
DF

Implementation of Iterative Learning
Control in an electric drive system
Master’s thesis in Systems, Control & Mechatronics

Filip Karlsson
Filip Lundberg

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Implementation of Iterative Learning Control
in an electric drive system

Filip Karlsson
Filip Lundberg

DF

Department of Electrical Engineering
Division of systems and control

Chalmers University of Technology
Gothenburg, Sweden 2020

Implementation of Iterative Learning Control in an electric drive system
Filip Karlsson
Filip Lundberg

© Filip Karlsson, 2020.
© Filip Lundberg, 2020.

Supervisor: Jonas Fredriksson, Department of Electrical Engineering
Examiner: Jonas Fredriksson, Department of Electrical Engineering

Master’s Thesis 2020
Department of Electrical Engineering
Division of systems and control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Implementation of Iterative Learning Control in an electric drive system
FILIP KARLSSON
FILIP LUNDBERG
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Windshield wiper systems have been an integral part of vehicle safety for a long
time. In dual motor wiper systems, synchronization is important to avoid the wipers
crashing into each other. One aspect of this is choosing and following motor speed
profiles such that required wiper frequency is acquired and crashing is avoided.

In this thesis, we propose a structured way for choosing speed profiles that fulfills the
requirements and an automated tuning scheme based on Iterative Learning Control
(ILC) for reference tracking. Different ILC algorithms are evaluated in both sim-
ulation and in experiments. To interface with the current system, a least-squares
splinefit method is used to downsample the updated reference curve.

The proposed method shows good performance in simulations and experiments.
However, both performance and computational aspects could be improved if the
splinefit method could be avoided. This would however require changing the under-
lying control system.

Keywords: iterative learning control, ILC, windshield wipers.

v

Acknowledgements
We would like to express our gratitude to Joel Strand, Jacob Fjellström and Daniel
Chädström, our supervisors at Aros Electronics for their excellent support and guid-
ance through the many ins and outs of the wiper system.

We would also like to thank Jonas Fredriksson, our examiner and supervisor at
Chalmers University of Technology, for his fantastic guidance throughout this the-
sis.

Filip Karlsson, Filip Lundberg, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Dual motor wiper system . 1
1.2 Purpose . 3
1.3 Aim and scope . 3
1.4 Limitations . 3
1.5 Thesis outline . 4

2 System modeling and trajectory generation 5
2.1 Plant model of the wiper system . 5

2.1.1 Modeling of linkage mechanism 5
2.1.2 Modeling of system dynamics 7
2.1.3 A model of the closed loop system 10
2.1.4 A linear model of the closed loop system 10
2.1.5 Model verification . 11

2.2 Choosing a non-clashing trajectory 13
2.2.1 Angular trajectory generation 13
2.2.2 Velocity trajectory generation 15

3 Iterative Learning Control 17
3.1 Introduction to iterative learning control 17

3.1.1 Lifted notation . 19
3.1.2 Assumptions in Iterative Learning Control 19

3.2 Heuristic Iterative Learning Control 20
3.3 Norm optimal Iterative Learning Control 21

3.3.1 A filter implementation of Norm optimal Iterative Learning
Control . 21

3.3.2 A recursive implementation of Norm optimal Iterative Learn-
ing Control . 22

3.4 RoFaLT . 23
3.5 Using iterative learning control with a limited number of setpoints . . 24
3.6 Sampling at constant angle intervals 25

ix

Contents

4 Evaluation of ILC algorithms 27
4.1 Simulation setup . 27
4.2 Algorithm tuning and stability . 27
4.3 Simulation results . 28

4.3.1 The effects of splinefit . 28
4.3.2 The effect of sampling at constant angle intervals 31

4.4 Choice of algorithm . 32

5 Experiments 33
5.1 Implementation in hardware . 33
5.2 Experimental results . 35

6 Discussion 39
6.1 The splinefit algorithm . 39
6.2 System use cases . 39
6.3 Choice of velocity references . 40

7 Conclusion 41
7.1 Future work . 41

Bibliography 43

A Model parameters I

x

List of Figures

1.1 Schematic overview of the wiper system. 2
1.2 Illustration of interpolation between speed setpoints in the wiper con-

trol system. The setpoints are marked with stars and the line illus-
trates the interpolated reference speed. 3

2.1 Four-bar linkage mechanism. 6
2.2 One of the wipers with definition. 8
2.3 The function ϕ(θ) and ∂ϕ/∂θ with the parameters from Table A.1. . 9
2.4 Simulated and measured response to a 24V step in motor voltage at

time t = 1. 12
2.5 Simulated step response of the closed loop system. A step and the

measured step responses are shown. 12
2.6 Schematic image of the wiper system with the points P1, P2 and P3

defined. The parameters L1,M1, L2,M1, L1,M2, L2,M2, αM1 and αM2 are
defined in Appendix A. 13

2.7 Motor angles θ1 and θ2 for the two wiper motors and the areas where
the wipers clash. The area where the wipers do not clash (d < 0) is
white. 14

2.8 Generated paths for four different values of b and the areas where the
wipers clash. 15

2.9 Calculated references r0,M1 and r0,M2 where Ω(t) is constant, b = 0.7
and the cycle time is 1.33 s. 16

3.1 A serial architecture of the ILC algorithm, with the feedback con-
troller C and plant P . 18

3.2 Illustration of the splinefit algorithm with periodic constraint. The
dense ILC reference rk and the fitted piecewise linear function are
shown. 25

3.3 A serial architecture of the ILC algorithm, with the splinefit algorithm
included. 26

4.1 Normalized error L2-norm vs iterations for the different algorithms.
The reference is given in Figure 2.9. 29

4.2 The reference tracking (in solid red) after ten iterations of ILC with
the different algorithms, as well as the tracking without ILC. The
target reference r0,M1 from Figure 2.9 is shown in dashed blue. 30

xi

List of Figures

4.3 The dense reference signal r30 (solid red), the target reference r0
(dashed blue) and the fitted correction signal (yellow with stars). . . 31

4.4 Normalized error L2-norm vs iterations for the different algorithms
with constant angle sampling and splinefit. The reference is given in
Figure 2.9. 32

5.1 A picture of the test rig. 33
5.2 A state machine describing the sampling and calculation process in

the microcontroller. The / denotes taking an action. 34
5.3 The L2-norm of the tracking error over 10 iterations using the heuris-

tic and the recursive algorithm. 35
5.4 Velocity reference tracking from an experiment in the test rig. Plots

are shown for iteration zero (before ILC) to iteration three. 36
5.5 Measurements of gearbox angles from two experiments in the test rig

for iteration 0 (before ILC) and iteration 3, together with the areas
where the wipers clash (red). 37

xii

List of Tables

4.1 Correction bounds for the correction parameters αk used in the Ro-
FaLT algorithm. 28

A.1 Model parameters used for the system I

xiii

List of Tables

xiv

1
Introduction

1.1 Background
Wiper systems have been around for a long time. The first patent for a window-
cleaning device was filed by Mary Anderson in 1903 [1]. This device was purely
mechanical and was operated by pulling a lever. Today, most vehicles are equipped
with a windshield wiper system driven by an electric motor. The windshield wipers
give the driver an unobstructed view in varying weather conditions and are therefore
essential from a safety perspective. Therefore, there is legislation that regulates
minimum requirements on how such systems should operate. For example, in the
European Union windshield wiper systems must be able to handle at least 45 sweeps
per minute [2].

Traditional wiper systems use a single DC-motor and complex mechanics to control
two wipers. This way, the two wipers are always synchronized and cannot clash
into each other. An alternative approach is to use two motors, one for each wiper,
and control the motion of each wiper individually. A dual motor system reduces the
mechanical design complexity, saves space in the vehicle and allows more complex
wiper configurations. When each wiper is controlled individually the wiping motion
must be synchronized by a controller such that the wipers do not collide.

Such a dual motor wiper system is the main concern of this thesis. The system is
used in several different bus models. Because each bus model has different mechanics
and mounting configurations, the controller must be tuned differently for each new
bus model. Today, this is a manual and time consuming process of adjusting a speed
profile for each wiper.

1.1.1 Dual motor wiper system
The dual motor windshield wiper system consists of two wiper arms. Each arm
is connected to an electric motor through a gearbox and a linkage. The linkage
converts the rotational motion of the motor shaft to a wiping motion of the arm.
This allows the motor to rotate in only one direction and still produce a back-and-
forth motion of the wiper. A schematic overview of the wiper system is presented
in Figure 1.1.

Both motors are controlled by the same microcontroller. The motors are sensorless
and the microcontroller estimates the motor speed and position by counting commu-

1

1. Introduction

ଵଶ

Control unit

Figure 1.1: Schematic overview of the wiper system.

tator pulses from the motor. There is also a sensor in the gear box that signals when
the wiper is in the home position. The speed and position estimates are sometimes
erroneous. Therefore, the position estimates are reset at the end of each sweep when
the home sensor is signaling.

The speed of each motor is controlled by a PI feedback controller. The reference
speed is provided by eight setpoints that are equally spaced over a full wiper sweep.
The reference speed to the feedback controller is then given by linear interpolation
between these setpoints at the estimated motor angle. The first setpoint specifies the
reference speed at sweep angle θ = 0 and the eighth setpoint specifies the reference
speed at the sweep angle θ = 7π/8. Between θ = 7π/8 and θ = 2π, the reference
speed is interpolated between the eighth and the first setpoint. This is illustrated
in Figure 1.2.

The speed profiles are not tracked perfectly by the speed controller. A reason for
this is that the motor is experiencing a varying load. The load varies over a wiper
sweep with the angle and the speed of the wiper blade. The load also varies over
time. For instance, the friction between the windshield and the wiper blade is highly
dependent on how wet the windshield is. Wear of the wiper blade and other parts
also affects the friction. In addition, the motor resistance varies with temperature.
Two buses of the same model may have slightly different properties due to varia-
tions in the manufacturing process. Different bus models may have different motors,
different mechanics, different wiper blades and different windshields. The mount-
ing configuration also varies between models, in some models the wiper system is
mounted upside-down above the windshield. All of these factors affect the dynamics
of the system. Thus, a set of speed profiles that work well on a particular bus may
therefore not work for a slightly different bus. Therefore, manual tuning is needed
for each new bus model.

