - 

4 4 1 2 _id: ”hashed” 5 - 

5 4 1 2 name:1 5 - 

6 5 2 2 _id: “hashed” 5 - 

7 5 2 2 _id: “hashed” 10 - 

8 5 2 2 _id: “hashed” 5 1/mongod 

9 9 4 4 _id: “hashed” 5 - 
Table 4.3: Summary of setups used in each iteration  
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4.1 Iteration 1 

 

Setup 

The first setup is the simplest of all possible setups - a singleton solution where 

only one VM runs the MongoDB client without changing any of the MongoDB 

settings.  

Analysis 

The value of most interest here is the 3470 ops/s as can be seen from table 4.1. 

We get this value through running the benchmarking with distribution (1). 

This does not tell us much at this moment but it is a good reference point for 

other setups later on. It should be noted that this is the sample average. 

However enough samples were taken to provide a 95% confidence level of the 

actual average being within [3445, 3495] operations per second. 

 

There are also two graph of the CPU activities of the VMs during the course of 

a few of the runs that can be seen in Appendix A, Results 4.1 as Figure 4.1.1 

and Figure 4.1.2. The pattern is quite clear, a small initial spike in activity when 

the database is being filled up with content, then some idle time and finally 

followed by a longer spike where the benchmarking phase is running. This 

pattern is repeated over and over again.  

 

It is worth noting that there are a few data points on the graphs that suggest 

that the CPU activity exceeded its limit of 1500 MHz. I interpret this to be an 

inaccuracy of the graph sampling tool. The data points for this graph are 

generated by sampling the CPU activity and this is only done once every 20 

seconds. VMware Inc. (2013) ensures us that limits on CPU resources are met, 

but not in which time spectrum they are met. It is therefore natural that for a 

very short interval, a machine might be slightly exceeding its CPU limit.  

 

Something else that is worth noting is that the setup performs considerably 

worse in distribution (2) than it does in distribution (1). This is however 

anticipated as more updates to the database means more locks, as writes to 

the database gets priority over reads.  

 

Naturally a lot of things can be done in this stage to improve the performance 

as the setup is a singleton solution with complete default settings. In order to 

see how our choices affect the performance however, it is in our best interest 

to only perform one larger modification at the time. The focus of this report is 

database clusters, so for the next iteration, the singleton solution shall be made 

into a cluster. 

 



23 
 

4.2 Iteration 2 

 

Setup 

For this iteration, we shall be using a cluster setup. The cluster consists of 

three virtual machines denoted vmMongos, vm2 and vm3. Clusters in 

MongoDB have a few requirements in order for them to work. You need a 

mongos instance or query router as it is also called. This is a lightweight 

process that acts as an interface between the cluster and the outside world 

(The MongoDB 2.4 Manual, 2014). The queries go through mongos and are 

redirected to the right machine in the cluster. You also need shards, a shard in 

a cluster is MongoDBs name for a computing resource and is implemented as 

a mongod process. Theoretically a single machine can host an arbitrary 

number of mongod and mongos processes, although its computing resources 

of course remain the same. Throughout the rest of this report, each virtual 

machine will host a maximum of one mongod or mongos process unless 

otherwise specified.  

 

A cluster can have an arbitrary number of shards and mongos instances. You 

also need three config servers. These are processes that store metadata of the 

cluster, three are required in order to create the necessary redundancy as the 

config server would otherwise act as a single point of failure for the cluster. 
 

In this iteration, vmMongos acts as the query router of the cluster while vm2 

and vm3 are added to the cluster as shards. The config servers are all running 

on vmMongos.  

 

In order for MongoDB to know how to spread the data across the shards, a 

sharding key must be provided. The choice of sharding key here fell on using 

the _id field. This is a default field which always exists for any given entry in 

MongoDB and if it is not specified by the user, MongoDB will automatically 

generate it. As previously mentioned, there are several ways of using a field as 

sharding key and in this setup, a range-based distribution was chosen.  
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Analysis 

The value of most interest here is the 1761 ops/s from running distribution 

(1) as can be seen from Table 4.1. This result is quite surprising as the cluster 

with three times the hardware capabilities actually performs worse than the 

singleton solution. From examining the CPU activities of the different 

machines in Figures 4.2.* it is noticeable that neither vm2 nor vm3 are 

working at their maximum capacity whilst vm1 seems to be a bottleneck.  

