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Abstract

This thesis is mainly a computational work studying the analytical continu-
ation of Green’s functions using the Maximum Entropy method. A strongly
correlated electron system is described with the single-band Hubbard model
and paramagnetic solutions are studied using Dynamic Mean Field Theory
on a Bethe lattice. Continuous Time Quantum Monte Carlo is used as Impu-
rity solver, for the infinite Anderson model at a finite temperature, to obtain
the Matsubara single-particle Green’s function propagator. Both metallic
and insulating spectral functions are obtained using the Maximum Entropy
Method. General properties of the Maximum Entropy Method as an analytic
continuation method from imaginary to real time are also discussed.
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Chapter 1

Introduction

In Condensed matter physics electron correlations are sometimes so strong
that they totally change the system’s thermodynamic properties. In such
materials Density Functional Theory does not work since it is based on the
approximation of weakly interacting electrons. The fully interacting elec-
tronic structure problem in solids is impossible to solve. Effective models
including local interaction, e.g. the Hubbard model, are therefore used to un-
derstand the underlying physics. Examples of phenomena due to strong cor-
relations are high temperature superconductivity and Mott metal–insulator
transitions (MIT). By turning on the Hubbard interaction parameter U , the
system undergoes a MIT at half-filling.

The thesis is organized as follows. First the electronic structure problem is
introduced. Single-particle Green’s functions and spectral functions, objects
to describe the many-body problem, are introduced in chapter 2. Chapter 3,
about the Hubbard model, define our system. The Hubbard model is solved
in chapter 4 by Dynamicd Mean Field Theory (DMFT). Using Maximum
Entropy Method (MEM), an analytic continuation of the obtained Green’s
functions, shown in chapter 5, finally gives us the wanted spectral functions.

In this work the half-filled paramagnetic single-band Hubbard model is
investigated on a Bethe lattice for a finite temperature and various inter-
action strengths. It can be solved by DMFT in a mean-field fashion using
an approximation which is exact for infinite number of nearest neighbors.
DMFT maps the many-body lattice problem to a local many-body impurity
problem where a single interacting site is coupled to a non-interacting envi-
ronment. The impurity problem can be solved by different techniques, in this
thesis Quantum Monte Carlo is used. It allows calculations of the Green’s
functions with imaginary time argument, expressed using a Legendre basis,
see section 4.3.

However the physical information of interest is for real argument. Viewing
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the Green’s function in complex frequency plane, the transformation from
the imaginary to the real frequency axis is actually an analytic continuation.
The statistical noise from the Quantum Monte Carlo (QMC) sampling and
the inverse nature of the analytical continuation makes this transformation
ill-conditioned. A regularization is needed, in MEM it is to maximize the
information entropy of the spectral function. The most probable spectral
function is calculated using Bayesian probability theory, see section 5.

The spectral function, describing the effective single-particle Density of
States (DOS), is defined in chapter 2. For a non-interacting system the
spectral function is the DOS of the non-interacting eigenenergies. Momen-
tum dependent spectral functions contain information about the quasiparti-
cle bandstructure and can be measured experimentally with Angle-Resolved
Photoemission Spectroscopy (ARPES) [1].

1.1 The Electronic Structure Problem in Solids

The system of interacting electrons has, within the Born-Oppenheimer ap-
proximation, a Hamiltonian of the form

H =
∑

i

(
p2
i

2m
+ Vext(ri)

)

︸ ︷︷ ︸

H0

+
1

2

∑

i,j

VI(ri, rj)

︸ ︷︷ ︸

HI

(1.1)

where Vext(r) is a external potential and VI(ri, rj) = e2

|ri−rj | is the electron-
electron Coulomb potential. By using a basis-set of orbital single-particle
states {fi} the Hamiltonian in second quantization takes the form

H =
∑

ijσ

tijc
†
iσcjσ

︸ ︷︷ ︸

H0

+
1

2

∑

ijklσσ′

Vijkl c
†
iσc

†
kσ′clσ′cjσ

︸ ︷︷ ︸

HI

(1.2)

with the Hamiltonian matrix elements

tij =

∫

d3rf ∗
i (r)

(
p2

2m
+ Vext(r)

)

fj(r) (1.3)

Vijkl =

∫

d3r

∫

d3r ′f ∗
i (r)fj(r)Ve-e(r, r

′)f ∗
k (r

′)fl(r
′). (1.4)

The equation 1.2 needs to be simplified in order to be solvable. In materials
where electron–electron interaction is strong the electron eigen states are
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usually localized in space [2]. This is in contrast to non-interacting Bloch-
states which are extended over the entire crystal. Due to the localized nature
of the orbitals, a set of localized functions is a good choice of basis functions.
The localization enables approximations of only nearest-neighbor hopping
and only intra-orbital correlations. Hence an effective Hamiltonian called
the Hubbard model is obtained, see chapter 3.

With Bloch-single particle eigenstates {φn,k,σ}, thus i = {n,k}, with
bandindex n, lattice momentum k and spin σ, as basis set, the hopping
matrix tij is diagonal,

tij = tnk,n′k′ = tnk,n′k′〈nk|n′k′〉 = εnkδnn′δkk′ (1.5)

so
H0 =

∑

nkσ

εnkc
†
nkσcnkσ (1.6)

where εnk is the dispersion relation for the non-interacting system for different
bands n.

1.2 Measurements

There exist different, but mathematically equivalent, formulations of quan-
tum mechanical dynamics, called pictures. The expectation value of operator
O in state Ψ is

Ō = 〈Ψ|O|Ψ〉. (1.7)

Its time evolution can be calculated by viewing the time dependence of the
state Ψ, or through the time dependence of the operator O or by a combi-
nation of both.

1.2.1 Schrödinger Picture

In this picture, all the time-dependence is captured by the quantum state
Ψ(t). Its time dependence is determined by the time dependent Schrödinger
equation

i!
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉. (1.8)

We will work with ! = 1 in the rest of the thesis. This equation can formally
be solved for a time independent Hamiltonian

|Ψ(t)〉 = U(t)|Ψ(t = 0)〉 (1.9)

where
U(t) = e−itH (1.10)

is the unitary time evolution operator.
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1.2.2 Heisenberg Picture

In the Heisenberg picture, the time dependence is determined by the operator
O(t). Ψ is here time independent. O(t) is related to the Schrödinger picture
operator O through

O(t) = e+itHOe−itH . (1.11)

The expectation values are the same in both pictures which is easily seen
by

Ō(t) = 〈Ψ(t)|O|Ψ(t)〉 = 〈Ψ|U †(t)OU(t)|Ψ〉 = 〈Ψ|U(−t)OU(t)|Ψ〉 = 〈Ψ|O(t)|Ψ〉.
(1.12)

Using the grand canonical ensemble, Heisenberg time-dependent opera-
tors are using H̄ = H−µN instead of H , which just shifts the single particle
energies with µ,

H0 − µN =
∑

nkσ

(εnk − µ)c†nkσcnkσ. (1.13)

1.2.3 Imaginary Time

It is usually computationally easier to calculate thermal averages using imag-
inary time τ instead of the physical time. Let t = −iτ . The time evolution
operator U(t), in eq 1.10, is exponential for imaginary times in contrast to
oscillating behavior for real times,

U(t = −iτ) = e−τH . (1.14)

In the Heisenberg picture the time-dependent operator is therefore given by

O(t = −iτ) = e+τHOe−τH . (1.15)

If one use the variable name τ , imaginary time is implicitly indicated. In the
literature

O(τ) = e+τHOe−τH (1.16)

is a common way of writing the operatorO, when dependent on the imaginary
time.

1.2.4 Finite Temperature

Let’s consider a thermodynamic system given by a Hamiltonian H at a finite
temperature T , volume V and chemical potential µ. The particle number
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N =
∑

j c
†
jcj is an observable operator and the many body eigenstate |Ψi〉

obey

H|Ψi〉 = Ei|Ψi〉 (1.17)

N |Ψi〉 = Ni|Ψi〉. (1.18)

The operator H̄ = H − µN , with eigenvalues Ēi = Ei − µNi, will make the
formulas for the grand canonical ensemble look the same as for the canonical
ensemble.

If assuming that the eigenstates are known, measurements can be done by
averaging over the eigenstates |Ψi〉 according to the grand canonical ensemble
with probability weights

Pi =
exp(−βĒi)

∑

n exp(−βĒn)
(1.19)

where β = 1
kBT is the inverse temperature. By introducing the density matrix

operator
ρ = exp(−βH̄) (1.20)

get

ρi = 〈Ψi|ρ|Ψi〉 (1.21)

Z =
∑

i

ρi =
∑

i

〈Ψi|ρ|Ψi〉 = Tr ρ (1.22)

Pi =
ρi
Z (1.23)

where Z is the grand partition function and Tr is an abbreviation for taking
the trace of an operator. This notation simplifies thermodynamic measure-
ments of observables,

〈O〉 =
∑

i

Pi〈Ψi|O|Ψi〉 =
∑

i

ρi
Z 〈Ψi|O|Ψi〉 =

1

Z
∑

i

〈Ψi|Oρi|Ψi〉

=
1

Z
∑

i

〈Ψi|Oρ|Ψi〉 =
1

Z TrOρ.
(1.24)

Measurements are thus calculated by the ratio of two traces. Since the trace
is invariant of the choice of basis representation one can use any complete
basis set. This is advantageous since the basis with eigenstates of the full
Hamiltonian is usually unknown.
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Chapter 2

Green’s Function Propagators

Green’s functions are time dependent expectation values of products of op-
erators. First, properties for a general two-operator Green’s function is pre-
sented, where the two operators A and B do not need to be hermitian. The
normal Green’s function propagator with A and B equal to the annihilation
and creation operator respectively is analyzed in detail.

The analytic continuation of Green’s functions via the Hilbert transfor-
mation, from imaginary to real time, is investigated. In this chapter we
also see the simple connection between the Green’s function and the spectral
function.

For interacting systems, which are studied in this thesis, the Dyson
equation describes how the self-energy in an elegant way relates the non-
interacting and interacting Green’s function. This will be applied intensely
in chapter 4 about DMFT.

2.1 Two Operator Propagator

The temperature Green’s function for operators A and B for imaginary time
within the Heisenberg picture is defined as

G(τ) = GA,B(τ) = −〈TA(τ)B(0)〉 (2.1)

where 〈〉 is the thermal average. A time independent Hamiltonian is assumed
so the system is time invariant. This makes the Green’s function only de-
pendent on the relative time difference between two events τ = τ2− τ1. A,B
are Heisenberg operators with A(τ) = eτH̄A e−τH̄ and H̄ = H − µN . T is
the time-ordering operator. T switches A and B when τ is negative. If both
A,B are even functions of fermionic operators, T also change the sign of the
expression when τ < 0. It will be true in this thesis.
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The imaginary time propagator is defined for τ ∈ (−β, β]. Because the
trace is invariant under cyclic permutations, the Green’s function is anti-
periodic. This is seen by letting τ < 0 and use the definition of the thermal
average,

G(τ) = 〈B(0)A(τ)〉 = 1

Z
Tr e−βH̄B(0)A(τ)

=
1

Z
TrA(τ)e−βH̄B(0) =

1

Z
Tr e−βH̄eβH̄A(τ)e−βH̄

︸ ︷︷ ︸

A(τ+β)

B(0)

= −G(τ + β).