2

1. Introduction

0 2

Figure 1.2: Illustration of interpolation between speed setpoints in the wiper con-
trol system. The setpoints are marked with stars and the line illustrates the inter-
polated reference speed.

1.2 Purpose
The purpose of this thesis is to develop a controller that reduces or removes the
need for individual tuning for new bus models.

1.3 Aim and scope
The aim of this thesis is to first find velocity profiles that ensure that the wipers
do not collide. These trajectory profiles should be usable for multiple bus models.
Secondly, the aim is to develop a controller that enables the system to track the
velocity profiles independent of some system uncertainties. The idea is to use the
cyclic behavior of windshield wiper systems to iteratively improve the tracking of the
speed profiles. This can possibly be done with a technique called iterative learning
control (ILC). The ILC algorithm should be implemented on the microcontroller
available in the current system. The developed algorithm will be tested in simulation
and then verified in a test rig.

1.4 Limitations
This thesis work is subject to a number of limitations.

• The current system uses a PI controller to follow velocity profiles. This con-
troller will be left as it is and will not be modified in the project. Instead, the

3

1. Introduction

ILC algorithm will modify the reference to the existing controller.

• In this thesis only ILC is investigated, other methods to improve the tracking
performance will not be considered.

• The available test rig has no windshield. The friction caused by the windshield
has a large effect on the system in a real application. This will be considered
in simulation but not verified in the test rig.

1.5 Thesis outline
In Chapter 2 we start of by modelling the system and its components. Then these
models will be used to reason about and calculate a clash-free trajectory for the
system.

In Chapter 3 the concept of iterative learning control (ILC) is introduced in a general
form and then the investigated algorithms are described.

In Chapter 4 the simulation environment used to investigate the algorithms is de-
scribed and simulation results are presented.

In Chapter 5 we describe some important considerations when implementing the
algorithms on a system with a microcontroller. We then present results from exper-
iments on the test rig and compare the results with the results from the simulations
in Chapter 4.

In Chapter 6 we discuss the results found in chapters 4 and 5 and their implications
on a system level.

In Chapter 7 final conclusions are made and some future work is suggested.

4

2
System modeling and trajectory

generation

In this chapter we start of by modeling the system and its components. Then
this model is used to reason about and calculate a clash-free trajectory for the
system.

2.1 Plant model of the wiper system
Below we will define the system in more detail, both for simulation and for control
design purposes.

2.1.1 Modeling of linkage mechanism
We start by deriving a kinematic relationship between the gearbox shaft angle θ
and the angle of the wiper blade ϕ. The wiper blade is connected to the gearbox
through a four-bar linkage mechanism in a crank and rocker configuration illustrated
in Figure 2.1. This allows the motor to rotate in only one direction and still produce
a back-and-forth motion of the wiper. It is possible to calculate the rocker angle
ϕ as a function of the crank angle θ by using the kinematic loop closure equation.
With `0, `1, `2, `3 and α defined as in Figure 2.1, the loop closure equation can be
written as

`0e
j0 + `3e

jϕ = `1e
jθ + `2e

jα. (2.1)

Taking the conjugate of (2.1) gives

`0e
−j0 + `3e

−jϕ = `1e
−jθ + `2e

−jα. (2.2)

Multiplying (2.1) and (2.2) and rearranging terms gives

`2
0+`2

1+`2
2−`0`1(ejθ+e−jθ)+`0`3(ejϕ+e−jϕ)−`1`3(ej(ϕ−θ)+e−j(ϕ−θ))−`2

2 e
j(α−α)︸ ︷︷ ︸

=1

= 0.

(2.3)
Then, using cosx = 1

2(ejx + e−jx) we get

2`0`3 cosϕ− 2`0`1 cos θ − 2`1`3 cos (ϕ− θ) + `2
0 + `2

1 + `2
3 − `2

2 = 0, (2.4)

5

2. System modeling and trajectory generation

Figure 2.1: Four-bar linkage mechanism.

which can be written as

K1 cosϕ−K2 cos θ +K3 = cos(ϕ− θ) , where

K1 = `0/`1

K2 = `0/`3

K3 = `20+`21−`22+`23
2`1`3 .

(2.5)

Equation (2.5) is the well-known Freudenstein’s equation [3] for four-bar mecha-
nisms. To solve for ϕ, (2.5) can be rewritten with the trigonometric identity

cos(x− y) = cos x cos y + sin x sin y

giving the form

K1 cosϕ−K2 cos θ +K3 = cosϕ cos θ + sinϕ sin θ . (2.6)

Using the tangent half-angle substitution

t = tan(ϕ2) =⇒

sinϕ = 2t
1+t2

cosϕ = 1−t2
1+t2

(2.7)

(2.6) becomes

K1
1− t2
1 + t2

−K2 cos θ +K3 = 1− t2
1 + t2

cos θ + 2t
1 + t2

sin θ (2.8)

which with some rearranging gives

At2 +Bt+ C = 0 , where

A = −K1 + (1−K2) cos θ +K3

B = −2 sin θ
C = K1 − (1 +K2) cos θ +K3

. (2.9)

Equation (2.9) can then be solved with the quadratic formula

ϕ(θ) = 2 arctan −B ±
√
B2 − 4AC
2A (2.10)

where a positive sign before the square root gives a so called open configuration on
the crank-rocker mechanism, which is what is used in the wiper system.

6

2. System modeling and trajectory generation

2.1.2 Modeling of system dynamics
In this section we will model the DC-motor, the gearbox and the wiper blade and
then use the kinematic relationship from Section 2.1.1 to create a model that relates
the applied motor voltage to the angular velocity of the motor.

The system can be split into two parts, one part that rotates and one part that
moves back-and-forth. The rotating part consists of the motor, the gear box and
parts of the linkage. The back-and-forth moving part consists of the wiper arm and
parts of the linkage.

First, we will model the motor and the gearbox. The system has two identical
brushed DC-motors with integrated gearboxes. As such, a standard DC-motor
model is used

Lm
di(t)

dt = uA(t)−Rmi(t)− ψωm(t)

τm = ψi(t) ,
(2.11)

where Lm is the motor inductance, Rm is the motor resistance, uA is the applied
motor voltage, i is the motor current, ψ is the torque constant, ωm is the motor
speed and τm is the motor torque. We then define the speed of the shaft at the
output of the gearbox as

ω = 1
NGB

ωm , (2.12)

where NGB is the gear ratio.

A torque that corresponds to friction in both gearbox and motor is modeled as being
proportional to the gearbox speed

τmf = −bmω . (2.13)

The combined mass of the back-and-forth moving part is modeled as a point mass
mϕ at a distance r from the rotational center of the wiper arm as shown in Figure 2.2.
Gravity acts on the point mass, this corresponds to the force

Fg = mϕg, (2.14)

where g is the gravitational acceleration constant.

Further, a friction force Fwf acts on the wiper blade. The friction force is modeled
as being proportional to the speed of the wiper blade with a coefficient bw,

Fwf(θ, ω) = ϕ̇(θ, ω) · bw . (2.15)

Here, the angular velocity of the wiper blade ϕ̇ can be calculated from the velocity
of the gearbox shaft ω and the angle of the gearbox shaft θ,

ϕ̇(θ∗, ω) = ∂ϕ

∂θ

∣∣∣∣∣
θ=θ∗

ω. (2.16)

7

2. System modeling and trajectory generation

𝐹

𝜃,𝜔, �̇�

𝐽

𝜑, �̇�𝐽

𝐹

𝑟

Figure 2.2: One of the wipers with definition.

The forces Fg and Fwf are transferred through the wiper arm, the linkage and the
gearbox and experienced as torques at the motor shaft. The mechanical advantage
of the gearbox is constant while the mechanical advantage of the linkage varies with
the motor angle. From [3] we know that the ratio between the input and output
torque in a linkage or gearbox is given by

τout

τin
= ωin

ωout
, (2.17)

that is, the inverse ratio between the input and output angular velocities. It is then
clear that a torque τϕ applied at the back-and-forth-moving side of the linkage is
experienced as an equivalent torque τeq,θ at the motor shaft

τeq,θ(θ∗, τϕ) = 1
NGB

∂ϕ

∂θ

∣∣∣∣∣
θ=θ∗

τϕ . (2.18)

Then, the torque experienced at the motor from the friction force is given by

τwf(θ∗, ω) = − 1
NGB

∂ϕ

∂θ

∣∣∣∣∣
θ=θ∗
· Fwf(θ∗, ω) · r, (2.19)

or by inserting (2.15) and (2.16)

τwf(θ∗, ω) = − 1
NGB

(
∂ϕ

∂θ

∣∣∣∣∣
θ=θ∗

)2

· r · bw · ω. (2.20)

Similarly, for the gravity force Fg, we get

τg(θ∗) = − 1
NGB

∂ϕ

∂θ

∣∣∣∣∣
θ=θ∗
· Fg · r · cosϕ(θ∗). (2.21)

8

2. System modeling and trajectory generation

0 2

-1

0

1

2

3

Figure 2.3: The function ϕ(θ) and ∂ϕ/∂θ with the parameters from Table A.1.

Notice that the friction torque always has opposite sign compared to the motor
velocity. This means that the friction always has a braking effect on the motor.
In contrast, the sign of the gravity torque will change as ∂ϕ/∂θ changes sign. By
observing the sign of ∂ϕ/∂θ in Figure 2.3 and assuming that cosϕ < 0, one can
see that the torque caused by gravity will be working against the motor in the first
part of the sweep when the wiper is moving clockwise. When the wiper is moving
counter-clockwise on the other hand, the gravity torque will be accelerating the
motor and when the wiper changes direction the torque caused by gravity will be
zero. Obviously, τg will also be zero when cosϕ = 0, which might happen in some
mounting configurations.