 

Vm1 hosts the mongos process that redirects queries to the cluster to the 

correct shard. This process is supposed to be lightweight and not require any 

extensive resources so this is very unexpected behavior. VmMongos also hosts 

the config servers which are tracking the metadata of the cluster. In order to 

see if these config servers uses up a lot of resources, a new VM will be 

introduced to host these in the next iteration.  
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4.3 Iteration 3 

 

Setup 

In order to investigate what is consuming the CPU resources of vmMongos, a 

choice was made to move the config servers to a separate virtual machine and 

rerun the same test as Iteration 2. The new VM will be denoted as vmConfig. 

 

Analysis 

Upon examining the CPU utilizations of Figure 4.3.* it is once again very 

obvious that the CPU resources of vmMongos is the clear bottleneck of the 

cluster performance. From inspecting the CPU consumption of vmConfig it is 

also clear that the config servers did not consume a lot of resources which 

explains why the performance increase in ops/s was very minimal in 

comparison to Iteration 2.  

 

Inspecting the processes during the course of a run also revealed that it is 

indeed the mongos process that is using a vast majority of the computing 

resources. In an attempt to understand what is going on, the sharding key will 

in the next iteration be changed from being range-based to being a hashed 

value on the _id field.  
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4.4 Iteration 4 

 

Setup 

For this iteration, one change was made and that was the choice of sharding 

key. Instead of arranging elements in an ascending order on the value of the 

_id field, a hash value is computed from this value. The desired outcome here 

is that the entries should be spread out more evenly amongst the shards and 

that the mongos process should more easily be able to locate where an 

element resides than before when all elements had to be sorted. 

 

Analysis 

As we can see in Table 4.1 and 4.2, the results were yet again a slight 

improvement. However the CPU resources of vm1 remains the big bottleneck 

as can be seen in Figure 4.4.*.  

 

Not a lot of information can be extracted of exactly what is going on in the 

mongos process. The description of the process is that it just reroutes queries 

from the application to the correct shard or shards (The MongoDB 2.4 Manual, 

2014). This process is highly dependent on the sharding key so in order to 

resolve this problem, yet another different sharding key will be chosen for the 

next iteration.  
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4.5 Iteration 5 

 

Setup 

The setup is once again very similar to that of the previous iteration only in 

this one, the name field is chosen as sharding key instead of the _id field.  The 

sharding is range-based. 

 

Analysis 

As can be seen from Table 4.1, this time there was a drastic decrease in 

performance after only changing the sharding key. This is because YCSB 

queries elements by their _id. Since we shard the cluster based on the name 

field, it is impossible for the mongos process to reroute the query to only one 

shard and it has to do a broadcast amongst shards to find out where the 

element is stored. This overhead gives rise to the decrease in performance 

compared to when the cluster was sharded on the _id field.  

 

This insight has a big impact on designing this cluster. It greatly limits our 

choice of sharding key as the mongos process is already the bottleneck of our 

cluster. Any sharding key where the _id field is not present will cause an extra 

overhead to the mongos process and bring down the performance even more. 

It is possible to tweak the sharding key that uses the _id field even further for 

a potential increase in performance but it is highly unlikely that it will be 

enough for the mongos not to be a bottleneck.  

 

We do not want the mongos process to be a bottleneck, primarily for two 

reasons. The first one is because it does not really store any persistent data 

and is bound by the CPU resources of the host machine. Assigning more CPU 

resources to the machine that runs the mongos will greatly increase the 

throughput. The second reason is that it is easy, and common practice, to add 

several mongos instances to a cluster. One can then, on the application level, 

just choose one of these mongos instances at random to increase the 

throughput of the mongos instances to the mongod instances where the data 

is stored.  

 

The results so far insinuate that the mongos instance is likely to always be the 

bottleneck of the cluster performance with the current hardware 

specifications. The next step in developing this database must therefore be to 

add an extra mongos instance to the cluster.  

 

It should be noted that the mongos process can be hosted on the same virtual 

machine as the ones that are running mongod and acting as shards. However 
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for the sake of more easily being able to interpret the results - an entirely new 

virtual machine will be used.  
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4.6 Iteration 6 

 

Setup 

For this setup, the sharding key is once again set to the hash of the _id field. 

Two VMs denoted as vm1 and vm2 are used to host one shard each and two 

additional machines denoted as vmS1 and vmS2 are used to host a mongos 

instance each. Upon issuing a query to the cluster, the benchmarking tool will 

choose one of these mongos instances at random to send the query to. 

Additionally there is a separate VM for the config server similarly to previous 

iterations.  

 

Analysis 

As can be seen from the Figure 4.6.*, the activity of both vm1 and vm2 is now 

much higher for both distributions. This is very expected as the throughput is 

almost twice as high as it was in Iteration 4 when the same setup was used but 

with only one mongos instance as can be seen from Table 4.1 and Table 4.2. 