(2.2)

By periodically repeating G(τ) from τ ∈ (−β, β], the Fourier representa-
tion is given by

G(τ) =
1

β

∞
∑

n=−∞

e−iνnτGn (2.3)

with

Gn =
1

2

∫ β

−β

dτeiνnτG(τ) (2.4)

and νn = πn
β . By using the anti-periodicity in eq 2.2, only odd n are allowed,

νn =
(2n− 1)π

β
(2.5)

νn are called the Matsubara frequencies. Eq 2.4 simplifies to

Gn =

∫ β

0

dτeiνnτG(τ). (2.6)

A unique spectral function ρ(ω) correspond to a complete set of Gn values
[3],

Gn =

∫ ∞

−∞
dω

ρ(ω)

iνn − ω
. (2.7)

This can be seen as a special case of

G(z) =

∫ ∞

−∞
dω

ρ(ω)

z − ω
(2.8)

for function G(z) when z = iνn. G(z) is analytic in the lower and upper half
plane with a cut at the real axis according to the Sokhotski-Plemelj theorem.
Because the spectral function is unique, the analytical continuation from
Gn = G(iνn) to G(z) is also unique, see figure 2.1. By inserting the spectral
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ω

iω

G(iωn)

G(ω)

Figure 2.1: Analytic continuation of G(z) from Matsubara points to real axis.

representation of the Matsubara values from eq 2.7 into eq 2.3 we get

G(τ) =
1

β

∞
∑

n=−∞

e−iνnτGn =

∫ ∞

−∞
dωρ(ω)

1

β

∞
∑

n=−∞

e−iνnτ

iνn − ω

=











∫∞
−∞ dωρ(ω)

−e−ωτ

e−βω + 1
︸ ︷︷ ︸

kτ (ω)

, if 0 < τ < β,

−G(τ + β), if − β < τ < 0.

(2.9)

where kτ (ω) ∈ R− is an important integral kernel.

If all the eigenstates in our system would be known, the spectral function
could be written as a sum over them. This formulation is called the Lehmann
representation and is given by [4]

ρ(ω) = (1 + e−βω)
1

Z

∑

n,m

e−βEm〈m|A|n〉〈n|B|m〉δ(ω − En + Em). (2.10)

For a system with infinite number of eigenstates, the discrete sum forms
a continuous function. Green’s functions with A = B† are real (and non-
negative),

ρ(ω) = (1 + e−βω)
1

Z

∑

n,m

e−βEm |〈n|B|m〉|2 δ(ω −En + Em). (2.11)

A real spectral function is related to the imaginary part of the Green’s func-
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tion just above the real axis. For a positive ε, equation 2.8 becomes

−1

π
Im[G(ω′ + iε)] = −1

π

∫ ∞

−∞
dω Im[

ρ(ω)

ω′ + iε− ω
]

= −1

π

∫ ∞

−∞
dω Im[

ω′ − ω − iε

(ω′ − ω)2 + ε2
]ρ(ω)

=

∫ ∞

−∞
dω

1

π

ε

(ω′ − ω)2 + ε2
︸ ︷︷ ︸

Lε(ω′−ω)

ρ(ω)

(2.12)

where Lε(ω′−ω) is a Lorentzian of width ε and centered at ω = ω′. By using
Lε(ω) −→

ε→0+
δ(ω) we get

ρ(ω) = −1

π
Im[G(ω + i0+)]. (2.13)

Eq 2.8 can be seen as a straightforward analytic continuation of the Green’s
function from the real axis to any point z in the complex plane as a conse-
quence of this. Unfortunately the problem is usually inverse with G(z = iνn)
known and ρ(ω) unknown. This requires solving the Hilbert transform in eq
2.8 as a set of integral equations, making the analytic continuation hard.

For a Green’s function G(τ) ∈ R, G(−iνn) = G(iνn)∗ and G(τ) can be
represented by Gn for only positive Matsubara frequencies,

G(τ) =
2

β
Re[

∞
∑

n=1

Gne
−iνnτ ]. (2.14)

2.2 Normal Single-Particle Propagator

The normal single-particle Green’s function propagator for imaginary time
is obtained by letting A = ckσ and B = c†

kσ,

Gkσ(τ) = −〈T ckσ(τ)c
†
kσ(0)〉, (2.15)

where ckσ, c
†
kσ are the annihilation and creation operators for an electron

with momentum k and spin σ. We will only study spin invariant systems so
the spin-index σ ∈ {↑, ↓} is usually omitted. The normal Green’s function
for real time Gkσ(t) describes how the system reacts if add an electron at
time 0 with momentum k and spin σ and annihilate an electron at time t
with same momentum and spin. Since B = c†

kσ = A†, the spectral function
is real. By using eq 2.11, its Lehmann representation is

ρkσ(ω) = (1 + e−βω)
1

Z

∑

n,m

e−βEm

∣
∣
∣〈n|c†kσ|m〉

∣
∣
∣

2
δ(ω − En + Em). (2.16)
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The normal spectral function ρkσ(ω) describe the probability density for an
electron with momentum k and spin σ of having the energy ω relative to the
chemical potential µ.

2.3 Non-interacting Green’s Function

If the system Hamiltonian can be written as sum of a non-interacting and a
interacting Hamiltonian,

H = H0 +HI , (2.17)

a non-interacting Green’s function G0,kσ(ω), also called the bare propagator,
is useful. By non-interacting we mean that interaction between electrons
is neglected but external potentials and the potential from the lattice is
included. For a periodic potential, the single-particle eigenstates of H0 are
Bloch-states. G0,kσ(ω) is defined like the interacting Green’s function but
instead of using the full Hamiltonian H one use the non-interacting one,

H0 =
∑

kσ

εkc
†
kσckσ (2.18)

where εk is the electron energy dispersion for the non-interacting system.
Tracing over the non-interacting eigenstates gives

G0,kσ(τ) = −〈Tckσ(τ)c†kσ(0)〉0

= e−τ(εk−µ)

{

−〈1− c†
kσckσ〉0, if 0 < τ < β,

〈c†
kσckσ〉0, if − β < τ < 0.

(2.19)

where

〈c†
kσckσ〉0 =

1

eβ(εk−µ) + 1
(2.20)

is the Fermi-Dirac occupation number. An intresting observation is that
G0,kσ(τ = 0−) = 〈c†

kσckσ〉0. By Fourier transforming eq 2.19 according to eq
2.6, the non-interacting Matsubara Green’s function becomes

G0,kσ(iνn) =
1

iνn − εk + µ
. (2.21)

The analytic continuation to the complex plane is simply done by replacing
iνn with z

G0,kσ(z) =
1

z − εk + µ
. (2.22)
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The non-interacting spectral function is therefore

ρ0,kσ(ω) = lim
δ→0+

− 1

π
Im[G0,kσ(ω + iδ)]

= lim
δ→0+

− 1

π
Im[

1

ω − εk + µ+ iδ
]

= lim
δ→0+

Lδ(ω − εk + µ)

= δ(ω − εk + µ),

(2.23)

so for a given k, the electron can only have energy εk. ρk(ω) is thus given by
the bandstructure.

2.4 Dyson Equation

The interacting Green’s function, also called the dressed propagator, can be
written as an infinite sum of Feynman diagrams [4]. These sums can formally
be calculated, resulting in the Dyson equation

Gkσ(z) =
1

G0,kσ(z)−1 − Σk(z)
(2.24)

connecting the bare and the dressed Green’s function propagator. All inter-
actions are captured by the self-energy Σk(z) ∈ C. According to eq 2.22 the
dressed Green’s function reads

Gkσ(z) =
1

z − εk + µ− Σk(z)
. (2.25)

By using eq 2.13, the self-energy modify the spectral function to a Lorentzian

ρk(ω) =
1

π

− Im [Σk(ω)]

(ω − εk + µ− Re [Σk(ω)])2 + (− Im [Σk(ω)])2

= L− Im[Σk(ω)](ω − εk + µ− Re [Σk(ω)]).

(2.26)

Since the spectral function is non-negative, the imaginary part of the self-
energy needs to be non-positive. For sufficiently small self-energy the system
is a Fermi liquid with quasiparticles, where the real part of the self-energy acts
as a energy shift and the imaginary part broadens the peak in the spectral
function. The energy shift effectively renormalize the quasiparticle mass and
the peak-width is the inverse quasiparticle lifetime. For strong interaction is
the Fermi-liquid peak replaced by collective spectral weight.
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The self-energy itself is an infinite sum of all irreducible self-energy dia-
grams. A self-energy diagram is a Feynman diagram which can be inserted
into a particle line without having outgoing lines. If a self-energy diagram
can be divided into two unconnected self-energy parts it is called reducible,
if not it is irreducible. Once Σk(z) is known, the Green’s function is known.
Approximations of only including a certain irreducible self-energy diagrams
in Σk gives e.g. Hartree-Fock, Random Phase Approximation or the Ladder
Approximation [4]. In DMFT the self-energy is assumed to be momentum
independent. This approximation is exact for lattices with infinite number
of nearest lattice neighbors. More about this is found in chapter 4.

2.5 Local Green’s Function

By summing over all possible k values, a local Green’s function is obtained.
More precise, the local Green’s functionGσ(z) is defined as the spatial Fourier
transform of Gkσ(ω) for r = 0,

Gσ(z) = Gσ,r=0(z) =
1

Λ

∑

k

Gkσ(z)e
ik·0 =

1

Λ

∑

k

1

z − εk + µ− Σk(z)
(2.27)

where Λ is a normalization factor. This sum of single particle Green’s func-
tions is itself a Green’s function. Its spectral function is the effective local
DOS

ρ(ω) = −1

π
Im[G(ω + i0+)] =

1

Λ

∑

k

−1

π
Im[Gk(ω + i0+)] =

1

Λ

∑

k

ρk(ω).

(2.28)
We choose Λ = #k, with #k beeing the number of possible momentums, to
get a probability density interpretation of the local spectral function. The
non-interacting system, described by letting Σk(z) = 0, thus has local Green’s
function and corresponding spectral density of the form

G0(z) =
1

Λ

∑

k

1

z − εk + µ
(2.29)

ρ0(ω) =
1

Λ

∑

k

ρ0,k(ω) =
1

Λ

∑

k

δ(ω − εk + µ). (2.30)

ρ0(ω) is the DOS for the non-interacting system. Since the only momen-
tum dependence in eq 2.29 enters through εk, the momentum sum can be
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expressed as an integral over energy with weight ρ0(ω) ,

G0(z) =
1

Λ

∑

k

1

z − εk + µ
=

1

Λ

∑

k

1

z − (εk − µ
︸ ︷︷ ︸

ξk

)
=

∫ ∞

−∞
dξ

ρ0(ξ)

z − ξ
. (2.31)

This is actually just the Hilbert transform between a spectral function and
its corresponding Green’s function, see eq 2.8.
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Chapter 3

Hubbard Model

To describe interacting condensed matter systems, effective models which
simplify the full electronic structure problem but still capture the underlying
physics are used. Solving the Hamiltonian in eq 1.2 without any approxima-
tions is impossible. For strongly interacting condensed matter systems, the
electrons are localized in space around lattice sitesRi. This localization allow
us to approximate the matrix elements tij , Vijkl in eq 1.3,1.4. We choose a
basis set with one orbital per lattice site. If we neglect all off-diagonal corre-
lation terms (inter-orbital interactions) so only consider the often dominant
intra-orbital repulsion, we get

Vijkl ≈ Uδijkl (3.1)

so the interacting Hamiltonian reduces to

HI = U
∑

i

ni↑ni↓ (3.2)

where niσ = c†iσciσ is the occupation number operator. Double occupation
of one site therefore costs U in energy due to the simplified electron-electron
interaction. HI is diagonal in real space and hence tends to make the eigen-
states of the full Hamiltonian local in real space.