Next, in order to complete the model it is necessary to consider the moment of
inertia from the two parts of the system. On the rotational side this is trivial, the
moment of inertia of the rotating part of the system is constant. We define the
constant Jθ which includes the moment of inertia of all rotating parts of the system.
The back-and-forth moving part is more interesting. While the moment of inertia
Jϕ is constant, the moment of inertia experienced by the motor will vary with the
motor angle due to the varying mechanical advantage of the linkage. Assuming no
losses in the linkage and gearbox, we know from [4] that the reflected moment of
inertia at the motor is given by

Jeq,ϕ(θ∗) =
(

1
NGB

∂ϕ

∂θ

∣∣∣∣∣
θ=θ∗

)2

Jϕ. (2.22)

Then, the system’s total moment of inertia is given by

Jtot(θ) = Jθ + Jeq,ϕ(θ). (2.23)

9

2. System modeling and trajectory generation

Now the complete model becomes

Lm
di(t)

dt = uA(t)−Rmi(t)− ψωm(t) (2.24a)

Jtot(θ(t))
dωm(t)

dt = ψi(t) + τmf(ω(t)) + τwf(θ(t), ω(t)) + τg(θ(t)) (2.24b)

dθm(t)
dt = ωm(t) (2.24c)

θ(t) = 1
NGB

θm(t) (2.24d)

ω(t) = 1
NGB

ωm(t). (2.24e)

This is clearly a nonlinear differential algebraic equation, which can easily be con-
verted to an ordinary differential equation by inserting (2.24d) and (2.24e) where
appropriate.

2.1.3 A model of the closed loop system
The system is controlled by a PI controller. In this section the model derived in
Section 2.1.2 will be extended to include the PI controller. We will then have a model
of the closed loop system, relating the speed reference and the motor speed. In the
real system there is also a current controller in parallel with the speed controller
that limits the motor voltage if too much current is drawn from the circuit. The
current controller will not be included in the simulation model.

With the speed reference defined as r(t), the integrated error as E(t) and the pro-
portional and integral gain of the PI controller as Kp and Ki, the closed loop model
can be formulated as

Lm
di(t)
dt

= uA(t)−Rmi(t)− ψωm(t) (2.25a)

Jtot(θ(t))
dωm(t)

dt = ψi(t) + τmf(ω(t)) + τwf(θ(t), ω(t)) + τg(θ(t)) (2.25b)

dθm(t)
dt = ωm(t) (2.25c)

θ(t) = 1
NGB

θm(t) (2.25d)

ω(t) = 1
NGB

ωm(t) (2.25e)

dE(t)
dt = r(t)− ωm(t) (2.25f)

uA(t) = Kp(r(t)− ωm(t)) +KiE(t). (2.25g)

2.1.4 A linear model of the closed loop system
The model derived in Section 2.1.2 is useful for simulation. However, for controller
design a simpler model is useful. The model (2.25) contains four derivatives, but

10

2. System modeling and trajectory generation

since Lm is small, (2.25a) can be reduced to an algebraic equation. Furthermore,
since θ(t) only appears in the non-linearities, (2.25c) is not needed. This leaves a
second order system. Therefore, a second order discrete time transfer function will
now be defined. The model was found using the system identification toolbox in
Matlab using step response data from the test rig. The input to the model is the
reference motor speed and the output is motor speed

ωm = Ĝωr. (2.26)

The identified model is

Ĝ(q) = 0.08249q−1 − 0.0817q−2

1− 1.88q−1 + 0.8807q−2 , (2.27)

where q is the time shift operator, i.e. x[t + i] = qix[t]. The sampling time is
0.01 s.

2.1.5 Model verification
In this section the models derived in sections 2.1.2, 2.1.3 and 2.1.4 are verified.
A step response is simulated in Simulink for each model and then the results are
compared to measurements from the test rig. The model parameters used in the
simulations are given in Appendix A.

First, the open-loop model from Section 2.1.2 is verified. A 24 V step in motor
voltage uA was applied to both the test rig and the simulation model. The results
from the simulation and the experiment are presented in Figure 2.4. As can be seen
in the figure, the step responses match reasonably well. The rise time is similar and
the main part of the nonlinear behavior is captured.

Next, the closed-loop model from Section 2.1.3 and the linear model from Sec-
tion 2.1.4 are verified. Here, a step in reference motor speed from zero to 509 rad/s
was applied at time t = 1. This motor speed corresponds to a wiping frequency of
1 Hz. The simulation results and the measurements from the experiment in the test
rig are presented in Figure 2.5. The nonlinear model is not perfect but captures most
of the dynamics of the real system. One can see that the oscillations are smaller
in the simulated system than in the measurements from the real system. A reason
for this may be that a simplified speed controller is used in the simulation and that
the current controller in parallel with the speed controller is omitted. Further, the
simulation model does not include the speed estimator or any time delays.

From Figure 2.5 one can see that the linear model has the correct rise time but does
of course not capture any of the nonlinear properties of the system.

The models derived in this chapter do not match the real system exactly. However,
the models are judged to be good enough for evaluation of ILC algorithms.

11

2. System modeling and trajectory generation

0 1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

350

400

450

500

Figure 2.4: Simulated and measured response to a 24V step in motor voltage at
time t = 1.

0 1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

350

400

450

500

Figure 2.5: Simulated step response of the closed loop system. A step and the
measured step responses are shown.

12

2. System modeling and trajectory generation

2.2 Choosing a non-clashing trajectory
In order to avoid a clash and analyze when it occurs, we need to quantify what a
clash is. This can be considered a purely geometric problem at any moment in time.
With the points Pi ∈ R2 defined as in Figure 2.6, a clash occurs when the signed
distance between point P1 and the line through the points P2 and P3 is positive, i.e.
when the points P1, P2 and P3 form a triangle to the right. From linear algebra we
know that the signed distance in two dimensions is proportional to

d(θ1, θ2) ∝ det

1 PT
2 (θ1)

1 PT
3 (θ1)

1 PT
1 (θ2)

 . (2.28)

Then, the two wipers clash if
d(θ1, θ2) > 0. (2.29)

𝑀𝑀

𝐿 ,

𝐿 ,

𝐿 ,

𝐿 ,
𝛼

𝛼

𝑃

𝑃

𝑃

Figure 2.6: Schematic image of the wiper system with the points P1, P2 and P3
defined. The parameters L1,M1, L2,M1, L1,M2, L2,M2, αM1 and αM2 are defined in
Appendix A.

2.2.1 Angular trajectory generation
Calculating if the two wipers clash using (2.29) over all possible wiper configurations
on a rotation gives the plot found in Figure 2.7. The goal can be seen as to get from
(0, 0) to (2π, 2π) while keeping d < 0 and keeping θ1 and θ2 non-decreasing. By
inspection it can be seen that a straight line, i.e. both motor having the same speed,
does not work since the margin to a clash then would be too small. Intuitively, an
S-shaped curve is preferable. We choose a modified sigmoid function which we will
now define. The original sigmoid function is

σ0(x) = 1
1 + e−b(x−m) (2.30)

where b and m are the steepness and midpoint, respectively.

13

2. System modeling and trajectory generation

0 2

0

2

Figure 2.7: Motor angles θ1 and θ2 for the two wiper motors and the areas where
the wipers clash. The area where the wipers do not clash (d < 0) is white.

The sigmoid goes asymptotically towards zero and one, as it is usually used within
statistics. However, we wish that it should cross the origin and (2π, 2π). Thus, we
introduce the modified sigmoid

σ(x) = a

1 + e−b(x−m) + c . (2.31)

The boundary conditions

σ(0) = 0
σ(2π) = 2π

=⇒

a =

2π
(
eb (m−2π) + 1

) (
ebm + 1

)
ebm − eb (m−2π)

c = −a
1 + ebm

. (2.32)

This leaves b > 0 and m ∈ [0, 2π] as design variables. We choose m = π for
symmetry. Letting b→ 0 gives a straight line and b→∞ gives a step at m.

The shape of the area where the wipers clash in Figure 2.7 depends on the model
parameters for the linkage and the wiper arms. Thus, for different bus models, the
areas will be different. If the parameters are uncertain, or if the generated reference
profile should be useful for multiple bus models, the curve must be chosen such that
there is some margin to the clash areas.

In Figure 2.8 we can see four generated paths with different values of b. From
the figure it is clear that if b is chosen too small, the wipers are likely to clash
since the margin to the clash area is small. On the other hand, if b is chosen
unnecessarily large, the motors will have to accelerate more than necessary. From
inspection, b = 0.7 seems to be a good compromise between clash margin and
constant speed.

14

2. System modeling and trajectory generation

0 2

0

2

Figure 2.8: Generated paths for four different values of b and the areas where the
wipers clash.

2.2.2 Velocity trajectory generation
While the trajectory generated in Section 2.2.1 gives a clash free trajectory and
the relative velocity between the motors, it does not provide any absolute velocities.
Thus, we now want to choose velocity trajectories, such that the motor angles follow
their trajectories and that the cycle time is achieved. To do this, we want to create
θ1(t) and θ2(t) instead of the parametric form θ2(θ1) = σ(θ1).

A method for moving along parametric curves with an arbitrary speed profile is
presented in [5]. Parts of the method will be repeated here for convenience, but
with notation relevant to this work.