These results suggest that the performance might be improved even further 

through adding yet another mongos instance as they are still currently the 

bottleneck.  

 

There is however another thing we can do that might optimize the existing 

mongos instances even further and enough for them not to be the bottleneck 

– changing the chunk size of the cluster.  As previously mentioned, mongos 

divides data in a collection into shards by some shard key. This is achieved by 

dividing the data into small pieces referred to as chunks. These chunks are 

then spread evenly across the shards to form a pseudo balanced distribution 

of the elements. After this is done, a balancing algorithm runs in the 

background of the mongos machines and makes sure that the balance between 

shards is kept. The balance might be compromised as new inserts might not 

be evenly distributed amongst the shards and we may also change the value of 

the field that is used as sharding key, causing it to migrate to another chunk on 

another shard.  

 

Given that the CPU load of vm1 and vm2 are fairly even which we saw from 

Figure 4.6.*, it is a fair assumption that the elements are spread between the 

two shards in a good way. However what we do not know is if the mongos 

instances are doing a lot of unnecessary balancing work because our chunks 

are too small.  

 

One can consider the two extreme cases of the chunk size. If we chose a 

minimal chunk size, the elements would be balanced individually and each 

update or insert would lead to elements being rearranged by the balancer to 
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achieve a perfect distribution. The other extreme case is when the chunk size 

is chosen to be way too big and we do not achieve any balance between the 

shards at all as all elements fit in one chunk.  

 

Since our distribution right now seems fairly good, there might be room to 

increase the chunk size even further and still keep a good enough level of 

balance but demand less work from the balancer process. This is what will be 

tried out in the next Iteration. 
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4.7 Iteration 7 

 

Setup 

As explained in the analysis of Iteration 6, there is some potential to optimize 

the cluster further through altering the chunk size. This setup is identical to 

that of Iteration 6 with the modification that the chunk size has been doubled 

from 5MB to 10MB.  

 

Analysis 

The CPU graphs of this Iteration were left out as they did not reveal anything 

important. Distribution (2) was also not run as it was obvious from running 

distribution (1) that we did not achieve the desired outcome and this can be 

seen in Table 4.1. The larger chunk size gave us the anticipated effect that the 

elements would be less balanced than before. However, the results also reveal 

that the gain that we get from the balancer not having to work as hard is not 

weighing up for this imbalance.  

 

It seems now that it is very hard to do any major changes that might have a 

good impact on the performance. This is true both for the mongod instances 

and the mongos instances. The mongod instances are doing the absolute 

minimal work required as they are continuously getting lookups on the _id 

field that we have an index for and the elements are evenly distributed across 

the shards. The mongos instances are also very hard to optimize as we have 

already eliminated broadcast occurrences by dividing the data by the _id field 

which is a field involved in the query to the cluster. The job of creating the hash 

values for elements and figuring out in which shard they belong could be made 

more optimized through using a range-based sharding key on the same field. 

This is true as this would only require a simple comparison by the mongos 

instances to decide where an element belongs. Although, we have already 

shown that the hash-based sharding key outperforms the range-based 

sharding key overall as the overhead of keeping the elements ordered is higher 

than the overhead of computing the hash value. 

 

It is important to point out that the real scenario will most likely have a larger 

variety of queries but unfortunately that data was not available at this time.  

 

At this point, the major performance enhancers apart from adding more 

computing resources have been explored and instead I choose to focus the 

next iteration on the availability of the cluster. I will increase the availability 

by adding redundancy to the mongod in the shape of replica sets. The mongos 

instances are already redundant as the cluster merely needs one of these to 

function.  
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4.8 Iteration 8 

 

Setup 

For this iteration, the setup will follow that of Iteration 6. The cluster will have 

two mongod instances and two mongos instances, each on a separate VM and 

then an additional VM to host the config servers. The sharding key will be the 

hash of the _id field of the elements and the chunk size will go back to 5MB as 

iteration 7 showed that the increase did not positively affect the performance.  

The mongod instances will however be slightly different to that of Iteration 6.  

I will increase the availability of the cluster by adding redundancy to the data 

and the computing resources. MongoDB’s way of doing this is through the use 

of replica sets. This is a way of connecting two or more mongod instances that 

may be running on separate machines.  One of these mongod instances will be 

referred to as the Primary and its data will be propagated to all the other 

mongod instances, referred to as Secondary, in the replica set.  

 

Once this is done, all mongod instances in the replica sets will mirror each 

other’s data. Changes to the data in one mongod instance will eventually 

propagate to the other mongod instance. An eventually consistent level of 

atomicity is used here as a mongod instance cannot acquire locks on other 

mongod instances.  