The hopping overlap element tij will be small for orbitals far away from
each other so it is restricted to only nearest neighbors,

tij ≈ −tδ〈ij〉 (3.3)

so
H0 = −t

∑

〈ij〉,σ

(c†iσcjσ + h.c.). (3.4)
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This kinetic energy part is diagonal in momentum space and hence tries to
make the eigenstates local in momentum space. This implies extended states
in real space.

The total Hamiltonian is thus

H = H0 +HI = −t
∑

〈ij〉,σ

(c†iσcjσ + h.c.) + U
∑

i

ni↑ni↓. (3.5)

This is the Hubbard Model which was proposed in 1963 to study interacting
electrons in narrow bands [5]. U

t is the only free parameter, determining the
localization tendency of the electrons. For U = 0, the electrons are free to hop
between neighboring sites and the Hamiltonian reduce to the Tight-Binding
model which is diagonalized by Fourier transformation,

H0 = −t
∑

〈ij〉,σ

(c†iσcjσ + h.c.) =
∑

kσ

εkc
†
kσckσ (3.6)

where the dispersion of the non-interacting electrons is

εk = −t
d
∑

〈0,j〉

e−ik·Rj (3.7)

and d is called the coordination number and represent the number of nearest
neighbors. Given εk, the non-interacting spectral function ρ0 is easily cal-
culated from eq 2.30. If t → 0 the dispersion becomes flat, i.e. momentum
independent. The Hamiltonian is diagonal in real space with the eigenvalues
separated by U .

U t

Figure 3.1: The Hubbard model on a square lattice with hopping parameter
t and local interaction parameter U .

In this thesis half-filling is considered. For a finite U the ground-state
is an anti-ferromagnetic insulator and for U = 0 a metal. However this
is often a pathology of the rough approximations of only nearest neighbor
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hopping. Therefore a paramagnetic solution is required in the calculations.
Then a first order transition exists at low temperatures between a metallic
(for low U) and an insulating (for high U) phase [6]. For weak interaction,
the system is a Fermi liquid metal with dominating quasiparticle excitations.
In the insulating regime collective magnetic excitations are present. Their
lifetimes are increasing when lowering the interaction strength U [7]. The first
non-temperature driven Metal to Insulator Transition (MIT) was proposed
by Nevill F. Mott in 1945 and is therefore called the Mott-transition [8].
Half-filling (i.e. one electron per site on average) is obtained by letting the
chemical potential

µ =
U

2
. (3.8)

For the non-interacting case the chemical potential is thus zero but for any
finite interaction µ is finite. The Dyson equation, relating the non-interacting
and interacting propagator, in eq 2.24 is for a constant µ. Hence it needs to
be modified since µ change for the half-filled Hubbard model

Gkσ(z) =
1

G0,kσ(z)−1 + µ− Σk(z)
. (3.9)

The local Green’s functions and corresponding spectral functions for the
paramagnetic half-filled Hubbard model thus reads

G0(z) =
1

Λ

∑

k

1

z − εk
(3.10)

G(z) =
1

Λ

∑

k

1

z − εk + µ− Σk(z)
(3.11)

ρ0(ω) = −1

π
Im[G0(ω + i0+)] =

1

Λ

∑

k

δ(ω − εk) (3.12)

ρ(ω) = −1

π
Im[G(ω + i0+)]. (3.13)

By having the chemical potential µ = U
2 the system has electron-hole sym-

metry. This implies that the spectral function ρ(ω) will be an even function.
A consequence is that the Matsubara Green’s function is purely imaginary
since eq 2.7 can be rewritten as

G(iνn) =

∫ ∞

−∞
dω

−ω

ω2 + ν2
n

ρ(ω)

︸ ︷︷ ︸

odd

+ i

∫ ∞

−∞
dω

−νn
ω2 + ν2

n

ρ(ω)

︸ ︷︷ ︸

even

. (3.14)
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−1 10
ω

ρ0(ω)

Figure 3.2: Non-interacting spectral function for a Bethe lattice.

Analytic continuation to the real axis can thus be done by matching with
just Im[Gn] or an extended version of the spectral function,

ρ(iνn) = −1

π
Im[G(iνn)] =

∫ ∞

−∞
dωLνn(ω)ρ(ω) (3.15)

where Lνn(ω) is Lorentzian centered at ω = 0 with characteristic width νn.
In principle, one way of solving the Hubbard model is to use a local basis:

{|↑〉, |↓〉, |↑↓〉, |0〉} and diagonalize the hamiltonian. Due to the exponential
growth of the number of basis states, 4N , as function of lattice site N , this
can only be done when N is small. Since the thermodynamic limit N → ∞
is of interest, DMFT is a better choice. It becomes exact when d → ∞.

3.1 Bethe Lattice

The non-interacting system’s eigenvalues, given by eq 3.7, depends on the
lattice structure. The DOS for a hyper-cubic lattice becomes gaussian when
d → ∞ [6]. Another structure is the Bethe lattice (Cayley tree). It is not
really a lattice but a graph where all sites have d neighbors. If one site is
removed the graph is divided into d graphs. It can be divided into two groups
so that all neighboring sites are from the other group. The Bethe lattice is
commonly used because of the properties of its non-interacting DOS ρ0(ω).
ρ0(ω) has a finite bandwidth when d → ∞. Low dimensional lattices usually
have a finite bandwidth so the Bethe lattice can be seen as a approximation
of such a lattice. It also allows the local, momentum independent, Green’s
function, in eq 3.11, to be calculated in a closed form, which simplifies the
DMFT equations. For infinite d, bandwidth W = 4t and a renormalized
hopping t → t√

d
, the DOS is [9]

ρ0(ω) =

{
2
π

√

1−
(
2ω
W

)2
, if |ω| < W

2 ,

0, otherwise
(3.16)

22



Figure 3.3: Bethe lattice for coordination number d = 3.

This semi-circular DOS, see figure 3.2, is thus the solution to the Hubbard
model on a Bethe lattice for U = 0. The corresponding Green’s function
G0(z) becomes according to the Hilbert transform in eq 2.8

G0(z) =
8

W 2
(z − sgn(Im[z]))

√

z2 − W 2

4
. (3.17)
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Chapter 4

Dynamic Mean Field Theory
(DMFT)

DMFT is a many-body method that maps the original lattice problem to
an impurity problem which is easier to solve. This mapping is exact for
lattices with infinite coordination number. The impurity model parameters
a priori are not known, but get a self-consistent equation that normally is
solved by fixpoint iteration. The converged Green’s function is the wanted
lattice Green’s function. This chapter uses the Hubbard Hamiltonian, eq 3.5,
on a Bethe lattice. DMFT can be used for other models and lattices, e.g.
multi-orbital and multi-impurity sites.

As mentioned earlier, the hopping term is appropriately scaled t → t√
d

when taking the limit of d → ∞. For Hamiltonians with only local in-
teraction, only local dressed skeleton diagrams contribute in the standard
diagrammatic expansion with this scaling. This causes the total self-energy
Σ to be momentum independent [7, 10],

Σk(z) −→
d→∞

Σ(z), (4.1)

which in real space mean that the self-energy is completely local Σij(z) =
Σ(z)δij . For a finite d this is an approximation, neglecting the spatial fluc-
tuations. But, as in classical MFT, becomes more accurate as the number
of neighbors increase. For a lattice with low d, the DMFT approximation is
thus questionable in principle.

The expression of the interacting local lattice Green’s function in eq 3.11
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simplifies when the self-energy becomes momentum independent,

G(z) =
1

Λ

∑

k

1

z − εk + µ− Σ(z)
=

1

Λ

∑

k

1

(z + µ− Σ(z)
︸ ︷︷ ︸

x

)− εk

=

∫ ∞

−∞
dε

ρ0(ε)

x− ε
.

(4.2)

Given the bare spectral function ρ0(ω) and the self-energy Σ(z), the inter-
acting Green’s function can thus be calculated. The mapping of the lattice
to the impurity problem is described next.

4.1 Single Impurity Anderson Model (SIAM)

The SIAM describe one impurity site coupled to a set of conducting fermionic
bath sites [11]. One representation of the Hamiltonian is

H = Un↑n↓
︸ ︷︷ ︸

local

+
∑

i,σ

εiniσ

︸ ︷︷ ︸

bath

+
∑

i,σ

Vi

(

c†iσcσ + h.c.
)

︸ ︷︷ ︸

mix

(4.3)

with εi bath site i’s energy, U local electron repulsion, cσ (nσ) annihilation
(number) operator for the impurity site, ciσ (niσ) annihilation (number) op-
erator for bath site i and Vi coupling parameter between impurity and bath
site i. The chemical potential µ is still µ = U

2 but acts only on the impurity
site.

The hybridization function ∆(z) captures the effect of the bath states
coupling to the impurity. It is given by

∆(z) =
∑

i

V 2
i

z − εi
(4.4)

and acts like a self-energy for the local non-interacting Green’s function due
to the bath coupling

g0(z) =
1

z −∆(z)
. (4.5)

For the impurity problem, the interaction is only on one site. The dressed
propagator from the impurity site to the impurity site,g, is expressed through
g0 and the impurity self-energy, σ, in the impurity Dyson equation

g(z) =
1

g−1
0 (z) + µ− σ(z)

. (4.6)
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Figure 4.1: The lattice problem and the associated SIAM.

Inserting the hybridization expression of g0 from eq 4.5 gives

g(z) =
1

z + µ−∆(z) − σ(z)
. (4.7)

There exists many methods that approximately solve a SIAM, so g is ob-
tained, for a given hybridization function ∆ and local impurity parameters
U and µ. Methods solving a SIAM usually are called impurity solvers. Many
different impurity solvers exist. Diagonalizing the Hamiltonian and use the
Lehmann representation to calculate g(z) is called Exact Diagonalization
(ED). Due to the exponential scaling of the number of sites, only systems
with moderate number of bath sites can be solved. But g(z) becomes known
for all z in the upper half-plane so the spectral function can directly be cal-
culated without any analytic continuation. Rewriting the Hamiltonian to
a linear chain form, with exponentially decreasing coupling parameters, al-
lows a iterative treatment which is called Numerical Renormalization Group
(NRG). Other commonly used impurity solvers are QMC algorithms. They
require finite temperature. SIAMs with arbitrary many bath sites can be
solved because the hybridization function, not the bath-site parameters Vi, εi,
is needed as input data. But a big drawback is that the Green’s function can
only efficiently be calculated in the imaginary domain. Therefore an analytic
continuation from G(τ) is necessary to get ρ(ω). In this thesis Continuous
Time Quantum Monte Carlo (CTQMC) is used, see section 4.3.
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4.2 Self-Consistent Equation

The mapping of the lattice problem onto a SIAM is the core of DMFT [9], see
figure 4.1. There is one SIAM such that the dressed impurity site’s Green’s
function g(z) and local self-energy σ(z) obey

G(z) = g(z) (4.8)

Σ(z) = σ(z). (4.9)

This can be shown either by observing that exactly the same local dressed
diagrams occur in the two systems or by a cavity construction of the action
[6, 7]. The bare local Green’s function, g0(z), is however unknown (g0(z) +=
G0(z)).

The two Dyson equations 4.2,4.6 together with the mapping equations
4.8,4.9 and the impurity solver forms a set of coupled equations that can be
used to obtain the 5 unknown functions G, g, g0,Σ, σ. For a fix ρ0, T and
U , the 5 coupled equations are usually solved self-consistently in a iterative
fashion, see figure 4.2,:

1. Make an initial guess of the non-interacting impurity Green’s function
g0.

2. Solve the SIAM using e.g. ED or CTQMC.

3. Use the obtained impurity self-energy σ as lattice self-energy, σ → Σ,
eq 4.9.

4. Σ inserted in the lattice Dyson equation 4.2 gives the dressed lattice
Green’s function G.