Consider the parametric curve that relates θ1 to θ2

Y(θ1) =
[
σ(θ1)
θ1

]
(2.33)

over θ1 ∈ [θ, θ] = [0, 2π], where σ is defined in (2.31). We also have the yet to be
determined time-parameterized curve

X(t) =
[
θ1(t)
θ2(t)

]
. (2.34)

We want to determine X(t) such that the speed along the parametric curve, |dX/dt|,
at time t ∈ [t, t], is specified by a function Ω(t). By choosing a function Ω̄(t) with
the desired shape, the function Ω(t) can be obtained from

Ω(t) = LΩ̄(t)∫ t
t Ω̄(t)dt

, (2.35)

15

2. System modeling and trajectory generation

0 2

200

250

300

350

400

450

500

Figure 2.9: Calculated references r0,M1 and r0,M2 where Ω(t) is constant, b = 0.7
and the cycle time is 1.33 s.

where the curve length L is defined as

L =
∫ θ

θ

∣∣∣∣∣dY
dθ1

∣∣∣∣∣dθ1 =
∫ t

t

∣∣∣∣∣dX
dt

∣∣∣∣∣dt. (2.36)

This ensures that the desired cycle time is achieved.

Now, the distance traveled is known as

` =
∫ T

t
Ω(t)dt (2.37)

with the equivalent expression

` =
∫ θ1

θ

∣∣∣∣∣dY
dθ̃1

∣∣∣∣∣dθ̃1 . (2.38)

Combining (2.37) and (2.38) yields t(θ1), which can be inverted numerically with
Newton’s method. Pseudocode for this procedure is given in [5]. The procedure can
give an arbitrarily fine trajectory of θ1(t) for t ∈ [t, t]. Then θ2(t) is given from the
relationship derived in Section 2.2.1. The velocity references r0,M1 and r0,M2 can be
calculated by numerically differentiating θ1(t) and θ2(t). An example of calculated
references is presented in Figure 2.9.

16

3
Iterative Learning Control

In this chapter we will start by introducing the concept of iterative learning control
(ILC) in a general form and then proceed with the investigated algorithms. An
excellent overview and introduction to ILC can also be found in [6] and [7].

3.1 Introduction to iterative learning control
Iterative learning control is a control strategy that can be utilized for iterative
systems. That means that the same, or similar, operations should be performed
many times under the same conditions. This makes it especially suitable for robot
control for manufacturing and other mass production related processes, where the
same action is repeated [6]. It has successfully been implemented in robot systems
[8], induction motor control [9] and chain conveyor systems [10].

ILC can be applied either on its own, in parallel or in series with a standard feedback
controller, where a serial architecture can be used when applying ILC to an existing
control system [6]. This architecture is shown in Figure 3.1. The closed loop system
formed by C and P will be considered fixed for this thesis.

A discrete time closed loop system is given on the form

x[t+ 1] = f(x[t], r[t]) + v[t]
z[t] = h(x[t])
y[t] = z[t] + w[t]

(3.1)

where x[t] is the state, r[t] is the reference, z[t] is the true output, y[t] is the measured
output, v[t] is process noise and w[t] is measurement noise. Then we denote the
sequence of N samples of states, references, outputs and measurements over the
interval t ∈ [0, T] as

xk =
[
xk[0] . . . xk[N − 1]

]T
rk =

[
rk[0] . . . rk[N − 1]

]T
zk =

[
zk[0] . . . zk[N − 1]

]T
yk =

[
yk[0] . . . yk[N − 1]

]T
,

(3.2)

17

3. Iterative Learning Control

C P

Memory

Update rule

ILC

Figure 3.1: A serial architecture of the ILC algorithm, with the feedback controller
C and plant P .

where the subscript k indicates the iteration number. From these, the error sequence
ek = rk − yk can also be constructed.

The concept of iterative learning control is to, for each iteration k, calculate a
correction sequence uk such that the output sequence yk better follows r0. For each
iteration, the correction signal is updated based on the measured output sequence
from the previous iteration and the reference sequence r0 according to

uk+1 = µ(uk,yk, r0). (3.3)

When applied in a serial architecture, the reference to the closed loop system for
the next iteration is then calculated as

rk+1 = r0 + uk+1. (3.4)

The ILC approach differs from standard feedback control since the entire error se-
quence is available for calculations, enabling techniques such as acausal filtering.
The update rule in (3.3) is a first order ILC algorithm since uk+1 is calculated using
data only from the previous iteration. A higher order ILC algorithm uses informa-
tion from multiple iterations. Higher order ILC algorithms are investigated in [7]
where the benefit over first order algorithms was shown to be small. Thus, higher
order ILC algorithms will not be investigated in this work.

The goal of ILC algorithm design is to choose the function µ such that the iterative
system is well-behaved. In order to analyze and compare different ILC algorithms it
is necessary to first define what a well-behaved system is. In control system design,
stability is often a primary concern. In the ILC field, stability is often called conver-
gence instead. A desired property is then to have monotonic convergence, i.e. the
error ek never increases between iterations, often in a L2-norm sense. Closely related
to this is the convergence speed, i.e. how many iterations are needed for convergence,
and the asymptotic error, i.e. the error to which the algorithm converges.

18

3. Iterative Learning Control

If f , h and µ are linear functions, then the algorithm is said to be a linear ILC
algorithm. The theory for linear ILC follows from linear systems theory and is thus
well developed and understood.

If the system is linear, the system could also be written on standard state-space
form

xk[t+ 1] = Axk[t] +Brk[t]
yk[t] = Cxk[t].

(3.5)

Furthermore, for a discrete time linear time-invariant single-input single-output sys-
tem G(q), the general system description in (3.1) can be reformulated as

yk[t] = G(q)rk[t], (3.6)

where q is the time shift operator.

3.1.1 Lifted notation
To simplify the analysis of linear ILC algorithms, the system is often described in
so-called lifted notation, or matrix form. Denote the impulse response of G(q) as
g[t], i.e.

G(q) = Ts
∞∑
i=0

g[i]q−i, (3.7)

where Ts is the sample time. Then it is possible to form the matrix

G = Ts

g[0] 0 . . . 0
g[1] g[0] ...
... . . . 0

g[N − 1] g[N − 2] . . . g[0]

 . (3.8)

This gives the system notation
yk = Grk. (3.9)

Here, the full sequence of outputs is calculated from the full sequence of inputs for
iteration k.

3.1.2 Assumptions in Iterative Learning Control
The theory of iterative learning control has been developed under the following
assumptions, from [7] and [11]. They are rephrased here to fit the notation of this
work.

1. Every iteration ends in a fixed time of duration T > 0.

2. A desired output r0[t] is given a priori over that time with duration t ∈ [0, T].

3. Repetition of the initial setting is satisfied, that is, the initial state xk[0] of
the objective system can be set the same at the beginning of each trial:

xk[0] = x0[0], k ∈ Z+ (3.10)

19

3. Iterative Learning Control

4. Invariance of the system dynamics is ensured throughout these repeated iter-
ations.

5. Every output zk[t] can be measured and therefore the tracking error signal,
ek(t) = r0[t]− zk[t], can be utilized in the calculation of uk+1[t].

6. Given a reference trajectory r0[t], t ∈ [0, T], with a piecewise continuous deriva-
tive, there exists a unique input trajectory r∗[t] on the same time interval such
that z[t] equals r0[t].

The assumptions 3 and 5 are generally considered too strict and not practical for
real systems. As such, they are generally relaxed as in [7, p. 28-29] to:

3a. The system is initialized at the beginning of every iteration such that the
error in the initial state is limited. This means that if the controlled system
is written in state space form the initial state xk[0] fulfills

|xk[0]− x0[0]| < ε

for some ε > 0.

5a. It is possible to measure yk[t] = zk[t] + wk[t], where wk[t] is a measurement
disturbance.

If measurements of the states are not available, assumption 5a can be relaxed even
further with the introduction of a state-observer, as investigated in [12]. This will
however not be used in this thesis. Implications of these assumptions will be dis-
cussed further in Chapter 6.

3.2 Heuristic Iterative Learning Control
One of the earliest and simplest ILC algorithms is a model-free algorithm that is
referred to in [7] as heuristic ILC. The algorithm consists of two filters and the
update is given as

uk+1[t] = Q(q)(uk[t] + L(q)(r[t]− yk[t])) . (3.11)

The filter L is often an acausal filter, L = κqn where κ is a gain and qn is a time shift
of n steps. The filter Q is either chosen as unity or a zero-phase low-pass filter to
increase robustness. The zero-phase property can be achieved with functions such
as filtfilt in Matlab.

It is well known that robustness is in conflict with performance. Thus Q = 1 gives
the best nominal performance, but leaves the system susceptible to disturbances.
Often, Q is chosen as Q = Q̄(q)Q̄(q−1), where Q̄(q) is a low pass filter. This choice
of filter will increase robustness, but gives a non-zero asymptotic error [7].

A sufficient frequency domain condition for convergence of the algorithm is derived
in [7]. The algorithm is guaranteed to converge if

|1− L(ejω)G(ejω)| < |Q−1(ejω)| , ∀ω. (3.12)

20

3. Iterative Learning Control

3.3 Norm optimal Iterative Learning Control
This method is an optimal control approach to the ILC design, similar to linear
quadratic regulator design. The algorithm described here is based on [13] and [14]
and is adopted to the notation from Section 3.1 and 3.1.1. For each new iteration
we want to find the control sequence uk+1 that minimizes the following quadratic
cost function

Jk+1 = eT
k+1Week+1 + uT

k+1Wuuk+1 + (uk+1 − uk)TW∆u(uk+1 − uk). (3.13)

Here, ek+1 = r0−yk+1. The weighting matrices We � 0, Wu � 0 and W∆u � 0 pe-
nalize the output error, the input energy and the change of input between iterations,
respectively.

The resulting optimal update equation is derived in [14] and is given by

uk+1 = (Wu + W∆u + GTWeG)−1((W∆u + GTWeG)uk + GTWeek). (3.14)

This can be expressed similar to Q- and L formulation in (3.11) as

uk+1 = Q(uk + Lek) (3.15)

with
Q = (Wu + W∆u + GTWeG)−1(W∆u + GTWeG)
L = (W∆u + GTWeG)−1GTWe.

(3.16)

Conditions for convergence of the algorithm are given in [7]. For the system (3.9)
controlled by the ILC update rule in (3.15), monotonic exponential convergence is
achieved if

σ̄(Q(I− LG)) < 1 , (3.17)
where σ̄(M) denotes the largest singular value of the matrix M .