 

It is important to point out that unless otherwise specified in the 

configurations of the mongos instances or a specific mongod instance is 

directly queried – queries will always go to the Primary mongod instance as 

long as this is available. If the Primary would become unavailable, an arbiter 

will elect one of the Secondary’s as the new Primary.  

 

In this setup, two VMs denoted as vm1 and vm2 will be used to host the replica 

sets.  

 

Vm1 will host one replica set, denoted as rs0 and host its Primary, denoted as 

rs0Primary.  

 

Vm2 will also host one replica set, denoted as rs1 and host its primary, denoted 

as rs1Primary.  

 

Vm1 will then add another mongod instance, denoted as rs1Secondary that 

will replicate the data in rs1Primary running on vm2. The same will apply to 

vm2 that will add another mongod instance denoted as rs0Secondary that will 

replicate the data in rs0Primary. 
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What this means is that in this case, all data will be stored twice and both vm1 

and vm2 will host the entire dataset. Queries however will only be directed 

towards one of the VMs at the time as they will always be directed towards the 

Primary of each replica set. 

 

The overhead associated with this is that we require twice as much storage 

capacity to store our data and each VM will need to spend some of its 

computing resources on propagating changes between Primary and 

Secondaries.   

 

 
Figure 4.8: Visualization of replication 

Analysis 

The CPU charts were once again left out as they did not reveal anything 

interesting. As the setup of this iteration is very similar to that of Iteration 6, it 

is of interest to see how the replicated sets affected the performance.  

 

For distribution (1) the results are quite anticipated.  As we can see from Table 

4.1, the throughput went from 3523 ops/s to 2737 ops/s and a decrease in 

performance was expected due to the overhead associated with replica sets. 

Notable is also that the standard deviation is considerably higher than in 

previous iterations.  

 

As for distribution (2) we see a dramatic decrease in performance as it went 

from 2771 ops/s to 785 ops/s as specified in Table 4.2. The lowest recorded 

run only averaged 233 ops/s and the standard deviation is by far the largest 

yet.  

 

These results can be explained as they are very tied to the distributions 

between different operations. Reads require no changes to be propagated 

between Primary and Secondary instances whilst updates & inserts both 

acquire locks and require the changes to be applied to the Secondary set. In 

Distribution(1), a vast majority of the types of operations were reads which in 

theory would not lead to any decrease in performance at all which is why the 

overall performance managed to stay up quite well. In distribution (2) 

however we specify that 50% of the operations towards the database should 

be updates. This is why we see this massive decrease in performance and upon 
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inspecting the database lock times, they are also much higher than before. The 

lock times are a big factor to why we see the rapid increase in standard 

deviation. Locks have a tendency to cluster, particularly when we have many 

update operations as they are much slower than reads and also have priority 

over reads. This leads to the database being locked to reads for long periods at 

a time and the update operations being executed only one at a time, resulting 

in very bad performance with large fluctuations.  

 

This is something that must be taken into consideration when adding replica 

sets as they have a potential of stealing a lot of computing resources from their 

hosts.  

 

In the next, and last iteration, the setup from Iteration 6, which is the cluster 

with best throughput and performance so far, will be scaled up to twice its 

previous size in terms of VMs. This will be done in order to investigate how its 

size affects the throughput and make sure the setup is able to scale well when 

more computing resources are added.  
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4.9 Iteration 9  

 

Setup 

In this iteration, the setup from Iteration 6 will be reused to a large extent but 

with 4 extra VMs. Two of these extra VMs will serve as shards, running their 

own mongod instance. The other two will act as mongos instances.  

 

Analysis 

The CPU plots were once again left out as they did not reveal anything 

interesting. All VMs except the one running the config servers operated at 

maximum capacity all throughout the tests. It can be seen from the results in 

Table 4.1 and Table 4.2 that we did achieve an increase in performance by 

adding more computing resources. How well these new resources affected the 

performance does however fluctuate quite significantly based on the 

distribution between elements that is currently being used.   

 

For distribution (1) we saw the throughput go from 3523 ops/s to 4678 ops/s 

as we doubled the number of shards and mongos instances. At first glance, a 

100% increase in throughput might have been the expected increase here as 

we double the amount of computing resources. This could be possible if all of 

the operations to the database would be reads. Reads can be parallelized and 

as we have spread out the elements fairly well by using a hash value, we had 

also spread out the work of fetching the elements evenly across the shards and 

potentially resulting in a linear increase in throughput.  