5. The mapping equation 4.8 is then used G → g

6. A new version of g0 is now calculated using the impurity Dyson equation
4.6.

Steps 2-6 are repeated until convergence is reached.

4.2.1 DMFT on a Bethe Lattice

For some special bare lattice DOS, ρ0(ω), the self-consistent iteration scheme
can be simplified. We will now present the simplified DMFT iteration scheme
for a semielliptical ρ0, eq 3.16, corresponding to the Bethe lattice with z →
∞. For this lattice, neglecting the momentum dependence for the self-energy
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g0,initial g0 Impurity solver σ

ΣGgg0

eq 4.9

eq 4.2eq 4.8eq 4.6
converged?

Figure 4.2: DMFT iteration cycle for a general lattice.

is not an approximation. One can also view our system as a translational
invariant lattice with a semielliptical bare DOS. If this lattice has d += ∞,
the locality of the self-energy is an approximation. For this particular bare
DOS the integral in eq 4.2 is evaluated to

G(z) =
8

W 2

(

x(z)− sgn(Im[x(z)])

√

x(z)2 − W 2

4

)

(4.10)

where x(z) = z + µ − Σ(z). The bandwidth W work as an energy reference
and without loss of generality we set W = 2, such that

G(z) = 2
(

x(z) − sgn(Im[x(z)])
√

x(z)2 − 1
)

. (4.11)

By letting x = z one obtain the non-interacting Green’s function in eq 3.17.
Expression 4.11 obeys

1

4
G +

1

G
= x. (4.12)

This expression combined with the impurity Dyson equation 4.6, G = g and
Σ = σ gives a direct coupling between the interacting and non-interacting
impurity Green’s function,

g0(z) =
1

z − 1
4g(z)

. (4.13)

This simplifies the DMFT loop, see figure 4.3, to:

1. Make an initial guess of the non-interacting impurity Green’s function
g0.

2. Solve the SIAM using e.g. ED or CTQMC.

3. Insert the obtained Green’s function g into the self-consistency equation
4.13 to get a new version of g0.
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g0,initial g0 Impurity solver g
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Figure 4.3: DMFT iteration cycle when using the Bethe lattice.

Uc1(T )
Uc(T )

Uc2(T )

T

U

metal insulator

Figure 4.4: Sketch of the paramagnetic Hubbard model’s phase diagram [6].
Uc(T ) shows the thermodynamic first-order transition line. Uc1(T ) (Uc2(T ))
indicate border where insulating (metallic) DMFT solutions can be found.

Steps 2-3 are repeated until convergence is reached. In order to suppress
the anti-ferromagnetic phase in the Hubbard model, spin averaging is done
between step 2 and 3 in each iteration g = 1

2(g↑ + g↓). In DMFT get a
hysterysis region in the (U, T )-phase diagram where both a metallic and an
insulating solution exist, see figure 4.4. The solution with the lowest free
energy is the equilibrium phase.

4.3 Continuous Time Quantum Monte Carlo
(CTQMC)

To calculate the interacting Green’s function g of a SIAM different CTQMC
algorithms can be used. We will here just briefly sketch the ideas of how
to obtain the Green’s function in the imaginary domain, i.e. g(τ), g(iνn) or
legendre coefficients Gl. The impurity model is specified by the partition
function [12]

Z =

∫

D(c†, c)e−Seff (4.14)
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where the effective action is

Seff = −
∫ β

0

∫ β

0

dτdτ ′
∑

σ

c†σ(τ)g
−1
0 (τ−τ ′)cσ(τ

′)+

∫ β

0

dτUn↑(τ)n↓(τ) (4.15)

and g0(τ) is the Fourier transform of the Matsubara Green’s function

g0(iνn) =
1

iνn −∆(iνn)
. (4.16)

In the Continuous Time Hybridization (CT-HYB) algorithm, the hybridiza-
tion function ∆ is used as a perturbation parameter to expand the partition
sum Z. This algorithm approximates the hybridization but treats the inter-
actions exact, making it useful for strongly interacting systems. The configu-
rations to be summed over are C = ({σ1, τ1, τ ′1} , {σ2, τ2, τ ′2} , ..., {σn, τn, τ ′n}),
where n is the (variable) number of segments of occupied fermion states and
σj , τj , τ ′j denotes the spin, endtime and starttime for segment j. The proba-
bility weight for a configuration C,used in the QMC Markov chain, is |w(C)|
where w(C) essentially is the trace of the configuration, Tr

(∏n
i=1 c

†
σi
(τi)cσi(τ

′
i)
)

,
times the determinant of the hybridization matrix ∆σiσj (τi − τ ′j). The parti-
tion function and the average of an arbitrary function f(C) are

Z =
∑

C

w(C) (4.17)

〈f(C)〉 = 1

Z

∑

C

f(C)w(C). (4.18)

The Green’s function is the functional derivative of Z with respect of the
hybridization function

G(τ) = − 1

Z

∂Z

∂∆(τ)
. (4.19)

4.3.1 Legendre Polynomials

The MC sampling of the Green’s function in imaginary time can be done
using a finite Legendre polynomial basis. Instead of measuring the values
of the Green’s function at discrete imaginary times, Legendre polynomial
coefficients are calculated. It is a compact representation since the main
features are captured with a few Legendre polynomials. By using a finite
number of polynomials, high frequency features are suppressed, and therefore
it works as an efficient statistical noise filter [12]. Expanding G(τ) for τ ∈
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[0, β] in Legendre polynomials Pl(x), where x ∈ [−1, 1], gives

G(τ) =
∞
∑

l=0

Gl

√
2l + 1

β
Pl(2

τ

β
− 1) (4.20)

Gl =
√
2l + 1

∫ β

0

dτPl(2
τ

β
− 1)G(τ). (4.21)

Setting this equal to the Hilbert transformation expression in eq 2.9, then
multiplying with Pl′ and integrating over [0, β] gives

Gl =

∫ ∞

−∞
dωρ(ω)

∫ β

0

dτ
−
√
2l + 1Pl(2

τ
β − 1)e−τω

1 + e−βω

︸ ︷︷ ︸

kl(ω)

. (4.22)

By using the fact that
∫ 1

−1 dxPl(x)e−ax = 2iljl(ia) where jl is the spherical
Bessel function, the kernel kl(ω) is evaluated to

kl(ω) =
−
√
2l + 1βile−

βω
2 jl(i

βω
2 )

1 + e−βω
. (4.23)

kl is real for all l. For even l, kl is even and non-positive and for odd l, kl is
odd. Hence for an even spectral function, Gl = 0 for odd l and non-positive
for even l.

4.4 Simulations

The DMFT calculations for the Bethe lattice, sampling Legendre coefficients,
were performed with the TRIQS project [13] according to figure 4.3. TRIQS
implements the theory in the articles [12, 14, 15]. Since G(iνn) and Gl are
coefficients in a basis expansion of G(τ), changing from one basis represen-
tation to the other is straightforward. Different U is considered to obtain
a MIT. It is done for β = 150 and G(iνn) is plotted. But first we analyze
calculations for U = 4 and β = 100.

The DMFT convergence is shown in figure 4.5 for U = 4 and β = 100. As
starting point the interacting Green’s function G is chosen to be equal to the
non-interacting Green’s function G0. The norm of the change of Gl, with Gl

seen as a vector with lmax elements, after one DMFT iteration is measured as
a function of the iteration number. lmax = 80 and 16 parallel processes, each
with Nc = 106 cycles and 200 QMC-steps within one cycle, are used in the
QMC impurity solver. One measurement per cycle is done and for burn-in
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Figure 4.5: Convergence of legendre cofficients as function of
DMFT-iteration number i.

Nc
10 cycles extra are performed. The DMFT self-consistent equations converge
fast to a plateau. Due to statistical noise and a finite number of Legendre
coefficients total convergence is not reached. If the norm of the change of Gl

reaches 10−3 is the DMFT fixpoint iteration considered to be converged.

A finite number of Legendre coefficients, lmax, are used since they are
expected to decrease faster than any power of 1

l [12]. The number lmax

shall be sufficiently big so G(τ) can be well represented but low enough to
suppress statistical noise from rapidly oscillating Legendre functions. For
a given bare Green’s function propagator, the QMC measurements of the
different Legendre coefficients are independent of each other. So a given
coefficient Gl is independent of the total number of Legendre coefficients
lmax. But in DMFT the calculated Green’s function is used to calculate a
new bare Green’s function. This makes different Gl values dependent of lmax.
Simulations with the same settings as above but for different lmax are done.
The lmax dependence for three different Legendre coefficients is shown in
figure 4.6. The error-bars are standard deviations of converged DMFT-data.
The coefficient values for lmax = 110 is removed to be able to visualize the
three Gl-values in the same figure. For lmax ≥ 50, Gl is saturated within the
statistical noise.

Variations of Gl, for even l, between converged DMFT-iterations are seen
in figure 4.7. We notice that the standard deviations are independent of l and
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Figure 4.6: Convergence of Gl as function of lmax is reached for
lmax = 50.
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Figure 4.7: Standard deviations of the DMFT solutions for even l.

lmax except for the calculation using lmax = 30. Hence, for 50 < lmax < 110 do
we expect to get good results and variations of the same order of magnitude.

The correlation length, see section 5.2.1, is calculated to investigate if Gl

from different DMFT iterations are correlated with each other. Since the
correlation length τ is lower than one, see figure 4.8,Gl from different DMFT
iterations are independent. Gl for odd l are not shown since they are not
used in the analytic continuation.

U = 1, 2, 2.5, 4 for β = 150 are also studied. The temperature is low
enough so the system is within the coexistence region of the (U, T ) phase
diagram for U = 2.5. The DMFT settings are the same as above except for
U = 2.5 where 160 instead of 16 parallel process are used. The number of
Legendre coefficients is lmax = 80. After DMFT fixpoint convergence, Ni >
20 additional DMFT iterations are performed. Hence Legendre coefficients
Gl,i and Fourier coefficients Gn,i, where i ∈ {1, 2, ..., Ni}, are obtained. This
allow us to estimate the standard deviations of Gl and Gn, which are used
in MEM. The Legendre coefficients for even l are seen in figure 4.9. The
corresponding Matsubara Green’s function G(tau) and its Fourier coefficients
Gn are seen in figures 4.10 and 4.10. The known non-interacting systems
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Figure 4.8: Correlation between different DMFT-iterations for Gl.

Green’s function, see section 3, is added in the figures for comparison. Due
to anti-periodicity and Gσ(τ = 0−) = # electrons on average with spin σ per
site, half-filling is verified.

Since ρ(0) = − 1
π ImG(i0+), the Fourier values tell us if a system is metal-

lic or insulating. U = 0, 1, 2, 2.5 thus give us a metal and U = 2.5, 4 give us
an insulator within DMFT.

An improvement, which was not implemented due to lack of time, would
be to put Gl = 0 for odd l in every DMFT iteration step. This would improve
the accuracy in the step where the new bare Greens’ function is calculated.

Next chapter will be about how to perform the analytic continuation of
the CTQMC calculated Green’s functions in figures 4.9 and 4.10.
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Figure 4.9: Legendre coefficients for β = 150.
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Figure 4.10: Green’s function G(iνn) for β = 150.
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Chapter 5

Maximum Entropy Method
(MEM)

MEM is a general method for solving inverse problems. Until section 5.8,
MEM is therefore discussed for a general inverse integral problem. The an-
alytic continuation, using the Hilbert transformation in eq 2.7, is an inverse
integral problem since the Green’s function is easy to calculate on the imag-
inary axis given it’s values on the real axis, but not the other way around.
In section 5.8 the specific kernels used for the analytic continuation are sum-
marized. The obtained spectral functions, using some of these kernels, are
presented in section 5.9.