It should be noted here that the matrices in (3.14) have dimension N × N . So,
although the lifted notation is convenient for analysis of the algorithm and simu-
lation on computer systems where memory is not a problem, it is not practical for
implementations on a microcontroller. Therefore, two versions of norm optimal ILC
that are easier to implement in practice will now be investigated.

3.3.1 A filter implementation of Norm optimal Iterative
Learning Control

A filter implementation of norm optimal ILC will now be described. This algorithm
is based on the algorithm presented in Section 3.3 but uses a frequency domain repre-
sentation and acausal filters instead of the matrix formulation. A detailed derivation
of the algorithm is given in [14] and a summary will be presented here.

With Wu = ρ · I, W∆u = λ · I and We = I (3.16) becomes

Q = (ρ · I + λ · I + GTG)−1(λ · I + GTG)
L = (λ · I + GTG)−1GT.

(3.18)

21

3. Iterative Learning Control

It is then possible to utilize that y = G−1u corresponds to the filtering operation
y[t] = 1

G(q)u[t] and similarly that y = GTu corresponds to the acausal filtering
operation y[t] = G(q−1)u[t]. Now it is easy to see that the corresponding filtering
operations to (3.18) are

Q(q) = λ+G(q)G(q−1)
ρ+ λ+G(q)G(q−1)

L(q) = G(q−1)
λ+G(q)G(q−1) .

(3.19)

As pointed out in [14] the filtering representation in (3.19) is only an approximation
of (3.18) since boundary effects are neglected when the filters are applied to a finite
sequence of N samples.

To implement the acausal filters Q(q) and L(q) it is first necessary to find Q̄(q)
and L̄(q) such that Q = Q̄(q)Q̄(q−1) and L = L̄(q)L̄(q−1). Then, the forward and
backward filtering can be performed using the same technique as in the heuristic
algorithm described in Section 3.2. To analyze the stability of the iterative system
(3.12) can be used.

3.3.2 A recursive implementation of Norm optimal Iterative
Learning Control

Another norm optimal algorithm is proposed in [15, pp. 238-240] for systems on
state-space form. It intends to minimize the cost criteria (3.13) but with Wu =
0. Note that the weighting matrices We and W∆u could be chosen to be time
variant.

The algorithm uses time varying state feedback matrices K[t] and K̃[t] that can be
computed a priori as

K̃[t+ 1] = ATK[t+ 1] + CTWe[t+ 1]C

K[t] =
(
I + K̃[t+ 1]BW−1

∆u[t]BT
)−1

K̃[t+ 1]A
(3.20)

for t ∈ [0, N−1] where K[N−1] = 0 is the terminal condition of a reversed recursive
calculation. The predictive feedforward term ξk+1[t] and ILC update uk+1[t] are then
calculated between iterations as

ξk+1[t] =
(
I + K̃[t]BW−1

∆u[t]BT
)−1

(
ATξk+1[t+ 1] + CTWe[t+ 1]ek[t+ 1]

)
, t ∈ [0, N − 1]

ξk+1[N] = 0

(3.21)

and

uk+1[t] = uk[t] + W−1
∆u[t]BT

(
−K[t](xk+1[t]− xk[t]) + ξk+1[t]

)
(3.22)

22

3. Iterative Learning Control

for t ∈ [0, N − 1] where again ξk+1[t] is a backwards recursive calculation. It should
be noted that (3.22) assumes that all states are available for feedback. If not all
states are measured, a state observer can be used [13].

The standard version of the algorithm is a so-called current iteration ILC algorithm,
i.e. it uses feedback from the current iteration in the calculation of uk+1. This scheme
is equivalent to using an internal feedback controller [6, p. 99]. Since a serial ILC
architecture is used in the wiper system, the term (xk+1[t] − xk[t]) will be set to
zero to avoid introducing additional feedback. This makes the algorithm purely
feedforward as fits with the framework of the system. This also removes the need
for a state observer for higher order systems.

The formal criteria for convergence is given in [13] and [15, th. 9.2], but for well be-
haved ’regular’ systems with small modeling errors, exponential rate of convergence
is guaranteed for both error norm and input norm.

3.4 RoFaLT

The Robust and Fast Learning Tool (RoFaLT) is a toolbox developed in Matlab for
nonlinear ILC for nonlinear systems [16]. It is a two step optimization-based algo-
rithm that both improves a candidate model and calculates the optimal control for
this model. Both of these steps are formulated in the form of nonlinear programming
(NLP) problems, that are solved after each iteration.

If the system is defined as in (3.1), the first NLP that solves the model correction
problem is given by

min
x,α

1
2

N−1∑
t=0

[
‖yk[t]− h (x[t], rk[t], α[t])‖2

2 + ‖α[t]‖2
R1

+ ‖∆iα[t]‖2
W1

]
+

+ 1
2

N−2∑
t=0
‖∆tα[t]‖2

W2

(3.23a)

s.t. x[t+ 1] = f (x[t], rk[t], α[t])
rk[t] = r0[t] + uk[t]

∆tα[t] = α[t+ 1]− α[t], t = 0, . . . , N − 2
∆iα[t] = α[t]− α?k[t]

α ≤ α[t] ≤ α, t = 0, . . . , N − 1

(3.23b)

where (3.23a) is a weighted-norm minimization problem with the regularization
weight matrices R1, W1 and W2. The regularization of the variables defined in
(3.23b) can be seen as low-pass filtering in the time and iteration domain, respec-
tively. The solution to (3.23), α?k, is then used in the control problem, defined as

23

3. Iterative Learning Control

min
x,u

1
2

N−1∑
t=0

[
‖r0[t]− h (x[t], rk[t], α?k[t])‖

2
2 + ‖u[t]‖2

R2
+ ‖∆iu[t]‖2

W3

]
+

+ 1
2

N−2∑
t=0
‖∆tu[t]‖2

W4

(3.24a)

s.t. x[t+ 1] = f (x[t], rk[t], α?k[t])
rk[t] = r0[t] + u[t]

∆tu[t] = u[t+ 1]− u[t], t = 0, . . . , N − 2
∆iu[t] = u[t]− u?k[t]

u ≤ u[t] ≤ u, t = 0, . . . , N − 1

(3.24b)

where the regularization matrices R2, W3 and W4 has similar function as above.

When modeling the system for use with RoFaLT, one must include where and how
model corrections can be made. This is done in the form of the parametric and non-
parametric corrections terms αk[t]. The difference between them is that parametric
terms are kept constant over an iteration, while the nonparametric terms are time
dependent.

The NLP formulation of the ILC problem allows for the addition of other objectives,
such as energy consumption. This makes the RoFaLT algorithm very flexible and
powerful, however also very complex given that one can add more design parameters.
This could potentially make tuning difficult.

It should be noted that if a linear model is used with additive nonparametric αk
corrections on the output, we obtain the same optimization problem as in (3.13),
only not with a closed form update equation.

3.5 Using iterative learning control with a limited
number of setpoints

In the wiper control system the speed references are specified using eight setpoints.
The reference speed at a specific motor angle is then calculated using linear inter-
polation.

So far the assumption has been that the ILC correction uk and the ILC reference
rk is of length N , the same size as the measurement sequence yk. From a usability
perspective it would be preferable if the ILC correction could be applied directly to
the eight setpoints that specify the reference speed. However, N is typically much
larger than eight. The trivial solution to this is to increase the sample time such
that N = 8. This method has a number of problems. For instance, only eight
measurements would be taken during a sweep. Then, the ILC algorithm would
minimize the error only at the eight sample points whereas the goal is to minimize
the error over the entire sweep, including between the eight setpoints.

24

3. Iterative Learning Control

We propose an alternative approach that uses measurements from the entire sweep
to calculate ILC corrections at eight points. We propose to first calculate an ILC
reference rk of length N and then fit a continuous piecewise linear function to rk
using the least squares method. The fitted function will then be defined by values
at eight breakpoints which correspond to the 8 setpoints in the controller. Between
the breakpoints the function is linear which agrees exactly with how the reference
is calculated in the controller. The least squares fit can be done using the method
presented in [17], where a closed form solution is given to the optimal solution. As
illustrated in Figure 1.2, the setpoint at sweep angle 2π is actually the first setpoint.
Thus, we need to add a periodic constraint to the algorithm in [17] such that the
ninth setpoint always is equal to the first. An implementation of this algorithm with
added periodic constraint is available in [18]. The method is illustrated in Figure 3.2,
for details of the algorithm we refer to [17] and [18]. The serial ILC architecture
with the splinefit modification is shown in Figure 3.3.

The effect of the splinefit method on the algorithms’ performance will be investigated
in simulations in Chapter 4.

0 2

200

250

300

350

400

450

Figure 3.2: Illustration of the splinefit algorithm with periodic constraint. The
dense ILC reference rk and the fitted piecewise linear function are shown.

3.6 Sampling at constant angle intervals
In ILC literature, sampling is normally performed with constant sample time. It is
also assumed that the number of samples is constant for all iterations. This implies
that each iteration lasts for the same length of time. Since the ILC algorithm varies
the speed of the wipers, it is clear that this method does not guarantee that a sample
sequence contains samples from a full wiper sweep. If the wipers move too slow one

25

3. Iterative Learning Control

C P

Memory

Update rule

ILC

Splinefit

Figure 3.3: A serial architecture of the ILC algorithm, with the splinefit algorithm
included.

iteration, the sample sequence will not contain samples from the last part of the
sweep. If the wipers move too fast, the sample sequence would contain samples
from the beginning of the next sweep. In the windshield wiper system it would
be useful if the sampling instead could be performed at constant angle intervals.
This would guarantee that each sample sequence contains samples from the full
wiper sweep while the number of samples still is constant. Moreover, constant
angle sampling simplifies the implementation and agrees well with how the reference
speed is calculated by the inner controller (see Section 1.1.1 and Figure 1.2). The
drawback of this method is that the interpretation of the filtering operations are
less clear when motor angle has replaced time as the independent variable. Also,
the model based algorithms are using models derived in the time domain, which will
lose some interpretation as well. The effect of this modification to the algorithms is
investigated in simulations in Chapter 4.