 

Regarding updates, inserts and scans this not the case. Updates and inserts will 

eventually trigger the balancer to start moving chunks around between shards 

in the cluster and thus stealing computing resources. As the elements are 

distributed on a hash value and appear quite randomly across the shards, it is 

very unlikely that a scan will only target one shard in the cluster. This means 

that the throughput of scans may actually suffer from adding more shards.  

 

This problem with scans can be circumvented by use of a range-based 

sharding key but as we saw from iteration 4, the increased performance for 

scans was not enough to compensate for the performance decrease in the 

other operations.  

 

In distribution (2) the increase in performance was significantly smaller than 

in distribution (1). This is due to the fact that we have such a high portion of 

update operations. As previously mentioned, the update operation does not 

scale as well through using sharding and that is manifesting itself here.  
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5 Delimitations & Problems 

For simplicity I chose to divide the project into three separate parts and talk 

about the delimitations and problems related to each part individually. One 

part is the method in which the project is conducted. Another which is about 

the technical problems of the tools involved and finally a part which talks 

about possible delimitations when applying the tools and methods to the use 

case of Radish. 

 

5.1 Method 

The purpose of this project is to be able to fine tune databases into performing 

as optimal as possible. We have already seen the importance of the workload 

and the different distributions of operations and the major impact these have 

on the results.  

 

It is important that the simulated workload replicates the actual production 

environment as well as possible. If it does not, we are essentially optimizing 

the database for circumstances that will not be the same ones as it will face in 

production.  

 

Furthermore it is also common to have to make adjustments to databases 

during the life cycle of a project in order to accommodate new features and so 

on. These adjustments may influence the usage pattern of the database and 

lead to the optimal setup being somewhat shifted.  In this scenario, the changes 

must be applied to the workload and tests reran in order to establish the new 

optimal cluster setup.  

 

Lastly there is no way of knowing if an optimal setup has been achieved. The 

method and tools provide ways of comparing two setups against each other 

but it is up to the person conducting the testing to decide when an acceptable 

setup has been discovered.  

 

5.2 Technical 

For this project, a variety of tools were used and each of them have their own 

set of delimitations and problems. A major part of the project has been the use 

of the open source tool YCSB. YCSB has several limitations and one is that it is 

only possible to run the simulations on one machine at a time and that machine 

may only have a maximum of 40 threads. As it is developed in Java there is no 

support for setting the affinity of threads and this may compromise the results. 

If you are benchmarking a very large and fast cluster, it may actually be YCSB 

that acts as a bottle neck.  
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To host the virtual machines VMware ESXi was used. Tests have been 

conducted to prove its fairness and efficiency when dividing computing 

resources (VMware Inc, 2013). However as the machines computing power is 

bound by the computing power of its host, clusters of sizes larger than 9 

machines could not be explored in this project.  

 

Finally, different chunk sizes were explored in the results section of this 

report. The imbalance between how many elements resided on each shard 

caused by this lead to a decrease in performance and the modification was 

abandoned. The optimal chunk size is very much relative to the dataset in 

question. The larger the dataset is, the more resilient it becomes to larger 

chunk sizes and these larger chunks will not cause as large of an imbalance. As 

the datasets tend to grow over time, there will most likely be a threshold 

sometime in the future when there will be a performance gain by increasing 

the chunk size. This was however not explored as a dataset of static size was 

used.  

 

5.3 Current Use Case 

The result section is primarily focused on how to develop the best possible 

cluster setup for the use case of Radish. To do this, the workload was built to 

replicate the production environment that Radish is undergoing as well as 

possible. However, specific data on the type of queries used was not available 

at this time so the default behavior of YCSB was used instead, which is to query 

elements based on their _id field. Furthermore, the database schema has 

undergone big changes since this project started and there is a delimitation in 

place to develop the cluster as well as possible under the circumstances that 

existed at the time when the basis of the project was established.  

 

Another delimitation that was put in place in relation to this use case was the 

use of datasets that did not exceed the RAM capacity of the VMs. As the desired 

outcome was a cluster with as high throughput as possible, it was a natural 

choice to not store more data on each machine than the capacity of its RAM 

memory. The use of larger datasets would have led to other complications too 

as the VMs run on the same disk of its host and would have potentially 

compromised each other’s read/write capacities.   
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6 Discussion 

6.1 Related Work 

The scientific body of this study can be divided into two parts. One in which 
the benchmarking of databases is explored and another where we explore 
strategies for designing database clusters as well as optimizing these designs.   
 