An integral inverse problem is of the form

Gi = Gi[ρ] =

∫

dωki(ω)ρ(ω) , for i ∈ {1, 2, ..., NG} (5.1)

where ρ is the wanted unknown function, Gi is a set of NG known values
and ki(ω) is a known kernel. The brackets around ρ indicate that Gi is a
functional of the function ρ.

Unfortunately the kernels for the analytic continuation, like many inverse
problems, are extremly ill-posed. This mean that small changes in G cor-
respond to big changes in ρ. Another way of formulating the diffuculties
is that there exist many ρ configurations with the same G. Actually an
infinite-dimensional manifold of solutions that satisfies eq 5.1 exists if NG is
finite [16]. We are thus required to somehow select one solution from this
manifold. There are many ways to do that. In MEM it is done by maximizing
the information entropy for the spectral function [17].

Another issue which makes the inverse problem even harder is that one
usually does not have infinite accuracy of the input data G. This is the
case for the analytical continuation problem where the Green’s function for
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imaginary argument is measured by a Monte Carlo average and therefore has
statistical noise [14]. Let’s call this measured data G̃.

MEM view the spectral function ρ as a probability distribution. A proba-
bility density functional is constructed, saying the likeliness for every spectral
function. This functional consists of two parts. The first include how much
Gi, in eq 5.1, deviate from the measured input data G̃, where

∆Gi = G̃i −Gi[ρ]. (5.2)

The second part is what makes MEM special. This factor of the functional
takes into account the probability of every spectral function from an entropic
point of view. The construction of the functional is done using Bayesian logic.

5.1 Bayesian Inference

In the construction of finding the most likely spectral function, Bayes’ theo-
rem is used. For two stochastic variables A and B it says [18]

P[A = a, B = b] = P[A = a|B = b] P[B = b] = P[B = b|A = a] P[A = a]
(5.3)

where P[A = a, B = b] is the joint probability for A = a and B = b and
P[A = a|B = b] is the conditional probability of A = a given B = b. Let’s
us use the short-form notation P[a] for P[A = a] in the rest of the thesis. By
simply integrating out one of the variables in eq 5.3 one gets

P[a] =

∫

db P[a, b]. (5.4)

For normalized distributions,

1 =

∫

da P[a] (5.5)

1 =

∫

da P[a|b]. (5.6)

An initial guess of how to solve an inverse problem might be to get an ex-
pression for a probability functional P[ρ|G̃] and then average over all possible
ρ. It is actually what you do in MEM but with the functional

P[ρ|m, G̃] (5.7)

where m = m(ω) is a Lebesgue measure of the distribution-space for ρ [17].
m(ω) is often called the default model because it is the MEM solution in
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the absence of input data. The choice of the default model is hence an a
priori guess of the spectral function. Effectively it works as a way of im-
plementing prior knowledge about the spectral function, e.g. normalization,
characteristic features. This is explained more in section 5.3.

For a given default model m and a measured input data G̃ the MEM
solution to the inverse problem is given by

〈ρ〉(m, G̃) =

∫

DρP[ρ|m, G̃] ρ. (5.8)

It is important to keep in mind that the function 〈ρ〉(m, G̃) is ω-dependent
even if not expressed explicitly in the above formula.

A positive hyper-parameter α is introduced in MEM to balance between
maximizing the entropy and making the difference in eq 5.2 small. By using
first eq 5.4 and then eq 5.3, P[ρ|m, G̃] can be expanded into

P[ρ|m, G̃] =

∫ ∞

0

dαP[ρ,α|m, G̃] =

∫ ∞

0

dαP[α|m, G̃] P[ρ|α, m, G̃]. (5.9)

Inserting eq 5.9 into eq 5.8 gives

〈ρ〉(m, G̃) =

∫ ∞

0

dαP[α|m, G̃]

∫

DρP[ρ|α, m, G̃] ρ
︸ ︷︷ ︸

〈ρ〉(α,m,G̃)

. (5.10)

Notice that 〈ρ〉(α, m, G̃) is the average distribution for ρ given α, m and
G̃. This function is then just averaged over α with the probability weight
P[α|m, G̃].

But the posteriori distributions with respect to G̃, P[α|m, G̃] and P[ρ|α, m, G̃]
are still unknown. The rest of this section describes how they can be deter-
mined using Bayesian rules. We start with the joint probability distribution
for ρ, α, m and G̃ and apply the Bayesian rule in eq 5.3 repeatedly

P[ρ,α, m, G̃] = P[G̃|ρ,α, m] P[ρ,α, m]

= P[G̃|ρ,α, m] P[ρ|α, m] P[α, m].
(5.11)

We note that P[ρ|α, m] is the a priori distribution for ρ. It is very impor-
tant and in MEM determined by the entropy, see section 5.3.

Another very important observation is that P[G̃|ρ,α, m] has the inverse
conditioning to the original distribution, in eq 5.7, for ρ and G̃. It is thus
a likelihood function, saying the probability of G̃ given ρ, depending on the
differences in eq 5.2. α and m does not influence the likelihood function so
P[G̃|ρ,α, m] = P[G̃|ρ]. The likelihood function is investigated in section 5.2.
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Let’s now assume the entropic prior P[ρ|α, m] and the likelihood function
P[G̃|ρ] are known. Expanding the joint distribution P[ρ,α, m, G̃] again, using
the Bayesian rule, gives

P[ρ,α, m, G̃] = P[ρ,α, m|G̃] P[G̃] = P[ρ,α|m, G̃] P[m|G̃] P[G̃]

= P[ρ|α, m, G̃] P[α|m, G̃] P[m|G̃] P[G̃].
(5.12)

Combining now eq 5.11 and 5.12 gives

P[ρ|α, m, G̃] =
1

Zρ
P[G̃|ρ] P[ρ|α, m] (5.13)

where the likelihood function and the entropic functional are the last two
factors. Zρ = Zρ(α, m, G̃) = P[α|m, G̃] P[m|G̃] P[G̃]/P[α, m] is just a nor-
malization factor and does not depend on ρ. By using that P[ρ|α, m, G̃] is a
normalized Probability Density Function (PDF) and integrating eq 5.13 over
ρ gives the partition sum

Zρ =

∫

DρP[G̃|ρ] P[ρ|α, m]. (5.14)

By combining eq 5.13 and 5.14 we get a useful expression for calculating
〈ρ〉(α, m, G̃) defined in eq 5.10

〈ρ〉(α, m, G̃) =
1

Zρ

∫

DρP[G̃|ρ] P[ρ|α, m] ρ. (5.15)

What is left in MEM now is just an expression for P[α|m, G̃] so eq
5.10 can be evaluated. Using the Bayesian rule again: P[ρ,α, m, G̃] =
P[ρ,α, G̃|m] P[m]. Combine it with eq 5.11 gives

P[ρ,α, G̃|m] =
1

P[m]
P[G̃|ρ] P[ρ|α, m] P[α, m]. (5.16)

The posteriori distribution for α thus reads

P[α|m, G̃] =

∫

DρP[ρ,α|m, G̃] =

∫

Dρ
P[ρ,α, G̃|m]

P[G̃|m]
=

P[α, m]Zρ

P[m] P[G̃|m]
.

(5.17)

α and m are a priori uncorrelated: P[α, m] = P[α] P[m] so eq 5.17 simplifies
to

P[α|m, G̃] =
1

P[G̃|m]
P[α]Zρ (5.18)
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where P[G̃|m] works just as a normalization parameter when P[α|m, G̃] is
used in eq 5.10. Both P[α] and Zρ depend on α and are described in detail
in section 5.5.

One can also check how likely a certain default model is by calculating
P[m|G̃]. It is done by integrating eq 5.18 over α;

P[G̃|m] =

∫ ∞

0

dαP[α]Zρ (5.19)

and using eq 5.3, resulting in

P[m|G̃] =
P[m]

P[G̃]

∫ ∞

0

dαP[α]Zρ. (5.20)

Since the normalization evidence P[G̃] is unknown and can’t be calculated,
eq 5.20 can only be used for comparison of different default models [19].

5.2 Likelihood function

If the input data G̃i, i ∈ {1, 2, ..., NG} are assumed to be averages of Ns

measurements,

G̃i =
1

Ns

Ns∑

k=1

G̃i,k, (5.21)

G̃i will due to the central limit theorem become gaussian distributed as Ns →
∞. The likelihood function then reads

P[G̃|ρ] = 1

ZL
e−

χ2

2 (5.22)

with the normalization factor

ZL =

∫ NG∏

i=1

dG̃i e
−χ2

2 (5.23)

where χ2 depends on the kernels ki(ω) and if G̃i,k and G̃i′,k′ are correlated.
Let’s at first assume no correlations between G̃i,k and G̃i,k′ for k += k′. For

a MC measurement, e.g. the one described in section 4.3, this means that
the correlation length is zero. This is never the case for a MC Markov chain
but can be achieved by e.g. binning analysis, see section 5.2.1 [2]. We also
assume no correlations between different observables at the same step in the
Markov chain, thus G̃i,k and G̃i′,k for i += i′ are uncorrelated. Actually the

45



collected data presented in section 4.4 are not from a single Markov chain
but from many chains put together forming a DMFT-chain. This is why the
correlation length in figure 4.8 are almost zero. If G̃i is real, the kernel ki(ω)
is real and χ2 is given by

χ2 =
NG∑

i=1

(∆Gi)
2

σ2
i

(5.24)

where ∆Gi is the difference between G̃ and G and σi is the standard deviation
for G̃i. The likelihood is then just a multivariate gaussian distribution [19]
with normalization

ZL =
NG∏

i=1

∫ ∞

−∞
dG̃i e

− 1
2

∆G2
i

σ2
i =

NG∏

i=1

√
2πσi = (2π)

NG
2

NG∏

i=1

σi. (5.25)

If ki(ω) is generalized to being complex, G̃i ∈ C and χ2 is instead given by

χ2 =
NG∑

i=1

|∆Gi|2

σ2
i

. (5.26)

The likelihood is still just a multivariate gaussian distribution but for twice
as many variables. Its normalization is

ZL = (2π)NG

NG∏

i=1

σ2
i . (5.27)

For correlated G̃i,k, methods for creating uncorrelated observables are
needed, see section 5.2.1.

5.2.1 Correlations

There are two possible types of correlations of the data G̃i,k. Chain corre-
lations can effectively be eliminated by binning analysis. The other issue is
that different observables can be correlated (within the same chain step). It
is solved by diagonalizing the covariance matrix.

Binning Analysis

Given a set of eventually correlated samples O(0)
i , with i ∈ {1, 2, ..., N}, from

a distribution, the auto correlation length τ can be estimated by iteratively
creating new sets of data according to

O(l)
i =

1

2

(

O(l−1)
2i−1 +O(l−1)

2i

)

, for i ∈
{

1, 2, ..., Nl ≡
N

2l

}

. (5.28)
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These bin values becomes less correlated as l increases, even if the mean value
remains the same. The correlation length is [2]

τ =
1

2

(

σ2

Var[O0
i ]

N

− 1

)

(5.29)

where σ is the standard deviation of the mean value of O0
i , which can be

approximated by the binning values

σ2 = lim
l→∞

Var[O(l)
i ]

Nl
. (5.30)

Diagonalization Analysis

Diagonalization analysis generalizes χ2 in eq 5.24 to

χ2 =
NG∑

i=1

NG∑

j=1

∆GiC
−1
i,j ∆Gj (5.31)

where C is the hermitian covariance matrix, measuring the variance of each
data point G̃i individually but also how they are correlated with each other.
The element Ci,j is an estimator for the covariance of the mean values G̃i

and G̃j

Ci,j =
1

Ns(Ns − 1)

Ns∑

k=1

(

G̃i − G̃i,k

)(

G̃j − G̃j,k

)

. (5.32)

The diagonal terms Ci,i = σ2
i contains the uncorrelated part. If we ignore the

off-diagonal elements, eq 5.31 reduces to eq 5.24. The generalized expression
for the likelihood normalization factor ZL reads [19]

ZL = (2π)
NG
2

√
detC. (5.33)

By diagonalizing C, in eq 5.32, the correlated χ2 can be written in the
form of eq 5.24. Start by diagonalize C,

U−1CU =








σ′2
1 0 . . . 0
0 σ′2

2 . . . 0
...