26

4
Evaluation of ILC algorithms

In this chapter we introduce the simulation environment that will be used to eval-
uate the different algorithms described in Chapter 3. Then we present results from
simulations and discuss their implications.

4.1 Simulation setup
To simulate the system in closed loop with the ILC controller, the model presented
in Section 2.1.3 was implemented in Simulink together with the reference generation
procedure presented in Section 1.1.1. To evaluate the effects of the splinefit proce-
dure, a continuous reference was also implemented which corresponds to how the
ILC algorithms are implemented in the literature.

Following the assumptions made in Section 3.1.2, the angular velocity of the system
was initialized to the reference value and a fixed number of samples were collected.
For the time based sampling case, a sampling time of 0.01 s was used, yielding 134
samples for the required sweeping frequency. When using constant angle sampling,
108 samples were used, giving a resolution of 3.33° on the gearbox side.

The performance metric used is the L2-norm of the error vector ek. For illustration
purposes, we normalize it with the zeroth iteration value as

L2,k =

√∑N
t=0 e

2
k[t]√∑N

t=0 e
2
0[t]

, k ∈ {0, 1, 2, 3, . . .}. (4.1)

The algorithms work independently on the individual motor references. Because of
this, only the results from one motor are presented in the following sections as the
results for the second motor are analogous.

4.2 Algorithm tuning and stability
The algorithms have been tuned for fast convergence with some robustness to noise
in mind. Due to the different tuning parameters, it is difficult to get comparable
properties. However, convergence speed and monotonic convergence have been a
priority where it has been possible. Since the system model is nonlinear, it cannot

27

4. Evaluation of ILC algorithms

be used with the available convergence criteria from the literature. Instead, the ap-
proximate model in (2.27) was used for stability analysis. Furthermore, the splinefit
algorithm is not accounted for in the analysis.

The tuning used for the heuristic algorithm in (3.11) was chosen as L = 0.8q4 and
Q̄(q) as a second order Butterworth filter with normalized cutoff frequency ωn = 0.2
obtained from butter(2, 0.2) in Matlab. With this tuning the stability condition
(3.12) is met.

Using the weight matrices defined in (3.18) for the matrix implementation, the
weights were chosen as ρ = 0.01, λ = 0.7 and G = Ĝ from (2.27). This tuning
fulfills (3.17). The filter implementation instead uses ρ = 0.92 to fulfill (3.12). The
recursive algorithm can be parameterized similarly to (3.18) with ρ = 0. The tuning
was chosen as λ = 0.94. The state space matrices A, B and C were calculated from
Ĝ using the ss command in Matlab.

For the RoFaLT algorithm we used the model defined in (2.25), with multiplicative
uncertainty added to bw and Jφ through parametric αk variables. Additionally, a
non-parametric additive correction was added to the measurement. The bounds for
αk can be found in Table 4.1. The regularization matrices were chosen as

R1 = 0.1 · I W1 = 0 W2 = 0.01 · I
R2 = 10−6 · I W3 = 0 W4 = 10−4 · I.

(4.2)

4.3 Simulation results
In Figure 4.1a we can see how the L2-norm of the tracking errors develop over
iterations for the different algorithms. The figure shows that the performance is
similar for the heuristic algorithm and two of the norm optimal ones. All these show
exponential convergence. The filter implementation of norm optimal ILC and the
RoFaLT algorithm also converge, but to worse asymptotic errors. The corresponding
tracking curves after ten iterations can be found in Figure 4.2a.

4.3.1 The effects of splinefit
As we can see in Figure 4.1b, the splinefit procedure, presented in Section 3.5, affects
the performance. It is clear that the splinefit algorithm reduces the performance of
the ILC algorithms. The algorithms with splinefit cannot fully compensate for the
curvature of the reference curve and the nonlinear dynamics and thus, the asymptotic

Table 4.1: Correction bounds for the correction parameters αk used in the RoFaLT
algorithm.

Variable Min. correction Max. correction
bw 0.1 10
Jφ 0.1 10
y −∞ ∞

28

4. Evaluation of ILC algorithms

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

Heuristic

Recursive

Matrix

Filter

RoFaLT

(a) Without splinefit.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

Heuristic

Recursive

Matrix

Filter

RoFaLT

(b) With splinefit.

Figure 4.1: Normalized error L2-norm vs iterations for the different algorithms.
The reference is given in Figure 2.9.

error is larger. With only 8 control inputs, it is not surprising that the algorithm
cannot fully compensate for high frequency components. However, the algorithms
still converge and the asymptotic error can be judged acceptable for the windshield
wiper application. It can also be seen in Figure 4.2b that the reference tracking is
good after 10 iterations.

Next we will investigate how the reference signal rk develops over iterations. The
reference signal after 30 iterations from a simulation using heuristic ILC without
splinefit is presented in Figure 4.3a. In Figure 4.3b the reference signal after 30
iterations from a simulation using heuristic ILC with splinefit is presented together
with the fitted correction of length 8. When splinefit is not used the reference signal
converges after 5 iterations. When splinefit is used, oscillations start to appear in
the dense correction signal uk in the time domain. However, the fitted correction is
still convergent. This is not a desired behavior. Even if the fitted correction seems
to be stable in the simulation, problems may occur if the ILC algorithm runs for
many iterations.

The splinefit algorithm limits the bandwidth of the ILC controller. Frequency con-
tent in the dense correction signal uk outside the the bandwidth of the splinefit algo-
rithm will not be included in the fitted reference signal that is applied to the system
in the next iteration. Thus, the error in the tracking that caused the frequency
content in the correction signal will not be corrected for. Instead, this frequency
content will be integrated in uk+1 by the ILC update. Over many iterations, this
will cause oscillations in the dense control signal, which can be seen in Figure 4.3b.
Notice that, since the frequency of these oscillations is outside the bandwidth of
the splinefit algorithm, they will not show in the fitted reference signal or in the
tracking. Still, the behavior is undesirable since it can cause numeric issues after
many iterations. A solution to the problem is to limit the bandwidth of the ILC
algorithm such that it is equal to or lower than the bandwidth of the splinefit algo-
rithm. The heuristic ILC algorithm allows this through the Q-filter. The reference
signal after 30 iterations, r30, with the normalized cutoff frequency of the Q-filter

29

4. Evaluation of ILC algorithms

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

(a) Without splinefit.

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

0 0.5 1 1.5

4

4.5

5

5.5

6

(b) With splinefit.

Figure 4.2: The reference tracking (in solid red) after ten iterations of ILC with
the different algorithms, as well as the tracking without ILC. The target reference
r0,M1 from Figure 2.9 is shown in dashed blue.

30

4. Evaluation of ILC algorithms

0 2

3.5

4

4.5

5

5.5

6

6.5

(a) Without splinefit, ωn = 0.2.

0 2

3.5

4

4.5

5

5.5

6

6.5

7

7.5

(b) With splinefit, ωn = 0.2

0 2

3.5

4

4.5

5

5.5

6

6.5

7

(c) With splinefit, ωn = 0.05.

Figure 4.3: The dense reference signal r30 (solid red), the target reference r0
(dashed blue) and the fitted correction signal (yellow with stars).

chosen as ωn = 0.05 instead of ωn = 0.2 is presented in Figure 4.3c. As can be seen,
the oscillations are not present when the lower cutoff frequency is used. However,
the tracking converges to a slightly larger asymptotic error.

4.3.2 The effect of sampling at constant angle intervals

In Section 3.6 we described why sampling at constant angle intervals instead of
with constant sample time can be useful from an implementation perspective. The
effect of this modification to the algorithms will now be investigated in simulation.
In Figure 4.4, the L2-norm of the tracking error is presented for the investigated
algorithms when sampling is performed at constant angle intervals and when the
splinefit procedure is used. As can be seen, the asymptotic errors are similar to
the results with constant sample time in Figure 4.1b. However, the convergence is
slightly slower.

31

4. Evaluation of ILC algorithms

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Heuristic

Recursive

Matrix

Filter

RoFaLT

Figure 4.4: Normalized error L2-norm vs iterations for the different algorithms
with constant angle sampling and splinefit. The reference is given in Figure 2.9.

4.4 Choice of algorithm
As can be seen in figures 4.1 and 4.4, the heuristic algorithm and the recursive and
matrix implementations of norm optimal ILC all perform similarly in the error con-
vergence sense. The heuristic algorithm shows good performance even though it is
simple and is thus a good candidate to investigate further in hardware. Another
advantage of the heuristic algorithm is that it allows selection of the bandwidth
through the choice of Q-filter which makes it suitable to use together with the
splinefit procedure. The recursive algorithm also looks promising and is worth in-
vestigating further. Due to the large matrices in the matrix implementation, that
algorithm is not well suited for embedded applications and will therefore not be
included. The filter implementation of norm optimal ILC shows significantly worse
performance compared to the matrix and recursive implementation. Therefore, the
filter implementation will not be investigated further. The RoFaLT algorithm will
also not be investigated further, due to the difficulty of getting good performance,
and its implementation difficulty in embedded applications.

32

5
Experiments

In this chapter we describe some important considerations when implementing the
algorithms on a system with a microcontroller. We then present results from exper-
iments on the test rig and compare the results with the results from the simulations
in Chapter 4.

5.1 Implementation in hardware
Two algorithms have been implemented on the hardware, heuristic ILC from Sec-
tion 3.2 and the recursive implementation of norm optimal ILC from Section 3.3.2.
Both algorithms were implemented using sampling at constant angle intervals and
with the splinefit algorithm from Section 3.5. The chosen ILC algorithms were first
implemented in Matlab and then the code generation tool in Matlab was used to
generate C-code. The C-code was then integrated into the existing control system
software.