Benchmarking databases has been going on for quite some time. Rubenstein 
et al. established a method for benchmarking databases based on querying 
data with a set of simple database operations already in 1987. These were 
done for relational databases however, but the principles extend also into the 
world of document stores (Cattell, 2010). Throughout the years, multiple 
experiments and comparisons have been carried out on these document 
stores where they are both compared to each other and relational databases 
(Cooper et al. 2010) (Cattell, 2010) (Kashyap et al. 2013). 
 
Even though the methods and tools for acquiring the benchmarks have been 
perfected over the years and some of the previous research deal with DBMSs 
with cluster support (Cattell, 2010), very little emphasis has been put on 
measuring the performance of the cluster setups. The effort has instead been 
on deciding which DBMS can handle a given workload the best in a singleton 
setting and perfecting the benchmarks to measure this (Cattell, 2010. 
 
What this study has now established in the area of benchmarking, is a way of 
measuring the performance for clustered solutions rather than just single 
nodes. It has also been shown how these insights about how the cluster setups 
affect the performance can be used to gradually improve the performance of 
an existing database cluster through altering the cluster configuration. 
Furthermore it has also been shown how a benchmarking workload can look 
in the case of a social networking application and how these can be generated 
through using the Klemm and Eguilez network creation algorithm (Prettejohn, 
2011).  
 
It has been discussed that whilst there are indeed best practices one can follow 
when designing datastores in the SQL world (Harrington, 2002) (Stonebraker 
and Cattell, 2010), very little research exist about how one should design 
database clusters for document stores. 
 
Best practices for document stores are very hard to find by due to the case 
specific nature of these datastores (Chodorow, 2011). There are however a lot 
of documentation and guides for how features of document stores can be used 
to someones advantage when designing a database cluster, particularly for the 
MongoDB datastore (The MongoDB 2.4 Manual, 2014) (Chodorow, 2011). 
However little to no research exist around establishing what effect these 
features may have on a clustered solution as a whole. The existing research 
and documentation also covers different configuration settings and how they 
could potentially be used to someone’s advantage when designing a database 
cluster. How these features and settings fit into a particular context however 
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is for the designer of the database cluster to figure out. This is in some cases a 
guess work and of course makes it very tricky to design the best possible 
database cluster. 
 
This study is able to extend the existing body of knowledge through providing 
a way of verifying whether using some feature or configuration change 
achieves the desired effect in someone’s specific context. The method for 
designing database clusters provided in this study makes the effect of changes 
much more tangible. This is due to the fact that the performance of a design 
can be quantifiable and measured towards other designs as well as modified 
without affecting the live production data. 
 
It has also been shown that performance wise, the advantages of going from a 
singleton solution to a cluster don’t actually outweigh the overhead until the 
cluster reaches a sufficient size.  
 
6.2 Ethical Considerations 

This study about optimization of database cluster performance contains no 
obvious ethical concerns. However, when considering the product that this 
particular scenario is addressing, one can recognize some ethical concerns 
regarding the potentially sensitive information that is handled.  
 
As MeBox is accessing information of a personal nature in order to provide its 

services, it could put the user’s personal integrity in jeopardy. People might 

misuse the application and purposely tag the wrong people and have private 

photos accessed by the wrong individuals. The user might be fooled by 

inaccurate suggestions and the emergence of automatic tagging opens this 

world up even more when the application itself is able to make false choices.  

 

If a person is wary of his or her personal integrity, this causes a big problem 

as images and personal information could potentially spread beyond your 

control. It is definitely not in the interest of Radish to question the personal 

integrity of their users. It is intended as a way for friends to easily be able to 

share photos with each other and nothing else.  

 

In order to get around this dilemma, Radish will do everything they can to 

ensure that their users are always aware of what the application is doing with 

their information so that it will not spread without the users consent.  

 

To inform the users of these risks is one thing, but making sure they 

understand them becomes a much more difficult problem. Currently the 

information is spread as a terms & conditions text but more interactive way of 

spreading the information might come along eventually.  

 

A big responsibility lies on the user in this scenario too. People must take their 
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personal responsibility and know what they are getting themselves into. If you 

feel MeBox is not for you, then you are of course not forced into it. Personally 

I see my work as a contribution to my field and that it provides a service to 

people who will eventually use MeBox and not something that might put 

people’s personal integrity in danger.  

 

6.3 DBMS Comparisons 

Comparing different DBMSs towards each other is beyond the scope of this 

report. However it should be noted that the architecture and platform 

independent nature of the software used in this report makes it possible to do 

these types of comparisons. The only part of the software used in this report 

that is MongoDB specific is the interface between MongoDB and YCSB. YCSB 

includes these interfaces between many other DBMSs too. Upon acquiring a 

virtual machine running another DBMS and use this as a template machine, it 

would be possible to reuse the rest of the system and make comparisons for 

which DBMS would handle the given workload the best if the same type of 

cluster setup was used.  