...
. . .

...
0 0 . . . σ′2

NG








, (5.34)

where U is an unitary matrix. By inserting

C−1
i,j =

NG∑

a=1

NG∑

b=1

Ui,a
1

σ′2
a

δa,bU
−1
b,j (5.35)
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into eq 5.31, get

χ2 =
NG∑

a=1

( NG∑

i=1

U−1
a,i ∆Gi

) 1

σ′2
a

( NG∑

j=1

U−1
a,j∆Gj

)

. (5.36)

By defining the rotated variables

∆G′
i =

NG∑

j=1

U−1
i,j ∆Gj (5.37)

G̃′
i =

NG∑

j=1

U−1
i,j G̃j (5.38)

G′
i =

NG∑

j=1

U−1
i,j Gj , (5.39)

χ2 is finally expressed as

χ2 =
NG∑

i=1

(∆G′
i)
2

σ′2
i

(5.40)

with ∆G′
i = G̃′

i −G′
i.

5.3 Entropic Prior

The MEM is characterized by the choice of the prior PDF. It shall incorporate
all prior knowledge of the spectral function. Since the spectral function
is viewed as a PDF it should be normalized and non-negative. There are
different statistical inference arguments [20], [21] that the prior should have
the form

P[ρ|α, m] =
1

ZS
eαS[ρ] (5.41)

with S the information theory entropy, defined by

S[ρ(ω)] =

∫ ∞

−∞
dω

(

ρ(ω)−m(ω)− ρ(ω) ln(
ρ(ω)

m(ω)
)

)

. (5.42)

The normalization factor, ZS, reads

ZS(α) =

∫

Dρ. (5.43)
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m(ω) is the default model incorporating all prior knowledge. The entropy
is non-positive and maximized for ρ = m. The regularization parameter
α determines the relative importance between minimizing the least square
fit χ2 and maximizing the entropy S. For α = 0 we have no entropy, so
P[ρ|α, m, G̃] ∝ P[G̃|ρ], thus only fitting to input data. If α → ∞, so
P[ρ|α, m, G̃] ∝ P[ρ|α, m], the optimal spectral function is m. See section
5.5 for the choice of α.

If we have no prior knowledge, a flat m(ω) is a good choice. But if we
have an idea of how the solution may look like, this should be implemented
by setting m equal to the guess. The choice will bias the spectral function
towards m. With a default model of more structure than there actually
exist, this bias may lead to wrong solutions. One can also choose a flat
default and use the MEM solution as a new default model. By iterating, this
will eventually converge to the right answer. This sounds promising but the
risk is that the default model develops non-existing features which will be
enforced by the MEM [22].

Other prior PDFs, which also take into account that ρ(ω) should be a
smooth function, has been proposed, which can be achieved by a factor

∫ ∞

−∞

(
∂ρ(ω)

∂ω

)2

dω. (5.44)

In order to calculate the normalization factor ZS in eq 5.43, discretization
of ω-space is needed. Let’s use Nω points ωi and approximate the entropy as

S ≈
Nω∑

i=1

fi

(

ρi −mi − ρi log
ρi
mi

)

(5.45)

where fi are the integral weights. We choose the same metric as in [19], thus

Dρ =
Nω∏

i=1

1
√

ρi/fi
dρi. (5.46)

A convenient variable substitution is

∂ρi
∂xj

=
√

ρi/fi δij (5.47)

such that

Dρ =
Nω∏

i=1

1
√

ρi/fi
dρi =

Nω∏

i=1

dxi. (5.48)
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Hence, the normalization factor ZS in 5.43 becomes

ZS(α) =

∫

Dρ eαS[ρ] =

∫ Nω∏

i=1

dxi e
αS(x) =

Nω∏

i=1

∫ ∞

0

dxi e
αfi

(

ρi−mi−ρi log
ρi
mi

)

.

(5.49)
The integrals are approximated by Taylor expanding the exponent in xi

around x′
i, where x′

i correspond to ρi equal to mi,

αfi

(

ρi −mi − ρi log
ρi
mi

)

≈ −α
1

2
(xi − x′

i)
2. (5.50)

This is a good approximation if α > 1, so that only values of xi close to x′
i

contribute in eq 5.45. To get a simple form we assume e−
α
2 x

′2
i << 1, negative

values can then also safely be integrated. The gaussian integrals give

ZS(α) ≈
Nω∏

i=1

∫ ∞

−∞
dxi e

−α 1
2 (xi−x′

i)
2
=

(

2π

α

)Nω
2

. (5.51)

5.4 Q Functional Minimization

Now the likelihood function and the entropic functional are known so 〈ρ〉(α, m, G̃),
in Eq 5.15, can be studied in detail. We define the functional

Q[ρ] =
χ2[ρ]

2
− αS[ρ] (5.52)

with χ2 equal to eq 5.24 if ki(ω) is real and eq 5.26 if ki(ω) is complex. S is
defined in eq 5.42. We have

P[G̃|ρ] P[ρ|α, m] =
1

ZLZS
e−Q[ρ] (5.53)

and

Zρ =
1

ZLZS

∫

Dρ e−Q[ρ]. (5.54)

Hence we can write

〈ρ〉(α, m, G̃) =
1

∫

Dρ e−Q[ρ]

∫

Dρ e−Q[ρ] ρ. (5.55)

Here e−Q[ρ] is expected to have a sharp maximum, and in MEM one therefore
approximates

e−Q[ρ] ∝ δ(ρ̂α − ρ) (5.56)
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where min
ρ

Q[ρ] = Q[ρ̂α]. This reduces the problem of averaging over all ρ to

just finding the one that minimizes Q, thus

〈ρ〉(α, m, G̃) ≈ ρ̂α. (5.57)

The MEM spectral function solution, see eq 5.10, to the inverse problem is
approximately

〈ρ〉(m, G̃) =

∫ ∞

0

dαP[α|m, G̃] ρ̂α (5.58)

where P[α|m, G̃] is described in detail in section 5.5.
To justify the approximation in eq 5.56 we have to discretize the ω-space

as was done in section 5.3. Using a Taylor expansion of Q around ρ̂α, let x̂α

correspond to ρ̂α and ∆xi = xi − x̂α,i, thus

Q(x) ≈ Q(x = x̂α) +
Nω∑

i=1

∆xi
∂Q(x)

∂xi

∣
∣
∣
x=x̂α

+
1

2

Nω∑

i=1

Nω∑

j=1

∆xi∆xj
∂2Q(x)

∂xi∂xj

∣
∣
∣
x=x̂α

.

(5.59)
The derivatives are

∂Q(x)

∂xi
=

∂Q(ρ)

∂ρi

∂ρi
∂xi

(5.60)

∂2Q(x)

∂xi∂xj
=

∂2Q(ρ)

∂ρi∂ρj

∂ρi
∂xi

∂ρj
∂xj

+
∂Q(ρ)

∂ρi

∂2ρi
∂xi∂xj

(5.61)

Since Q(ρ) is maximal at ρ = ρ̂α is ∂Q(ρ)
∂ρi

∣
∣
∣
x=x̂α

= 0. By using this and eq 5.47

get

Q(ρ) ≈ Q(ρ̂α) +
1

2

Nω∑

i=1

Nω∑

j=1

∆xi∆xj

√

ρ̂αi/fi

√

ρ̂αj/fj
∂2Q

∂ρi∂ρj

∣
∣
∣
ρ=ρ̂α

. (5.62)

To get an explicit expression of the second derivative of Q, we write ∆Gi in
its discretized version,

∆Gi = G̃i −
Nω∑

n=1

Kinρn, (5.63)

where Kin = kinfn = ki(ωn)fn. K is a matrix of dimension NG ×Nω.
If ki(ω) ∈ R, the second order derivative of Q is equal to

∂2Q

∂ρi∂ρj
= α

fi
ρi
δij +

NG∑

n=1

KniKnj

σ2
n

. (5.64)
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For the general case with ki(ω) ∈ C, instead get

∂2Q

∂ρi∂ρj
= α

fi
ρi
δij + Re[

NG∑

n=1

K∗
niKnj

σ2
n

]. (5.65)

Inserting the real version of the second derivative into the taylor expansion
in eq 5.62 gives

Q(ρ) ≈ Q(ρ̂α) +
1

2

Nω∑

i=1

Nω∑

j=1

∆xi∆xj

(

αδij +
√

ρ̂αi/fi

√

ρ̂αj/fj

NG∑

n=1

KniKnj

σ2
n

)

︸ ︷︷ ︸

T̂ij

(5.66)
and the general complex version is

Q(ρ) ≈ Q(ρ̂α)+
1

2

Nω∑

i=1

Nω∑

j=1

∆xi∆xj

(

αδij +
√

ρ̂αi/fi

√

ρ̂αj/fj Re[
NG∑

n=1

K∗
niKnj

σ2
n

]

)

︸ ︷︷ ︸

T̂ij

.

(5.67)
This may be conveniently expressed in matrix notation

Q(ρ) ≈ Q(ρ̂α) +
1

2
∆xT T̂∆x. (5.68)

The validity of eq 5.56 is hence determined by the eigenvalues of T̂ . Big
eigenvalues indicate a sharp minimum and makes the approximation of only
considering the minimum value of Q reasonable. It is also computationally
easier to find a well-defined minimum.

Before discussing how to minimize Q in order to solve the inverse problem,
the problematic nature of the inverse problem is mentioned. By setting the
left hand side of equation 5.63 to zero, for a well behaved matrix K one could
just invert the matrix to get ρi. This is what MEM will try to do in order to
minimize Q if α = 0. Unfortunately this is not possible since the condition
number of K for a typical analytic continuation problem is huge. The diffi-
culties of the analytic continuation can also be seen from the fact that the
rank (number of independent columns) of K is lower than Nω. Regulariza-
tions are usually used for ill-conditioned problems, introducing assumptions
of the solution to obtain a unique solution and prevent overfitting. MEM
can thus be viewed as a regularization technique where the default model is
used to introduce known information of the solution.
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5.4.1 Discretization Approach

MEM is about minimizing Q[ρ]. We can do that approximately by using
the same ω-space discretization as earlier. This reduces the problem from
finding a continuous function to finding a finite number of unknown variables.
Q becomes a function of Nω variables instead of a functional. The minimum
is found by setting the gradient of Q(ρi) to zero.