The test rig used for the experiments is shown in Figure 5.1. The control unit
has a single core Infineon XMC4500 Arm processor with clock frequency 120 MHz
and 160 KiB of RAM. The processor and the memory must be shared with the
existing control system. Approximately 90 KiB of RAM is available to the ILC
algorithm.

Figure 5.1: A picture of the test rig.

33

5. Experiments

Calculating Calculating
done

SamplingIdle

Wiping Ʌ Ꞁ First sweep Sweep done Calculating done

Sweep done Ʌ Wiping
/ update setpoints

Sweep done Ʌ Ꞁ Wiping
/ update setpoints

Idle Wiping

User command start wiping

User command stop wiping

Figure 5.2: A state machine describing the sampling and calculation process in
the microcontroller. The / denotes taking an action.

From tests it was discovered that the heuristic ILC update algorithm has a compu-
tation time of 8.3 ms on the hardware while the recursive implementation of norm
optimal ILC has a computation time of 8.5 ms. Of this, the splinefit procedure
accounts for 6.9 ms. This is the execution time for each motor, thus the total ex-
ecution time is approximately 16 ms. This includes interrupts from higher priority
tasks. When implemented with 32-bit floating point variables, the heuristic algo-
rithm requires 27 KiB of memory for two motors and the recursive algorithm requires
30 KiB of memory for two motors. If a first order model is used instead of second
order model the required memory for the recursive algorithm is reduced to 26 KiB
and the computation time is reduced to 7.7 ms. The reported memory requirements
include both RAM and flash memory where about two thirds are RAM, which is
well within the available capacity.

The system runs continuously and we do not want to update the reference setpoints
after a sweep has started. Further, 16 ms is too much for the algorithm to be
executed in the short time period between wiper sweeps. Therefore, the ILC update
is performed every other wiper sweep. Measurements are sampled during an entire
sweep and then the calculations are performed in the background during the next
sweep. The reference setpoints are then updated at the end of the calculation sweep.
To demonstrate this behavior, a state machine is presented in Figure 5.2.

In ILC it is assumed that the initial state is invariant over iterations. In simulation
this was achieved by initializing the speed of both wipers to a reference value at the
start of each iteration. In practice, the initial speed of the wipers will depend on the
speed at the end of the previous sweep. This can still fulfill the relaxed assumption
in Section 3.1.2, that the initial error is bounded by some ε > 0. The exception is
the first sweep where the initial state is zero. This will cause a large error in the
ILC update. To avoid this, the ILC algorithm is not enabled until the second wiper
sweep.

34

5. Experiments

0 1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120

140

160

180

200

220

Figure 5.3: The L2-norm of the tracking error over 10 iterations using the heuristic
and the recursive algorithm.

5.2 Experimental results
In Figure 5.3 the L2-norm of the tracking error from two experiments in the test
rig are presented. The plot shows results from one experiment with heuristic ILC
and one experiment with the recursive implementation of norm optimal ILC. The
L2-norms are not normalized since the initial error is slightly different in the two
experiments. As in the simulations, results are presented for one motor only and
the results for the second motor are analogous. The convergence properties are
similar to those from the simulation. In Figure 5.4 the reference tracking over
three ILC iterations is presented for the two algorithms. It can be seen in the
figures that the convergence is slightly faster for the heuristic algorithm but that
the asymptotic error is similar. This is consistent with the simulation results in
Chapter 4. In Figure 5.4 one can see that the ILC algorithms compensate for a
phase shift from the PI controller as well as disturbances in the tracking from the
nonlinear dynamics.

In Figure 5.5 measurements of gearbox angles for the two motors are presented. The
measurements are plotted together with the sigmoid reference from Section 2.2.1 and
the areas where the wipers clash. As can be seen, the wipers are almost clashing
during the first sweep. After three ILC iterations the tracking of the sigmoid curve
has improved and the wipers do not clash. This experiment shows that good tracking
of the reference curve defined in the θ1-θ2-domain is achieved when ILC is applied
separately to the two motor velocities.

The sweep frequency after 10 ILC iterations was measured as 43 Hz for both algo-
rithms, which is slightly lower than the 45 Hz that the reference curve was designed
for.

35

5. Experiments

0 2

300

350

400

450

500

0 2

300

350

400

450

500

0 2

300

350

400

450

500

0 2

300

350

400

450

500

(a) Heuristic algorithm.

0 2

300

350

400

450

500

0 2

300

350

400

450

500

0 2

300

350

400

450

500

0 2

300

350

400

450

500

(b) Recursive algorithm.

Figure 5.4: Velocity reference tracking from an experiment in the test rig. Plots
are shown for iteration zero (before ILC) to iteration three.

36

5. Experiments

0 2

0

2

(a) Heuristic algorithm.

0 2

0

2

(b) Recursive algorithm.

Figure 5.5: Measurements of gearbox angles from two experiments in the test rig
for iteration 0 (before ILC) and iteration 3, together with the areas where the wipers
clash (red).

37

5. Experiments

38

6
Discussion

In this chapter we discuss the results found in chapters 4 and 5 and their implications
on a system level.

6.1 The splinefit algorithm
The splinefit algorithm presented in Section 3.5 makes it possible to apply ILC
directly to the eight setpoints that are used for manual tuning. This is practical since
the tuning then easily can be copied to another unit and only small modifications
are required to the present control system. In Chapter 4 we showed that the splinefit
algorithm reduces the performance of the algorithm both in a sense of stability and
the size of the asymptotic tracking error. Moreover, in Section 5.1 we showed that
the splinefit algorithm adds significantly to the execution time of the ILC update
algorithms. Thus, by not using the splinefit algorithm and instead applying the
dense control signal directly to the system one would save computation time, reduce
the memory requirements and potentially improve the performance of the system.
However, this requires some modifications to the present control system.

To mitigate the computational downsides of the splinefit algorithm, an alternative
approach could be to use a simpler downsampling scheme, such as a decimation
procedure. The increased loss of information in the correction signal could be com-
pensated for by the learning algorithm’s iterative nature, resulting in similar per-
formance. However, this type of scheme cannot guarantee that the downsampled
correction signal is periodic.

6.2 System use cases
When the problem with individual tuning of the wiper system was introduced in
Section 1.1.1, three types variations in the system dynamics were described: varia-
tions between different bus models, variations between individual units of the same
model and variations over time for one unit. Which of these variations the ILC
algorithm learns to compensate for depends on how the algorithm is used. Based
on this, we see three possible use cases for the ILC algorithm.

In the first use case the algorithm is used once for each new bus model, replacing
the manual tuning process used today. Then the algorithm learns to compensate

39

6. Discussion

for variations between different bus models. Here, the ILC algorithm makes the
development process easier, allowing a system agnostic development process.

In the second use case, the algorithm is used once for each bus in the factory. This
way, the algorithm can compensate for variations between individual units of the
same model. A drawback of this use case is that the algorithm becomes a part
the manufacturing process, which seems impractical from a production perspec-
tive.

In the third use case, the algorithm runs continuously during all operation to com-
pensate for time varying dynamics. This puts stricter requirements on the tuning,
putting an emphasis on long term stability. To achieve stability over many itera-
tions the algorithm should be tuned for robustness through e.g. the Q-filter. If the
splinefit algorithm is used, the cutoff frequency of the Q-filter should be reduced
further to achieve stability, as shown in Section 4.3.1. However this will increase the
asymptotic error of the tracking.

In the first and second use cases, the algorithm is used once and then turned off after
a few iterations, making stability over hundreds of iterations unnecessary. Then, the
algorithm can be tuned for fast convergence and small asymptotic error.

6.3 Choice of velocity references
In Section 2.2.1 a systematic approach to choosing velocity references which ensure
that the wipers do not clash and that a specified cycle time is achieved was presented.
In Chapter 5 the cycle time achieved after ILC was slightly longer than specified due
to imperfect tracking. To achieve the specified cycle time, a slightly shorter cycle
time can be chosen in the design process.

A drawback to the method presented in Section 2.2.1, compared to the manual
tuning process that is used today, is that it does not capture some of the more
subjective objectives of the tuning process. When an experienced engineer tunes the
wiper system, objectives such as how esthetic and symmetric the wiping appears are
considered. These objectives are inherently difficult to formulate mathematically. A
possible alternative is to measure the output from a well-behaved and good looking
hand tuned wiper system and then use this as the reference that the ILC algorithm
should learn. This way, the system can learn to follow a reference that fulfills
these objectives. The ILC algorithm enables the system to learn to follow this
trajectory even if the dynamics of the system are unknown which removes the need
for individual tuning for each new bus model.

40

7
Conclusion

The results from simulations in Chapter 4 and experiments in the test rig in Chap-
ter 5 show that iterative learning control can be used to learn a set of reference
setpoints that improves the tracking of a velocity reference. With iterative learning
control, good tracking can be achieved even when the dynamics of the system is
not fully known. This simplifies the tuning process for new bus models because
the wiper system can automatically adapt to and compensate for the unknown load
characteristics of a new bus model.

The tuning process for new bus models then concerns the choice of the reference
curves that the ILC algorithm should learn to follow. In Section 2.2.1 we presented
a systematic approach to choosing these references in a way that guarantees that
the wipers do not clash and that a specified cycle time is achieved. We believe
that this design space is more intuitive and easier to work with than separate speed
references.

The method we propose in this work is best suited as a development tool for a
more structured way of working with the tuning. Although it can be generalized to
continuous use as discussed in Chapter 6, we believe that the most promising use
case is the tuning tool.

7.1 Future work
In this thesis we have only worked with a single hardware platform. To fully verify
the usefulness of the proposed method, further research is needed. Specifically,
the results obtained from the proposed method needs to be verified in end use
scenarios, such as on a windshield under different weather conditions and during
driving scenarios.

41

7. Conclusion

42

Bibliography

[1] M. Anderson, “Window-cleaning device.”, US743801A, 1903.
[2] The European Union, “COMMISSION REGULATION (EU) No 1008/2010”,

Official Journal of the European Union, 2010. [Online]. Available: https://
eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:292:
0002:0020:EN:PDF.