 

6.4 Future Work 

There are a variety of things that I wish I could have done, but for various 

reasons had to leave out. I have chosen to divide these into two sections, the 

ones that may influence the project as a whole and might be applicable to other 

people using the work and the ones that affects the results for Radish. 

 

For the project as a whole, it would have been very interesting to see how the 

tools handle larger and faster clusters. Both in terms of the data they store and 

in the number of machines and their computing resources. In order to be able 

to do this however, YCSB must get support for running distributed over many 

machines to not become the bottleneck of the throughput. I do not expect the 

overall results to be any different by doing this. However as for instance the 

operating systems features will play a smaller part in relation to the overall 

computing resources, this could result in better accuracy of the 

measurements.  

 

As for this particular use case, I believe the most interesting one to be the use 

of geospatial indexes and using these to shard the database. There is definitely 

an element of locale to acquaintances, e.g. you are more likely to be friends 

with a randomly chosen person in your town or village than you are to be 

friends with a person chosen randomly from the entire world. Given graphical 

coordinates of individuals, geospatial indexes can divide people based on their 

position and it would have been very interesting to see how this would 

influence the performance.  
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Another thing is to tune the workload further towards the use case of Radish 

as data on their current type of queries become available.  
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7 Conclusion 

What we have seen here is a way of designing a database or database cluster 

and then fine tuning it to achieve the maximum performance for a particular 

scenario. We have defined a workload for which we wish to tune a database 

and then used heuristics given from logical reasoning and knowledge about 

the DBMS to continuously improve the performance of the database cluster 

and explore the effects of changing parameters in its setup.  

 

We see an example of this in practice in the results section. The current setup 

is easily tested towards the simulated workload and given this insight, we are 

able to alter the cluster without affecting the production data or production 

machines at all. Through continuous iterations, different ways of tuning the 

cluster are found and reasoned about and in the end we have a setup that 

handles the simulated workload very well and with a confirmed scalability. It 

should however be noted that the overhead from moving into a clustered 

architecture from a single database instance require the cluster to be of an 

adequate size before any performance is gained. Added to this, we also know 

how redundancy between machines will affect the performance during 

current circumstances. 

 

Quite unexpectedly, the findings also point towards some use cases where 

clusters aren’t very suitable at all. These are use cases where inserts and 

updates are very common. For these types of use cases we also demonstrated 

the huge decrease in performance when using redundancy. 

 

When performance is very crucial, insights like this and the ability to explore 

how any changes to a database setup affects its performance can be very 

valuable. Changes to the database will most likely occur on a continuous basis 

and it may not always be clear what design best suits your needs.  

 

The tools and methodology used here can also be applied in other scenarios 

where we explore how different DBMSs with similar setups affects the 

performance as this is a very important design decision early on in a project.  

 

All of this of course comes at a cost and it is in the upkeep of the simulated 

workload and making sure it is reflecting the changes made to the usage 

pattern of the database. However as long as performance has priority over 

time, this method and its tools could be of great help. 
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Appendix A 

Result 4.1 

 

 
Figure 4.1.1: CPU Performance of the virtual machine running the database during 

distribution (1) 

 
 

 
Figure 4.1.2: CPU Performance of the virtual machine running the database during 

distribution (2) 

 
 

  

0
9

:5
4

0
9

:5
6

0
9

:5
9

1
0

:0
2

1
0

:0
4

1
0

:0
7

1
0

:1
0

1
0

:1
2

1
0

:1
5

1
0

:1
8

1
0

:2
0

1
0

:2
3

1
0

:2
6

1
0

:2
8

1
0

:3
1

1
0

:3
4

1
0

:3
6

1
0

:3
9

1
0

:4
2

1
0

:4
4

1
0

:4
7

1
0

:5
0

1
0

:5
2

0

200

400

600

800

1000

1200

1400

1600

1800

Time

M
H

z

1
3

:4
7

1
3

:5
0

1
3

:5
3

1
3

:5
5

1
3

:5
8

1
4

:0
1

1
4

:0
3

1
4

:0
6

1
4

:0
9

1
4

:1
1

1
4

:1
4

1
4

:1
7

1
4

:1
9

1
4

:2
2

1
4

:2
5

1
4

:2
7

1
4

:3
0

1
4

:3
3

1
4

:3
5

1
4

:3
8

1
4

:4
1

1
4

:4
3

1
4

:4
6

0

200

400

600

800

1000

1200

1400

1600

1800

Time

M
h

z



47 
 

Result 4.2 

 