For ki(ω) ∈ R the equations to solve are

0 =
∂Q

∂ρi
= −

NG∑

n=1

∆Gn

σ2
n

Kni + αfi log
ρi
mi

, for i ∈ {1, 2, 3, ..., Nω} (5.69)

and for ki(ω) ∈ C they are

0 =
∂Q

∂ρi
= −Re[

NG∑

n=1

∆Gn

σ2
n

K∗
ni] + αfi log

ρi
mi

, for i ∈ {1, 2, 3, ..., Nω} (5.70)

The number of degrees of freedom is independent of the number of match-
ing values so that one can have more variables than input data. This is not
possible even for a well-posed problem unless regularization (i.e. MEM) is
introduced. More ωi points gives better approximation of the continuation
integral in 5.1. But as Nω/NG increases, the importance of the entropy in-
creases. It can therefore be useful to have a more dense ω spacing just in
certain important ω-intervals, e.g. where the spectral function is expected
to have sharp features. A finite ω interval has to be used, so one needs to
estimate ωmax where ρ(|ω| > ωmax) ≈ 0. The discretization of ω points and
the type of discrete integration method is somewhat arbitrary. None of this
is present with the functional approach, see section 5.4.2

Integral Discretization Error

The discretization error of

∫ ∞

−∞
dωki(ω)ρ(ω) ≈

Nω∑

j=1

kijρjfj (5.71)

depends on the shape of the unknown function ρ(ω), the kernels ki(ω), the
number of ω-points and the numerical integration method fj . For rapidly
oscillating functions a dense ω grid is required in order to suppress this error.
There are many different numerical integration techniques. In this thesis the
Trapezoidal method is used. It is exact if the integrand is a piecewise linear
function. Call the discretization error σi,disc. To avoid overfitting, due to
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neglection of this error, we here propose that the standard deviations in the
likelihood function should be modified to

σ2
i = σ2

i,MC + σ2
i,disc (5.72)

The statistical MC noise and the discretization error are assumed to be in-
dependent. σi,disc depends on the unknown function ρ(ω). If we use MEM
for σi = σi,MC and use an analytic function, similar to the solution, one
can estimate the discretization error. This factor becomes relevant when
σi,disc ≥ σi,MC. For accurate input data σi,MC is the dominant error term.

5.4.2 Functional Approach

In this section, the functional Q is minimized by setting its functional deriva-
tive to zero [23]. This leads to a set of NG non-linear equations to solve. For
simplicity, the kernel k is first assumed to be real and later the general case
is given.

For ki(ω) ∈ R, the minimum of Q is found by

0 =
δQ

δρ
=

1

2

δχ2

δρ
− α

δS

δρ
= −

NG∑

i=1

∆Gi

σ2
i

ki(ω) + α log
ρ(ω)

m(ω)
(5.73)

which gives

ρ(ω) = m(ω) exp
( NG∑

i=1

1

α

∆Gi

σ2
i

︸ ︷︷ ︸

λi

ki(ω)
)

(5.74)

where λi is dependent of the unknown ρ(ω). One gets a self-consistent set of
equations for λi by using the definition of ∆Gi

λi =
1

α

∆Gi

σ2
i

=
1

ασ2
i

(

G̃i −
∫ ∞

−∞
dωki(ω)ρ(ω)

)

=
1

ασ2
i

(

G̃i −
∫ ∞

−∞
dωki(ω)m(ω) exp

( NG∑

i=1

λiki(ω)
)
)

.

(5.75)

These NG equations can be solved by a standard non-linear solver. The
solution,

ρ(ω) = m(ω) exp
( NG∑

i=1

λiki(ω)
)

, (5.76)

is a continuous positive function. If α → ∞ all λi → 0. This means that by
increasing the importance of the entropy the solution converges to the default
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model. On the other hand α → 0 or σi → 0 turns eq 5.75 into ∆Gi = 0. If
one would use eq 5.75 as an ansatz, insert it in Q, and minimize by λi we
would obtain the same set of equations to solve.

If exact input data is given, ∆Gi = 0 is desired. Another functional
Q′, called the Least Biased [23], maximizes the entropy and implements the
requirements through Lagrange multipliers λi.

Q′ = S +
NG∑

i=1

λi∆Gi (5.77)

Maximizing Q′ gives the same ansatz as eq 5.76. The Lagrange multipliers
λi are determined by requiring ∆Gi = 0. So this gives the same result as
ordinary functional approach MEM if either all σi → 0 or α → 0. The Least
Biased method is thus a special case of MEM.

If ki(ω) ∈ C, the procedure is the same as for ki(ω) ∈ R,

0 =
δQ

δρ
=

1

2

δχ2

δρ
− α

δS

δρ
= −

NG∑

i=1

Re[∆G∗
i ki(ω)]

σ2
i

+ α log
ρ(ω)

m(ω)
(5.78)

which gives

ρ(ω) = m(ω) exp
( NG∑

i=1

Re[
1

α

∆G∗
i

σ2
i

︸ ︷︷ ︸

λi

ki(ω)]
)

. (5.79)

λi is now complex and obey

λi =
1

α

∆G∗
i

σ2
i

=
1

ασ2
i

(

G̃∗
i −

∫ ∞

−∞
dωk∗

i (ω)ρ(ω)

)

=
1

ασ2
i

(

G̃∗
i −

∫ ∞

−∞
dωk∗

i (ω)m(ω) exp
( NG∑

i=1

Re[λiki(ω)]
)
)

.

(5.80)

5.5 Hyper-parameter α

To complete the MEM the PDF P[α|m, G̃] for the hyper-parameter α is
needed. By combining eq 5.18 with 5.54 and insert the Taylor expansion of
Q from eq 5.68 we get

P[α|m, G̃] =
P[α]

P[G̃|m]

1

ZLZS

∫

Dρ e−(Q(ρ̂α)+ 1
2∆xT T̂∆x)

=
P[α]

P[G̃|m]

e−Q(ρ̂α)

ZLZS

∫ Nω∏

i=1

dxi e
− 1

2∆xT T̂∆x.

(5.81)
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Figure 5.1: A typical probability distribution of the entropy pa-
rameter α.

For the kernels defined in section 5.8, T̂ is a positive-definite matrix [19].
The inverse to a positive-definite matrix is also positive-definite [24]. The
integrand is therefore a well-known multivariate gaussian so

P[α|m, G̃] =
P[α]

P[G̃|m]

e−Q(ρ̂α)

ZLZS

(2π)
Nω
2

√

det T̂
. (5.82)

P[α] is usually taken to be a constant. P[α] ∝ 1
α is called the Joffreys

prior [17]. In this master-thesis project the two priors gave almost the same
MEM result. P[G̃|m] is unknown but is constant since G̃ and m are fixed.
In pratice we let P[G̃|m] = 1. The α integral is discretized and the finite
number of P[α|m, G̃] values are normalized to one. The distribution is almost
always skewed, an example is seen in figure 5.1.

There exist several versions of MEM and the one presented is usually
called the Bryan’s method [25]. The early versions of MEM picks one α-
value by some rules instead of average using eq 5.82. In what is called
Historic Maximum Entropy, α is choosen so that χ2 = 1

2NG [19]. That
makes the deviation ∆Gi of the same order of magnitude as the noise σi. It
is a good approach to avoid overfitting with the data. Overfitting creates
spurious features in the spectral function. The Classic Maximum Entropy
method uses the α which maximize the posteriori distribution P[α|m, G̃].
This usually gives a closer fit to the input data than Historic Maximum
Entropy [19]. If P[α|m, G̃] is sharply peaked at some α, this method gives
the same result as the Bryan’s method. But if P[α|m, G̃] has a broad peak,
Bryan’s method will average over many ρ̂α solutions instead of only picking
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one. Unphysical oscillations is an artifact in all MEM [26]. They are less
present if a solution average, as in Bryan’s method, is used.

5.6 Batch Averaging

To remove unphysical oscillations in the calculated ρ(ω), batch averaging
can be used [26]. Normally the input data G̃i,j , i ∈ {1, 2, ..., NG} and j ∈
{1, 2, ..., Ns}, is averaged over all j so get

G̃i =
1

Ns

Ns∑

j=1

G̃i,j. (5.83)

G̃i is then used as input to the inverse integral problem. Instead G̃i,j can be
divided into Nb batches. Averaging is performed within each batch, yielding
G̃i,batchb

for b ∈ {1, 2, ..., Nb}. MEM is used for each batch average, and the
obtained ρbatchb(ω) are finally averaged

ρ(ω) =
1

Nb

Nb∑

b=1

ρbatchb
(ω). (5.84)

5.7 Stochastic Sampling of the Likelihood Func-
tion

In this section we briefly mention a method similar to MEM. It uses Bayesian
inference but with another a priori probability distribution for ρ. The trick
of introducing an entropic prior makes the posterior distribution sharply
peaked around some spectral function. That choice favors spectrums with
high entropy. If one instead uses the likelihood function and as a priori
knowledge only that the spectral function must be non-negative, no bias
towards some spectrums is introduced.

P (ρ|G) =
P (G|ρ) · P (ρ)

P (G)
∝
{

P (G|ρ) ∝ exp(−χ2

2 ) if ρ(ω) ≥ 0 ∀ω
0 otherwise

(5.85)

However this distribution contains many different local maximums with χ2 ≈
0. With statistical noise on the input data (in our case the Matsubara Green’s
function) these solutions are usually not smooth. Instead one can calculate
the mean spectrum by sample spectrums from Eq. 5.85 and then the average
of them [27], [22]. With a discretized representation of the spectral function
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the sampling over the high-dimensional space is advantageously done by MC.
In order not to get trapped in some local maximum simulated-annealing can
be applied.

5.8 Analytic Continuation Kernels

So far MEM has been described for any inverse integral problem. For the
analytic continuation the integral kernels are, from eq 2.7,2.9,4.23,

kνn(ω) =
1

iνn − ω
, for νn = (2n− 1)

π

β
with n ∈ Z

kτ (ω) =
−e−ωτ

e−βω + 1
, for τ ∈ (0, β)

kl(ω) =
−
√
2l + 1βile−

βω
2 jl(i

βω
2 )

1 + e−βω
, for l ∈ N0.

(5.86)

Since the half-filled Hubbard model has particle-hole symmetry, thus ρ(−ω) =
ρ(ω), G(iνn) is purely imaginary according to eq 3.14. Continuation from
Im[G(iνn)] can therefore be done with the kernel

kνn(ω) =
−νn

ν2
n + ω2

, for νn = (2n− 1)
π

β
with n ∈ N. (5.87)

If using the Legendre coefficients Gl, the particle-hole symmetry reduces the
continuation conditions from l ∈ N0 to even l. Due to the particle-hole
symmetry, calculating ρ(ω) for ω ≥ 0 is sufficient, halving the degrees of
freedom in the discretization approach.

Once a kernel is chosen, the number of input values, NG, for the continu-
ation has to be determined. The analytic continuation from imaginary time
has a problem that τ is not discrete. Arbitrariness is hence introduced when
picking NG discrete times. This kind of choice is not present when G(τ) is
expressed in its Fourier coefficients G(iνn) or Legendre coefficients Gl. But
still a cut-off of the number of coefficients are needed. The Fourier coeffi-
cients G(iνn) decay slow, G(iνn) ∝ 1

νn
for large n, so the cut-off is somewhat

arbitrary. The Legendre coefficients Gl are expected to decay exponentially
fast and NG = 50 usually seem to be sufficient.

5.9 Simulations

This section is divided into three parts. First, implementation issues for
all simulations are first presented. Secondly, we investigate the performance
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of MEM as an analytic continuation method for Green’s functions. The ob-
tained spectral functions using MEM, corresponding to the DMFT calculated
Matsubara Green’s functions are finally presented.

When minimizing Q, both with the discretization and functional ap-
proach, MEM boils down to solving a set of (non-linear) equations. These
equations are solved with MATLAB’s built-in methods fmincon and fsolve.
In all presented simulations the discretized version of MEM is used. The
primary reason is because it was computationally easier to solve the dis-
cretization equations than those from the functional approach.