[3] K. L. Richards, “34. Introduction to Linkages”, in Design Engineer’s Source-
book, CRC Press, 2018, ch. 34, isbn: 978-1-4987-6341-7. [Online]. Available:
https : / / app . knovel . com / hotlink / pdf / id : kt011MJYE3 / design -
engineers-sourcebook/introduction-linkages.

[4] ——, “36.11 Referred Moment of Inertia (IReferred)”, in Design Engineer’s
Sourcebook, CRC Press, 2018, ch. 36, isbn: 978-1-4987-6341-7. [Online]. Avail-
able: https://app.knovel.com/hotlink/khtml/id:kt011MK0O4/design-
engineers-sourcebook/referred-moment-inertia.

[5] D. Eberly. (Apr. 2, 2019). Moving Along a Curve with Specified Speed,
[Online]. Available: https://www.geometrictools.com/Documentation/
MovingAlongCurveSpecifiedSpeed.pdf (visited on Feb. 14, 2020).

[6] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning
control”, IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006,
issn: 1941-000X. doi: 10.1109/MCS.2006.1636313.

[7] M. Norrlöf, “Iterative Learning Control: Analysis , Design , and Experiments”,
Ph.D dissertation, Linköpings universitet, 2000, isbn: 9172198370. [Online].
Available: http://www.control.isy.liu.se.

[8] M. Norrlof, “An adaptive iterative learning control algorithm with experi-
ments on an industrial robot”, IEEE Transactions on Robotics and Automa-
tion, vol. 18, no. 2, pp. 245–251, 2002, issn: 2374-958X VO - 18. doi: 10.
1109/TRA.2002.999653.

[9] S. S. Saab, “A stochastic iterative learning control algorithm with appli-
cation to an induction motor”, International Journal of Control, vol. 77,
no. 2, pp. 144–163, Jan. 2004, issn: 0020-7179. doi: 10 . 1080 /
00207170310001646282. [Online]. Available: https://doi.org/10.1080/
00207170310001646282.

[10] A. D. Barton, P. L. Lewin, and D. J. Brown, “Practical implementation of
a real-time iterative learning position controller”, International Journal of
Control, vol. 73, no. 10, pp. 992–999, Jan. 2000, issn: 0020-7179. doi: 10.
1080/002071700405941. [Online]. Available: https://doi.org/10.1080/
002071700405941.

43

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:292:0002:0020:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:292:0002:0020:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:292:0002:0020:EN:PDF
https://app.knovel.com/hotlink/pdf/id:kt011MJYE3/design-engineers-sourcebook/introduction-linkages
https://app.knovel.com/hotlink/pdf/id:kt011MJYE3/design-engineers-sourcebook/introduction-linkages
https://app.knovel.com/hotlink/khtml/id:kt011MK0O4/design-engineers-sourcebook/referred-moment-inertia
https://app.knovel.com/hotlink/khtml/id:kt011MK0O4/design-engineers-sourcebook/referred-moment-inertia
https://www.geometrictools.com/Documentation/MovingAlongCurveSpecifiedSpeed.pdf
https://www.geometrictools.com/Documentation/MovingAlongCurveSpecifiedSpeed.pdf
https://doi.org/10.1109/MCS.2006.1636313
http://www.control.isy.liu.se
https://doi.org/10.1109/TRA.2002.999653
https://doi.org/10.1109/TRA.2002.999653
https://doi.org/10.1080/00207170310001646282
https://doi.org/10.1080/00207170310001646282
https://doi.org/10.1080/00207170310001646282
https://doi.org/10.1080/00207170310001646282
https://doi.org/10.1080/002071700405941
https://doi.org/10.1080/002071700405941
https://doi.org/10.1080/002071700405941
https://doi.org/10.1080/002071700405941

Bibliography

[11] S. Arimoto, “A Brief History of Iterative Learning Control”, in Iterative Learn-
ing Control: Analysis, Design, Integration and Applications, Z. Bien and J.-X.
Xu, Eds. Boston, MA: Springer US, 1998, pp. 3–7, isbn: 978-1-4615-5629-9.
doi: 10.1007/978-1-4615-5629-9_1. [Online]. Available: https://doi.
org/10.1007/978-1-4615-5629-9%7B%5C_%7D1.

[12] J. Wallén, “Estimation-based iterative learning control”, PhD thesis,
Linköping University, Linköping, 2011, isbn: 9789173932554. [Online]. Avail-
able: www.control.isy.liu.se.

[13] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control for discrete-
time systems with exponential rate of convergence”, IEE Proceedings - Control
Theory and Applications, vol. 143, no. 2, pp. 217–224, 1996, issn: 1350-2379.
doi: 10.1049/ip-cta:19960244.

[14] S. Gunnarsson and M. Norrlöf, “On the design of ILC algorithms using op-
timization”, Automatica, vol. 37, no. 12, pp. 2011–2016, Dec. 2001, issn:
00051098. doi: 10.1016/S0005-1098(01)00154-6.

[15] D. H. Owens, Iterative Learning Control, ser. Advances in Industrial Control.
London: Springer London, 2016, isbn: 978-1-4471-6770-9. doi: 10.1007/978-
1-4471-6772-3. [Online]. Available: http://link.springer.com/10.1007/
978-1-4471-6772-3.

[16] A. Steinhauser, T. D. Son, E. Hostens, and J. Swevers, “RoFaLT: An
optimization-based learning control tool for nonlinear systems”, in Proceed-
ings - 2018 IEEE 15th International Workshop on Advanced Motion Control,
AMC 2018, Institute of Electrical and Electronics Engineers Inc., Jun. 2018,
pp. 198–203, isbn: 9781538619469. doi: 10.1109/AMC.2019.8371087.

[17] N. Golovchenko. (2004). Least-squares Fit of a Continuous Piecewise Lin-
ear Function, [Online]. Available: https : / / golovchenko . org / docs /
ContinuousPiecewiseLinearFit.pdf (visited on Feb. 10, 2020).

[18] J. Lundgren. (2020). SPLINEFIT, [Online]. Available: https : / / se .
mathworks.com/matlabcentral/fileexchange/71225-splinefit (visited
on Apr. 28, 2020).

44

https://doi.org/10.1007/978-1-4615-5629-9_1
https://doi.org/10.1007/978-1-4615-5629-9%7B%5C_%7D1
https://doi.org/10.1007/978-1-4615-5629-9%7B%5C_%7D1
www.control.isy.liu.se
https://doi.org/10.1049/ip-cta:19960244
https://doi.org/10.1016/S0005-1098(01)00154-6
https://doi.org/10.1007/978-1-4471-6772-3
https://doi.org/10.1007/978-1-4471-6772-3
http://link.springer.com/10.1007/978-1-4471-6772-3
http://link.springer.com/10.1007/978-1-4471-6772-3
https://doi.org/10.1109/AMC.2019.8371087
https://golovchenko.org/docs/ContinuousPiecewiseLinearFit.pdf
https://golovchenko.org/docs/ContinuousPiecewiseLinearFit.pdf
https://se.mathworks.com/matlabcentral/fileexchange/71225-splinefit
https://se.mathworks.com/matlabcentral/fileexchange/71225-splinefit

A
Model parameters

Table A.1 contains the parameters used for systems modeling in Chapter 2.

Table A.1: Model parameters used for the system

Parameter Symbol Value
Wiper mass Jθ 5 kg
Inertia rotating side Jθ 0.001 kgm2

Inertia reciprocal moving side Jϕ 5 kgm2

Wiper friction bwiper 22 N · (rad/s)−1

Motor friction bmotor 1.5 · 10−5 N · (rad/s)−1

Motor resistance Rm 0.8 Ω
Motor inductance Lm 0.0015 H
Torque constant ψ 0.0357 Wb
Gear ratio NGB 81
Proportional gain Kp 0.7325 Vs
Integral gain Ki 30.5 Vs
Wiper point mass offset r 1 m
Axes offset motor 1 `0,M1 0.309 m
Crank length motor 1 `1,M1 0.066 m
Connector length motor 1 `2,M1 0.320 m
Rocker length motor 1 `3,M1 0.100 m
Axes offset motor 2 `0,M2 0.336 m
Crank length motor 2 `1,M2 0.066 m
Connector length motor 2 `2,M2 0.345 m
Rocker length motor 2 `3,M2 0.098 m
Wiper arm length motor 1 L1,M1 0.47 m
Wiper blade length motor 1 L2,M1 0.86 m
Wiper arm to wiper blade angle motor 1 αM1 149°
Wiper arm length motor 2 L1,M1 0.46 m
Wiper blade length motor 2 L2,M2 0.85 m
Wiper arm to wiper blade angle motor 2 αM2 160°

I

	List of Figures
	List of Tables
	Introduction
	Background
	Dual motor wiper system

	Purpose
	Aim and scope
	Limitations
	Thesis outline

	System modeling and trajectory generation
	Plant model of the wiper system
	Modeling of linkage mechanism
	Modeling of system dynamics
	A model of the closed loop system
	A linear model of the closed loop system
	Model verification

	Choosing a non-clashing trajectory
	Angular trajectory generation
	Velocity trajectory generation

	Iterative Learning Control
	Introduction to iterative learning control
	Lifted notation
	Assumptions in Iterative Learning Control

	Heuristic Iterative Learning Control
	Norm optimal Iterative Learning Control
	A filter implementation of Norm optimal Iterative Learning Control
	A recursive implementation of Norm optimal Iterative Learning Control

	RoFaLT
	Using iterative learning control with a limited number of setpoints
	Sampling at constant angle intervals

	Evaluation of ILC algorithms
	Simulation setup
	Algorithm tuning and stability
	Simulation results
	The effects of splinefit
	The effect of sampling at constant angle intervals

	Choice of algorithm

	Experiments
	Implementation in hardware
	Experimental results

	Discussion
	The splinefit algorithm
	System use cases
	Choice of velocity references

	Conclusion
	Future work

	Bibliography
	Model parameters