 
Figure 4.2.1: CPU Performance of the vmMongos while running distribution (1) 

 

 
Figure 4.2.2: CPU Performance of the vm2 while running distribution (1) 

 

 
Figure 4.2.3: CPU Performance of the vm3 while running distribution (1) 
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Figure 4.2.4: CPU Performance of the vmMongos while running distribution (2) 

 
Figur 1: CPU Performance of vmMongos 

 

 
Figure 4.2.4: CPU Performance of the vm2 while running distribution (2) 

 
Figur 2: CPU Performance of vm2 

 

 
Figure 4.2.5: CPU Performance of the vm3 while running distribution (2) 
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Result 4.3 

 

 
Figure 4.3.1: CPU Performance of the vmMongos while running distribution (1) 

 

 
Figure 4.3.2: CPU Performance of the vm2 while running distribution (1) 

 

 

 
Figure 4.3.3: CPU Performance of the vm3 while running distribution (1) 
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Figure 4.3.4: CPU Performance of the vmConfig while running distribution (1) 
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Result 4.4  

 

 
Figure 4.4.1: CPU Performance of the vmMongos while running distribution (1) 

 

 
Figure 4.4.2: CPU Performance of the vm2 while running distribution (1) 

 

 
Figure 4.4.3: CPU Performance of the vm3 while running distribution (1) 
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Figure 4.4.4: CPU Performance of the vmConfig while running distribution (1) 
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Result 4.5 

 

 
Figure 4.5.1: CPU Performance of the vmMongos while running distribution (1) 

 

 
Figure 4.5.2: CPU Performance of the vm2 while running distribution (1) 

 

 
Figure 4.5.3: CPU Performance of the vm3 while running distribution (1) 
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Figure 4.5.4: CPU Performance of the vmConfig while running distribution (1) 
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Result 4.6 

 

 
Figure 4.6.1: CPU Performance of the vm1 while running distribution (1) 

 

 
Figure 4.6.2: CPU Performance of the vm2 while running distribution (1) 

 

 
Figure 4.6.3: CPU Performance of the vmConfig while running distribution (1) 

 

0
5

:3
0

0
5

:3
2

0
5

:3
5

0
5

:3
8

0
5

:4
0

0
5

:4
3

0
5

:4
6

0
5

:4
8

0
5

:5
1

0
5

:5
4

0
5

:5
6

0
5

:5
9

0
6

:0
2

0
6

:0
4

0
6

:0
7

0
6

:1
0

0
6

:1
2

0
6

:1
5

0
6

:1
8

0
6

:2
0

0
6

:2
3

0
6

:2
6

0
6

:2
8

0

200

400

600

800

1000

1200

1400

1600

1800

Time

M
H

z

0
5

:3
0

0
5

:3
2

0
5

:3
5

0
5

:3
8

0
5

:4
0

0
5

:4
3

0
5

:4
6

0
5

:4
8

0
5

:5
1

0
5

:5
4

0
5

:5
6

0
5

:5
9

0
6

:0
2

0
6

:0
4

0
6

:0
7

0
6

:1
0

0
6

:1
2

0
6

:1
5

0
6

:1
8

0
6

:2
0

0
6

:2
3

0
6

:2
6

0
6

:2
8

0

200

400

600

800

1000

1200

1400

1600

1800

Time

M
H

z

0
5

:3
0

0
5

:3
2

0
5

:3
5

0
5

:3
7

0
5

:3
9

0
5

:4
2

0
5

:4
4

0
5

:4
6

0
5

:4
9

0
5

:5
1

0
5

:5
3

0
5

:5
6

0
5

:5
8

0
6

:0
0

0
6

:0
3

0
6

:0
5

0
6

:0
7

0
6

:1
0

0
6

:1
2

0
6

:1
4

0
6

:1
7

0
6

:1
9

0
6

:2
1

0
6

:2
4

0
6

:2
6

0
6

:2
8

0

50

100

150

200

250

300

350

400

Time

M
H

z



56 
 

 
Figure 4.6.4: CPU Performance of the vmS1 while running distribution (1) 

 

 
Figure 4.6.5: CPU Performance of the vmS2 while running distribution (1) 

 

 
Figure 4.6.6: CPU Performance of the vm1 while running distribution (2) 
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Figure 4.6.7: CPU Performance of the vm2 while running distribution (2) 

 

 
Figure 4.6.8: CPU Performance of the vmConfig while running distribution (2) 

 

 
Figure 4.6.9: CPU Performance of the vmS1 while running distribution (2) 
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Figure 4.6.10: CPU Performance of the vmS2 while running distribution (2) 
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