The norm of ρ is indirectly influenced by the default model and the input
data. A strict normalization condition could be introduced in the a priori
distribution, but it was found to be unnecessary. ρi ≥ 0 ∀i ∈ {1, 2, ..., Nω}
are constrains in the Q minimization to ensure that the spectral function is
non-negative.

A finite ω-window is used and ωmax is chosen so that ρ(ωmax) ≈ 0. The
MEM solutions was weakly dependent of the ω-mesh. In this report a loga-
rithmic mesh defined by Nω, ωmax and a distribution parameter γ is used [26].

A flat default model is used except for when different default models are
compared, see figure 5.5.

5.9.1 Tests of MEM

To test MEM four cases are studied. A spectral function is chosen and by the
Hilbert transformation the Matsubara Green’s function is obtained. MEM
tries to retrieve the original spectral function from the exact Matsubara val-
ues G(iνn). σ is chosen to be the same for all νn but change between different
simulations. An average of spectral functions, not plotted but obtained from
Matsubara data with added gaussian noise of strength σ, and the spectral
function obtained using exact data and the same σ were very similar. The
chosen spectral functions are normalized to one and described only for ω > 0
since we study only even spectral functions.

High Energy Independence

All the Matsubara time and frequency kernels decay as a function of ω. This
mean that the high energy parts of the spectral function contributes less than
for small ω. For large ω, the imaginary time kernels kτ (ω) ∝ exp(−τω) and
are exponentially decaying since τ ≥ 0. To veryify these arguments a simple
spectral function is created and Matasubara data is used in the analytical
continuation, see figure 5.2. As expected the lowest energy peak is found
and the high energy peak gets smeared out by MEM. The exact spectral
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Figure 5.2: Spectral functions obtained for different σ.

function was chosen to be a sum of three Lorentzians positioned around
0.5, 1 and 2 each with width 0.1. We use a flat default model, a logarithmic
grid with Nω = 121, ωmax = 15 and γ = 0.5, β = 100 and νmax = 10 in this
simulation. The slow decay of Lorentzians, ∝ 1

ω2 , obliges a high ωmax. Using
high σ-values, the entropic prior will dominate over the likelihood function
so spectral functions, biased towards the flat default model, are obtained.

Featureless Spectral Function

The analytic continuation works well, as expected, for smooth and featureless
spectral functions i.e. a gaussian, see figure 5.3. In this and the following
two tests, ωmax = 4. Otherwise the same ω-mesh, β and νmax as above are
used.

Sharp Hubbard Peak

In order to see if our MEM algorithm is expected to be able to extract an
eventual inner side peak to the Hubbard band [7,28], a known trial spectral
function is used. It is chosen with a gaussian centered at ω = 1 with width
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Figure 5.3: Spectral functions obtained for different σ.

0.06 and another gaussian centered at ω = 2 with width 0.5. Using MEM
for several values of σ, get smeared out spectral functions, see figure 5.4. No
peak is obtained for σ > 10−5, indicating high accuracy is required to resolve
sharp peaks.

Default Model

No unphysical peaks were observed in spectral function when a flat default
model was used in the test above. We understand this since MEM can be
seen to maximize the entropy under constrain of matching the input data.
In order to resolve sharp peaks with MEM, prior knowledge is needed i.e.
another default model should be used. Figure 5.5 shows an example of how
a good default model increases the accuracy of the MEM solver, using the
same spectral function as above. The two non-flat default models both have
gaussians with same centers as the exact ρ, but the sharp peak is broadened
by a factor 1.5 and 3 respectively. The probability weights P[m|G̃], from eq
5.20, are normalized to one to simplify comparison between the three default
models. The default model most similar to the exact spectral function got
the highest probability weight.
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Figure 5.4: Spectral functions obtained for different σ.

5.9.2 Spectral Functions for the Hubbard model

We use MEM to obtain ρ from the DMFT calculated Matsubara Green’s
functions for U = 1, 2, 2.5, 4 and β = 150. Continuation from even Legendre
coefficients G̃l,i and the imaginary part of the Fourier coefficients Im[G̃n,i],
where i is DMFT iteration number, are considered. To estimate the co-
variance between G̃l,i and G̃l′,i for l += l′, the number of converged DMFT-
iterations Ni should be larger than the number of observables NG [19]. But
even for Ni > 2 × NG some eigenvalues of the covariance matrix C became
zero, making MEM unusable. The same results were obtained for the Fourier
coefficients G̃n,i. Only σl and σn are therefore considered in the MEM algo-
rithm, and not the off-diagonal terms of the covariance matrices.

The same ω-mesh and νmax as above are used. No cut-off in the number
of Legendre coefficients are used, Gl for l ∈ {0, 2, 4, ..., lmax}.

For U = 1, an analytic continuation of 10 converged DMFT iterations
using Matsubara and Legendre kernel are seen in figure 5.6. The spectral
functions obtained from the Fourier coefficients vary more than those from
the Legendre representation, even though the mean spectrums are similar.
An underestimation of the varitiations of Gn, due to neglection of the full
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Figure 5.5: Obtained spectral functions together with correspond-
ing default models. σ = 10−6 is used.

covariance matrix, might be an explanation. In the rest of this section con-
tinuation is done only from Legendre coefficients. For each U , Legendre
coefficients from 10 converged DMFT iterations are separately continued.
The obtained spectral functions are averaged and the mean values are seen
in figure 5.7. When the interaction is increased from U = 0, the quasiparticle
peak around ω = 0 becomes sharper and finally disappears, illustrating an
interaction driven MIT. In Fermi liquid theory, el-el interaction enhances the
electron mass so get a smaller bandwidth i.e. sharper spectral density. The
insulator in some sense indicates a breakdown of the Fermi liquid. Worth no-
tice, ρ(0) is almost constant in the metallic phase. The small drop at U = 2.5
might be due to finite temperature. Figures 5.8, 5.9, 5.10 and 5.11 compare
the obtained ρ with zero temperature Dynamic-Density Matrix Renormal-
ization Group (D-DMRG) calculations [7]. For low interaction (U = 1 and
U = 2) the two methods give similar results. For the metallic solution at
U = 2.5, the sharp inner peak using D-DMRG is not obtained by MEM. The
insulating spectrums are similar but the outer Hubbard band is less sharp
using MEM. For U = 4 the obtained Hubbard band has a two-peak struc-
ture instead of a single peak. The conservative choice of a flat default model
should prevent unphysical features but the two peak structure might be an
artifact from underestimation of the QMC statistical noise. It could also be

63



ω

ρ(
ω
)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5.6: Spectral functions obtained from Matsubara (red) and
Legendre (black) representations of imaginary Green’s function for
10 different set of data. The thick lines are mean values.
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Figure 5.7: Spectral functions for different U and β = 150 obtained
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lators) to illustrate the MIT.

a MEM changeover artifact due to very sharp band edges.
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Figure 5.8: Spectral functions for interaction strength U = 1.
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Figure 5.9: Spectral functions for interaction strength U = 2.
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Figure 5.10: Spectral functions for interaction strength U = 2.5.
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Figure 5.11: Spectral functions for interaction strength U = 4.
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Chapter 6

Conclusion

We studied the Hubbard model using DMFT. The analytic continuation of
the Matsubara single-particle Green’s function was done with MEM. Parts of
the well-known DMFT two-solution region in the phase diagram for the para-
magnetic Hubbard model was observed. At least 50 Legendre polynomials
were needed to converge the Legendre coefficients when using the CT-HYB
algorithm.

The focus of this thesis was to investigate MEM. Test spectral functions
showed us that MEM usually produces smeared out spectral functions com-
pared to the exact one. This smearing was extra pronounced at high energies,
which is expected due to the analytic continuation kernels. Featureless spec-
tral functions were easy to obtain, even for low accuracy. For moderate
Matsubara accuracy, a very good default model was needed to improve the
spectral function obtained using a flat default model.

The analytic continuation of the DMFT Green’s functions was done di-
rectly from the sampled Legendre coefficients but also from the Fourier coeffi-
cients. Highly oscillating spectral functions were obtained from continuation
of Matsubara Fourier coefficients, due to underestimation of the statistical
error. The qualitative quasiparticle peak and the Hubbard bands were ob-
tained.

To easier obtain sharp features, PADE methods together with a maximum
entropy constrain might be useful. It would also be interesting to study
other models, i.e. the multi-band Hubbard model, or real materials using
LDA+DMFT approaches.
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Appendix A

Second Quantization

Assume that |fiσ〉, where i ∈
{

1, 2, ..., d2
}

is orbital index and σ ∈ {↑, ↓} is
spin, represents a basis in a Hilbert space H of dimension d. If we have N
distinguishable particles it’s Hilbert space can be spanned by states given by
the product of single particle states

|Ψ(N)
α 〉 = |fi1σ1〉1|fi2σ2〉2...|fiNσN 〉N =

N
∏

n=1

|finσn〉n (A.1)

where α = {i1σ1i2σ2...iNσN} is a super index containing all information
about the N particles. There are dN possible configurations so there are dN

orthonormal |Ψ(N)
α 〉. The dimension of the Hilbert space for N particles are

thus dN . This N -body Hilbert space H(N) is described by a tensor product
of N Hilbert spaces

H(N) =
N
⊗

n=1

Hn (A.2)

The exponential scaling of the Hilbert space with the number of particles
makes many-body quantum problems hard to solve exactly.

Indistinguishable particles have the property that exchanging two parti-
cles should leave the system unchanged up to a complex phase factor. This is
not necessary true for a state in eq A.1. For fermions this particle exchange
factor is −1. In order to make sure that this is fulfilled one can apply the
antisymmetrization operator S− on the many-body state |Ψ(N)

α 〉

|ΨA, (N)
n 〉 = S− |Ψ(N)

α 〉 ≡ NA

∑

p

sgn(p)|fip(1)σp(1)
〉1|fip(2)σp(2)

〉2...|fip(N)σp(N)
〉N

(A.3)
where n is a superindex containing all information of how occupied each single
particle states is, but not by which particles. An easier way of representing
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the antisymmetric state in equation A.3 is in the occupation number basis

|n〉 = |n1↑n1↓n2↑n2↓...nd/2↑nd/2↓〉 (A.4)

where niσ ∈ {0, 1} for fermions and is the occupation number for state |fiσ〉.
So far the particle number N has been fix. If the system is allowed

to have any particle number, the occupation number basis representation
becomes even more advantageous. This Hilbert space, called the Fock space,
is just the sum of antisymmetrized N -particle Hilbert spaces

HFock =
∞
⊕

N=0

S− H(N) (A.5)

To create, modify and destroy many-body states, the creation c†iσ and anni-
hilation ciσ operators are used. They obey the canonical anticommutation
relations

{

c†iσ, cjσ′

}

= δijδσσ′ (A.6)
{

c†iσ, c
†
jσ′

}

= {ciσ, cjσ′} = 0 (A.7)

The basis state in equation A.4 can be expressed by creation operators

|n〉 = |n1↑n1↓n2↑n2↓...nd/2↑nd/2↓〉 =
d/2
∏

i=1

∏

σ∈{↑,↓}

(

c†iσ

)niσ

|0〉

=
(

c†1↑

)n1↑
(

c†1↓

)n1↓
(

c†2↑

)n2↑
(

c†2↓

)n2↓
(

c†d/2↑

)nd/2↑
(

c†d/2↓

)nd/2↓

|0〉

(A.8)

Since the creation operators anticommute, see equation A.6, the ordering in
equation A.8 is important. Any ordering is possible but one has to decide
for one convention and then be consistent with that to avoid sign errors.

78


